
Knowledge Based Organization 2008 International Conference

IMPLICATIONS OF PARALLEL COMPUTING IN THE

OPTIMIZATION OF DIGITAL IMAGE PROCESSING

ALGORITHMS

Bogdan Vasilescu
*
, PhD Eng. Gabriel Rădulescu

Petroleum-Gas University of Ploieşti, Romania
*
e-mail: vasilescu@gmail.com

Abstract

Digital image processing is one of the fastest growing fields of research

nowadays, with applications ranging from satellite imagery, medical imaging

and videophone to character recognition, motion detection and photo

enhancement. Digital image processing allows the use of much more complex

algorithms for image processing, and hence can offer both more sophisticated

performance at simple tasks, and the implementation of methods which would

be impossible by analog means.

The current paper offers a possible solution to the optimization problems

that arise from working with digital image processing algorithms. It focuses on

using parallel computing architectures to increase the performance of the

algorithms, especially by using the OpenMP standard.

Keywords: digital image processing, optimization, parallel

architectures, OpenMP

1. Introduction

The software dimension associated with digital image processing

has known a spectacular development along with computing

technology. The algorithms are now solidly based on mathematical

grounds, giving birth to new approaches which are faster, more precise

and can solve formerly unsolvable problems. Most of the times the

increase in performance due to using a more efficient algorithm is

considerable, reaching up to several sizes in scale. Therefore, faster

Knowledge Based Organization 2008 International Conference

algorithms render many new digital image processing techniques

applicable and significantly reduce the costs of the systems.

Processing digital images typically involves several filtering

steps, some of which are time-consuming [1]. However, there is an

interesting method to improve program performance through parallel

computing. Lately, since there are many computers with multi

processors or multi-core CPUs, parallel processing becomes widely

available. Nevertheless, having multiple processing units on the

hardware does not make existing programs necessarily run faster.

Programmers must take the initiative to implement parallel processing

capabilities in their programs to fully make the most of the hardware

available. OpenMP is a set programming APIs which include several

compiler directives and a library of support functions. It was first

developed for use with FORTRAN and now it is available for C and

C++ as well.

The current paper focuses on using OpenMP-based tools to show

how can multithreading be implemented to improve filter performance

on multiprocessor systems and/or processors that support Hyper-

Threading Technology.

2. Types of Parallel Programming

Before beginning with OpenMP, it is important to know why

parallel processing is needed. In a typical case, a sequential code will

execute in a thread which runs on a single processing unit. Thus, if a

computer has 2 processors or more (either two cores or one processor

with HyperThreading technology), only a single processor will be

used for execution, therefore wasting the other’s processing power.

Rather than letting the other processor sit idle (or process other threads

from other programs) it can be used to speed up the algorithm.

Parallel processing can be divided into two groups, task based and

data based [2].

• Task based: Divide different tasks to different CPUs to be

Knowledge Based Organization 2008 International Conference

executed in parallel. For example, a Printing thread and a Spell

Checking thread running simultaneously in a word processor. Each

thread is a separate task.

• Data based: Execute the same task, but divide the workload on

the data over several CPUs (for example, converting a color image to

grayscale). We can convert the top half of the image on the first CPU,

while the lower half is converted on the second CPU (or as many

CPUs you have), thus processing in half the time.

There are several methods to do parallel processing

• Using MPI: Message Passing Interface - MPI is most suited for a

system with multiple processors and multiple memory modules (for

example, a cluster of computers with their own local memory). MPI

can be used to divide the workload across this cluster and merge the

results when it is finished.

• Using OpenMP: OpenMP is suited for shared memory systems

like desktop computers. Shared memory systems are systems with

multiple processors but each are sharing a single memory subsystem.

Using OpenMP is like writing smaller threads and letting the compiler

manage them.

• Using SIMD intrinsic: Single Instruction Multiple Data (SIMD)

has been available on mainstream processors such as Intel's MMX,

SSE, SSE2, SSE3, Motorola's (or IBM's) Altivec and AMD's

3DNow!. SIMD intrinsic are primitive functions to parallelize data

processing on the CPU register level. For example, the addition of two

unsigned chars will take the whole register size, although the size of

this data type is just 8-bit, leaving 24-bit in the register to be filled

with 0 and wasted. Using SIMD (such as MMX), 8 unsigned chars can

be loaded (or 4 shorts or 2 integers) and executed in parallel on the

register level.

Knowledge Based Organization 2008 International Conference

Figure 1: Overview of MPI, OpenMP and SIMD architectures

3. OpenMP

 The OpenMP standard [4] is a specification for a portable

implementation of shared memory parallelism in FORTRAN, C, and

C++. The specification provides a set of compiler directives and

runtime library routines that extend FORTRAN, C, and C++ to

achieve shared memory parallelism. OpenMP language extensions

include work-sharing constructs, data environment and

synchronization. The standard also includes a callable runtime library

with accompanying environment variables.

OpenMP defines a set of C pre-processor pragmas (or directives

for FORTRAN), which describe parallelism to the compiler (OpenMP

has a limited ability to express task parallelism as well). OpenMP-

compliant compilers are available for most operating systems, which

makes OpenMP quite portable. Most important, however, OpenMP is

compact and often non-intrusive and threading existing serial code

rarely requires significant code modifications.

OpenMP uses the fork-and-join parallelism model [6]. In fork-

and-join, parallel threads are created and branched out from a master

thread to execute an operation and will only remain active until the

operation has finished, then all the threads are destroyed, thus leaving

only one master thread. The process of splitting and joining the

threads including synchronization for the end result are handled by

OpenMP.

