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Foreword

The author, Vasile Cîrtoaje, professor at University of Ploiesti-Romania, has be-
come well-known for his excellent creations in the mathematical inequality field,
ever since the time when he was student in high school (in Breaza city, Prahova
Valley). As a student (quite some time ago, oh yes!), I was already familiar with
the name of Vasile Cîrtoaje. For me, and many others of my age, it is the name
of someone who helped me to grow in mathematics, even though I never met him
face to face. It is a name synonymous to hard and beautiful problems involving in-
equalities. When you say Vasile Cîrtoaje (Vasc username on the site Art of Problem
Solving), you say inequalities. I remember how happy I was when I could manage
to solve one of the problems proposed by professor Cîrtoaje in Gazeta Matematica
or Revista Matematica Timisoara.

The first three volumes of this book are a great opportunity to see and know
many old and new elementary methods for solving mathematical inequalities: Vol-
ume 1 - Symmetric polynomial inequalities (in real variables and nonnegative real
variables), Volume 2 - Symmetric rational and nonrational inequalities, Volume 3
- Cyclic and noncyclic inequalities. As a rule, the inequalities from each section of
these volumes are increasingly ordered by the number of variables: two, three,
four, five, six and n-variables.

The last two volumes (Volume 4 - Extensions and refinements of Jensen’s inequal-
ity, Volume 5 - Other recent methods for creating and solving inequalities) contain
beautiful and efficient original methods for creating and solving inequalities, such
as half or partially convex function method - for Jensen’s type inequalities, Popovi-
ciu’s method for convex function, equal variables method and arithmetic compensa-
tion method - for symmetric inequalities, the highest coefficient cancellation method -
for symmetric homogeneous polynomial inequalities of degree six, seven and eight,
pqr method - for cyclic homogeneous polynomial inequalities of degree four, et al.

Many problems, the majority I would say, are made up by the author himself.
The chapters and volumes are relatively independent, and you can open the book
somewhere to solve an inequality or only read its solution. If you carefully make a
thorough study of the book, then you will find that your skills in solving inequalities
are considerably improved.

The book contains more than 1000 beautiful inequalities, hints, solutions and
methods, some of them being posted in the last ten years by the author and other
inventive mathematicians on Art of Problem Solving website (Vo Quoc Ba Can, Pham
Kim Hung, Michael Rozenberg, Nguyen Van Quy, Gabriel Dospinescu, Darij Grin-
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berg, Pham Huu Duc, Tran Quoc Anh, Le Huu Dien Khue, Nguyen Anh Tuan, Pham
Van Thuan, Bin Zhao, Ji Chen etc.)

Most inequalities and methods are old and recent own creations of the author.
Among these, I would like to point out the following inequalities:

(a2 + b2 + c2)2 ≥ 3(a3 b+ b3c + c3a), a, b, c ∈ R;
∑

(a− kb)(a− kc)(a− b)(a− c)≥ 01, a, b, c, k ∈ R;

� a
a+ b

�2
+
�

b
b+ c

�2

+
� c

c + d

�2
+
�

d
d + a

�2

≥ 1, a, b, c, d ≥ 0;

4
∑

i=1

1
1+ ai + a2

i + a3
i

≥ 1, a1, a2, a3, a4 > 0, a1a2a3a4 = 1;

a1

a1 + (n− 1)a2
+

a2

a2 + (n− 1)a3
+ · · ·+

an

an + (n− 1)a1
≥ 1, a1, a2, · · · , an ≥ 0;

aea + beb ≥ aeb + bea, a, b > 0, e ≈ 2.7182818.

a3b + b3a ≤ 2, a, b ≥ 0, a+ b = 2.

The book represents a rich source of beautiful, serious and profound mathe-
matics, dealing with classical and new approaches and techniques which help the
reader to develop his inequality-solving skills, intuition and creativity. As a result,
it is suitable for a wide audience: advanced middle school students, high school
students, college and university students, and teachers. Each problem has a hint,
and many problems have multiple solutions, almost all of which are, not surpris-
ingly, quite ingenious. Almost all inequalities require careful thought and analysis,
making the book a rewarding source for anyone interested in Olympiad-type prob-
lems and in the development of the inequality field. Many problems and methods
can be used as group projects for advanced high school students.

What makes this book so attractive? The answer is simple: the great number of
inequalities, their quality and freshness, as well as the new approaches and meth-
ods for solving mathematical inequalities. Nevertheless, you will find this book to
be delightful, inspired, original and enjoyable. Any interested reader will remark
the tenacity, enthusiasm and ability of the author in creating and solving nice and
difficult inequalities. This book is neither more, nor less than a Work of a Master. I
highly recommend it.

Marian Tetiva
National College "Gheorghe Rosca Codreanu" Bârlad, Romania

1Throughout the book, the math symbol
∑

means
∑

c yc
;

∑

c yc

f (a1, a2, . . . , an) = f (a1, a2, . . . , an) + f (a2, a3, . . . , a1) + · · ·+ f (an, a1, . . . , an−1).
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Chapter 1

Some Classic and New Inequalities
and Methods

1. AM-GM (ARITHMETIC MEAN-GEOMETRIC MEAN) INEQUALITY

If a1, a2, . . . , an are nonnegative real numbers, then

a1 + a2 + · · ·+ an ≥ n n
p

a1a2 · · · an,

with equality if and only if a1 = a2 = · · ·= an.

2. WEIGHTED AM-GM INEQUALITY

Let p1, p2, . . . , pn be positive real numbers satisfying

p1 + p2 + · · ·+ pn = 1.

If a1, a2, . . . , an are nonnegative real numbers, then

p1a1 + p2a2 + · · ·+ pnan ≥ ap1
1 ap2

2 · · · a
pn
n ,

with equality if and only if a1 = a2 = · · ·= an.

3. AM-HM (ARITHMETIC MEAN-HARMONIC MEAN) INEQUALITY

If a1, a2, . . . , an are positive real numbers, then

(a1 + a2 + · · ·+ an)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

≥ n2,

with equality if and only if a1 = a2 = · · ·= an.

1
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4. POWER MEAN INEQUALITY

The power mean of order k of positive real numbers a1, a2, . . . , an, that is

Mk =











�

ak
1+ak

2+···+ak
n

n

�
1
k

, k 6= 0

n
p

a1a2 · · · an, k = 0
,

is an increasing function with respect to k ∈ R. For instant, M2 ≥ M1 ≥ M0 ≥ M−1

is equivalent to

√

√a2
1 + a2

2 + · · ·+ a2
n

n
≥

a1 + a2 + · · ·+ an

n
≥ n
p

a1a2 · · · an ≥
n

1
a1
+

1
a2
+ · · ·+

1
an

.

5. BERNOULLI’S INEQUALITY

For any real number x ≥ −1, we have
a) (1+ x)r ≥ 1+ r x for r ≥ 1 and r ≤ 0;
b) (1+ x)r ≤ 1+ r x for 0≤ r ≤ 1.

If a1, a2, . . . , an are real numbers such that either a1, a2, . . . , an ≥ 0 or

−1≤ a1, a2, . . . , an ≤ 0,

then
(1+ a1)(1+ a2) · · · (1+ an)≥ 1+ a1 + a2 + · · ·+ an.

6. SCHUR’S INEQUALITY

For any nonnegative real numbers a, b, c and any positive number k, the inequality
holds

ak(a− b)(a− c) + bk(b− c)(b− a) + ck(c − a)(c − b)≥ 0,

with equality for a = b = c, and for a = 0 and b = c (or any cyclic permutation).
For k = 1, we get the third degree Schur’s inequality, which can be rewritten as
follows

a3 + b3 + c3 + 3abc ≥ ab(a+ b) + bc(b+ c) + ca(c + a),

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca),

a2 + b2 + c2 +
9abc

a+ b+ c
≥ 2(ab+ bc + ca),

(b− c)2(b+ c − a) + (c − a)2(c + a− b) + (a− b)2(a+ b− c)≥ 0.
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For k = 2, we get the fourth degree Schur’s inequality, which holds for any real
numbers a, b, c, and can be rewritten as follows

a4 + b4 + c4 + abc(a+ b+ c)≥ ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2),

a4 + b4 + c4 − a2 b2 − b2c2 − c2a2 ≥ (ab+ bc + ca)(a2 + b2 + c2 − ab− bc − ca),

(b− c)2(b+ c − a)2 + (c − a)2(c + a− b)2 + (a− b)2(a+ b− c)2 ≥ 0,

6abcp ≥ (p2 − q)(4q− p2), p = a+ b+ c, q = ab+ bc + ca.

A generalization of the fourth degree Schur’s inequality for any real numbers
a, b, c and any real number m, is the following (see [11]):

∑

(a−mb)(a−mc)(a− b)(a− c)≥ 0,

where the equality holds for a = b = c, and for a/m = b = c (or any cyclic
permutation). This inequality is equivalent to

∑

a4 +m(m+ 2)
∑

a2 b2 + (1−m2)abc
∑

a ≥ (m+ 1)
∑

ab(a2 + b2),

∑

(b− c)2(b+ c − a−ma)2 ≥ 0.

A more general result is given by the following theorem (see [17]).

Theorem. Let

f4(a, b, c) =
∑

a4 +α
∑

a2 b2 + βabc
∑

a− γ
∑

ab(a2 + b2),

where α,β ,γ are real constants such that 1+α+ β = 2γ. Then,

(a) f4(a, b, c)≥ 0 for all a, b, c ∈ R if and only if

1+α≥ γ2;

(b) f4(a, b, c)≥ 0 for all a, b, c ≥ 0 if and only if

α≥ (γ− 1)max{2,γ+ 1}.

7. CAUCHY-SCHWARZ INEQUALITY

If a1, a2, . . . , an and b1, b2, . . . , bn are real numbers, then

(a2
1 + a2

2 + · · ·+ a2
n)(b

2
1 + b2

2 + · · ·+ b2
n)≥ (a1 b1 + a2 b2 + · · ·+ an bn)

2,

with equality for
a1

b1
=

a2

b2
= · · ·=

an

bn
.

Notice that the equality conditions are also valid for ai = bi = 0, where 1≤ i ≤ n.
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8. HÖLDER’S INEQUALITY

If x i j (i = 1,2, · · · , m; j = 1, 2, · · ·n) are nonnegative real numbers, then

m
∏

i=1

�

n
∑

j=1

x i j

�

≥

 

n
∑

j=1

m

√

√

√

m
∏

i=1

x i j

!m

.

9. CHEBYSHEV’S INEQUALITY

Let a1 ≥ a2 ≥ · · · ≥ an be real numbers.

a) If b1 ≥ b2 ≥ · · · bn, then

n
n
∑

i=1

ai bi ≥

�

n
∑

i=1

ai

��

n
∑

i=1

bi

�

;

b) If b1 ≤ b2 ≤ · · · ≤ bn, then

n
n
∑

i=1

ai bi ≤

�

n
∑

i=1

ai

��

n
∑

i=1

bi

�

.

10. MINKOWSKI’S INEQUALITY

For any real number k ≥ 1 and any positive real numbers a1, a2, . . . , an and b1, b2, . . . , bn,
the following inequalities hold:

n
∑

i=1

�

ak
i + bk

i

�
1
k ≥





�

n
∑

i=1

ai

�k

+

�

n
∑

i=1

bi

�k




1
k

;

n
∑

i=1

�

ak
i + bk

i + ck
i

�
1
k ≥





�

n
∑

i=1

ai

�k

+

�

n
∑

i=1

bi

�k

+

�

n
∑

i=1

ci

�k




1
k

.

11. REARRANGEMENT INEQUALITY

(1) If a1, a2, . . . , an and b1, b2, . . . , bn are two increasing (or decreasing) real
sequences, and (i1, i2, · · · , in) is an arbitrary permutation of (1,2, · · · , n), then

a1 b1 + a2 b2 + · · ·+ an bn ≥ a1 bi1 + a2 bi2 + · · ·+ an bin

and

n(a1 b1 + a2 b2 + · · ·+ an bn)≥ (a1 + a2 + · · ·+ an)(b1 + b2 + · · ·+ bn).
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(2) If a1, a2, . . . , an is decreasing and b1, b2, . . . , bn is increasing, then

a1 b1 + a2 b2 + · · ·+ an bn ≤ a1 bi1 + a2 bi2 + · · ·+ an bin

and

n(a1 b1 + a2 b2 + · · ·+ an bn)≤ (a1 + a2 + · · ·+ an)(b1 + b2 + · · ·+ bn).

(3) Let b1, b2, . . . , bn and c1, c2, . . . , cn be two real sequences such that

b1 + · · ·+ bk ≥ c1 + · · ·+ ck, k = 1,2, · · · , n.

If a1 ≥ a2 ≥ · · · ≥ an ≥ 0, then

a1 b1 + a2 b2 + · · ·+ an bn ≥ a1c1 + a2c2 + · · ·+ ancn.

Notice that all these inequalities follow immediately from the identity

n
∑

i=1

ai(bi − ci) =
n
∑

i=1

(ai − ai+1)

�

i
∑

j=1

b j −
i
∑

j=1

c j

�

,

where an+1 = 0.

12. MACLAURIN’S INEQUALITY and NEWTON’S INEQUALITY

If a1, a2, . . . , an are nonnegative real numbers, then

S1 ≥ S2 ≥ · · · ≥ Sn (Maclaurin)

and
S2

k ≥ Sk−1Sk+1, (Newton)

where

Sk =
k

√

√

√

√

√

√

√

∑

1≤i1<···<ik≤n

ai1 ai2 · · · aik

�

n
k

� .

13. CONVEX FUNCTIONS

A function f defined on a real interval I is said to be convex if

f (αx + β y)≤ α f (x) + β f (y)

for all x , y ∈ I and any α, β ≥ 0 with α+β = 1. If the inequality is reversed, then
f is said to be concave.
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If f is differentiable on I, then f is (strictly) convex if and only if the derivative f ′

is (strictly) increasing. If f ′′ ≥ 0 on I, then f is convex on I.
Let I be a real interval, s an interior point of I and

I≥s = {u|u ∈ I, u≥ s}, I≤s = {u|u ∈ I, u≤ s}.

A function f : I→ R is half convex if there exists an interior point s ∈ I such that f
is convex on I≤s or I≥s.
A function f : I → R is right partially convex related to an interior point s ∈ I if
there exists an interior point s0 ∈ I, s0 > s, such that f is convex on [s, s0]. Also, a
function f : I→ R is left partially convex related to an interior point s ∈ I if there
exists an interior point s0 ∈ I, s0 < s, such that f is convex on [s0, s].

Jensen’s inequality. Let p1, p2, . . . , pn be positive real numbers. If f is a convex
function on a real interval I, then for any a1, a2, . . . , an ∈ I, the inequality holds

p1 f (a1) + p2 f (a2) + · · ·+ pn f (an)
p1 + p2 + · · ·+ pn

≥ f
�

p1a1 + p2a2 + · · ·+ pnan

p1 + p2 + · · ·+ pn

�

.

For p1 = p2 = · · ·= pn, Jensen’s inequality becomes

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

.

We can extend Jensen’s inequality for convex functions to half or partially con-
vex functions (see [8], [13], [19], [29], [32], [33]).

Half Convex Function-Theorem. Let f be a real function defined on an interval
I and convex on I≥s or I≤s, where s ∈ int(I). The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying a1 + a2 + · · ·+ an = ns if and only if

f (x) + (n− 1) f (y)≥ nf (s)

for all x , y ∈ I such that x + (n− 1)y = ns.

Right Half Convex Function Theorem for Ordered Variables. Let f be a real
function defined on an interval I and convex on I≥s, where s ∈ int(I). The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying a1 + a2 + · · ·+ an = ns and

a1 ≤ a2 ≤ · · · ≤ am ≤ s, m ∈ {1,2, . . . , n− 1},
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if and only if
f (x) + (n−m) f (y)≥ (1+ n−m) f (s)

for all x , y ∈ I such that

x ≤ s ≤ y, x + (n−m)y = (1+ n−m)s.

Left Half Convex Function Theorem for Ordered Variables. Let f be a real
function defined on an interval I and convex on I≤s, where s ∈ int(I). The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying a1 + a2 + · · ·+ an = ns and

a1 ≥ a2 ≥ · · · ≥ am ≥ s, m ∈ {1,2, . . . , n− 1},

if and only if
f (x) + (n−m) f (y)≥ (1+ n−m) f (s)

for all x , y ∈ I such tht

x ≥ s ≥ y, x + (n−m)y = (1+ n−m)s.

Right Partially Convex Function-Theorem. Let f be a real function defined
on an interval I and convex on [s, s0], where s, s0 ∈ int(I), s < s0. In addition, f is
decreasing on I≤s0

and f (u)≥ f (s0) for u ∈ I≥s0
. The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, · · · , an ∈ I satisfying a1 + a2 + · · ·+ an = ns if and only if

f (x) + (n− 1) f (y)≥ nf (s)

for all x , y ∈ I such that x ≤ s ≤ y and x + (n− 1)y = ns.

Left Partially Convex Function-Theorem. Let f be a real function defined on
an interval I and convex on [s0, s], where s0, s ∈ I, s0 < s. In addition, f is increasing
on I≥s0

and f (u)≥ f (s0) for u ∈ I≤s0
. The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, · · · , an ∈ I satisfying a1 + a2 + · · ·+ an = ns if and only if

f (x) + (n− 1) f (y)≥ nf (s)

for all x , y ∈ I such that x ≥ s ≥ y and x + (n− 1)y = ns.
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Right Partially Convex Function Theorem for Ordered Variables (Vasile Cir-
toaje, 2014). Let f be a real function defined on an interval I and convex on [s, s0],
where s, s0 ∈ I, s < s0. In addition, f is decreasing on I≤s0

and f (u) ≥ f (s0) for
u ∈ I≥s0

. The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying a1 + a2 + · · ·+ an = ns and

a1 ≤ a2 ≤ · · · ≤ am ≤ s, m ∈ {1,2, . . . , n− 1},

if and only if
f (x) + (n−m) f (y)≥ (1+ n−m) f (s)

for all x , y ∈ I such that x ≤ s ≤ y and x + (n−m)y = (1+ n−m)s.

Left Partially Convex Function Theorem for Ordered Variables (Vasile Cir-
toaje, 2014). Let f be a real function defined on an interval I and convex on [s0, s],
where s0, s ∈ I, s0 < s. In addition, f is increasing on I≥s0

and f (u) ≥ f (s0) for
u ∈ I≤s0

. The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, · · · , an ∈ I satisfying a1 + a2 + · · ·+ an = ns and

a1 ≥ a2 ≥ · · · ≥ am ≥ s, m ∈ {1,2, . . . , n− 1},

if and only if
f (x) + (n−m) f (y)≥ (1+ n−m) f (s)

for all x , y ∈ I such that x ≥ s ≥ y and x + (n−m)y = (1+ n−m)s.

In all these theorems, we may replace the hypothesis condition

f (x) + (n−m) f (y)≥ (1+ n−m) f (s),

by the equivalent condition

h(x , y)≥ 0 for all x , y ∈ I such that x + (n−m)y = (1+ n−m),

where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (s)
u− s

.

The following theorem is also useful to prove some symmetric inequalities.

Left Convex-Right Concave Function Theorem (see [11]). Let a < c be real
numbers, let f be a continuous function on I = [a,∞), strictly convex on [a, c] and
strictly concave on [c,∞), and let

E(a1, a2, . . . , an) = f (a1) + f (a2) + · · ·+ f (an).
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If a1, a2, . . . , an ∈ I such that

a1 + a2 + · · ·+ an = S = constant,
then

(a) E is minimal for a1 = a2 = · · ·= an−1 ≤ an;
(b) E is maximal for either a1 = a or a < a1 ≤ a2 = · · ·= an.

On the other hand, it is known the following result concerning the best upper
bound of Jensen’s difference.

Best Upper Bound of Jensen’s Difference-Theorem (see [6], [21]). Let
p1, p2, . . . , pn be fixed positive real numbers, and let f be a convex function on a
closed interval I= [a, b]. If a1, a2, . . . , an ∈ I, then Jensen’s difference

D =
p1 f (a1) + p2 f (a2) + · · ·+ pn f (an)

p1 + p2 + · · ·+ pn
− f

�

p1a1 + p2a2 + · · ·+ pnan

p1 + p2 + · · ·+ pn

�

is maximal when some of ai are equal to a and the others ai are equal to b; that is,
when all ai ∈ {a, b}.

14. KARAMATA’S MAJORIZATION INEQUALITY

Karamata’s inequality is also called the H-L-P inequality (Hardy-Littlewood-Polya
inequality).

Let f be a convex function on a real interval I. If a decreasingly ordered se-
quence

A= (a1, a2, . . . , an), ai ∈ I,

majorizes a decreasingly ordered sequence

B = (b1, b2, . . . , bn), bi ∈ I,

then
f (a1) + f (a2) + · · ·+ f (an)≥ f (b1) + f (b2) + · · ·+ f (bn).

We say that a sequence A= (a1, a2, . . . , an) with a1 ≥ a2 ≥ · · · ≥ an majorizes a
sequence B = (b1, b2, . . . , bn) with b1 ≥ b2 ≥ · · · ≥ bn, and write it as

A� B,

if

a1 ≥ b1,
a1 + a2 ≥ b1 + b2,
· · · · · · · · · · · · · · · · · · · · ·

a1 + a2 + · · ·+ an−1 ≥ b1 + b2 + · · ·+ bn−1,
a1 + a2 + · · ·+ an = b1 + b2 + · · ·+ bn.
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15. POPOVICIU’S INEQUALITY

Theorem (see [7], [11]). If f is a convex function on a real interval I and
a1, a2, . . . , an ∈ I, then

f (a1) + f (a2) + · · ·+ f (an) + n(n− 2) f
�a1 + a2 + · · ·+ an

n

�

≥

≥ (n− 1)[ f (b1) + f (b2) + · · ·+ f (bn)],

where
bi =

1
n− 1

∑

j 6=i

a j, i = 1, 2, · · · , n.

In the same conditions, the following similar inequality holds:

f (a1) + f (a2) + · · ·+ f (an) +
n

n− 2
f
�a1 + a2 + · · ·+ an

n

�

≥

≥
2

n− 2

∑

1≤i< j≤n

f
�ai + a j

2

�

.

16. SQUARE PRODUCT INEQUALITY

Let a, b, c be real numbers, and let

p = a+ b+ c, q = ab+ bc + ca, r = abc,

s =
p

p2 − 3q =
p

a2 + b2 + c2 − ab− bc − ca.

From the identity

(a− b)2(b− c)2(c − a)2 = −27r2 + 2(9pq− 2p3)r + p2q2 − 4q3

=
4(p2 − 3q)3 − (2p3 − 9pq+ 27r)2

27
,

it follows that

−2p3 + 9pq− 2(p2 − 3q)
p

p2 − 3q
27

≤ r ≤
−2p3 + 9pq+ 2(p2 − 3q)

p

p2 − 3q
27

,

which is equivalent to

p3 − 3ps2 − 2s3

27
≤ r ≤

p3 − 3ps2 + 2s3

27
.

Therefore, for constant p and q, the product r is minimal and maximal when two
of a, b, c are equal.
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17. SYMMETRIC INEQUALITIES OF DEGREE THREE, FOUR OR FIVE

Theorem (see [26], [27]). Let fn(a, b, c) be a symmetric homogeneous polyno-
mial of degree n.

(a) The inequality f4(a, b, c) ≥ 0 holds for all real numbers a, b, c if and only if
f4(a, 1, 1)≥ 0 for all real a;

(b) For n ∈ {3,4, 5}, the inequality fn(a, b, c) ≥ 0 holds for all a, b, c ≥ 0 if and
only if fn(a, 1, 1)≥ 0 and fn(0, b, c)≥ 0 for all a, b, c ≥ 0.

18. SYMMETRIC HOMOGENEOUS INEQUALITIES OF DEGREE SIX

Any sixth degree symmetric homogeneous polynomial f6(a, b, c) can be written in
the form

f6(a, b, c) = Ar2 + B(p, q)r + C(p, q),

where A is called the highest coefficient of f6, and

p = a+ b+ c, q = ab+ bc + ca, r = abc.

Theorem (see [26], [27]). Let f6(a, b, c) be a sixth degree symmetric homoge-
neous polynomial having the highest coefficient A≤ 0.

(a) The inequality f6(a, b, c) ≥ 0 holds for all real numbers a, b, c if and only if
f6(a, 1, 1)≥ 0 for all real a;

(b) The inequality f6(a, b, c)≥ 0 holds for all a, b, c ≥ 0 if and only if f6(a, 1, 1)≥
0 and f6(0, b, c)≥ 0 for all a, b, c ≥ 0.

This theorem is also valid for the case where B(p, q) and C(p, q) are homoge-
neous rational functions.

For A > 0, we can use the highest coefficient cancellation method (see [30])).
This method consists in finding some suitable real numbers B, C and D such that
the following sharper inequality holds

f6(a, b, c)≥ A

�

r + Bp3 + C pq+ D
q2

p

�2

.

Because the function g6 defined by

g6(a, b, c) = f6(a, b, c)− A

�

r + Bp3 + C pq+ D
q2

p

�2

has the highest coefficient equal to zero, we can prove the inequality g6(a, b, c)≥ 0
using Theorem above.

Notice that sometimes it is useful to break the problem into two parts, p2 ≤ ξq
and p2 > ξq, where ξ is a suitable real number.
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A symmetric homogeneous polynomial of degree six in three variables has the
form

f6(a, b, c) = A1

∑

a6 + A2

∑

ab(a4 + b4) + A3

∑

a2 b2(a2 + b2)

+A4

∑

a3 b3 + A5abc
∑

a3 + A6abc
∑

ab(a+ b) + 3A7a2 b2c2,

where A1, . . . , A7 are real constants. In order to write this polynomial as a function
of p, q and r, the following relations are useful:

∑

a3 = 3r + p3 − 3pq,
∑

ab(a+ b) = −3r + pq,
∑

a3 b3 = 3r2 − 3pqr + q3,
∑

a2 b2(a2 + b2) = −3r2 − 2(p3 − 2pq)r + p2q2 − 2q3,
∑

ab(a4 + b4) = −3r2 − 2(p3 − 7pq)r + p4q− 4p2q2 + 2q3,
∑

a6 = 3r2 + 6(p3 − 2pq)r + p6 − 6p4q+ 9p2q2 − 2q3,

(a− b)2(b− c)2(c − a)2 = −27r2 + 2(9pq− 2p3)r + p2q2 − 4q3.

According to these relations, the highest coefficient A of the polynomial f6(a, b, c)
is

A= 3(A1 − A2 − A3 + A4 + A5 − A6 + A7).

The polynomials

P1(a, b, c) =
∑

(A1a2 + A2 bc)(B1a2 + B2 bc)(C1a2 + C2 bc),

P2(a, b, c) =
∑

(A1a2 + A2 bc)(B1 b2 + B2ca)(C1c2 + C2ab)

and
P3(a, b, c) = (A1a2 + A2 bc)(A1 b2 + A2ca)(A1c2 + A2ab)

has the highest coefficients

P1(1, 1,1), P2(1,1, 1), P3(1, 1,1),

respectively. The polynomial

P4(a, b, c) = (a2 +mab+ b2)(b2 +mbc + c2)(c2 +mca+ a2)

has the highest coefficient
A= (m− 1)3.
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19. EQUAL VARIABLES METHOD

The Equal Variables Theorem (EV-Theorem) for nonnegative real variables has the
following statement (see [9],[11]).

EV-Theorem (for nonnegative variables). Let a1, a2, . . . , an (n ≥ 3) be fixed
nonnegative real numbers, and let x1 ≤ x2 ≤ · · · ≤ xn be nonnegative real variables
such that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

x k
1 + x k

2 + · · ·+ x k
n = ak

1 + ak
2 + · · ·+ ak

n,

where k is a real number; for k = 0, assume that x1 x2 · · · xn = a1a2 · · · an > 0. Let
f : I→ R, where I = [0,∞) when f is continuous at x = 0, and I = (0,∞) when
f (0+) = ±∞. In addition, f is differentiable on (0,∞) and the associated function
g : (0,∞)→ R defined by

g(x) = f ′
�

x
1

k−1

�

is strictly convex on (0,∞). Let

Sn = f (x1) + f (x2) + · · ·+ f (xn).

(1) If k ≤ 0, then Sn is maximal for

x1 = x2 = · · ·= xn−1 ≤ xn,

and is minimal for
0< x1 ≤ x2 = x3 = · · ·= xn;

(2) If k > 0 and either f is continuous at x = 0 or f (0+) = −∞, then Sn is
maximal for

x1 = x2 = · · ·= xn−1 ≤ xn;

(3) If k > 0 and either f is continuous at x = 0 or f (0+) = ∞, then Sn is
minimal for

x1 = · · ·= x j−1 = 0, x j+1 = · · ·= xn, j ∈ {1,2, . . . , n}.

For f (x) = xm, we get the following corollary.

EV-Corollary (for nonnegative variables). Let a1, a2, . . . , an (n ≥ 3) be fixed
nonnegative real numbers, let x1 ≤ x2 ≤ · · · ≤ xn be nonnegative real variables such
that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

x k
1 + x k

2 + · · ·+ x k
n = ak

1 + ak
2 + · · ·+ ak

n,

and let
Sn = xm

1 + xm
2 + · · ·+ xm

n .
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Case 1 : k ≤ 0 (for k = 0, assume that x1 x2 · · · xn = a1a2 · · · an > 0 ).

(a) If m ∈ (k, 0)∪ (1,∞), then Sn is maximal for

x1 = x2 = · · ·= xn−1 ≤ xn,

and is minimal for
x1 ≤ x2 = x3 = · · ·= xn;

(b) If m ∈ (−∞, k)∪ (0, 1), then Sn is minimal for

x1 = x2 = · · ·= xn−1 ≤ xn,

and is maximal for
x1 ≤ x2 = x3 = · · ·= xn.

Case 2 : 0< k < 1.

(a) If m ∈ (0, k)∪ (1,∞), then Sn is maximal for

x1 = x2 = · · ·= xn−1 ≤ xn,

and is minimal for

x1 = · · ·= x j−1 = 0, x j+1 = · · ·= xn, j ∈ {1, 2, . . . , n};

(b) If m ∈ (−∞, 0)∪ (k, 1), then Sn is minimal for

x1 = x2 = · · ·= xn−1 ≤ xn;

(c) If m ∈ (k, 1), then Sn is maximal for

x1 = · · ·= x j−1 = 0, x j+1 = · · ·= xn, j ∈ {1,2, . . . , n}.

Case 3 : k > 1.

(a) If m ∈ (0, 1)∪ (k,∞), then Sn is maximal for

x1 = x2 = · · ·= xn−1 ≤ xn,

and is minimal for

x1 = · · ·= x j−1 = 0, x j+1 = · · ·= xn, j ∈ {1, 2, . . . , n};

(b) If m ∈ (−∞, 0)∪ (1, k), then Sn is minimal for

0≤ x1 = x2 = · · ·= xn−1 ≤ xn;

(c) If m ∈ (1, k), then Sn is maximal for

x1 = · · ·= x j−1 = 0, x j+1 = · · ·= xn, j ∈ {1,2, . . . , n}.
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The Equal Variables Theorem (EV-Theorem) for real variables has the following
statement (see [31]).

EV-Theorem (for real variables). Let a1, a2, . . . , an (n ≥ 3) be fixed real num-
bers, let x1 ≤ x2 ≤ · · · ≤ xn be real variables such that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

x k
1 + x k

2 + · · ·+ x k
n = ak

1 + ak
2 + · · ·+ ak

n,

where k is an even positive integer, and let f be a differentiable function on R such
that the associated function g : R→ R defined by

g(x) = f ′
�

k−1px
�

is strictly convex on R. Then, the sum

Sn = f (x1) + f (x2) + · · ·+ f (xn)

is minimal for
x2 = x3 = · · ·= xn,

and is maximal for
x1 = x2 = · · ·= xn−1.

For n= 3, the following results are valid.

Theorem 1. Let a ≥ b ≥ c be real numbers such that

a+ b+ c = p, ab+ bc + ca = q,

where p and q are fixed real numbers satisfying p2 ≥ 3q. The product

r = abc

is minimal when a = b, and is maximal when b = c.

Theorem 2. Let a ≥ b ≥ c such that

a+ b+ c = p, ab+ bc + ca = q,

where p and q are fixed real numbers satisfying p2 ≥ 3q.

(a) If a, b, c are nonnegative real numbers, then the product r = abc is maximal
when b = c, and is minimal when a = b or c = 0;

(b) If a, b, c are the lengths of the sides of a triangle (non-degenerate or degen-
erate), then the product r = abc is maximal when b = c ≥

a
2

or b + c = a, and is

minimal when a = b ≥ c.
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Theorem 3. Let a ≥ b ≥ c be positive real numbers such that

a+ b+ c = p, abc = r,

where p and r are fixed positive numbers satisfying p3 ≥ 27r. Then,

q = ab+ bc + ca

is minimal when b = c, and is maximal when a = b.

Theorem 4. Let a ≥ 1≥ b ≥ c ≥ 0 such that

a+ b+ c = 3, ab+ bc + ca = q,

where q ∈ [0, 3] is a fixed number. The product r = abc is minimal when b = 1 or
c = 0, and maximal when b = c.

Theorem 5. Let a ≥ b ≥ 1≥ c ≥ 0 such that

a+ b+ c = 3, ab+ bc + ca = q,

where q ∈ [0, 3] is a fixed number. The product r = abc is minimal when a = b or
c = 0, and maximal when b = 1.

20. ARITHMETIC COMPENSATION METHOD

The Arithmetic Compensation Theorem (AC-Theorem) has the following statement
(see [10], [11], [25]).

AC-Theorem. Let s > 0 and let F be a symmetric continuous function on the
compact set in Rn

S = {(x1, x2, . . . , xn) : x1 + x2 + · · ·+ xn = s, x i ≥ 0, i = 1,2, · · · , n}.

If
F(x1, x2, x3, . . . , xn)≥

≥min
n

F
� x1 + x2

2
,

x1 + x2

2
, x3, . . . , xn

�

, F(0, x1 + x2, x3, . . . , xn)
o

for all (x1, x2, . . . , xn) ∈ S, then F(x1, x2, x3, . . . , xn) is minimal when

x1 = x2 = · · ·= xk =
s
k

, xk+1 = · · ·= xn = 0;

that is,

F(x1, x2, x3, . . . , xn)≥ min
1≤k≤n

F
� s

k
, · · · ,

s
k

, 0, · · · , 0
�

for all (x1, x2, . . . , xn) ∈ S.
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Notice that if

F(x1, x2, x3, . . . , xn)< F
� x1 + x2

2
,

x1 + x2

2
, x3, . . . , xn

�

involves
F(x1, x2, x3, . . . , xn)≥ F(0, x1 + x2, x3, . . . , xn),

then the hypothesis
F(x1, x2, x3, . . . , xn)≥

≥min
n

F
� x1 + x2

2
,

x1 + x2

2
, x3, . . . , xn

�

, F(0, x1 + x2, x3, . . . , xn)
o

is satisfied.

21. VASC’S CYCLIC INEQUALITY

The following theorem gives Vasc’s cyclic inequality (Vasile Cirtoaje, 1991).

Theorem 1. If a, b, c are real numbers, then

(a2 + b2 + c2)2 ≥ 3(a3 b+ b3c + c3a),

with equality for a = b = c, and also for

a

sin2 4π
7

=
b

sin2 2π
7

=
c

sin2 π
7

(or any cyclic permutation).

A generalization of Vasc’s inequality is given in [17].

Theorem 2. Let

f4(a, b, c) =
∑

a4 + A
∑

a2 b2 + Babc
∑

a+ C
∑

a3 b+ D
∑

ab3,

where A, B, C , D are real constants such that

1+ A+ B + C + D = 0.

The inequality f4(a, b, c)≥ 0 holds for all real numbers a, b, c if and only if

3(1+ A)≥ C2 + C D+ D2.

Notice that

4
S

f4(a, b, c) =(U + V + C + D)2 + 3
�

U − V +
C − D

3

�2

+
4
3
(3+ 3A− C2 − C D− D2),
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where
S =

∑

a2 b2 −
∑

a2 bc,

U =

∑

a3 b−
∑

a2 bc
S

,

V =

∑

ab3 −
∑

a2 bc
S

.

For A= B = 0, C = −2 and D = 1, we get the following inequality

a4 + b4 + c4 + ab3 + bc3 + ca3 ≥ 2(a3 b+ b3c + c3a),

with equality for a = b = c, and also for

a
sin π

9

=
b

sin 7π
9

=
c

sin 13π
9

(or any cyclic permutation) - Vasile Cirtoaje, 1991.

22. CYCLIC INEQUALITIES OF DEGREE THREE AND FOUR

Consider the third degree cyclic homogeneous polynomial

f3(a, b, c) =
∑

a3 + Babc + C
∑

a2 b+ D
∑

ab2,

where B, C , D are real constants. The following theorem holds.

Theorem 1 (see [37]). The cyclic inequality f3(a, b, c)≥ 0 holds for all nonneg-
ative numbers a, b, c if and only if

f3(1,1, 1)≥ 0

and
f3(a, 1, 0)≥ 0

for all a ≥ 0.

Consider now the fourth degree cyclic homogeneous polynomial

f4(a, b, c) =
∑

a4 + A
∑

a2 b2 + Babc
∑

a+ C
∑

a3 b+ D
∑

ab3,

where A, B, C , D are real constants.
The following theorem states the necessary and sufficient conditions that f4(a, b, c)≥

0 for all real numbers a, b, c.

Theorem 2 (see [22]). The inequality f4(a, b, c)≥ 0 holds for all real numbers
a, b, c if and only if g4(t)≥ 0 for all t ≥ 0, where

g4(t) = 3(2+ A− C − D)t4 − F t3 + 3(4− B + C + D)t2 + 1+ A+ B + C + D,
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F =
Æ

27(C − D)2 + E2, E = 8− 4A+ 2B − C − D.

Note that in the special case f4(1,1, 1) = 0 (when 1+A+ B+C + D = 0), Theorem
1 yields Theorem 0 from the preceding section 21.

The following theorem states some strong sufficient conditions that f4(a, b, c)≥
0 for all real numbers a, b, c.

Theorem 3 (see [23]). The inequality f4(a, b, c)≥ 0 holds for all real numbers
a, b, c if the following two conditions are satisfied:

(a) 1+ A+ B + C + D ≥ 0;
(b) there exists a real number t ∈ (−

p
3,
p

3) such that f (t)≥ 0, where

f (t) = 2Gt3 − (6+ 2A+ B + 3C + 3D)t2 + 2(1+ C + D)Gt +H,

G =
p

1+ A+ B + C + D, H = 2+ 2A− B − C − D− C2 − C D− D2.

The following theorem states the necessary and sufficient conditions that f4(a, b, c)≥
0 for all a, b, c ≥ 0.

Theorem 4 (see [43]). Let

E = 8− 4A+ 2B − C − D, F =
Æ

27(C − D)2 + E2,

g4(t) = 3(2+ A− C − D)t4 − F t3 + 3(4− B + C + D)t2 + 1+ A+ B + C + D,

g3(t) =
2E
F

t3 + 3t2 − 1.

For F = 0, the inequality f4(a, b, c) ≥ 0 holds for all a, b, c ≥ 0 if and only if
g4(t)≥ 0 for all t ∈ [0, 1].

For F 6= 0, the inequality f4(a, b, c)≥ 0 holds for all a, b, c ≥ 0 if and only if the
following two conditions are satisfied:

(a) g4(t)≥ 0 for all t ∈ [0, t1], where t1 ∈ [1/2, 1] such that g3(t1) = 0;
(b) f4(a, 1, 0)≥ 0 for all a ≥ 0.

The following theorem states some strong sufficient conditions that f4(a, b, c)≥
0 for all a, b, c ≥ 0.

Theorem 5 (see [43]). The inequality f4(a, b, c)≥ 0 holds for all a, b, c ≥ 0 if

1+ A+ B + C + D ≥ 0

and one of the following two conditions is satisfied:

(a) 3(1+ A)≥ C2 + C D+ D2;

(b) 3(1+ A)< C2 + C D+ D2, and there exists t ≥ 0 such that

(C + 2D)t2 + 6t + 2C + D ≥ 2
Æ

(t4 + t2 + 1)(C2 + C D+ D2 − 3− 3A).
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23. VASC’S POWER EXPONENTIAL INEQUALITY

Theorem. Let 0< k ≤ e.

(a) If a, b > 0, then (Vasile Cîrtoaje, 2006)

aka + bkb ≥ akb + bka;

(b) If a, b ∈ (0,1], then (Vasile Cîrtoaje, 2010)

2
p

aka bkb ≥ akb + bka.



Chapter 2

Symmetric Polynomial Inequalities
in Real Variables

2.1 Application

2.1. Let a, b, c, d be real numbers such that

a2 + b2 + c2 + d2 = 9.

Prove that
a3 + b3 + c3 + d3 ≤ 27.

2.2. If a, b, c are real numbers such that

a+ b+ c = 0,

then
(2a2 + bc)(2b2 + ca)(2c2 + ab)≤ 0.

2.3. Let a, b, c be real numbers such that

a+ b ≥ 0, b+ c ≥ 0, c + a ≥ 0.

Prove that
9(a+ b)(b+ c)(c + a)≥ 8(a+ b+ c)(ab+ bc + ca).

21



22 Vasile Cîrtoaje

2.4. Let a, b, c be real numbers such that

ab+ bc + ca = 3.

Prove that
(3a2 + 1)(3b2 + 1)(3c2 + 1)≥ 64.

When does equality hold?

2.5. If a and b are real numbers, then

3(1− a+ a2)(1− b+ b2)≥ 2(1− ab+ a2 b2).

2.6. If a, b, c are real numbers, then

3(1− a+ a2)(1− b+ b2)(1− c + c2)≥ 1+ abc + a2 b2c2.

2.7. If a, b, c are real numbers, then

(a2 + b2 + c2)3 ≥ (a+ b+ c)(ab+ bc + ca)(a3 + b3 + c3).

2.8. If a, b, c are real numbers, then

2(a2 + b2)(b2 + c2)(c2 + a2)≥ [ab(a+ b) + bc(b+ c) + ca(c + a)− 2abc]2.

2.9. If a, b, c are real numbers, then

(a2 + 1)(b2 + 1)(c2 + 1)≥ 2(ab+ bc + ca).

2.10. If a, b, c are real numbers, then

(a2 + 1)(b2 + 1)(c2 + 1)≥
5

16
(a+ b+ c + 1)2.

2.11. If a, b, c are real numbers, then

(a) a6 + b6 + c6 − 3a2 b2c2 + 2(a2 + bc)(b2 + ca)(c2 + ab)≥ 0;

(b) a6 + b6 + c6 − 3a2 b2c2 ≥ (a2 − 2bc)(b2 − 2ca)(c2 − 2ab).
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2.12. If a, b, c are real numbers, then

2
3
(a6 + b6 + c6) + a3 b3 + b3c3 + c3a3 + abc(a3 + b3 + c3)≥ 0.

2.13. If a, b, c are real numbers, then

4(a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2)≥ (a− b)2(b− c)2(c − a)2.

2.14. If a, b, c are real numbers, then

(a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2)≥ 3(a2 b+ b2c + c2a)(ab2 + bc2 + ca2).

2.15. If a, b, c are real numbers such that abc > 0, then

4
�

a+
1
a

��

b+
1
b

��

c +
1
c

�

≥ 9(a+ b+ c).

2.16. If a, b, c are real numbers, then

(a) (a2 + 2bc)(b2 + 2ca)(c2 + 2ab)≤ (a2 + b2 + c2)(ab+ bc + ca)2;

(b) (2a2 + bc)(2b2 + ca)(2c2 + ab)≤ (a+ b+ c)2(a2 b2 + b2c2 + c2a2).

2.17. If a, b, c are real numbers such that

ab+ bc + ca ≥ 0,

then
27(a2 + 2bc)(b2 + 2ca)(c2 + 2ab)≤ (a+ b+ c)6.

2.18. If a, b, c are real numbers such that

a2 + b2 + c2 = 2,

then
(a2 + 2bc)(b2 + 2ca)(c2 + 2ab) + 2≥ 0.
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2.19. If a, b, c are real numbers such that

a+ b+ c = 3,

then
3(a4 + b4 + c4) + a2 + b2 + c2 + 6≥ 6(a3 + b3 + c3).

2.20. If a, b, c are real numbers such that

abc = 1,

then
3(a2 + b2 + c2) + 2(a+ b+ c)≥ 5(ab+ bc + ca).

2.21. If a, b, c are real numbers such that

abc = 1,

then

a2 + b2 + c2 + 6≥
3
2

�

a+ b+ c +
1
a
+

1
b
+

1
c

�

.

2.22. If a, b, c are real numbers, then

(1+ a2)(1+ b2)(1+ c2) + 8abc ≥
1
4
(1+ a)2(1+ b)2(1+ c)2.

2.23. Let a, b, c be real numbers such that

a+ b+ c = 0.

Prove that
a12 + b12 + c12 ≥

2049
8

a4 b4c4.

2.24. If a, b, c are real numbers such that abc ≥ 0, then

a2 + b2 + c2 + 2abc + 4≥ 2(a+ b+ c) + ab+ bc + ca.
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2.25. Let a, b, c be real numbers such that

a+ b+ c = 3.

(a) If a, b, c ≥ −3, then

1
a2
+

1
b2
+

1
c2
≥

1
a
+

1
b
+

1
c

.

(b) If a, b, c ≥ −7, then

1− a
(1+ a)2

+
1− b
(1+ b)2

+
1− c
(1+ c)2

≥ 0.

2.26. If a, b, c are real numbers, then

a6 + b6 + c6 − 3a2 b2c2 ≥
1
2
(a− b)2(b− c)2(c − a)2.

2.27. If a, b, c are real numbers, then

�

a2 + b2 + c2

3

�3

≥ a2 b2c2 +
1
16
(a− b)2(b− c)2(c − a)2.

2.28. If a, b, c are real numbers, then

(a2 + b2 + c2)3 ≥
108

5
a2 b2c2 + 2(a− b)2(b− c)2(c − a)2.

2.29. If a, b, c are real numbers, then

2(a2 + b2)(b2 + c2)(c2 + a2)≥ (a− b)2(b− c)2(c − a)2.

2.30. If a, b, c are real numbers, then

32(a2 + bc)(b2 + ca)(c2 + ab) + 9(a− b)2(b− c)2(c − a)2 ≥ 0.

2.31. If a, b, c are real numbers, then

a4(b− c)2 + b4(c − a)2 + c4(a− b)2 ≥
1
2
(a− b)2(b− c)2(c − a)2.



26 Vasile Cîrtoaje

2.32. If a, b, c are real numbers, then

a2(b− c)4 + b2(c − a)4 + c2(a− b)4 ≥
1
2
(a− b)2(b− c)2(c − a)2.

2.33. If a, b, c are real numbers, then

a2(b2 − c2)2 + b2(c2 − a2)2 + c2(a2 − b2)2 ≥
3
8
(a− b)2(b− c)2(c − a)2.

2.34. If a, b, c are real numbers such that

ab+ bc + ca = 3,

then

(a) (a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2)≥ 3(a+ b+ c)2;

(b) (a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2)≥
3
2
(a2 + b2 + c2).

2.35. If a, b, c are real numbers, then

(a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2)≥ 3(ab+ bc + ca)(a2 b2 + b2c2 + c2a2).

2.36. If a, b, c are real numbers, not all of the same sign, then

(a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2)≥ 3(ab+ bc + ca)3.

2.37. If a, b, c are real numbers, then

(a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2)≥
3
8
(a2 + b2)(b2 + c2)(c2 + a2).

2.38. If a, b, c are real numbers, then

2(a2 + b2)(b2 + c2)(c2 + a2)≥ (a2 − ab+ b2)(b2 − bc + c2)(c2 − ca+ a2).
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2.39. If a, b, c are real numbers, then

9(1+ a4)(1+ b4)(1+ c4)≥ 8(1+ abc + a2 b2c2)2.

2.40. If a, b, c are real numbers, then

2(1+ a2)(1+ b2)(1+ c2)≥ (1+ a)(1+ b)(1+ c)(1+ abc).

2.41. If a, b, c are real numbers, then

3(a2 − ab+ b2)(b2 − bc + c2)(c2 − ca+ a2)≥ a3 b3 + b3c3 + c3a3.

2.42. If a, b, c are nonzero real numbers, then

∑ b2 − bc + c2

a2
+ 2

∑ a2

bc
≥
�∑

a
�

�

∑ 1
a

�

.

2.43. Let a, b, c be real numbers. Prove that

(a) if a, b, c ∈ [0,1], then

abc − (b+ c − a)(c + a− b)(a+ b− c)≤ 1;

(b) if a, b, c ∈ [−1,1], then

abc − (b+ c − a)(c + a− b)(a+ b− c)≤ 4.

2.44. Let a, b, c be real numbers. Prove that

(a) if a, b, c ∈ [0,1], then
∑

a2(a− b)(a− c)≤ 1;

(b) if a, b, c ∈ [−1,1], then
∑

a2(a− b)(a− c)≤ 4.
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2.45. Let a, b, c be real numbers such that

ab+ bc + ca = abc + 2.

Prove that
a2 + b2 + c2 − 3≥ (2+

p
3)(a+ b+ c − 3).

2.46. Let a, b, c be real numbers such that

(a+ b)(b+ c)(c + a) = 10.

Prove that
(a2 + b2)(b2 + c2)(c2 + a2) + 12a2 b2c2 ≥ 30.

2.47. Let a, b, c be real numbers such that

(a+ b)(b+ c)(c + a) = 5.

Prove that

(a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2) + 12a2 b2c2 ≥ 15.

2.48. Let a, b, c be real numbers such that

a+ b+ c = 1, a3 + b3 + c3 = k.

Prove that

(a) if k = 25, then |a| ≤ 1 or |b| ≤ 1 or |c| ≤ 1;

(b) if k = −11, then 1< a ≤ 2 or 1< b ≤ 2 or 1< c ≤ 2.

2.49. Let a, b, c be real numbers such that

a+ b+ c = a3 + b3 + c3 = 2.

Prove that a, b, c /∈
�

5
4

, 2
�

.

2.50. If a, b, c and k are real numbers, then
∑

(a− b)(a− c)(a− kb)(a− kc)≥ 0.
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2.51. If a, b, c are real numbers, then

∑

a2(a− b)(a− c)≥
(a− b)2(b− c)2(c − a)2

a2 + b2 + c2 + ab+ bc + ca
.

2.52. Let x1, x2, . . . , xn (n≥ 3) be real numbers such that

x1 + x2 + . . .+ xn = a+ b, x2
1 + x2

2 + · · ·+ x2
n = a2 + b2,

where a and b are fixed real numbers such that a 6= 0, b 6= 0, a 6= b. Then, there
exist x1, x2, . . . , xn such that

(a) x1 x2 · · · xn > 0;

(b) x1 x2 · · · xn < 0.

2.53. Let a ≥ b ≥ c be real numbers such that

a+ b+ c = p, ab+ bc + ca = q,

where p and q are fixed real numbers satisfying p2 ≥ 3q. Prove that the product

r = abc

is minimal only when a = b, and is maximal only when b = c.

2.54. Let a, b, c be real numbers. Prove that

(a) for fixed
a+ b+ c = p, abc = r,

the sum
q = ab+ bc + ca

is maximal only when two of a, b, c are equal;

(b) for fixed
ab+ bc + ca = q, abc = r 6= 0,

the product
p1 = abc(a+ b+ c)

is maximal only when two of a, b, c are equal.
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2.55. Let a, b, c be real numbers such that a+ b+ c = 3. Prove that

(a) (ab+ bc + ca)2 ≥ 9abc;

(b) (ab+ bc + ca)2 + 9≥ 18abc;

(c) (ab+ bc + ca− 3)2 ≥ 27(abc − 1).

2.56. Let a, b, c be real numbers such that

ab+ bc + ca+ abc = 4.

Prove that

(a) if abc > 0, then

2(a+ b+ c) + ab+ bc + ca ≤
9

abc
;

(b) if abc < 0, then

2(a+ b+ c) + ab+ bc + ca ≥
9

abc
.

2.57. If a, b, c are real numbers such that

a+ b+ c + abc = 4,

then
a2 + b2 + c2 + 3≥ 2(ab+ bc + ca).

2.58. If a, b, c are real numbers such that

ab+ bc + ca = 3abc,

then
4(a2 + b2 + c2) + 9≥ 7(ab+ bc + ca).

2.59. Let a, b, c ≤
6
5

be real numbers such that a2 + b2 + c2 = 4. If

k =
16(2+ 15

p
2)

125
≈ 2.97,

then
ab+ bc + ca+ k ≥ abc.



Symmetric Polynomial Inequalities in Real Variables 31

2.60. Let f4(a, b, c) be a symmetric homogeneous polynomial of degree four. Prove
that the inequality f4(a, b, c) ≥ 0 holds for all real numbers a, b, c if and only if
f4(a, 1, 1)≥ 0 for all real a.

2.61. If a, b, c are real numbers, then

10(a4 + b4 + c4) + 64(a2 b2 + b2c2 + c2a2)≥ 33
∑

ab(a2 + b2).

2.62. If a, b, c are real numbers such that

a+ b+ c = 3,

then
3(a4 + b4 + c4) + 33≥ 14(a2 + b2 + c2).

2.63. If a, b, c are real numbers such that

a2 + b2 + c2 = 3,

then
a4 + b4 + c4 + 3(ab+ bc + ca)≤ 12.

2.64. Let α,β ,γ be real numbers such that

1+α+ β = 2γ.

The inequality
∑

a4 +α
∑

a2 b2 + βabc
∑

a ≥ γ
∑

ab(a2 + b2)

holds for any real numbers a, b, c if and only if

1+α≥ γ2.

2.65. If a, b, c are real numbers such that

a2 + b2 + c2 = 2,

then

ab(a2 − ab+ b2 − c2) + bc(b2 − bc + c2 − a2) + ca(c2 − ca+ a2 − b2)≤ 1.
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2.66. If a, b, c are real numbers, then

(a+ b)4 + (b+ c)4 + (c + a)4 ≥
4
7
(a4 + b4 + c4).

2.67. Let a, b, c be real numbers. If

p = a+ b+ c, q = ab+ bc + ca, r = abc,

then

(3− p)r +
p2 + q2 − pq

3
≥ q.

2.68. If a, b, c are real numbers, then

ab(a+ b) + bc(b+ c) + ca(c + a)
(a2 + 1)(b2 + 1)(c2 + 1)

≤
3
4

.

2.69. If a, b, c are real numbers such that abc > 0, then
�

a+
1
a
− 1

��

b+
1
b
− 1

��

c +
1
c
− 1

�

+ 2≥
1
3
(a+ b+ c)

�

1
a
+

1
b
+

1
c

�

.

2.70. If a, b, c are real numbers, then
�

a2 +
1
2

��

b2 +
1
2

��

c2 +
1
2

�

≥
�

a+ b−
1
2

��

b+ c −
1
2

��

c + a−
1
2

�

.

2.71. If a, b, c are real numbers such that

a+ b+ c = 3,

then
a(a− 1)
8a2 + 9

+
b(b− 1)
8b2 + 9

+
c(c − 1)
8c2 + 9

≥ 0.

2.72. If a, b, c are real numbers such that

a+ b+ c = 3,

then
(a− 11)(a− 1)

2a2 + 1
+
(b− 11)(b− 1)

2b2 + 1
+
(c − 11)(c − 1)

2c2 + 1
≥ 0.
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2.73. If a, b, c are real numbers, then

(a2 + 2)(b2 + 2)(c2 + 2)≥ 9(ab+ bc + ca).

2.74. If a, b, c are real numbers such that

ab+ bc + ca = 3,

then
4(a4 + b4 + c4) + 11abc(a+ b+ c)≥ 45.

2.75. Any sixth degree symmetric homogeneous polynomial f6(a, b, c) can be writ-
ten in the form

f6(a, b, c) = Ar2 + B(p, q)r + C(p, q),

where A is called the highest coefficient of f6, and

p = a+ b+ c, q = ab+ bc + ca, r = abc.

In the case A≤ 0, prove that the inequality f6(a, b, c)≥ 0 holds for all real numbers
a, b, c if and only if f6(a, 1, 1)≥ 0 for all real a.

2.76. If a, b, c are real numbers such that

ab+ bc + ca = −1,

then

(a) 5(a2 + b2)(b2 + c2)(c2 + a2)≥ 8;

(b) (a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2)≥ 1.

2.77. If a, b, c are real numbers, then

(a)
∑

a2(a− b)(a− c)(a+ 2b)(a+ 2c) + (a− b)2(b− c)2(c − a)2 ≥ 0;

(b)
∑

a2(a− b)(a− c)(a− 4b)(a− 4c) + 7(a− b)2(b− c)2(c − a)2 ≥ 0.

2.78. If a, b, c are real numbers, then

(a2 + 2bc)(b2 + 2ca)(c2 + 2ab) + (a− b)2(b− c)2(c − a)2 ≥ 0.
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2.79. If a, b, c are real numbers, then

(2a2+5ab+2b2)(2b2+5bc+2c2)(2c2+5ca+2a2)+ (a− b)2(b− c)2(c− a)2 ≥ 0.

2.80. If a, b, c are real numbers, then
�

a2 +
2
3

ab+ b2
��

b2 +
2
3

bc + c2
��

c2 +
2
3

ca+ a2
�

≥
64
27
(a2+bc)(b2+ca)(c2+ab).

2.81. If a, b, c are real numbers, then

∑

a2(a− b)(a− c)≥
2(a− b)2(b− c)2(c − a)2

a2 + b2 + c2
.

2.82. If a, b, c are real numbers, then

∑

(a− b)(a− c)(a− 2b)(a− 2c)≥
8(a− b)2(b− c)2(c − a)2

a2 + b2 + c2
.

2.83. If a, b, c are real numbers, no two of which are zero, then

a2 + 3bc
b2 + c2

+
b2 + 3ca
c2 + a2

+
c2 + 3ab
a2 + b2

≥ 0.

