
BULETINUL
Universităţii Petrol – Gaze din Ploieşti

Vol. LIX
No. 3/2007 1 - 6 Seria Tehnică

Developing a Virtualization Techniques – Based
Platform for Advanced Studies on Operating Systems

Gabriel Rădulescu, Nicolae Paraschiv

Universitatea Petrol-Gaze din Ploieşti, 39 Bucureşti Blvd., Ploieşti, ROMÂNIA
e-mail: gabriel.radulescu@upg-ploiesti.ro

Abstract

The virtualization technology got its start (on mainframes) some decades ago, intending to avoid wasting
expensive processing power. By this mean, on a single machine several applications could run, all
isolated into virtual operating system images that do not interfere each other. This manner of work allows
new and revolutionary approaches in theoretical and applied computer science, especially for studies on
operating systems behaviorand interactions in heterogeneous environments.

Key words: hardware virtualization, operating systems, computer network.

Introduction

Developed more than 30 years ago, addressing that time some mainframe computing problems,
virtual machine monitors have a new glorious and promising present, being used on standard
(even entry-level) platforms, offering original solutions in the field of computers security,
reliability and administration.

Virtualization is the technology that allows multiple operating system images running all at
once by using only one piece of hardware. Interesting architectures, platforms and applications
have been designed, in order to take all benefits from such a novel approach in (parallel)
computing – and the perspectives are obviously in a high spotlight.

This work discusses about building-up a platform based on virtualization techniques, highly
useful in studies over interactions between multiple operating systems in a homogeneous
hardware and heterogeneous software environments, as well as how such a valuable tool can be
used for instance in training laboratory works for students in the field of computer science.

An Overview on the Virtualization Technology

A virtual machine monitor (VMM) manages the resources of a real hardware platform, offering
an abstract representation of one or more virtual machines (VM) [5]. Such a virtual machine is
able to run a standard operating system (OS) together with its own designed applications. Figure
1 depicts the architecture used by modern virtualization platforms (like the well-known
VMware and VirtualPC environments).

Gabriel Rădulescu, Nicolae Paraschiv 2

Fig. 1. A standard structure for VMM, providing the abstraction of multiple VM-es.

Regarding the terminology, everything running inside a virtual machine is referred as guest
software (i.e., guest operating systems, guest applications), while the software running outside
the virtual machine – typically the host operating system – is identified as host software.

All guest software (including the guest OS) runs in user mode, having a limited control over the
real system hardware; it is only the VMM that runs in the most privileged level (kernel mode).
By this mean, the host OS in figure 1 is uniquely used to provide the basic access (also for VM-
es, through VMM) to a wide variety of physical devices [9].

The virtual machine monitors offer some hardware-level abstractions to the guest software,
presenting them as emulated hardware. In the same manner as it would do with real hardware,
the guest OS projects its actions on the virtual hardware (as input/output instructions, DMA
transfers and so on). These complex interactions are trapped by the VMM and consequently
emulated in software, allowing the guest OS to run in its standard way (as designed by factory,
without any modification for virtualization purpose), maintaining in the same time a strict
control over the system at the VMM layer.

A typical virtualization platform supports multiple virtual instances of various operating
systems on a single computer by multiplexing the real (physical) hardware. Depending on the
VMM performances, a perfect illusion of multiple, distinct virtual computers can be created
when running separate operating systems and their applications. In order to provide a safe
environment, the VMM isolates each virtual computer and its emulated hardware through a fine
adjustable redirection mechanism. For instance, the VMM can map a number of virtual disks to
different zones of a shared physical disk. In the same way, the physical memory space of each
virtual machine is mapped to different pages in the real machine memory system.

But the virtualization environments can be used not only for multiplexing the host computer
hardware, but also to provide a powerful platform for supplementary services to an existing
system. Typical targets for VMMs usage are, for example, debug sessions for new OS-es and
different system configurations [7, 10], live machines migration [8], intrusions detection and
prevention [4, 6, 1], code integrity test [3] and, of course, training activities for IT purposes.
Some of these VM services are typically implemented outside the guest they are serving, an
efficient manner to avoid perturbing the guest environment.

A problem that can occur when using VM services is represented by the difficulty in
understanding the states and events inside the associated guest, as they run at a different level of
abstraction from guest software. For the applications running outside of a virtual machine, the
virtual low-level state is seen as disk blocks, network data packets and memory locations, while
the software inside the VM sees this state as high-level abstractions such as files/directories,
TCP data connections and variables. This dichotomy between the data/events significance for
VMM and guest software is known as the semantic gap [2].

