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Abstract: This paper presents a dynamic model for the crude oil distillation unit. After years of experiments, our 
model is a compromise between a good results accuracy requiring a complex model and its reasonable dimensions. 
Because we used DIVA simulator that is “block oriented”, the models representing the main column, sidestripers, 
pumparounds and condenser with the tank, describe the plant; the whole unit is represented by these connected 
elements. At the final of this work we present some simulation results.                                                                                                         
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1. INTRODUCTION 

The crude oil unit, as a part of the Atmospheric and 
Vacuum Distillation unit, is one of the most 
important plants in a refinery. Due to its own place 
(its products being feeds for other important units) 
and complexity, it is very important to have a 
powerful instrument to study intimately this multi-
component distillation process. 

Thus, a software simulator focused on the process 
dynamics can be one of these analyzing tools; 
furthermore it can be used not only for research 
purposes, but also as a support for plant operators 
training, giving a good way for safe “experiments” 
of various operating strategies. A special case are 
the researches for design the control structure of the 
plant, this way being possible to test its 
performances before implement it effectively and 
make improvements if needed. 

There is an alternative: to use an “industrial”, 
“factory made” simulator covering a large class of 
applications or to build-up a personal one, focused 
only on the problems regarding the crude oil unit. 
Obviously, for research purposes, which need a 
very close “look inside the process”, a dedicated 

tool is required, having different features from the 
general simulators. This way, using an appropriate 
model, the user is able to know the basics of the 
distillation process and even to improve the model 
itself – something impossible in the case of the 
“industrial” simulators that offer some standard, 
inflexible models and nothing more. 

In order to have the benefits of a dedicated 
simulator it is necessary to build-up a mathematical 
model for the process, then to find an appropriate 
method to integrate it and finally to display the 
simulation results in an accessible form for the user. 

After years of experiments in this field, the authors 
present in this paper a model for the crude oil 
distillation unit and suggest a modern solution to 
integrate it and display/analyze the simulation 
results. We used a very powerful software oriented 
on dynamic simulations for industrial plants, 
DIVA, developed at the Stuttgart University, 
Germany. 



2. THE MATHEMATICAL MODEL 
FOR THE CRUDE OIL UNIT DYNAMICS 

It is quite difficult to build-up a dynamic model for 
the multi-component distillation due to the process 
complexity and the problems which may affect the 
numerical integration of the model equations even 
using “top level” algorithms and powerful digital 
equipments. 

We propose a model representing a compromise 
between good results accuracy and a reasonable 
model dimension in order to require a non-
prohibitive execution time for the integration 
routine. Based on our own experience and literature 
study too (Chung, Riggs, 1995), we have some 
simplifying assumptions: 
- perfectly mixed component on column trays; 
- equilibrium (theoretical) trays; 
- negligible vapor holdups; 

- constant pressure profile; 
- total condenser with “perfect” controlled 

temperature. 

These assumptions lead to a robust model, that can 
be used in a simulation software environment. It is 
revealed as an reasonable-dimensioned model, but 
having a good behavior that follows the basic 
characteristics of the distillation process. 

As shown in figure 1, the crude oil unit consists in 
one main column with two pumparounds and four 
sidedraws to the sidestripers; the top vapor is totally 
condensed and stored in a tank where the water is 
decanted; a part of the top product turns back into 
the column as external reflux. 

The model for the entire unit is obtained from the 
models for each particular element of the plant as 
shown as follows. 

 

2.1. The columns and sidestripers 

The model for the main column and the sidestripers 
is the same, the only thing that differs being the 
number of trays (considered as a “structural 
parameter” for the model). It is mainly based on 
equations for total material balance, component 
material balance, energy balance and liquid-vapor 
equilibrium: 
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Figure 1. The crude oil distillation unit. 
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? Tray k (  k = 2…NS – 1, see figure 2b): 
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? Column bottom ( k = NS , see figure 2c): 
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NSNS DLLE −=0                                         (25) 

NSNSNS DLLLE −−=0                             (26) 

NSNSNS DVVVE −−=0  .                          (27) 

In these equations, the enthalpies and liquid-vapor 
equilibrium constant must be specified, for example 
by polynomial functions of temperature (the most 
simple case) or using some more complex and 
accurate correlations of pressure, temperature and 
composition, if enough information is available to 
the user like Chao-Seader, Boston-Britt a.s.o. 
(Parekh, 1998; Stratula, 1976; Stratula, 1986).



 

We must emphasize a few characteristics of this 
model: 
- the system is non-linear, ill conditioned, stiff, 

due to the different time scales in the model, 
imposing serious limitations for the integration 
step in order to have a stable numerical 
solution; 

- a real problem for integration is to find a true 
steady state, with practical relevance, to use it 
as a good starting point for the dynamic 
simulation; 

- the transient time has a value in the range of 
5…25 hours (for industrial crude oil distillation 
units); 

- the system dimension is very large and may 
lead to some memory management problems; 
thus we must operate some dimensional 
reductions (i.e. observing that only a few trays 
in the column have external feeds or 
sidedraws). 