2.84. If a, b, c are real numbers, no two of which are zero, then

a2 + 6bc
b2 − bc + c2

+
b2 + 6ca

c2 − ca+ a2
+

c2 + 6ab
a2 − ab+ b2

≥ 0.

2.85. If a, b, c are real numbers such that

ab+ bc + ca ≥ 0,

then
4a2 + 23bc

b2 + c2
+

4b2 + 23ca
c2 + a2

+
4c2 + 23ab

a2 + b2
≥ 0.
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2.86. If a, b, c are real numbers such that

ab+ bc + ca = 3,

then
20(a6 + b6 + c6) + 43abc(a3 + b3 + c3)≥ 189.

2.87. If a, b, c are real numbers such that

ab+ bc + ca ≥ 0,

then

(a) (a2 + b2 + c2)(ab+ bc + ca)2 ≥ abc(4a3 + 4b3 + 4c3 + 15abc);

(b) 4(a+ b+ c)6 ≥ 81abc(5a3 + 5b3 + 5c3 + 21abc).

2.88. If a, b, c are real numbers, then

4
∑

(a2 + bc)(a− b)(a− c)(a− 3b)(a− 3c)≥ 7(a− b)2(b− c)2(c − a)2.

2.89. Let a, b, c be real numbers such that

ab+ bc + ca ≥ 0.

For any real k, prove that
∑

4bc(a− b)(a− c)(a− kb)(a− kc) + (a− b)2(b− c)2(c − a)2 ≥ 0.

2.90. If a, b, c are real numbers, then
�

(a2 b+ b2c + c2a) + (ab2 + bc2 + ca2)
�2
≥ 4(ab+ bc + ca)(a2 b2 + b2c2 + c2a2).

2.91. If a, b, c are real numbers such that

a+ b+ c = 3,

then
(a− 1)(a− 25)

a2 + 23
+
(b− 1)(b− 25)

b2 + 23
+
(c − 1)(c − 25)

c2 + 23
≥ 0.
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2.92. If a, b, c are real numbers such that abc 6= 0, then

�

b+ c
a

�2

+
� c + a

b

�2

+
�

a+ b
c

�2

> 2.

2.93. If a, b, c are real numbers, then

(a) (a2 + 1)(b2 + 1)(c2 + 1)≥
8

3
p

3
|(a− b)(b− c)(c − a)|;

(b) (a2 − a+ 1)(b2 − b+ 1)(c2 − c + 1)≥ |(a− b)(b− c)(c − a)|.

2.94. If a, b, c are real numbers such that

a+ b+ c = 3,

then
(1− a+ a2)(1− b+ b2)(1− c + c2)≥ 1.

2.95. If a, b, c are real numbers such that

a+ b+ c = 0,

then
a(a− 4)
a2 + 2

+
b(b− 4)
b2 + 2

+
c(c − 4)
c2 + 2

≥ 0.

2.96. If a, b, c are real numbers such that

a, b, c ≤ 1+
p

2, a+ b+ c ≥ 0,

then
2abc + a2 + b2 + c2 + 1≥ 2(ab+ bc + ca).

2.97. If a, b, c are real numbers such that a+ b+ c = 2 and ab+ bc+ ca > 0, then

(a2 + bc)(b2 + ca)(c2 + ab) + abc ≤ 1.
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2.98. If a, b, c are real numbers such that

a2 + b2 + c2 = 3, a ≥
4
3

,

then
3(abc + 1)≥ 2(ab+ bc + ca).

2.99. If a, b, c are real numbers such that a ≥
8
7

and a2 + b2 + c2 = 3, then

3− a− b− c
1− abc

≥
49
100

.

2.100. If a, b, c ∈ [−1, 1], then

a3 + b3 + c3 + abc ≤
15
16
(a+ b+ c) +

19
16

.

2.101. If a, b, c are real numbers, then

(a3 + b3 + c3)2 ≥ (a4 + b4 + c4)(ab+ bc + ca).

2.102. Let a1, a2, . . . , an be real numbers such that

a2
1 + a2

2 + · · ·+ a2
n = n.

Prove that:

(a) for n= 3,
a1 + a2 + a3

3
+min

i 6= j
(ai − a j)

2 ≤
5
3

;

(b) for n= 5,

a1 + a2 + a3 + a4 + a5

5
+min

i 6= j
(ai − a j)

2 ≤ 1.



38 Vasile Cîrtoaje

2.103. Let a1, a2, . . . , a7 be real numbers such that

a2
1 + a2

2 + · · ·+ a2
7 = n.

Prove that:

(a)

√

√ |a1 + a2 + · · ·+ a7|
7

+ min
i 6= j
(ai − a j)

2 ≤ 1;

(b)

√

√ |a1 + a2 + · · ·+ a7|
7

+ 8 min
i 6= j
(ai − a j)

2 ≤
19
8

.

2.104. Let f be a differentiable convex function on a closed interval I = [a, b]. If
a1, a2, . . . , an ∈ I, then Jensen’s difference

D = f (a1) + f (a2) + · · ·+ f (an)− nf
�a1 + a2 + · · ·+ an

n

�

is maximal when all ai ∈ {a, b}.

2.105. If a, b, c are real numbers, then

2(a2 − a+ 1)(b2 − b+ 1)(c2 − c + 1)≥ (abc − 1)2.

2.106. If a, b, c are real numbers, then

(1+
p

2)(a2 − a+ 1)(b2 − b+ 1)(c2 − c + 1)≥ a2 b2c2 + 1.

2.107. If a, b, c, d are real numbers, then

(1− a+ a2)(1− b+ b2)(1− c + c2)(1− d + d2)≥
�

1+ abcd
2

�2

.

2.108. If a, b, c, d are real numbers, then

3(a2 − a+ 1)(b2 − b+ 1)(c2 − c + 1)(d2 − d + 1)≥ a2 b2c2d2 − abcd + 1.
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2.109. If a, b, c, d are real numbers, then

(a2 − a+ 2)(b2 − b+ 2)(c2 − c + 2)(d2 − d + 2)≥ (a+ b+ c + d)2.

2.110. If a, b, c, d are real numbers such that

a+ b+ c + d ≥ a2 + b2 + c2 + d2,

then
4abcd + 3(a2 + b2 + c2 + d2) + 24≥ 10(a+ b+ c + d).

2.111. Let a, b, c, d be real numbers such that abcd > 0. Prove that
�

a+
1
a

��

b+
1
b

��

c +
1
c

��

d +
1
d

�

≥ (a+ b+ c + d)
�

1
a
+

1
b
+

1
c
+

1
d

�

.

2.112. Let a, b, c, d be real numbers such that

a+ b+ c + d = 4, a2 + b2 + c2 + d2 = 7.

Prove that
a3 + b3 + c3 + d3 ≤ 16.

2.113. Let a, b, c, d be real numbers such that

a+ b+ c + d = 0.

Prove that
12(a4 + b4 + c4 + d4)≤ 7(a2 + b2 + c2 + d2)2.

2.114. Let a, b, c, d be real numbers such that

a+ b+ c + d = 0.

Prove that
(a2 + b2 + c2 + d2)3 ≥ 3(a3 + b3 + c3 + d3)2.
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2.115. If a, b, c, d are real numbers such that

a+ b+ c + d = 0,

then
a4 + b4 + c4 + d4 + 28abcd ≥ 0.

2.116. If a, b, c, d are real numbers such that

abcd = 1.

Prove that
(1+ a2)(1+ b2)(1+ c2)(1+ d2)≥ (a+ b+ c + d)2.

2.117. Let a, b, c, d be real numbers such that

a2 + b2 + c2 + d2 = 4.

Prove that
(abc)3 + (bcd)3 + (cda)3 + (dab)3 ≤ 4.

2.118. Let a, b, c, d be real numbers such that

a2 + b2 + c2 + d2 = 1.

Prove that

(1− a)4 + (1− b)4 + (1− c)4 + (1− d)4 ≥ a4 + b4 + c4 + d4.

2.119. If a, b, c, d ≥
−1
2

such that

a+ b+ c + d = 4,

then
1− a

1− a+ a2
+

1− b
1− b+ b2

+
1− c

1− c + c2
+

1− d
1− d + d2

≥ 0.

2.120. If a, b, c, d are real numbers such that a ≥ b ≥ c ≥ d and

a2 + b2 + c2 + d2 = 4,

then
a2c2 + b2d2 ≤ 2.
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2.121. Let a, b, c, d be real numbers such that

a2 + b2 + c2 + d2 = 4.

If a ≥ b ≥ c ≥ d, then
1− abcd ≤ (a− d)2.

2.122. If a, b, c, d, e ≥ −3 such that

a+ b+ c + d + e = 5,

then

1− a
1+ a+ a2

+
1− b

1+ b+ b2
+

1− c
1+ c + c2

+
1− d

1+ d + d2
+

1− e
1+ e+ e2

≥ 0.

2.123. Let a, b, c, d, e be real numbers such that

a+ b+ c + d + e = 0.

Prove that

30(a4 + b4 + c4 + d4 + e4)≥ 7(a2 + b2 + c2 + d2 + e2)2.

2.124. If a, b, c, d, e are real numbers such that a+ b+ c + d + e = 5, then

(a2 − a+ 1)(b2 − b+ 1)(c2 − c + 1)(d2 − d + 1)(e2 − e+ 1)≥ 1.

2.125. If a, b, c, d, e are real numbers, then

4(a2 − a+ 1)(b2 − b+ 1)(c2 − c + 1)(d2 − d + 1)(e2 − e+ 1)≥ (abcde− 1)2.

2.126. If a1, a2, . . . , a5 are real numbers such that

a3
1 + a3

2 + a3
3 + a3

4 + a3
5 = 0,

then
∑

i< j

aia j ≤ 0.
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2.127. If a1, a2, . . . , a13 are real numbers such that

a1 + a2 + · · ·+ a13 =
13
2

,

then
8a1 + 7

a2
1 − a1 + 1

+
8a2 + 7

a2
2 − a2 + 1

+ · · ·+
8a13 + 7

a2
13 − a13 + 1

≤
572

3
.

2.128. Let a1, a2, . . . , an ≥ −1 such that

a1 + a2 + · · ·+ an = 0.

Prove that
(n− 2)(a2

1 + a2
2 + · · ·+ a2

n)≥ a3
1 + a3

2 + · · ·+ a3
n.

2.129. Let a1, a2, . . . , an ≥ −1 such that

a1 + a2 + · · ·+ an = 0.

Prove that

(n− 2)(a2
1 + a2

2 + · · ·+ a2
n) + (n− 1(a3

1 + a3
2 + · · ·+ a3

n)≥ 0.

2.130. Let a1, a2, . . . , an ≥ n− 1−
p

n2 − n+ 1 be nonzero real numbers such that

a1 + a2 + · · ·+ an = n.

Prove that
1
a2

1

+
1
a2

2

+ · · ·+
1
a2

n

≥ n.

2.131. Let a1, a2, . . . , an ≤
n

n− 2
be real numbers such that

a1 + a2 + · · ·+ an = n.

If k is a positive integer, k ≥ 2, then

ak
1 + ak

2 + · · ·+ ak
n ≥ n.



Symmetric Polynomial Inequalities in Real Variables 43

2.132. If a1, a2, . . . , an ≥
−n

n− 2
, n≥ 3, then

1
a2

1

+
1
a2

2

+ · · ·+
1
a2

n

≥
1
a1
+

1
a2
+ · · ·+

1
an

.

2.133. If a1, a2, . . . , an (n≥ 3) are real numbers such that

a1, a2, . . . , an ≥
−(3n− 2)

n− 2
, a1 + a2 + · · ·+ an = n,

then
1− a1

(1+ a1)2
+

1− a2

(1+ a2)2
+ · · ·+

1− an

(1+ an)2
≥ 0.

2.134. Let a1, a2, . . . , an be real numbers.

(a) If k ≥ n, then

(a1 + a2 + · · ·+ an + k− n)2

(a2
1 + k− 1)(a2

2 + k− 1) · · · (a2
n + k− 1)

≤
1

kn−2
;

(b) If k ≥
n
2

, then

a1 + a2 + · · ·+ an + k− n
(a2

1 + 2k− 1)(a2
2 + 2k− 1) · · · (a2

n + 2k− 1)
≤

1
2(2k)n−1

;

(c)
(a1 + a2 + · · ·+ an)2

(a2
1 + n− 1)(a2

2 + n− 1) · · · (a2
n + n− 1)

≤
1

nn−2
;

(d)
a1 + a2 + · · ·+ an

(a2
1 + 2n− 1)(a2

2 + 2n− 1) · · · (a2
n + 2n− 1)

≤
1

2(2n)n−1
.

2.135. Let a1, a2, . . . , an be real numbers.

(a) If k ≥
n
4

, then

(a1 + a2 + · · ·+ an + 2k− n)2

(a2
1 − a1 + k)(a2

2 − a2 + k) · · · (a2
n − an + k)

≤
4

kn−2
;

(b)
(a1 + a2 + · · ·+ an)2

(a2
1 − a1 +

n
2
)(a2

2 − a2 +
n
2
) · · · (a2

n − an +
n
2
)
≤

2n

nn−2
.
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2.136. Let a1, a2, . . . , an be real numbers.

(a) If k ≥ n, then

(a1 + a2 + · · ·+ an)2 + n(k− n)
(a2

1 + k− 1)(a2
2 + k− 1) · · · (a2

n + k− 1)
≤

n
kn−1

;

(b)
(a1 + a2 + · · ·+ an)2 + n2

(a2
1 + 2n− 1)(a2

2 + 2n− 1) · · · (a2
n + 2n− 1)

≤
n

(2n)n−1
.
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2.2 Solutions

P 2.1. Let a, b, c, d be real numbers such that

a2 + b2 + c2 + d2 = 9.

Prove that
a3 + b3 + c3 + d3 ≤ 27.

Solution. From a2 + b2 + c2 + d2 = 9, we get

a2 ≤ 9, a ≤ 3, a2(a− 3)≤ 0, a3 ≤ 3a2.

Similarly,
b3 ≤ 3b2, c3 ≤ 3c2, d3 ≤ 3d2.

Therefore, we have

a3 + b3 + c3 + d3 ≤ 3(a2 + b2 + c2 + d2) = 27.

The equality holds for a = 3 and b = c = d = 0 (or any cyclic permutation thereof).

P 2.2. If a, b, c are real numbers such that

a+ b+ c = 0,

then
(2a2 + bc)(2b2 + ca)(2c2 + ab)≤ 0.

First Solution. Among a, b, c there are two with the same sign; assume that bc ≥ 0.
We need to show that

(2b2 + ca)(2c2 + ab)≤ 0.

This is equivalent to

[2b2 − c(b+ c)][2c2 − (b+ c)b]≤ 0,

(b− c)2(2b+ c)(b+ 2c)≥ 0.

Since
(2b+ c)(b+ 2c) = 2(b2 + c2) + 5bc ≥ 0,

the conclusion follows. The equality holds for
−a
2
= b = c (or any cyclic permuta-

tion).
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Second Solution. We have

2a2 + bc = (a− b)(a− c) + a(a+ b+ c) = (a− b)(a− c),

2b2 + ca = (b− c)(b− a) + b(a+ b+ c) = (b− c)(b− a),

2c2 + ab = (c − a)(c − b) + c(a+ b+ c) = (c − a)(c − b).

Therefore,

(2a2 + bc)(2b2 + ca)(2c2 + ab) = −(a− b)2(b− c)2(c − a)2 ≤ 0.

P 2.3. Let a, b, c be real numbers such that

a+ b ≥ 0, b+ c ≥ 0, c + a ≥ 0.

Prove that
9(a+ b)(b+ c)(c + a)≥ 8(a+ b+ c)(ab+ bc + ca).

(Nguyen Van Huyen, 2014)

Solution. Write the desired inequality in the form

a(b− c)2 + b(c − a)2 + c(a− b)2 ≥ 0.

For a, b, c ≥ 0, the inequality is clearly true. Otherwise, without loss of generality,
assume that a ≤ b ≤ c, a < 0. From a+ b ≥ 0, it follows that

a < 0< b ≤ c, a+ b ≥ 0.

Replacing a by −a, we need to show that

0< a ≤ b ≤ c

involves
−a(c − b)2 + b(c + a)2 + c(a+ b)2 ≥ 0.

This is true since c(a+ b)2 > 0 and

−a(c − b)2 + b(c + a)2 ≥ −b(c − b)2 + b(c + a)2 = b(a+ b)(a− b+ 2c)> 0.

The equality holds for a = b = c ≥ 0.
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P 2.4. Let a, b, c be real numbers such that

ab+ bc + ca = 3.

Prove that
(3a2 + 1)(3b2 + 1)(3c2 + 1)≥ 64.

When does equality hold?

Solution. Using the substitution

a =
x
p

3
, b =

y
p

3
, c =

z
p

3
,

we need to show that
(x2 + 1)(y2 + 1)(z2 + 1)≥ 64

for all real x , y, z such that x y + yz + zx = 9.

First Solution. Applying the Cauchy-Schwarz inequality, we have

(x2 + 1)(y2 + 1)(z2 + 1) = (x2 + 1)[(y + z)2 + (yz − 1)2]

≥ [x(y + z) + (yz − 1)]2 = 64.

The equality holds for x y + yz + zx = 9 and
y + z

x
= yz − 1; that is, for

y + z = (yz − 1)x =
(yz − 1)(9− yz)

y + z
,

(y + z)2 + (yz − 1)(yz − 9) = 0,

(y − z)2 + (yz − 3)2 = 0,

y = z = ±
p

3.

In addition, from x y + yz + zx = 9, we get

x = y = z = ±
p

3.

Therefore, the original inequality becomes an equality for

a = b = c = ±1.

Second Solution. We have

(x2 + 1)(y2 + 1)(z2 + 1)− 64= x2 y2z2 +
∑

x2 y2 +
∑

x2 − 63

= x2 y2z2 +
�∑

x y
�2
− 2x yz

∑

x +
�∑

x
�2
− 2

∑

x y − 63
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= x2 y2z2 − 2x yz
∑

x +
�∑

x
�2
=
�

x yz −
∑

x
�2
≥ 0.

Third Solution. We have

(3a2 + 1)(3b2 + 1)(3c2 + 1)− 64= 27a2 b2c2 + 9
∑

a2 b2 + 3
∑

a2 − 63

= 27a2 b2c2 + 9
�∑

ab
�2
− 18abc

∑

a+ 3
�∑

a
�2
− 6

∑

ab− 63

= 27a2 b2c2 − 18abc
∑

a+ 3
�∑

a
�2
= 3

�

3abc −
∑

a
�2
≥ 0.

P 2.5. If a and b are real numbers, then

3(1− a+ a2)(1− b+ b2)≥ 2(1− ab+ a2 b2).

(Titu Andreescu, 2006)

Solution. We write the inequality as follows:

(3− 3b+ b2)a2 − (3− 5b+ 3b2)a+ 1− 3b+ 3b2 ≥ 0.

Since

3− 3b+ b2 >
9
4
− 3b+ b2 =

(3− 2b)2

4
≥ 0,

1− 3b+ 3b2 >
3
4
− 3b+ 3b2 =

3(1− 2b)2

4
≥ 0,

3− 5b+ 3b2 >
25
12
− 5b+ 3b2 =

(5− 6b)2

12
≥ 0,

it suffices to consider the case a > 0. By the AM-GM, we have

(3− 3b+ b2)a2 + 1− 3b+ 3b2 ≥ 2a
Æ

(3− 3b+ b2)(1− 3b+ 3b2).

Thus, we only need to show that

2
Æ

(3− 3b+ b2)(1− 3b+ 3b2)≥ 3− 5b+ 3b2.

This is true if

4(3− 3b+ b2)(1− 3b+ 3b2)≥ (3− 5b+ 3b2)2,

which is equivalent to
3(b2 − 3b+ 1)2 ≥ 0.

The equality occurs for a > 0, (3− 3b+ b2)a2 = 1− 3b+ 3b2 and b2− 3b+ 1= 0.
Since

a2 =
1− 3b+ 3b2

3− 3b+ b2
=

(−b2) + 3b2

3− 3b+ (3b− 1)
= b2,

the equality occurs for

a = b =
3±
p

5
2

.
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P 2.6. If a, b, c are real numbers, then

3(1− a+ a2)(1− b+ b2)(1− c + c2)≥ 1+ abc + a2 b2c2.

(Vasile Cîrtoaje and Mircea Lascu, 1989)

First Solution. From the identity

2(1− a+ a2)(1− b+ b2) = 1+ a2 b2 + (a− b)2 + (1− a)2(1− b)2,

it follows that
2(1− a+ a2)(1− b+ b2)≥ 1+ a2 b2.

Thus, it is enough to prove that

3(1+ a2 b2)(1− c + c2)≥ 2(1+ abc + a2 b2c2).

This inequality is equivalent to

(3+ a2 b2)c2 − (3+ 2ab+ 3a2 b2)c + 1+ 3a2 b2 ≥ 0,

[2(3+ a2 b2)c − 3− 2ab− 3a2 b2]2 + 3(1− ab)4 ≥ 0.

The equality holds for a = b = c = 1.

Second Solution. Write the required inequality as

3(1− a+ a2)(1− b+ b2)(1− c + c2)− abc ≥ 1+ a2 b2c2.

Replacing a, b, c with |a|, |b|, |c|, respectively, the left side of this inequality remains
unchanged or decreases, while the right side remains unchanged. Therefore, it
suffices to prove the inequality only for a, b, c ≥ 0. For a = b = c, the inequality is
true since

3(1− a+ a2)3 − (1+ a3 + a6) = (1− a)4(2− a+ 2a2)≥ 0.

Multiplying the inequalities

3p
3(1− a+ a2)≥

3
p

1+ a3 + a6,

3p
3(1− b+ b2)≥

3
p

1+ b3 + b6,
3p

3(1− c + c2)≥
3
p

1+ c3 + c6,

we get

3(1− a+ a2)(1− b+ b2)(1− c + c2)≥ 3
Æ

(1+ a3 + a6)(1+ b3 + b6)(1+ c3 + c6).

Therefore, it suffices to prove that

3
Æ

(1+ a3 + a6)(1+ b3 + b6)(1+ c3 + c6)≥ 1+ abc + a2 b2c2,

which follows immediately from Hölder’s inequality.
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P 2.7. If a, b, c are real numbers, then

(a2 + b2 + c2)3 ≥ (a+ b+ c)(ab+ bc + ca)(a3 + b3 + c3).

(Vasile Cîrtoaje, 2007)

Solution. Substituting a, b, c by |a|, |b|, |c|, respectively, the left side of the inequal-
ity remains unchanged, while the right side either remains unchanged or increases.
Therefore, it suffices to prove the inequality only for a, b, c ≥ 0. Let

p = a+ b+ c, q = ab+ bc + ca.

Since

q2 − 3abcp =
a2(b− c)2 + b2(c − a)2 + c2(a− b)2

2
≥ 0,

we have

(a+ b+ c)(a3 + b3 + c3) = p(p3 − 3pq+ 3abc)≤ p4 − 3p2q+ q2.

Thus, it suffices to show that

(p2 − 2q)3 ≥ q(p4 − 3p2q+ q2),

which is equivalent to the obvious inequality

(p2 − 3q)2(p2 − q)≥ 0.

The equality holds for a = b = c.

P 2.8. If a, b, c are real numbers, then

2(a2 + b2)(b2 + c2)(c2 + a2)≥ [ab(a+ b) + bc(b+ c) + ca(c + a)− 2abc]2.

(Vo Quoc Ba Can, 2009)

Solution. Since

(a2 + b2)(a2 + c2) = (a2 + bc)2 + (ab− ac)2

and
2(b2 + c2) = (b+ c)2 + (b− c)2,

the required inequality follows by applying the Cauchy-Schwarz inequality as fol-
lows

2(a2 + b2)(b2 + c2)(c2 + a2)≥ [(a2 + bc)(b+ c) + (ab− ac)(b− c)]2

= [ab(a+ b) + bc(b+ c) + ca(c + a)− 2abc]2.

The equality holds when two of a, b, c are equal.
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P 2.9. If a, b, c are real numbers, then

(a2 + 1)(b2 + 1)(c2 + 1)≥ 2(ab+ bc + ca).

First Solution. Substituting a, b, c by |a|, |b|, |c|, respectively, the left side of this in-
equality remains unchanged, while the right side remains unchanged or increases.
Therefore, it suffices to prove the inequality only for a, b, c ≥ 0. Without loss of
generality, assume that a ≥ b ≥ c ≥ 0. Since

2(ab+ bc + ca)≤ 3a(b+ c)≤
3(a2 + 1)(b+ c)

2
,

it suffices to prove that

2(b2 + 1)(c2 + 1)≥ 3(b+ c),

which is equivalent to

2(b+ c)2 − 3(b+ c) + 2(bc − 1)2 ≥ 0.

Case 1: 4bc ≤ 1. We have

2(b+ c)2 − 3(b+ c) + 2(bc − 1)2 = 2
�

b+ c −
3
4

�2

+
(1− 4bc)(7− 4bc)

8
≥ 0.

Case 2: 4bc ≥ 1. We get the required inequality by summing

9(b+ c)2

8
− 3(b+ c) + 2≥ 0,

and
7(b+ c)2

8
+ 2b2c2 − 4bc ≥ 0.

We have
9(b+ c)2

8
− 3(b+ c) + 2=

[3(b+ c)− 4]2

8
≥ 0

and

7(b+ c)2

8
+ 2b2c2 − 4bc ≥

7bc
2
+ 2b2c2 − 4bc =

bc(4bc − 1)
2

≥ 0.

For a ≥ b ≥ c ≥ 0, the equality holds only if

2(ab+ bc + ca) = 3a(b+ c) =
3(a2 + 1)(b+ c)

2
;

that is, only if either b = c = 0 or a = 1 and b + c = 2bc. If b = c = 0, then the
original inequality becomes a2 + 1 ≥ 0, which is strict. If a = 1 and b + c = 2bc,
then from

(a2 + 1)(b2 + 1)(c2 + 1) = 2(ab+ bc + ca)
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we get
b+ c

2
= bc =

5±
p

5
10

< 1.

This is not possible because from 2bc = b + c ≥ 2
p

bc we get bc ≥ 1. Therefore,
the original inequality is strict (without equality).

Second Solution. Write the inequality as

(b2 + 1)(c2 + 1)
�

a−
b+ c

(b2 + 1)(c2 + 1)

�2

+ A≥ 0,

where

A= (b2 + 1)(c2 + 1)− 2bc −
(b+ c)2

(b2 + 1)(c2 + 1)
.

We need to show that A≥ 0. By virtue of the Cauchy-Schwarz inequality,

(b2 + 1)(c2 + 1)≥ (b+ c)2.

Then,
A≥ (b2 + 1)(c2 + 1)− 2bc − 1= b2c2 + (b− c)2 ≥ 0.

The equality holds only if b2c2+(b− c)2 = 0; that is, only if b = c = 0. If b = c = 0,
then the original inequality becomes a2 + 1≥ 0, which is strict.

P 2.10. If a, b, c are real numbers, then

(a2 + 1)(b2 + 1)(c2 + 1)≥
5

16
(a+ b+ c + 1)2.

(Vasile Cîrtoaje, 2006)

First Solution. Since the equality holds for for

a = b = c =
1
2

,

we replace a, b, c respectively by a/2, b/2, c/2. Thus, the inequality becomes

(a2 + 4)(b2 + 4)(c2 + 4)≥ 5(a+ b+ c + 2)2,

with equality for a = b = c = 1. To prove this, we apply the Cauchy-Schwarz
inequality in the form

(a2 + 4)

�

1+
�

b+ c + 2
2

�2
�

≥ (a+ b+ c + 2)2.
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Therefore, it suffices to prove that

(b2 + 4)(c2 + 4)≥ 5

�

1+
�

b+ c + 2
2

�2
�

.

This inequality is equivalent to

11(b+ c)2 − 20(b+ c) + 4b2c2 − 32bc + 24≥ 0.

Since
4b2c2 − 8bc + 4= 4(bc − 1)2 ≥ 0,

it suffices to show that

11(b+ c)2 − 20(b+ c)− 24bc + 20≥ 0.

Indeed,

11(b+ c)2 − 20(b+ c)− 24bc + 20≥ 11(b+ c)2 − 20(b+ c)− 6(b+ c)2 + 20

= 5(b+ c − 2)2 ≥ 0.

Second Solution. Among a2, b2, c2 there are two either less than or equal to
1
4

, or

greater than or equal to
1
4

. Let b2 and c2 be these numbers; that is,

(4b2 − 1)(4c2 − 1)≥ 0.

Then, we have

16
5
(b2 + 1)(c2 + 1) = 5

�

4b2 − 1
5

+ 1
��

4c2 − 1
5

+ 1
�

≥ 5
�

4b2 − 1
5

+
4c2 − 1

5
+ 1

�

= 4b2 + 4c2 + 3.

Therefore, it suffices to prove that

(a2 + 1)(4b2 + 4c2 + 3)≥ (a+ b+ c + 1)2.

Writing this inequality as
�

a2 +
1
4
+

1
4
+

1
2

�

(1+ 4b2 + 4c2 + 2)≥ (a+ b+ c + 1)2,

we recognize the Cauchy-Schwarz inequality.
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P 2.11. If a, b, c are real numbers, then

(a) a6 + b6 + c6 − 3a2 b2c2 + 2(a2 + bc)(b2 + ca)(c2 + ab)≥ 0;

(b) a6 + b6 + c6 − 3a2 b2c2 ≥ (a2 − 2bc)(b2 − 2ca)(c2 − 2ab).

Solution. (a) Since

(a2 + bc)(b2 + ca)(c2 + ab) = 2a2 b2c2 +
∑

a3 b3 + abc
∑

a3,

we can write the desired inequality as follows
∑

a6 + 2
∑

a3 b3 + 2abc
∑

a3 + a2 b2c2 ≥ 0,

(
∑

a3)2 + 2abc
∑

a3 + a2 b2c2 ≥ 0,

(
∑

a3 + abc)2 ≥ 0.

The equality holds for
a3 + b3 + c3 + abc = 0.

(b) Since

(a2 − 2bc)(b2 − 2ca)(c2 − 2ab) = −7a2 b2c2 − 2
∑

a3 b3 + 4abc
∑

a3,

we can write the desired inequality as follows
∑

a6 + 2
∑

a3 b3 − 4abc
∑

a3 + 4a2 b2c2 ≥ 0,

(
∑

a3)2 − 4abc
∑

a3 + 4a2 b2c2 ≥ 0,

(
∑

a3 − 2abc)2 ≥ 0.

The equality holds for
a3 + b3 + c3 − 2abc = 0.

P 2.12. If a, b, c are real numbers, then

2
3
(a6 + b6 + c6) + a3 b3 + b3c3 + c3a3 + abc(a3 + b3 + c3)≥ 0.
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Solution. Write the inequality as follows

4
3
(a6 + b6 + c6) + 2(a3 b3 + b3c3 + c3a3) + 2abc(a3 + b3 + c3)≥ 0,

1
3
(a6 + b6 + c6) + (a3 + b3 + c3)2 + 2abc(a3 + b3 + c3)≥ 0.

By virtue of the AM-GM inequality, we have

1
3
(a6 + b6 + c6)≥ a2 b2c2.

Therefore, it suffices to show that

a2 b2c2 + (a3 + b3 + c3)2 + 2abc(a3 + b3 + c3)≥ 0,

which is equivalent to
(abc + a3 + b3 + c3)2 ≥ 0.

The equality holds for −a = b = c (or any cyclic permutation).

P 2.13. If a, b, c are real numbers, then

4(a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2)≥ (a− b)2(b− c)2(c − a)2.

(Vasile Cîrtoaje, 2009)

Solution. Using the identity

4x y = (x + y)2 − (x − y)2,

we have

4(a2 + ab+ b2)(a2 + ac + c2) =[(2a2 + ab+ ac + 2bc) + (b− c)2]2

− (a+ b+ c)2(b− c)2

=(2a2 + ab+ ac + 2bc)2 + 3a2(b− c)2.

From this result and

4(b2 + bc + c2) = (b− c)2 + 3(b+ c)2,

we get

16
∏

(a2+ab+b2) =
�

(2a2 + ab+ ac + 2bc)2 + 3a2(b− c)2
� �

(b− c)2 + 3(b+ c)2
�

.
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Next, the Cauchy-Schwarz inequality gives

16
∏

(a2 + ab+ b2)≥
�

(2a2 + ab+ ac + 2bc)(b− c) + 3a(b− c)(b+ c)
�2

= 4(b− c)2(a− b)2(a− c)2.

The equality holds for

ab(a+ b) + bc(b+ c) + ca(c + a) = 0.

Remark. The inequality is a consequence of the identity

4
∏

(a2+ab+ b2) = 3[ab(a+ b)+ bc(b+ c)+ ca(c+a)]2+(a− b)2(b− c)2(c−a)2.

P 2.14. If a, b, c are real numbers, then

(a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2)≥ 3(a2 b+ b2c + c2a)(ab2 + bc2 + ca2).

(Gabriel Dospinescu, 2009)

Solution (by Vo Quoc Ba Can). As we have shown in the proof of the preceding P
2.13,

16
∏

(a2+ab+b2) =
�

(2a2 + ab+ ac + 2bc)2 + 3a2(b− c)2
� �

3(b+ c)2 + (b− c)2
�

.

Thus, by the Cauchy-Schwarz inequality, we get

16
∏

(a2 + ab+ b2)≥ 3[(b+ c)(2a2 + ab+ ac + 2bc) + a(b− c)2]2

= 12[(a2 b+ b2c + c2a) + (ab2 + bc2 + ca2)]2.

To prove the desired inequality, it suffices to show that

[(a2 b+ b2c + c2a) + (ab2 + bc2 + ca2)]2 ≥ 4(a2 b+ b2c + c2a)(ab2 + bc2 + ca2).

Indeed, this is equivalent to

[(a2 b+ b2c + c2a)− (ab2 + bc2 + ca2)]2 ≥ 0,

(a− b)2(b− c)2(c − a)2 ≥ 0.

The equality holds when two of a, b, c are equal.

Remark. The inequality is a consequence of the identity
∏

(a2+ ab+ b2) = 3(a2 b+ b2c+ c2a)(ab2+ bc2+ ca2)+ (a− b)2(b− c)2(c− a)2.
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P 2.15. If a, b, c are real numbers such that abc > 0, then

4
�

a+
1
a

��

b+
1
b

��

c +
1
c

�

≥ 9(a+ b+ c).

Solution. It suffices to show that

4(a2 + 1)(b2 + 1)(c2 + 1)≥ 9abc(a+ b+ c)

for any real a, b, c.

First Solution. It is easy to check that the equality occurs for a = b = c =
p

2.
Therefore, using the notation

a = x
p

2, b = y
p

2, c = z
p

2,

the inequality can be written as

(2x2 + 1)(2y2 + 1)2z2 + 1)≥ 9x yz(x + y + z),

with equality for x = y = z = 1. Since

(x y + yz + zx)2 − 3x yz(x + y + z) =
1
2

∑

x2(y − z)2 ≥ 0,

it suffices to prove the stronger inequality

(2x2 + 1)(2y2 + 1)(2z2 + 1)≥ 3(x y + yz + zx)2.

Let

A= (y2 − 1)(z2 − 1), B = (z2 − 1)(x2 − 1), C = (x2 − 1)(y2 − 1).

From
ABC = (x2 − 1)2(y2 − 1)2(z2 − 1)2 ≥ 0,

it follows that at least one of A, B, C is nonnegative. Due to symmetry, assume that

A= (y2 − 1)(z2 − 1)≥ 0.

Applying the Cauchy-Schwarz inequality, we have

(x y + yz + zx)2 ≤ (x2 + 1+ x2)(y2 + y2z2 + z2).

Therefore, it suffices to show that

(2y2 + 1)(2z2 + 1)≥ 3(y2 + y2z2 + z2),

which reduces to the obvious inequality

(y2 − 1)(z2 − 1)≥ 0.
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Second Solution. Since

4(b2 + 1)(c2 + 1)− 3[(b+ c)2 + b2c2] = (b− c)2 + (bc − 2)2 ≥ 0,

it suffices to show that

(a2 + 1)[(b+ c)2 + b2c2]≥ 3abc(a+ b+ c).

Applying the Cauchy-Schwarz inequality, we get

(a2 + 1)[(b+ c)2 + b2c2]≥ [a(b+ c) + bc]2 ≥ 3abc(a+ b+ c).

P 2.16. If a, b, c are real numbers, then

(a) (a2 + 2bc)(b2 + 2ca)(c2 + 2ab)≤ (a2 + b2 + c2)(ab+ bc + ca)2;

(b) (2a2 + bc)(2b2 + ca)(2c2 + ab)≤ (a+ b+ c)2(a2 b2 + b2c2 + c2a2).

(Vasile Cîrtoaje, 2005)

Solution. (a) Let q = ab+ bc + ca. Since

a2 + 2bc = q+ (a− b)(a− c),

b2 + 2ca = q+ (b− c)(b− a),

c2 + 2ab = q+ (c − a)(c − b),

we can rewrite the required inequality as follows

[q+ (a− b)(a− c)][q+ (b− c)(b− a)][q+ (c − a)(c − b]≤ q2(a2 + b2 + c2),

q3 + q2
∑

(a− b)(a− c)− (a− b)2(b− c)2(c − a)2 ≤ q2(a2 + b2 + c2).

Since
∑

(a− b)(a− c) = a2 + b2 + c2 − q,

the inequality reduces to the obvious form

(a− b)2(b− c)2(c − a)2 ≥ 0.

The equality holds for a = b, or b = c, or c = a.

(b) For a = 0, the required inequality reduces to

b2c2(b− c)2 ≥ 0.

Otherwise, for abc 6= 0, the inequality follows from the inequality in (a) by substi-
tuting a, b, c with 1/a, 1/b, 1/c, respectively. The equality occurs for a = b, or
b = c, or c = a.
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P 2.17. If a, b, c are real numbers such that

ab+ bc + ca ≥ 0,

then
27(a2 + 2bc)(b2 + 2ca)(c2 + 2ab)≤ (a+ b+ c)6.

Solution. In virtue of the AM-GM inequality, we have

(a+ b+ c)6 = [a2 + b2 + c2 + (ab+ bc + ca) + (ab+ bc + ca)]3

≥ 27(a2 + b2 + c2)(ab+ bc + ca)2.

Thus, the required inequality follows immediately from the inequality (a) in P 2.16.
The equality holds for a = b = c.

P 2.18. If a, b, c are real numbers such that

a2 + b2 + c2 = 2,

then
(a2 + 2bc)(b2 + 2ca)(c2 + 2ab) + 2≥ 0.

(Vasile Cîrtoaje, 2011)

Solution (by Vo Quoc Ba Can). If a, b, c have the same sign, then the inequality
is trivial. Otherwise, since the inequality is symmetric and does not change by
substituting−a,−b,−c for a, b, c, respectively, it suffices to consider the case where
a ≤ 0 and b, c ≥ 0. Replacing now −a with a, we need to prove the inequality

(a2 + 2bc)(b2 − 2ac)(c2 − 2ab) + 2≥ 0 (*)

for all a, b, c ≥ 0 satisfying
a2 + b2 + c2 = 2.

If b2−2ac and c2−2ab have the same sign, then the inequality is also trivial. Due
to symmetry in b and c, we may assume that

b2 − 2ac ≥ 0≥ c2 − 2ab.

On the other hand, it is easy to check that (*) becomes an equality for a = b = 1
and c = 0, when

a2 + 2bc = b2 − 2ac = ab−
c2

2
.

Then, we rewrite the inequality (*) in the form

(a2 + 2bc)(b2 − 2ac)
�

ab−
c2

2

�

≤ 1.
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Using the AM-GM inequality, we have

27(a2 + 2bc)(b2 − 2ac)
�

ab−
c2

2

�

≤
�

(a2 + 2bc) + (b2 − 2ac) +
�

ab−
c2

2

��3

.

Thus, it suffices to prove that

(a2 + 2bc) + (b2 − 2ac) +
�

ab−
c2

2

�

≤ 3.

This inequality can be written in the homogeneous form

2(a2 + 2bc) + 2(b2 − 2ac) + (2ab− c2)≤ 3(a2 + b2 + c2),

which is equivalent to
(a− b+ 2c)2 ≥ 0.

The original inequality is an equality for a = −1, b = 1 and c = 0 (or any permu-
tation).

Remark. In the same manner, we can prove the following generalization.

• Let a, b, c be real numbers such that a2 + b2 + c2 = 2. If 0< k ≤ 2, then

(a2 + kbc)(b2 + kca)(c2 + kab) + k ≥ 0.

P 2.19. If a, b, c are real numbers such that

a+ b+ c = 3,

then
3(a4 + b4 + c4) + a2 + b2 + c2 + 6≥ 6(a3 + b3 + c3).

(Vasile Cîrtoaje, 2006)

Solution. Write the inequality as F(a, b, c)≥ 0, where

F(a, b, c) = 3(a4 + b4 + c4) + (a2 + b2 + c2)− 6(a3 + b3 + c3) + 6.

Due to symmetry, we may assume that a ≤ b ≤ c. To prove the required inequality,
we use the mixing variables method. More precisely, we show that

F(a, b, c)≥ F(a, x , x)≥ 0,

where x = (b+ c)/2, x ≥ 1. We have

F(a, b, c)− F(a, x , x) = 3(b4 + b4 − 2x4) + (b2 + c2 − 2x2)− 6(b3 + c3 − 2x3)
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= 3[(b2 + c2)2 − 4x4] + 6(x4 − b2c2) + (b2 + c2 − 2x2)− 6(b3 + c3 − 2x3)

= (b2+c2−2x2)[3(b2+c2+2x2)+1]+6(x2− bc)(x2+ bc)−12x(b2+c2− bc− x2).

Since

b2 + c2 − 2x2 =
1
2
(b− c)2,

x2 − bc =
1
4
(b− c)2,

b2 + c2 − bc − x2 =
3
4
(b− c)2,

we get

F(a, b, c)− F(a, x , x) =
1
2
(b− c)2[3(b2 + c2 + 2x2) + 1+ 3(x2 + bc)− 18x]

=
1
2
(b− c)2[3(x2 − bc) + 18x(x − 1) + 1]≥ 0.

Also,
F(a, x , x) = F(3− 2x , x , x) = 6(x − 1)2(3x − 4)2 ≥ 0.

This completes the proof. The equality holds for a = b = c = 1, and for a = 1/3
and b = c = 4/3 (or any cyclic permutation).

P 2.20. If a, b, c are real numbers such that

abc = 1,

then
3(a2 + b2 + c2) + 2(a+ b+ c)≥ 5(ab+ bc + ca).

Solution. Without loss of generality, assume that a ≥ b ≥ c. From abc = 1, it
follows that either a, b, c > 0 or a > 0 and b, c < 0.

Case 1: a, b, c > 0. Let

p = a+ b+ c, q = ab+ bc + ca.

The AM-GM inequality

a+ b+ c ≥ 3
3
p

abc

gives p ≥ 3, while Schur’s inequality

p3 + 9abc ≥ 4pq
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gives

q ≤
p3 + 9

4p
.

Write the required inequality as

3(p2 − 2q) + 2p ≥ 5q,

3p2 + 2p ≥ 11q.

This is true since

3p2 + 2p− 11q ≥ 3p2 + 2p−
11(p3 + 9)

4p
=
(p− 3)(p2 + 11p+ 33)

4p
≥ 0.

Case 2: a > 0 and b, c < 0. Substituting −b for b and −c for c, we need to prove
that

3(a2 + b2 + c2) + 2a+ 5a(b+ c)≥ 2(b+ c) + 5bc

for a, b, c > 0 satisfying abc = 1. It suffices to show that

3(b2 + c2)− 5bc ≥ (2− 5a)(b+ c).

Since
3(b2 + c2)− 5bc

b+ c
≥

b+ c
4
≥
p

bc
2
=

1
2
p

a
,

we only need to prove that
1

2
p

a
≥ 2− 5a.

Indeed, by the AM-GM inequality, we get

5a+
1

2
p

a
= 5a+

1
4
p

a
+

1
4
p

a
≥ 3 3

√

√

5a ·
1

4
p

a
·

1
4
p

a
> 2.

This completes the proof. The equality holds for a = b = c = 1.

P 2.21. If a, b, c are real numbers such that

abc = 1,

then

a2 + b2 + c2 + 6≥
3
2

�

a+ b+ c +
1
a
+

1
b
+

1
c

�

.
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Solution. Substituting a, b, c by |a|, |b|, |c|, respectively, the left side of the inequal-
ity remains unchanged, while the right side either remains unchanged or increases.
Therefore, it suffices to prove the inequality only for a, b, c > 0.

First Solution. Write the inequality in the form

3(6x2 − 3x + 4)≥ 7(ab+ bc + ca),

where

x =
a+ b+ c

3
.

By virtue of the AM-GM inequality, we have x ≥ 1. The third degree Schur’s in-
equality states that

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca),

which is equivalent to

ab+ bc + ca ≤
3(3x3 + 1)

4x
.

Therefore, it suffices to show that

3(6x2 − 3x + 4)≥
21(3x3 + 1)

4x
.

This inequality reduces to

(x − 1)(3x2 − 9x + 7)≥ 0,

which is true because

3x2 − 9x + 7= 3(x −
3
2
)2 +

1
4
> 0.

The equality holds for a = b = c = 1.

Second Solution. Use the mixing variables technique. Let

F(a, b, c) = a2 + b2 + c2 + 6−
3
2

�

a+ b+ c +
1
a
+

1
b
+

1
c

�

.

Assume that
a =min{a, b, c}

and show that
F(a, b, c)≥ F(a, x , x)≥ 0,

where
x =

p

bc, x ≥ 1.
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We have

F(a, b, c)− F(a, x , x) = (b− c)2 −
3
2

�

b+ c − 2
p

bc +
1
b
+

1
c
−

2
p

bc

�

=
1
2
(
p

b−
p

c)2
�

2(
p

b+
p

c)2 − 3−
3
bc

�

≥
1
2
(
p

b−
p

c)2
�

8
p

bc − 3−
3
bc

�

≥
1
2
(
p

b−
p

c)2(8− 3− 3)≥ 0

and

F(a, x , x) = F(
1
x2

, x , x)

=
x6 − 6x5 + 12x4 − 6x3 − 3x2 + 2

2x4

=
(x − 1)2(x4 − 4x3 + 3x2 + 4x + 2

2x4

=
(x − 1)2[(x2 − 2x − 1)2 + x2 + 1]

2x4
≥ 0.

P 2.22. If a, b, c are real numbers, then

(1+ a2)(1+ b2)(1+ c2) + 8abc ≥
1
4
(1+ a)2(1+ b)2(1+ c)2.

Solution. It is easy to check that

(1+ a2)(1+ b2)(1+ c2) + 8abc = (1+ abc)2 + (a+ bc)2 + (b+ ca)2 + (c + ab)2.

Thus, using the Cauchy-Schwarz inequality, we have

(1+ a2)(1+ b2)(1+ c2) + 8abc ≥
[(1+ abc) + (a+ bc) + (b+ ca) + (c + ab)]2

4

=
1
4
(1+ a)2(1+ b)2(1+ c)2.

The equality holds for b = c = 1 (or any cyclic permutation), and also for a = b =
c = −1.
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P 2.23. Let a, b, c be real numbers such that

a+ b+ c = 0.

Prove that
a12 + b12 + c12 ≥

2049
8

a4 b4c4.

Solution. Consider only the nontrivial case abc 6= 0, and rewrite the inequality as
follows

a12 + b12 + (a+ b)12 ≥
2049

8
a4 b4(a+ b)4,

(a6 + b6)2 − 2a6 b6 + (a2 + b2 + 2ab)6 ≥
2049

8
a4 b4(a2 + b2 + 2ab)2.

Let us denote

d =
a2 + b2

ab
, |d| ≥ 2.

Since
a6 + b6 = (a2 + b2)3 − 3a2 b2(a2 + b2),

the inequality can be restated as

(d3 − 3d)2 − 2+ (d + 2)6 ≥
2049

8
(d + 2)2,

which is equivalent to

(d − 2)(2d + 5)2(4d3 + 12d2 + 87d + 154)≥ 0.

Since this inequality is obvious for d ≥ 2, we only need to show that

4d3 + 12d2 + 87d + 154≤ 0

for d ≤ −2. Indeed,

4d3 + 12d2 + 87d + 154< 4d3 + 12d2 + 85d + 154

= (d + 2)[(2d + 1)2 + 76]≤ 0.

The equality holds for a = b = −c/2 (or any cyclic permutation).

P 2.24. If a, b, c are real numbers such that abc ≥ 0, then

a2 + b2 + c2 + 2abc + 4≥ 2(a+ b+ c) + ab+ bc + ca.

(Vasile Cîrtoaje, 2012)
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Solution. Let us denote

x = a(b− 1)(c − 1), y = b(c − 1)(a− 1), z = c(a− 1)(b− 1).

Since
x yz = abc(a− 1)2(b− 1)2(c − 1)2 ≥ 0,

at least one of x , y , z is nonnegative; let

a(1− b)(1− c)≥ 0.

Since
abc ≥ a(b+ c − 1),

it suffices to show that

a2 + b2 + c2 + 2a(b+ c − 1) + 4≥ 2(a+ b+ c) + ab+ bc + ca,

which is equivalent to

a2 − (4− b− c)a+ b2 + c2 − bc − 2(b+ c) + 4≥ 0,

�

a− 2+
b+ c

2

�2

+
3
4
(b− c)2 ≥ 0.

The equality holds for a = b = c = 1, and also for a = 0 and b = c = 2 (or any
cyclic permutation).

P 2.25. Let a, b, c be real numbers such that

a+ b+ c = 3.

(a) If a, b, c ≥ −3, then

1
a2
+

1
b2
+

1
c2
≥

1
a
+

1
b
+

1
c

.

(b) If a, b, c ≥ −7, then

1− a
(1+ a)2

+
1− b
(1+ b)2

+
1− c
(1+ c)2

≥ 0.

(Vasile Cîrtoaje, 2012)
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Solution. Assume that
a =min{a, b, c},

and denote

t =
b+ c

2
,

E(a, b, c) =
1
a2
+

1
b2
+

1
c2
−

1
a
−

1
b
−

1
c

,

F(a, b, c) =
1− a
(1+ a)2

+
1− b
(1+ b)2

+
1− c
(1+ c)2

.

(a) From a, b, c ≥ −3 and a+ b+ c = 3, it follows that

−3≤ a ≤
a+ b+ c

3
= 1.

We will show that
E(a, b, c)≥ E(a, t, t)≥ 0.

We have

E(a, b, c)− E(a, t, t) =
1
b2
+

1
c2
−

2
t2
−
�

1
b
+

1
c
−

2
t

�

=
(b− c)2(b2 + c2 + 4bc)

b2c2(b+ c)2
−
(b− c)2

bc(b+ c)

=
(b− c)2[(b+ c)2 − bc(b+ c − 2)]

b2c2(b+ c)2
.

Since

(b+ c)2 − bc(b+ c − 2) = (b+ c)2 − bc(1− a)

≥ (b+ c)2 −
(b+ c)2(1− a)

4

=
(b+ c)2(3+ a)

4
≥ 0,

we have
E(a, b, c)− E(a, t, t)≥ 0.

Also,

E(a, t, t) =
1− a

a2
+

2(1− t)
t2

=
3(a− 1)2(a+ 3)

a2(3− a)2
≥ 0.

The equality holds for a = b = c = 1, and also for a = −3 and b = c = 3 (or any
cyclic permutation).

(b) From

t ≥
a+ b+ c

3
= 1, t =

3− a
2
≤ 5,
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it follows that
t ∈ [1, 5].

We will show that
F(a, b, c)≥ F(a, t, t)≥ 0.

Write the left inequality as follows:
�

1− b
(1+ b)2

−
1− t
(1+ t)2

�

+
�

1− c
(1+ c)2

−
1− t
(1+ t)2

�

≥ 0,

(b− c)
�

(b− 1)t − b− 3
(1+ b)2

−
(c − 1)t − c − 3
(1+ c)2

�

≥ 0,

(b− c)2[(3+ b+ c − bc)t + 3(b+ c) + bc]≥ 0,

(b− c)2[2t2 + 9t + 5− bc(t − 1)]≥ 0.

The last inequality is true since

2t2 + 9t + 5− bc(t − 1)≥ 2t2 + 9t + 5− t2(t − 1) = (5− t)(1+ t)2 ≥ 0.

Also, we have

F(a, t, t) =
1− a
(1+ a)2

+
2(1− t)
(1+ t)2

=
t − 1

2(2− t)2
+

2(1− t)
(1+ t)2

=
3(1− t)2(5− t)
2(2− t)2(1+ t)2

≥ 0.

The proof is completed. The equality occurs for a = b = c = 1, and also for a = −7
and b = c = 5 (or any cyclic permutation).

P 2.26. If a, b, c are real numbers, then

a6 + b6 + c6 − 3a2 b2c2 ≥
1
2
(a− b)2(b− c)2(c − a)2.

(Sungyoon Kim, 2006)

Solution. Applying the Cauchy-Schwarz inequality, we have

a6 + b6 + c6 − 3a2 b2c2 =
1
2
(a2 + b2 + c2)[(b2 − c2)2 + (c2 − a2)2 + (a2 − b2)2]

≥
1
2
[a(b2 − c2) + b(c2 − a2) + c(a2 − b2)]2

=
1
2
(a− b)2(b− c)2(c − a)2.

Thus, the proof is completed. The equality holds for a = b = c, and also for a = 0
and b+ c = 0 (or any cyclic permutation).
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P 2.27. If a, b, c are real numbers, then
�

a2 + b2 + c2

3

�3

≥ a2 b2c2 +
1
16
(a− b)2(b− c)2(c − a)2.

(Vasile Cîrtoaje, 2011)

Solution (by Vo Quoc Ba Can). Without loss of generality, assume that b and c have
the same sign; that is

bc ≥ 0.

Let

x =

√

√ b2 + c2

2
.

Since
�

a2 + b2 + c2

3

�3

− a2 b2c2 =
�

a2 + 2x2

3

�3

− a2 x4 + a2(x4 − b2c2)

=
(a2 − x2)2(a2 + 8x2)

27
+ a2(x4 − b2c2)

=
(2a2 − b2 − c2)2(a2 + 4b2 + 4c2)

108
+

a2(b2 − c2)2

4
,

the desired inequality can be rewritten as

(2a2 − b2 − c2)2(a2 + 4b2 + 4c2)≥
27
4
(b− c)2[(a− b)2(a− c)2 − 4a2(b+ c)2].

According to the inequalities

x2 − y2 ≤ 2x(x + y)

and
2x y ≤

1
2
(x + y)2,

we have

(a− b)2(a− c)2 − 4a2(b+ c)2 ≤ 2(a− b)(a− c)[(a− b)(a− c) + 2a(b+ c)]

= 2(a2 − b2)(a2 − c2)≤
1
2
(2a2 − b2 − c2)2.

Therefore, it suffices to show that

8(a2 + 4b2 + 4c2)≥ 27(b− c)2,

which is equivalent to the obvious inequality

8a2 + 5b2 + 5c2 + 54bc ≥ 0.

The equality holds for a = b = c, and for −a = b = c (or any cyclic permutation).
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P 2.28. If a, b, c are real numbers, then

(a2 + b2 + c2)3 ≥
108

5
a2 b2c2 + 2(a− b)2(b− c)2(c − a)2.

(Vo Quoc Ba Can and Vasile Cîrtoaje, 2011)

Solution. Write the inequality as f (a, b, c)≥ 0, where

f (a, b, c) = (a2 + b2 + c2)3 −
108
5

a2 b2c2 − 2(a− b)2(b− c)2(c − a)2.

Without loss of generality, assume that b and c have the same sign. Since f (−a,−b,−c) =
f (a, b, c), we may consider b ≥ 0, c ≥ 0. In addition, for a > 0, we have

f (a, b, c)− f (−a, b, c) = 8a(b+ c)(a2 + bc)(b− c)2 ≥ 0.

Therefore, it suffices to prove the desired inequality for a ≤ 0, b ≥ 0, c ≥ 0. For
b = c = 0, the inequality is trivial. Otherwise, due to homogeneity, we may assume
that b+ c = 1. Denoting x = bc, we can write the desired inequality as follows:

(a2 + 1− 2x)3 ≥
108
5

a2 x2 + 2(1− 2x)(a2 − a+ x)2,

2
5
(4a−5)2 x2+2(a+1)(a3−9a2+5a−3)x +(a+1)2(a4−2a3+4a2−2a+1)≥ 0.

This inequality holds if

2
5
(4a− 5)2(a4 − 2a3 + 4a2 − 2a+ 1)≥ (a3 − 9a2 + 5a− 3)2.

Since

10(a4 − 2a3 + 4a2 − 2a+ 1) = (a+ 1)2 + (3a2 − 4a+ 3)2 ≥ (3a2 − 4a+ 3)2,

it suffices to prove that

(4a− 5)2(3a2 − 4a+ 3)2 ≥ 25(a3 − 9a2 + 5a− 3)2.

This is true for a ≤ 0 if

(5− 4a)(3a2 − 4a+ 3)≥ 5(−a3 + 9a2 − 5a+ 3),

which reduces to
a(a+ 1)2 ≤ 0.

Thus, the proof is completed. The equality holds for a = 0 and b + c = 0 (or any
cyclic permutation).
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P 2.29. If a, b, c are real numbers, then

2(a2 + b2)(b2 + c2)(c2 + a2)≥ (a− b)2(b− c)2(c − a)2.

(Vasile Cîrtoaje, 2011)

First Solution. Since

2(a2 + b2) = (a− b)2 + (a+ b)2

and
(b2 + c2)(c2 + a2) = (ab+ c2)2 + (bc − ac)2,

by virtue of the Cauchy-Schwarz inequality, we have

2(a2 + b2)(b2 + c2)(c2 + a2)≥ [(a− b)(ab+ c2) + (a+ b)(bc − ac)]2

= (a2 b+ b2c + c2a− ab2 − bc2 − ca2)2

= (a− b)2(b− c)2(c − a)2.