Knowledge Based Organization 2008 International Conference

Figure 2: The fork-and-join parallelism model

A typical question is how many threads are needed for a specific

problem [5]. The number of threads required to solve a problem is

generally limited to the number of CPUs available. As seen in the

Fork-and-Join figure above, whenever threads are created, a little time

is taken to create a thread and later to join the end result and destroy

the threads. When the problem is small, and the number of CPUs are

less than the number of threads, the total execution time will be longer

(slower) because more time has been spent to create threads, and later

switch between the threads (due to preemptive behaviour) then to

actually solve the problem. Whenever a thread context is switched,

data must be saved/loaded from the memory. This takes time.

Therefore, since all the threads will be executing the same

operation (hence the same priority), one thread is sufficient per CPU

(or core). The more CPUs available, the more threads can be created.

Most compiler directives in OpenMP use the Environment

Variable OMP_NUM_THREADS to determine the number of threads

to create. The number of threads can be controlled with the following

C++ functions:
// Get the number of processors in this system

int iCPU = omp_get_num_procs();

// Now set the number of threads

 omp_set_num_threads(iCPU);

Knowledge Based Organization 2008 International Conference

4. Analysis and results

Digital image processing uses specific algorithms and techniques,

also known as filters. Most of the times, image processing filters

require time-consuming iterations. The current study focuses on

finding a solution to reduce the execution time of such iterations,

namely the for-loops and the double for-loops, which are most

commonly found in such filters. In order to optimize the crossing of

the loops the workload can be distributed to multiple threads running

on multiple cores.

4.1. Parallel for Loop

The following is a C++ code to convert a 32-bit Colour (RGBA)

image to 8-bit Greyscale image, a common operation used in image

processing algorithms [3]. The sequence demonstrates the use of a

simple parallel for loop.
// pDest is an unsigned char array of size width * height

// pSrc is an unsigned char array of size width * height * 4 (32-bit)

// Use pragma for to make a parallel for loop

omp_set_num_threads(threads);

#pragma omp parallel for

for(int z = 0; z < height*width; z++)

{

 pDest[z] = (pSrc[z*4+0]*3735 +

 pSrc[z*4 + 1]*19234+ pSrc[z*4+ 2]*9797)>>15;

}

The #pragma omp parallel for directive will parallelize the for-

loop according to the number of threads set.

The following plot illustrates the performance gained for a

3264x2488 image on a 1.66GHz Dual Core system (Fig.3-a). By

executing the problem using 2 threads on a dual-core CPU, the time

has been cut by half (the speedup has doubled). However, as the

number of threads is increased, the performance does not improve

further due to increased time to fork and join.

Knowledge Based Organization 2008 International Conference

Figure 3: Speedup of parallel for-loop; b,c. Speedup of the two solutions for

parallel double for-loop

4.2. Parallel double for loop

The same problem above (converting color to grayscale) can also

be written in a double for-loop way, like in the C++ sequence below.
for(int y = 0; y < height; y++)

 for(int x = 0; x< width; x++)

 pDest[x+y*width] = (pSrc[x*4 + y*4*width + 0]*3735 +

pSrc[x*4 + y*4*width + 1]*19234+ pSrc[x*4 + y*4*width + 2]*9797)>>15;

In this case, there are two solutions. The first makes the inner loop

parallel using the parallel for directive. When 2 threads are being used,

the execution time has actually increased (Fig.3-b). This is because for

every iteration of y, a fork-join operation is performed, which

eventually leads to the increased execution time.
for(int y = 0; y < height; y++) {

 #pragma omp parallel for

 for(int x = 0; x< width; x++) {

 pDest[x+y*width] = (pSrc[x*4 + y*4*width + 0]*3735 +

pSrc[x*4 + y*4*width + 1]*19234+ pSrc[x*4 + y*4*width + 2]*9797)>>15;

 }

}

For the second solution, instead of making the inner loop parallel,

the outer loop is the better choice. Here, another directive is

introduced - the private directive [7]. The private clause directs the

compiler to make variables private so multiple copies of a variable do

not execute. In this case, the execution time did indeed get reduced by

half (Fig.3-c).
int x = 0;

#pragma omp parallel for private(x)

for(int y = 0; y < height; y++) {

Knowledge Based Organization 2008 International Conference

 for(x = 0; x< width; x++) {

 pDest[x+y*width] = (pSrc[x*4 + y*4*width + 0]*3735 + pSrc[x*4 +

y*4*width + 1]*19234+ pSrc[x*4 + y*4*width + 2]*9797)>>15;

 }

}

5. Conclusions

This paper presented a possible optimization solution to digital

image processing filters. The method uses commonly available

parallel computing architectures, like the ones in multiple core CPUs,

in order to divide the workload over several processors by assigning it

to several execution threads.

The most promising results have been obtained with a two-

threaded approach on a dual-core processor where the execution time

of the algorithms was reduced by half. Therefore, the optimum number

of threads to be used is equal to the number of CPUs available.

Since the method proved to be viable, further research will be

done by the authors in order to study the behavior of the algorithms on

other multiple core processors (quad-core processors and so on).

References

[1] Gonzales, Woods, Digital image processing, Prentice Hall, 2008

[2] Malik, D. S., C++ Programming: Program Design Including Data

Structures, Course Technology, 2008.

[3] Miller, A., Ford, L. F., Microsoft Visual C++ 2005 Express Edition

Programming for the Absolute Beginner, Course Technology, 2005.

[4] OpenMP Application Program Interface, May 2008

[5] Gabb, H.A., Magro, B., Faster Image Processing with OpenMP, Dr.Dobb’s

Portal, 2004

[6] Begin Parallel Programming with OpenMP,

http://www.codeproject.com/KB/cpp/BeginOpenMP.aspx

[7] 32 OpenMP traps for C++ developers,

http://www.codeproject.com/KB/cpp/32_OpenMP_traps.aspx