2.2. The pumparounds 

The model for the pumparounds (figure 3) is 
mainly based on the equation for the heat transfer 
from the cooled product stream to the cooling 
agent, obviously without any changes in product 
composition and flow rate: 
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2.3. The condenser with tank 

For this assembly (figure 4) we adopted a very 
simple model, considering the case of a total 
condenser with “perfect” temperature control and 
constant liquid holdup in the tank (the decanted 
water accumulation is modeled too): 
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Figure 2. Column streams:  
a- column top; 
b- a tray inside the column; 
c- column bottom. 

Figure 3. Pumparound diagram. 
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The Chung-Riggs model is the basic model in the 
literature, of course, with a few variations. It is well 
accepted considering its performances and 
reasonable dimensions. Our model is in fact based 
on their model; the most significant changes are the 
new form of the equation (24) – in our model it is 
an algebraic equation, not a differential one like in 
Chung-Riggs model – and a new model for the total 
condenser with the tank. These changes reduce the 
computational effort and improve the behavior of 
the model. 

Obviously the model had to be validated, in order 
to be sure it is accurate to provide solutions with 
practical relevance. In the same time we had to 
evaluate how far we can go with our simplifying 
assumptions. 

The authors were in the situation to find an 
appropriate way to validate the mathematical 
model. In a “normal” situation, having reasonable 
dimensions and complexity, there are available a 
few analytical methods to study the inherent model 
properties: its solutions existence, uniqueness, 
continuity depending on the input data and 
especially their behavior in concordance with the 
physical sense. But unfortunately it is not our case: 
the model is quite large and complex even for a 
regular computer-coded representation, not only for 
a human researcher! This way, the only method to 
validate the model is to study very carefully its 
behavior during a significant number of 
simulations; our opinion is that the model above 
have a good accuracy as time as there is an obvious 
concordance between the obtained results and the 
data directly taken from the real plant, taking into 
account of the good sense remarks from the plant 
operators too. 

 

 

3.  DYNAMIC SIMULATION  
OF THE ENTIRE DISTILLATION UNIT 

To simulate the dynamics of the crude oil unit 
means in fact to integrate its mathematical model 
equations, requiring adequate routines for 
numerical integration and graphical representation 
of the simulation results. The authors of this paper 
suggest a very versatile and powerful software 
oriented on dynamic simulations for industrial 
plants, DIVA (Dynamische Simulation 
Verfahrenstechnischer Anlagen), developed at the 
Stuttgart University (Kienle 1997, Köhler 1999, 
Kröner 1999). This simulator is running under 
Linux operating system and integrates some sets of 
high-level routines for solve/integrate complex 
algebraic and differential equation systems. It is not 
the place here to describe the features of DIVA 
simulator, but we want to emphasize that, being 
oriented on simulations over the industrial plants, it 
works with the concept of “block device”: the 
entire plant is divided in relevant parts in accord 
with topologic and functional rules. Every block is 
described by its own model and external 
connections, giving a natural way to aggregate the 
entire plant, a way we call “a structural approach”.  

As an example, we present in figure 5 a diagram 
representing the existing connections between 
“device-blocks” for the crude oil unit, as it must be 
specified for DIVA simulator. The blocks are 
described by the models presented (equations 
(1)…(44) ). 

Some remarks have to be done: 

- the inputs and outputs for these blocks can be 
“material” streams (“complex” streams) and 
“informational” streams (“simple” streams); 

- a material stream (thick arrow in the diagram) 
can be sub-divided in informational streams 
(thin arrows). This way, all connections 
between blocks become informational links, 
but we prefer to use material links too, because 
our “structural approach” is focused on the 
easy-to-understand description form for the 
plant inside the simulator; 

- once all needed connections between blocks 
are established, changing the model for one 
particular block doesn’t imply any changes in 
the plant description inside the simulator. 

There are some important advantages using this 
manner of work:  
- A very easy to understand representation of the 

plant; 
- An easier way to describe the plant through a 

mathematical model, using multiple simple 
models for the blocks instead of a single 
complex model for the entire plant; 

 



- The user is able to test the parts of the plant 
and to identify mismatches in the models; 

- A possibility to have an open structure that will 
permit anytime improvements and additional 
modules. 
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Figure 5. Connections diagram for DIVA simulator. 



 For detailed information about DIVA simulation 
environment that include the graphical 
representation feature (using a dedicated MATLAB 
toolbox) the reader may consult the references 
(Kienle 1997, Köhler 1999, Kröner 1999). 

We tested our model on an industrial crude oil unit 
(its structure being shown in figure 1); some 
significant data are presented in table 1. 

Table 1. Some data about the crude oil unit.  

Number of trays in the main column 30 

Number of trays in the sidestriper 3 

Number of pseudo-components in the feed 37, including water 

Feed type pre-flashed 

Feed flow rate 0.57 kmol/s 

Reflux ratio 0.23 

Molar holdup on column trays 3.0 kmol 

As example, some diagrams are presented. These 
simulation results were obtained using our model 
for the column mentioned above. 