This completes the proof. The equality holds for (a− b)(bc−ac) = (a+ b)(ab+c2),
which is equivalent to

(a+ b+ c)(ab+ bc + ca) = 5abc.

Second Solution. Making the substitution

x =
∑

ab2 = ab2 + bc2 + ca2, y =
∑

a2 b = a2 b+ b2c + c2a,

we have
∑

a2 b4 = (
∑

ab2)2 − 2abc
∑

a2 b = x2 − 2abc y,
∑

a4 b2 = (
∑

a2 b)2 − 2abc
∑

ab2 = y2 − 2abcx ,

hence
∏

(a2 + b2) =
∑

a2 b4 +
∑

a4 b2 + 2a2 b2c2

= x2 + y2 − 2abc(x + y) + 2a2 b2c2.

Then, the desired inequality is equivalent to

2[x2 + y2 − 2abc(x + y) + 2a2 b2c2]≥ (x − y)2,

(x + y)2 − 4abc(x + y) + 4a2 b2c2 ≥ 0,

(x + y − 2abc)2 ≥ 0.
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P 2.30. If a, b, c are real numbers, then

32(a2 + bc)(b2 + ca)(c2 + ab) + 9(a− b)2(b− c)2(c − a)2 ≥ 0.

(Vasile Cîrtoaje, 2011)

Solution (by Vo Quoc Ba Can). For a, b, c ≥ 0, the inequality is trivial. Otherwise,
since the inequality is symmetric and does not change by substituting −a,−b,−c
for a, b, c, we may assume that a ≤ 0 and b, c ≥ 0. Substituting −a for a, we need
to prove that

32(a2 + bc)(b2 − ac)(c2 − ab) + 9(a+ b)2(a+ c)2(b− c)2 ≥ 0

for all a, b, c ≥ 0. By the AM-GM inequality, we have

(a+ b)2(a+ c)2 = [a(b+ c) + (a2 + bc)]2 ≥ 4a(b+ c)(a2 + bc).

Thus, it suffices to prove that

32(a2 + bc)(b2 − ac)(c2 − ab) + 36a(b+ c)(a2 + bc)(b− c)2 ≥ 0,

which is true if

8(b2 − ac)(c2 − ab) + 9a(b+ c)(b− c)2 ≥ 0.

Since

(b2 − ac)(c2 − ab) = bc(bc + a2)− a(b3 + c3)

≥ 2abc
p

bc − a(b3 + c3) = −a(b
p

b− c
p

c)2,

it is enough to show that

9(b+ c)(b− c)2 − 8(b
p

b− c
p

c)2 ≥ 0.

Using the notation
p

b = x ,
p

c = y,

this inequality can be rewritten as

(x − y)2[9(x2 + y2)(x + y)2 − 8(x2 + x y + y2)2]≥ 0,

It is true because, by the Cauchy-Schwarz inequality, we have

9(x2 + y2)(x + y)2 = 9[(x − y)2 + 2x y][(x − y)2 + 4x y]

≥ 9[(x − y)2 + 2
p

2x y]2 ≥ 9

�

2
p

2
3
(x − y)2 + 2

p
2x y

�2

= 8(x2 + x y + y2)2 ≥ 0.

The equality occurs when two of a, b, c are zero, and when −a = b = c (or any
cyclic permutation).
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P 2.31. If a, b, c are real numbers, then

a4(b− c)2 + b4(c − a)2 + c4(a− b)2 ≥
1
2
(a− b)2(b− c)2(c − a)2.

(Vasile Cîrtoaje, 2011)

Solution. Since

b4(c − a)2 + c4(a− b)2 ≥
1
2
[b2(c − a) + c2(a− b)]2

=
1
2
(b− c)2(bc − ca− ab)2,

it suffices to prove that

2a4 + (ab− bc + ca)2 ≥ (a− b)2(a− c)2,

which is equivalent to

a2(a2 − 2bc + 2ca+ 2ab)≥ 0.

Therefore, the desired inequality is true if

a2 − 2bc + 2ca+ 2ab ≥ 0.

Indeed, from
∑

(a2 − 2bc + 2ca+ 2ab) = (a+ b+ c)2 ≥ 0,

due to symmetry, we may assume that a2 − 2bc + 2ca + 2ab ≥ 0. Thus, the proof
is completed. The equality occurs when a = b = c, when two of a, b, c are equal to
zero, and when a = 0 and b+ c = 0 (or any cyclic permutation).

P 2.32. If a, b, c are real numbers, then

a2(b− c)4 + b2(c − a)4 + c2(a− b)4 ≥
1
2
(a− b)2(b− c)2(c − a)2.

(Vasile Cîrtoaje, 2011)

Solution. Let us denote

x =
∑

ab2 = ab2 + bc2 + ca2, y =
∑

a2 b = a2 b+ b2c + c2a.

Since
∑

a2 b4 = (
∑

ab2)2 − 2abc
∑

a2 b = x2 − 2abc y,
∑

a4 b2 = (
∑

a2 b)2 − 2abc
∑

ab2 = y2 − 2abcx ,
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∑

a2 b2(a2 + b2) = x2 + y2 − 2abc(x + y),

we have
∑

a2(b− c)4 =
∑

a2(b4 − 4b3c + 6b2c2 − 4bc3 + c4)

=
∑

a2 b2(a2 + b2)− 4abc(
∑

ab2 +
∑

a2 b) + 18a2 b2c2

= x2 + y2 − 6abc(x + y) + 18a2 b2c2.

Therefore, we can write the desired inequality as

x2 + y2 − 6abc(x + y) + 18a2 b2c2 ≥
1
2
(x − y)2,

which is equivalent to the obvious inequality

(x + y − 6abc)2 ≥ 0.

The equality holds for

a(b− c)2 + b(c − a)2 + c(a− b)2 = 0.

P 2.33. If a, b, c are real numbers, then

a2(b2 − c2)2 + b2(c2 − a2)2 + c2(a2 − b2)2 ≥
3
8
(a− b)2(b− c)2(c − a)2.

(Vasile Cîrtoaje, 2011)

Solution. We see that the inequality remains unchanged and the product

(a+ b)(b+ c)(c + a)

changes its sign by replacing a, b, c with −a,−b,−c, respectively. Thus, without
loss of generality, we may assume that

(a+ b)(b+ c)(c + a)≥ 0.

According to this condition, at least one of a, b, c is nonnegative. So, we may con-
sider a ≥ 0, and hence

a(a+ b)(b+ c)(c + a)≥ 0.

Since

b2(c2 − a2)2 + c2(a2 − b2)2 ≥
1
2

�

b(c2 − a2) + c(a2 − b2)
�2
=

1
2
(b− c)2(a2 + bc)2,
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it suffices to show that

2a2(b+ c)2 + (a2 + bc)2 ≥
3
4
(a− b)2(a− c)2,

which is equivalent to

(a+ b)(a+ c)[a2 + 5a(b+ c) + bc]≥ 0,

(a+ b)(a+ c)[(a+ b)(a+ c) + 4a(b+ c)]≥ 0,

(a+ b)2(a+ c)2 + 4a(a+ b)(b+ c)(c + a)≥ 0.

Since the last inequality is clearly true, the proof is completed. The equality holds
for a = b = c, for −a = b = c (or any cyclic permutation), and for b = c = 0 (or
any cyclic permutation).

P 2.34. If a, b, c are real numbers such that

ab+ bc + ca = 3,

then

(a) (a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2)≥ 3(a+ b+ c)2;

(b) (a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2)≥
3
2
(a2 + b2 + c2).

(Vasile Cîrtoaje, 1995)

Solution. Let
p = a+ b+ c, q = ab+ bc + ca, r = abc.

We have
∏

(b2 + bc + c2) =
∏

[(b+ c)2 − bc]

=
∏

(b+ c)2 −
∑

bc(a+ b)2(a+ c)2 + abc
∑

a(b+ c)2 − a2 b2c2.

Since
∏

(b+ c)2 = (pq− r)2 = r2 − 2pqr + p2q2,
∑

bc(a+ b)2(a+ c)2 =
∑

bc(a2 + q)2 = r
∑

a3 + 2pqr + q2

= r(3r + p3 − 3pq) + 2pqr + q2 = 3r2 + (p3 − pq)r + q3

and
abc

∑

a(b+ c)2 = r(3r + pq) = 3r2 + pqr,
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we get
∏

(b2 + bc + c2) = (p2 − q)q2 − p3r.

(a) Write the inequality as follows

3
∏

(b2 + bc + c2)≥ (a+ b+ c)2(ab+ bc + ca)2,

(2p2 − 3q)q2 − 3p3r ≥ 0,

q2(p2 − 3q) + p2(q2 − 3pr)≥ 0,

q2
∑

(b− c)2 + p2
∑

a2(b− c)2 ≥ 0.

Clearly, the last inequality holds for all real a, b, c. The equality holds when a =
b = c = ±1.

(b) Write the inequality in the homogeneous forms

2
∏

(b2 + bc + c2)≥ (a2 + b2 + c2)(ab+ bc + ca)2,

2(p2 − q)q2 − 2p3r − (p2 − 2q)q2 ≥ 0,

p2(q2 − 2pr)≥ 0,

(a+ b+ c)2(a2 b2 + b2c2 + c2a2)≥ 0.

The equality holds when a+ b+ c = 0 and ab+ bc + ca = 3.

P 2.35. If a, b, c are real numbers, then

(a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2)≥ 3(ab+ bc + ca)(a2 b2 + b2c2 + c2a2).

(Vasile Cîrtoaje, 2011)

Solution. As we have shown in the proof of the preceding P 2.34,
∏

(b2 + bc + c2) = (p2 − q)q2 − p3r,

where
p = a+ b+ c, q = ab+ bc + ca, r = abc.

Thus, we can write the desired inequality as

(p2 − q)q2 − p3r ≥ 3q(q2 − 2pr),

q2(p2 − 4q) + p(6q− p2)r ≥ 0.

Consider further two cases: 6q− p2 ≥ 0 and 6q− p2 ≤ 0.
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Case 1: 6q− p2 ≥ 0. By Schur’s inequality of degree four, we have

pr ≥
1
6
(p2 − q)(4q− p2).

Therefore, it suffices to show that

q2(p2 − 4q) +
1
6
(6q− p2)(p2 − q)(4q− p2)≥ 0,

which is equivalent to the obvious inequality

(p2 − 4q)2(p2 − 3q)≥ 0.

Case 2: 6q− p2 ≤ 0. Since

pr ≤
1
3

q2,

it suffices to show that

q2(p2 − 4q) +
1
3
(6q− p2)q2 ≥ 0,

which is equivalent to the obvious inequality

q2(p2 − 3q)≥ 0.

This completes the proof. The inequality is an equality for a = b = c, for a = 0 and
b = c (or any cyclic permutation), and for b = c = 0 (or any cyclic permutation).

P 2.36. If a, b, c are real numbers, not all of the same sign, then

(a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2)≥ 3(ab+ bc + ca)3.

(Vasile Cîrtoaje, 2011)

Solution. Since the inequality is symmetric and does not change by substituting
−a,−b,−c for a, b, c, we may assume that a ≤ 0 and b, c ≥ 0. Substituting −a for
a, we need to prove that

(a2 − ab+ b2)(b2 + bc + c2)(c2 − ca+ a2)≥ 3(bc − ab− ac)3

for a, b, c ≥ 0. Since the left hand side of this inequality is nonnegative, consider
further the nontrivial case

bc − ab− ac > 0.

Since
b2 + bc + c2 − 3(bc − ab− ac) = (b− c)2 + 3a(b+ c)≥ 0,
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it suffices to show that

(a2 − ab+ b2)(a2 − ac + c2)≥ (bc − ab− ac)2.

First Solution. From bc − ab− ac > 0, it follows that a =min{a, b, c}. Since

a2 − ab+ b2 ≥ (b− a)2, a2 − ac + c2 ≥ (c − a)2,

it suffices to show that

(b− a)2(c − a)2 ≥ (bc − ab− ac)2.

This is true if (b− a)(c − a)≥ bc − ab− ac; indeed,

(b− a)(c − a)− (bc − ab− ac) = a2 ≥ 0.

The original inequality is an equality when two of a, b, c are zero, and when a = 0
and b = c (or any cyclic permutation).

Second Solution. Since

4(a2 − ab+ b2) = (a+ b)2 + 3(a− b)2,

4(a2 − ac + c2) = (a+ c)2 + 3(a− c)2,

we can apply the Cauchy-Schwarz inequality as follows

16(a2 − ab+ b2)(b2 + bc + c2)≥ [(a+ b)(a+ c) + 3(a− b)(a− c)]2.

Thus, we only need to show that

(a+ b)(a+ c) + 3(a− b)(a− c)≥ 4(bc − ab− ac),

which is equivalent to the obvious inequality a(2a+ b+ c)≥ 0.

P 2.37. If a, b, c are real numbers, then

(a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2)≥
3
8
(a2 + b2)(b2 + c2)(c2 + a2).

(Vasile Cîrtoaje, 2011)

Solution. If a, b, c have the same sign, then the inequality follows from

a2 + ab+ b2 ≥ a2 + b2, b2 + bc + c2 ≥ b2 + c2, c2 + ca+ a2 ≥ c2 + a2.
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Consider now that a, b, c have not the same sign. Since the inequality is symmetric
and does not change by substituting −a,−b,−c for a, b, c, we may assume that
a ≤ 0 and b, c ≥ 0. Substituting −a for a, we need to prove that

(a2 − ab+ b2)(a2 − ac + c2)(b2 + bc + c2)≥
3
8
(a2 + b2)(b2 + c2)(c2 + a2)

for a, b, c ≥ 0. Write this inequality in the form

[(a2 + b2) + (a− b)2][(a2 + c2) + (a− c)2][2(b2 + c2) + 2bc]≥

≥ 3(a2 + b2)(b2 + c2)(c2 + a2).

It suffices to show that

2(b2 + c2)[(a− b)2(a2 + c2) + (a− c)2(a2 + b2)] + 2bc(a2 + b2)(a2 + c2)≥

≥ (a2 + b2)(b2 + c2)(c2 + a2),

which is equivalent to

2(b2 + c2)[(a− b)2(a2 + c2) + (a− c)2(a2 + b2)]≥ (b− c)2(a2 + b2)(a2 + c2).

For the nontrivial case where

a2 + b2 6= 0, b2 + c2 6= 0, c2 + a2 6= 0,

we rewrite the inequality in the form

(a− b)2

a2 + b2
+
(a− c)2)
a2 + c2

≥
(b− c)2

2(b2 + c2)
.

Consider further two cases.

Case 1: 2a2 ≤ b2 + c2. By the Cauchy-Schwarz inequality, we have

(a− b)2

a2 + b2
+
(a− c)2)
a2 + c2

≥
[(b− a) + (a− c)]2

(a2 + b2) + (a2 + c2)
=

(b− c)2

2a2 + b2 + c2
.

Thus, it suffices to show that

1
2a2 + b2 + c2

≥
1

2(b2 + c2)
,

which reduces to b2 + c2 ≥ 2a2.

Case 2: 2a2 ≥ b2 + c2. By the Cauchy-Schwarz inequality, we have

(a− b)2

a2 + b2
+
(a− c)2

a2 + c2
≥
[c(b− a) + b(a− c)]2

c2(a2 + b2) + b2(a2 + c2)
=

a2(b− c)2

a2(b2 + c2) + 2b2c2
.
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Therefore, it suffices to prove that

a2

a2(b2 + c2) + 2b2c2
≥

1
2(b2 + c2)

.

This reduces to
a2(b2 + c2)≥ 2b2c2,

which is true because

2a2(b2 + c2)− 4b2c2 ≥ (b2 + c2)2 − 4b2c2 = (b2 − c2)2 ≥ 0.

Thus, the proof is completed. The equality holds when two of a, b, c are zero, and
when −a = b = c (or any cyclic permutation).

P 2.38. If a, b, c are real numbers, then

2(a2 + b2)(b2 + c2)(c2 + a2)≥ (a2 − ab+ b2)(b2 − bc + c2)(c2 − ca+ a2).

(Vasile Cîrtoaje, 2014)

Solution. If a, b, c have the same sign, then the inequality follows from

a2 + b2 ≥ a2 − ab+ b2, b2 + c2 ≥ b2 − bc + c2, c2 + a2 ≥ c2 − ca+ a2.

Consider now that a, b, c have not the same sign. Since the inequality is symmetric
and does not change by substituting −a,−b,−c for a, b, c, we may assume that
a ≤ 0 and b, c ≥ 0. Substituting −a for a, we need to prove that

2(a2 + b2)(b2 + c2)(c2 + a2)≥ (b2 − bc + c2)(c2 + ca+ a2)(a2 + ab+ b2)

for a, b, c ≥ 0. Using the notation

A= b2 + c2, B = c2 + a2, C = a2 + b2,

we can write the inequality as follows:

2ABC ≥ (A− bc)(B + ca)(C + ab),

ABC + a2 b2c2 ≥ ab(AB − c2C) + ac(AC − b2B)− bc(BC − a2A),

ABC + a2 b2c2 ≥ ab(c4 + a2 b2) + ac(b4 + a2c2)− bc(a4 + b2c2).

It suffices to show that

ABC + a2 b2c2 ≥ ab(c4 + a2 b2) + ac(b4 + a2c2) + bc(a4 + b2c2).
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Moreover, since

2ab ≤ a2 + b2, 2ac ≤ a2 + c2, 2bc ≤ b2 + c2,

it is enough to prove that

2ABC +2a2 b2c2 ≥ (a2+ b2)(c4+ a2 b2)+(a2+ c2)(b4+ a2c2)+(b2+ c2)(a4+ b2c2).

Indeed, this inequality reduces to the obvious inequality

6a2 b2c2 ≥ 0.

The equality holds when two of a, b, c are zero.

P 2.39. If a, b, c are real numbers, then

9(1+ a4)(1+ b4)(1+ c4)≥ 8(1+ abc + a2 b2c2)2.

(Vasile Cîrtoaje, 2004)

Solution. Substituting a, b, c by |a|, |b|, |c|, respectively, the left side of the inequal-
ity remains unchanged, while the right side either remains unchanged or increases.
Therefore, it suffices to prove the inequality only for a, b, c ≥ 0. If a = b = c, then
the inequality reduces to

9(1+ a4)3 ≥ 8(1+ a3 + a6)2,

9(a2 +
1
a2
)3 ≥ 8(a3 +

1
a3
+ 1)2.

Setting

x = a+
1
a

,

this inequality can be written as follows

9(x2 − 2)3 ≥ 8(x3 − 3x + 1)2,

x6 − 6x4 − 16x3 + 36x2 + 48x − 80≥ 0,

(x − 2)2[x(x3 − 8) + 4(x3 − 5) + 6x2]≥ 0.

Since x ≥ 2, the last inequality is clearly true. Multiplying now the inequalities

9(1+ a4)3 ≥ 8(1+ a3 + a6)2,

9(1+ b4)3 ≥ 8(1+ b3 + b6)2,

9(1+ c4)3 ≥ 8(1+ c3 + c6)2,
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we get

[9(1+ a4)(1+ b4)(1+ c4)]3 ≥ 83(1+ a3 + a6)2(1+ b3 + b6)2(1+ c3 + c6)2.

From this inequality and Hölder’s inequality

(1+ a3 + a6)(1+ b3 + b6)(1+ c3 + c6)≥ (1+ abc + a2 b2c2)3,

the conclusion follows. The equality holds for a = b = c = 1.

P 2.40. If a, b, c are real numbers, then

2(1+ a2)(1+ b2)(1+ c2)≥ (1+ a)(1+ b)(1+ c)(1+ abc).

(Vasile Cîrtoaje, 2001)

Solution. Substituting a, b, c by |a|, |b|, |c|, respectively, the left side of the inequal-
ity remains unchanged, while the right side either remains unchanged or increases.
Therefore, it suffices to prove the inequality only for a, b, c ≥ 0.

First Solution. For a = b = c, the inequality reduces to

2(1+ a2)3 ≥ (1+ a)3(1+ a3).

This is true since

2(1+ a2)3 − (1+ a)3(1+ a3) = (1− a)4(1+ a+ a2)≥ 0.

Multiplying the inequalities

2(1+ a2)3 ≥ (1+ a)3(1+ a3),

2(1+ b2)3 ≥ (1+ b)3(1+ b3),

2(1+ c2)3 ≥ (1+ c)3(1+ c3),

we get

8(1+ a2)3(1+ b2)3(1+ c2)3 ≥ (1+ a)3(1+ b)3(1+ c)3(1+ a3)(1+ b3)(1+ c3).

Using this result, we still have to show that

(1+ a3)(1+ b3)(1+ c3)≥ (1+ abc)3,

which is just Hölder’s inequality. We can also prove this inequality by adding the
inequalities

a3 b3 + b3c3 + c3a3 ≥ 3a2 b2c2,

a3 + b3 + c3 ≥ 3abc.
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The equality holds for a = b = c = 1.

Second Solution. We use the substitution

a =
1− x
1+ x

, b =
1− y
1+ y

, c =
1− z
1+ z

,

where x , y, z ∈ (−1, 1]. Since

1+ a2

1+ a
=

1+ x2

1+ x
,

1+ b2

1+ b
=

1+ y2

1+ y
,

1+ c2

1+ c
=

1+ z2

1+ z

and

1+ abc =
2(1+ x y + yz + zx)
(1+ x)(1+ y)(1+ z)

,

the required inequality becomes

(1+ x2)(1+ y2)(1+ z2)≥ 1+ x y + yz + zx ,

x2 y2 + y2z2 + z2 x2 + x2 + y2 + z2 ≥ x y + yz + zx ,

x2 y2 + y2z2 + z2 x2 +
1
2
(x − y)2 +

1
2
(y − z)2 +

1
2
(z − x)2 ≥ 0.

P 2.41. If a, b, c are real numbers, then

3(a2 − ab+ b2)(b2 − bc + c2)(c2 − ca+ a2)≥ a3 b3 + b3c3 + c3a3.

(Titu Andreescu, 2006)

Solution. Substituting a, b, c by |a|, |b|, |c|, respectively, the left side of the inequal-
ity remains unchanged or decreases, while the right side remains unchanged or in-
creases. Therefore, it suffices to prove the inequality for a, b, c ≥ 0. If a = 0, then
the inequality reduces to b2c2(b − c)2 ≥ 0. Consider further then a, b, c > 0. We
first show that

3(a2 − ab+ b2)3 ≥ a6 + a3 b3 + b6.

Indeed, setting

x =
a
b
+

b
a

, x ≥ 2,

we can write this inequality as

3(x − 1)3 ≥ x3 − 3x + 1,

(x − 2)2(2x − 1)≥ 0.
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Using this result, we have

27(a2 − ab+ b2)3(b2 − bc + c2)3(c2 − ca+ a2)3 ≥
≥ (a6 + a3 b3 + b6)(b6 + b3c3 + c6)(c6 + c3a3 + a6).

Therefore, it suffices to show that

(a6 + a3 b3 + b6)(b6 + b3c3 + c6)(c6 + c3a3 + a6)≥ (a3 b3 + b3c3 + c3a3)3.

Writing this inequality in the form

(a3 b3 + b6 + a6)(b6 + b3c3 + c6)(a6 + c6 + c3a3)≥ (a3 b3 + b3c3 + c3a3)3,

we see that it is just Hölder’s inequality. The equality holds when a = b = c, when
a = 0 and b = c (or any cyclic permutation), and when two of a, b, c are 0.

P 2.42. If a, b, c are nonzero real numbers, then

∑ b2 − bc + c2

a2
+ 2

∑ a2

bc
≥
�∑

a
�

�

∑ 1
a

�

.

(Vasile Cîrtoaje, 2010)

Solution. We have
∑ b2 − bc + c2

a2
+ 2

∑ a2

bc
=
∑

�

b2 − bc + c2

a2
+

b2

ca
+

c2

ab

�

=
∑ (b2 − bc + c2)(ab+ bc + ca)

a2 bc

=
ab+ bc + ca

a2 b2c2

∑

bc(b2 − bc + c2).

Then, we can write the inequality as

(ab+ bc + ca)
�∑

bc(b2 − bc + c2)− abc
∑

a
�

≥ 0.

Since
∑

bc(b2 − bc + c2)− abc
∑

a =
�∑

bc
��∑

a2
�

−
∑

b2c2 − 2abc
∑

a

=
�∑

bc
��∑

a2
�

−
�∑

bc
�2

=
�∑

bc
��∑

a2 −
∑

bc
�

,

the inequality is equivalent to

(ab+ bc + ca)2(a2 + b2 + c2 − ab− bc − ca)≥ 0,

which is true. The equality holds for a = b = c, and also for ab+ bc + ca = 0.
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P 2.43. Let a, b, c be real numbers. Prove that

(a) if a, b, c ∈ [0,1], then

abc − (b+ c − a)(c + a− b)(a+ b− c)≤ 1;

(b) if a, b, c ∈ [−1, 1], then

abc − (b+ c − a)(c + a− b)(a+ b− c)≤ 4.

(Vasile Cîrtoaje, 2011)

Solution. We will show that if a, b, c ∈ [m, M], where M ≥ 0, then

abc − (b+ c − a)(c + a− b)(a+ b− c)≤ M(M −m)2.

Without loss of generality, assume that

M ≥ a ≥ b ≥ c ≥ m.

We have two cases to consider.

Case 1: a ≤ 0. The required inequality is true, since

abc − (b+ c − a)(c + a− b)(a+ b− c)≤ 0≤ M(M −m)2.

Indeed, substituting −a,−b,−c for a, b, c, respectively, the left inequality can be
restated as

abc ≥ (b+ c − a)(c + a− b)(a+ b− c),

where a, b, c ≥ 0. This is just the well-known Schur’s inequality of degree three.

Case 2: a > 0. Since (M −m)2 ≥ (a− c)2 and M ≥ a, we have

M(M −m)2 ≥ a(a− c)2.

Therefore, it suffices to show that

abc − (b+ c − a)(c + a− b)(a+ b− c)≤ a(a− c)2,

which is equivalent to

(b− c)[a2 + (b− 2c)a− b2 + c2]≥ 0.

This is true since b− c ≥ 0 and

a2 + (b− 2c)a− b2 + c2 = (a− b)(a+ 2b− 2c) + (b− c)2

≥ 2(a− b)(b− c) + (b− c)2 ≥ 0.

Thus, the proof is completed. The equality holds for a = M and b = c = m (or any
cyclic permutation).
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P 2.44. Let a, b, c be real numbers. Prove that

(a) if a, b, c ∈ [0,1], then
∑

a2(a− b)(a− c)≤ 1;

(b) if a, b, c ∈ [−1,1], then
∑

a2(a− b)(a− c)≤ 4.

(Vasile Cîrtoaje, 2011)

Solution. We will show that if a, b, c ∈ [m, M], then
∑

a2(a− b)(a− c)≤ (M −m)2 ·max{m2, M2}.

Without loss of generality, assume that

M ≥ a ≥ b ≥ c ≥ m.

Since

b2(b− c)(b− a)≤ 0, (a− c)2 ≤ (M −m)2, max{a2, c2} ≤max{m2, M2},

it suffices to show that

a2(a− b)(a− c) + c2(c − a)(c − b)≤ (a− c)2 ·max{a2, c2}.

This is equivalent to

(a− c)2
�

a2 + c2 + ac − ab− bc −max{a2, c2}
�

≤ 0,

that is true if
a2 + c2 + ac − ab− bc −max{a2, c2} ≤ 0.

Case 1: a2 ≥ c2. From
a2 − c2 = (a− c)(a+ c)≥ 0,

it follows that a+ c ≥ 0. Then,

a2 + c2 + ac − ab− bc −max{a2, c2}= (a+ c)(c − b)≤ 0.

Case 2: a2 ≤ c2. From
a2 − c2 = (a− c)(a+ c)≤ 0,

it follows that a+ c ≤ 0. Then,

a2 + c2 + ac − ab− bc −max{a2, c2}= (a+ c)(a− b)≤ 0.

Thus, the proof is completed. For M2 ≥ m2, the equality holds when a = M and
b = c = m (or any cyclic permutation). For M2 ≤ m2, the equality holds when
when a = m and b = c = M (or any cyclic permutation).
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P 2.45. Let a, b, c be real numbers such that

ab+ bc + ca = abc + 2.

Prove that
a2 + b2 + c2 − 3≥ (2+

p
3)(a+ b+ c − 3).

(Vasile Cîrtoaje, 2011)

Solution. Substituting a+1, b+1, c+1 for a, b, c, respectively, we need to prove
that

a+ b+ c = abc

implies
a2 + b2 + c2 ≥

p
3(a+ b+ c).

This inequality is true if

(a2 + b2 + c2)2 ≥ 3(a+ b+ c)2,

which is equivalent to the homogeneous inequality

(a2 + b2 + c2)2 ≥ 3abc(a+ b+ c).

Since
(ab+ bc + ca)2 − 3abc(a+ b+ c) =

1
2

∑

a2(b− c)2 ≥ 0,

it suffices to prove that

(a2 + b2 + c2)2 ≥ (ab+ bc + ca)2,

which is equivalent to

(a2 + b2 + c2 − ab− bc − ca)(a2 + b2 + c2 + ab+ bc + ca)≥ 0.

This inequality is true since

2(a2 + b2 + c2 − ab− bc − ca) = (a− b)2 + (b− c)2 + (c − a)2 ≥ 0,

2(a2 + b2 + c2 + ab+ bc + ca) = (a+ b)2 + (b+ c)2 + (c + a)2 ≥ 0.

The equality holds for a = b = c = 1, and for a = b = c = 1+
p

3.

P 2.46. Let a, b, c be real numbers such that

(a+ b)(b+ c)(c + a) = 10.

Prove that
(a2 + b2)(b2 + c2)(c2 + a2) + 12a2 b2c2 ≥ 30.

(Vasile Cîrtoaje, 2011)



88 Vasile Cîrtoaje

Solution. Since
2(b2 + c2) = (b+ c)2 + (b− c)2

and
(a2 + b2)(a2 + c2) = (a2 + bc)2 + a2(b− c)2,

by virtue of the Cauchy-Schwarz inequality, we have

2(a2 + b2)(b2 + c2)(c2 + a2)≥ [(b+ c)(a2 + bc) + a(b− c)2]2

= [(a+ b)(b+ c)(c + a)− 4abc]2

= 4(5− 2abc)2.

Thus, it suffices to show that

(5− 2abc)2 + 6a2 b2c2 ≥ 15,

which is equivalent to
(abc − 1)2 = 0.

Notice that the homogeneous inequality

10(a2 + b2)(b2 + c2)(c2 + a2) + 120a2 b2c2 ≥ 3(a+ b)2(b+ c)2(c + a)2

becomes an equality for
a
k
= b = c (or any cyclic permutation), where

k+
1
k
= 3.

P 2.47. Let a, b, c be real numbers such that

(a+ b)(b+ c)(c + a) = 5.

Prove that

(a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2) + 12a2 b2c2 ≥ 15.

(Vasile Cîrtoaje, 2011)

Solution. Since

b2 + bc + c2 =
3
4
(b+ c)2 +

1
4
(b− c)2

and

(a2 + ab+ b2)(a2 + ac + c2) =
1
4
(2a2 + ab+ ac + 2bc)2 +

3
4

a2(b− c)2,
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by the Cauchy-Schwarz inequality, we have

(a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2)≥

≥
3
16
[(b+ c)(2a2 + ab+ ac + 2bc) + a(b− c)2]2

=
3
4
[(a+ b)(b+ c)(c + a)− 2abc]2 =

3
4
(5− 2abc)2.

Thus, it suffices to show that

3
4
(5− 2abc)2 + 12a2 b2c2 ≥ 15,

which is equivalent to
(2abc − 1)2 = 0.

The homogeneous inequality

5(a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2) + 60a2 b2c2 ≥ 3(a+ b)2(b+ c)2(c + a)2

becomes an equality for
a
k
= b = c (or any cyclic permutation), where

k+
1
k
= 3.

P 2.48. Let a, b, c be real numbers such that

a+ b+ c = 1, a3 + b3 + c3 = k.

Prove that

(a) if k = 25, then |a| ≤ 1 or |b| ≤ 1 or |c| ≤ 1;

(b) if k = −11, then 1< a ≤ 2 or 1< b ≤ 2 or 1< c ≤ 2.
(Vasile Cîrtoaje, 2011)

Solution. Without loss of generality, assume that a ≤ b ≤ c. If b = 1, then a+c = 0,
and hence

k = a3 + b3 + c3 = 1+ a3 + c3 = 1,

which is false in (a) and (b). From (b− a)(b− c)≤ 0, we get

b2 − (a+ c)b+ ac ≤ 0,

which is equivalent to
2b2 − b+ ac ≤ 0.
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(a) It suffices to show that |b| ≤ 1. We have

25− b3 = a3 + c3 = (a+ c)3 − 3ac(a+ c) = (1− b)3 − 3ac(1− b),

which yields

ac =
8+ b− b2

b− 1
.

Thus, from

2b2 − b+ ac =
2(b+ 1)(4− 3b+ b2)

b− 1
≤ 0,

we get |b| ≤ 1. The equality |b|= 1 holds for a = b = −1 and c = 3.

(b) It suffices to show that 1< b ≤ 2. We have

−11− b3 = a3 + c3 = (a+ c)3 − 3ac(a+ c) = (1− b)3 − 3ac(1− b),

which yields

ac =
b2 − b+ 4

1− b
.

Thus, the inequality 2b2 − b+ ac ≤ 0 is equivalent to

(b− 2)(b2 + 1)
1− b

≥ 0,

which involves 1< b ≤ 2. The equality b = 2 holds for a = −3 and b = c = 2.

P 2.49. Let a, b, c be real numbers such that

a+ b+ c = a3 + b3 + c3 = 2.

Prove that a, b, c /∈
�

5
4

, 2
�

.

(Vasile Cîrtoaje, 2011)

Solution. If a = 2, then we get a contradiction because

b+ c = 2− a = 0, b3 + c3 = 2− a3 = −6, b3 + c3 = (b+ c)(b2 − bc + c2) = 0.

From

2= a3 + b3 + c3 = a3 + (b+ c)2 − 3bc(b+ c) = a3 + (2− a)2 − 3bc(2− a),

we obtain

bc =
2(1− a)2

2− a
.
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Thus, the inequality (b+ c)2 ≥ 4bc involves

(2− a)2 ≥
8(1− a)2

2− a
,

a(4− 2a− a2)
2− a

≥ 0,

a ∈ (−∞,−1−
p

5]∪ [0,−1+
p

5]∪ (2,∞).

Since

−1+
p

5<
5
4

,

it follows that a /∈
�

5
4

, 2
�

. Similarly, we have

b, c /∈
�

5
4

, 2
�

.

P 2.50. If a, b, c and k are real numbers, then
∑

(a− b)(a− c)(a− kb)(a− kc)≥ 0.

(Vasile Cîrtoaje, 2005)

Solution. For a = b = c, the equality holds. Otherwise, using the substitution

m= k+ 2, u= (1− k)a, b = a+ x , c = a+ y,

the inequality can be written as

Au2 + Bu+ C ≥ 0,

where
A= x2 − x y + y2,

B = (x + y)(2A−mx y),

C = (x + y)2(A−mx y) +m2 x2 y2.

The quadratic Au2 + Bu+ C has the discriminant

D = B2 − 4AC = −3m2 x2 y2(x − y)2.

Since A> 0 and D ≤ 0, the conclusion follows. The equality holds for a = b = c,
and for a/k = b = c (or any cyclic permutation).
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Remark 1. The inequality is equivalent to
∑

a4 + k(k+ 2)
∑

a2 b2 + (1− k2)abc
∑

a ≥ (k+ 1)
∑

ab(a2 + b2).

For k = 0, we get Schur’s inequality of degree four

a4 + b4 + c4 + abc(a+ b+ c)≥
∑

ab(a2 + b2).

For k = 1, we get the inequality

a4 + b4 + c4 + 3(a2 b2 + b2c2 + c2a2)≥ 2
∑

ab(a2 + b2),

with equality for a = b = c.
For k = 2, we get the inequality

a4 + b4 + c4 + 8(a2 b2 + b2c2 + c2a2)≥ 3(ab+ bc + ca)(a2 + b2 + c2),

which can be rewritten as

9(a4 + b4 + c4) + 126(a2 b2 + b2c2 + c2a2)≥ 5(a+ b+ c)4,

with equality for a = b = c, and for a/2= b = c (or any cyclic permutation).

Remark 2. The inequality in P 2.50 is equivalent to
∑

(a− b)2(a+ b− c − kc)2 ≥ 0.

P 2.51. If a, b, c are real numbers, then

∑

a2(a− b)(a− c)≥
(a− b)2(b− c)2(c − a)2

a2 + b2 + c2 + ab+ bc + ca
.

Solution (by Michael Rozenberg). Since
∑

a2(a− b)(a− c) =
1
2

∑

(b− c)2(b+ c − a)2,

we can write the inequality in the form
�∑

(b+ c)2
��∑

(b− c)2(b+ c − a)2
�

≥ 4(a− b)2(b− c)2(c − a)2.

Using now the Cauchy-Schwarz inequality, is suffices to show that
�∑

(b+ c)(b− c)(b+ c − a)
�2
≥ 4(a− b)2(b− c)2(c − a)2,

which is an identity. The equality holds for a = b = c, for a = 0 and b = c (or any
cyclic permutation), and for a = 0 and b+ c = 0 (or any cyclic permutation).
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P 2.52. Let x1, x2, . . . , xn (n≥ 3) be real numbers such that

x1 + x2 + . . .+ xn = a+ b, x2
1 + x2

2 + · · ·+ x2
n = a2 + b2,

where a and b are fixed real numbers such that a 6= 0, b 6= 0, a 6= b. Then, there exist
x1, x2, . . . , xn such that

(a) x1 x2 · · · xn > 0;

(b) x1 x2 · · · xn < 0.

Solution. For
x1 = x2 = y, x3 = · · ·= xn = z,

from
2y + (n− 2)z = a+ b, 2y2 + (n− 2)z2 = a2 + b2,

we get the real solution

y =
2(a+ b) +

p

2(n− 2)d
2n

> 0, z =
(n− 2)(a+ b)−

p

2(n− 2)d
n(n− 2)

< 0,

where
d = (n− 1)(a2 + b2)− 2ab > 0.

The product
x1 x2 · · · xn = y2zn−2

is positive for even n, and negative for odd n.
Also, for

x1 = u, x2 = · · ·= xn = v,

from
u+ (n− 1)v = a+ b, u2 + (n− 1)v2 = a2 + b2,

we get the real solution

u=
a+ b+

p

(n− 1)d
2n

> 0, v =
(n− 1)(a+ b)−

p

(n− 1)d
n(n− 1)

< 0.

The product
x1 x2 · · · xn = uvn−1

is negative for even n, and positive for odd n.

P 2.53. Let a ≥ b ≥ c be real numbers such that

a+ b+ c = p, ab+ bc + ca = q,

where p and q are fixed real numbers satisfying p2 ≥ 3q. Prove that the product

r = abc

is minimal only when a = b, and is maximal only when b = c.
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Solution. For p2 = 3q, which is equivalent to

(a− b)2 + (b− c)2 + (c − a)2 = 0,

we get a = b = c. Consider further that p2 > 3q.

First Solution. From
(b− a)(b− c)≤ 0,

which is equivalent to

b2 + bc − b(a+ c)≤ 0, b2 + q− 2b(a+ c)≤ 0, b2 + q− 2b(p− b)≤ 0,

we get
3b2 − 2pb+ q ≤ 0,

hence
b ∈ [b1, b2],

where

b1 =
p−

p

p2 − 3q
3

, b2 =
p+

p

p2 − 3q
3

, b1 < b2.

We have b = b1 and b = b2 when (b−a)(b− c) = 0; that is, when b = c and b = a,
respectively. On the other hand, from

abc = b[q− b(a+ c)] = bq− b2(p− b) = b3 − pb2 + qb,

we get
r(b) = b3 − pb2 + qb.

Since
r ′(b) = 3b2 − 2pb+ q = (b− a)(b− c)≤ 0,

r(b) is strictly decreasing on [b1, b2], therefore r(b) is minimal only for b = b2,
when b = a, and is maximal only for b = b1, when b = c.

Second Solution. We will show that a ∈ [a1, a2], where

a1 =
p+

p

p2 − 3q
3

, a2 =
p+ 2

p

p2 − 3q
3

, a1 < a2.

From

0≤ (b− c)2 = (b+ c)2 − 4bc = (b+ c)2 + 4a(b+ c)− 4q

= (p− a)2 + 4a(p− a)− 4q = −3a2 + 2pa+ p2 − 4q,

we get a ≤ a2, with equality for b = c. Similarly, from

0≤ (a− b)(a− c) = a2 − 2a(b+ c) + q = a2 − 2a(p− a) + q = 3a2 − 2pa+ q,
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we get a ≥ a1, with equality for a = b. On the other hand, from

abc = a[q− a(b+ c)] = aq− a2(p− a) = a3 − pa2 + qa,

we get
r(a) = a3 − pa2 + qa.

Since
r ′(a) = 3a2 − 2pa+ q = (a− b)(a− c)≥ 0,

r(a) is strictly increasing on [a1, a2], and hence r(a) is minimal only for a = a1,
when a = b, and is maximal only for a = a2, when b = c.

Third Solution. We will show that c ∈ [c1, c2], where

c1 =
p− 2

p

p2 − 3q
3

, c2 =
p−

p

p2 − 3q
3

, c1 < c2.

From

0≤ (a− b)2 = (a+ b)2 − 4ab = (a+ b)2 + 4c(a+ b)− 4q

= (p− c)2 + 4c(p− c)− 4q = −3c2 + 2pc + p2 − 4q,

we get c ≥ c1, with equality for a = b. Similarly, from

0≤ (b− c)(a− c) = c2 − 2c(a+ b) + q = c2 − 2c(p− c) + q = 3c2 − 2pc + q ≥ 0,

we get c ≤ c2, with equality for b = c. On the other hand, from

abc = c[q− c(a+ b)] = cq− c2(p− c) = c3 − pc2 + qc,

we get
r(c) = c3 − pc2 + qc.

Since
r ′(c) = 3c2 − 2pc + q = (b− c)(a− c)≥ 0,

r(c) is strictly increasing on [c1, c2], and hence r(c) is minimal only for c = c1, when
a = b, and is maximal only for c = c2, when b = c.

Fourth Solution. From

(a− b)2(b− c)2(c − a)2 = −27r2 + 2(9pq− 2p3)r + p2q2 − 4q3 ≥ 0,

we get r ∈ [r1, r2], where

r1 =
9pq− 2p3 − 2(p2 − 3q)

p

p2 − 3q
27

,

r2 =
9pq− 2p3 + 2(p2 − 3q)

p

p2 − 3q
27

.
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Obviously, r attains its minimum and maximum only when two of a, b, c are equal;
that is, when either a = b or b = c. For a = b, from a+b+c = p and ab+bc+ca = q,
we get

a = b =
p+

p

p2 − 3q
3

, c =
p− 2

p

p2 − 3q
3

,

r =
(p+

p

p2 − 3q)2(p− 2
p

p2 − 3q)
27

= r1.

Similar, for b = c, we get

b = c =
p−

p

p2 − 3q
3

, a =
p+ 2

p

p2 − 3q
3

,

r =
(p−

p

p2 − 3q)2(p+ 2
p

p2 − 3q)
27

= r2.

Remark 1. The statement remains valid by replacing "fixed ab+ bc+ ca = q" with
"fixed a2+b2+c2 = p1". Thus, we can prove (by induction or contradiction method)
the following generalization:

• If a1, a2, . . . , an are real numbers such that a1 ≥ a2 ≥ · · · ≥ an and

a1 + a2 + · · ·+ an = p, a2
1 + a2

2 + · · ·+ a2
n = p1,

where p and p1 are fixed real numbers satisfying p2 ≤ np1, then the product

r = a1a2 · · · an

is minimal and maximal when n − 1 of a1, a2, . . . , an are equal, more precisely, it is
minimal when a1 = · · ·= an−1 ≥ an, and is maximal when a1 ≥ a2 = · · ·= an.

Assume, by the sake of contradiction, that the product r is minimal/maximal
when three of a1, a2, . . . , an are distinct, for example, when a1 < a2 < a3. According
to P 2.53, the product r can be increased/decreased by choosing some suitable
numbers b1, b2, b3 such that

b1 + b2 + b3 = a1 + a2 + a3, b2
1 + b2

2 + b2
3 = a2

1 + a2
2 + a2

3;

this is a contradiction.

Remark 2. Another extension is the following (Vasile Cîrtoaje, 2017):

• If a, b, c ∈ [m, M] such that a ≥ b ≥ c and

a+ b+ c = p, ab+ bc + ca = q,

where p and q are fixed real numbers satisfying p2 ≥ 3q, then the product

r = abc
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is minimal when a = b ≥ c or c = m, and maximal when a ≥ b = c or a = M.

As we have shown above, if a, b, c ∈ R, then

c ∈ [c1, c2], b ∈ [b1, b2], a ∈ [a1, a2];

more precisely, for p2 > 3q and u=
p

p2 − 3q, we have:

p− 2u
3

= c1 < c2 =
p− u

3
= b1 < b2 =

p+ u
3
= a1 < a2 =

p+ 2u
3

.

In addition, if a = b, then c = c1, b = b2, a = a1, and if b = c, then c = c2, b = b1,
a = a2.
On the other hand, if a, b, c ∈ [m, M], we have m≤ c1 or c1 ≤ m≤ c2, and M ≥ a2

or a1 ≤ M ≤ a2. Thus, we have

c ∈ [c′1, c2], c′1 =max{c1, m},

and
a ∈ [a1, a′2], a′2 =min{a2, M}.

According to Third Solution, the product r = abc is minimal for c = c′1, when
either c = c1 (a = b ≥ c) or c = m. Similarly, according to Second Solution, the
product r = abc is maximal for a = a′2, when either a = a2 (a ≥ b = c) or a = M .

Remark 3. The result in Remark 2 can be generalized as follows:

• If a1, a2, . . . , an ∈ [m, M] are real numbers such that a1 ≥ a2 ≥ · · · ≥ an and

a1 + a2 + · · ·+ an = p, a2
1 + a2

2 + · · ·+ a2
n = p1,

where p and p1 are fixed real numbers satisfying p2 ≤ np1, then the product

r = a1a2 · · · an

is minimal for a1 = · · · = an−1 ≥ an or an = m, and maximal for a1 ≥ a2 = · · · = an

or a1 = M.

Remark 4. The following result follows from P 2.52 and P 2.53:

• If a1, a2, . . . , an are real numbers such that

a1 + a2 + · · ·+ an = p, a2
1 + a2

2 + · · ·+ a2
n = p1,

where p and p1 are fixed real numbers satisfying p2 ≤ np1, then the product

a1a2 · · · an

is minimal and maximal only when the set (a1, a2, . . . , an) has at most two distinct
elements.
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We can prove this statement by the contradiction method. Thus, assume that
the product a1a2 · · · an is minimal (maximal) for a set (a1, a2, . . . , an) having three
distinct elements (let a1, a2, a3, with a1 6= 0 and a2 6= 0, be these elements).
If among the numbers a3, . . . , an there are i numbers (i ≥ 1) equal to zero (let
a3, . . . , ai+2 be these numbers), according to P 2.52, there exists a set (b1, b2, . . . , bi+2)
such that

b1+ b2+ · · ·+ bi+2 = a1+ a2+ · · ·+ ai+2, b2
1+ b2

2+ · · ·+ b2
i+2 = a2

1+ a2
2+ · · ·+ a2

i+2,

b1 b2 · · · bi+2 > 0,

and also a set (c1, c2, . . . , ci+2) such that

c1+ c2+ · · ·+ ci+2 = a1+ a2+ · · ·+ ai+2, c2
1 + c2

2 + · · ·+ c2
i+2 = a2

1 + a2
2 + · · ·+ a2

i+2,

c1c2 · · · ci+2 < 0.

Therefore, the set (a1, a2, . . . , an) is not minimal (maximal), which is a contradic-
tion. Assume now that all numbers a1, a2, . . . , an are nonzero. According to P 2.53,
since the numbers a1, a2, a3 are distinct, the product a1a2a3 is not minimal nor
maximal, therefore the product a1a2 · · · an is not minimal nor maximal, which is a
contradiction.

P 2.54. Let a, b, c be real numbers. Prove that

(a) for fixed
a+ b+ c = p, abc = r,

the sum
q = ab+ bc + ca

is maximal only when two of a, b, c are equal;

(b) for fixed
ab+ bc + ca = q, abc = r 6= 0,

the product
p1 = abc(a+ b+ c)

is maximal only when two of a, b, c are equal.
(Vasile Cîrtoaje, 2017)

First Solution. Assume that a ≥ b ≥ c.

(a) If b = 0, we have c ≤ 0 ≤ a, a + c = p and q = ac. From q = ac ≤ 0, it
follows that q is maximal when one of a and c is zero, therefore when two of a, b, c
are equal to zero. Consider now that b 6= 0. From

q = ac + b(a+ c) =
r
b
+ b(p− b),
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we get

q(b) =
r
b
+ pb− b2,

with

q′(b) =
−r
b2
+ p− 2b =

−(b− a)(b− c)
b

.

For b < 0 (that implies c < 0), we have q′(b) ≤ 0, q(b) is strictly decreasing,
q(b)≤ q(c), hence q(b) is maximal only for b = c < 0.

For b > 0 (that implies a > 0), we have q′(b) ≥ 0, q(b) is strictly increasing,
q(b)≤ q(a), hence q(b) is maximal only for b = a > 0.

(b) Similarly, we have

p1(b) = r
�

b+
q− ac

b

�

= r
�

b+
q
b
−

r
b2

�

,

with

p′1(b) = r
�

1−
q
b2
+

2r
b3

�

=
r(b− a)(b− c)

b2
.

If r > 0, then p′1(b) ≤ 0 and p1(b) is strictly decreasing. For b < 0 (which
involves c < 0 and a > 0), we have p1(b)≤ p1(c), hence p1(b) is maximal only for
b = c < 0, while for b > 0 (which involves a > 0 and c > 0), we have p1(b)≤ p1(c),
hence p1(b) is maximal only for b = c > 0.

If r < 0, then p′1(b)≥ 0 and p1(b) is strictly increasing. For b < 0 (which involves
c < 0 and a < 0), we have p1(b)≤ p1(a), hence p1(b) is maximal only for b = a <
0, while for b > 0 (which involves a > 0 and c < 0), we have p1(b)≤ p1(a), hence
p1(b) is maximal only for b = a > 0.

Second Solution. From

(a− b)2(b− c)2(c − a)2 = −27r2 + 2(9pq− 2p3)r + p2q2 − 4q3,

if follows
−27r2 + 2(9pq− 2p3)r + p2q2 − 4q3 ≥ 0,

with equality if and only if two of a, b, c are equal.

(a) Write the inequality (a− b)2(b− c)2(c − a)2 ≥ 0 as f (q)≥ 0, where

f (q) = −4q3 + p2q2 + 18prq− 4p3r − 27r2.

There two possible cases:

f (q) = −4(q− q1)(q− q2)(q− q3), q1 ≤ q2 ≤ q3,

or
f (q) = −4(q2 + bq+ c)(q− q3), b2 − 4c < 0.
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In both cases, the inequality f (q) ≥ 0 involves q ≤ q3. Therefore, the maximal
value of q is q3. Since f (q3) = 0, q is maximal when

(a− b)2(b− c)2(c − a)2 = 0,

therefore when two of a, b, c are equal.

(b) Write the inequality (a− b)2(b− c)2(c−a)2 ≥ 0 as f (x)≥ 0, where x = rp
and

f (x) = −4x3 + q2 x2 + 18qr2 x − 4q3r2 − 27r4.

Clearly, we have f (x) = 0 if and only if two of a, b, c are equal. There two possible
cases:

f (x) = −4(x − x1)(x − x2)(x − x3), x1 ≤ x2 ≤ x3,

or
f (x) = −4(x2 + bx + c)(x − x3), b2 − 4c < 0.

In both cases, the inequality f (x) ≥ 0 involves x ≤ x3. Therefore, the maximal
value of x is x3. Since f (x3) = 0, x is maximal when

(a− b)2(b− c)2(c − a)2 = 0,

therefore when two of a, b, c are equal.

Remark 1. The inequality in (b) follows immediately from the inequality in (a) by
replacing a, b and c with 1/a, 1/b and 1/c, respectively.

Remark 2. The statement (a) remains valid by replacing "sum q = ab + bc + ca
is maximal when two of a, b, c are equal" with "sum p1 = a2 + b2 + c2 is minimal
when two of a, b, c are equal". Thus, this statement can be generalized as follows:

• If a1, a2, . . . , an are real numbers such that

a1 + a2 + · · ·+ an = p, a1a2 · · · an = r,

where p and r are fixed real numbers, then the sum

p1 = a2
1 + a2

2 + · · ·+ a2
n

is minimal when n− 1 of a1, a2, . . . , an are equal.

P 2.55. Let a, b, c be real numbers such that a+ b+ c = 3. Prove that

(a) (ab+ bc + ca)2 ≥ 9abc;

(b) (ab+ bc + ca)2 + 9≥ 18abc;

(c) (ab+ bc + ca− 3)2 ≥ 27(abc − 1).
(Vasile Cîrtoaje, 2011)
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Solution. Let q = ab + bc + ca. According to P 2.53, for fixed q, the product abc
is maximal when two of a, b, c are equal. Therefore, it suffices to prove the desired
inequalities for b = c, when a+ 2b = 3.

The inequality (a) is equivalent to

(2ab+ b2)2 ≥ 9ab2,

b2(b− 1)2 ≥ 0.

The equality holds for a = b = c = 1, and also for a = 3 and b = c = 0 (or any
cyclic permutation).

The inequality (b) is equivalent to

(2ab+ b2 − 3)2 + 9≥ 18ab2,

(b− 1)2(b+ 1)2 ≥ 0.

The equality holds for a = b = c = 1, and also for a = 5 and b = c = −1 (or any
cyclic permutation).

The inequality (c) is equivalent to

(2ab+ b2 − 3)2 ≥ 27(ab2 − 1),

(b− 1)2(b+ 2)2 ≥ 0.

The equality holds for a = b = c = 1, and also for a = 7 and b = c = −2 (or any
cyclic permutation).

Remark 1. Another solution for the inequality (b) is the following. Using the
substitution

a = x + 1, b = y + 1, c = z + 1,

the inequality becomes

(x y + yz + zx)2 ≥ 12(x y + yz + zx) + 18x yz,

where x , y, z are real numbers such that

x + y + z = 0.

Assume that y and z have the same sign, hence yz ≥ 0. Substituting x by −y − z,
the inequality can be rewritten in the form

(y2 + yz + z2)2 + 12(y2 + yz + z2) + 18yz(y + z)≥ 0.

Since

y2 + yz + z2 ≥
3
4
(y + z)2 ≥ 3yz,
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it suffices to show that

9y2z2 + 9(y + z)2 + 18yz(y + z)≥ 0,

which is equivalent to
9(yz + y + z)2 ≥ 0.

Remark 2. Another solution for the inequality (c) is the following. Assume that
a =max{a, b, c}, a ≥ 1. Since

3− ab− bc − ca ≥ 3− a(b+ c)−
1
4
(b+ c)2 = 3− a(3− a)−

1
4
(3− a)2 =

3
4
(a− 1)2

and

abc − 1≤
1
4

a(b+ c)2 − 1=
1
4

a(3− a)2 − 1=
1
4
(a− 1)2(a− 4),

it suffices to prove that

9
16
(a− 1)4 ≥

27
4
(a− 1)2(a− 4),

which is equivalent to
(a− 1)2(a− 7)2 ≥ 0.

P 2.56. Let a, b, c be real numbers such that

ab+ bc + ca+ abc = 4.

Prove that

(a) if abc > 0, then

2(a+ b+ c) + ab+ bc + ca ≤
9

abc
;

(b) if abc < 0, then

2(a+ b+ c) + ab+ bc + ca ≥
9

abc
.

(Vasile Cîrtoaje, 2018)

Solution. We write both inequalities in the unique form

2abc(a+ b+ c) + abc(ab+ bc + ca)≤ 9.
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According to P 2.54-(b), for fixed ab+bc+ca and abc, the product abc(a+b+c) is
maximal when two of a, b, c are equal. Therefore, it suffices to prove the inequality
for b = c; that is, to show that

2ab2(a+ 2b+ 2ab+ b2)≤ 9

for 2ab+ b2 + ab2 = 4. Write this hypothesis as

(b+ 2)(b− 2+ ab) = 0.

For b = −2, the required inequality is equivalent to 8a2+3≥ 0, while for a =
2− b

b
,

it is equivalent to (b2 − 1)2 ≥ 0.
The inequality (a) is an equality for a = b = c = 1, while the inequality (b) is an

equality for a = −3 and b = c = −1 (or any cyclic permutation).

P 2.57. If a, b, c are real numbers such that

a+ b+ c + abc = 4,

then
a2 + b2 + c2 + 3≥ 2(ab+ bc + ca).

(Vasile Cîrtoaje, 2011)

First Solution. Write the inequality in the form

(a+ b+ c)2 + 3≥ 4(ab+ bc + ca).

According to P 2.54-(a), for fixed a+ b+c and abc, the sum ab+ bc+ca is maximal
when two of a, b, c are equal. Therefore, considering b = c, we need to show that
a+ 2b+ ab2 = 4 involves

a2 + 2b2 + 3≥ 2(2ab+ b2),

that is
a2 + 3≥ 4ab.

We have

a2 + 3− 4ab =
�

4− 2b
b2 + 1

�2

+ 3−
4b(4− 2b)

b2 + 1

=
11b4 − 16b3 + 18b2 − 32b+ 19

(b2 + 1)2
=
(b− 1)2(11b2 + 6b+ 19)

(b2 + 1)2
≥ 0.