Developing a Virtualization Techniques – Based Platform for Advanced Studies on ….. 3

Virtual-machine introspection (VMI) [4, 6] is the technology covering virtual machine services
that are able to interpret and modify states/events within the guest. VMI translates variables and
guest memory addresses after reading the guest OS and applications symbols/pages tables.
Hardware and/or software breakpoints are used in order to enable a VM service to gain control
at a specific instruction address. Finally, the VMI technique makes possible a VM service to
invoke guest operating system or application code to carry out general-purpose functions (for
example, reading a guest file from the file cache/disk system). Regarding the data safety, the
virtual machine services can protect themselves from guest code by disabling external
input/output operations. In the same time, they can protect the guest data from perturbation by
inserting the so-called restore (reference) points, which contain the “frozen image” of the guest
environment, where it can be rolled back after an unsuccessful procedure.

A virtual machine monitor is a robust platform for studies on operating systems interaction
(splitting them in event-generating OS-es and target OS-es). Such a platform, called virtual
machine based rootkit (VMBR) installs the involved systems into independent virtual machines
and then concurrently runs them. The target system practically sees no difference in its memory
space, disk availability or execution (depending on the virtualization quality). The VMM also
completely isolates the event-generating OS state/events from those of the target system, so
software in the target system cannot see or modify the interacting software from the other
system. At the same time, the virtual machine monitor supervises all state/events in the target
system (keystrokes, network packets, disk state, memory allocation). Also, VMBR can quietly
read and modify these states and events (without being observed inside the running VM-es),
because it has the full control over the virtual hardware presented to the guests.

A complex platform for studies on virtualization technology:
 practical implementation

In order to use in a valuable way the principles of such a robust and flexible environment, the
authors have designed, implemented and currently test a complex multi-client platform at the
“Petroleum-Gas” University of Ploieşti (Computers and Networks Laboratory), allowing the
study of interactions between heterogeneous operating systems on virtual machines. This
section of the paper intends to give an overview on how our system is build-up, both from the
hardware and software perspective.

The hardware architecture

As shown in figure 2, the system is distributed over a Local Area Network (LAN) and consists
in one main server and the associated workstation-clients.

Fig. 2. The schematic hardware structure.

Gabriel Rădulescu, Nicolae Paraschiv 4

The central node is a HP Proliant ML310 server, on Intel platform (Pentium 4 CPU at 3.2GHz –
Hyper-Threading Technology, 1GB EC DDR memory) with RAID storage system and backup
facility in order to prevent any user data loss. By running under the “Protected by Proliant
Global Pre-failure Warranty”, the server is by itself a robust machine, providing an almost
inexisting downtime (in our case, no time was required for maintenance and service as no
failure occurred during operating sessions for over one year). Together with its high computing
power, the use of a Gigabit network adapter – avoiding any possible communication bottleneck
– also contributes to the server high throughput.

The system clients are located on independent workstations (typical Pentium 4 systems: 2GHz
CPU speed, 512MB DDR memory, ATA storage system), connected to the Proliant server
through a high-speed managed Ethernet switch. The quality of service inside the LAN (during
working sessions) was dramatically improved by configuring a dedicated virtual LAN (VLAN),
which isolates the distributed system from the corporate network (at the University level).

The software configuration

In order to improve the compatibility between clients and server, as well as the system
maintainability, a uniform OS installation was adopted. After benchmarking the available
options, we considered installing the Linux SuSE 8.2 distribution on every client machine and
also on the server – as it proved to be one of the most stable and, above all, most “controllable”
and fine adjustable mature Linux platform serving our purpose.

A uniform user account management was adopted too, by locating the users database on the
server, all clients being authenticated via NIS (Network Information Service). The user profile
is mobile, all workstations providing a homogeneous way of access inside the system and to the
server resources. More, the user home directories are located on the Proliant machine, exported
via NFS (Networking File System) technique and auto-mounted at boot/logon time on every
workstation, as suggested in figure 3. Although completely transparent for the user, this manner
of work has the big advantage of an increased data safety (because a crash on the workstation
only interrupts the communication with the server, but the last data components were already
written there). Improved protection against malicious code (spyware applications, viruses) could
be emphasized, as locating the user files only on the server made possible a central
management, including the usage of an unique antiviral solution (ClamAV, in our example),
only on the Proliant machine.

Fig. 3. A representation for the system software structure.

Developing a Virtualization Techniques – Based Platform for Advanced Studies on ….. 5

As virtualization platform, VMware was remarked as the most flexible solution, by offering a high
level of the hardware abstract representation and a very good compatibility with all the guest
operating systems included in our test sessions (Windows-based OS-es, heterogeneous Linux
distro’s, even the “old” MS-DOS). In order to provide a high level of independency and data
safety, each workstation has a separate standard VMware installation – on the server being kept
only the VMware users mobile profiles. On this infrastructure currently we run some extensive
compatibility and endurance tests with VMware Workstation versions 4.5.x, 5.5.x and 6.0.