Regarding the simulator settings, we used in DIVA 
the NLEQ1S solver (Newton method with variable 
damping strategy) to get the initial conditions and 
LIMEXS integrator (extrapolation method with 
variable step size). 

In figures 6 and 7 is presented the evolution of the 
component 5 (a light pseudo-component) fraction 
in gasoline and naphtha after a step increasing in 
the steam flow rate at the bottom of the column. 
Due to the stripping effect of the steam, the lighter 
components are moved to the top of the column, 
their fraction increases in the top product – gasoline 
and decreases in the bottom product of the 
sidestriper 1 – naphtha. The initial “peak” in figure 
5 is an effect of the assumption that we have 
negligible vapor holdups on trays, 
meaning”instant” vapor propagation from bottom to 
top. 

Figures 8 and 9 presents the temperature evolution 
in the column top and bottom when external reflux 
ratio increases. In figure 8 the effect of internal 

column interactions can be observed: in the first 
time interval the temperature decreases (as a direct 
effect of an incoming colder stream), then it 
increases and decreases again to a new steady value 
due to the changes in the column internal flow 
rates. On tray 30 (column bottom) there is an initial 
temperature increase (due to the incoming internal 
stream from above, with higher temperature), but 
after that the temperature decreases, as an effect of 
internal liquid stream cooling due to the reflux ratio 
increase. 

These simulation results are significant, at this 
point, not for analyzing the column dynamic 
behaviour, but to show how the model 
implementation in DIVA works. A few experiments 
proved that the execution time is about 20 times 
compressed (an hour of column-time is simulated in 
3 minutes), even if the whole model consists in 
about 5000 equations! Another fact to be mentioned 
is that the simulator implemented in DIVA is only 
at its “first age” – and there will be a lot of changes 
in it, improving the performances., but it is very 
important to show this is a good way to follow. 

 

 

 

 

 

 

 

 

 
Figure 6.Comp. 5 in top product (gasoline) 
          when steam flow rate increases. 

 
Figure 7. Comp. 5 in bottom of sidestriper 1 (naphtha) 
           when steam flow rate increases. 



 

 

 

 
 

 
4. CONCLUSIONS 

In this paper was presented a dynamic model for 
the crude oil distillation unit, based on the Chung-
Riggs model. The most important change is that the 
model for the whole plant consists in the models for 
a few blocks representing elements of the plant: the 
main column, sidestripers, pumparounds and 
condenser with the tank. This partition of the unit in 
sub-components is very useful for an easy model 
implementation and integration in DIVA, the 
software environment we used to simulate the crude 
oil plant. At the final of our work some simulation 
results are presented. It shows how our simulator 
works, even if it is only at the beginning and has to 
be improved. Our manner of work reveals the 
advantages of the “structural approach”, which 
permit a flexible implementation and leads to a very 
fast simulation. 
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NOMENCLATURE 
Molar flow rates: 
FL – liquid feed on tray; 
FV – vapor feed on tray; 
LE – liquid leaving the tray; 
VE – vapor leaving the tray; 
DL – liquid sidedraw from tray; 
DV – vapor sidedraw from tray; 
L – liquid remaining after sidedraw; 
V – vapor remaining after sidedraw; 
FIN – product to heat exchanger; 
FOUT – product from heat exchanger; 
FVAP – vapor to condenser; 
FCOND – condensed liquid; 
DW – decanted water; 
DP – top product; 
DR – reflux to the column. 
 
 

Molar fractions: 
XFL – pseudo-component in liquid feed; 
YFV – pseudo-component in vapor feed; 
X – pseudo-component in liquid on tray; 
Y – pseudo-component in vapor on tray; 
XIN – pseudo-component in product to heat 
exchanger; 
XOUT – pseudo-component in product from heat 
exchanger; 
YVAP – pseudo-component in vapor to condenser; 
XCOND – pseudo-component in condensed liquid; 
XR – pseudo-component in reflux to column; 
XP – pseudo-component in top product; 
XW – pseudo-component in decanted water. 
Temperatures: 
TIN – product to heat exchanger; 
TOUT – product from heat exchanger; 
TFIX – setpoint for condensed liquid; 
TCOND – condensed liquid; 
TW – decanted water; 
TP – top product; 
TR – reflux to the column. 
 
Molar enthalpies: 
HFL – liquid feed; 
HFV – vapor feed; 
HL – liquid on tray; 
HV – vapor on tray; 
HLP – pseudo-component in liquid phase. 
Others: 
K – liquid-vapor constant; 
m0 – constant liquid holdup on tray; 
m – liquid holdup on tray; 
bm – coefficient in the holdup equation; 
NS – number of column trays; 
Mpa – product holdup in the heat exchanger; 
Qpa – heat exchange on pumparound; 
cp – product specific heat; 
fw – the fraction of decanted water from condensed 
liquid. 
 
Indexes: 
i – pseudo-component; 
k – tray number. 

 

 
Figure 8. Temperature on tray 1 when reflux ratio  
                increases. 

 
Figure 9. Temperature on tray 30 when reflux ratio 
                 increases. 
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