The equality holds for a = b = c = 1.
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Second Solution. Without loss of generality, assume that a ≥ b ≥ c. The case a ≤ 0
is not possible, since it involves a+ b+ c + abc ≤ 0< 4. If a ≥ 0≥ b ≥ c, then

a2 + b2 + c2 + 3− 2(ab+ bc + ca)≥ a2 + (b− c)2 + 3> 0.

Also, if a ≥ b ≥ 0≥ c, then

a2 + b2 + c2 + 3− 2(ab+ bc + ca)≥ (a− b)2 + c2 + 3> 0.

Consider further that a, b, c ≥ 0 and denote

p = a+ b+ c, q = ab+ bc + ca, r = abc.

We need to show that
p2 + 3≥ 4q

for p+ r = 4. By Schur’s inequality of degree three, we have

p3 + 9r ≥ 4pq.

Therefore, we get

p(p2 + 3− 4q)≥ p3 + 3p− (p3 + 9r) = 12(p− 3).

To complete the proof, we need to show that p ≥ 3. By virtue of the AM-GM
inequality, we have

p3 ≥ 27r,

p3 ≥ 27(4− p),

(p− 3)(p2 + 3p+ 36)≥ 0,

p ≥ 3.

P 2.58. If a, b, c are real numbers such that

ab+ bc + ca = 3abc,

then
4(a2 + b2 + c2) + 9≥ 7(ab+ bc + ca).

(Vasile Cîrtoaje, 2011)
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Solution. If one of a, b, c is 0, then the inequality is trivial. Otherwise, write the
inequality in the homogeneous form

4(a2 + b2 + c2) +
81a2 b2c2

(ab+ bc + ca)2
≥ 7(ab+ bc + ca),

or
81r2 ≥ q2(15q− 4p2),

where
p = a+ b+ c, q = ab+ bc + ca, r = abc.

First Solution. For fixed p and q, r2 is minimal when r is either minimal (when
r ≥ 0) or maximal (when r ≤ 0). According to P 2.53, r is minimal and maximal
when two of a, b, c are equal. For a = b, the inequality becomes

(a− c)2(4a− c)2 ≥ 0.

The equality holds for a = b = c = 1, and for a = b = 2 and c = 1/2 (or any cyclic
permutation).

Second Solution (by Vo Quoc Ba Can). Consider the nontrivial case 15q−4p2 > 0.
Substituting a, b, c by |a|, |b|, |c|, respectively, the left side of the inequality remains
unchanged, while the right side remains unchanged or increases. Therefore, it
suffices to prove the inequality only for a, b, c > 0 and 15q−4p2 > 0. Assume that
a ≥ b ≥ c > 0. There are two cases to consider.

Case 1: 4b2 ≤ 3ab+ 3bc + ca. Since

4q2(15q− 4p2)≤
�

q2

b
+ b(15q− 4p2)

�2

,

it suffices to show that

18r ≥
q2

b
+ b(15q− 4p2),

which is equivalent to the obvious inequality

(a− b)(b− c)(3ab+ 3bc + ca− 4b2)≥ 0.

Case 2: 4b2 > 3ab+ 3bc + ca. Since

4q2(15q− 4p2)≤
�

q2

a
+ a(15q− 4p2)

�2

,

it suffices to show that

18r ≥
q2

a
+ a(15q− 4p2),

which is equivalent to

(a− b)(a− c)(4a2 − 3ab− bc − 3ca)≥ 0.
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This is true, since

4a2 − 3ab− bc − 3ca = (4b2 − 3ab− 3bc − ca) + 2(a− b)(2a+ 2b− c)> 0.

P 2.59. Let a, b, c ≤
6
5

be real numbers such that a2 + b2 + c2 = 4. If

k =
16(2+ 15

p
2)

125
≈ 2.97,

then
ab+ bc + ca+ k ≥ abc.

(Vasile Cîrtoaje, 2018)

Solution. According to Remark 2 from P 2.53, for a2+b2+c2 = 4 and ab+bc+ca =

constant, the product abc is maximal when a =
6
5

or a ≥ b = c. Therefore, it is

enough to consider these cases.

Case 1: a =
6
5

. We need to prove that if

b2 + c2 =
64
25

,

then
bc − 6(b+ c)≤ 5k.

We have

bc − 6(b+ c)≤
b2 + c2

2
+ 6

Æ

2(b2 + c2) =
32
25
+

48
p

2
5
= 5k.

Case 2: a ≥ b = c. We need to show that if

a2 + 2b2 = 4,

then
k ≥ (a− 1)b2 − 2ab.

For 0 > a ≥ b, the inequality is true since its right side is negative. Consider next
that a ≥ 0. We get the required inequality by adding the inequalities

32
125
≥ (a− 1)b2

and
48
p

2
25

≥ −2ab.
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The first inequality is true because, for the non-trivial case 1≤ a ≤
6
5

, we have we

have
64− 250(a− 1)b2 = 64− 125(a− 1)(4− a2)

= 564− 500a− 125a2 + 125a3 = (6− 5a)(94− 5a− 25a2)≥ 0.

The second inequality is true if

�

48
25

�2

≥ 2a2 b2.

Indeed, since 25a2 ≤ 36, we have
�

48
25

�2

− 2a2 b2 =
�

48
25

�2

− a2(4− a2)

=
2304− 2500a2 + 625a4

625
=
(36− 25a2)(64− 25a2)

625
≥ 0.

The equality occurs for a =
6
5

and b = c =
−4
p

2
5

(or any cyclic permutation).

P 2.60. Let f4(a, b, c) be a symmetric homogeneous polynomial of degree four. Prove
that the inequality f4(a, b, c) ≥ 0 holds for all real numbers a, b, c if and only if
f4(a, 1, 1)≥ 0 for all real a.

Solution. Let
p = a+ b+ c, q = ab+ bc + ca, r = abc.

Any symmetric homogeneous polynomial f4(a, b, c) can be written as

f4(a, b, c) = Apr + Bp4 + C p2q+ Dq2,

where A, B, C , D are real constants. For fixed p and q, the linear function

g(r) = Apr + Bp4 + C p2q+ Dq2

is minimal when r is either minimal or maximal. By P 2.53, r is minimal and
maximal when two of a, b, c are equal. Since f4(a, b, c) is symmetric, homogeneous
and satisfies f4(−a,−b,−c) = f4(a, b, c), it follows that the inequality f4(a, b, c)≥ 0
holds for all real numbers a, b, c if and only if f4(a, 1, 1)≥ 0 and f4(a, 0, 0)≥ 0 for
all real a. Notice that the condition " f4(a, 0, 0) ≥ 0 for all real a" is not necessary
because it follows from the condition " f4(a, 1, 1)≥ 0 for all real a" as follows:

f4(a, 0, 0) = lim
t→0

f4(a, t, t) = lim
t→0

t4 f4(a/t, 1, 1)≥ 0.
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Remark. Similarly, we can prove the following statement, which is valid for the
extended case where f4(a, b, c) is only a symmetric polynomial (homogeneous or
non-homogeneous).

• Let f4(a, b, c) be a symmetric polynomial function of degree n= 4. The inequality
f4(a, b, c) ≥ 0 holds for all real numbers a, b, c if and only if f4(a, b, b) ≥ 0 for all
real numbers a and b.

Notice that a function f (a, b, c) is symmetric if it is unchanged by any per-
mutation of its variables. A function f (a, b, c) is a polynomial function if it is a
polynomial in one variable when the other two variables are fixed. In addition, a
polynomial function f (a, b, c) is of degree n if f (a, a, a) is a polynomial of degree
n.

P 2.61. If a, b, c are real numbers, then

10(a4 + b4 + c4) + 64(a2 b2 + b2c2 + c2a2)≥ 33
∑

ab(a2 + b2).

(Vasile Cîrtoaje, 2008)

Solution. According to P 2.60, it suffices to prove the required inequality for b =
c = 1, when it becomes

5a4 − 33a3 + 64a2 − 33a+ 9≥ 0,

(a− 3)2(5a2 − 3a+ 1)≥ 0.

This is true since

5a2 − 3a+ 1= 5(a−
3
10
)2 +

11
20
> 0.

The equality holds for a/3= b = c (or any cyclic permutation).

P 2.62. If a, b, c are real numbers such that

a+ b+ c = 3,

then
3(a4 + b4 + c4) + 33≥ 14(a2 + b2 + c2).

(Vasile Cîrtoaje, 2009)
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First Solution. Write the inequality as F(a, b, c)≥ 0, where

F(a, b, c) = 3(a4 + b4 + c4) + 33− 14(a2 + b2 + c2).

Due to symmetry, we may assume that a ≤ b ≤ c. Let us denote

x =
b+ c

2
, x ≥ 1.

To prove the desired inequality, we use the mixing variables method. We will show
that

F(a, b, c)≥ F(a, x , x)≥ 0.

We have

F(a, b, c)− F(a, x , x) = 3(b4 + b4 − 2x4)− 14(b2 + c2 − 2x2)

= 3[(b2 + c2)2 − 4x4] + 6(x4 − b2c2)− 14(b2 + c2 − 2x2)

= (b2 + c2 − 2x2)[3(b2 + c2 + 2x2)− 14] + 6(x2 − bc)(x2 + bc).

Since

x2 − bc =
1
4
(b− c)2, b2 + c2 − 2x2 = 2(x2 − bc) =

1
2
(b− c)2,

we get

F(a, b, c)− F(a, x , x) =
1
2
(b− c)2[3(b2 + c2 + 2x2)− 14+ 3(x2 + bc)]

=
1
2
(b− c)2[3(x2 − bc) + 18x2 − 14]≥ 0.

Also,
F(a, x , x) = F(3− 2x , x , x) = 6(x − 1)2(3x − 5)2 ≥ 0.

This completes the proof. The equality holds for a = b = c = 1, and for a = −1/3
and b = c = 5/3 (or any cyclic permutation).

Second Solution. Write the inequality in the homogeneous form

81(a4 + b4 + c4) + 11(a+ b+ c)4 ≥ 42(a2 + b2 + c2)(a+ b+ c)2.

According to P 2.60, it suffices to prove this inequality for b = c = 1, when it
becomes

25a4 − 40a3 + 6a2 + 8a+ 1≥ 0,

(a− 1)2(5a+ 1)2 ≥ 0.
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P 2.63. If a, b, c are real numbers such that

a2 + b2 + c2 = 3,

then
a4 + b4 + c4 + 3(ab+ bc + ca)≤ 12.

Solution. Write the inequality in the homogeneous form

3(a4 + b4 + c4) + 3(ab+ bc + ca)(a2 + b2 + c2)≤ 4(a2 + b2 + c2)2.

According to P 2.60, it suffices to prove this inequality for b = c = 1, when it
becomes

a4 − 6a3 + 13a2 − 12a+ 4≥ 0,

(a− 1)2(a− 2)2 ≥ 0.

The equality holds for a = b = c = ±1, for a =
p

2 and b = c =
p

2/2 (or any cyclic
permutation), and for a = −

p
2 and b = c = −

p
2/2 (or any cyclic permutation).

P 2.64. Let α,β ,γ be real numbers such that

1+α+ β = 2γ.

The inequality
∑

a4 +α
∑

a2 b2 + βabc
∑

a ≥ γ
∑

ab(a2 + b2)

holds for any real numbers a, b, c if and only if

1+α≥ γ2.

(Vasile Cîrtoaje, 2009)

Solution. Let

f4(a, b, c) =
∑

a4 +α
∑

a2 b2 + βabc
∑

a− γ
∑

ab(a2 + b2.

According to P 2.60, the inequality f4(a, b, c)≥ 0 holds for any real numbers a, b, c
if and only if f4(a, 1, 1)≥ 0 for any real a. From

f4(a, 1, 1) = (a− 1)2[(a− γ+ 1)2 + 1+α− γ2],

the conclusion follows. The equality holds for a = b = c. In addition, if 1+α= γ2,

then the equality holds also for
a

γ− 1
= b = c (or any cyclic permutation).
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Remark. For γ= k+ 1 and α= k(k+ 2) (which involves 1+α= γ2) , we get
∑

a4 + k(k+ 2)
∑

a2 b2 + (1− k2)abc
∑

a ≥ (k+ 1)
∑

ab(a2 + b2), k ∈ R,

which is equivalent to the elegant inequality from P 2.50, namely
∑

(a− b)(a− c)(a− kb)(a− kc)≥ 0,

where the equality holds for a = b = c, and also for a/k = b = c (or any cyclic
permutation). In addition, for k = 0, we get Schur’s inequality of degree four

∑

a2(a− b)(a− c),

with equality for a = b = c, and also for a = 0 and b = c (or any cyclic permuta-
tion).

P 2.65. If a, b, c are real numbers such that

a2 + b2 + c2 = 2,

then

ab(a2 − ab+ b2 − c2) + bc(b2 − bc + c2 − a2) + ca(c2 − ca+ a2 − b2)≤ 1.

Solution. Write the inequality in the homogeneous form

(a2 + b2 + c2)2 ≥ 4
∑

ab(a2 − ab+ b2 − c2).

According to P 2.60, it suffices to prove this inequality for b = c = 1, when it can
be written as

a2(a− 4)2 ≥ 0.

The equality holds for

a2 + b2 + c2 = 2(ab+ bc + ca).

P 2.66. If a, b, c are real numbers, then

(a+ b)4 + (b+ c)4 + (c + a)4 ≥
4
7
(a4 + b4 + c4).

(Vietnam TST, 1996)
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Solution. Denote the left side of the inequality by f4(a, b, c). According to P 2.60,
it suffices to prove that f4(a, 1, 1)≥ 0 for all real a. Indeed,

f4(a, 1, 1) =
2
7
(5a4 + 28a3 + 42a2 + 28a+ 59)> 0

since, for the nontrivial case a < 0, we have

5a4 + 28a3 + 42a2 + 28a+ 59= (5a2 − 2a)(a+ 3)2 + 9(a+
23
9
)2 +

2
9
> 0.

The equality holds for a = b = c = 0.

P 2.67. Let a, b, c be real numbers. If

p = a+ b+ c, q = ab+ bc + ca, r = abc,

then

(3− p)r +
p2 + q2 − pq

3
≥ q.

(Vasile Cîrtoaje, 2011)

First Solution. Write the inequality as

(p2 − 3q) + (q2 − 3pr)≥ pq− 9r,

1
2

∑

(b− c)2 +
1
2

∑

a2(b− c)2 ≥
∑

a(b− c)2.

According to the AM-GM inequality, it suffices to prove that
r

�∑

(b− c)2
��∑

a2(b− c)2
�

≥
∑

a(b− c)2.

Clearly, this inequality follows immediately from the Cauchy-Schwarz inequality.
The equality holds for a = b = c, and for b = c = 1 (or any cyclic permutation).

Second Solution. Write the inequality as f4(a, b, c)≥ 0, where

f4(a, b, c) = 3(3− p)r + p2 + q2 − pq− 3q.

is a symmetric polynomial of degree four in a, b, c. According to Remark from the
proof of P 2.60, it suffices to prove that f4(a, b, b) ≥ 0 for all real numbers a and
b. Indeed, we have

f4(a, b, b) = (a− b)2(b− 1)2 ≥ 0.
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P 2.68. If a, b, c are real numbers, then

ab(a+ b) + bc(b+ c) + ca(c + a)
(a2 + 1)(b2 + 1)(c2 + 1)

≤
3
4

.

(Vasile Cîrtoaje, 2011)

First Solution. We try to get a stronger homogeneous inequality. According to the
AM-GM inequality, we have

(a2 + 1)(b2 + 1)(c2 + 1) = (a2 b2c2 + 1) + (a2 b2 + b2c2 + c2a2) + (a2 + b2 + c2)

≥ 2abc + 2
Æ

(a2 b2 + b2c2 + c2a2)(a2 + b2 + c2).

Therefore, it suffices to prove the homogeneous inequality

3abc + 3
Æ

(a2 b2 + b2c2 + c2a2)(a2 + b2 + c2)≥ 2
∑

ab(a+ b).

Using the identity
9(a2 + b2 + c2) =

∑

(2a+ 2b− c)2

together with the Cauchy-Schwarz inequality, we get

3
Æ

(a2 b2 + b2c2 + c2a2)(a2 + b2 + c2) =

=
r

�∑

a2 b2
��∑

(2a+ 2b− c)2
�

≥
∑

ab(2a+ 2b− c)

= 2
∑

ab(a+ b)− 3abc.

The equality holds for a = b = c = 1.

Second Solution. Write the inequality as

3(abc − 1)2 + f4(a, b, c)≥ 0,

where
f4(a, b, c) =

∑

a2 b2 +
∑

a2 + 2abc −
4
3

∑

ab(a+ b)

is a symmetric polynomial of degree four. Clearly, it suffices to prove that f4(a, b, c)≥
0. According to Remark from P 2.60, it suffices to prove that f4(a, b, b) ≥ 0 for all
real numbers a and b. Indeed, we have

3 f4(a, b, b) = (6b2 − 8b+ 3)a2 − 2b2a+ b2(3b2 − 8b+ 6)

= (6b2 − 8b+ 3)
�

a−
b2

6b2 − 8b+ 3

�2

+
18b2(b− 1)4

6b2 − 8b+ 3
≥ 0.

Remark. The inequality is equivalent to

3(abc − 1)2 +
∑

(a− 1)2(b− c)2 + (ab+ bc + ca− a− b− c)2 ≥ 0.
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P 2.69. If a, b, c are real numbers such that abc > 0, then
�

a+
1
a
− 1

��

b+
1
b
− 1

��

c +
1
c
− 1

�

+ 2≥
1
3
(a+ b+ c)

�

1
a
+

1
b
+

1
c

�

.

(Vasile Cîrtoaje, 2011)

Solution. Let
p = a+ b+ c, q = ab+ bc + ca, r = abc.

Multiplying by abc, we can rewrite the inequality as

r2 + (4− p− q)r + p2 + q2 −
4pq

3
− p− q+ 1≥ 0.

Since the equality holds for a = b = c = 1, when p = q = 3 and r = 1, we write
the inequality as

�

r − 1+
p− q

2

�2

+ f (p, q, r)≥ 0,

where

12 f (p, q, r) = 24(3− p)r + 9(p2 + q2)− 10pq− 24q

≥ 24(3− p)r + 8(p2 + q2 − pq)− 24q

Thus, it suffices to prove that f4(a, b, c)≥ 0 for all real a, b, c, where

f4(a, b, c) = 3(3− p)r + p2 + q2 − pq− 3q ≥ 0.

According to Remark from P 2.60, it suffices to prove that f4(a, b, b)≥ 0 for all real
numbers a and b. Indeed, we have

f4(a, b, b) = (b− 1)2(a− b)2 ≥ 0.

The equality holds for a = b = c = 1.

Remark. The inequalities in P 2.68 and P 2.69 are particular cases of the following
more general statement (Vasile Cîrtoaje, 2011).

• Let a, b, c be real numbers such that abc > 0. If

−2≤ k ≤ 1,

then
�

a+
1
a
+ k

��

b+
1
b
+ k

��

c +
1
c
+ k

�

+ (1− k)(2+ k)2 ≥

≥
1
3
(2+ k)2(a+ b+ c)

�

1
a
+

1
b
+

1
c

�

.
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P 2.70. If a, b, c are real numbers, then
�

a2 +
1
2

��

b2 +
1
2

��

c2 +
1
2

�

≥
�

a+ b−
1
2

��

b+ c −
1
2

��

c + a−
1
2

�

.

(Vasile Cîrtoaje, 2011)

Solution. It suffices to prove that f4(a, b, c)≥ 0, where

f4(a, b, c) =
∏

�

a2 +
1
2

�

−
∏

�

a+ b−
1
2

�

−
�

abc +
1
2
−

a+ b+ c
2

�2

is a symmetric polynomial of degree four. According to Remark from P 2.60, it
suffices to prove that f4(a, b, b)≥ 0 for all real a and b. Indeed, we have

2 f4(a, b, b) = [(2b− 1)a− b(2− b)]2 ≥ 0.

The equality holds for a = b = c = 1.

Remark. The inequality is equivalent to

(2abc + 1− a− b− c)2 + 2(ab+ bc + ca− a− b− c)2 ≥ 0.

P 2.71. If a, b, c are real numbers such that

a+ b+ c = 3,

then
a(a− 1)
8a2 + 9

+
b(b− 1)
8b2 + 9

+
c(c − 1)
8c2 + 9

≥ 0.

(Vasile Cîrtoaje, 2013)

Solution (by Michael Rozenberg). Write the inequality as follow

∑ pa(a− 1)
8a2 + 9

≥ 0, p > 0,

∑

�

pa(a− 1)
8a2 + 9

+ 1
�

≥ 3,

∑ (p+ 8)a2 − pa+ 9
8a2 + 9

≥ 3.

Choosing p = 18+ 6
p

17, the inequality can be written as

∑ (ka− 3)2

8a2 + 9
≥ 3, k = 3+

p

17.
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Let m be a real constant. According to the Cauchy-Schwarz inequality, we have

∑ (ka− 3)2

8a2 + 9
≥

�∑

(ka− 3)(ma+ 3)
�2

∑

(ma+ 3)2(8a2 + 9)
,

with equality for

ka− 3
(8a2 + 9)(ma+ 3)

=
kb− 3

(8b2 + 9)(mb+ 3)
=

kc − 3
(8c2 + 9)(mc + 3)

. (*)

On the other hand, we can check that the original inequality becomes an equality for
a = b = c, and also for a = 3/2 and b = c = 3/4 (or any cyclic permutation). It is
easy to get that the equality conditions (*) are satisfied for a = 3/2 and b = c = 3/4
if and only if m= k. For this value of m, it suffices to show that

�∑

(ka− 3)(ka+ 3)
�2

∑

(ka+ 3)2(8a2 + 9)
≥ 3,

�∑

(k2a2 − 9)
�2
≥ 3

∑

(ka+ 3)2(8a2 + 9),

[k2(a2 + b2 + c2)− 27]2 ≥ 3
∑

(ka+ 3)2(8a2 + 9).

Write this inequality in the homogeneous form f4(a, b, c)≥ 0, where

f4(a, b, c) = [k2(a2 + b2 + c2)− 3(a+ b+ c)2]2

−3
∑

(ka+ a+ b+ c)2[8a2 + (a+ b+ c)2].

According to P 2.60, it suffices to prove that f4(a, 1, 1) ≥ 0 for all real a. Indeed,
this inequality is equivalent to

(a− 1)2(a− 2)2 ≥ 0.

P 2.72. If a, b, c are real numbers such that

a+ b+ c = 3,

then
(a− 11)(a− 1)

2a2 + 1
+
(b− 11)(b− 1)

2b2 + 1
+
(c − 11)(c − 1)

2c2 + 1
≥ 0.

(Vasile Cîrtoaje, 2013)
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Solution. Write the inequality as

∑

�

(a− 11)(a− 1)
2a2 + 1

+ 1
�

≥ 3,

∑ (a− 2)2

2a2 + 1
≥ 1.

According to the Cauchy-Schwarz inequality, we have

∑ (a− 2)2

2a2 + 1
≥

�∑

(a− 2)2
�2

∑

(a− 2)2(2a2 + 1)
.

Therefore, it suffices to show that
�∑

(a− 2)2
�2
≥
∑

(a− 2)2(2a2 + 1),

(a2 + b2 + c2)2 ≥ 2
∑

a4 − 8
∑

a3 + 9
∑

a2 − 4
∑

a+ 12.

Write this inequality in the homogeneous form f4(a, b, c)≥ 0, where

f4(a, b, c) = 3(a2 + b2 + c2)2 − 6
∑

a4 + 8
�∑

a3
��∑

a
�

− 3
�∑

a2
��∑

a
�2

= 2
�∑

a4 +
∑

ab(a2 + b2)− 3abc
∑

a
�

.

According to P 2.60, it suffices to prove that f4(a, 1, 1)≥ 0 for all real a. Indeed,

f4(a, 1, 1) = 2(a− 1)2(a+ 2)2 ≥ 0.

The equality holds for a = b = c = 1.

P 2.73. If a, b, c are real numbers, then

(a2 + 2)(b2 + 2)(c2 + 2)≥ 9(ab+ bc + ca).

(Vasile Cîrtoaje, 1994)

Solution. We will prove the sharper inequality f4(a, b, c)≥ 0, where

f4(a, b, c) = (a2 + 2)(b2 + 2)(c2 + 2)− 9(ab+ bc + ca)−
�

abc −
a+ b+ c

3

�2

.

Since f4(a, b, c) is a symmetric polynomial of degree four, according to Remark
from P 2.60, it suffices to prove that f4(a, b, b) ≥ 0 for all real numbers a and b.
For fixed b, this inequality is equivalent to f (a)≥ 0, where

f (a) = 7(6b2 + 5)a2 + 2b(6b2 − 83)a+ 18b4 − 13b2 + 72.
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It is true for all real a if and only if

7(6b2 + 5)(18b4 − 13b2 + 72)≥ b2(6b2 − 83)2.

Indeed, we have

7(6b2 + 5)(18b4 − 13b2 + 72)− b2(6b2 − 83)2 = 360(b2 − 1)2(2b2 + 7)≥ 0.

The equality holds for a = b = c = 1.

Remark. A sharper inequality for all real a, b, c is the following:

(a2 + 2)(b2 + 2)(c2 + 2)≥ 3(a+ b+ c)2 +
4
9

�

(a− b)2 + (b− c)2 + (c − a)2
�

,

with equality for a = b = c = 1.
The proof is similar, and the final inequality of the proof has the form

b2(b2 − 1)2 ≥ 0.

P 2.74. If a, b, c are real numbers such that

ab+ bc + ca = 3,

then
4(a4 + b4 + c4) + 11abc(a+ b+ c)≥ 45.

(Vasile Cîrtoaje, 2014)

Solution. Write the inequality in the homogeneous form

4(a4 + b4 + c4) + 11abc(a+ b+ c)≥ 5(ab+ bc + ca)2.

It suffices to prove that there exists a positive number k such that f4(a, b, c) ≥ 0,
where

f4(a, b, c) =4(a4 + b4 + c4) + 11abc(a+ b+ c)− 5(ab+ bc + ca)2

− k(ab+ bc + ca)(a2 + b2 + c2 − ab− bc − ca).

According to P 2.60, the inequality f4(a, b, c) ≥ 0 holds for all real a, b, c if and
only if f4(a, 1, 1)≥ 0 for all real a. We have

f4(a, 1, 1) = (a− 1)2(2a+ 1)(2a+ 3)− k(2a+ 1)(a− 1)2

= (a− 1)2(2a+ 1)(2a+ 3− k).

Setting k = 2, we get

f4(a, 1, 1) = (a− 1)2(2a+ 1)2 ≥ 0.

The equality holds for a = b = c = ±1.
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P 2.75. Any sixth degree symmetric homogeneous polynomial f6(a, b, c) can be writ-
ten in the form

f6(a, b, c) = Ar2 + B(p, q)r + C(p, q),

where A is called the highest coefficient of f6, and

p = a+ b+ c, q = ab+ bc + ca, r = abc.

In the case A≤ 0, prove that the inequality f6(a, b, c) ≥ 0 holds for all real numbers
a, b, c if and only if f6(a, 1, 1)≥ 0 for all real a.

(Vasile Cîrtoaje, 2006)

Solution. For A≤ 0 and fixed p and q,

g(r) = Ar2 + B(p, q)r + C(p, q)

is a concave quadratic function of r. Therefore, g(r) is minimal when r is min-
imal or maximal. By P 2.53, r is minimal and maximal when two of a, b, c are
equal. Since f6(a, b, c) is symmetric, homogeneous and satisfies f6(−a,−b,−c) =
f6(a, b, c), it follows that the inequality f6(a, b, c) ≥ 0 holds for all real numbers
a, b, c if and only if f6(a, 1, 1) ≥ 0 and f6(a, 0, 0) ≥ 0 for all real a. Notice that the
condition " f6(a, 0, 0)≥ 0 for all real a" is not necessary because it follows from the
condition " f6(a, 1, 1)≥ 0 for all real a" as follows:

f6(a, 0, 0) = lim
t→0

f6(a, t, t) = lim
t→0

t6 f6(a/t, 1, 1)≥ 0.

Remark 1. A symmetric homogeneous polynomial of degree six in three variables
has the form

(A) f6(a, b, c) = A1

∑

a6 + A2

∑

ab(a4 + b4) + A3

∑

a2 b2(a2 + b2)

+A4

∑

a3 b3 + A5abc
∑

a3 + A6abc
∑

ab(a+ b) + 3A7a2 b2c2,

where A1, . . . , A7 are real constants. In order to write this polynomial as a function
of p, q and r, we can use the following relations:

∑

a3 = 3r + p3 − 3pq,
∑

ab(a+ b) = −3r + pq,
∑

a3 b3 = 3r2 − 3pqr + q3,
∑

a2 b2(a2 + b2) = −3r2 − 2(p3 − 2pq)r + p2q2 − 2q3,
∑

ab(a4 + b4) = −3r2 − 2(p3 − 7pq)r + p4q− 4p2q2 + 2q3,
∑

a6 = 3r2 + 6(p3 − 2pq)r + p6 − 6p4q+ 9p2q2 − 2q3.
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According to these relations, the highest coefficient A of the polynomial f6(a, b, c)
has the expression

(B) A= 3(A1 − A2 − A3 + A4 + A5 − A6 + A7).

Remark 2. The polynomial

P1(a, b, c) =
∑

(A1a2 + A2 bc)(B1a2 + B2 bc)(C1a2 + C2 bc)

has the highest coefficient

A= 3(A1 + A2)(B1 + B2)(C1 + C2) = P1(1, 1,1).

Indeed, since

P1(a, b, c) =A1B1C1

∑

a6 + A2B2C2

∑

b3c3 +
�∑

A1B1C2

�

abc
∑

a3

+ 3
�∑

A1B2C2

�

a2 b2c2,

we have

A= 3A1B1C1 + 3A2B2C2 + 3
∑

A1B1C2 + 3
∑

A1B2C2

= 3(A1 + A2)(B1 + B2)(C1 + C2).

Similarly, we can show that the polynomial

P2(a, b, c) =
∑

(A1a2 + A2 bc)(B1 b2 + B2ca)(C1c2 + C2ab)

has the highest coefficient

A= 3(A1 + A2)(B1 + B2)(C1 + C2) = P2(1, 1,1),

and the polynomial

P3(a, b, c) =
∏

(A1a2 + A2 bc) = (A1a2 + A2 bc)(A1 b2 + A2ca)(A1c2 + A2ab)

has the highest coefficient

A= (A1 + A2)
3 = P3(1,1, 1).

The polynomial
P4(a, b, c) =

∏

(a2 +mab+ b2)

has the highest coefficient
A= (m− 1)3.

Indeed, since
∏

(a2 +mab+ b2) =
∏

(p2 − 2q− c2 +mab),
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P4(a, b, c) has the same highest coefficient as R3(a, b, c) =
∏

(−c2 +mab); that is,

A= R3(1, 1,1) = (−1+m)3.

As a consequence,

P5(a, b, c) = (a− b)2(b− c)2(c − a)2 =
∏

(a2 − 2ab+ b2)

has the highest coefficient

A= (−2− 1)2 = −27.

Remark 3. We can extend the statement in P 2.75 as follows:

• Let f6(a, b, c) be a sixth degree symmetric homogeneous polynomial having
the highest coefficient A≤ 0, and let k1, k2 be two fixed real numbers. The inequality
f6(a, b, c)≥ 0 holds for all real numbers a, b, c satisfying

k1(a+ b+ c)2 + k2(ab+ bc + ca)≥ 0,

if and only if f6(a, 1, 1)≥ 0 for all real a satisfying k1(a+ 2)2 + k2(2a+ 1)≥ 0.

Notice that the condition " f6(a, 0, 0) ≥ 0 for all real a satisfying k1a2 ≥ 0" is
not necessary because it follows from the condition " f6(a, 1, 1) ≥ 0 for all real a
satisfying k1(a + 2)2 + k2(2a + 1) ≥ 0". Indeed, for the non-trivial case k1 ≥ 0,
when the condition " f6(a, 0, 0) ≥ 0 for all real a satisfying k1a2 ≥ 0" becomes
" f6(a, 0, 0)≥ 0 for all real a", we have

f6(a, 0, 0) = lim
t→0

f6(a, t, t) = lim
t→0

t6 f6(a/t, 1, 1)≥ 0.

Remark 4. The statement in P 2.75 and its extension in Remark 3 are also valid
in the more general case when f6(a, b, c) is a symmetric homogeneous function of
the form

f6(a, b, c) = Ar2 + B(p, q)r + C(p, q),

where B(p, q) and C(p, q) are rational functions.

P 2.76. If a, b, c are real numbers such that

ab+ bc + ca = −1,

then

(a) 5(a2 + b2)(b2 + c2)(c2 + a2)≥ 8;

(b) (a2 + ab+ b2)(b2 + bc + c2)(c2 + ca+ a2)≥ 1.

(Vasile Cîrtoaje, 2011)
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Solution. We use the highest coefficient method (see P 2.75). Let

p = a+ b+ c, q = ab+ bc + ca.

(a) Write the inequality in the homogeneous form f6(a, b, c)≥ 0, where

f6(a, b, c) = 5(a2 + b2)(b2 + c2)(c2 + a2) + 8(ab+ bc + ca)3.

From
∏

(b2 + c2) =
∏

(p2 − 2q− a2),

it follows that f6(a, b, c) has the highest coefficient A = −5. Then, by P 2.75, it
suffices to prove that f6(a, 1, 1)≥ 0 for all real a. Indeed, we have

f6(a, 1, 1) = 2(a+ 3)2(5a2 + 2a+ 1)≥ 0.

The homogeneous inequality
f6(a, b, c)≥ 0

is an equality for −a/3 = b = c (or any cyclic permutation), and for b = c = 0
(or any cyclic permutation). The original inequality becomes an equality for a =
−3/
p

5 and b = c = 1/
p

5 (or any cyclic permutation), and for a = 3/
p

5 and
b = c = −1/

p
5 (or any cyclic permutation).

(b) Write the inequality in the homogeneous form f6(a, b, c)≥ 0, where

f6(a, b, c) =
∏

(b2 + bc + c2) + (ab+ bc + ca)3.

According to Remark 2 from P 2.75, f6(a, b, c) has the highest coefficient

A= (1− 1)3 = 0.

Then, by P 2.75, it suffices to prove that f6(a, 1, 1) ≥ 0 for all real a. Indeed, we
have

f6(a, 1, 1) = (a+ 2)2(3a2 + 2a+ 1)≥ 0.

The homogeneous inequality f6(a, b, c)≥ 0 is an equality when a+ b+ c = 0, and
when b = c = 0 (or any cyclic permutation). The original inequality becomes an
equality for

ab+ bc + ca = −1, a+ b+ c = 0.

Remark. As we have shown in the proof of P 2.34,
∏

(b2 + bc + c2) = (p2 − q)q2 − p3abc.

Therefore,

f6(a, b, c) = p2(q2 − pabc) =
1
2

p2
∑

a2(b− c)2 ≥ 0.
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P 2.77. If a, b, c are real numbers, then

(a)
∑

a2(a− b)(a− c)(a+ 2b)(a+ 2c) + (a− b)2(b− c)2(c − a)2 ≥ 0;

(b)
∑

a2(a− b)(a− c)(a− 4b)(a− 4c) + 7(a− b)2(b− c)2(c − a)2 ≥ 0.

(Vasile Cîrtoaje, 2008)

Solution. Consider the more general inequality f6(a, b, c)≥ 0, where

f6(a, b, c) = f (a, b, c) +m(a− b)2(b− c)2(c − a)2,

f (a, b, c) =
∑

a2(a− b)(a− c)(a− kb)(a− kc).

Since

f (a, b, c) =
∑

a2(a2 + 2bc − q)[a2 + (k+ k2)bc − kq], q = ab+ bc + ca,

f (a, b, c) has the same highest coefficient as P1(a, b, c), where

P1(a, b, c) =
∑

a2(a2 + 2bc)[a2 + (k+ k2)bc].

According to Remark 2 from P 2.75, f6(a, b, c) has the highest coefficient

A= P1(1,1, 1)− 27m= 9(k2 + k+ 1− 3m).

(a) For k = −2 and m= 1, we get A= 0. Then, by P 2.75, it suffices to prove the
original inequality for b = c = 1; that is,

a2(a− 1)2(a+ 2)2 ≥ 0.

The equality holds for a = b = c, for a+ b+ c = 0, and for a = 0 and b = c (or any
cyclic permutation).

(b) For k = 4 and m = 7, we get A= 0. Then, by P 2.75, it suffices to prove the
original inequality for b = c = 1; that is,

a2(a− 1)2(a− 4)2 ≥ 0.

The equality holds for a = b = c, and for a2 + b2 + c2 = 2(ab+ bc + ca).

Remark. The inequalities in P 2.77 are respectively equivalent to

�∑

a
�2 �∑

a4 + abc
∑

a−
∑

ab(a2 + b2)
�

≥ 0

and
�∑

a2 −
∑

ab
��∑

a2 − 2
∑

ab
�2
≥ 0.
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P 2.78. If a, b, c are real numbers, then

(a2 + 2bc)(b2 + 2ca)(c2 + 2ab) + (a− b)2(b− c)2(c − a)2 ≥ 0.

(Vasile Cîrtoaje, 2011)

First Solution (by Vo Quoc Ba Can). Without loss of generality, assume that b and
c have the same sign. Since a2 + 2bc ≥ 0 and

(a− b)2(a− c)2 =
1
4
[(a2 + 2bc) + (a2 − 2ab− 2ac)]2

≥ (a2 + 2bc)(a2 − 2ab− 2ac),

it suffices to prove that

(b2 + 2ca)(c2 + 2ab) + (b− c)2(a2 − 2ab− 2ac)≥ 0.

This inequality is equivalent to

(b+ c)2a2 + 2bc(b+ c)a+ b2c2 ≥ 0,

[(b+ c)a+ bc]2 ≥ 0.

which is clearly true. The equality holds for ab+ bc + ca = 0.

Second Solution. Denote the left side of the inequality by f6(a, b, c). According to
Remark 2 from P 2.75, f6(a, b, c) has the highest coefficient

A= (1+ 2)3 − 27= 0.

Then, by P 2.75, it suffices to prove that f6(a, 1, 1)≥ 0 for all real a. Indeed,

f6(a, 1, 1) = (a2 + 2)(2a+ 1)2 ≥ 0.

Remark 1. The inequality is equivalent to

(a2 + b2 + c2)(ab+ bc + ca)2 ≥ 0.

Remark 2. The inequality in P 2.78 is a particular case of the following more
general statement.
• If a, b, c are real numbers and

αk =















9k2(k2 − k+ 1)
4(k+ 1)3

, 1≤ k ≤ 2

k2

4
, k ≥ 2

,

then
(a2 + kbc)(b2 + kca)(c2 + kab) +αk(a− b)2(b− c)2(c − a)2 ≥ 0,

with equality for −ka = b = c (or any cyclic permutation), and also for b = c = 0
(or any cyclic permutation).
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P 2.79. If a, b, c are real numbers, then

(2a2+5ab+2b2)(2b2+5bc+2c2)(2c2+5ca+2a2)+ (a− b)2(b− c)2(c− a)2 ≥ 0.

(Vasile Cîrtoaje, 2011)

Solution. Denote the left side of the inequality by f6(a, b, c). Clearly, f6(a, b, c) has
the same highest coefficient as

(5ab− 2c2)(5bc − 2a2)(5ca− 2b2) + (a− b)2(b− c)2(c − a)2.

According to Remark 2 from P 2.75, f6(a, b, c) has the highest coefficient

A= (5− 2)3 − 27= 0.

Then, by P 2.75, it suffices to prove that f6(a, 1, 1)≥ 0 for all real a. Indeed,

f6(a, 1, 1) = 9(2a2 + 5a+ 2)2 ≥ 0.

The equality holds for a+ b+ c = 0, and also for ab+ bc + ca = 0.

Remark 1. The inequality in P 2.79 is equivalent to

(a+ b+ c)2(ab+ bc + ca)2 ≥ 0.

Remark 2. The following more general statement holds.

• Let a, b, c be real numbers. If k > −2, then

4
∏

(b2 + kbc + c2)≥ (2− k)(a− b)2(b− c)2(c − a)2.

Notice that this inequality is equivalent to

(k+ 2)[(a+ b+ c)(ab+ bc + ca)− (5− 2k)abc]2 ≥ 0.

P 2.80. If a, b, c are real numbers, then
�

a2 +
2
3

ab+ b2
��

b2 +
2
3

bc + c2
��

c2 +
2
3

ca+ a2
�

≥
64
27
(a2+bc)(b2+ca)(c2+ab).

Solution. Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) = P4(a, b, c)−
64
27

P3(a, b, c),

P4(a, b, c) =
�

a2 +
2
3

ab+ b2
��

b2 +
2
3

bc + c2
��

c2 +
2
3

ca+ a2
�

,
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P3(a, b, c) = (a2 + bc)(b2 + ca)(c2 + ab).

According to Remark 2 from P 2.75, f6(a, b, c) has the highest coefficient

A=
�

2
3
− 1

�3

−
64
27
(1+ 1)3 < 0.

Then, by P 2.75, it suffices to prove that f6(a, 1, 1)≥ 0 for all real a. Indeed,

f6(a, 1, 1) =
8
3

�

a2 +
2
3

a+ 1
�2

−
64
27
(a2 + 1)(a+ 1)2 =

8
27
(a− 1)4 ≥ 0.

The equality holds for a = b = c.

P 2.81. If a, b, c are real numbers, then

∑

a2(a− b)(a− c)≥
2(a− b)2(b− c)2(c − a)2

a2 + b2 + c2
.

Solution. Let
p = a+ b+ c, q = ab+ bc + ca, r = abc

and

f6(a, b, c) = (a2 + b2 + c2)
∑

a2(a− b)(a− c)− 2(a− b)2(b− c)2(c − a)2.

Clearly, f6(a, b, c) has the highest coefficient

A= −2(−27) = 54.

Since A > 0, we will use the highest coefficient cancellation method. It is easy to
check that

f6(1, 1,1) = 0, f6(0, 1,1) = 0.

Therefore, we define the symmetric homogeneous polynomial of degree three

P(a, b, c) = r + Bp3 + C pq

such that
P(1,1, 1) = 0, P(0,1, 1) = 0;

that is,

P(a, b, c) = r +
1
9

p3 −
4
9

pq.

We will prove the sharper inequality g6(a, b, c)≥ 0, where

g6(a, b, c) = f6(a, b, c)− 54P2(a, b, c).
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Since g6(a, b, c) has the highest coefficient A1 = 0, it suffices to show that g6(a, 1, 1)≥
0 for all real a (see P 2.75). Indeed, we have

f6(a, 1, 1) = a2(a2 + 2)(a− 1)2, P(a, 1, 1) =
1
9

a(a− 1)2,

hence

g6(a, 1, 1) = f6(a, 1, 1)− 54P2(a, 1, 1) =
1
3

a2(a− 1)2(a+ 2)2 ≥ 0.

The equality holds for a = b = c, for a = 0 and b = c (or any cyclic permutation),
and also for a = 0 and b+ c = 0 (or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization (Vasile
Cîrtoaje, 2014).

• Let a, b, c be real numbers. If k ∈ [−1,2), then

∑

a2(a− b)(a− c)≥
(2− k)(a− b)2(b− c)2(c − a)2

a2 + b2 + b2 + k(ab+ bc + ca)
,

with equality for a = b = c, and also for a = 0 and b2 = c2 (or any cyclic permutation).

P 2.82. If a, b, c are real numbers, then

∑

(a− b)(a− c)(a− 2b)(a− 2c)≥
8(a− b)2(b− c)2(c − a)2

a2 + b2 + c2
.

Solution. Let

f6(a, b, c) =(a2 + b2 + c2)
∑

(a− b)(a− c)(a− 2b)(a− 2c)

− 8(a− b)2(b− c)2(c − a)2.

Clearly, f6(a, b, c) has the highest coefficient

A= (−8)(−27) = 216.

Since A> 0, we will use the highest coefficient cancellation method. Since

f6(1,1, 1) = 0, f6(2, 1,1) = 0,

we define the symmetric homogeneous polynomial of degree three

P(a, b, c) = abc + B(a+ b+ c)3 + C(a+ b+ c)(ab+ bc + ca)
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such that
P(1,1, 1) = 0, P(2,1, 1) = 0.

We get B = 1/18 and C = −5/18, hence

P(a, b, c) = abc +
1

18
(a+ b+ c)3 −

5
18
(a+ b+ c)(ab+ bc + ca).

Consider now the sharper inequality g6(a, b, c)≥ 0, where

g6(a, b, c) = f6(a, b, c)− 216P2(a, b, c).

Clearly, g6(a, b, c) has the highest coefficient A1 = 0. By P 2.75, it suffices to prove
that g6(a, 1, 1)≥ 0 for all real a. We have

f6(a, 1, 1) = (a2 + 2)(a− 1)2(a− 2)2, P(a, 1, 1) =
1

18
(a− 1)2(a− 2),

hence

g6(a, 1, 1) = f6(a, 1, 1)− 216P2(a, 1, 1) =
1
3
(a− 1)2(a2 − 4)2 ≥ 0.

The equality holds for a = b = c, for a = 0 and b+c = 0 (or any cyclic permutation),
and also for a/2= b = c (or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization (Vasile
Cîrtoaje, 2014).

• Let a, b, c be real numbers. If k ∈ R, then

∑

(a− b)(a− c)(a− kb)(a− kc)≥
(k+ 2)2(a− b)2(b− c)2(c − a)2

2(a2 + b2 + c2)
,

with equality for a = b = c, for a/k = b = c (or any cyclic permutation) if k 6= 0,
and for a = 0 and b+ c = 0 (or any cyclic permutation).

P 2.83. If a, b, c are real numbers, no two of which are zero, then

a2 + 3bc
b2 + c2

+
b2 + 3ca
c2 + a2

+
c2 + 3ab
a2 + b2

≥ 0.

(Vasile Cîrtoaje, 2014)

Solution. Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) =
∑

(a2 + 3bc)(a2 + b2)(a2 + c2).
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Let
p = a+ b+ c, q = ab+ bc + ca, r = abc.

From
f6(a, b, c) =

∑

(a2 + 3bc)(p2 − 2q− c2)(p2 − 2q− b2),

it follows that f6(a, b, c) has the same highest coefficient A as f (a, b, c), where

f (a, b, c) =
∑

(a2 + 3bc)b2c2 = 3r2 + 3
∑

b3c3 = 12r2 − 9pqr + 3q3;

that is,
A= 12.

Since A > 0, we will use the highest coefficient cancellation method. It is easy to
check that

f6(−1,1, 1) = 0.

So, we define the homogeneous polynomial

P(a, b, c) = r + Bp3 + (B − 1)pq,

which satisfies the property P(−1, 1,1) = 0. We will show that there is at least a
real value of B such that the following sharper inequality holds

f6(a, b, c)≥ 12P2(a, b, c).

Let us denote
g6(a, b, c) = f6(a, b, c)− 12P2(a, b, c).

Clearly, g6(a, b, c) has the highest coefficient A1 = 0. By P 2.75, it suffices to prove
that g6(a, 1, 1)≥ 0 for all real a. We have

f6(a, 1, 1) = (a+ 1)2(a2 + 1)(a2 − 2a+ 7)

and
P(a, 1, 1) = (a+ 1)[B(a+ 2)(a+ 5)− 2(a+ 1)],

hence
g6(a, 1, 1) = f6(a, 1, 1)− 12P2(a, 1, 1) = (a+ 1)2 g(a),

where

g(a) = (a2 + 1)(a2 − 2a+ 7)− 12[B(a+ 2)(a+ 5)− 2(a+ 1)]2.

Choosing B = 1/4, we get

4g(a) = a2(a− 1)2 + 4(4a2 + a+ 4)> 0,

hence g6(a, 1, 1) ≥ 0 for all real a. The proof is completed. The equality holds for
−a = b = c (or any cyclic permutation).
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P 2.84. If a, b, c are real numbers, no two of which are zero, then

a2 + 6bc
b2 − bc + c2

+
b2 + 6ca

c2 − ca+ a2
+

c2 + 6ab
a2 − ab+ b2

≥ 0.

(Vasile Cîrtoaje, 2014)

Solution. Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) =
∑

(a2 + 6bc)(a2 − ab+ b2)(a2 − ac + c2).

Let
p = a+ b+ c, q = ab+ bc + ca, r = abc.

From

f6(a, b, c) =
∑

(a2 + 6bc)(p2 − 2q− c2 − ab)(p2 − 2q− b2 − ac),

it follows that f6(a, b, c) has the same highest coefficient A as f (a, b, c), where

f (a, b, c) =
∑

(a2 + 6bc)(b2 + ca)(c2 + ab);

that is, according to Remark 2 from P 2.75,

A= f (1, 1,1) = 84.

Since A > 0, we use the highest coefficient cancellation method. We will show that
there are two real numbers B and C such that the following sharper inequality holds

f6(a, b, c)≥ 84P2(a, b, c),

where
P(a, b, c) = r + Bp3 + C pq.

Let us denote
g6(a, b, c) = f6(a, b, c)− 84P2(a, b, c).

Clearly, g6(a, b, c) has the highest coefficient equal to zero. Then, it suffices to
prove that g6(a, 1, 1)≥ 0 for all real a. We have

g6(a, 1, 1) = f6(a, 1, 1)− 84P2(a, 1, 1),

where
f6(a, 1, 1) = (a2 − a+ 1)(a2 + a+ 1)(a2 − 2a+ 8)

and
P(a, 1, 1) = a+ B(a+ 2)3 + C(a+ 2)(2a+ 1).

Let
g(a) = g6(a, 1, 1).
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Since g(−2) = 0, we can have g(a)≥ 0 in the vicinity of a = −2 only if g ′(−2) = 0,
which involves C = −61/168. On the other hand, from g(1) = 0, we get B =
155/1512. Using these values of B and C , the inequality g6(a, 1, 1) ≥ 0 is equiva-
lent to

27216(a2 − a+ 1)(a2 + a+ 1)(a2 − 2a+ 8)≥

≥
�

155(a+ 2)3 − 549(a+ 2)(2a+ 1) + 1512a
�2

;

that is,
(a+ 2)2(a− 1)2(3191a2 − 8734a+ 49391)≥ 0,

which is true for all real a. The proof is completed. The equality holds for a =
b+ c = 0 (or any cyclic permutation).

P 2.85. If a, b, c are real numbers such that

ab+ bc + ca ≥ 0,

then
4a2 + 23bc

b2 + c2
+

4b2 + 23ca
c2 + a2

+
4c2 + 23ab

a2 + b2
≥ 0.

(Vasile Cîrtoaje, 2014)

Solution. Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) =
∑

(4a2 + 23bc)(a2 + b2)(a2 + c2).

Let
p = a+ b+ c, q = ab+ bc + ca, r = abc.

From
f6(a, b, c) =

∑

(4a2 + 23bc)(p2 − 2q− c2)(p2 − 2q− b2),

it follows that f6(a, b, c) has the same highest coefficient A as f (a, b, c), where

f (a, b, c) =
∑

(4a2 + 23bc)b2c2 = 12r2 + 23
∑

b3c3 = 81r2 − 69pqr + 23q3;

that is,
A= 81.

Since A > 0, we will use the highest coefficient cancellation method. It is easy to
check that

f (−1,2, 2) = 0.

Therefore, define the homogeneous polynomial

P(a, b, c) = r +
4

27
p3 + C pq,
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which satisfies P(−1, 2,2) = 0. We will show that there is at least a real C such
that the following sharper inequality holds for ab+ bc + ca ≥ 0:

f6(a, b, c)≥ 81P2(a, b, c).

Let us denote
g6(a, b, c) = f6(a, b, c)− 81P2(a, b, c).

Clearly, g6(a, b, c) has the highest coefficient A1 = 0. Therefore, by Remark 3 from
P 2.75, it suffices to prove that g6(a, 1, 1) ≥ 0 for all real a such that 2a + 1 ≥ 0.
We have

f6(a, 1, 1) = (2a+ 1)(a2 + 1)(2a3 − a2 + 14a+ 39),

P(a, 1, 1) =
1

27
(2a+ 1)[2a2 + (27C + 11)a+ 54C + 32],

g6(a, 1, 1) = f6(a, 1, 1)− 81P2(a, 1, 1).

From the condition g6(1,1, 1) = 0, we get C = −1/3. For this value of C , we find

P(a, 1, 1) =
2
27
(2a+ 1)(a2 + a+ 7),

then

g6(a, 1, 1) =
1
9
(2a+ 1)(10a5 − 29a4 + 16a3 + 170a2 − 322a+ 155)

=
1
9
(2a+ 1)(a− 1)2(10a3 − 9a2 − 12a+ 155).

We only need to show that

10a3 − 9a2 − 12a+ 155≥ 0

for a ≥ −1/2. This is clearly true for −1/2≤ a ≤ 0. Also, for a > 0, we have

10a3 − 9a2 − 12a+ 155= 10a(a2 − a+ 1) + (a− 11)2 + 34> 0.

The proof is completed. The equality holds for −2a = b = c (or any cyclic permu-
tation).

P 2.86. If a, b, c are real numbers such that

ab+ bc + ca = 3,

then
20(a6 + b6 + c6) + 43abc(a3 + b3 + c3)≥ 189.

(Vasile Cîrtoaje, 2014)
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Solution. Write the inequality in the homogeneous form f6(a, b, c)≥ 0, where

f6(a, b, c) = 20(a6 + b6 + c6) + 43abc(a3 + b3 + c3)− 7(ab+ bc + ca)3.

Since the highest coefficient of f6(a, b, c) is positive, namely

A= 20 · 3+ 43 · 3= 189,

we will use the highest coefficient cancellation method. From

f6(a, 1, 1) = (2a+ 1)(a− 1)2(10a3 + 15a2 + 44a+ 33),

it follows that
f6(1,1, 1) = 0, f6(−1/2, 1,1) = 0.

Define the homogeneous function

P(a, b, c) = r + Bp3 + C pq, p = a+ b+ c, q = ab+ bc + ca, r = abc,

such that P(1, 1,1) = P(−1/2, 1,1) = 0; that is,

P(a, b, c) = r +
4

27
p3 −

5
9

pq,

P(a, 1, 1) =
27a+ 4(a+ 2)3 − 15(a+ 2)(2a+ 1)

27
=

2(a− 1)2(2a+ 1)
27

.

We will show that the following sharper inequality holds for ab+ bc + ca ≥ 0:

f6(a, b, c)≥ 189P2(a, b, c).

Let us denote
g6(a, b, c) = f6(a, b, c)− 189P2(a, b, c).

Since the highest coefficient of g6(a, b, c) is zero, it suffices to prove that g6(a, 1, 1)≥
0 for 2a+ 1≥ 0 (see Remark 3 from P 2.75). We have

g6(a, 1, 1) = f6(a, 1, 1)− 189P2(a, 1, 1) = (2a+ 1)(a− 1)2 g(a),

where
g(a) = 10a3 + 15a2 + 44a+ 33−

28
27
(a− 1)2(2a+ 1).

Since

g(a)≥ 10a3 + 15a2 + 44a+ 33− 5(a− 1)2(2a+ 1) = 22(a+ 1)2 + 8a2 + 6> 0,

we have g6(a, 1, 1) ≥ 0 for a ≥ −1/2. Thus, the proof is completed. The equality
holds for a = b = c = 1.
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P 2.87. If a, b, c are real numbers such that

ab+ bc + ca ≥ 0,

then

(a) (a2 + b2 + c2)(ab+ bc + ca)2 ≥ abc(4a3 + 4b3 + 4c3 + 15abc);

(b) 4(a+ b+ c)6 ≥ 81abc(5a3 + 5b3 + 5c3 + 21abc).

(Vasile Cîrtoaje and Nguyen Van Huyen, 2020)

Solution. Let
p = a+ b+ c, q = ab+ bc + ca, r = abc.

We have
a3 + b3 + c3 = 3r + p3 − 3pq.

(a) Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) = −27r2 − (p3 − 3pq)r + p2q2 − 2q3.

Since f6(a, b, c) has the highest coefficient A= −27, it suffices to prove the inequal-
ity for b = c = 1 and 2a + 1 ≥ 0 (see Remark 3 from P 2.75). Thus, we need to
show that

(a2 + 2)(2a+ 1)2 ≥ a(4a3 + 15a+ 8),

which is equivalent to
(2a+ 1)(a− 1)2 ≥ 0.

The equality occurs for a = b = c and for −2a = b = c (or any cyclic permutation).

(b) Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) = −2916r2 − 405(p3 − 3pq)r + 4p6.

Since f6(a, b, c) has the highest coefficient A = −2916, it suffices to prove the in-
equality for b = c = 1 and 2a+ 1 ≥ 0 (see Remark 3 from P 2.75). Thus, we need
to show that

4(a+ 2)6 ≥ 81a(5a3 + 21a+ 10),

which is equivalent to

(2a+ 1)(a− 1)2(2a3 + 27a2 − 42a+ 256)≥ 0.

This is true since

2a3 + 27a2 − 42a+ 256= a2(2a+ 1) + 26a2 − 42a+ 256> 21a2 − 42a+ 21≥ 0.

The equality occurs for a = b = c and for −2a = b = c (or any cyclic permutation).
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P 2.88. If a, b, c are real numbers, then

4
∑

(a2 + bc)(a− b)(a− c)(a− 3b)(a− 3c)≥ 7(a− b)2(b− c)2(c − a)2.

(Vasile Cîrtoaje, 2014)

Solution. Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) = 4 f (a, b, c)− 7(a− b)2(b− c)2(c − a)2,

f (a, b, c) =
∑

(a2 + bc)(a− b)(a− c)(a− 3b)(a− 3c).

We have
f6(a, 1, 1) = 4(a2 + 1)(a− 1)2(a− 3)2.

Let
p = a+ b+ c, q = ab+ bc + ca, r = abc.

Since
(a− b)(a− c) = a2 + 2bc − q

and
(a− 3b)(a− 3c) = a2 + 12bc − 3q,

f (a, b, c) has the same highest coefficient A0 as g(a, b, c), where

g(a, b, c) =
∑

(a2 + bc)(a2 + 2bc)(a2 + 12bc);

that is, according to Remark 2 from P 2.75,

A0 = g(1, 1,1) = 3 · 2 · 3 · 13= 234.