Some remarks about the system utility

During the software environmental tests we started identifying the major advantages by using
such a virtualization platform (and we are continuously counting these benefits). In this general
presentation, we want to emphasize only a few of them:

o It is possible to pack and distribute various software pieces in virtual machines with
considerable less effort (in large networks, it could be at most 10% than by using the
standard working manner, with multi-boot computers and independent OS-es). With this
respect, an important facility we created for our system is the automated virtual machines
replication on all workstation: when a software update is needed, it has to be applied only
on one computer and the new VM image is multiplied in the network, making it available
on all workstations, for each authorized user.

o The system allows running experiments with multiple operating systems, applications and
tools in secure, isolated virtual machines. Also, this manner of work drastically reduces the
needed for such expensive tests.

o By configuring the virtual machines to "undo" all changes at shutdown, it is possible to
assign even administrator rights to the users (when dealing with subjects on OS
management tasks), or to generate system crashes during training sessions – as time as at
next boot all VM instances will start from a standard “clean” state, without being affected
by the previous user actions.

o With the proposed hardware and software configuration, the time required for technical
interventions, network tuning and maintenance activities are drastically reduced.

More than this, the system we designed keeps a very important feature: it has an open
architecture in multiple ways. First, all network clients are identical, so integrating a new
workstation for virtualization purpose in the system is trivially easy. Then, at logical (software)
level, each virtual machine on every workstation has the same attributes, no matter the guest OS
– and the local VMM sees all individual VM-es as a homogeneous environment. Last, any
system upgrade is always possible (we experimented several configurations before keeping the
current one), as time as the architecture and functionality are preserved.

Conclusions

Virtualization, in its current state, is the technology allowing multiple operating system
instances to simultaneously run by using a single hardware platform, without any interference.
New and revolutionary approaches in the computer science, especially for subjects related on
operating systems, are now possible by using the virtual machines technique.
This work presented how the virtualization technology can be used in building-up a platform for
studies over interactions between multiple operating systems in a homogeneous hardware and
heterogeneous software environment. This point of view has a true practical relevance, as time
as the presented system we have designed and implemented is currently in full service.

Gabriel Rădulescu, Nicolae Paraschiv 6

References

1. A n a g n o s t a k i s , K . G . e t a l . – Detecting Targeted Attacks Using Shadow Honeypots. In:
Proceedings of the 2004 USENIX Security Symposium, August 2005.

2. C h e n P . M . , N o b l e , B . D . – When virtual is better than real. In: Proceedings of the 2001
Workshop on Hot Topics in Operating Systems (HotOS), pages 133–138, May 2001.

3. T . G a r f i n k e l , B . e t a l . – A Virtual Machine-Based Platform for Trusted Computing. In:
Proceedings of the 2003 Symposium on Operating Systems Principles, October 2003.

4. G a r f i n k e l , T . , R o s e n b l u m , M . – A Virtual Machine Introspection Based Architecture
for Intrusion Detection. In: Proceedings of the 2003 Network and Distributed System Security
Symposium (NDSS), February 2003.

5. G o l d b e r g , R . P . – Survey of Virtual Machine Research. IEEE Computer, pages 34–45, June
1974.

6. Jo s h i , A . e t a l . – Detecting past and present intrusions through vulnerability-specific
predicates. In: Proceedings of the 2005 Symposium on Operating Systems Principles (SOSP), pages
91–104, October 2005.

7. K i n g , S . T . e t a l . – Debugging operating systems with time-traveling virtual machines. In
Proceedings of the 2005 USENIX Technical Conference, pages 1–15, April 2005.

8. S a p u n t z a k i s , C . P . e t a l . – Optimizing the Migration of Virtual Computers. In:
Proceedings of the 2002 Symposium on Operating Systems Design and Implementation, December
2002.

9. S u g e r m a n , J . e t a l . – Virtualizing I/O Devices on VMware Workstation’s Hosted Virtual
Machine Monitor. In: Proceedings of the 2001 USENIX Technical Conference, June 2001

10. W h i t a k e r , A . e t a l . – Configuration Debugging as Search: Finding the Needle in the
Haystack. In: Proceedings of the 2004 Symposium on Operating Systems Design and
Implementation (OSDI), December 2004.

O platformă de studiu avansat al sistemelor de operare
pe baza tehnicilor de virtualizare

Rezumat

Tehnologia virtualizării hardware/software îşi are rădăcinile în studiile anilor ’70 (epoca mainframe-
urilor), având scopul declarat de optimizare a consumului puterii de calcul disponibile. Prin această
tehnică, pe o unică maşină pot rula în paralel, în medii complet izolate atât între ele cât şi faţă de
calculatorul-gazdă, diferite sisteme de operare cu propriile aplicaţii software asociate. O astfel de
metodologie de lucru permite abordarea revoluţionară a studiilor teoretico-practice în domeniul ştiinţei
calculatoarelor (în general) şi al sistemelor de operare (în particular).