Therefore, f6(a, b, c) has the highest coefficient

A= 4A0 − 7(−27) = 1125.

Since the highest coefficient A is positive, we will use the highest coefficient cancel-
lation method. There are two cases to consider: q ≥ 0 and q < 0.

Case 1: q ≥ 0. Since
f6(1,1, 1) = f6(3,1, 1) = 0,

define the homogeneous function

P(a, b, c) = r + Bp3 + C pq

such that P(1,1, 1) = P(3, 1,1) = 0; that is,

P(a, b, c) = r +
2

45
p3 −

11
45

pq,
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hence

P(a, 1, 1) =
45a+ 2(a+ 2)3 − 11(a+ 2)(2a+ 1)

45
=

2(a− 1)2(a− 3)
45

.

We will show that the following sharper inequality holds for q ≥ 0:

f6(a, b, c)≥ 1125P2(a, b, c).

Let us denote
g6(a, b, c) = f6(a, b, c)− 1125P2(a, b, c).

Since the highest coefficient of g6(a, b, c) is zero, it suffices to prove that g6(a, 1, 1)≥
0 for all real a such that 2a+ 1≥ 0 (see Remark 3 from P 2.75). We have

g6(a, 1, 1) = f6(a, 1, 1)− 1125P2(a, 1, 1) =
8(a− 1)2(a− 3)2(a+ 2)(2a+ 1)

9
≥ 0.

Case 2: q < 0. Define the homogeneous polynomial

P(a, b, c) = r + Bp3 −
�

3B +
1
9

�

pq,

which satisfies P(1,1, 1) = 0. We will show that there is a real number B such that
the following sharper inequality holds

f6(a, b, c)≥ 1125P2(a, b, c).

Let us denote
g6(a, b, c) = f6(a, b, c)− 1125P2(a, b, c).

Clearly, g6(a, b, c) has the highest coefficient equal to zero. Then, by Remark 3
from P 2.75, it suffices to prove that g6(a, 1, 1)≥ 0 for 2a+ 1< 0. We have

g6(a, 1, 1) = f6(a, 1, 1)− 1125P2(a, 1, 1),

where

P2(a, 1, 1) =
�

a+ B(a+ 2)3 −
�

3B +
1
9

�

(a+ 2)(2a+ 1)
�2

.

Let us denote g(a) = g6(a, 1, 1). Since g(−2) = 0, we can have g(a) ≥ 0 in the
vicinity of a = −2 only if g ′(−2) = 0, which involves B = 8/135. Using this value
of B, we get

P2(a, 1, 1) =
4(a− 1)4(4a− 7)2

25 · 729
,

g6(a, 1, 1) = 4(a− 1)2
�

(a2 + 1)(a− 3)2 −
5

81
(a− 1)2(4a− 7)2

�

=
4

81
(a− 1)2(a+ 2)2(a2 − 50a+ 121)≥ 0.

The proof is completed. The equality holds for a = b = c, for a/3 = b = c (or any
cyclic permutation), and for a = 0 and b+ c = 0 (or any cyclic permutation).
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P 2.89. Let a, b, c be real numbers such that

ab+ bc + ca ≥ 0.

For any real k, prove that
∑

4bc(a− b)(a− c)(a− kb)(a− kc) + (a− b)2(b− c)2(c − a)2 ≥ 0.

(Vasile Cîrtoaje, 2014)

Solution. Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) = 4 f (a, b, c) + (a− b)2(b− c)2(c − a)2,

f (a, b, c) =
∑

bc(a− b)(a− c)(a− kb)(a− kc).

Let
p = a+ b+ c, q = ab+ bc + ca, r = abc.

Since
(a− b)(a− c) = a2 + 2bc − q

and
(a− kb)(a− kc) = a2 + (k+ k2)bc − kq,

f (a, b, c) has the same highest coefficient A0 as P1(a, b, c), where

P1(a, b, c) =
∑

bc(a2 + 2bc)[a2 + (k+ k2)bc];

that is, according to Remark 2 from P 2.75,

A0 = P1(1,1, 1) = 3(1+ 2)(1+ k+ k2) = 9(1+ k+ k2).

Therefore, f6(a, b, c) has the highest coefficient

A= 4A0 − 27= 9(2k+ 1)2.

We have
f6(a, 1, 1) = 4(a− 1)2(a− k)2.

Consider first that k = −1/2, when A = 0. By P 2.75, it suffices to show that
f6(a, 1, 1) ≥ 0 for all real a. Clearly, this is true. Consider further that k 6= −1/2,
when the highest coefficient A is positive. We will use the highest coefficient cancel-
lation method. Since

f6(1,1, 1) = f6(k, 1, 1) = 0,

define the homogeneous function

P(a, b, c) = r + C pq+ D
q2

p
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such that P(1, 1,1) = P(k, 1, 1) = 0; that is,

P(a, b, c) = r +
pq

3(2k+ 1)
−

2(k+ 2)q2

3(2k+ 1)p
.

We will show that the following sharper inequality holds for ab+ bc + ca ≥ 0:

f6(a, b, c)≥ 9(2k+ 1)2P2(a, b, c).

Let us denote
g6(a, b, c) = f6(a, b, c)− 9(2k+ 1)2P2(a, b, c).

Clearly, g6(a, b, c) has the highest coefficient A1 = 0. Then, by Remark 4 from P
2.75, it suffices to prove that g6(a, 1, 1) ≥ 0 for all real a such that 2a+ 1 ≥ 0. We
have

P(a, 1, 1) = a+
(a+ 2)(2a+ 1)

3(2k+ 1)
−

2(k+ 2)(2a+ 1)2

3(2k+ 1)(a+ 2)

=
2(a− 1)2(a− k)
3(2k+ 1)(a+ 2)

,

then

g6(a, 1, 1) = f6(a, 1, 1)− 9(2k+ 1)2P2(a, 1, 1)

= 4(a− 1)2(a− k)2 −
4(a− 1)4(a− k)2

(a+ 2)2

=
12(a− 1)2(a− k)2(2a+ 1)

(a+ 2)2
≥ 0.

The proof is completed. The equality holds for a = b = c, for a/k = b = c (or any
cyclic permutation) - if k 6= 0, and for b = c = 0 (or any cyclic permutation).

P 2.90. If a, b, c are real numbers, then

�

(a2 b+ b2c + c2a) + (ab2 + bc2 + ca2)
�2
≥ 4(ab+ bc + ca)(a2 b2 + b2c2 + c2a2).

First Solution. Consider the nontrivial case ab + bc + ca ≥ 0, and write the in-
equality as f6(a, b, c)≥ 0, where

f6(a, b, c) = [(a2 b+b2c+c2a)+(ab2+bc2+ca2)]2−4(ab+bc+ca)(a2 b2+b2c2+c2a2).

Since

(a2 b+ b2c + c2a) + (ab2 + bc2 + ca2) = (a+ b+ c)(ab+ bc + ca)− 3abc,
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f6 has the highest coefficient
A= (−3)2 = 9.

Since A> 0, we will use the highest coefficient cancellation method. Because

f (1,1, 1) = f (0, 1,1) = 0,

define the homogeneous function

P(a, b, c) = abc + C(a+ b+ c)(ab+ bc + ca) + D
(ab+ bc + ca)2

a+ b+ c

such that P(1, 1,1) = P(0, 1,1) = 0; that is,

P(a, b, c) = abc +
(a+ b+ c)(ab+ bc + ca)

3
−

4(ab+ bc + ca)2

3(a+ b+ c)
.

We will show that the following sharper inequality holds for ab+ bc + ca ≥ 0:

f6(a, b, c)≥ 9P2(a, b, c).

Let us denote
g6(a, b, c) = f6(a, b, c)− 9P2(a, b, c).

Clearly, g6(a, b, c) has the highest coefficient A1 = 0. Then, by Remark 4 from P
2.75, it suffices to prove that g6(a, 1, 1) ≥ 0 for all real a such that 2a+ 1 ≥ 0. We
have

f6(a, 1, 1) = 4a2(a− 1)2,

P(a, 1, 1) = a+
(a+ 2)(2a+ 1)

3
−

4(2a+ 1)2

3(a+ 2)
=

2a(a− 1)2

3(a+ 2)
,

hence

f6(a, 1, 1) = f6(a, 1, 1)− 9P2(a, 1, 1) =
12a2(a− 1)2(2a+ 1)

(a+ 2)2
≥ 0.

The proof is completed. The equality holds for a = b = c, for a = 0 and b = c (or
any cyclic permutation), and for b = c = 0 (or any cyclic permutation).

Second Solution (by Nguyen Van Quy). Since the inequality remains unchanged by
replacing a, b, c with −a,−b,−c, we may assume that a + b + c ≥ 0. In addition,
consider the non-trivial case ab+ bc+ ca > 0, when the inequality can be rewritten
as

(a2 b+ b2c + c2a) + (ab2 + bc2 + ca2)≥ 2
Æ

(ab+ bc + ca)(a2 b2 + b2c2 + c2a2).

Using the Cauchy-Schwarz inequality, we have

(a2 b+ b2c + c2a) + (ab2 + bc2 + ca2) + (a3 + b3 + c3) = (a2 + b2 + c2)(a+ b+ c)
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=
Ç

�

a4 + b4 + c4 + 2(a2 b2 + b2c2 + c2a2)
��

a2 + b2 + c2 + 2(ab+ bc + ca)
�

≥
Æ

(a4 + b4 + c4)(a2 + b2 + c2) + 2
Æ

(a2 b2 + b2c2 + c2a2)(ab+ bc + ca).

Thus, it suffices to show that
Æ

(a4 + b4 + c4)(a2 + b2 + c2)≥ a3 + b3 + c3,

which follows also from the Cauchy-Schwarz inequality.

P 2.91. If a, b, c are real numbers such that

a+ b+ c = 3,

then
(a− 1)(a− 25)

a2 + 23
+
(b− 1)(b− 25)

b2 + 23
+
(c − 1)(c − 25)

c2 + 23
≥ 0.

Solution. Denote
p = a+ b+ c, q = ab+ bc + ca

and write the inequality in the homogeneous form f6(a, b, c)≥ 0, where

f6(a, b, c) =
∑

(3a− p)(3a− 25p)(9b2 + 23p2)(9c2 + 23p2).

Since the highest coefficient of f6 is positive, namely

A= 3 · 93,

we use the highest coefficient cancellation method. Thus, we will prove that there
exist two real numbers B and C such that g6(a, b, c)≥ 0, where

g6(a, b, c) = f6(a, b, c)− A[abc + B(a+ b+ c)3 + C(a+ b+ c)(ab+ bc + ca)]2.

Since g6 has the highest coefficient equal to zero, it suffices to show that g6(a, 1, 1)≥
0 for all real a (see P 2.75). Notice that

f6(a, 1, 1) = 12(a− 1)2(7a+ 11)2[23(a+ 2)2 + 9]

and

g6(a, 1, 1) = f6(a, 1, 1)− 3 · 93[a+ B(a+ 2)3 + C(a+ 2)(2a+ 1)]2.

Let us denote g(a) = g6(a, 1, 1). Since g(−2) = 0, we can have g(a) ≥ 0 in the
vicinity of a = −2 only if g ′(−2) = 0; this involves C = −13/9, hence

g6(a, 1, 1) =12(a− 1)2(7a+ 11)2[23(a+ 2)2 + 9]

− 27[9a+ 9B(a+ 2)3 − 13(a+ 2)(2a+ 1)]2.
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There are two cases to consider: 5p2 + q ≤ 0 and 5p2 + q ≥ 0.

Case 1: 5p2 + q ≤ 0. By Remark 3 from the proof of P 2.75, we only need to show
that there exist a real number B such that g6(a, 1, 1) ≥ 0 for all real a satisfying
5(a + 2)2 + 2a + 1 ≤ 0; that is, for a ∈ [−3,−7/5]. From g6(−11/7,1, 1) = 0, we
get B = 28/9, then

g6(a, 1, 1) =12(a− 1)2(7a+ 11)2[23(a+ 2)2 + 9]

− 108(7a+ 11)2(2a2 + 7a+ 9)2

=− 12(a+ 2)2(7a+ 11)2(13a2 + 154a+ 157)≥ 0.

Case 2: 5p2 + q ≥ 0. By Remark 3 from the proof of P 2.75, we only need to show
that there exist a real number B such that g6(a, 1, 1) ≥ 0 for all real a satisfying
5(a+2)2+2a+1≥ 0; that is, for a ∈ (−∞,−3]∪[−7/5,∞). From g6(1, 1,1) = 0,
we get B = 4/9, then

g6(a, 1, 1) = 12(a− 1)2(7a+ 11)2[23(a+ 2)2 + 9]− 108(a− 1)4(2a+ 3)2

= 12(a+ 2)2(a− 1)2(1091a2 + 3650a+ 3035)≥ 0.

The proof is completed. The equality holds for a = b = c = 1, and for a = −11 and
b = c = 7 (or any cyclic permutation).

P 2.92. If a, b, c are real numbers such that abc 6= 0, then

�

b+ c
a

�2

+
� c + a

b

�2

+
�

a+ b
c

�2

> 2.

(Michael Rozenberg, 2014)

Solution. Assume that
a2 =min{a2, b2, c2}.

By the Cauchy-Schwarz inequality, we have

� c + a
b

�2

+
�

a+ b
c

�2

≥
[(c + a) + (−a− b)]2

b2 + c2
=
(b− c)2

b2 + c2
.

On the other hand,
�

b+ c
a

�2

≥
(b+ c)2

b2 + c2
.

Therefore,

�

b+ c
a

�2

+
� c + a

b

�2

+
�

a+ b
c

�2

≥
(b+ c)2

b2 + c2
+
(b− c)2

b2 + c2
= 2.
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The equality holds if and only if

� c + a
b

�2

+
�

a+ b
c

�2

=
(b− c)2

b2 + c2

and b+ c = 0. Since these relations involves a = 0, we conclude that the inequality
is strict (the equality does not hold).

P 2.93. If a, b, c are real numbers, then

(a) (a2 + 1)(b2 + 1)(c2 + 1)≥
8

3
p

3
|(a− b)(b− c)(c − a)|;

(b) (a2 − a+ 1)(b2 − b+ 1)(c2 − c + 1)≥ |(a− b)(b− c)(c − a)|.

(Kwon Ji Mun, 2011)

Solution. (a) First Solution. Without loss of generality, assume that a ≤ b ≤ c,
when

|(a− b)(b− c)(c − a)|= (a− b)(b− c)(c − a).

Denote

k =
4

3
p

3
and write the inequality as

Aa2 + 2Ba+ C ≥ 0,

where
A= (b2 + 1)(c2 + 1) + 2k(b− c),

B = −k(b2 − c2),

C = (b2 + 1)(c2 + 1) + 2kbc(b− c).

Substituting b =
−x
p

3
and c =

y
p

3
, by the Cauchy-Schwarz inequality, we get

9A= (x2 + 1+ 2)(1+ y2 + 2)− 8(x + y)

≥ (x + y + 2)2 − 8(x + y) = (x + y − 2)2 ≥ 0.

We have A= 0 only for b = −1/
p

3 and c = 1/
p

3, when

Aa2 + 2Ba+ C = 2Ba+ C = 64/27.

Otherwise, for A> 0, it suffices to prove that AC − B2 ≥ 0. Let us denote

E = b− c, F = bc + 1.
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Since
(b2 + 1)(c2 + 1) = (b− c)2 + (bc + 1)2 = E2 + F2,

(b+ c)2 = (b− c)2 + 4(bc + 1)− 4= E2 + 4F − 4,

(b2 − c2)2 = (b− c)2(b+ c)2 = E2(E2 + 4F − 4),

we have

A= E2 + F2 + 2kE, B2 = k2E2(E2 + 4F − 4), C = E2 + F2 + 2kE(F − 1),

and hence

AC − B2 = (E2 + F2 + 2kE)(E2 + F2 + 2kEF − 2kE)− k2E2(E2 + 4F − 4)

= (E2 + F2)(E2 + F2 + 2kEF)− k2E4 =
1

27
(E +

p
3F)2(11E2 − 2

p
3EF + 9F2)≥ 0.

The equality holds for

b− c +
p

3(bc + 1) = 0, a+
b+ c

1+ 3bc
= 0

(or any permutation).

Second Solution (by Vo Quoc Ba Can). Substituting

a = x
p

3, b = y
p

3, c = z
p

3,

the inequality becomes

(3x2 + 1)(3y2 + 1)(3z2 + 1)≥ 8|(x − y)(y − z)(z − x)|.

It suffices to show that

E2 ≥ 64(x − y)2(y − z)2(z − x)2,

where

E = (3x2 + 1)(3y2 + 1)(3z2 + 1) = 27x2 y2z2 + 9
∑

x2 y2 + 3
∑

x2 + 1.

It it easy to check that the equality holds for x = −1, y = 0 and z = 1 (or any cyclic
permutation), when

x + y + z = 0, x y + yz + zx = −1, x yz = 0.

From
�

9x yz +
∑

x
�2
≥ 0

and
�∑

x y + 1
�2
≥ 0,
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we get
81x2 y2z2 ≥ −18x yz

∑

x −
∑

x2 − 2
∑

x y

and
1≥ −

∑

x2 y2 − 2x y x
∑

x − 2
∑

x y,

respectively. Therefore,

3E ≥
�

−18x yz
∑

x −
∑

x2 − 2
∑

x y
�

+ 27
∑

x2 y2 + 9
∑

x2

+ 3
�

−
∑

x2 y2 − 2x y x
∑

x − 2
∑

x y
�

=24
�∑

x2 y2 − x yz
∑

x
�

+ 8
�∑

x2 −
∑

x y
�

=12
∑

x2(y − z)2 +
4
3

∑

(2x − y − z)2.

By the AM-GM inequality, we have

3E ≥ 8
r

�∑

x2(y − z)2
��∑

(2x − y − z)2
�

.

In addition, by the Cauchy-Schwarz inequality, we get

E2 ≥
64
9

�∑

x(y − z)(2x − y − z)
�2

= 64
�∑

x2 y −
∑

x y2
�2

= 64(x − y)2(y − z)2(z − x)2.

(b) Write the inequality as
�

�

a−
1
2

�2

+
3
4

��

�

b−
1
2

�2

+
3
4

��

�

c −
1
2

�2

+
3
4

�

≥ (a− b)(b− c)(c − a).

Using the substitution

a−
1
2
=
p

3
2

x , b−
1
2
=
p

3
2

y, c −
1
2
=
p

3
2

z,

the inequality turns out into the inequality in (a). From the equality conditions in
(a), namely

y − z +
p

3(yz + 1) = 0, x +
y + z

1+ 3yz
= 0,

we get the following equality conditions

b =
c − 1

c
, a =

1
1− c

(or any permutation).
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P 2.94. If a, b, c are real numbers such that

a+ b+ c = 3,

then
(1− a+ a2)(1− b+ b2)(1− c + c2)≥ 1.

First Solution. Since

2(1− a+ a2)(1− b+ b2)− (a+ b− 1)2 − 1= a2(b− 1)2 + b2(a− 1)2 ≥ 0

and
2(1− c + c2)≥ 1+ c2,

it is enough to show that

[(a+ b− 1)2 + 1](1+ c2)≥ 4.

By the Cauchy-Schwartz inequality, we have

[(a+ b− 1)2 + 1](1+ c2)≥ [(a+ b− 1) + c]2 = (a+ b+ c − 1)2 = 4.

The equality holds for a = b = c = 1.

Second Solution (by Marian Tetiva). Assume that

a ≤ b ≤ c.

There are two cases to consider: a ≥ 0 and a < 0.

Case 1: a ≥ 0. Among the numbers a, b, c always there exist two (let b and c)
which are either less than or equal to 1, or greater than or equal to 1. Then,

bc(b− 1)(c − 1)≥ 0

and

(1− b+ b2)(1− c + c2) = 1+ (b2 − b) + (c2 − c) + (b2 − b)(c2 − c)

≥ 1+ (b2 − b) + (c2 − c)≥ 1− (b+ c) +
1
2
(b+ c)2

= 1− (3− a) +
1
2
(3− a)2 =

1
2
(5− 4a+ a2).

Therefore, it suffices to show that

(1− a+ a2)(5− 4a+ a2)≥ 2.

Indeed,
(1− a+ a2)(5− 4a+ a2)− 2= (a− 1)2(a2 − 3a+ 3)≥ 0.
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Case 2: a < 0. We have
c >

3
2

because

c ≥
b+ c

2
>

a+ b+ c
2

=
3
2

.

The desired inequality is true since

1− a+ a2 > 1,

1− b+ b2 =
�

1
2
− b

�2

+
3
4
≥

3
4

,

1− c + c2 > 1− c +
3c
2
= 1+

c
2
> 1+

3
4
=

7
4

.

P 2.95. If a, b, c are real numbers such that

a+ b+ c = 0,

then
a(a− 4)
a2 + 2

+
b(b− 4)
b2 + 2

+
c(c − 4)
c2 + 2

≥ 0.

Solution. Write the inequality as follows
∑

�

a(a− 4)
a2 + 2

+ 1
�

≥ 3,

∑ (a− 1)2

a2 + 2
≥

3
2

.

From
a2 = (b+ c)2 ≤ 2(b2 + c2),

we get
3a2 ≤ 2(a2 + b2 + c2).

Similarly,
3b2 ≤ 2(a2 + b2 + c2), 3c2 ≤ 2(a2 + b2 + c2).

Therefore, we have
∑ (a− 1)2

a2 + 2
=
∑ 3(a− 1)2

3a2 + 6
≥
∑ 3(a− 1)2

2(a2 + b2 + c2) + 6

=
3

2(a2 + b2 + c2 + 3)

∑

(a− 1)2 =
3
2

.

Thus, the proof is completed. The equality holds for a = b = c = 0, and also for
a = −2 and b = c = 1 (or any cyclic permutation).
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P 2.96. If a, b, c are real numbers such that

a, b, c ≤ 1+
p

2, a+ b+ c ≥ 0,

then
2abc + a2 + b2 + c2 + 1≥ 2(ab+ bc + ca).

(Vasile Cîrtoaje, 2014)

Solution. Assume that
a ≤ b ≤ c ≤ 1+

p
2.

First Solution. There are three cases: 0 ≤ a ≤ b ≤ c, a ≤ 0 ≤ b ≤ c and a ≤ b ≤
0≤ c.

Case 1: 0 ≤ a ≤ b ≤ c. Among the numbers 1− a, 1− b and 1− c there are two
which have the same sign; let

(1− b)(1− c)≥ 0.

From

2abc + a2 + b2 + c2 + 1− 2(ab+ bc + ca) =

= (a− 1)2 + (b− c)2 + 2a+ 2abc − 2a(b+ c)

= (a− 1)2 + (b− c)2 + 2a(1− b)(1− c)≥ 0,

the conclusion follows.

Case 2: a ≤ 0≤ b ≤ c. Denote

x =
b+ c

2
, 0≤ x ≤ 1+

p
2,

and write the inequality as

(a+ 1)2 + (b− c)2 − 2a(1+ b+ c − bc)≥ 0.

Clearly, it suffices to show that

1+ b+ c − bc ≥ 0.

Indeed,

1+ b+ c − bc ≥ 1+ 2x − x2 = (
p

2− 1+ x)(
p

2+ 1− x)≥ 0.

Case 3: a ≤ b ≤ 0≤ c. Write the inequality in the form

2abc + (a− b)2 + c2 + 1− 2(a+ b)c ≥ 0,

which is clearly true.
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The equality holds for a = b = c = 1, and also for a = −1 and b = c = 1+
p

2
(or any cyclic permutation).

Second Solution. According to P 2.53, for fixed a + b + c and ab + bc + ca, the
product abc is minimal when a ≤ b = c. Therefore, we only need to prove that

2ab2 + a2 + 1≥ 4ab

for a ≤ b ≤ 1+
p

2 and a+ 2b ≥ 0. Write the inequality as

(a− 1)2 + 2a(b− 1)2 ≥ 0

or
(a+ 1)2 − 2a(1+ 2b− b2)≥ 0.

For a ≥ 0, the inequality is clearly true. For a ≤ 0, it is enough to show that
1+ 2b− b2 ≥ 0. This is true because 2b ≥ −a ≥ 0 and b ≤ 1+

p
2.

Remark. Actually, the original inequality holds for the extended conditions

a, b, c ≤ 1+
p

2, a+ b+ c + 2
p

2− 1≥ 0,

with equality for for a = b = c = 1, for a = −1 and b = c = 1+
p

2 (or any cyclic
permutation), and for a = −1 and b = c = 1−

p
2 (or any cyclic permutation).

P 2.97. If a, b, c are real numbers such that a+ b+ c = 2 and ab+ bc+ ca > 0, then

(a2 + bc)(b2 + ca)(c2 + ab) + abc ≤ 1.

(Nguyen Van Huyen, 2020)

Solution. Write the inequality in the homogeneous form f6(a, b, c)≥ 0, where

f6(a, b, c) = p6 − 8abcp3 − 64P2(a, b, c),

with
p = a+ b+ c, P2(a, b, c) = (a2 + bc)(b2 + ca)(c2 + ab).

According to Remark 2 from P 2.75, f6(a, b, c has the highest coefficient

A= −64P2(1,1, 1) = −512.

Thus, according to P 2.75 and its Remark 3, it is enough to show that f6(a, 1, 1)≥ 0
for 2a+ 1≥ 0. We have

f6(a, 1, 1) = (a+ 2)6 − 8a(a+ 2)3 − 64(a2 + 1)(a+ 1)2

= a2(a4 + 12a3 − 12a2 − 16a+ 16)

≥ a2(a4 + 12a3 − 12a2 − 16a+ 15) = a2(a− 1)2(a2 + 14a+ 15)≥ 0.

The equality occurs for a = 0 and b = c = 1 (or any cyclic permutation).
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P 2.98. If a, b, c are real numbers such that

a2 + b2 + c2 = 3, a ≥
4
3

,

then
3(abc + 1)≥ 2(ab+ bc + ca).

(Vasile Cîrtoaje, 2019)

Solution. Since
2bc = (b+ c)2 + a2 − 3,

we write the inequality as follows:

(3a− 2)(2bc)− 4a(b+ c) + 6≥ 0,

(3a− 2)(b+ c)2 − 4a(b+ c) + 3a3 − 2a2 − 9a+ 12≥ 0,

(3a− 2)
�

b+ c −
2a

3a− 2

�2

+
3(3a4 − 4a3 − 9a2 + 18a− 8)

3a− 2
≥ 0,

(3a− 2)
�

b+ c −
2a

3a− 2

�2

+
3(a− 1)2(3a− 4)(a+ 2)

3a− 2
≥ 0.

The equality holds for a = b = c = 1, and also for a =
4
3

and b, c =
4±
p

6
6

.

Remark. The inequality is equivalent to

3
�

a−
4
3

��

b−
4
3

��

c −
4
3

�

+
�

a+ b+ c −
8
3

�2

≥ 0.

P 2.99. If a, b, c are real numbers such that a ≥
8
7

and a2 + b2 + c2 = 3, then

3− a− b− c
1− abc

≥
49
100

.

(Vasile Cîrtoaje, 2018)

Solution. From
3= a2 + b2 + c2 > 3

3
p

a2 b2c2,

it follows abc < 1. In addition, since

2bc = (b+ c)2 − b2 − c2 = (b+ c)2 + a2 − 3,

the inequality can be written as follows:

49(abc − 1)≥ 100(a+ b+ c − 3),
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49a[(b+ c)2 + a2 − 3]− 98≥ 200(a+ b+ c − 3),

49a(b+ c)2 − 200(b+ c) + 49a3 − 347a+ 502≥ 0,

49a
�

b+ c −
100
49a

�2

+
E

49
≥ 0,

where
E = (7a)4 − 347(7a)2 + 3514(7a)− 10000.

Denoting x = 7a, x ≥ 8, we have

E = x4 − 347x2 + 3514x − 10000= (x − 8)(x3 + 8x2 − 283x + 1250)

≥ (x − 8)(x3 + 8x2 − 283x + 1240) = (x − 8)2(x2 + 16x − 155)

≥ (x − 8)2(x2 + 16x − 161) = (x − 8)2(x − 7)(x + 21)≥ 0.

The equality occurs for a =
8
7

and

b+ c =
100
49a

=
25
14

, 2bc = (b+ c)2 + a2 − 3=
293
196

,

therefore for a =
8
7

and b, c =
25±

p
39

28
.

P 2.100. If a, b, c ∈ [−1, 1], then

a3 + b3 + c3 + abc ≤
15
16
(a+ b+ c) +

19
16

.

(Vasile Cîrtoaje, 2018)

Solution. Since

a3 + b3 + c3 = 3abc +
1
2
(a+ b+ c)[3(a2 + b2 + c2)− (a+ b+ c)2],

we may apply the following statement (see Remark 3 from P 2.53): If a, b, c ∈
[−1, 1], then for fixed a + b + c and a2 + b2 + c2, the product abc is maximal when
a ≥ b = c or a = 1. Thus, we only need to consider these cases.

Case 1: a = 1. We need to show that

16(b3 + c3 + bc)− 15(b+ c) + 18≤ 0.

Denote
s = b+ c, s ≤ 2,
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and write the inequality as

16s3 − 16bc(3s− 1)− 15s− 18≤ 0.

We have 4bc ≤ s2 and

(b− 1)(c − 1)≥ 0, bc ≥ s− 1.

For 3s− 1≤ 0, it is enough to show that

16s3 − 4s2(3s− 1)− 15s− 18≤ 0,

which is equivalent to
4s3 + 4s2 − 15s− 18≤ 0,

(s− 2)(2s+ 3)2 ≤ 0.

For 3s− 1≥ 0, it is enough to show that

16s3 − 16(s− 1)(3s− 1)− 15s− 18≤ 0,

which is equivalent to
16s3 − 48s2 + 49s− 34≤ 0,

(s− 2)(16s2 − 16s+ 17)≤ 0,

(s− 2)[8(s− 1)2 + 8s2 + 9]≤ 0.

Case 2: a ≥ b = c. We need to prove that

16(a3 + 2b2 + ab2)≤ 15(a+ 2b) + 19.

There are two sub-cases: a ≥ 0 and a ≤ 0.
If a ≥ 0, write the inequality as

a(16a2 + 32b2 − 15) + 16b3 − 30b− 19≤ 0.

Since

a(16a2 + 32b2 − 15)≤ a(16+ 32b2 − 15) = a(1+ 32b2)≤ 1+ 32b2,

it is enough to show that

16b3 + 32b2 − 30b− 18≤ 0,

which is equivalent to
2(b− 1)(4b+ 3)2 ≤ 0.

If a ≤ 0, hence b ≤ a ≤ 0, substituting a = −x and b = −y (y ≥ x ≥ 0), the
required inequality becomes

16(x3 + 2y3 + x y2) + 19≥ 15(x + 2y).
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Since x y2 ≥ 0, it suffices to show that

(16x3 − 15x + 6) + 2(16y3 − 15y + 6) + 1≥ 0.

This is true because, by the AM-GM inequality, we have

16x3 − 15x + 6= (16x3 + 3+ 3)− 15x ≥ 3(2
3p

18− 5)x ≥ 0

and, similarly,
16y3 − 15y + 6> 0.

The equality occurs for a = b = c = 1, and also for a = 1 and b = c =
−3
4

(or

any cyclic permutation).

P 2.101. If a, b, c are real numbers, then

(a3 + b3 + c3)2 ≥ (a4 + b4 + c4)(ab+ bc + ca).

(Vasile Cîrtoaje, 2018)

Solution. Since

(a3 + b3 + c3)2 = (a4 + b4 + c4)(a2 + b2 + c2)−
∑

b2c2(b− c)2,

the inequality can be rewritten as follows

(a4 + b4 + c4)(a2 + b2 + c2 − ab− bc − ca)≥
∑

b2c2(b− c)2,

(a4 + b4 + c4)
∑

(b− c)2 ≥ 2
∑

b2c2(b− c)2,
∑

Sa(b− c)2 ≥ 0,

where
Sa = a4 + (b2 − c2)2.

The equality occurs for a = b = c.

P 2.102. Let a1, a2, . . . , an be real numbers such that

a2
1 + a2

2 + · · ·+ a2
n = n.

Prove that:

(a) for n= 3,
a1 + a2 + a3

3
+min

i 6= j
(ai − a j)

2 ≤
5
3

;

(b) for n= 5,
a1 + a2 + a3 + a4 + a5

5
+min

i 6= j
(ai − a j)

2 ≤ 1.

(Vasile Cîrtoaje, 2019)
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Solution. (a) We need to show that

s+min
i 6= j
(ai − a j)

2 ≤
5
3

,

where
s =

a1 + a2 + a3

3
.

According to Lemma below, we have

min
i 6= j
(ai − a j)

2 ≤
3(1− s2)

2
.

Thus, we only need to show that

s+
3(1− s2)

2
≤

5
3

,

which is equivalent to
(3s− 1)2 ≥ 0.

For a1 ≥ a2 ≥ a3, the equality holds when a1 − a2 = a2 − a3 and a1 + a2 + a3 = 1,
i.e. when

a1 =
1+ 2

p
3

3
, a2 =

1
3

, a3 =
1− 2

p
3

3
.

(b) We need to show that

s+min
i 6= j
(ai − a j)

2 ≤ 1,

where

s =
a1 + a2 + a3 + a4 + a5

5
.

According to Lemma below, we have

min
i 6= j
(ai − a j)

2 ≤
3(1− s2)

2
.

Thus, we only need to show that

s+
1− s2

2
≤ 1,

which is equivalent to
(s− 1)2 ≥ 0.

For a1 ≥ a2 ≥ a3 ≥ a4 ≥ a5, the equality holds when a1 − a2 = a2 − a3 = a3 − a4 =
a4 − a5 and a1 + a2 + a3 + a4 + a5 = 5, i.e. when a1 = a2 = a3 = a4 = a5 = 1.
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Lemma. If a1, a2, . . . , an are real numbers satisfying

a2
1 + a2

2 + · · ·+ a2
n = n, a1 + a2 + · · ·+ an = ns, s ∈ [−1,1],

then

min
i 6= j
(ai − a j)

2 ≤
12(1− s2)

n2 − 1
.

Proof. Assume that
a1 ≥ a2 ≥ · · · ≥ an,

and denote
x =min

i 6= j
(ai − a j)

2.

We have

n2(1− s2) = n(a2
1 + a2

2 + · · ·+ a2
n)− (a1 + a2 + · · ·+ an)

2 =
∑

i< j

(ai − a j)
2

=
n−1
∑

i=1

(ai − ai+1)
2 +

n−2
∑

i=1

(ai − ai+2)
2 +

n−3
∑

i=1

(ai − ai+3)
2 + · · ·+

1
∑

i=1

(ai − an)
2

≥ (n− 1)x + 22(n− 2)x + 32(n− 3)x + · · ·+ (n− 1)2 · [n− (n− 1)]x

= n
�

12 + 22 + 33 + · · ·+ (n− 1)2
�

x −
�

13 + 23 + 33 + · · ·+ (n− 1)3
�

x

=
n2(n− 1)(2n− 1)x

6
−

n2(n− 1)2 x
4

=
n2(n2 − 1)x

12
,

hence

x ≤
12(1− s2)

n2 − 1
.

For a1 ≥ a2 ≥ · · · ≥ an, the equality occurs when

a1 − a2 = a2 − a3 = · · ·= an−1 − an.

Remark. The inequality (b) can be generalized as follows:

1−
a1 + a2 + · · ·+ an

n
≥

n2 − 1
24

min
i 6= j
(ai − a j)

2.

P 2.103. Let a1, a2, . . . , a7 be real numbers such that

a2
1 + a2

2 + · · ·+ a2
7 = n.



Symmetric Polynomial Inequalities in Real Variables 155

Prove that:

(a)

√

√ |a1 + a2 + · · ·+ a7|
7

+ min
i 6= j
(ai − a j)

2 ≤ 1;

(b)

√

√ |a1 + a2 + · · ·+ a7|
7

+ 8 min
i 6= j
(ai − a j)

2 ≤
19
8

.

(Vasile Cîrtoaje, 2019)

Solution. Let
s =

a1 + a2 + · · ·+ a7

7
, |s| ≤ 1.

(a) We need to show that
Æ

|s|+min
i 6= j
(ai − a j)

2 ≤ 1.

According to Lemma from the proof of the preceding P 2.102, we have

min
i 6= j
(ai − a j)

2 ≤
1− s2

4
.

Thus, we only need to show that

Æ

|s|+
1− s2

4
≤ 1,

which is equivalent to

(1− |s|)(1+ |s|)≤ 4
�

1−
Æ

|s|
�

.

This is true if
�

1+
Æ

|s|
�

(1+ |s|)≤ 4,

which is obvious for |s| ≤ 1. The equality holds for a1 = a2 = · · ·= a7 = ±1.

(b) We need to show that
Æ

|s|+ 8min
i 6= j
(ai − a j)

2 ≤
19
8

.

As shown at (a), we have

min
i 6= j
(ai − a j)

2 ≤
1− s2

4
.

Thus, we only need to show that

Æ

|s|+ 2(1− |s|2)≤
19
8

,
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which is equivalent to
16|s|2 + 3≥ 8

Æ

|s|.
This follows immediately from the AM-GM inequality. For a1 ≥ a2 ≥ · · · ≥ a7, the

equality holds when a1 − a2 = a2 − a3 = · · · = a6 − a7 and a1 + a2 + · · ·+ a7 =
±7
4

,

i.e. when ak =
2+ (4− k)

p
15

8
, and also when ak =

−2+ (4− k)
p

15
8

.

P 2.104. Let f be a differentiable convex function on a closed interval I = [a, b]. If
a1, a2, . . . , an ∈ I, then Jensen’s difference

D = f (a1) + f (a2) + · · ·+ f (an)− nf
�a1 + a2 + · · ·+ an

n

�

is maximal when all ai ∈ {a, b}.

(Vasile Cîrtoaje, 1990)

Solution. For fixed a2, a3, . . . , an, let

F(x) = f (x) + f (a2) + · · ·+ f (an)− nf
� x + a2 + · · ·+ an

n

�

.

Since f ′(x) is increasing, from

F ′(x) = f ′(x)− f ′
� x + a2 + · · ·+ an

n

�

,

it follows that F ′(x)≤ 0 for x ∈ [a, c] and F ′(x)≥ 0 for x ∈ [c, b], where

c =
a2 + · · ·+ an

n− 1
.

As a consequence, F(x) is decreasing on [a, c] and increasing on [c, b]. Thus, f (x)
is maximal for x = a or x = b, i.e. Jensen’s difference

D = f (a1) + f (a2) + · · ·+ f (an)− nf
�a1 + a2 + · · ·+ an

n

�

is maximal for a1 ∈ {a, b}. Similarly, Jensen’s difference D is maximal for ai ∈
{a, b}, i = 2,3, . . . , n.

Remark. The following statement is also valid:

• Let f be a differentiable convex function on an interval I, and let a1, a2, . . . , an ∈ I
such that a1 ≥ a2 ≥ · · · ≥ an. For fixed a1 and an, Jensen’s difference

D = f (a1) + f (a2) + · · ·+ f (an)− nf
�a1 + a2 + · · ·+ an

n

�

is maximal when all ai ∈ {a1, an}, i = 2,3, . . . , n− 1.

The proof is similar with the above one.
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P 2.105. If a, b, c are real numbers, then

2(a2 − a+ 1)(b2 − b+ 1)(c2 − c + 1)≥ (abc − 1)2.

(Vasile Cîrtoaje, 2018)

First Solution. If one of a, b, c is zero, the inequality is true. Thus, if a = 0, the
inequality becomes

2(b2 − b+ 1)(c2 − c + 1)≥ 1.

Indeed, we have

2(b2 − b+ 1)(c2 − c + 1)≥ 2 ·
3
4
·

3
4
> 1.

Assume now that abc 6= 0, denote

x = (b2 − b+ 1)(c2 − c + 1), y = bc,

and write the required inequality as A≥ 0, where

A= (2x − y2)a2 − 2(x − y)a+ 2x − 1.

We have

2x − y2 ≥ 2 ·
3b2

4
·

3c2

4
− b2c2 > 0

and

A= (2x − y2)
�

a−
x − y

2x − y2

�2

+ B,

where

B = 2x − 1−
(x − y)2

2x − y2
=

x[3x − 2(y2 − y + 1)]
2x − y2

.

Since
3x − 2(y2 − y + 1)≥ 0,

with equality for b = c =
3±
p

5
2

(see P 2.5), we have B ≥ 0, hence A≥ 0.

The equality occurs for a =
x − y

2x − y2
and b = c =

3±
p

5
2

(when b2−3b+1= 0).

Since
x = (b2 − b+ 1)2 = (2b)2 = 4b2,

x − y = 4b2 − b2 = 3b2, 2x − y2 = 8b2 − b4,

a =
x − y

2x − y2
=

3b2

8b2 − b4
=

3
8− b2

=
3

8− (3b− 1)
=

1
3− b

= b,

the equality holds for

a = b = c =
3±
p

5
2

.
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Second Solution ( by KaiRain). We get the required inequality by multiplying the
inequalities

3(b2 − b+ 1)(c2 − c + 1)≥ 2(y2 − y + 1),

4(a2 − a+ 1)(y2 − y + 1)≥ 3(a y − 1)2,

where y = bc. The first inequality is treated in P 2.5, while the second inequality
is equivalent to

(a y − 2a− 2y + 1)2 ≥ 0.

P 2.106. If a, b, c are real numbers, then

(1+
p

2)(a2 − a+ 1)(b2 − b+ 1)(c2 − c + 1)≥ a2 b2c2 + 1.

(Vasile Cîrtoaje, 1992)

Solution. For a = b = c, the inequality becomes

(1+
p

2)(a2 − a+ 1)3 ≥ a6 + 1.

This inequality is equivalent to

[a2 − (1+
p

2)a+ 1]2[
p

2a2 − (
p

2− 1)a+
p

2]≥ 0.

Based on this result, we have

(1+
p

2)3(a2 − a+ 1)3(b2 − b+ 1)3(c2 − c + 1)3 ≥ (a6 + 1)(b6 + 1)(c6 + 1).

It suffices to show that

(a6 + 1)(b6 + 1)(c6 + 1)≥ (a2 b2c2 + 1)3,

which is just Hölder’s inequality. The equality occurs for

a = b = c =
1
2

�

1+
p

2±
Æ

2
p

2− 1
�

.

P 2.107. If a, b, c, d are real numbers, then

(1− a+ a2)(1− b+ b2)(1− c + c2)(1− d + d2)≥
�

1+ abcd
2

�2

.

(Vasile Cîrtoaje, 1992)
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Solution. For a = b = c = d, the inequality can be written as

2(1− a+ a2)2 ≥ 1+ a4.

It is true, since
2(1− a+ a2)2 − 1− a4 = (1− a)4 ≥ 0.

Using this result, we get

4(1− a+ a2)2(1− b+ b2)2 ≥ (1+ a4)(1+ b4)≥ (1+ a2 b2)2.

Then, the desired inequality follows by multiplying the inequalities

2(1− a+ a2)(1− b+ b2)≥ 1+ a2 b2,

2(1− c + c2)(1− d + d2)≥ 1+ c2d2,

(1+ a2 b2)(1+ c2d2)≥ (1+ abcd)2.

The equality holds for a = b = c = d = 1.

P 2.108. If a, b, c, d are real numbers, then

3(a2 − a+ 1)(b2 − b+ 1)(c2 − c + 1)(d2 − d + 1)≥ a2 b2c2d2 − abcd + 1.

Solution. For fixed b, c, d, denote m = bcd and write the inequality as F(a) ≥ 1,
where

F(a) = 3 f (a)(b2 − b+ 1)(c2 − c + 1)(d2 − d + 1),

f (a) =
a2 − a+ 1

m2a−ma+ 1
.

If abcd = 0 or abc = 1 or bcd = 1 or cda = 1 or dab = 1, the inequality is true.
Indeed, if a = 0 or bcd = 1, then f (a) = 1 and

F(a) = 3(b2 − b+ 1)(c2 − c + 1)(d2 − d + 1)≥ 3 ·
3
4
·

3
4
·

3
4
> 1.

Consider now abcd 6= 0, abc 6= 1, bcd 6= 1, cda 6= 1, dab 6= 1. We have the
derivative

f ′(a) =
(m− 1)[ma2 − 2(m+ 1)a+ 1]

(m2a2 −ma+ 1)2
,

with f ′(a1) = f ′(a2) = 0, where

a1 =
m+ 1−

p
m2 +m+ 1
m

, a2 =
m+ 1+

p
m2 +m+ 1
m

.
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For a = a1 and a = a2, we have

abcd =
2a− 1
a− 2

.

Case 1: m > 1. f (a) is increasing on (−∞, a1] ∪ [a2,∞) and decreasing on
[a1, a2]. Thus, it suffices to consider a = −∞ and a = a2. For a = −∞, we have

F(−∞) =
3

b2c2d2
(b2−b+1)(c2−c+1)(d2−d+1)≥

3
b2c2d2

·
3b2

4
·
3c2

4
·
3d2

4
=

81
64
> 1.

It remains the case a = a2.
Case 2: 0 < m < 1. f (a) is increasing on [a1, a2] and decreasing on (−∞, a1]∪

[a2,∞). Thus, it suffices to consider a = a1 and a =∞. For a =∞, we have
F(∞)> 1. It remains the case a = a1.

Case 3: m < 0. f (a) is increasing on (−∞, a2] ∪ [a1,∞) and decreasing on
[a2, a1]. Thus, it suffices to consider a = −∞ and a = a1. For a = −∞, we have
F(−∞)> 1. It remains the case a = a1.

Due to symmetry, it suffices to consider the cases a ∈ {a1, a2}, b ∈ {b1, b2},
c ∈ {c1, c2} and d ∈ {d1, d2}, when

abcd =
2a− 1
a− 2

=
2b− 1
b− 2

=
2c − 1
c − 2

=
2d − 1
d − 2

.

From these relations, we get a = b = c = d = −1, or

a = b = c = d =
1
4

�

3+
p

5±
Æ

6
p

5− 2
�

(which follows from a+
1
a
=

3+
p

5
2
). In the first case, we have

F(a) =
3(a2 − a+ 1)4

a8 − a4 + 1
= 243> 1,

and in the second case

F(a) =
3(a2 − a+ 1)4

a8 − a4 + 1
= 1.

Therefore, the equality occurs for

a = b = c = d =
1
4

�

3+
p

5±
Æ

6
p

5− 2
�

.

P 2.109. If a, b, c, d are real numbers, then

(a2 − a+ 2)(b2 − b+ 2)(c2 − c + 2)(d2 − d + 2)≥ (a+ b+ c + d)2.

(Vasile Cîrtoaje, 1994)
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Solution. . We denote

x = a+ b− 1, y = c + d − 1,

and use the inequality

(a2 − a+ 2)(b2 − b+ 2)≥ (a+ b− 1)2 + 3,

which is equivalent to

(2ab− a− b)2 + 3(a− b)2 ≥ 0.

Thus, it suffices to show that

(x2 + 3)(y2 + 3)≥ (x + y + 2)2,

which is equivalent to

x2 y2 + 2(x2 + y2 − x y)− 4(x + y) + 5≥ 0,

(x y − 1)2 + 2(x2 + y2)− 4(x + y) + 4≥ 0,

(x y − 1)2 + (x − y)2 + (x + y)2 − 4(x + y) + 4≥ 0,

(x y − 1)2 + (x − y)2 + (x + y − 2)2 ≥ 0,

The equality occurs for a = b = c = d = 1.

Remark. From the given proof, the following stronger inequality holds:

(a2 − a+ 2)(b2 − b+ 2)(c2 − c + 2)(d2 − d + 2)≥ (a+ b+ c + d)2 + (x + y − 2)2,

that is

(a2−a+2)(b2− b+2)(c2− c+2)(d2−d+2)≥ (a+ b+ c+d)2+(a+ b+ c+d−4)2.

P 2.110. If a, b, c, d are real numbers such that

a+ b+ c + d ≥ a2 + b2 + c2 + d2,

then
4abcd + 3(a2 + b2 + c2 + d2) + 24≥ 10(a+ b+ c + d).
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Solution. Consider the nontrivial case

a+ b+ c + d ≥ a2 + b2 + c2 + d2 > 0,

when

0<
a+ b+ c + d

4
≤

a2 + b2 + c2 + d2

a+ b+ c + d
≤ 1,

and consider the function

f (x) = 24x4 − 10(a+ b+ c + d)x3 + 3(a2 + b2 + c2 + d2)x2 + 4abcd,

defined for
a+ b+ c + d

4
≤ x ≤ 1.

We have

f ′(x) = 6x g(x), g(x) = 16x2 − 5(a+ b+ c + d)x + a2 + b2 + c2 + d2.

Since

g ′(x) = 32x − 5(a+ b+ c + d)≥ 8(a+ b+ c + d)− 5(a+ b+ c + d)> 0

g is increasing, therefore

g(x)≥ g
�

a+ b+ c + d
4

�

= a2 + b2 + c2 + d2 −
1
4
(a+ b+ c + d)2]≥ 0.

From f ′(x)≥ 0, it follows that f is increasing, hence

f (1)≥ f
�

a2 + b2 + c2 + d2

a+ b+ c + d

�

.

Thus, it is enough to prove the homogeneous inequality

f
�

a2 + b2 + c2 + d2

a+ b+ c + d

�

≥ 0,

which is equivalent to

24x4 − 7x3 y2 + 4abcd y4 ≥ 0,

where
x = a2 + b2 + c2 + d2, y = a+ b+ c + d.

Write the inequality as

6x3(4x − y2)≥ y2(x3 − 4abcd y2).
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Since 4x ≥ y2, it is enough to show that

3x2(4x − y2)≥ 2(x3 − 4abcd y2).

For d = 0,the inequality is true if 10x − 3y2 ≥ 0. Indeed, we have

10x − 3y2 = 10(a2 + b2 + c2)− 3(a+ b+ c)2

= a2 + b2 + c2 + 3(a2 + b2 + c2 − ab− bc − ca)> 0.

According to Remark 4 from P 2.53, for fixed x and y , the product abcd is minimal
only if the set (a, b, c, d) has at most two distinct elements. Thus, it is enough to
to consider the case a = b and c = d, and the case a = b = c. Due to homogeneity,
we can set d = 1.

Case 1: a = b and c = d = 1. Since

3x2(4x − y2) = 48(a2 + 1)2(a− 1)2,

2(x3 − 4abcd y2) = 16[(a2 + 1)3 − 2a2(a+ 1)2]

= 16(a− 1)2(a4 + 2a3 + 4a2 + 2a+ 1),

we need to show that

3(a2 + 1)3 ≥ a4 + 2a3 + 4a2 + 2a+ 1,

that is
a4 − a3 + a2 − a+ 1≥ 0,

(a− 1)2(a2 + a+ 1) + a2 ≥ 0.

Case 2: a = b = c and d = 1. Since

3x2(4x − y2) = 9(3a2 + 1)2(a− 1)2,

2(x3 − 4abcd y2) = 2[(3a2 + 1)3 − 4a3(3a+ 1)2]

= 2(a− 1)2(27a4 + 18a3 + 12a2 + 2a+ 1),

we need to show that

9(3a2 + 1)2 ≥ 2(27a4 + 18a3 + 12a2 + 2a+ 1),

that is
27a4 − 36a3 + 30a2 − 4a+ 7≥ 0,

9a4 + 8a2 + 3+ 2(9a2 + 2)(a− 1)2 ≥ 0.

The equality holds for a = b = c = d = 0 and for a = b = c = d = 1.
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P 2.111. Let a, b, c, d be real numbers such that abcd > 0. Prove that
�

a+
1
a

��

b+
1
b

��

c +
1
c

��

d +
1
d

�

≥ (a+ b+ c + d)
�

1
a
+

1
b
+

1
c
+

1
d

�

.

(Vasile Cîrtoaje, 2011)

First Solution. Write the inequality as A≥ B, where

A= (a2 + 1)(b2 + 1)(c2 + 1)(d2 + 1)

= (1+ a2c2)(1+ b2d2) +
∑

a2 +
∑

a2 b2 +
∑

a2 b2c2,

B =
�∑

a
��∑

abc
�

= 4abcd +
∑

a2(bc + cd + bd).

Then,

A− B =(1− abcd)2 + (ac − bd)2 +
1
2

∑

a2(1− bc)2 +
1
2

∑

a2(1− cd)2

+
∑

a2 b2 −
∑

a2 bd,

and hence
A− B ≥

∑

a2 b2 −
∑

a2 bd =
1
2

∑

a2(b− d)2 ≥ 0.

The equality holds for a = b = c = d = 1.

Second Solution. Since

(a+b)(b+c)(c+d)(d+a)−(a+b+c+d)(bcd+cda+dab+abc) = (ac−bd)2 ≥ 0,

it suffices to show that

(a2 + 1)(b2 + 1)(c2 + 1)(d2 + 1)≥ (a+ b)(b+ c)(c + d)(d + a).

By the Cauchy-Schwarz inequality, we have

(a2 + 1)(1+ b2)≥ (a+ b)2,

(b2 + 1)(1+ c2)≥ (b+ c)2,

(c2 + 1)(1+ d2)≥ (c + d)2,

(d2 + 1)(1+ a2)≥ (d + a)2.

Multiplying these inequalities, we get

(a2 + 1)(b2 + 1)(c2 + 1)(d2 + 1)≥ |(a+ b)(b+ c)(c + d)(d + a)|
≥ (a+ b)(b+ c)(c + d)(d + a).
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P 2.112. Let a, b, c, d be real numbers such that

a+ b+ c + d = 4, a2 + b2 + c2 + d2 = 7.

Prove that
a3 + b3 + c3 + d3 ≤ 16.

(Vasile Cîrtoaje, 2010)

First Solution. Assume that a ≤ b ≤ c ≤ d, and denote

s = a+ b, p = ab, s ≤ 2, 4p ≤ s2.

Since
2(a3 + b3) = 2(s3 − 3ps),

c + d = 4− s, c2 + d2 = 7− (a2 + b2) = 7− s2 + 2p,

2(c3 + d3) = (c + d)[3(c2 + d2)− (c + d)2] = (4− s)(−4s2 + 8s+ 5+ 6p),

we have

2(a3 + b3 + c3 + d3 − 16) = 12p(2− s) + 6s3 − 24s2 + 27s− 12

≤ 3s2(2− s) + 6s3 − 24s2 + 27s− 12

= 3(s− 1)2(s− 4)≤ 0.

This completes the proof. The equality holds for a = b = c = 1/2 and d = 5/2 (or
any cyclic permutation).

Second Solution (by Vo Quoc Ba Can). From

7= a2 + b2 + c2 + d2 ≥ a2 +
1
3
(b+ c + d)2 = a2 +

1
3
(4− a)2,

it follows that

a ∈
�

−1
2

,
5
2

�

.

Similarly, we have

b, c, d ∈
�

−1
2

,
5
2

�

.

On the other hand,

a3 + b3 + c3 + d3 =
5
2

∑

a2 +
∑

(a3 −
5
2

a2)

=
35
2
−

1
2

∑

a2(5− 2a)

and, by virtue of the Cauchy-Schwarz inequality,

∑

a2(5− 2a)≥

�∑

a(5− 2a)
�2

∑

(5− 2a)
=

�

5
∑

a− 2
∑

a2
�2

20− 2
∑

a
= 3.
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Therefore,

a3 + b3 + c3 + d3 ≤
35
2
−

3
2
= 16.

Remark. In the same manner as in the second solution, we can prove the following
generalization.

• If a1, a2, . . . , an are real numbers such that

a1 + a2 + · · ·+ an = 2n, a2
1 + a2

2 + · · ·+ a2
n = n(n+ 3),

then
a3

1 + a3
2 + · · ·+ a3

n ≤ n(n2 + 3n+ 4),

with equality for a1 = ...= an−1 = 1 and an = n+ 1 (or any cyclic permutation).

P 2.113. Let a, b, c, d be real numbers such that

a+ b+ c + d = 0.

Prove that
12(a4 + b4 + c4 + d4)≤ 7(a2 + b2 + c2 + d2)2.

(Vasile Cîrtoaje, 2010)

Solution. Assume that a2 =max{b2, c2, d2} and denote

x =

√

√ b2 + c2 + d2

3
, x2 ≤ a2.

Since

x2 =
b2 + c2 + d2

3
≥
�

b+ c + d
3

�2

=
a2

9
,

we have
a2

9
≤ x2 ≤ a2.

By the Cauchy-Schwarz inequality, we have

b4 + c4 + d4 = (b2 + c2 + d2)2 − 2(b2c2 + c2d2 + d2 b2)

= 9x4 − 2(b2c2 + c2d2 + d2 b2)

≤ 9x4 −
2
3
(bc + cd + d b)2

= 9x4 −
1
6
[(b+ c + d)2 − b2 − c2 − d2]2

= 9x4 −
1
6
(a2 − 3x2)2 =

45x4 + 6a2 x2 − a4

6
,
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hence

a4 + b4 + c4 + d4 ≤
45x4 + 6a2 x2 + 5a4

6
.

Therefore, it suffices to prove that

2(45x4 + 6a2 x2 + 5a4)≤ 7(a2 + 3x2)2,

which is equivalent to the obvious inequality

(x2 − a2)(9x2 − a2)≤ 0.

The equality holds for −a/3= b = c = d (or any cyclic permutation).

Remark. Similarly, we can prove the following generalization.

• If a1, a2, . . . , an are real numbers such that

a1 + a2 + · · ·+ an = 0,

then
(a2

1 + a2
2 + · · ·+ a2

n)
2

a4
1 + a4

2 + · · ·+ a4
n

≥
n(n− 1)

n2 − 3n+ 3
,

with equality for −a1/(n− 1) = a2 = · · ·= an (or any cyclic permutation).

P 2.114. Let a, b, c, d be real numbers such that

a+ b+ c + d = 0.

Prove that
(a2 + b2 + c2 + d2)3 ≥ 3(a3 + b3 + c3 + d3)2.

(Vasile Cîrtoaje, 2011)

Solution. Applying the AM-GM inequality and the identity

(a+ b+ c)3 = a3 + b3 + c3 + 3(a+ b)(b+ c)(c + a),

we have

(a2 + b2 + c2 + d2)3 = [a2 + b2 + c2 + (a+ b+ c)2]3

= [(a+ b)2 + (b+ c)2 + (c + a)2]3

≥ 27(a+ b)2(b+ c)2(c + a)2

= 3[(a+ b+ c)3 − a3 − b3 − c3]2

= 3(a3 + b3 + c3 + d3)2.
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The equality holds for a = b = c = −d/3 (or any cyclic permutation).

Remark. The following generalization holds (Vasile Cirtoaje, 2011).

• If a1, a2, . . . , an are real numbers such that

a1 + a2 + · · ·+ an = 0,

then

(a2
1 + a2

2 + · · ·+ a2
n)

3 ≥
n(n− 1)
(n− 2)2

(a3
1 + a3

2 + · · ·+ a3
n)

2.

Moreover,

• If k ≥ 3 is an odd number, and a1, a2, . . . , an are real numbers such that

a1 + a2 + · · ·+ an = 0,

then

(a2
1 + a2

2 + · · ·+ a2
n)

k ≥
nk(n− 1)k−2

[(n− 1)k−1 − 1]2
(ak

1 + ak
2 + · · ·+ ak

n)
2,

with equality for a1 = · · ·= an−1 = −an/(n− 1) (or any cyclic permutation).

P 2.115. If a, b, c, d are real numbers such that

a+ b+ c + d = 0,

then
a4 + b4 + c4 + d4 + 28abcd ≥ 0.

(Adrian Zahariuc, 2015)

First Solution. Assume that a, b, c, d are nonzero and a ≥ b ≥ c ≥ d. Since the
statement remains unchanged by changing the sign of all numbers, it suffices to
consider the cases

a ≥ b ≥ c ≥ d > 0,

a ≥ b ≥ c > 0> d,

a ≥ b > 0> c ≥ d.

Clearly, the first and the third case are trivial. For

a ≥ b ≥ c > 0> d,

we rewrite the inequality as

a4 + b4 + c4 + (a+ b+ c)4 ≥ 28abc(a+ b+ c).
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By the AM-GM inequality, we have

(a+ b+ c)4 ≥ 27abc(a+ b+ c).

Thus, it suffices to show that

a4 + b4 + c4 ≥ abc(a+ b+ c).

This inequality follows from

a4 + b4 + c4 ≥ a2 b2 + b2c2 + c2a2 ≥ abc(a+ b+ c).

The equality holds for a = b = c = −d/3 (or any cyclic permutation).

Second Solution Write the inequality as f4(a, b, c)≥ 0, where

f4(a, b, c) = a4 + b4 + c4 + (a+ b+ c)4 − 28abc(a+ b+ c).

According to P 2.60, it suffices to show that f4(a, 1, 1)≥ 0. Indeed, we have

f4(a, 1, 1) = 2(a− 1)2(a+ 3)2 ≥ 0.

P 2.116. If a, b, c, d are real numbers such that

abcd = 1.

Prove that
(1+ a2)(1+ b2)(1+ c2)(1+ d2)≥ (a+ b+ c + d)2.

(Pham Kim Hung, 2006)

Solution. Substituting a, b, c, d by |a|, |b|, |c|, |d|, respectively, the left side of the
inequality remains unchanged, while the right side either remains unchanged or in-
creases. Therefore, it suffices to prove the inequality only for a, b, c, d ≥ 0. Among
a, b, c, d there are two numbers less than or equal to 1, or greater than or equal to
1. Let b and d be these numbers; that is,

(1− b)(1− d)≥ 0.

By the Cauchy-Schwarz inequality, we have

(1+ a2)(1+ b2)(1+ c2)(1+ d2) = (1+ a2 + b2 + a2 b2)(c2 + 1+ d2 + c2d2)

≥ (c + a+ bd + abcd)2 = (c + a+ bd + 1)2.

So, it suffices to show that

c + a+ bd + 1≥ a+ b+ c + d,

which is equivalent to (1− b)(1−d)≥ 0. The equality holds for a = b = c = d = 1.
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P 2.117. Let a, b, c, d be real numbers such that

a2 + b2 + c2 + d2 = 4.

Prove that
(abc)3 + (bcd)3 + (cda)3 + (dab)3 ≤ 4.

(Vasile Cîrtoaje, 2004)

Solution. Substituting a, b, c, d by |a|, |b|, |c|, |d|, respectively, the hypothesis and
the right side of the inequality remains unchanged, while the left side either re-
mains unchanged or decreases. Therefore, it suffices to prove the inequality only
for a, b, c, d ≥ 0. Setting

x = a2, y = b2, z = c2, t = d2,

we need to prove that

(x yz)3/2 + (yzt)3/2 + (zt x)3/2 + (t x y)3/2 ≤ 4

for
x + y + z + t = 4.

By the AM-GM inequality, we have

4 4px yz ≤ 1+ x + y + z = 5− t,

(x yz)3/2 = x yz
p

x yz ≤
x yz(5− t)2

16
;

analogously,

(yzt)3/2 ≤
yzt(5− x)2

16
, (zt x)3/2 ≤

zt x(5− y)2

16
, (t x y)3/2 ≤

t x y(5− z)2

16
.

Therefore, it suffices to show that

x yz(5− t)2 + yzt(5− x)2 + zt x(5− y)2 + t x y(5− z)2 ≤ 64,

which is equivalent to E(x , y, z, t)≥ 0, where

E(x , y, z, t) = 36x yzt − 25(x yz + yzt + zt x + t x y) + 64.

To prove this inequality, we use the mixing variables method. Without loss of gen-
erality, assume that x ≥ y ≥ z ≥ t ≥ 0. Setting

u=
x + y + z

3
,

we have
3u+ t = 4, t ≤ u≤

4
3

, u3 ≥ x yz.
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We will show that
E(x , y, z, t)≥ E(u, u, u, t)≥ 0.

The left inequality is equivalent to

25[(u3 − x yz) + t(3u2 − x y − yz − zx)]≥ 36t(u3 − x yz),

(25− 36t)(u3 − x yz) + 25t(3u2 − x y − yz − zx)≥ 0.

By Schur’s inequality

(x + y + z)3 + 9x yz ≥ 4(x + y + z)(x y + yz + zx),

we get
9u3 + 3x yz ≥ 4u(x y + yz + zx),

hence

3u2 − x y − yz − zx ≥ 3u2 −
9u3 + 3x yz

4u
=

3(u3 − x yz)
4u

.

Therefore, it suffices to prove that

25− 36t +
75t
4u
≥ 0.

Write this inequality as
25(4u+ 3t)≥ 144ut,

then in the homogeneous form

25(4u+ 3t)(3u+ t)≥ 576ut,

or, equivalently,
75(4u2 + t2)≥ 251ut.

This inequality is true, since

75(4u2 + t2)− 251ut ≥ 75(4u2 + t2 − 4ut) = 75(2u− t)2 ≥ 0.

The right inequality E(u, u, u, t)≥ 0 holds also, since

E(u, u, u, t) = (36u3 − 75u2)t − 25u3 + 64

= (36u3 − 75u2)(4− 3u)− 25u3 + 64

= 4(16− 75u2 + 86u3 − 27u4)

= 4(1− u)2(16+ 32u− 27u2)

= 4(1− u)2[4(4− u) + 9u(4− 3u)]≥ 0.

This completes the proof. The equality holds for a = b = c = d = 1.
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P 2.118. Let a, b, c, d be real numbers such that

a2 + b2 + c2 + d2 = 1.

Prove that

(1− a)4 + (1− b)4 + (1− c)4 + (1− d)4 ≥ a4 + b4 + c4 + d4.

(Vasile Cîrtoaje, 2007)

Solution. The desired inequality follows by summing the inequalities

(1− a)4 + (1− b)4 ≥ c4 + d4,

(1− c)4 + (1− d)4 ≥ a4 + b4.

Since
(1− a)4 + (1− b)4 ≥ 2(1− a)2(1− b)2

and

c4 + d4 ≥
1
2
(c2 + d2)2,

the former inequality holds if

2(1− a)(1− b)≥ c2 + d2.

Indeed,

2(1− a)(1− b)− c2 − d2 = 2(1− a)(1− b) + a2 + b2 − 1= (a+ b− 1)2 ≥ 0.

The equality holds for a = b = c = d =
1
2

.

P 2.119. If a, b, c, d ≥
−1
2

such that

a+ b+ c + d = 4,

then
1− a

1− a+ a2
+

1− b
1− b+ b2

+
1− c

1− c + c2
+

1− d
1− d + d2

≥ 0.

(Vasile Cîrtoaje, 2014)
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Solution (by Nguyen Van Quy). Assume that a ≤ b ≤ c ≤ d and consider two
cases: a > 0 and a ≤ 0.

Case 1: a > 0. Write the inequality as

a2

1− a+ a2
+

b2

1− b+ b2
+

c2

1− c + c2
+

d2

1− d + d2
≤ 4.

We have

a2

1− a+ a2
+

b2

1− b+ b2
+

c2

1− c + c2
+

d2

1− d + d2
≤

a2

a
+

b2

b
+

c2

c
+

d2

d
= 4.

Case 2: −1/2 ≤ a ≤ 0. We can check that the equality holds for a = −1/2 and
b = c = d = 3/2 (or any cyclic permutation). Define the function

f (x) =
1− x

1− x + x2
+ k1 x + k2, x ≥

−1
2

,

such that
f (3/2) = f ′(3/2) = 0.

We get

k1 =
12
49

, k2 =
−4
49

,

when

f (x) =
1− x

1− x + x2
+

12x − 4
49

=
(2x − 3)2(3x + 5)

49(1− x + x2)
.

Since f (x)≥ 0 for x ≥ −1/2, we have

1− x
1− x + x2

≥
4− 12x

49
.

Therefore,

1− b
1− b+ b2

+
1− c

1− c + c2
+

1− d
1− d + d2

≥
12− 12(b+ c + d)

49
=

12(a− 3)
49

.

Thus, it suffices to show that

1− a
1− a+ a2

+
12(a− 3)

49
≥ 0.

Indeed,
1− a

1− a+ a2
+

12(a− 3)
49

=
(2a+ 1)(6a2 − 27a+ 13)

49(1− a+ a2)
≥ 0.

The proof is completed. The equality holds for a = b = c = d = 1, and also for
a = −1/2 and b = c = d = 3/2 (or any cyclic permutation).
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P 2.120. If a, b, c, d are real numbers such that a ≥ b ≥ c ≥ d, b+ c ≥ 0 and

a2 + b2 + c2 + d2 = 4,

then
a2c2 + b2d2 ≤ 2.

(Vasile Cîrtoaje, 2020)

Solution. We have

2− a2c2 − b2d2 = 2+ (a2 − b2)(b2 − c2)− b2(a2 + c2 + d2 − b2)

= 2+ (a2 − b2)(b2 − c2)− b2(4− 2b2)

= (a2 − b2)(b2 − c2) + 2(b2 − 1)2

= (a− b)(b− c)(a+ b)(b+ c) + 2(b2 − 1)2 ≥ 0.

The equality holds for a = b = 1≥ c ≥ d and c2+d2 = 2, and for a ≥ b = c = 1≥ d
and a2 + d2 = 2.

P 2.121. Let a, b, c, d be real numbers such that

a2 + b2 + c2 + d2 = 4.

If a ≥ b ≥ c ≥ d, then
1− abcd ≤ (a− d)2.

(Vasile Cîrtoaje, 2019)

Solution. There are five cases to consider.

Case 1: a ≥ b ≥ c ≥ d ≥ 0. For a = d, the inequality is a trivial equality.
Consider next that a > d, give up the condition b ≥ c (consider only that b, c ∈
[d, a]) and write the inequality in the homogeneous form f ≥ 0, where

f = 16abcd + 4(a− d)2(a2 + b2 + c2 + d2)− (a2 + b2 + c2 + d2)2.

For fixed a, c and d, f is a function of b, b ∈ [d, a]. We have

f ′(b) = 16acd + 8(a− d)2 b− 4b(a2 + b2 + c2 + d2) = 4bh(b),

where

h(b) =
4acd

b
+ 2(a− d)2 − (a2 + b2 + c2 + d2).

Since h(b) is a decreasing function, there are three possible cases: (1) h(b) ≥ 0
for b ∈ [d, a], hence f (b) is increasing on [d, a]; (2) h(b) ≥ 0 for b ∈ [d, d1] and
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h(b) ≤ 0 for b ∈ [d1, a], hence f (b) is increasing on [d, d1] and decreasing on
[d1, a]; (3) h(b) ≤ 0 for b ∈ [d, a], hence f (b) is decreasing on [d, a]. In all these
cases f (b) is minimal when b ∈ {a, d}. As a consequence, we only need to prove
the required inequality for b ∈ {a, d}. Similarly, we only need to prove the required
inequality for c ∈ {a, d}. So, we need to show that

16akd4−k + 4(a− d)2[ka2 + (4− k)d2]− [ka2 + (4− k)d2]2 ≥ 0,

where
k ∈ {1,2, 3}.

For d = 0, the inequality reduces to

k(4− k)a4 ≥ 0,

which is true for k ∈ {1, 2,3}. Next, due to homogeneity, we may set d = 1 (which
involves a > 1). The required inequality becomes

4(a− 1)2(ka2 + 4− k)≥ (ka2 + 4− k)2 − 16ak.

Fork = 1, we need to show that

4(a− 1)2(a2 + 3)≥ (a2 + 3)2 − 16a,

that is
4(a− 1)2(a2 + 3)≥ (a− 1)2(a2 + 2a+ 9),

(a− 1)2(3a2 − 2a+ 3)≥ 0.

The last inequality is clearly true.

Fork = 2, we need to show that

2(a− 1)2(a2 + 1)≥ (a2 + 1)2 − 4a2,

that is
2(a− 1)2(a2 + 1)≥ (a2 − 1)2,

(a− 1)4 ≥ 0.

Fork = 3, we need to show that

4(a− 1)2(3a2 + 1)≥ (3a2 + 1)2 − 16a3,

that is
4(a− 1)2(3a2 + 1)≥ (a− 1)2(9a2 + 2a+ 1),

(a− 1)2(3a2 − 2a+ 3)≥ 0.

Case 2: a ≥ b ≥ c ≥ 0≥ d. Replacing d by −d, we need to show that

(a+ d)2 ≥ 1+ abcd
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for a ≥ b ≥ c ≥ 0 and d ≥ 0 satisfying a2 + b2 + c2 + d2 = 4. It is enough to show
that

2(a+ d)2 ≥ 2+ ad(b2 + c2),

that is
2(a+ d)2 ≥ 2+ ad(4− a2 − d2),

(a2 + d2)(2+ ad)≥ 2.

Since
4= a2 + b2 + c2 + d2 ≤ 3a2 + d2,

we have

(a2 + d2)(2+ ad)≥ 2(a2 + d2) =
4a2 + 4d2

2
≥

3a2 + d2

2
≥ 2.

Case 3: a ≥ b ≥ 0 ≥ c ≥ d. Replacing c by −c and d by −d, we need to show
that

abcd + (a+ d)2 ≥ 1

for a ≥ b ≥ 0 and d ≥ c ≥ 0 satisfying a2 + b2 + c2 + d2 = 4. It is enough to show
that

(a+ d)2 ≥ 1.

Since
4= a2 + b2 + c2 + d2 ≤ 2a2 + 2d2,

we have
(a+ d)2 ≥ a2 + d2 ≥ 2.

Case 4: a ≥ 0 ≥ b ≥ c ≥ d. Replacing a, b, c, d with −d,−c,−b,−a, respec-
tively, this case reduces to the case 1.

Case 5: 0 ≥ a ≥ b ≥ c ≥ d. Replacing a, b, c, d with −d,−c,−b,−a, respec-
tively, this case reduces to the case a ≥ b ≥ c ≥ d ≥ 0.

The proof is completed. The equality occurs for a = b = c = d = 1.

P 2.122. If a, b, c, d, e ≥ −3 such that

a+ b+ c + d + e = 5,

then

1− a
1+ a+ a2

+
1− b

1+ b+ b2
+

1− c
1+ c + c2

+
1− d

1+ d + d2
+

1− e
1+ e+ e2

≥ 0.

(Vasile Cîrtoaje, 2014)
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Solution. Assume that a ≤ b ≤ c ≤ d ≤ e and consider two cases: a ≥ 0 and a ≤ 0.

Case 1: a ≥ 0. For any x ≥ 0, we have

1− x
1+ x + x2

−
1− x

3
=
(x − 1)2(x + 2)
3(1+ x + x2)

≥ 0.

Therefore, it suffices to show that

1− a
3
+

1− b
3
+

1− c
3
+

1− d
3
+

1− e
3
≥ 0,

which is an identity.

Case 2: −3 ≤ a ≤ 0. We can check that the equality holds for a = −3 and b = c =
d = e = 2. Based on this, define the function

f (x) =
1− x

1+ x + x2
+ k1 x + k2, x ≥ −3,

such that
f (2) = f ′(2) = 0.

We get

k1 =
2
49

, k2 =
3
49

,

when

f (x) =
1− x

1+ x + x2
+

2x + 3
49

=
(x − 2)2(2x + 13)

49(1+ x + x2)
.

Since f (x)≥ 0 for x ≥ −3, we have

1− x
1+ x + x2

≥
−2x − 3

49
.

Thus, it suffices to show that

1− a
1+ a+ a2

−
2b+ 3

49
−

2c + 3
49

−
2d + 3

49
−

2e+ 3
49

≥ 0,

which is equivalent to

1− a
1+ a+ a2

−
2(b+ c + d + e) + 12

49
≥ 0,

1− a
1+ a+ a2

−
2(5− a) + 12

49
≥ 0,

(a+ 3)(2a2 − 26a+ 9)
49(1+ a+ a2)

≥ 0.

Clearly, the last inequality is true for −3≤ a ≤ 0.
The proof is completed. The equality holds for a = b = c = d = e = 1, and also for
a = −3 and b = c = d = e = 2 (or any cyclic permutation).
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P 2.123. Let a, b, c, d, e be real numbers such that

a+ b+ c + d + e = 0.

Prove that

30(a4 + b4 + c4 + d4 + e4)≥ 7(a2 + b2 + c2 + d2 + e2)2.

(Vasile Cîrtoaje, 2010)

Solution. Write the inequality as E(a, b, c, d, e)≥ 0, where

E(a, b, c, d, e) = 30(a4 + b4 + c4 + d4 + e4)− 7(a2 + b2 + c2 + d2 + e2)2.

Among the numbers a, b, c, d, e there exist three with the same sign. Let a, b, c be
these numbers. We will show that

E(a, b, c, d, e)≥ E(a, b, c, x , x)≥ 0,

where

x =
d + e

2
=
−(a+ b+ c)

2
.

The inequality E(a, b, c, d, e)≥ E(a, b, c, x , x) is equivalent to

30(d4 + e4 − 2x4)≥ 7(d2 + e2 − 2x2)(2a2 + 2b2 + 2c2 + d2 + e2 + 2x2).

Since

d4 + e4 − 2x4 =
(d − e)2(7d2 + 10de+ 7e2)

8
and

d2 + e2 − 2x2 =
(d − e)2

2
,

we need to show that

15(7d2 + 10de+ 7e2)≥ 14(2a2 + 2b2 + 2c2 + d2 + e2 + 2x2),

which reduces to
21(d2 + e2) + 34de ≥ 7(a2 + b2 + c2).

Since a, b, c have the same sign, we have

a2 + b2 + c2 ≤ (a+ b+ c)2 = (d + e)2.

Thus, it suffices to prove that

21(d2 + e2) + 34de ≥ 7(d + e)2,

which is equivalent to the obvious inequality

4(d2 + e2) + 10(d + e)2 ≥ 0.
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The inequality E(a, b, c, x , x)≥ 0, where x = −(a+ b+ c)/2, can be written as

23
∑

a4 + 2
�∑

a
�4
≥ 7

�∑

a2
��∑

a
�2
+ 14

∑

a2 b2.

Since
�∑

a
�2
− 3

∑

ab =
1
2
[(a− b)2 + (b− c)2 + (c − a)2]≥ 0,

it suffices to prove that

23
∑

a4 + 6
�∑

ab
��∑

a
�2
≥ 7

�∑

a2
��∑

a
�2
+ 14

∑

a2 b2.

This is equivalent to

∑

a4 + abc
∑

a ≥
1
2

∑

ab(a2 + b2) +
∑

a2 b2,

which follows by summing Schur’s inequality of degree four
∑

a4 + abc
∑

a ≥
∑

ab(a2 + b2)

and the obvious inequality

1
2

∑

ab(a2 + b2)≥
∑

a2 b2.

This completes the proof. The equality holds for a = b = c = 2 and d = e = −3 (or
any permutation thereof).

Remark. Notice that the following generalization holds (Vasile Cîrtoaje, 2010).

• If n is an odd positive integer and a1, a2, . . . , an are real numbers such that

a1 + a2 + · · ·+ an = 0,

then
(a2

1 + a2
2 + · · ·+ a2

n)
2

a4
1 + a4

2 + · · ·+ a4
n

≤
n(n2 − 1)

n2 + 3
,

with equality when (n + 1)/2 of a1, a2, . . . , an are equal to (n − 1)/2 and the other
(n− 1)/2 numbers are equal to −(n+ 1)/2.

P 2.124. If a, b, c, d, e are real numbers such that a+ b+ c + d + e = 5, then

(a2 − a+ 1)(b2 − b+ 1)(c2 − c + 1)(d2 − d + 1)(e2 − e+ 1)≥ 1.

(Vasile Cîrtoaje, 2015)



180 Vasile Cîrtoaje

Solution (by KaiRain). Without loss of generality, consider

e =min{a, b, c, d, e}, e ≤ 1.

Write the inequality as
A(e2 − e+ 1)≥ 4,

where
A= 4(a2 − a+ 1)(b2 − b+ 1)(c2 − c + 1)(d2 − d + 1),

and use the inequality

2(a2 − a+ 1)(b2 − b+ 1)≥ (a+ b− 1)2 + 1,

which is equivalent to

(2ab− a− b)2 + (a− b)2 ≥ 0.

According to this result and the Cauchy-Schwarz inequality, we have

A≥ [(a+ b− 1)2 + 1][1+ (c + d − 1)2]≥ (a+ b− 1+ c + d − 1)2 = (3− e)2.

Thus, it suffices to show that

(3− e)2(e2 − e+ 1)≥ 4,

which is equivalent to
(e− 1)2(e2 − 5e+ 5)≥ 0.

Since
e2 − 5e+ 5≥ 5(1− e)≥ 0,

the proof is completed. The equality holds for a = b = c = d = e = 1.

P 2.125. If a, b, c, d, e are real numbers, then

4(a2 − a+ 1)(b2 − b+ 1)(c2 − c + 1)(d2 − d + 1)(e2 − e+ 1)≥ (abcde− 1)2.

(Vasile Cîrtoaje, 2015)

Solution. Firstly, we consider the cases abcde = 1, a = 0 and bcde = 2. For
abcde = 1, the inequality is trivial. For a = 0, we need to show that

4(b2 − b+ 1)(c2 − c + 1)(d2 − d + 1)(e2 − e+ 1)≥ 1.

Indeed, we have

4(b2 − b+ 1)(c2 − c + 1)(d2 − d + 1)(e2 − e+ 1)≥ 4 ·
3
4
·

3
4
·

3
4
·

3
4
> 1.
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For bcde = 2, the inequality becomes

4(a2 − a+ 1)(b2 − b+ 1)(c2 − c + 1)(d2 − d + 1)(e2 − e+ 1)≥ (2a− 1)2.

Since

(b2 − b+ 1)(c2 − c + 1)(d2 − d + 1)(e2 − e+ 1)≥ |b| · |c| · |d| · |e|= 2,

it suffices to show that
8(a2 − a+ 1)≥ (2a− 1)2,

which is clearly true. Otherwise, we write the inequality as F(a)≥ 1, where

F(a) = 4 f (a)(b2 − b+ 1)(c2 − c + 1)(d2 − d + 1)(e2 − e+ 1),

f (a) =
a2 − a+ 1
(ga− 1)2

, g = bcde,

f ′(a) =
(g − 2)a− 2g + 1
(ag − 1)3

.

If g 6= 2, we have f ′(a1) = 0 for

a1 =
2g − 1
g − 2

.

Case 1: g ∈ (−∞, 0) ∪ (2,∞). f (a) is increasing on
�

−∞,
1
g

�

∪ [a1,∞) and

decreasing on
�

1
g

, a1

�

. Thus, it suffices to consider a = −∞ and a = a1. For

a = −∞, we have

F(a) =
4
g2
(b2−b+1)(c2−c+1)(d2−d+1)(e2−e+1)≥

4
g2
·
3b2

4
·
3c2

4
·
3d2

4
·
3e2

4
> 1.

It remains the case a = a1.

Case 2: 0 < g < 2. f (a) is increasing on
�

a1,
1
g

�

and decreasing on (−∞, a1]∪
�

1
g

,∞
�

. Thus, it suffices to consider a =∞ and a = a1 and . For a =∞, the

inequality holds. It remains the case a = a1.
For a = a1, we have

abcde =
a(2a− 1)

a− 2
.

Due to symmetry, it suffices to consider the case a = a1, b = b1, c = c1, d = d1,
e = e1, when

abcde =
a(2a− 1)

a− 2
=

b(2b− 1)
b− 2

=
c(2c − 1)

c − 2
=

d(2d − 1)
d − 2

=
e(2e− 1)

e− 2
. (∗)
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From
a(2a− 1)

a− 2
=

b(2b− 1)
b− 2

,

we get
(a− b)(ab− 2a− 2b+ 1) = 0.

The case ab− 2a− 2b+ 1= 0 implies

b =
2a− 1
a− 2

,

and from

abcde =
a(2a− 1)

a− 2
,

we get abcde = ab, hence cde = 1. Since

(c2 − c + 1)(d2 − d + 1)(e2 − e+ 1)≥ |c| · |d| · |e|= 1

and
4(a2 − a+ 1)(b2 − b+ 1)− 3(ab− 1)2 = (ab− 2a− 2b+ 1)2 ≥ 0,

we have

F(a)≥
4(a2 − a+ 1)(b2 − b+ 1)

(ab− 1)2
> 1.

As a consequence, it suffices to consider the case a = b = c = d = e = f , when (*)
implies

a = b = c = d = e =
1
4

�

3+
p

5±
Æ

6
p

5− 2
�

(from a+
1
a
=

3+
p

5
2

). In this case, we have

F(a) =
4(a2 − a+ 1)5

(a5 − 1)2
= 1.

Note that

4(a2 − a+ 1)5 − (a5 − 1)2 = (a4 − 3a3 + 3a2 − 3a+ 1)2(3a2 − 2a+ 3).

The equality occurs for

a = b = c = d = e =
1
4

�

3+
p

5±
Æ

6
p

5− 2
�

.
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P 2.126. If a1, a2, . . . , a5 are real numbers such that

a3
1 + a3

2 + a3
3 + a3

4 + a3
5 = 0,

then
∑

i< j

aia j ≤ 0.

(Vasile Cîrtoaje, 2019)

Solution. Since the statement remain unchanged by replacing all ai with−ai, there
are two cases to consider: a1 ≤ 0, a2, a3, a4, a5 ≥ 0, and a1, a2 ≤ 0, a3, a4, a5 ≥ 0.

In the first case, we need to show that if x , a, b, c, d ≥ 0 such that

x3 = a3 + b3 + c3 + d3,

then
(a+ b+ c + d)x ≥ ab+ ac + ad + bc + bd + cd.

Write the inequality as

2(a+ b+ c + d)x + a2 + b2 + c2 + d2 ≥ (a+ b+ c + d)2.

Denoting

s =
a+ b+ c + d

4
,

the inequality becomes

8sx + a2 + b2 + c2 + d2 ≥ 16s2.

Since
a2 + b2 + c2 + d2 ≥ 4s2

and

x3 ≥ 4s3 ≥
27
8

s3 x ≥
3
2

s,

we have
8sx + a2 + b2 + c2 + d2 − 16s2 ≥ 12s2 + 4s2 − 16s2 = 0.

In the second case, we need to show that if x , y, a, b, c ≥ 0 such that

x3 + y3 = a3 + b3 + c3,

then
(a+ b+ c)(x + y)≥ x y + ab+ bc + ca.

From the known inequalities

(x + y)3 ≥ x3 + y3, (x + y)3 ≤ 4(x3 + y3),
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we get

x + y ≥ 3
p

x3 + y3 =
3
p

a3 + a3 + c3,

x + y ≤ 3
p

4x3 + 4y3 = 3
Æ

4(a3 + b3 + c3).

Denoting t = x + y , we have
t1 ≤ t ≤ t2,

where
t1 =

3
p

a3 + b3 + c3, t2 =
3
Æ

4(a3 + b3 + c3).

On the other hand, it is enough to prove the inequality

(a+ b+ c)(x + y)≥
(x + y)2

4
+
(a+ b+ c)2

3
,

or, better, the inequality

(a+ b+ c)(x + y)≥
5(x + y)2

12
+
(a+ b+ c)2

3
,

which is equivalent to

5t2 − 12(a+ b+ c)t + 4(a+ b+ c)2 ≤ 0,

[t − 2(a+ b+ c)) [5t − 2(a+ b+ c)]≤ 0.

This is true if t1 ≥
2
5
(a+ b+ c) and t2 ≤ 2(a+ b+ c. Thus, we need to show that

a3 + b3 + c3 ≥
8

125
(a+ b+ c)3

and
a3 + b3 + c3 ≤ 2(a+ b+ c)3.

Indeed, we have

a3 + b3 + c3 ≥
1
9
(a+ b+ c)3 ≥

8
125
(a+ b+ c)3

and
a3 + b3 + c3 ≤ (a+ b+ c)3 ≤ 2(a+ b+ c)3.

Thus, the proof is completed. The equality holds for a1 = a2 = a3 = a4 = a5 = 0.
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P 2.127. If a1, a2, . . . , a13 are real numbers such that

a1 + a2 + · · ·+ a13 =
13
2

,

then
8a1 + 7

a2
1 − a1 + 1

+
8a2 + 7

a2
2 − a2 + 1

+ · · ·+
8a13 + 7

a2
13 − a13 + 1

≤
572

3
.

(Vasile Cîrtoaje, 2018)

Solution. Since
8a1 + 7

a2
1 − a1 + 1

− 16=
−(4a1 − 3)2

a2
1 − a1 + 1

,

we may rewrite the inequality as

∑ (4a1 − 3)2

a2
1 − a1 + 1

≥
52
3

.

Substituting

ai = x i +
1
2

, i = 1, 2, . . . , 13,

we need to show that
∑ (4x1 − 1)2

4x2
1 + 3

≥
13
3

for
x1 + x2 + · · ·+ x13 = 0.

Let
S = x2

1 + x2
2 + · · ·+ x2

13.

Since

13(4x2
1+3) = 48x2

1+4(x2+· · ·+x13)
2+39≤ 48x2

1+48(x2
2+· · ·+x2

13)+39= 48S+39,

it is enough to show that
∑ (4x1 − 1)2

48S + 39
≥

1
3

,

which is an identity.

The equality occurs for a1 = a2 = · · · = a13 =
1
2

, and for a1 =
−5
2

, a2 = · · · =

a13 =
3
4

(or any cyclic permutation).
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P 2.128. Let a1, a2, . . . , an ≥ −1 such that

a1 + a2 + · · ·+ an = 0.

Prove that
(n− 2)(a2

1 + a2
2 + · · ·+ a2

n)≥ a3
1 + a3

2 + · · ·+ a3
n.

(Vasile Cîrtoaje, 2005)

Solution. Without loss of generality, assume that

a1 ≥ a2 ≥ · · · ≥ an.

Write the inequality as
n
∑

i=1

ai f (ai)≥ 0,

where
f (x) = (n− 2)x − x2.

Since

f (ai)− f (ai+1) = (ai − ai+1)(n− 2− ai − ai+1)
≥ (ai − ai+1)(n− 2− a1 − a2)
= (ai − ai+1)(n− 2+ a3 + · · ·+ an)
= (ai − ai+1)[(1+ a3) + · · ·+ (1+ an)]≥ 0,

we have a1 ≥ a2 ≥ · · · ≥ an and

f (a1)≥ f (a2)≥ · · · ≥ f (an).

Therefore, by Chebyshev’s inequality, we get

n
n
∑

i=1

ai f (ai)≥ (a1 + a2 + · · ·+ an)[ f (a1) + f (a2) + · · ·+ f (an)] = 0.

The equality holds for a1 = a2 = · · · = an = 0, and for a1 = n− 1 and a2 = · · · =
an = −1 (or any cyclic permutation).

P 2.129. Let a1, a2, . . . , an ≥ −1 such that

a1 + a2 + · · ·+ an = 0.

Prove that

(n− 2)(a2
1 + a2

2 + · · ·+ a2
n) + (n− 1(a3

1 + a3
2 + · · ·+ a3

n)≥ 0.

(Vasile Cîrtoaje, 2005)
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Solution. For the nontrivial case a2
1 + a2

2 + · · ·+ a2
n 6= 0, write the inequality as

(n− 1)
S3

S2
+ n− 2≥ 0,

where
S2 = a2

1 + a2
2 + · · ·+ a2

n, S3 = a3
1 + a3

2 + · · ·+ a3
n.

Without loss of generality, assume that

a1 ≤ a2 ≤ · · · ≤ an, a1 < 0.

For any p > 0 such that a1 + p ≥ 0, by the Cauchy-Schwarz inequality, we have

n
∑

i=1

(ai + 1)2(ai + p)≥
[
∑n

i=1(ai + 1)(ai + p)]2
∑n

i=1(ai + p)
,

which is equivalent to

n
∑

i=1

a3
i + (p+ 2)

n
∑

i=1

a2
i + np ≥

(
∑n

i=1 a2
i + np)2

np
,

S3

S2
≥

S2

np
− p.

Thus, it suffices to show that

S2 +
n(n− 2)

n− 1
p ≥ np2.

Case 1: S2 ≥
n

n− 1
. Choosing p = 1, we have

a1 + p ≥ 0

and

S2 +
n(n− 2)

n− 1
p− np2 = S2 −

n
n− 1

≥ 0.

Case 2: 0< S2 ≤
n

n− 1
. We set

p =

√

√n− 1
n

S2.

From

p2 − a2
1 =

n− 1
n

S2 − a2
1

=
n− 1

n
(a2

2 + · · ·+ a2
n)−

1
n

a2
1

≥
(a2 + · · ·+ an)2

n
−

a2
1

n
= 0,
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we get a1 + p ≥ 0. In addition,

S2 +
n(n− 2)

n− 1
p− np2 = S2 + (n− 2)

s

n
n− 1

S2 − (n− 1)S2

= (n− 2)
p

S2

�s

n
n− 1

−
p

S2

�

≥ 0.

The equality holds for a1 = a2 = · · · = an = 0, and also for a1 = −1 and a2 = · · · =
an = 1/(n− 1) (or any cyclic permutation).

P 2.130. Let a1, a2, . . . , an ≥ n− 1−
p

n2 − n+ 1 be nonzero real numbers such that

a1 + a2 + · · ·+ an = n.

Prove that
1
a2

1

+
1
a2

2

+ · · ·+
1
a2

n

≥ n.

(Vasile Cîrtoaje, 2010)

Solution. Without loss of generality, assume that

a1 ≤ a2 ≤ · · · ≤ an.

There are two cases to consider: a1 > 0 and a1 < 0.

Case 1: a1 > 0. By the Cauchy-Schwarz inequality, we have

1
a2

1

+
1
a2

2

+ · · ·+
1
a2

n

≥
1
n

�

1
a1
+

1
a2
+ · · ·+

1
an

�2

≥
1
n

�

n2

a1 + a2 + · · · an

�2

= n.

Case 2: a1 < 0. There exists k, 1≤ k ≤ n− 1, such that

a1 ≤ · · · ≤ ak < 0< ak+1 ≤ · · · ≤ an.

Let us denote
x =

a1 + · · ·+ ak

k
, y =

ak+1 + · · ·+ an

n− k
.

We have

−1< n− 1−
p

n2 − n+ 1≤ x < 0, y > 1, kx + (n− k)y = n.

From k ≥ 1 and k(y − x) = n(y − 1)> 0, we get

y − x ≤ n(y − 1),



Symmetric Polynomial Inequalities in Real Variables 189

hence
y ≥

n− x
n− 1

.

In addition, from n− 1−
p

n2 − n+ 1≤ x , we get

n+ 2(n− 1)x − x2 ≥ 0.

By the Cauchy-Schwarz inequality, we have

1
a2

1

+ · · ·+
1
a2

k

≥
1
k

�

1
−a1

+ · · ·+
1
−ak

�2

≥
1
k

�

k2

−a1 − · · · − ak

�2

=
k
x2

and

1
a2

k+1

+ · · ·+
1
a2

n

≥
1

n− k

�

1
ak+1

+ · · ·+
1
an

�2

≥
1

n− k

�

(n− k)2

ak+1 + · · ·+ an

�2

=
n− k

y2
.

Then, it suffices to prove that

k
x2
+

n− k
y2
≥ n,

which is equivalent to

k(y − x)(y + x)≥ nx2(y − 1)(y + 1).

Since k(y − x) = n(y − 1) > 0, we need to show that y + x ≥ x2(y + 1), which is
equivalent to

(1− x)(x + y + x y)≥ 0.

This is true, since 1− x > 0 and

x + y + x y ≥ x +
(1+ x)(n− x)

n− 1
=

n+ 2(n− 1)x − x2

n− 1
≥ 0.

The equality holds when a1 = a2 = · · ·= an = 1, as well as when one of a1, a2, . . . , an

is n− 1−
p

n2 − n+ 1 and the others are
1+
p

n2 − n+ 1
n− 1

.

P 2.131. Let a1, a2, . . . , an ≤
n

n− 2
be real numbers such that

a1 + a2 + · · ·+ an = n.

If k is a positive integer, k ≥ 2, then

ak
1 + ak

2 + · · ·+ ak
n ≥ n.

(Vasile Cîrtoaje, 2012)
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Solution. First we show that at most one of ai is negative. Assume, for the sake of
contradiction, that an−1 < 0 and an < 0. Then,

an−1 + an = n− (a1 + · · ·+ an−2)≥ n− (n− 2) ·
n

n− 2
= 0,

which is a contradiction. There are two cases to consider.

Case 1: a1, a2, . . . , an ≥ 0. The desired inequality is just Jensen’s inequality applied
to the convex function f (x) = x k.

Case 2: a1, a2, . . . , an−1 ≥ 0 and an < 0. Let us denote

x =
a1 + a2 + · · ·+ an−1

n− 1
, y = −an.

We have
(n− 1)x − y = n, x ≥ y > 0.

The condition x ≥ y follows from

x − y = n− (n− 2)x ≥ 0.

By Jensen’s inequality, we have

ak
1 + ak

2 + · · ·+ ak
n−1 ≥ (n− 1)x k.

In addition, ak
n ≥ −yk. Thus, it suffices to show that

(n− 1)x k − yk ≥ n.

We will use the inequality
x k − yk > (x − y)k,

which is equivalent to

1−
� y

x

�k
>
�

1−
y
x

�k
.

Indeed,

1−
� y

x

�k
−
�

1−
y
x

�k
> 1−

� y
x

�

−
�

1−
y
x

�

= 0.

Therefore, it suffices to show that

(n− 2)x k + (x − y)k ≥ n.

By Jensen’s inequality, we have

(n− 2)x k + (x − y)k ≥ [(n− 2) + 1]
�

(n− 2)x + (x − y)
(n− 2) + 1

�k

= n
� n

n− 1

�k−1
> n.

This completes the proof. The equality holds for a1 = a2 = · · · an = 1.
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P 2.132. If a1, a2, . . . , an ≥
−n

n− 2
, n≥ 3, then

1
a2

1

+
1
a2

2

+ · · ·+
1
a2

n

≥
1
a1
+

1
a2
+ · · ·+

1
an

.

(Vasile Cîrtoaje, 2012)

Solution. Let
f (x) =

1
x2
−

1
x

, x ≥
−n

n− 2
, x 6= 0.

We need to show that

f (a1) + f (a2) + · · ·+ f (an)≥ 0.

Consider
a1, . . . , ak < 0, ak+1, . . . , an > 0, k = 0,1, . . . , n− 1.

Since a1 + · · ·+ ak ≥
−kn
n− 2

, it follows that

ak+1 + · · ·+ an = n− (a1 + · · ·+ an)≤
n(n+ k− 2)

n− 2
.

Denote
x =

1
ak+1

+ · · ·+
1
an

.

Since

f (ai)≥
2(n− 2)(n− 1)

n2
, i = 1,2, . . . , k,

we get

f (a1) + f (a2) + · · ·+ f (an)≥
2k(n− 2)(n− 1)

n2
+ f (ak+1) + · · ·+ f (an)

=
2k(n− 2)(n− 1)

n2
+

�

1
a2

k+1

+ · · ·+
1
a2

n

�

− x ≥
2k(n− 2)(n− 1)

n2
+

x2

n− k
− x .

Thus, we need to show that

nx2 − n(n− k)x +
2k(n− k)(n− 2)(n− 1)

n
≥ 0.

For 9k ≥
n3

(3n− 4)2
, we have

nx2 +
2k(n− k)(n− 2)(n− 1)

n
− n(n− k)x ≥

≥ [2
Æ

2k(n− k)(n− 2)(n− 1)− n(n− k)]x
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=
p

n− k[2
Æ

2k(n− 2)(n− 1)− n
p

n− k]x ≥ 0.

So, it remains to study the case 9k ≤
n3

(3n− 4)2
, when it suffices to show that

x ≥
n(n− k) +

p

(n− k)[n3 − k(3n− 4)2]
2n

.

Because

x ≥
(n− k)2

ak+1 + · · ·+ an
≥
(n− k)2(n− 2)

n(n+ k− 2)
,

it suffices to show that

(n− k)2(n− 2)
n+ k− 2

≥
n(n− k) +

p

(n− k)[n3 − k(3n− 4)2]
2

,

that is equivalent to

(n− k)[n2 − 2n− (3n− 4)k])
n+ k− 2

≥
Æ

(n− k)[n3 − k(3n− 4)2)],

(n− k)[n2 − 2n− (3n− 4)k]2 ≥ (k+ n− 2)2[n3 − k(3n− 4)2],

32k(k− 1)(n− 1)2(n− 2)≥ 0.

The equality occurs for k = 0, that means for a1 = a2 = · · ·= an = 1, and for k = 1,

that means a1 =
−n

n+ 2
and a2 = · · ·= an =

n
n− 2

(or any cyclic permutation).

P 2.133. If a1, a2, . . . , an (n≥ 3) are real numbers such that

a1, a2, . . . , an ≥
−(3n− 2)

n− 2
, a1 + a2 + · · ·+ an = n,

then
1− a1

(1+ a1)2
+

1− a2

(1+ a2)2
+ · · ·+

1− an

(1+ an)2
≥ 0.

(Vasile Cîrtoaje, 2014)

Solution. Since the inequality holds for n = 3 (see P 2.25), consider further that
n≥ 4. Assume that a1 ≤ a2 ≤ · · · ≤ an and consider two cases: a1 ≥ 0 and a1 ≤ 0.

Case 1: a1 ≥ 0. For x ≥ 0, from

1− x
(1+ x)2

+
x − 1

4
=
(x − 1)2(x + 3)

4(1+ x)2
,
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we get
1− x
(1+ x)2

≥
1− x

4
.

Therefore, it suffices to show that

1− a1

4
+

1− a2

4
+ · · ·+

1− an

4
≥ 0,

which is an identity.

Case 2: −(3n− 2)/(n− 2)≤ a1 ≤ 0. We can check that the equality holds for

a1 =
−(3n− 2)

n− 2
, a2 = a3 = · · ·= an =

n+ 2
n− 2

.

Based on this, define the function

f (x) =
1− x
(1+ x)2

+ k1 x + k2, x ≥
−(3n− 2)

n− 2
, x 6= −1,

such that

f
�

n+ 2
n− 2

�

= f ′
�

n+ 2
n− 2

�

= 0.

We get

k1 =
(n− 4)(n− 2)2

4n3
,

k2 =
(n− 2)(−n2 + 6n+ 8)

4n3
,

f (x) =
[(n− 2)x − n− 2]2[(n− 4)x + 3n− 4]

4n3(1+ x)2
.

Since f (x)≥ 0 for n≥ 4 and x ≥ −(3n− 2)/(n− 2), x 6= −1, we have

1− x
(1+ x)2

≥ −k1 x − k2.

Based on this result, we get

1− a2

(1+ a2)2
+ · · ·+

1− an

(1+ an)2
≥ −k1(a2 + a3 + · · ·+ an)− (n− 1)k2.

Thus, it suffices to show that

1− a1

(1+ a1)2
− k1(a2 + a3 + · · ·+ an)− (n− 1)k2 ≥ 0,

which is equivalent to

1− a1

(1+ a1)2
− k1(n− a1)− (n− 1)k2 ≥ 0,
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[(n− 2)a1 + 3n− 2][(n− 4)(n− 2)a2
1 − 2(n2 + 4n− 8)a1 + n2 − 2n+ 8]≥ 0.

The last inequality is clearly true for n ≥ 4 and −(3n− 2)/(n− 2) ≤ a1 ≤ 0. This
completes the proof. The equality holds for a1 = a2 = · · · an = 1, and also for

a1 =
−(3n− 2)

n− 2
and a2 = · · ·= an =

n+ 2
n− 2

(or any cyclic permutation).

P 2.134. Let a1, a2, . . . , an be real numbers.

(a) If k ≥ n, then

(a1 + a2 + · · ·+ an + k− n)2

(a2
1 + k− 1)(a2

2 + k− 1) · · · (a2
n + k− 1)

≤
1

kn−2
;

(b) If k ≥
n
2

, then

a1 + a2 + · · ·+ an + k− n
(a2

1 + 2k− 1)(a2
2 + 2k− 1) · · · (a2

n + 2k− 1)
≤

1
2(2k)n−1

;

(c)
(a1 + a2 + · · ·+ an)2

(a2
1 + n− 1)(a2

2 + n− 1) · · · (a2
n + n− 1)

≤
1

nn−2
;

(d)
a1 + a2 + · · ·+ an

(a2
1 + 2n− 1)(a2

2 + 2n− 1) · · · (a2
n + 2n− 1)

≤
1

2(2n)n−1
.

(Vasile Cîrtoaje, 1994)

Solution (by Gabriel Dospinescu). a) Assume that

a2
1 ≤ · · · ≤ a2

j ≤ 1≤ a2
j+1 ≤ · · · ≤ a2

n,

where 0 ≤ j ≤ n. By Bernoulli’s inequality and Cauchy-Schwarz inequality, we
have

1
kn

n
∏

i=1

(a2
i + k− 1) =

n
∏

i=1

�

1+
a2

i − 1

k

�

=
j
∏

i=1

�

1+
a2

i − 1

k

� n
∏

i= j+1

�

1+
a2

i − 1

k

�

≥

�

1+
j
∑

i=1

a2
i − 1

k

��

1+
n
∑

i= j+1

a2
i − 1

k

�

=
1
k2

�

(a2
1 + · · ·+ a2

j ) + (n− j) + (k− n)
��

j + (a2
j+1 + · · ·+ a2

n) + (k− n)
�
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≥
1
k2

�

(a1 + · · ·+ a j) + (a j+1 + · · ·+ an) + (k− n)
�2

=
1
k2
(a1 + a2 + · · ·+ an + k− n]2 .

Thus, the proof is completed. The equality occurs for a1 = a2 = · · ·= an = 1.

(b)Replacing k by 2k (k ≥ n/2), the inequality in (a) becomes

(a1 + a2 + · · ·+ an + 2k− n)2

(a2
1 + 2k− 1)(a2

2 + 2k− 1) · · · (a2
n + 2k− 1)

≤
1

(2k)n−2
.

Thus, we only need to show that

4k(a1 + a2 + · · ·+ an + k− n)≤ (a1 + a2 + · · ·+ an + 2k− n)2,

which is equivalent to
(a1 + a2 + · · ·+ an − n)2 ≥ 0.

The equality occurs for a1 = a2 = · · ·= an = 1.

(c) The inequality follows from (a) for k = n.

(d) The inequality follows from (b) for k = n.

P 2.135. Let a1, a2, . . . , an be real numbers.

(a) If k ≥
n
4

, then

(a1 + a2 + · · ·+ an + 2k− n)2

(a2
1 − a1 + k)(a2

2 − a2 + k) · · · (a2
n − an + k)

≤
4

kn−2
;

(b)
(a1 + a2 + · · ·+ an)2

(a2
1 − a1 +

n
2
)(a2

2 − a2 +
n
2
) · · · (a2

n − an +
n
2
)
≤

2n

nn−2
.

(Vasile Cîrtoaje, 1994)

Solution. (a) The inequality follows from the inequality (a) in P 2.134 by replacing
all ai with 2ai − 1 and k with 4k. The equality occurs for a1 = a2 = · · ·= an = 1.

(b) The inequality follows from (a) for k =
n
2

.
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P 2.136. Let a1, a2, . . . , an be real numbers.

(a) If k ≥ n, then

(a1 + a2 + · · ·+ an)2 + n(k− n)
(a2

1 + k− 1)(a2
2 + k− 1) · · · (a2

n + k− 1)
≤

n
kn−1

;

(b)
(a1 + a2 + · · ·+ an)2 + n2

(a2
1 + 2n− 1)(a2

2 + 2n− 1) · · · (a2
n + 2n− 1)

≤
n

(2n)n−1
.

(Vasile Cîrtoaje, 2018)

Solution. (a) We will use the induction method. For n = 1, the inequality is an
identity. Assume that the inequality is true for n−1 variables. Since k ≥ n> n−1,
we have

(n− 1)x2 + k− n+ 1
(a2

1 + k− 1)(a2
2 + k− 1) · · · (a2

n−1 + k− 1)
≤

1
kn−2

,

where
x =

a1 + a2 + · · ·+ an−1

n− 1
.

We need to show that

[(n− 1)x + an]2 + n(k− n)
(a2

1 + k− 1)(a2
2 + k− 1) · · · (a2

n + k− 1)
≤

n
kn−1

for k ≥ n. Using the induction hypothesis, it suffices to prove that

[(n− 1)x + an]2 + n(k− n)
n(a2

n + k− 1)
≤
(n− 1)x2 + k− n+ 1

k
,

which is equivalent to

nx2a2
n + (k− n)(x2 + a2

n)− 2kxan + n≥ 0,

n(xan − 1)2 + (k− n)(x − an)
2 ≥ 0.

The equality occurs for a1 = a2 = · · ·= an = 1.

(b) The inequality follows from (a) for k = 2n.



Chapter 3

Symmetric Polynomial Inequalities
in Nonnegative Variables

3.1 Applications

3.1. If a, b, c are positive real numbers, then

a2 + b2 + c2 + 2abc + 1≥ 2(ab+ bc + ca).

3.2. Let a, b, c be nonnegative real numbers. If 0≤ k ≤
p

2, then

a2 + b2 + c2 + kabc + 2k+ 3≥ (k+ 2)(a+ b+ c).

3.3. If a, b, c are positive real numbers, then

abc(a+ b+ c) + 2(a2 + b2 + c2) + 3≥ 4(ab+ bc + ca).

3.4. If a, b, c are positive real numbers, then

a(b2 + c2) + b(c2 + a2) + c(a2 + b2) + 3≥ 3(ab+ bc + ca).

3.5. If a, b, c are positive real numbers, then

�

a2 + b2 + c2

3

�3

≥ a2 b2c2 + (a− b)2(b− c)2(c − a)2.

197
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3.6. If a, b, c are positive real numbers, then

(a+ b+ c − 3)(ab+ bc + ca− 3)≥ 3(abc − 1)(a+ b+ c − ab− bc − ca).

3.7. If a, b, c are positive real numbers, then

(a) a3 + b3 + c3 + ab+ bc + ca+ 9≥ 5(a+ b+ c);

(b) a3 + b3 + c3 + 4(ab+ bc + ca) + 18≥ 11(a+ b+ c).

3.8. If a, b, c are positive real numbers, then

(a) a3 + b3 + c3 + abc + 8≥ 4(a+ b+ c);

(b) 4(a3 + b3 + c3) + 15abc + 54≥ 27(a+ b+ c).

3.9. Let a, b, c be nonnegative real numbers such that

a+ b+ c = a2 + b2 + c2.

Prove that
ab+ bc + ca ≥ a2 b2 + b2c2 + c2a2.

3.10. If a, b, c are nonnegative real numbers, then

(a2 + 2bc)(b2 + 2ca)(c2 + 2ab)≥ (ab+ bc + ca)3.

3.11. If a, b, c are nonnegative real numbers, then

(2a2 + bc)(2b2 + ca)(2c2 + ab)≥ (ab+ bc + ca)3.

3.12. Let a, b, c be nonnegative real numbers such that

a+ b+ c = 2.

Prove that

(a) (a2 + b2)(b2 + c2)(c2 + a2)≤ (a+ b)(b+ c)(c + a);

(b) (a2 + b2)(b2 + c2)(c2 + a2)≤ 2.
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3.13. Let a, b, c be nonnegative real numbers such that

a+ b+ c = 2.

Prove that
(a3 + b3)(b3 + c3)(c3 + a3)≤ 2.

3.14. Let a, b, c be nonnegative real numbers such that

a2 + b2 + c2 = 2.

Prove that
(a3 + b3)(b3 + c3)(c3 + a3)≤ 2.

3.15. If a, b, c are nonnegative real numbers such that

a+ b+ c = 2,

then
(3a2 − 2ab+ 3b2)(3b2 − 2bc + 3c2)(3c2 − 2ca+ 3a2)≤ 36.

3.16. Let a, b, c be nonnegative real numbers such that

a+ b+ c = 3.

Prove that
(a2 − 4ab+ b2)(b2 − 4bc + c2)(c2 − 4ca+ a2)≤ 3.

3.17. If a, b, c are positive real numbers such that

a+ b+ c = 3,

then
abc +

12
ab+ bc + ca

≥ 5.

3.18. If a, b, c are positive real numbers such that

a2 + b2 + c2 = 3,

then
5(a+ b+ c) +

3
abc
≥ 18.
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3.19. If a, b, c are positive real numbers such that

a2 + b2 + c2 = 3,

then
12+ 9abc ≥ 7(ab+ bc + ca).

3.20. If a, b, c are positive real numbers such that

a2 + b2 + c2 = 3,

then
21+ 18abc ≥ 13(ab+ bc + ca).

3.21. If a, b, c are positive real numbers such that

a2 + b2 + c2 = 3,

then
(2− ab)(2− bc)(2− ca)≥ 1.

3.22. Let a, b, c be positive real numbers such that

abc = 1.

Prove that
�

a+ b+ c
3

�5

≥
a2 + b2 + c2

3
.

3.23. If a, b, c are positive real numbers such that

abc = 1,

then

a3 + b3 + c3 + a−3 + b−3 + c−3 + 21≥ 3(a+ b+ c)(a−1 + b−1 + c−1).

3.24. If a, b, c are positive real numbers such that

abc = 1,

then
a2 + b2 + c2 − ab− bc − ca ≥

9
4
(a+ b+ c − 3).
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3.25. If a, b, c are positive real numbers such that

abc = 1,

then
a2 + b2 + c2 + a+ b+ c ≥ 2(ab+ bc + ca).

3.26. If a, b, c are positive real numbers such that

abc = 1,

then
a2 + b2 + c2 + 15(ab+ bc + ca)≥ 16(a+ b+ c).

3.27. If a, b, c are positive real numbers such that

abc = 1,

then
2

a+ b+ c
+

1
3
≥

3
ab+ bc + ca

.

3.28. If a, b, c are positive real numbers such that

abc = 1,

then

ab+ bc + ca+
6

a+ b+ c
≥ 5.

3.29. If a, b, c are positive real numbers such that

abc = 1,

then
3
Æ

(1+ a)(1+ b)(1+ c)≥ 4
Æ

4(1+ a+ b+ c).

3.30. If a, b, c are positive real numbers, then

a6 + b6 + c6 − 3a2 b2c2 ≥ 18(a2 − bc)(b2 − ca)(c2 − ab).
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3.31. If a, b, c are positive real numbers such that

a+ b+ c = 3,

then
1
a2
+

1
b2
+

1
c2
≥ a2 + b2 + c2.

3.32. If a, b, c are positive real numbers such that

ab+ bc + ca = 3,

then
a3 + b3 + c3 + 7abc ≥ 10.

3.33. If a, b, c are nonnegative real numbers such that

a3 + b3 + c3 = 3,

then
a4 b4 + b4c4 + c4a4 ≤ 3.

3.34. If a, b, c are nonnegative real numbers, then

(a+ 1)2(b+ 1)2(c + 1)2 ≥ 4(a+ b+ c)(ab+ bc + ca) + 28abc.

3.35. If a, b, c are positive real numbers such that

a+ b+ c = 3,

then
1+ 8abc ≥ 9min{a, b, c}.

3.36. If a, b, c are positive real numbers such that

a2 + b2 + c2 = 3,

then
1+ 4abc ≥ 5min{a, b, c}.
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3.37. If a, b, c are positive real numbers such that

a+ b+ c = abc,

then
(1− a)(1− b)(1− c) + (

p
3− 1)3 ≥ 0.

3.38. If a, b, c are nonnegative real numbers such that

a+ b+ c = 2,

then
(a2 + bc)(b2 + ca)(c2 + ab)≤ 1.

3.39. If a, b, c are nonnegative real numbers, then

(8a2 + bc)(8b2 + ca)(8c2 + ab)≤ (a+ b+ c)6.

3.40. If a, b, c are positive real numbers such that

a2 b2 + b2c2 + c2a2 = 3,

then
a+ b+ c ≥ abc + 2.

3.41. Let a, b, c be nonnegative real numbers such that

a+ b+ c = 5.

Prove that
(a2 + 3)(b2 + 3)(c2 + 3)≥ 192.

3.42. If a, b, c are nonnegative real numbers, then

a2 + b2 + c2 + abc + 2≥ a+ b+ c + ab+ bc + ca.

3.43. If a, b, c are nonnegative real numbers, then
∑

a3(b+ c)(a− b)(a− c)≥ 3(a− b)2(b− c)2(c − a)2.
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3.44. Find the greatest real number k such that

a+ b+ c + 4abc ≥ k(ab+ bc + ca)

for all a, b, c ∈ [0,1].

3.45. If a, b, c ≥
2
3

such that

a+ b+ c = 3,

then
a2 b2 + b2c2 + c2a2 ≥ ab+ bc + ca.

3.46. If a, b, c are positive real numbers such that

a ≤ 1≤ b ≤ c, a+ b+ c = 3,

then
1
a
+

1
b
+

1
c
≥ a2 + b2 + c2.

3.47. If a, b, c are positive real numbers such that

a ≤ 1≤ b ≤ c, a+ b+ c =
1
a
+

1
b
+

1
c

,

then

a2 + b2 + c2 ≤
1
a2
+

1
b2
+

1
c2

.

3.48. If a, b, c are positive real numbers such that

a+ b+ c =
1
a
+

1
b
+

1
c

,

then

(abc − 1)
�

an + bn + cn −
1
an
−

1
bn
−

1
cn

�

≤ 0

for any integer n≥ 2.
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3.49. Let a, b, c be positive real numbers, and let

E(a, b, c) = a(a− b)(a− c) + b(b− c)(b− a) + c(c − a)(c − b).

Prove that

(a) (a+ b+ c)E(a, b, c)≥ ab(a− b)2 + bc(b− c)2 + ca(c − a)2;

(b) 2
�

1
a
+

1
b
+

1
c

�

E(a, b, c)≥ (a− b)2 + (b− c)2 + (c − a)2.

3.50. Let a ≥ b ≥ c be nonnegative real numbers. Schur’s inequalities of third and
fourth degree state that

(a) a(a− b)(a− c) + b(b− c)(b− a) + c(c − a)(c − b)≥ 0;

(b) a2(a− b)(a− c) + b2(b− c)(b− a) + c2(c − a)(c − b)≥ 0.

Prove that (a) is sharper than (b) if

p

b+
p

c ≤
p

a,

and (b) is sharper than (a) if

p

b+
p

c ≥
p

a.

3.51. If a, b, c are nonnegative real numbers such that

(a+ b)(b+ c)(c + a) = 8,

then p
a+

p

b+
p

c ≥ ab+ bc + ca.

3.52. If
a, b, c ∈ [1, 4+ 3

p
2],

then
9(ab+ bc + ca)(a2 + b2 + c2)≥ (a+ b+ c)4.
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3.53. If a, b, c are nonnegative real numbers such that

a+ b+ c + abc = 4,

then

(a) a2 + b2 + c2 + 12≥ 5(ab+ bc + ca);

(b) 3(a2 + b2 + c2) + 13(ab+ bc + ca)≥ 48.

3.54. Let a, b, c be the lengths of the sides of a triangle. If

a+ b+ c = 3,

then
a2 b2 + b2c2 + c2a2 ≥ ab+ bc + ca.

3.55. Let a, b, c be the lengths of the sides of a triangle. If

a2 + b2 + c2 = 3,

then
ab+ bc + ca ≥ 1+ 2abc.

3.56. Let a, b, c be the lengths of the sides of a triangle. If

a+ b+ c = 3,

then
1
a
+

1
b
+

1
c
+

41
6
≥ 3(a2 + b2 + c2).

3.57. Let a ≥ b ≥ c such that

a+ b+ c = p, ab+ bc + ca = q,

where p and q are fixed real numbers satisfying p2 ≥ 3q.

(a) If a, b, c are nonnegative real numbers, then the product r = abc is minimal
only when a = b or c = 0, and is maximal only when b = c;

(b) If a, b, c are the lengths of the sides of a triangle (non-degenerate or degen-
erate), then the product r = abc is minimal only when a = b ≥ c, and is maximal

only when b = c ≥
a
2

or b+ c = a.
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3.58. Let a ≥ b ≥ c > 0 be positive real numbers such that

a+ b+ c = p, abc = r,

where p and r are fixed positive numbers satisfying p3 ≥ 27r. Prove that

q = ab+ bc + ca

is minimal only when b = c, and is maximal only when a = b.

3.59. If a, b, c are positive real numbers such that

a+ b+ c = 3,

then
9

abc
+ 16≥

75
ab+ bc + ca

.

3.60. If a, b, c are positive real numbers such that

a+ b+ c = 3,

then

8
�

1
a
+

1
b
+

1
c

�

+ 9≥ 10(a2 + b2 + c2).

3.61. If a, b, c are positive real numbers such that

a+ b+ c = 3,

then
7(a2 + b2 + c2) + 8(a2 b2 + b2c2 + c2a2) + 4a2 b2c2 ≥ 49.

3.62. If a, b, c are nonnegative real numbers, then

(a3 + b3 + c3 + abc)2 ≥ 2(a2 + b2)(b2 + c2)(c2 + a2).

3.63. If a, b, c are nonnegative real numbers, then

[ab(a+ b) + bc(b+ c) + ca(c + a)]2 ≥ 4(ab+ bc + ca)(a2 b2 + b2c2 + c2a2).
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3.64. Let a, b, c be nonnegative real numbers such that

ab+ bc + ca = 3.

Prove that
4(a3 + b3 + c3) + 7abc + 125≥ 48(a+ b+ c).

3.65. If a, b, c ∈ [0, 1], then

(a) a
p

a+ b
p

b+ c
p

c + 4abc ≥ 2(ab+ bc + ca);

(b) a
p

a+ b
p

b+ c
p

c ≥
3
2
(ab+ bc + ca− abc);

(c) 3(a
p

a+ b
p

b+ c
p

c) +
500
81

abc ≥ 5(ab+ bc + ca).

3.66. If

a, b, c ≥
13− 4

p
10

3
≈ 0.117

such that a+ b+ c = 9, then

p
a+

p

b+
p

c ≥
p

ab+ bc + ca.

3.67. Let a, b, c be the lengths of the sides of a triangle. If

a2 + b2 + c2 = 3,

then
a+ b+ c ≥ 2+ abc.

3.68. Let fn(a, b, c) be a symmetric homogeneous polynomial of degree n ≤ 5.
Prove that

(a) the inequality fn(a, b, c) ≥ 0 holds for all nonnegative real numbers a, b, c
if and only if fn(a, 1, 1) ≥ 0 and fn(0, b, c) ≥ 0 for all nonnegative real numbers
a, b, c;

(b) the inequality fn(a, b, c) ≥ 0 holds for all the lengths a, b, c of the sides of a
non-degenerate or degenerate triangle if and only if fn(x , 1, 1) ≥ 0 for 0 ≤ x ≤ 2,
and fn(y + z, y, z)≥ 0 for all y, z ≥ 0.
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3.69. If a, b, c are nonnegative real numbers such that

a+ b+ c = 3,

then
4(a4 + b4 + c4) + 45≥ 19(a2 + b2 + c2).

3.70. Let a, b, c be nonnegative real numbers. If k ≤ 2, then
∑

a(a− b)(a− c)(a− kb)(a− kc)≥ 0.

3.71. Let a, b, c be nonnegative real numbers. If k ∈ R, then
∑

(b+ c)(a− b)(a− c)(a− kb)(a− kc)≥ 0.

3.72. If a, b, c are nonnegative real numbers, then
∑

a(a− 2b)(a− 2c)(a− 5b)(a− 5c)≥ 0.

3.73. If a, b, c are the lengths of the sides of a triangle, then

a4 + b4 + c4 + 9abc(a+ b+ c)≤ 10(a2 b2 + b2c2 + c2a2).

3.74. If a, b, c are the lengths of the sides of a triangle, then

3(a4 + b4 + c4) + 7abc(a+ b+ c)≤ 5
∑

ab(a2 + b2).

3.75. If a, b, c are the lengths of the sides of a triangle, then

b2 + c2 − 6bc
a

+
c2 + a2 − 6ca

b
+

a2 + b2 − 6ab
c

+ 4(a+ b+ c)≤ 0.
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3.76. Let f6(a, b, c) be a sixth degree symmetric homogeneous polynomial written
in the form

f6(a, b, c) = Ar2 + B(p, q)r + C(p, q), A≤ 0,

where
p = a+ b+ c, q = ab+ bc + ca, r = abc.

Prove that
(a) the inequality f6(a, b, c) ≥ 0 holds for all nonnegative real numbers a, b, c

if and only if f6(a, 1, 1) ≥ 0 and f6(0, b, c) ≥ 0 for all nonnegative real numbers
a, b, c;

(b) the inequality f6(a, b, c)≥ 0 holds for all lengths a, b, c of the sides of a non-
degenerate or degenerate triangle if and only if f6(x , 1, 1) ≥ 0 for 0 ≤ x ≤ 2, and
f6(y + z, y, z)≥ 0 for all y, z ≥ 0.

3.77. If a, b, c are nonnegative real numbers, then
∑

a(b+ c)(a− b)(a− c)(a− 2b)(a− 2c)≥ (a− b)2(b− c)2(c − a)2.

3.78. Let a, b, c be nonnegative real numbers.

(a) If 2≤ k ≤ 6, then

∑

a(a− b)(a− c)(a− kb)(a− kc) +
4(k− 2)(a− b)2(b− c)2(c − a)2

a+ b+ c
≥ 0;

(b) If k ≥ 6, then

∑

a(a− b)(a− c)(a− kb)(a− kc) +
(k+ 2)2(a− b)2(b− c)2(c − a)2

4(a+ b+ c)
≥ 0.

3.79. If a, b, c are nonnegative real numbers, then

(3a2+2ab+3b2)(3b2+2bc+3c2)(3c2+2ca+3a2)≥ 8(a2+3bc)(b2+3ca)(c2+3ab).

3.80. Let a, b, c be nonnegative real numbers such that

a+ b+ c = 2.

If
−2
3
≤ k ≤

11
8

,

then
(a2 + kab+ b2)(b2 + kbc + c2)(c2 + kca+ a2)≤ k+ 2.
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3.81. Let a, b, c be nonnegative real numbers such that

a+ b+ c = 2.

Prove that
(2a2 + bc)(2b2 + ca)(2c2 + ab)≤ 4.

3.82. Let a, b, c be nonnegative real numbers, no two of which are zero. Then,

∑

(a− b)(a− c)(a− 2b)(a− 2c)≥
5(a− b)2(b− c)2(c − a)2

ab+ bc + ca
.

3.83. If a, b, c are positive real numbers such that

abc = 1,

then

ab+ bc + ca+
50

a+ b+ c + 5
≥

37
4

.

3.84. If a, b, c are positive real numbers, then

(a+ b+ c − 3)
�

1
a
+

1
b
+

1
c
− 3

�

+ abc +
1

abc
≥ 2.

3.85. If a, b, c are positive real numbers such that

abc = 1,

then

(a)
3
7

�

ab+ bc + ca−
2
3

�

≥
s

2
3
(a+ b+ c)− 1;

(b) ab+ bc + ca− 3≥
46
27
(
p

a+ b+ c − 2− 1).
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3.86. Let a, b, c be positive real numbers.

(a) If abc = 2, then

(a+ b+ c − 3)2 + 1≥
a2 + b2 + c2

3
;

(b) If abc =
1
2

, then

a2 + b2 + c2 + 3(3− a− b− c)2 ≥ 3.

3.87. If a, b, c are positive real numbers such that

a+ b+ c = 3,

then

4
�

bc
a
+

ca
b
+

ab
c

�

+ 9abc ≥ 21.

3.88. If a, b, c are nonnegative real numbers such that

ab+ bc + ca = abc + 2,

then
a2 + b2 + c2 + abc ≥ 4.

3.89. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

(a+ b)(b+ c)(c + a)≥ (a+ bc)(b+ ca)(c + ab).

3.90. Let a, b, c be positive numbers such that

a+ b+ c ≤ 3
4
p

abc.

Prove that
a2 + b2 + c2 ≤ 3.

3.91. If a, b, c are positive real numbers, then
�

b+ c
a
− 2−

p
2
�2

+
� c + a

b
− 2−

p
2
�2

+
�

a+ b
c
− 2−

p
2
�2

≥ 6.
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3.92. If a, b, c are positive real numbers, then

2(a3 + b3 + c3) + 9(ab+ bc + ca) + 39≥ 24(a+ b+ c).

3.93. If a, b, c are positive real numbers such that a2 + b2 + c2 = 3, then

a3 + b3 + c3 − 3≥ |(a− b)(b− c)(c − a)|.

3.94. Let a, b, c be nonnegative real numbers such that a2+ b2+ c2 = 3. Prove that

1− abc ≥
5
3

min{(a− b)2, (b− c)2, (c − a)2}.

3.95. If a, b, c are nonnegative real numbers, then

a4 + b4 + c4 − a2 b2 − b2c2 − c2a2 ≥ 2|a3 b+ b3c + c3a− ab3 − bc3 − ca3|.

3.96. If a, b, c are nonnegative real numbers, then

a4 + b4 + c4 − abc(a+ b+ c)≥ 2
p

2 |a3 b+ b3c + c3a− ab3 − bc3 − ca3|.

3.97. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

(a3 b+ b3c + c3a− 3abc)(ab3 + bc3 + ca3 − 3abc)≥ (a2 b2 + b2c2 + c2a2 − 3abc)2.

3.98. If a, b, c ≥ −5 such that

a+ b+ c = 3,

then
1− a

1+ a+ a2
+

1− b
1+ b+ b2

+
1− c

1+ c + c2
≥ 0.

3.99. Let a, b, c 6=
1
k

be nonnegative real numbers such that

a+ b+ c = 3.

If k ≥
4
3

, then

1− a
(1− ka)2

+
1− b
(1− kb)2

+
1− c
(1− kc)2

≥ 0.
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3.100. If a, b, c are positive real numbers such that

abc = 1,

then
3(2a2 + 1)(2b2 + 1)(2c2 + 1)≤ (a+ b+ c)4.

3.101. If a, b, c are positive real numbers such that

a+ b+ c =
p

3,

then

(3
p

3− 5)
�

1
a
+

1
b
+

1
b

�

≥ a2 + b2 + c2.

3.102. If a, b, c ≥ 1 such that
a+ b+ c = 4,

then

12
�

1
a
+

1
b
+

1
b

�

≥ 5(a2 + b2 + c2).

3.103. If a, b, c are positive real numbers such that

a+ b+ c = 3, c ≤
15
32

,

then
1
a
+

1
b
+

1
c
≥ a2 + b2 + c2.

3.104. If a ≥ b ≥ c ≥ 0 and ab+ bc + ca = 3 , then

(a) b+ c ≤ 2;

(b) b2 + bc + c2 ≤ 3.

3.105. If a, b, c ∈
�

0, 1+
1
p

2

�

and a2 + b2 + c2 = 3, then

a+ b+ c ≥ abc + 2.
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3.106. Let a, b, c ≥
1
6

be real numbers such that a2 + b2 + c2 = 3. Then,

a+ b+ c ≥ abc + 2.

3.107. If a, b, c are nonnegative real numbers such that

ab+ bc + ca+ 6abc = 9,

then
2(a+ b+ c)≥ ab+ bc + ca+ 3.

3.108. If a, b, c are nonnegative real numbers such that

ab+ bc + ca+ abc = 4,

then
4(a+ b+ c) + 3a2 b2c2 ≥ 15.

3.109. If a, b, c ∈
�

0,
5
3

�

such that a+ b+ c = 3, then

(a+ b)(b+ c)(c + a)≥ 8
3
p

abc.

3.110. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then

a+ b+ c +
�

1−
1
p

3

�

(a− c)2 ≥ 3.

3.111. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then

1− abc ≤

√

√2
3
(a− c).
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3.112. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then
1− abc ≤

7
10
(a− c)2.

3.113. If a ≥ b ≥ c ≥
1
3

and a2 + b2 + c2 = 3 , then

1− abc ≤
11
18
(a− c).

3.114. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then
1−

p

abc ≤
2
3
(a− c)2.

3.115. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then
1− abc ≤

2
3

a(a− c)2.

3.116. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then
1− abc ≤

1
9
(5a+ c)(a− c)2.

3.117. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then
1− abc ≥

2
3
(b− c)2.
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3.118. Let a, b, c be nonnegative real numbers such that

a2 + b2 + c2 = 3.

If a ≥ b ≥ c, then

1− abc ≥
2
3
(1+

p
2)(a− b)(b− c).

3.119. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then

(a) 1− abc ≥ 2b(a− b)(b− c);

(b) 1− abc ≥ (a− c)(a− b)(b− c);

(c) 1− abc ≥ a(a− b)(b− c);

(d) 1− abc ≥ (a+ c)(a− b)(b− c).

3.120. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then

(a) 1− abc ≥
2
3

b(a− b)2;

(b) 1− abc ≥
2

27
(2a+ 7b)(a− b)2.

3.121. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then

(a) 1− abc ≥
1
3
(b+ c)(b− c)2;

(b) 1− abc ≥
2

27
(7b+ 2c)(b− c)2.
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3.122. If a, b, c are nonnegative real numbers such that a2 + b2 + c2 = 3, then

(a) 1−
p

abc ≥ (a− b)(b− c);

(b) 1− 3pa2 b2c2 ≥
4
3
(a− b)(b− c).

3.123. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then

1− abc ≥
2
3

b(
p

a−
p

c)2.

3.124. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then

1− abc ≥
8
3

b(
p

a−
p

b)2.

3.125. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then

1− abc ≥
1
3
(a+ 3c)(

p
a−
p

c)2.

3.126. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then

1− abc ≥
2
3
(a+ 3c)(

p

b−
p

c)2.
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3.127. Let
F(a, b, c) = 3(a2 + b2 + c2)− (a+ b+ c)2,

where a, b, c are positive real numbers such that a ≤ b ≤ c and

a2(b2 + c2)≥ 2.

Then,

F(a, b, c)≥ F
�

1
a

,
1
b

,
1
c

�

.

3.128. Let
F(a, b, c) = a+ b+ c − 3

3
p

abc,

where a, b, c are positive real numbers. If

min{a, b, c} ≥
1

abc
,

then

F(a, b, c)≥ F
�

1
a

,
1
b

,
1
c

�

.

3.129. Let
F(a, b, c) = a+ b+ c − 3

3
p

abc,

where a, b, c are positive real numbers such that a ≤ b ≤ c and

a(b+ c)≥ 2.

Then,

F(a, b, c)≥ F
�

1
a

,
1
b

,
1
c

�

.

3.130. Let
F(a, b, c, d) = a+ b+ c + d − 4

4
p

abcd,

where a, b, c, d are positive real numbers. If

min{a2, b2, c2, d2} ≥
1

abcd
,

then

F(a, b, c, d)≥ F
�

1
a

,
1
b

,
1
c

,
1
d

�

.
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3.131. Let a, b, c, d be nonnegative real numbers such that

a2 + b2 + c2 + d2 = 1.

Prove that
(1− a)(1− b)(1− c)(1− d) ≥ abcd.

3.132. Let a, b, c, d and x be positive real numbers such that

1
a2
+

1
b2
+

1
c2
+

1
d2
=

4
x2

.

If x ≥ 2, then
(a− 1)(b− 1)(c − 1)(d − 1) ≥ (x − 1)4.

3.133. If a, b, c, d are positive real numbers, then

(1+ a3)(1+ b3)(1+ c3)(1+ d3)
(1+ a2)(1+ b2)(1+ c2)(1+ d2)

≥
1+ abcd

2
.

3.134. Let a, b, c, d be positive real numbers such that

a+ b+ c + d = 4.

Prove that
�

a+
1
a
− 1

��

b+
1
b
− 1

��

c +
1
c
− 1

��

d +
1
d
− 1

�

+ 3≥
1
a
+

1
b
+

1
c
+

1
d

.

3.135. If a, b, c, d are nonnegative real numbers, then

4(a3 + b3 + c3 + d3) + 15(abc + bcd + cda+ dab)≥ (a+ b+ c + d)3.

3.136. Let a, b, c, d be positive real numbers such that

a+ b+ c + d = 4.

Prove that
1+ 2(abc + bcd + cda+ dab)≥ 9min{a, b, c, d}.
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3.137. Let a, b, c, d be nonnegative real numbers such that

a+ b+ c + d = 4.

Prove that
5(a2 + b2 + c2 + d2)≥ a3 + b3 + c3 + d3 + 16.

3.138. Let a, b, c, d be nonnegative real numbers such that

a+ b+ c + d = 4.

Prove that
3(a2 + b2 + c2 + d2) + 4abcd ≥ 16.

3.139. Let a, b, c, d be nonnegative real numbers such that

a+ b+ c + d = 4.

Prove that
27(abc + cd + cda+ dab)≤ 44abcd + 64.

3.140. Let a, b, c, d be positive real numbers such that

a+ b+ c + d =
1
a
+

1
b
+

1
c
+

1
d

.

Prove that

(1− abcd)
�

a2 + b2 + c2 + d2 −
1
a2
−

1
b2
−

1
c2
−

1
d2

�

≥ 0.

3.141. Let a, b, c, d be positive real numbers such that

a+ b+ c + d = 1.

Prove that

(1− a)(1− b)(1− c)(1− d)
�

1
a
+

1
b
+

1
c
+

1
d

�

≥
81
16

.
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3.142. Let a, b, c, d be nonnegative real numbers such that

a+ b+ c + d = a3 + b3 + c3 + d3 = 2.

Prove that
a2 + b2 + c2 + d2 ≥

7
4

.

3.143. Let a, b, c, d ∈ (0,4] such that

abcd = 1.

Prove that

(1+ 2a)(1+ 2b)(1+ 2c)(1+ 2d)≥ (5− 2a)(5− 2b)(5− 2c)(5− 2d).

3.144. If a, b, c, d ∈
�

0, 1+
1
p

6

�

and a2 + b2 + c2 + d2 = 4, then

a+ b+ c + d ≥ abcd + 3.

3.145. Let a, b, c, d be positive real numbers such that

(a+ b+ c + d)
�

1
a
+

1
b
+

1
c
+

1
d

�

≤ (1+
p

10 )2.

Prove that any three of a, b, c, d are the lengths of the sides of a triangle (non-
degenerate or degenerate).

3.146. Let a, b, c, d be positive real numbers such that

(a+ b+ c + d)
�

1
a
+

1
b
+

1
c
+

1
d

�

≤
119
6

.

Prove that there exist three of a, b, c, d which are the lengths of the sides of a tri-
angle (non-degenerate or degenerate).

3.147. Let a, b, c, d be positive real numbers such that

3(a+ b+ c + d)2 ≥ 11(a2 + b2 + c2 + d2).

Prove that any three of a, b, c, d are the lengths of the sides of a triangle (non-
degenerate or degenerate).
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3.148. Let a, b, c, d be positive real numbers such that

15(a+ b+ c + d)2 ≥ 49(a2 + b2 + c2 + d2).

Prove that there exist three of a, b, c, d which are the lengths of the sides of a tri-
angle (non-degenerate or degenerate).

3.149. Let a, b, c, d be nonnegative real numbers such that

a2 + b2 + c2 + d2 = 4.

If a ≥ b ≥ c ≥ d, then

a+ b+ c + d + (2−
p

2)(a− d)2 ≥ 4.

3.150. Let a, b, c, d be nonnegative real numbers such that

a2 + b2 + c2 + d2 = 4.

If a ≥ b ≥ c ≥ d, then

1− abcd ≤
p

3
2
(a− d).

3.151. Let a, b, c, d be nonnegative real numbers such that

a2 + b2 + c2 + d2 = 4.

If a ≥ b ≥ c ≥ d, then

1−
p

abcd ≤
3
4
(a− d)2.

3.152. If a, b, c, d are nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a2 + b2 + c2 + d2 = 4,

then

1− (abcd)3/4 ≤
3
4
(a− d)2.
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3.153. Let a, b, c, d be nonnegative real numbers such that

a2 + b2 + c2 + d2 = 4.

If a ≥ b ≥ c ≥ d, then

(a) 1−
p

abcd ≥
1
2
(b− c)2;

(b) 1−
p

abcd ≥
1
4
(a− d)2.

3.154. Let a, b, c, d be nonnegative real numbers such that

a2 + b2 + c2 + d2 = 4.

If a ≥ b ≥ c ≥ d, then

1− abcd ≥
3
4
(c − d)2.

3.155. Let a, b, c, d be nonnegative real numbers such that

a2 + b2 + c2 + d2 = 4.

If a ≥ b ≥ c ≥ d, then

(a) 1− abcd ≥ (a− b)(c − d);

(b) 1− abcd ≥
1+
p

3
2

(a− b)(c − d).

3.156. Let a, b, c, d be nonnegative real numbers such that

a2 + b2 + c2 + d2 = 4.

If a ≥ b ≥ c ≥ d, then

1− abcd ≥ 3(a− b)(b− c)(c − d)(a− d).

3.157. Let a, b, c, d be nonnegative real numbers such that

a2 + b2 + c2 + d2 = 4.

If a ≥ b ≥ c ≥ d, then

(a) 1−
p

abcd ≥
1
3
(b− d)2;

(b) 1− (abcd)3/4 ≥
1
2
(b− d)2.
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3.158. Let a, b, c, d be nonnegative real numbers such that

a4 + b4 + c4 + d4 = 4.

If a ≥ b ≥ c ≥ d, then

(a) 1−
p

abcd ≥
1
2
(ac − bd)2;

(b) 1− abcd ≥
1
p

2
(ac − bd)2.

3.159. If a, b, c, d are nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a4 + b4 + c4 + d4 = 4,

then

1− abcd ≥
3
4
(ad − bc)2.

3.160. If a, b, c, d are nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c + d = 4,

then

(a)
a4 + b4 + c4 + d4

4
− abcd ≥ 2(b− c)2,

(b)
a4 + b4 + c4 + d4

4
− abcd ≥

3
2
(a− b)2;

(c)
a4 + b4 + c4 + d4

4
− abcd ≥

4
3
(a− c)2;

(d)
a4 + b4 + c4 + d4

4
− abcd ≥

4
3
(c − d)2.

3.161. If a, b, c, d are nonnegative real numbers such that a ≥ b ≥ c ≥ d and
a+ d ≥ b+ c, then

a+ b+ c + d − 4
4
p

abcd ≤ 2
�p

a−
p

d
�2

.
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3.162. If a, b, c, d are nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ kd ≥ b+ c, k = (1+
p

2 )4 ≈ 33.970,

then
a+ b+ c + d − 4

4
p

abcd ≤ 2
�p

a−
p

d
�2

.

3.163. If a, b, c, d are nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ d ≥ 2c,

then
a+ b+ c + d − 4

4
p

abcd ≤
5
2

�p
a−

p

d
�2

.

3.164. If a, b, c, d are nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ kd ≥ 2c, k = (3+ 2
p

3 )4 ≈ 1745.95,

then
a+ b+ c + d − 4

4
p

abcd ≤
5
2

�p
a−

p

d
�2

.

3.165. If a, b, c, d are nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c + d = 4,

then

(a− d)2 ≤
a4 + b4 + c4 + d4

4
− abcd ≤ 4(a− d)2.

3.166. Let a, b, c, d, e be nonnegative real numbers.

(a) If a+ b+ c = 3(d + e), then

4(a4 + b4 + c4 + d4 + e4)≥ (a2 + b2 + c2 + d2 + e2)2;

(b) If a+ b+ c = d + e, then

12(a4 + b4 + c4 + d4 + e4)≤ 7(a2 + b2 + c2 + d2 + e2)2.
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3.167. Let a, b, c, d, e be nonnegative real numbers such that

a+ b+ c + d + e = 5.

Prove that

a4 + b4 + c4 + d4 + e4 + 150≤ 31(a2 + b2 + c2 + d2 + e2).

3.168. Let a, b, c, d, e be positive real numbers such that

a2 + b2 + c2 + d2 + e2 = 5.

Prove that
abcde(a4 + b4 + c4 + d4 + e4)≤ 5.

3.169. Let a, b, c, d, e be positive real numbers such that

a+ b+ c + d + e = 5.

Prove that
1
a
+

1
b
+

1
c
+

1
d
+

1
e
+

20
a2 + b2 + c2 + d2 + e2

≥ 9.

3.170. If a, b, c, d, e ≥ 1, then
�

a+
1
a

��

b+
1
b

��

c +
1
c

��

d +
1
d

��

e+
1
e

�

+ 68≥

≥ 4(a+ b+ c + d + e)
�

1
a
+

1
b
+

1
c
+

1
d
+

1
e

�

.

3.171. If a, b, c and x , y, z are nonnegative real numbers such that

x3 + y3 + z3 = a3 + b3 + c3,

then
(a+ b+ c)(x + y + z)≥ ab+ bc + ca+ x y + yz + zx .
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3.172. Let a, b, c, d, e, f be nonnegative real numbers such that

a2 + b2 + c2 + d2 + e2 + f 2 = 6.

If a ≥ b ≥ c ≥ d ≥ e ≥ f , then

1− abcde f ≤
3
2
(a− f )2.

3.173. Let a1, a2, . . . , an and b1, b2, . . . , bnbe nonnegative real numbers such that

a2
1 + a2

2 + · · ·+ a2
n = b2

1 + b2
2 + · · ·+ b2

n.

Then, for n= 3 and n= 4, the following inequalities holds:

(n− 1)(a1 + a2 + · · ·+ an)(b1 + b2 + · · ·+ bn)≥ n

�

∑

i< j

aia j +
∑

i< j

bi b j

�

.

3.174. Let a, b, c and x , y, z be positive real numbers such that

(a+ b+ c)(x + y + z) = (a2 + b2 + c2)(x2 + y2 + z2) = 4.

Prove that
abcx yz <

1
36

.

3.175. Let a1, a2, · · · , an (n≥ 3) be positive real numbers such that

a1 + a2 + · · ·+ an = a2
1 + a2

2 + · · ·+ a2
n = n− 1.

Prove that
1
a1
+

1
a2
+ · · ·+

1
an
≥

n2(2n− 3)
2(n− 1)(n− 2)

.

3.176. Let a1, a2, · · · , an be positive real numbers such that

a1 + a2 + · · ·+ an = n.

Prove that

n2
�

1
a1
+

1
a2
+ · · ·+

1
an
− n

�

≥ 4(n− 1)(a2
1 + a2

2 + · · ·+ a2
n − n).
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3.177. If a1, a2, . . . , an are positive real numbers such that

a1 + a2 + · · ·+ an = n, a2, a3, . . . , an ≥ 1,

then
1
a1
+

1
a2
+ · · ·+

1
an
≥ a2

1 + a2
2 + · · ·+ a2

n.

3.178. Let a1, a2, · · · , an be nonnegative real numbers such that

a1 + a2 + · · ·+ an = n.

Prove that
(n+ 1)(a2

1 + a2
2 + · · ·+ a2

n)≥ n2 + a3
1 + a3

2 + · · ·+ a3
n.

3.179. Let a1, a2, · · · , an be nonnegative real numbers such that

a1 + a2 + · · ·+ an = n.

Prove that

(n− 1)(a3
1 + a3

2 + · · ·+ a3
n) + n2 ≥ (2n− 1)(a2

1 + a2
2 + · · ·+ a2

n).

3.180. Let a1, a2, . . . , an (n≥ 3) be positive real numbers such that

a1 + a2 + · · ·+ an = n.

Prove that
a2

1 + a2
2 + · · ·+ a2

n − n≥
n

n− 1
(1− a1a2 · · · an).

3.181. If a1, a2, . . . , an are positive numbers such that a1 + a2 + · · ·+ an = n and

a1a2 · · · an ≤
1

(n− 1)n−2
,

then
1
a1
+

1
a2
+ · · ·+

1
an
≥ a2

1 + a2
2 + · · ·+ a2

n.
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3.182. If a1, a2, . . . , an are nonnegative real numbers such that

a1 ≤ a2 ≤ · · · ≤ an,

then
a1 + a2 + · · ·+ an

n
− n
p

a1a2 · · · an ≤
�

1−
1
n

�

�
p

an −
p

a1

�2
.

3.183. Let a1, a2, . . . , an (n≥ 3) be positive real numbers such that

a1 ≤ a2 ≤ · · · ≤ an,

(a1 + a2 + · · ·+ an)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

= k.

(a) If n2 < k ≤ n2 +
i(n− i)

2
, i ∈ {2,3, · · · , n− 1}, then ai−1, ai and ai+1 are

the lengths of the sides of a non-degenerate or degenerate triangle;

(b) If n2 < k ≤ αn, where αn =
9n2

8
for even n, and αn =

9n2 − 1
8

for odd

n, then there exist three numbers ai which are the lengths of the sides of a non-
degenerate or degenerate triangle.

3.184. Let a1, a2, . . . , an (n≥ 3) be positive real numbers such that

a1 ≤ a2 ≤ · · · ≤ an,

(a1 + a2 + · · ·+ an)
2 = k(a2

1 + a2
2 + · · ·+ a2

n).

(a) If
(2n− i)2

4n− 3i
≤ k < n, i ∈ {2, 3, · · · , n− 1}, then ai−1, ai and ai+1 are the

lengths of the sides of a non-degenerate or degenerate triangle;

(b) If
8n+ 1

9
≤ k < n, then there exist three numbers ai which are the lengths

of the sides of a non-degenerate or degenerate triangle.
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3.2 Solutions

P 3.1. If a, b, c are positive real numbers, then

a2 + b2 + c2 + 2abc + 1≥ 2(ab+ bc + ca).

(Darij Grinberg, 2004)

First Solution. Setting

a = x3, b = y3, c = z3, x , y, z > 0,

we need to prove that

x6 + y6 + z6 + 2x3 y3z3 + 1≥ 2(x3 y3 + y3z3 + z3 x3).

Using Schur’s inequality and then the AM-GM inequality, we have

x6 + y6 + z6 + 3x2 y2z2 ≥
∑

x2 y2(x2 + y2)≥ 2
∑

x3 y3.

Thus, it suffices to show that

2x3 y3z3 − 3x2 y2z2 + 1≥ 0,

which is equivalent to
(x yz − 1)2(2x yz + 1)≥ 0.

The equality holds for a = b = c = 1.

Second Solution. Among the numbers 1− a, 1− b and 1− c there are always two
with the same sign; let

(1− b)(1− c)≥ 0.

We have

a2 + b2 + c2 + 2abc + 1− 2(ab+ bc + ca) =

= (a− 1)2 + (b− c)2 + 2a+ 2abc − 2a(b+ c)

= (a− 1)2 + (b− c)2 + 2a(1− b)(1− c)≥ 0.

Remark. The following generalization holds:

• Let a, b, c be positive real numbers. If 0≤ k ≤ 1, then

a2 + b2 + c2 + 2kabc + k ≥ (k+ 1)(ab+ bc + ca).

Since the both sides of the inequality are linear of k, it suffices to prove it for only
k = 0 and k = 1. For k = 0, the inequality reduces to

a2 + b2 + c2 ≥ ab+ bc + ca,

which is well-known.
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P 3.2. Let a, b, c be nonnegative real numbers. If 0≤ k ≤
p

2, then

a2 + b2 + c2 + kabc + 2k+ 3≥ (k+ 2)(a+ b+ c).

Solution. Since the both sides of the inequality are linear of k, it suffices to prove
the inequality for k = 0 and k =

p
2. For k = 0, the inequality reduces to

(a− 1)2 + (b− 1)2 + (c − 1)2 ≥ 0.

Consider further that k =
p

2, and write the inequality as

(a− 1)2 + (b− 1)2 + (c − 1)2 ≥
p

2 (a+ b+ c − 2− abc).

Using the substitution

x = a− 1, y = b− 1, z = c − 1,

we need to show that

x2 + y2 + z2 +
p

2 (x yz + x y + yz + zx)≥ 0

for x , y, z ≥ −1. Among the numbers x , y and z there are always two of them with
the same sign; let us say

yz ≥ 0.

Since
y2 + z2 ≥

1
2
(y + z)2

and
x yz + x y + yz + zx = (x + 1)yz + x(y + z)≥ x(y + z),

it suffices to prove that

x2 +
1
2
(y + z)2 +

p
2 x(y + z)≥ 0,

which is equivalent to
�

x +
1
p

2
(y + z)

�2

≥ 0.

Thus, the proof is completed. The equality holds for a = b = c = 1. In addition, if
k =
p

2, then the equality holds also for a = 0 and b = c = 1+1/
p

2 (or any cyclic
permutation).

P 3.3. If a, b, c are positive real numbers, then

abc(a+ b+ c) + 2(a2 + b2 + c2) + 3≥ 4(ab+ bc + ca).
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First Solution. Applying the AM-GM inequality two times, we get

abc(a+ b+ c) + 3≥ 2
Æ

3abc(a+ b+ c)≥
18abc

a+ b+ c
.

Therefore, it suffices to prove that

a2 + b2 + c2 +
18abc

a+ b+ c
≥ 2(ab+ bc + ca),

which is just Schur’s inequality of third degree. The equality holds for a = b = c =
1.

Second Solution. Applying the AM-GM, we get

abc(a+ b+ c) + 3= (a2 bc + 1) + (ab2c + 1) + (abc2 + 1)

≥ 2a
p

bc + 2b
p

ca+ 2c
p

ab.

Thus, it suffices to prove that

a2 + b2 + c2 + a
p

bc + b
p

ca+ c
p

ab ≥ 2(ab+ bc + ca).

Substituting

x =
p

a, y =
p

b, z =
p

c,

we need to show that

x4 + y4 + z4 + x yz(x + y + z)≥ 2(x2 y2 + y2z2 + z2 x2).

This inequality can be obtained by summing Schur’s inequality of degree four

x4 + y4 + z4 + x yz(x + y + z)≥ x y(x2 + y2) + yz(y2 + z2) + zx(z2 + x2)

to
x y(x2 + y2) + yz(y2 + z2) + zx(z2 + x2)≥ 2(x2 y2 + y2z2 + z2 x2).

The last inequality is equivalent to

x y(x − y)2 + yz(y − z)2 + zx(z − x)2 ≥ 0.

P 3.4. If a, b, c are positive real numbers, then

a(b2 + c2) + b(c2 + a2) + c(a2 + b2) + 3≥ 3(ab+ bc + ca).
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Solution. Write the inequality as follows

(a+ b+ c)(ab+ bc + ca) + 3≥ 3(abc + ab+ bc + ca).

(a+ b+ c − 3)(ab+ bc + ca) + 3≥ 3abc.

Using the known inequality

(a+ b+ c)(ab+ bc + ca)≥ 9abc,

it suffices to show that

3(a+ b+ c − 3)(ab+ bc + ca) + 9≥ (a+ b+ c)(ab+ bc + ca),

which is equivalent to

[2(a+ b+ c)− 9](ab+ bc + ca) + 9≥ 0.

For the nontrivial case 2(a+ b+ c)− 9< 0, using the known inequality

(a+ b+ c)2 ≥ 3(ab+ bc + ca),

it is enough to show that

[2(a+ b+ c)− 9](a+ b+ c)2 + 27≥ 0.

This inequality is equivalent to the obvious inequality

(a+ b+ c − 3)2[2(a+ b+ c) + 3]≥ 0.

The equality holds for a = b = c = 1.

P 3.5. If a, b, c are positive real numbers, then
�

a2 + b2 + c2

3

�3

≥ a2 b2c2 + (a− b)2(b− c)2(c − a)2.

(Vasile Cîrtoaje, 2011)

Solution (by Vo Quoc Ba Can). Assume that

a =min{a, b, c}.

By virtue of the AM-GM inequality, we have

�

a2 + b2 + c2

3

�3

=
�

(a2 + b2 + c2 − 2bc) + bc + bc
3

�3

≥ (a2 + b2 + c2 − 2bc)b2c2

= a2 b2c2 + (b− c)2 b2c2.
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Thus, it suffices to prove that

(b− c)2 b2c2 ≥ (b− c)2(b− a)2(c − a)2.

This is obvious, because

b2 > (b− a)2, c2 > (c − a)2.

The equality occurs for a = b = c.

P 3.6. If a, b, c are nonnegative real numbers, then

[ab(a+ b) + bc(b+ c) + ca(c + a)]2 ≥ 4(ab+ bc + ca)(a2 b2 + b2c2 + c2a2).

(Vasile Cîrtoaje and Vo Quoc Ba Can, 2011)

First Solution. Assume that a ≥ b ≥ c. For the nontrivial case b > 0, by the
AM-GM inequality, we have

4(ab+ bc + ca)(a2 b2 + b2c2 + c2a2)≤
�

b(ab+ bc + ca) +
a2 b2 + b2c2 + c2a2

b

�2

.

Thus, it suffices to prove that

ab(a+ b) + bc(b+ c) + ca(c + a)≥ b(ab+ bc + ca) +
a2 b2 + b2c2 + c2a2

b
.

This inequality reduces to the obvious form

ac(a− b)(b− c)≥ 0.

The equality holds for a = b = c, for b = c = 0 (or any cyclic permutation), and
for a = 0 and b = c (or any cyclic permutation).

Second Solution. We will prove the stronger inequality

[ab(a+ b) + bc(b+ c) + ca(c + a)]2 ≥ 4(ab+ bc + ca)(a2 b2 + b2c2 + c2a2) + A,

where
A= (a− b)2(b− c)2(c − a)2.

Let
p = a+ b+ c, q = ab+ bc + ca, r = abc.

Since

(a− b)2(b− c)2(c − a)2 = −27r2 + 2(9pq− 2p3)r + p2q2 − 4q3,
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we can write this inequality as

(pq− 3r)2 ≥ 4q(q2 − 2pr)− 27r2 + 2(9pq− 2p3)r + p2q2 − 4q3,

which reduces to
r(p3 + 9r − 4pq)≥ 0.

This is true since
p3 + 9r − 4pq ≥ 0

is just the third degree Schur’s inequality.

P 3.7. If a, b, c are positive real numbers, then

(a) a3 + b3 + c3 + ab+ bc + ca+ 9≥ 5(a+ b+ c);

(b) a3 + b3 + c3 + 4(ab+ bc + ca) + 18≥ 11(a+ b+ c).

(Vasile Cîrtoaje, 2010)

Solution. Let
p = a+ b+ c, q = ab+ bc + ca.

From
a(a− 1)2 + b(b− 1)2 + c(c − 1)2 ≥ 0,

we get
a3 + b3 + c3 ≥ 2(a2 + b2 + c2)− a− b− c = 2p2 − p− 4q.

(a) Using the result above and the known inequality p2 ≥ 3q, we have

a3 + b3 + c3 + ab+ bc + ca+ 9− 5(a+ b+ c)≥
≥ (2p2 − p− 4q) + q+ 9− 5p

= 2p2 − 6p+ 9− 3q

≥ 2p2 − 6p+ 9− p2

= (p− 3)2 ≥ 0.

The equality holds for a = b = c = 1.

(b) Using the result above, we have

a3 + b3 + c3 + 4(ab+ bc + ca) + 18− 11(a+ b+ 2≥
≥ (2p2 − p− 4q) + 4q+ 18− 11p

= 2(p− 3)3 ≥ 0.

The equality holds for a = b = c = 1.



Symmetric Polynomial Inequalities in Nonnegative Variables 237

P 3.8. If a, b, c are positive real numbers, then

(a) a3 + b3 + c3 + abc + 8≥ 4(a+ b+ c);

(b) 4(a3 + b3 + c3) + 15abc + 54≥ 27(a+ b+ c).

Solution. Let
p = a+ b+ c, q = ab+ bc + ca.

By Schur’s inequality of third degree, we have

p3 + 9abc ≥ 4pq,

abc ≥
p(4q− p2)

9
.

a) We get

a3 + b3 + c3 + abc = 4abc + p(p2 − 3q)

≥
4p(4q− p2)

9
+ p(p2 − 3q)

=
p(5p2 − 11q)

9
.

Then, it suffices to prove that

p(5p2 − 11q)
9

+ 8≥ 4p,

which is equivalent to
5p3 − 36p+ 72≥ 11pq.

Since p2 ≥ 3q, we have

3(5p3 − 36p+ 72− 11pq)≥ 3(5p3 − 36p+ 72)− 11p2

= 4(p3 − 27p+ 54)

= 4(p− 3)2(p+ 6)≥ 0.

The equality holds for a = b = c = 1.

(b) We get

4(a3 + b3 + c3) + 15abc = 27abc + 4p(p2 − 3q)

≥ 3p(4q− p2) + 4p(p2 − 3q) = p3.

Then, it suffices to prove that

p3 + 54≥ 27p,
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which is equivalent to the obvious inequality

(p− 3)2(p+ 6)≥ 0.

The equality holds for a = b = c = 1, and also for a = 0 and b = c = 3/2 (or any
cyclic permutation).

Remark. Similarly, we can prove the following generalization (Vasile Cîrtoaje,
2010):

• Let a, b, c be nonnegative real numbers. If 0≤ k ≤ 27/4, then

a3 + b3 + c3 + (k− 3)abc + 2k ≥ k(a+ b+ c).

P 3.9. Let a, b, c be nonnegative real numbers such that

a+ b+ c = a2 + b2 + c2.

Prove that
ab+ bc + ca ≥ a2 b2 + b2c2 + c2a2.

(Vasile Cîrtoaje, 2006)

Solution (by Michael Rozenberg). From the hypothesis condition, by squaring, we
get

a4 + b4 + c4 − a2 − b2 − c2 = 2(ab+ bc + ca− a2 b2 − b2c2 − c2a2).

Therefore, we can write the required inequality as

a4 + b4 + c4 ≥ a2 + b2 + c2.

This inequality has the homogeneous form

(a+ b+ c)2(a4 + b4 + c4)≥ (a2 + b2 + c2)3,

which follows immediately from Hölder’s inequality. The equality holds for a =
b = c = 1, for a = b = c = 0, for (a, b, c) = (0,1, 1) (or any cyclic permutation),
and for (a, b, c) = (1, 0,0) (or any cyclic permutation).

P 3.10. If a, b, c are nonnegative real numbers, then

(a2 + 2bc)(b2 + 2ca)(c2 + 2ab)≥ (ab+ bc + ca)3.

(Vasile Cîrtoaje, 2006)
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Solution. We have

(a2 + 2bc)(b2 + 2ca)(c2 + 2ab) = 9a2 b2c2 + 2
∑

a3 b3 + 4abc
∑

a3

and
(ab+ bc + ca)3 = 6a2 b2c2 +

∑

a3 b3 + 3abc
∑

ab(a+ b).

So, we can rewrite the inequality as

3a2 b2c2 +
∑

a3 b3 + 4abc
∑

a3 ≥ 3abc
∑

ab(a+ b).

Since
∑

a3 b3 ≥ 3a2 b2c2 (by the AM-GM inequality), it suffices to prove that

6abc + 4
∑

a3 ≥ 3
∑

ab(a+ b).

We can get this inequality by summing the inequalities

1
3

∑

a3 ≥ abc

and
3abc +

∑

a3 ≥
∑

ab(a+ b).

The first inequality follows from the AM-GM inequality, while the second is just the
third degree Schur’s inequality. The equality holds when a = b = c, and also when
two of a, b, c are zero.

Remark. Similarly, we can also prove the following inequality

(2a2 + 7bc)(2b2 + 7ca)(2c2 + 7ab)≥ 27(ab+ bc + ca)3.

P 3.11. If a, b, c are nonnegative real numbers, then

(2a2 + bc)(2b2 + ca)(2c2 + ab)≥ (ab+ bc + ca)3.

(Vasile Cîrtoaje, 2006)

First Solution. Since

(2a2 + bc)(2b2 + ca)(2c2 + ab) = 9a2 b2c2 + 4
∑

a3 b3 + 2abc
∑

a3

and
(ab+ bc + ca)3 = 6a2 b2c2 +

∑

a3 b3 + 3abc
∑

ab(a+ b),

the inequality is equivalent to

3a2 b2c2 + 3
∑

a3 b3 + 2abc
∑

a3 ≥ 3abc
∑

ab(a+ b).



240 Vasile Cîrtoaje

We can get this inequality by summing

2
3

abc
∑

a3 ≥ 2a2 b2c2

and
∑

a3 b3 + 3a2 b2c2 ≥ abc
∑

ab(a+ b).

The first inequality follows from the AM-GM inequality, while the second is just the
third degree Schur’s inequality applied to the numbers ab, bc and ca. The equality
holds when a = b = c, and also when two of a, b, c are zero.

Second Solution. By Hölder’s inequality, we have

(a2 + bc + a2)(b2 + b2 + ca)(ab+ c2 + c2)≥ (ab+ bc + ca)3,

from which the desired inequality follows.

Remark. Using the first method, we can also prove the following inequality

(5a2 + bc)(5b2 + ca)(5c2 + ab)≥ 8(ab+ bc + ca)3.

P 3.12. Let a, b, c be nonnegative real numbers such that

a+ b+ c = 2.

Prove that

(a) (a2 + b2)(b2 + c2)(c2 + a2)≤ (a+ b)(b+ c)(c + a);

(b) (a2 + b2)(b2 + c2)(c2 + a2)≤ 2.

Solution. Assume that
a =min{a, b, c}.

It is easy to check that the equality holds in both inequalities for a = 0 and b = c =
1.

(a) Since
a2 + b2 ≤ b(a+ b)

and
c2 + a2 ≤ c(c + a),

it suffices to show that
bc(b2 + c2)≤ b+ c.
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By the AM-GM inequality, we have

2bc(b2 + c2)≤
�

2bc + (b2 + c2)
2

�2

=
(b+ c)4

4
≤ 2(b+ c).

The equality holds for a = 0 and b = c = 1 (or any cyclic permutation).

(b) First Solution. Since

a2 + b2 ≤ b(a+ b)

and
c2 + a2 ≤ c(a+ c),

it suffices to show that

bc(a+ b)(a+ c)(b2 + c2)≤ 2.

By the AM-GM inequality, we have

4bc(a+ b)(a+ c)(b2 + c2)≤
�

2b(a+ c) + 2c(a+ b) + (b2 + c2)
3

�3

.

Therefore, we only need to show that

b2 + c2 + 4bc + 2ab+ 2ac ≤ 6.

This is true since

12− 2(b2 + c2 + 4bc + 2ab+ 2ac) =

= 3(a+ b+ c)2 − 2(b2 + c2 + 4bc + 2ab+ 2ac)

= 2a2 + b2 + c2 − 2bc + 2ab+ 2ac

= 2a(a+ b+ c) + (b− c)2 ≥ 0.

The equality holds for a = 0 and b = c = 1 (or any cyclic permutation).

Second Solution. Let us denote

F(a, b, c) = (a2 + b2)(b2 + c2)(c2 + a2).

We will show that

F(a, b, c)≤ F(0, b+ a/2, c + a/2)≤ 2.

The left inequality,

(a2 + b2)(b2 + c2)(c2 + a2)≤ (b+ a/2)2[(b+ a/2)2 + (c + a/2)2](c + a/2)2,

is true since
a2 + b2 ≤ (b+ a/2)2,
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b2 + c2 ≤ (b+ a/2)2 + (c + a/2)2,

c2 + a2 ≤ (c + a/2)2.

The right inequality holds if the original inequality holds for a = 0; that is,

b2c2(b2 + c2)≤ 2

for b+ c = 2. Indeed, by virtue of the AM-GM inequality, we have

bc ≤
�

b+ c
2

�2

= 1,

hence

2b2c2(b2 + c2)≤ 2bc(b2 + c2)

≤
�

2bc + (b2 + c2)
2

�2

=
(b+ c)4

4
= 4.

P 3.13. Let a, b, c be nonnegative real numbers such that

a+ b+ c = 2.

Prove that
(a3 + b3)(b3 + c3)(c3 + a3)≤ 2.

Solution. Due to symmetry, we may assume that

a =min{a, b, c}.

It is easy to check that the equality holds for a = 0 and b = c = 1. Write the
inequality as

�∏

(a+ b)
��∏

(a2 − ab+ b2)
�

≤ 2.

Since
∏

(a+ b)≤ (a+ b+ c)(ab+ bc + ca) = 2(ab+ bc + ca),

it suffices to show that

(ab+ bc + ca)
∏

(a2 − ab+ b2)≤ 1.

Since
a2 − ab+ b2 ≤ b2
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and
c2 − ca+ a2 ≤ c2,

it suffices to show that

b2c2(ab+ bc + ca)(b2 − bc + c2)≤ 1.

In virtue of the AM-GM inequality, we have

b2c2(ab+ bc + ca)(b2 − bc + c2)≤
�

bc + bc + (ab+ bc + ca) + (b2 − bc + c2)
4

�4

.

Therefore, it remains to show that

b2 + c2 + 2bc + ab+ ca ≤ 4.

This is true since

4− (b2 + c2 + 2bc + ab+ ca) = (a+ b+ c)2 − (b2 + c2 + 2bc + ab+ ca)
= a(a+ b+ c)≥ 0.

The equality holds for a = 0 and b = c = 1 (or any cyclic permutation).

P 3.14. Let a, b, c be nonnegative real numbers such that

a2 + b2 + c2 = 2.

Prove that
(a3 + b3)(b3 + c3)(c3 + a3)≤ 2.

(Vasile Cîrtoaje, 2011)

Solution. Let
x = a2, y = b2, z = c2, x + y + z = 2.

Since
(a3 + b3)2 ≤ (a2 + b2)(a4 + b4) = (x + y)(x2 + y2),

it suffices to prove that

(x + y)(y + z)(z + x)(x2 + y2)(y2 + z2)(z2 + x2)≤ 4.

Due to symmetry, we may assume that

x =min{x , y, z}.

It is easy to check that the equality holds for x = 0 and y = z = 1. Since

(x + y)(y + z)(z + x)≤ (x + y + z)(x y + yz + zx) = 2(x y + yz + zx)
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and
x2 + y2 ≤ y(x + y), z2 + x2 ≤ z(x + z),

it suffices to show that

yz(x y + yz + zx)(x + y)(x + z)(y2 + z2)≤ 2.

Write this inequality as

(2yz)[2(x y + yz + zx)][2(x + y)(x + z)](y2 + z2)≤ 16.

By the AM-GM inequality, it suffices to show that

�

2yz + 2(x y + yz + zx) + 2(x + y)(x + z) + (y2 + z2)
4

�4

≤ 16.

This inequality is equivalent to

2x2 + y2 + z2 + 6yz + 4x y + 4zx ≤ 8,

2x2 + y2 + z2 + 6yz + 4x y + 4zx ≤ 2(x + y + z)2,

(y − z)2 ≥ 0.

The equality holds for a = 0 and b = c = 1 (or any cyclic permutation).

P 3.15. If a, b, c are nonnegative real numbers such that

a+ b+ c = 2,

then
(3a2 − 2ab+ 3b2)(3b2 − 2bc + 3c2)(3c2 − 2ca+ 3a2)≤ 36.

(Vasile Cîrtoaje, 2011)

Solution. Due to symmetry, assume that

a =min{a, b, c}.

On the other hand, we can check that the equality holds for (a, b, c) = (0, 1,1).
Since

0≤ 3a2 − 2ab+ 3b2 ≤ b(a+ 3b)

and
0< 3c2 − 2ca+ 3a2 ≤ c(a+ 3c),

it suffices to show that

bc(a+ 3b)(a+ 3c)(3b2 − 2bc + 3c2)≤ 36.
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Write this inequality as

[4b(a+ 3c)][4c(a+ 3b)][3(3b2 − 2bc + 3c2)]≤ 123.

By virtue of the AM-GM inequality, it suffices to show that

�

4b(a+ 3c) + 4c(a+ 3b) + 3(3b2 − 2bc + 3c2)
3

�3

≤ 123.

This is equivalent to
9(b+ c)2 + 4a(b+ c)≤ 36.

We have

36− 9(b+ c)2 − 4a(b+ c) = 9(a+ b+ c)2 − 9(b+ c)2 − 4a(b+ c)
= a(9a+ 14b+ 14c)≥ 0.

The equality holds for a = 0 and b = c = 1 (or any cyclic permutation).

Remark. Similarly, we can prove the following more general statement.

• Let a, b, c be nonnegative real numbers. If
2
3
≤ k ≤ 2, then

(a2 − kab+ b2)(b2 − kbc + c2)(c2 − kca+ a2)≤
4

27(2+ k)2
(a+ b+ c)6,

with equality for a = 0 and
b
c
+

c
b
= 1+

3k
2

(or any cyclic permutation).

P 3.16. Let a, b, c be nonnegative real numbers such that

a+ b+ c = 3.

Prove that
(a2 − 4ab+ b2)(b2 − 4bc + c2)(c2 − 4ca+ a2)≤ 3.

(Vasile Cîrtoaje, 2011)

Solution. Assume that
a ≤ b ≤ c.

If c2 − 4ca+ a2 ≤ 0, then

b ≤ c ≤ (2+
p

3)a ≤ (2+
p

3)b.

From
b ≤ (2+

p
3)a, c ≤ (2+

p
3)b,
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it follows that
a2 − 4ab+ b2 ≤ 0, b2 − 4bc + c2 ≤ 0.

Since
(a2 − 4ab+ b2)(b2 − 4bc + c2)(c2 − 4ca+ a2)≤ 0,

the desired inequality is trivial. Consider further that c2 − 4ca+ a2 ≥ 0. There are
only two cases when the left hand side of the desired inequality is nonnegative:

a2 − 4ab+ b2 ≥ 0, b2 − 4bc + c2 ≥ 0, c2 − 4ca+ a2 ≥ 0

and
a2 − 4ab+ b2 ≤ 0, b2 − 4bc + c2 ≤ 0, c2 − 4ca+ a2 ≥ 0.

Case 1: a2 − 4ab+ b2 ≥ 0, b2 − 4bc + c2 ≥ 0, c2 − 4ca+ a2 ≥ 0. Since

a2 − 4ab+ b2 ≤ b2, c2 − 4ca+ a2 ≤ c2,

it suffices to prove that
b2c2(b2 − 4bc + c2)≤ 3.

It is easy to show that the homogeneous inequality

(a2 − 4ab+ b2)(b2 − 4bc + c2)(c2 − 4ca+ a2)≤ 3
�

a+ b+ c
3

�6

becomes an equality for
a = 0, b2 + c2 = 7bc.

Thus, we apply the AM-GM inequality as follows:

b2c2(b2 − 4bc + c2) =
1
9
(3bc)(3bc)(b2 − 4bc + c2)

≤
1
9

�

3bc + 3bc + (b2 − 4bc + c2)
3

�3

= 3
�

b+ c
3

�6

≤ 3
�

a+ b+ c)
3

�6

= 3.

Case 2: a2 − 4ab + b2 ≤ 0, b2 − 4bc + c2 ≤ 0, c2 − 4ca + a2 ≥ 0. By the AM-GM
inequality, we have

(4ab− a2 − b2)(4bc − b2 − c2)(c2 − 4ca+ a2)≤

≤
�

(4ab− a2 − b2) + (4bc − b2 − c2) + (c2 − 4ca+ a2)
3

�3

=
8
27
(2ab+ 2bc − 2ca− b2)3;
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therefore, it suffices to prove that

(2ab+ 2bc − 2ca− b2)3 ≤
81
8

,

which is equivalent to the homogeneous inequality

2
3
p

9(2ab+ 2bc − 2ca− b2)≤ (a+ b+ c)2.

Since 2 3p9<
21
5

, we only need to show that

21(2ab+ 2bc − 2ca− b2)≤ 5(a+ b+ c)2.

Write this inequality as f (a)≥ 0, where

f (a) = 5a2 + 4(13c − 8b)a+ 26b2 + 5c2 − 32bc.

From a2 − 4ab+ b2 ≤ 0, it follows that

a ≥ (2−
p

3)b,

which involves 4a ≥ b and 5a2 ≥
b2

20
; therefore,

f (a)≥
b2

20
+ (13c − 8b)b+ 26b2 + 5c2 − 32bc =

1
20
(19b− 10c)2 ≥ 0.

This completes the proof. The equality holds for a = 0, b =
3−
p

5
2

and c =
3+
p

5
2

(or any permutation).

P 3.17. If a, b, c are positive real numbers such that

a+ b+ c = 3,

then
abc +

12
ab+ bc + ca

≥ 5.

Solution. By the third degree Schur’s inequality

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca),

we get 3abc ≥ 4(ab+ bc + ca)− 9. Thus, it suffices to prove that

4(ab+ bc + ca)− 9+
36

ab+ bc + ca
≥ 15.

This inequality is equivalent to

(ab+ bc + ca− 3)2 ≥ 0.

The equality holds for a = b = c = 1.
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P 3.18. If a, b, c are positive real numbers such that

a2 + b2 + c2 = 3,

then
5(a+ b+ c) +

3
abc
≥ 18.

Solution. Let

x =
a+ b+ c

3
.

From
2(ab+ bc + ca) = (a+ b+ c)2 − (a2 + b2 + c2) = 3(3x2 − 1),

we get x > 1/
p

3. By the known inequality

(ab+ bc + ca)2 ≥ 3abc(a+ b+ c),

we get
1

abc
≥

4x
(3x2 − 1)2

.

Then, it suffices to prove that

5x +
4x

(3x2 − 1)2
≥ 6,

which is equivalent to

15x5 − 18x4 − 10x3 + 12x2 + 3x − 2≥ 0,

(x − 1)2(15x3 + 12x2 − x − 2)≥ 0.

We still have to show that

15x3 + 12x2 − x − 2≥ 0.

Since x > 1/
p

3, we get

15x3 + 12x2 − x − 2> x2(12−
1
x
−

2
x2
)> x2(12−

p
3− 6)> 0.

The equality holds for a = b = c = 1.

P 3.19. If a, b, c are positive real numbers such that

a2 + b2 + c2 = 3,

then
12+ 9abc ≥ 7(ab+ bc + ca).

(Vasile Cîrtoaje, 2005)
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Solution. Denote x = (a+ b+ c)/3. Since

2(ab+ bc + ca) = (a+ b+ c)2 − (a2 + b2 + c2) = 3(3x2 − 1),

we can write the inequality as

5+ 2abc ≥ 7x2.

By Schur’s inequality of degree three, we get

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca),

3x3 + abc ≥ 2x(3x2 − 1),

abc ≥ 3x3 − 2x .

Then,

5+ 2abc − 7x2 ≥ 5+ 2(3x3 − 2x)− 7x2 = (x − 1)2(6x + 5)≥ 0.

The equality holds for a = b = c = 1.

P 3.20. If a, b, c are positive real numbers such that

a2 + b2 + c2 = 3,

then
21+ 18abc ≥ 13(ab+ bc + ca).

(Vasile Cîrtoaje, 2005)

Solution. Let
p = a+ b+ c, q = ab+ bc + ca.

From
2q = (a+ b+ c)2 − (a2 + b2 + c2) = p2 − 3,

we get p >
p

3. In addition, from Schur’s inequality of degree four, we have

abc ≥
(p2 − q)(4q− p2)

6p
=
(p2 + 3)(p2 − 6)

12p
.

Therefore,

21+ 18abc − 13(ab+ bc + ca)≥ 21+
3(p2 + 3)(p2 − 6)

2p
−

13(p2 − 3)
2

=
(p− 3)2(3p2 + 5p− 6)

2p
≥ 0.

The equality holds for a = b = c = 1.
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P 3.21. If a, b, c are positive real numbers such that

a2 + b2 + c2 = 3,

then
(2− ab)(2− bc)(2− ca)≥ 1.

(Vasile Cîrtoaje, 2005)

First Solution. Let p = a+ b+ c. From

3(a2 + b2 + c2)≥ (a+ b+ c)2,

we get p ≤ 3. Since

(2− ab)(2− bc)(2− ca) = 8− 4(ab+ bc + ca) + 2abc(a+ b+ c)− a2 b2c2

= 8− 2(p2 − 3) + 2abcp− a2 b2c2

= 14− p2 − (p− abc)2,

we can write the inequality as

13− p2 − (p− abc)2 ≥ 0.

Clearly,
3(p− abc) = (a2 + b2 + c2)(a+ b+ c)− 3abc > 0.

By Schur’s inequality

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca),

we get
p3 + 9abc ≥ 2p(p2 − 3),

abc ≥
p(p2 − 6)

9
.

Since

0< p− abc ≤ p−
p(p2 − 6)

9
=

p(15− p2)
9

,

it suffices to prove that

13− p2 −
p2(15− p2)2

81
≥ 0.

Setting
p = 3

p
x , 0< x ≤ 1,

this inequality becomes

13− 34x + 30x2 − 9x3 ≥ 0.
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It is true because

13− 34x + 30x2 − 9x3 = (1− x)(13− 21x + 9x2)
= (1− x)[1+ 3(1− x)(4− 3x)]≥ 0.

The equality holds for a = b = c = 1.

Second Solution. We use the mixing variables technique. Assume that a ≤ 1 and
show that

(2− ab)(2− bc)(2− ca)≥ (2− x2)(2− ax)2 ≥ 1,

where

x =

√

√ b2 + c2

2
=

√

√3− a2

2
, x <

√

√3
2

.

Since

2− bc ≥ 2−
1
2
(b2 + c2)≥ 2−

3
2
> 0

and, similarly, 2−ca > 0, 2−ab > 0, we can prove the left inequality by multiplying
the inequalities

2− bc ≥ 2− x2

and
(2− ca)(2− ab)≥ (2− ax)2.

The last inequality is true because

(2− ca)(2− ab)− (2− ax)2 = 2a(2x − b− c)− a2(x2 − bc)

=
2a(b− c)2

2x + b+ c
−

a2(b− c)2

2

=
a(b− c)2[4− a(2x + b+ c)]

2(2x + b+ c)

and

4− a(2x + b+ c)≥ 4(1− ax) = 2(2− a
p

6− 2a2)

=
4(1− a2)(2− a2)

2+ a
p

6− 2a2
≥ 0.

The right inequality, (2− x2)(2− ax)2 ≥ 1, is equivalent to

(1+ a2)(2− ax)2 ≥ 2.

Since 2(1+ a2)≥ (1+ a)2 and 2− ax ≥ 2− x > 0, it suffices to show that

(1+ a)(2− ax)≥ 2.
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Indeed,

(1+ a)(2− ax)− 2= a(2− x − ax) =
a(a4 + 2a3 − 2a2 − 6a+ 5)

2(2+ x + ax)

=
a(a− 1)2(a2 + 4a+ 5)

2(2+ x + ax)
≥ 0.

P 3.22. Let a, b, c be positive real numbers such that

abc = 1.

Prove that
�

a+ b+ c
3

�5

≥
a2 + b2 + c2

3
.

First Solution. Write the inequality in the homogeneous form

(a+ b+ c)5 ≥ 81abc(a2 + b2 + c2).

Using to the known inequality

(ab+ bc + ca)2 ≥ 3abc(a+ b+ c),

it suffices to show that

(a+ b+ c)6 ≥ 27(ab+ bc + ca)2(a2 + b2 + c2).

Setting p = a+ b+ c and q = ab+ bc + ca, we have

(a+ b+ c)6 − 27(ab+ bc + ca)2(a2 + b2 + c2) = p6 − 27q2(p2 − 2q)

= (p2 − 3q)2(p2 + 6q)≥ 0.

The equality occurs for a = b = c = 1.

Second Solution. Use the mixing variables method. We show that

E(a, b, c)≥ E(a, x , x)≥ 0,

where

E(a, b, c) = (a+ b+ c)5 − 81abc(a2 + b2 + c2), x =
b+ c

2
.

Indeed, we have

E(a, b, c)− E(a, x , x)
81

= a3(x2 − bc) + a[2x4 − bc(b2 + c2)]

=
1
4

a3(b− c)2 +
1
8

a(b− c)4 ≥ 0
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and

E(a, x , x) = (a+ b+ c)5 −
81
8

a(b+ c)2[2a2 + (b+ c)2]

=
1
8
(2a− b− c)2[2a3 + 12a2(b+ c)− 9a(b+ c)2 + 8(b+ c)3]≥ 0,

since

2a3 + 12a2(b+ c)− 9a(b+ c)2 + 8(b+ c)3]>

> 6a2(b+ c)− 12a(b+ c)2 + 6(b+ c)3

= 6(b+ c)(a− b− c)2 ≥ 0.

P 3.23. If a, b, c are positive real numbers such that

abc = 1,

then

a3 + b3 + c3 + a−3 + b−3 + c−3 + 21≥ 3(a+ b+ c)(a−1 + b−1 + c−1).

Solution. Since

a3 + b3 + c3 + a−3 + b−3 + c−3 + 3=
�

a
b
+

b
c
+

c
a

��

b
a
+

c
b
+

a
c

�

and

(a+ b+ c)(a−1 + b−1 + c−1) =
�

a
b
+

b
c
+

c
a

�

+
�

b
a
+

c
b
+

a
c

�

+ 3,

we can write the desired inequality in the homogeneous form
�

a
b
+

b
c
+

c
a

��

b
a
+

c
b
+

a
c

�

+ 9≥ 3
�

a
b
+

b
c
+

c
a

�

+ 3
�

b
a
+

c
b
+

a
c

�

,

or
�

a
b
+

b
c
+

c
a
− 3

��

b
a
+

c
b
+

a
c
− 3

�

≥ 0.

This is true because, by the AM-GM inequality, we have

a
b
+

b
c
+

c
a
≥ 3,

b
a
+

c
b
+

a
c
≥ 3.

The equality holds for a = b = c = 1.
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P 3.24. If a, b, c are positive real numbers such that

abc = 1,

then

a2 + b2 + c2 − ab− bc − ca ≥
9
4
(a+ b+ c − 3).

Solution. Write the inequality in the form

3(4x2 − 3x + 3)≥ 4(ab+ bc + ca),

where

x =
a+ b+ c

3
.

The third degree Schur’s inequality states that

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca),

which is equivalent to

4(ab+ bc + ca)≤
3(3x3 + 1)

x
.

Therefore, it suffices to show that

3(4x2 − 3x + 3)≥
3(3x3 + 1)

x
.

This inequality reduces to
(x − 1)3 ≥ 0,

which is true because
x ≥

3
p

abc = 1.

The equality holds for a = b = c = 1.

P 3.25. If a, b, c are positive real numbers such that

abc = 1,

then
a2 + b2 + c2 + a+ b+ c ≥ 2(ab+ bc + ca).
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Solution. Let
p = a+ b+ c, q = ab+ bc + ca.

By virtue of the AM-GM inequality, we have

p ≥ 3
3
p

abc = 3,

and by Schur’s inequality
p3 + 9abc ≥ 4pq,

we get

4q ≤
p3 + 9

p
.

Therefore,

a2 + b2 + c2 + a+ b+ c − 2(ab+ bc + ca) = p2 + p− 4q

≥ p2 + p−
p3 + 9

p

=
(p− 3)(p+ 3)

p
≥ 0.

The equality holds for a = b = c = 1.

P 3.26. If a, b, c are positive real numbers such that

abc = 1,

then
a2 + b2 + c2 + 15(ab+ bc + ca)≥ 16(a+ b+ c).

Solution. Write the inequality as F(a, b, c)≥ 0, where

F(a, b, c) = a2 + b2 + c2 + 15
�

1
a
+

1
b
+

1
c

�

− 16(a+ b+ c).

Assume that a ≥ b ≥ c and denote

t =
p

bc, 0< t ≤ 1, at2 = 1.

We will show that
F(a, b, c)≥ F(a, t, t)≥ 0.

Since

F(a, b, c)− F(a, t, t) = b2 + c2 − 2t2 + 15
�

1
b
+

1
c
−

2
t

�

− 16(b+ c − 2t)
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= (b− c)2 + 15
�

1
p

b
−

1
p

c

�2

− 16(
p

b−
p

c )2

= (
p

b−
p

c )2
�

(
p

b+
p

c )2 +
15
bc
− 16

�

≥ (
p

b−
p

c )2
�

4
p

bc +
15
bc
− 16

�

,

it suffices to show that
4t +

15
t2
− 16≥ 0.

Indeed,

4t +
15
t2
− 16> t +

15
t
− 16=

(1− t)(15− t)
t

≥ 0.

The inequality F(a, t, t)≥ 0 is equivalent to

(t − 1)2(17t4 + 2t3 − 13t2 + 2t + 1)≥ 0.

We have

17t4 + 2t3 − 13t2 + 2t + 1= (2t − 1)4 + t(t3 + 34t2 − 37t + 10)

= (2t − 1)4 +
t
4
[t(2t − 1)2 + 140t2 − 149t + 40]> 0

since D = 1492 − 4 · 140 · 40= −199. The equality holds for a = b = c = 1.

P 3.27. If a, b, c are positive real numbers such that

abc = 1,

then
2

a+ b+ c
+

1
3
≥

3
ab+ bc + ca

.

Solution. Let

x =
ab+ bc + ca

3
.

By virtue of the AM-GM inequality, we have

x ≥ 3
p

ab · bc · ca = 1.

The third degree Schur’s inequality applied to ab, bc, ca, states that

(ab+ bc + ca)3 + 9a2 b2c2 ≥ 4abc(a+ b+ c)(ab+ bc + ca),

which is equivalent to
3

a+ b+ c
≥

4x
3x3 + 1

.
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Therefore,

3
�

2
a+ b+ c

+
1
3
−

3
ab+ bc + ca

�

≥
8x

3x3 + 1
+ 1−

3
x

=
3x4 − 9x3 + 8x2 + x − 3

x(3x3 + 1)
=
(x − 1)(3x3 − 6x2 + 2x + 3)

x(3x3 + 1)
.

Since x ≥ 1, we need to show that

3x3 − 6x2 + 2x + 3≥ 0.

For x ≥ 2, we have

3x3 − 6x2 + 2x + 3> 3x3 − 6x2 = 3x2(x − 2)≥ 0,

and for 1≤ x < 2, we have

3x3 − 6x2 + 2x + 3= 3x(x − 1)2 + 3− x > 0.

The equality holds for a = b = c = 1.

P 3.28. If a, b, c are positive real numbers such that

abc = 1,

then
ab+ bc + ca+

6
a+ b+ c

≥ 5.

(Vasile Cîrtoaje, 2005)

First Solution. Denoting

x =
ab+ bc + ca

3
,

the inequality can be written as

(a+ b+ c)(3x − 5) + 6≥ 0.

In virtue of the AM-GM inequality, we get x ≥ 1. Since the inequality holds for x ≥
5/3, consider next that 1 ≤ x < 5/3. Applying the third degree Schur’s inequality
to the numbers ab, bc and ca, we have

(ab+ bc + ca)3 + 9a2 b2c2 ≥ 4abc(a+ b+ c)(ab+ bc + ca),

which is equivalent to

a+ b+ c ≤
3(3x3 + 1)

4x
.
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Since 3x − 5< 0, it suffices to prove that

3(3x3 + 1)(3x − 5)
4x

+ 6≥ 0.

This inequality is equivalent to

9x4 − 15x3 + 11x − 5≥ 0,

(x − 1)(9x3 − 6x2 − 6x + 5)≥ 0.

Since

9x3 − 6x2 − 6x + 5> 9x3 − 6x2 − 6x + 3= 3(x − 1)(3x2 + x − 1)≥ 0,

the conclusion follows. The equality holds for a = b = c = 1.

Second Solution (by Vo Quoc Ba Can). Among

a− 1, b− 1, c − 1,

there are two with the same sign. Due to symmetry, assume that (b−1)(c−1)≥ 0;
that is,

b+ c ≤ 1+ bc.

Then,
6

a+ b+ c
≥

6
a+ 1+ bc

=
6a

a2 + a+ 1
.

On the other hand, using the AM-GM inequality yields

ab+ bc + ca = a(b+ c) + bc ≥ 2a
p

bc + bc = 2
p

a+
1
a

.

Therefore, it suffices to prove that

2
p

a+
1
a
+

6a
a2 + a+ 1

≥ 5.

Setting
p

a = x , this inequality becomes as follows:

2x +
1
x2
+

6x2

x4 + x2 + 1
≥ 5,

2x +
1
x2
− 3≥ 2−

6x2

x4 + x2 + 1
,

(x − 1)2(2x + 1)
x2

≥
2(x2 − 1)2

x4 + x2 + 1
,

(x − 1)2(2x5 − x4 − 2x3 − x2 + 2x + 1)≥ 0,

(x − 1)2[x(x − 1)2(2x2 + 3x + 2) + 1]≥ 0.
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P 3.29. If a, b, c are positive real numbers such that

abc = 1,

then
3
Æ

(1+ a)(1+ b)(1+ c)≥ 4
Æ

4(1+ a+ b+ c).

(Pham Huu Duc, 2008)

Solution. Since

(1+ a)(1+ b)(1+ c) = (1+ a+ b+ c) + (1+ ab+ bc + ca)

≥ 2
Æ

(1+ a+ b+ c)(1+ ab+ bc + ca),

it suffices to prove that

(1+ ab+ bc + ca)2 ≥ 4(1+ a+ b+ c),

which is equivalent to
(1+ q)2 ≥ 4(1+ p),

where
p = a+ b+ c, q = ab+ bc + ca.

Setting x = bc, y = ca, z = ab in Schur’s inequality

(x + y + z)3 + 9x yz ≥ 4(x + y + z)(x y + yz + zx),

we get
q3 + 9≥ 4pq.

Since

(1+ q)2 − 4(1+ p)≥ (1+ q)2 − 4−
q3 + 9

q

=
(q− 3)(2q+ 3)

q
,

it suffices to show that q ≥ 3. Indeed, by the AM-GM inequality, we have

q = ab+ bc + ca ≥ 3
3
p

a2 b2c2 = 3.

The equality holds for a = b = c = 1

P 3.30. If a, b, c are positive real numbers, then

a6 + b6 + c6 − 3a2 b2c2 ≥ 18(a2 − bc)(b2 − ca)(c2 − ab).

(Vasile Cîrtoaje, 2007)
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Solution. Due to homogeneity, we may assume that abc = 1, when the inequality
can be written as

a6 + b6 + c6 − 3≥ 18(a3 + b3 + c3 − a3 b3 − b3c3 − c3a3).

Substituting a3, b3, c3 by a, b, c, respectively, we need to show that abc = 1 implies
F(a, b, c)≥ 0, where

F(a, b, c) = a2 + b2 + c2 − 3− 18(a+ b+ c − ab− bc − ca).

To do this, we use the mixing variables method. Without loss of generality, assume
that a ≥ 1. We claim that

F(a, b, c)≥ F(a,
p

bc,
p

bc)≥ 0.

We have

F(a, b, c)− F(a,
p

bc,
p

bc) = (b− c)2 − 18(
p

b−
p

c)2 + 18a(
p

b−
p

c)2

= (b− c)2 + 18(a− 1)(
p

b−
p

c)2 ≥ 0.

Also, putting
p

bc = t, we have

F(a,
p

bc,
p

bc) = F(
1
t2

, t, t) =
1
t4
+ 20t2 − 3−

18
t2
− 36t +

36
t

=
(t − 1)2(2t − 1)2(t + 1)(5t + 1)

t4
≥ 0.

The equality holds for a = b = c, and for a/2= b = c (or any cyclic permutation).

P 3.31. If a, b, c are positive real numbers such that

a+ b+ c = 3,

then
1
a2
+

1
b2
+

1
c2
≥ a2 + b2 + c2.

(Vasile Cîrtoaje, 2006)

First Solution. Since

1
a2
+

1
b2
+

1
c2
≥

1
ab
+

1
bc
+

1
ca

,

it suffices to prove that

1
ab
+

1
bc
+

1
ca
≥ a2 + b2 + c2,
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which is equivalent to
abc(a2 + b2 + c2)≤ 3.

Let x = (ab+ bc + ca)/3. From the known inequality

(ab+ bc + ca)2 ≥ 3abc(a+ b+ c),

we get
abc ≤ x2.

On the other hand, we have

a2 + b2 + c2 = (a+ b+ c)2 − 2(ab+ bc + ca) = 9− 6x .

Then,

abc(a2 + b2 + c2)− 3≤ x2(9− 6x)− 3= −3(x − 1)2(2x + 1)≤ 0.

The equality holds for a = b = c = 1.

Second Solution. Since a+ b+ c = 3, we can write the inequality as

∑

(
1
a2
− a2 + 4a− 4)≥ 0,

which is equivalent to

∑ (1− a)2(1+ 2a− a2)
a2

≥ 0.

Without loss of generality, assume that a = max{a, b, c}. We have two cases to
consider.

Case 1: a ≤ 1+
p

2. Since a, b, c ≤ 1+
p

2, we have

1+ 2a− a2 ≥ 0, 1+ 2b− b2 ≥ 0, 1+ 2c − c2 ≥ 0.

Thus, the conclusion follows.

Case 2: a > 1+
p

2. Since b+ c = 3− a < 2−
p

2<
2
3

, we have

bc ≤
1
4
(b+ c)2 <

1
9

,

and hence

1
a2
+

1
b2
+

1
c2
>

1
b2
+

1
c2
≥

2
bc
> 18> (a+ b+ c)2 > a2 + b2 + c2.
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P 3.32. If a, b, c are positive real numbers such that

ab+ bc + ca = 3,

then
a3 + b3 + c3 + 7abc ≥ 10.

(Vasile Cîrtoaje, 2005)

Solution. Let

x =
a+ b+ c

3
.

By the well-known inequality

(a+ b+ c)2 ≥ 3(ab+ bc + ca),

we get x ≥ 1. Since

a3 + b3 + c3 = 3abc + (a+ b+ c)3 − 3(a+ b+ c)(ab+ bc + ca)

= 3abc + 27x3 − 27x ,

we can write the inequality as

10abc + 27x3 − 27x − 10≥ 0.

For x ≥
4
3

, this inequality is true since

27x3 − 27x − 10= 27x(x2 − 1)− 10≥ 36(
16
9
− 1)− 10= 18.

For 1≤ x ≤
4
3

, we use Schur’s inequality

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca),

which is equivalent to
abc + 3x3 − 4x ≥ 0.

Therefore,

10abc + 27x3 − 27x − 10≥ 10(−3x3 + 4x) + 27x3 − 27x − 10

= (x − 1)[4− 3x + 3(2− x2)]≥ 0.

The equality holds for a = b = c = 1.
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P 3.33. If a, b, c are nonnegative real numbers such that

a3 + b3 + c3 = 3,

then
a4 b4 + b4c4 + c4a4 ≤ 3.

(Vasile Cîrtoaje, 2003)

Solution. By virtue of the AM-GM inequality, we have

ab ≤
a3 + b3 + 1

3
=

4− c3

3
.

Then, we have

a4a4 ≤
4a3a3 − a3 b3c3

3
.

Similarly,

b4c4 ≤
4b3c3 − a3 b3c3

3
, c4a4 ≤

4c3a3 − a3 b3c3

3
.

Summing these inequalities, we obtain

a4 b4 + b4c4 + c4a4 ≤
4(a3 b3 + b3c3 + c3a3)

3
− a3 b3c3.

Using the substitutions x = a3, y = b3, z = c3, it suffices to prove that

4(x y + yz + zx)≤ 3x yz + 9,

where x , y, z are nonnegative real numbers satisfying x + y + z = 3. This follows
immediately from Schur’s inequality

4(x + y + z)(x y + yz + zx)≤ 9x yz + (x + y + z)3.

The equality holds for a = b = c = 1.

Remark 1. We may write the inequality in the homogeneous form

�

a4 b4 + b4c4 + c4a4

3

�3

≤
�

a3 + b3 + c3

3

�8

.

From this, we get the reverse statement.

• If a, b, c are nonnegative real numbers such that a4 b4 + b4c4 + c4a4 = 3, then

a3 + b3 + c3 ≥ 3.

Remark 2. The inequality in P 3.33 is a particular case of the following more
general statement (Vasile Cîrtoaje, 2003).
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• Let a, b, c be nonnegative real numbers such that a + b + c = 3. If 0 < k ≤ k0,
where

k0 =
ln 3

ln9− ln4
≈ 1.355,

then
ak bk + bkck + ckak ≤ 3.

P 3.34. If a, b, c are nonnegative real numbers, then

(a+ 1)2(b+ 1)2(c + 1)2 ≥ 4(a+ b+ c)(ab+ bc + ca) + 28abc.

(Vasile Cîrtoaje, 2011)

Solution. By the AM-GM inequality, we have

(a+ 1)(b+ 1)(c + 1) = (abc + 1) + (a+ b+ c) + (ab+ bc + ca)

≥ 2
p

abc + 2
Æ

(a+ b+ c)(ab+ bc + ca).

Thus, it suffices to prove that

�p

abc +
Æ

(a+ b+ c)(ab+ bc + ca)
�2
≥ (a+ b+ c)(ab+ bc + ca) + 7abc,

which can be written as
Æ

abc(a+ b+ c)(ab+ bc + ca)≥ 3abc.

This is true if
Æ

(a+ b+ c)(ab+ bc + ca)≥ 3
p

abc.

Indeed, we have

(a+ b+ c)(ab+ bc + ca)− 9abc = a(b− c)2 + b(c − a)2 + c(a− b)2 ≥ 0.

The equality holds for a = b = c = 1.

P 3.35. If a, b, c are positive real numbers such that

a+ b+ c = 3,

then
1+ 8abc ≥ 9min{a, b, c}.

(Vasile Cîrtoaje, 2007)



Symmetric Polynomial Inequalities in Nonnegative Variables 265

Solution. Without loss of generality, assume that

a =min{a, b, c}, a ≤ 1,

when the inequality becomes

1+ 8abc ≥ 9a.

From (a− b)(a− c)≥ 0, we get

bc ≥ a(b+ c)− a2 = a(3− a)− a2 = a(3− 2a2).

Therefore,

1+ 8abc − 9a ≥ 1+ 8a2(3− 2a2)− 9a = (1− a)(1− 4a)2 ≥ 0.

The equality holds for a = b = c = 1, and also for (a, b, c) =
�

1
4

,
1
4

,
5
2

�

(or any

cyclic permutation).

P 3.36. If a, b, c are positive real numbers such that

a2 + b2 + c2 = 3,

then
1+ 4abc ≥ 5min{a, b, c}.

(Vasile Cîrtoaje, 2007)

Solution. Without loss of generality, assume that

a =min{a, b, c}, a ≤ 1.

The inequality can be written as

1+ 4abc ≥ 5a.

From (a2 − b2)(a2 − c2)≥ 0, we get

bc ≥ a
p

b2 + c2 − a2 = a
p

3− 2a2.

Therefore, it suffices to prove that

4a2
p

3− 2a2 ≥ 5a− 1.

We consider two cases.
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Case 1: 0< a ≤ 1/3. Since

p

3− 2a2 ≥
5
3
>

25
16

,

it is enough to show that
25
4

a2 ≥ 5a− 1.

This inequality is equivalent to (5a− 2)2 ≥ 0.

Case 2: 1/3< a ≤ 1. Since
p

3− 2a2 ≥ 2− a,

which is equivalent to the obvious inequality

(1− a)(3a− 1)≥ 0,

it suffices to show that
4a2(2− a)≥ 5a− 1.

Indeed, we have

4a2(2− a)− 5a+ 1= (1− a)(2a− 1)2 ≥ 0.

The proof is completed. The equality holds for a = b = c = 1.

P 3.37. If a, b, c are positive real numbers such that

a+ b+ c = abc,

then
(1− a)(1− b)(1− c) + (

p
3− 1)3 ≥ 0.

Solution. Without loss of generality, assume that

a ≥ b ≥ c.

The product (1− a)(1− b)(1− c) is negative for either a > 1 > b ≥ c or a ≥ b ≥
c > 1. Since a > 1> b ≥ c involves the contradiction

0= a+ b+ c − abc > a(1− bc)> 0,

it suffices to consider only the case a ≥ b ≥ c > 1. Setting

x = a− 1, y = b− 1, z = c − 1,
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we need to show that
x yz ≤ (

p
3− 1)3

for all x , y, z > 0 such that

x y + yz + zx + x yz = 2.

Let
t = 3px yz, t > 0.

By the AM-GM inequality, we have

2= x y + yz + zx + x yz ≥ 3 3
p

x2 y2z2 + x yz = 3t2 + t3,

hence
t3 + 3t2 − 2≤ 0,

(t + 1)(t2 + 2t − 2)≤ 0,

t2 + 2t − 2≤ 0,

t ≤
p

3− 1,

x yz ≤ (
p

3− 1)3.

The equality holds for a = b = c =
p

3.

P 3.38. If a, b, c are nonnegative real numbers such that

a+ b+ c = 2,

then
(a2 + bc)(b2 + ca)(c2 + ab)≤ 1.

(Vasile Cîrtoaje, 2005)

Solution. Without loss of generality, assume that

a ≥ b ≥ c.

Since
a2 + bc ≤ (a+

c
2
)2

and
(b2 + ca)(c2 + ab)≤

1
4
(b2 + ca+ c2 + ab)2,

it suffices to show that

(2a+ c)(b2 + c2 + ab+ ac)≤ 4.



268 Vasile Cîrtoaje

Let
E(a, b, c) = (2a+ c)(b2 + c2 + ab+ ac).

We will show that
E(a, b, c)≤ E(a, b+ c, 0)≤ 4.

Indeed,
E(a, b, c)− E(a, b+ c, 0) = c(b2 + c2 + ac − 3ab)≤ 0

and

E(a, b+ c, 0)− 4= 2a(a+ b+ c)(b+ c)− 4

= 4a(2− a)− 4= −4(a− 1)2 ≤ 0.

The equality occurs for a = b = 1 and c = 0 (or any cyclic permutation).

P 3.39. If a, b, c are nonnegative real numbers, then

(8a2 + bc)(8b2 + ca)(8c2 + ab)≤ (a+ b+ c)6.

Solution. We use the mixing variables technique. Without loss of generality, as-
sume that a ≤ b ≤ c. Let

x =
b+ c

2
, x ≥ a,

and
E(a, b, c) = (8a2 + bc)(8b2 + ca)(8c2 + ab)− (a+ b+ c)6.

We will prove that
E(a, b, c)≤ E(a, x , x)≤ 0.

The left inequality is equivalent to

(8a2 + x2)(8x2 + ax)2 ≥ (8a2 + bc)(8b2 + ca)(8c2 + ab),

which follows by multiplying the inequalities

8a2 + x2 ≥ 8a2 + bc

and
(8x2 + ax)2 ≥ (8b2 + ca)(8c2 + ab).

The first inequality is obvious, and the last inequality is equivalent to

64(x4 − b2c2) + a2(x2 − bc)− 8a(b3 + c3 − 2x3)≥ 0.

Since

b3 + c3 − 2x3 =
3(b+ c)(b− c)2

4
= 6x(x2 − bc)≥ 0,
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we need to show that
64(x2 + bc) + a2 − 48ax ≥ 0.

This is true, since

64(x2 + bc) + a2 − 48ax ≥ 48x(x − a)≥ 0.

The right inequality, E(a, x , x)≤ 0, is equivalent to

(8a2 + x2)(8x2 + ax)2 − (a+ 2x)6 ≤ 0,

176x5 − 273ax4 + 32a2 x3 + 52a3 x2 + 12a4 x + a5 ≥ 0,

(x − a)2(176x3 + 79ax2 + 14a2 x + a3)≥ 0.

The equality holds for a = b = c, and for a = 0 and b = c (or any cyclic permuta-
tion).

P 3.40. If a, b, c are positive real numbers such that

a2 b2 + b2c2 + c2a2 = 3,

then
a+ b+ c ≥ abc + 2.

(Vasile Cîrtoaje, 2006)

Solution. Without loss of generality, assume that

a ≥ b ≥ c.

From a2 b2 + b2c2 + c2a2 = 3, it follows that

1≤ ab <
p

3.

We have

a+ b+ c − abc − 2= a+ b− 2− (ab− 1)c

≥ 2
p

ab− 2− (ab− 1)c

= (
p

ab− 1)
�

2− (
p

ab+ 1)c
�

.

So, we need to prove that
2≥ (

p

ab+ 1)c.

Since
p

ab+ 1≤ 2
p

ab,
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it suffices to show that 2
p

ab ≤ 2
p

ab; that is,

1≥ abc2.

Indeed, we have

c2 =
3− a2 b2

a2 + b2
≤

3− a2 b2

2ab
,

hence

1− abc2 ≥ 1−
3− a2 b2

2
=

a2 b2 − 1
2

≥ 0.

The equality holds for a = b = c = 1.

P 3.41. Let a, b, c be nonnegative real numbers such that

a+ b+ c = 5.

Prove that
(a2 + 3)(b2 + 3)(c2 + 3)≥ 192.

First Solution. Without loss of generality, assume that

a =min{a, b, c}, a ≤
5
3

.

By virtue of the Cauchy-Schwarz inequality, we have

(b2 + 3)(c2 + 3) = (b2 + 3)(3+ c2)≥ 3(b+ c)2 = 3(5− a)2.

Therefore, it suffices to sow that

(a2 + 3)(5− a)2 ≥ 64

for 0≤ a ≤
5
3

. Indeed,

(a2 + 3)(5− a)2 − 64= (a− 1)2(a2 − 8a+ 11)≥ 0,

since

a2 − 8a+ 11=
�

5
3
− a

��

19
3
− a

�

+
4
9
> 0.

The equality holds for a = 3 and b = c = 1 (or any cyclic permutation).

Second Solution. Without loss of generality, assume that

a =max{a, b, c}.



Symmetric Polynomial Inequalities in Nonnegative Variables 271

First, we show that
(b2 + 3)(c2 + 3)≥ (x2 + 3)2,

where

x =
b+ c

2
, 0≤ x ≤

5
3

.

This inequality is equivalent to

(b− c)2(6− bc − x2)≥ 0,

which is true because
6− bc − x2 ≥ 2(3− x2)> 0.

Thus, it suffices to prove that

(a2 + 3)(x2 + 3)2 ≥ 192,

which is equivalent to

[(5− 2x)2 + 3](x2 + 3)2 ≥ 192,

(x2 − 5x + 7)(x2 + 3)2 ≥ 48,

(x − 1)2(x4 − 3x3 + 6x2 − 15x + 15)≥ 0.

This inequality is true since

x4 − 3x3 + 6x2 − 15x + 15= x2
�

x −
3
2

�2

+ 15
� x

2
− 1

�2
> 0.

P 3.42. If a, b, c are nonnegative real numbers, then

a2 + b2 + c2 + abc + 2≥ a+ b+ c + ab+ bc + ca.

(Michael Rozenberg, 2012)

Solution. Among the numbers

1− a, 1− b, 1− c,

there are always two with the same sign; let us say (1− b)(1− c)≥ 0, that is

bc ≥ b+ c − 1.

Thus, it suffices to show that

a2 + b2 + c2 + a(b+ c − 1) + 2≥ a+ b+ c + ab+ bc + ca,
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which is equivalent to

a2 − 2a+ b2 + c2 − bc − (b+ c) + 2≥ 0.

Since
b2 + c2 − bc ≥

1
4
(b+ c)2,

it suffices to show that

a2 − 2a+
1
4
(b+ c)2 − (b+ c) + 2≥ 0,

which can be written in the obvious form

(a− 1)2 +
�

b+ c
2
− 1

�2

≥ 0.

The equality holds for a = b = c = 1.

P 3.43. If a, b, c are nonnegative real numbers, then
∑

a3(b+ c)(a− b)(a− c)≥ 3(a− b)2(b− c)2(c − a)2.

Solution. Without loss of generality, assume that

a =min{a, b, c}.

Since
a3(b+ c)(a− b)(a− c)≥ 0

and
b3(c + a)(b− c)(b− a) + c3(a+ b)(c − a)(c − b) =

= (b− c)[bc(b3 − c3) + (b− c)(b3 + c3)a− (b3 − c3)a2]

= (b− c)2[(b2 + bc + c2)(bc − a2) + (b3 + c3)a]

≥ (b− c)2(b2 + bc + c2)(bc − a2),

it suffices to show that

(b2 + bc + c2)(bc − a2)≥ 3(a− b)2(c − a)2.

Since
bc − a2 = (a− b)(a− c) + a(b+ c − 2a)≥ (a− b)(a− c),

it suffices to show that

b2 + bc + c2 ≥ 3(a− b)(a− c),
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which is equivalent to the obvious inequality

(b− c)2 + 3a(b+ c − a)≥ 0.

The equality holds for a = b = c, for a = 0 and b = c (or any cyclic permutation),
and for b = c = 0 (or any cyclic permutation).

P 3.44. Find the greatest real number k such that

a+ b+ c + 4abc ≥ k(ab+ bc + ca)

for all a, b, c ∈ [0,1].

Solution. Setting a = b = c = 1, we get k ≤ 7/3, but setting a = 0 and b = c = 1,
we get k ≤ 2. So, we claim that k = 2 is the greatest real number k. To prove this,
we only need to show that

a+ b+ c + 4abc ≥ 2(ab+ bc + ca)

for all a, b, c ∈ [0,1]. Write the inequality as

a(1+ 4bc − 2b− 2c) + b+ c − 2bc ≥ 0.

Since
b+ c − 2bc = b(1− c) + c(1− b)≥ 0,

the inequality is clearly true for 1 + 4bc − 2b − 2c ≥ 0. Consider further that
1+ 4bc − 2b− 2c < 0, when it suffices to show that

(1+ 4bc − 2b− 2c) + b+ c − 2bc ≥ 0.

This is equivalent to the obvious inequality

bc + (1− b)(1− c)≥ 0.

Thus, the proof is completed. If k = 2, then the equality holds for a = b = c = 0,
and also for a = 0 and b = c = 1 (or any cyclic permutation).

Remark. From the proof above it follows that the following stronger inequality
holds for all a, b, c ∈ [0,1]:

a+ b+ c + 3abc ≥ 2(ab+ bc + ca),

with equality for a = b = c = 0, for a = b = c = 1, and also for a = 0 and b = c = 1
(or any cyclic permutation).
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P 3.45. If a, b, c ≥
2
3

such that

a+ b+ c = 3,

then
a2 b2 + b2c2 + c2a2 ≥ ab+ bc + ca.

Solution. We use the mixing variables method. Assume that a =max{a, b, c} and
denote

x =
b+ c

2
, 2/3≤ x ≤ 1.

We will show that
E(a, b, c)≥ E(a, x , x)≥ 0,

where
E(a, b, c) = a2 b2 + b2c2 + c2a2 − ab− bc − ca.

We have

E(a, b, c)− E(a, x , x) = a2(b2 + c2 − 2x2)− (x4 − b2c2) + (x2 − bc)

= (x2 − bc)(2a2 − x2 − bc + 1)

=
1
4
(b− c)2[a2 + (a2 − bc) + (1− x2)]≥ 0

and
E(a, x , x) = 2a2 x2 + x4 − 2ax − x2.

Since a+ 2x = 3, we get

9E(a, x , x) = 18a2 x2 + 9x4 − (2ax + x2)(a+ 2x)2

= x(5x3 − 12ax2 + 9a2 x − 2a3)

= x(x − a)2(5x − 2a)

= 3x(x − a)2(3x − 2)≥ 0.

The equality holds for a = b = c = 1, and also for a = 5/3 and b = c = 2/3 (or any
cyclic permutation).

P 3.46. If a, b, c are positive real numbers such that

a ≤ 1≤ b ≤ c, a+ b+ c = 3,

then
1
a
+

1
b
+

1
c
≥ a2 + b2 + c2.
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Solution. Let

F(a, b, c) =
1
a
+

1
b
+

1
c
− a2 − b2 − c2.

We will show that
F(a, b, c)≥ F(a, 1, b+ c − 1)≥ 0.

The left inequality is true since

F(a, b, c)− F(a, 1, b+ c − 1) =

=
�

1
b
+

1
c
− 1−

1
b+ c − 1

�

+ 1+ (b+ c − 1)2 − b2 − c2

= (b+ c)
�

1
bc
−

1
b+ c − 1

�

+ 2(b− 1)(c − 1)

= (b− 1)(c − 1)
�

2−
b+ c

bc(b+ c − 1)

�

and

2bc(b+ c − 1)− b− c = (2bc − 1)(b+ c)− 2bc

≥ 2(2bc − 1)
p

bc − 2bc

= 2
p

bc (
p

bc − 1)(2
p

bc + 1)≥ 0.

The right inequality F(a, 1, b + c − 1) ≥ 0 is equivalent to F(a, 1, x) ≥ 0, where
x > 0 and x + a = 2. We have

F(a, 1, x) =
1
a
+

1
x
− a2 − x2 =

(x + a)4

8ax
− a2 − x2 =

(x − a)4

8ax
≥ 0.

The equality holds for a = b = c = 1.

P 3.47. If a, b, c are positive real numbers such that

a ≤ 1≤ b ≤ c, a+ b+ c =
1
a
+

1
b
+

1
c

,

then

a2 + b2 + c2 ≤
1
a2
+

1
b2
+

1
c2

.

(Vasile Cîrtoaje, 2008)

Solution. Write the inequality as

b2 −
1
b2
≤ (a2 + c2)

�

1
a2c2

− 1
�

.
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From a+ b+ c =
1
a
+

1
b
+

1
c

, we have

b−
1
b
= (a+ c)

�

1
ac
− 1

�

≥ 0.

Thus, the desired inequality holds if

(a+ c)(b+
1
b
)≤ (a2 + c2)(

1
ac
+ 1).

On the other hand, from (b− c)(1−
1
bc
)≤ 0, we get

b+
1
b
≥ c +

1
c

.

Then, it suffices to prove that

(a+ c)(c +
1
c
)≤ (a2 + c2)(

1
ac
+ 1),

which is equivalent to the obvious inequality

c(1− a2)(a− c)≤ 0.

The proof is completed. The equality holds for b = 1 and ac = 1.

P 3.48. If a, b, c are positive real numbers such that

a+ b+ c =
1
a
+

1
b
+

1
c

,

then

(abc − 1)
�

an + bn + cn −
1
an
−

1
bn
−

1
cn

�

≤ 0

for any integer n≥ 2.

(Vasile Cîrtoaje, 2007)

Solution. Since the statement remains unchanged by substituting a, b, c with 1/a,
1/b, 1/c, respectively, it suffices to prove that

an + bn + cn −
1
an
−

1
bn
−

1
cn
≤ 0

for
abc ≥ 1, a+ b+ c = 1/a+ 1/b+ 1/c.
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It is easy to check that a+ b+ c = 1/a+ 1/b+ 1/c is equivalent to

(ab− 1)(bc − 1)(ca− 1) = a2 b2c2 − 1,

and the desired inequality is equivalent to

(an bn − 1)(bncn − 1)(cnan − 1)≥ a2n b2nc2n − 1.

Setting
x = bc, y = ca, z = ab,

we need to show that

(x − 1)(y − 1)(z − 1) = x yz − 1≥ 0

involves
(xn − 1)(yn − 1)(zn − 1)≥ xn ynzn − 1.

This inequality holds if

(xn−1 + xn−2 + · · ·+ 1)(yn−1 + yn−2 + · · ·+ 1)(zn−1 + zn−2 + · · ·+ 1)≥

≥ xn−1 yn−1zn−1 + xn−2 yn−2zn−2 + · · ·+ 1.

Since the last inequality is clearly true, the proof is completed. The equality occurs
for a = bc = 1 (or any cyclic permutation).

P 3.49. Let a, b, c be positive real numbers, and let

E(a, b, c) = a(a− b)(a− c) + b(b− c)(b− a) + c(c − a)(c − b).

Prove that

(a) (a+ b+ c)E(a, b, c)≥ ab(a− b)2 + bc(b− c)2 + ca(c − a)2;

(b) 2
�

1
a
+

1
b
+

1
c

�

E(a, b, c)≥ (a− b)2 + (b− c)2 + (c − a)2.

Solution. (a) Using Schur’s inequality of degree four

∑

a2(a− b)(a− c)≥ 0,



278 Vasile Cîrtoaje

we have

(a+ b+ c)E(a, b, c) =
∑

a2(a− b)(a− c) +
∑

a(b+ c)(a− b)(a− c)

≥
∑

a(b+ c)(a− b)(a− c)

=
∑

ab(a− b)(a− c) +
∑

ac(a− b)(a− c)

=
∑

ab(a− b)(a− c) +
∑

ba(b− c)(b− a)

=
∑

ab(a− b)2 ≥ 0.

The equality holds for a = b = c. If a, b, c are nonnegative real numbers, then the
equality also holds for a = 0 and b = c (or any cyclic permutation).

(b) Since

(ab+ bc + ca)E(a, b, c) =

= abc
∑

(a− b)(a− c) +
∑

(a2 b+ a2c)(a− b)(a− c)

=
1
2

abc
∑

(a− b)2 +
∑

[a2 b(a− b)(a− c) + b2a(b− c)(b− a)]

=
1
2

abc
∑

(a− b)2 +
∑

ab(a− b)2(a+ b− c),

the required inequality is equivalent to
∑

ab(a− b)2(a+ b− c)≥ 0.

Without loss of generality, assume that a ≥ b ≥ c. Then,
∑

ab(a− b)2(a+ b− c)≥ bc(b− c)2(b+ c − a) + ac(a− c)2(a+ c − b)

≥ bc(b− c)2(b+ c − a) + ac(b− c)2(a+ c − b)

= c(b− c)2[(a− b)2 + c(a+ b)]≥ 0.

The equality holds for a = b = c.

P 3.50. Let a ≥ b ≥ c be nonnegative real numbers. Schur’s inequalities of third and
fourth degree state that

(a) a(a− b)(a− c) + b(b− c)(b− a) + c(c − a)(c − b)≥ 0;

(b) a2(a− b)(a− c) + b2(b− c)(b− a) + c2(c − a)(c − b)≥ 0.

Prove that (a) is sharper than (b) if
p

b+
p

c ≤
p

a,
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and (b) is sharper than (a) if
p

b+
p

c ≥
p

a.

(Vasile Cîrtoaje, 2005)

Solution. Let
p = a+ b+ c, q = ab+ bc + ca.

If we rewrite Schur’s inequalities as

abc ≥ f (p, q)

and
abc ≥ g(p, q),

respectively, then (a) is sharper than (b) if f (p, q) ≥ g(p, q), while (b) is sharper
than (a) if g(p, q)≥ f (p, q). Therefore, we need to show that

(
p

b+
p

c −
p

a )[g(p, q)− f (p, q)]≥ 0.

From the known relation

4q− p2 = (
p

a+
p

b+
p

c)(
p

b+
p

c −
p

a)(
p

c +
p

a−
p

b)(
p

a+
p

b−
p

c),

it follows that 4q− p2 and
p

b+
p

c −
p

a has the same sign. Therefore, it suffices
to prove that

(4q− p2)[g(p, q)− f (p, q)]≥ 0.

In order to find f (p, q), write the inequality in (a) as follows

a3 + b3 + c3 + 3abc ≥ ab(a+ b) + bc(b+ c) + ca(c + a)

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca),

from which

f (p, q) =
p(4q− p2)

9
.

Analogously, write the inequality in (b) as follows

a4 + b4 + c4 + abc(a+ b+ c)≥ ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2),

a4 + b4 + c4 + 2abc(a+ b+ c)≥ (ab+ bc + ca)(a2 + b2 + c2).

Since
a2 + b2 + c2 = p2 − 2q

and

a4 + b4 + c4 = (a2 + b2 + c2)2 − 2(a2 b2 + b2c2 + c2a2)

= (p2 − 2q)2 − 2q2 + 4abcp,
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we get

g(p, q) =
(p2 − q)(4q− p2)

6p
.

Therefore, we have

g(p, q)− f (p, q) =
(p2 − 3q)(4q− p2)

18p
,

hence

(4q− p2)[g(p, q)− f (p, q)] =
(p2 − 3q)(4q− p2)2

18p
≥ 0.

Remark. If a, b, c are the lengths of the sides of a triangle, then Schur’s inequality
of degree four is always stronger than Schur’s inequality of degree three.

P 3.51. If a, b, c are nonnegative real numbers such that

(a+ b)(b+ c)(c + a) = 8,

then p
a+

p

b+
p

c ≥ ab+ bc + ca.

(Vasile Cîrtoaje, 2010)

First Solution. Assume that a ≥ b ≥ c, and write the inequality in the equivalent
homogeneous forms

(
p

a+
p

b+
p

c)
Æ

(a+ b)(b+ c)(c + a)≥ 2
p

2(ab+ bc + ca),
∑

Æ

a(b+ c)[
Æ

(a+ b)(a+ c)−
Æ

2a(b+ c)]≥ 0,

∑ (a− b)(a− c)
p

a(b+ c)
p

(a+ b)(a+ c) +
p

2a(b+ c)
≥ 0.

Since (c − a)(c − b)≥ 0, it suffices to prove that

(a− b)(a− c)
p

a(b+ c)
p

(a+ b)(a+ c) +
p

2a(b+ c)
+

(b− c)(b− a)
p

b(c + a)
p

(b+ c)(b+ a) +
p

2b(c + a)
≥ 0,

which is true if

(a− c)
p

a(b+ c)
p

(a+ b)(a+ c) +
p

2a(b+ c)
≥

(b− c)
p

b(c + a)
p

(b+ c)(b+ a) +
p

2b(c + a)
.

Since
p

a ≥
p

b,
Æ

(a+ b)(a+ c)≥
Æ

2a(b+ c)
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and
Æ

(b+ c)(b+ a)≤
Æ

2b(a+ c),

it suffices to show that

(a− c)
p

b+ c
p

(a+ b)(a+ c)
≥
(b− c)

p
c + a

p

(b+ c)(b+ a)
.

This is equivalent to the obvious inequality

c(a− b)≥ 0.

The equality holds for a = b = c = 1, and for a = 0 and b = c = 3p4 (or any cyclic
permutation).

Second Solution. Let

p = a+ b+ c, q = ab+ bc + ca.

By squaring, the inequality becomes

p+ 2(
p

ab+
p

bc +
p

ca)≥ q2.

Since
p

ab ≥
2ab
a+ b

=
ab(b+ c)(c + a)

4
=

ab(q+ c2)
4

,

p

bc ≥
bc(q+ c2)

4
,
p

ca ≥
ca(q+ c2)

4
,

we have

2(
p

ab+
p

bc +
p

ca)≥
q(ab+ bc + ca) + abc(a+ b+ c)

2
=

q2 + abcp
2

.

Using this result, it suffices to show that

p+
q2 + abcp

2
≥ q2,

which is equivalent to
p(2+ abc)≥ q2.

Having in view the hypothesis pq − abc = 8, we can write this inequality in the
homogeneous forms

p
�

pq− abc
4

+ abc
�

≥ q2,

q(p2 − 4q) + 3abcp ≥ 0.

For the non-trivial case where p2 − 4q ≤ 0, using Schur’s inequality

p3 + 3abc ≥ 4pq

gives

3(p2q− 4q2 + 3abcp)≥ 3p2q− 12q2 + (4pq− p3)p = (p2 − 3q)(4q− p2)≥ 0.
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P 3.52. If a, b, c ∈ [1, 4+ 3
p

2], then

9(ab+ bc + ca)(a2 + b2 + c2)≥ (a+ b+ c)4.

(Vasile Cîrtoaje, 2005)

Solution. Let
A= a2 + b2 + c2, B = ab+ bc + ca.

Since

9(ab+ bc + ca)(a2 + b2 + c2)− (a+ b+ c)4 = 9AB − (A+ 2B)2

= (A− B)(4B − A)

and
2(A− B) = (a− b)2 + (b− c)2 + (c − a)2 ≥ 0,

we need to show that 4B − A≥ 0; that is, to show that E(a, b, c)≤ 0, where

E(a, b, c) = a2 + b2 + c2 − 4(ab+ bc + ca).

We claim that E(a, b, c) is maximal for a, b, c ∈ {1, w}, where w = 4 + 3
p

2. For
the sake of contradiction, assume that there exists a triple (a, b, c) with a ∈ (1, w)
such that

E(a, b, c)≥max{E(1, b, c), E(w, b, c)}.

From
E(a, b, c)− E(1, b, c) = (a− 1)(a+ 1− 4b− 4c)≥ 0,

we get
a− 4(b+ c)≥ −1,

and from
E(a, b, c)− E(w, b, c) = (a−w)(a+w− 4b− 4c)≥ 0,

we get
a− 4(b+ c)≤ −w.

These results involve w≤ 1, which is false. Therefore, since E(a, b, c) is symmetric,
we have

E(a, b, c)≤max{E(1, 1,1), E(1, 1, w), E(1, w, w), E(w, w, w)}
=max{−9, w2 − 8w− 2,1− 2w2 − 8w,−9w2}

=max{−9, 0,−99− 72
p

2,−306− 216
p

2}= 0.

This completes the proof. The equality holds for a = b = c, and also for a = b = 1
and c = 4+ 3

p
2 (or any cyclic permutation).
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P 3.53. If a, b, c are nonnegative real numbers such that

a+ b+ c + abc = 4,

then
(a) a2 + b2 + c2 + 12≥ 5(ab+ bc + ca);

(b) 3(a2 + b2 + c2) + 13(ab+ bc + ca)≥ 48.

Solution. Let
p = a+ b+ c, q = ab+ bc + ca, r = abc.

(a) We need to show that
p2 + 12≥ 7q

for p + r = 4. By Schur’s inequality of degree three, we have p3 + 9r ≥ 4pq.
Therefore, we get

4p(p2 + 12− 7q)≥ 4p3 + 48p− 7(p3 + 9r)

= −3(p3 − 37p+ 84)
= 3(p− 3)(4− p)(7+ p).

Since 4 − p = r ≥ 0, we only need to show that p ≥ 3. By virtue of the AM-GM
inequality, we get

p3 ≥ 27r,

p3 ≥ 27(4− p),

(p− 3)(p2 + 3p+ 36)≥ 0,

p ≥ 3.

The equality holds for a = b = c = 1, and for a = 0 and b = c = 2 (or any cyclic
permutation).

(b) We need to show that

3p2 + 7q ≥ 48

for p+ r = 4. Using the known inequality pq ≥ 9r, we get

p(3p2 + 7q− 48)≥ 3(p3 + 21r − 16p)

= 3(p3 − 37p+ 84)
= 3(p− 3)(4− p)(7+ p)≥ 0.

The equality holds for a = b = c = 1.
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P 3.54. Let a, b, c be the lengths of the sides of a triangle. If

a+ b+ c = 3,

then
a2 b2 + b2c2 + c2a2 ≥ ab+ bc + ca.

Solution. Write the inequality as follows:

9(a2 b2 + b2c2 + c2a2)≥ (ab+ bc + ca)(a+ b+ c)2;

3[3(a2 b2 + b2c2 + c2a2)− (ab+ bc + ca)2]≥

≥ (ab+ bc + ca)[(a+ b+ c)2 − 3(ab+ bc + ca)];

6[a2(b− c)2 + b2(c − a)2 + c2(a− b)2]≥

≥ (ab+ bc + ca)[(b− c)2 + (c − a)2 + (a− b)2]≥ 0;
∑

Sa(b− c)2 ≥ 0,

where
Sa = 6a2 − ab− bc − ca.

Without loss of generality, assume that a ≥ b ≥ c. It suffices to show that

Sb(a− c)2 + Sc(a− b)2 ≥ 0.

Since
(a− c)2 ≥ (a− b)2,

Sb = 6b2 − bc − a(b+ c)≥ 6b2 − bc − (b+ c)2 > 0

and

Sb + Sc = 6(b2 + c2)− 2bc − 2a(b+ c)≥ 6(b2 + c2)− 2bc − 2(b+ c)2

= 4(b− c)2 + 2bc > 0,

we get
Sb(a− c)2 + Sc(a− b)2 ≥ (Sb + Sc)(a− b)2 ≥ 0.

The equality holds for an equilateral triangle.

P 3.55. Let a, b, c be the lengths of the sides of a triangle. If

a2 + b2 + c2 = 3,

then
ab+ bc + ca ≥ 1+ 2abc.

(Vasile Cîrtoaje, 2005)
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Solution. Write the inequality as

3(ab+ bc + ca)− a2 − b2 − c2 ≥ 6abc,

where the both sides are homogeneous. From

3(a2 + b2 + c2)≥ (a+ b+ c)2,

we get
a+ b+ c ≤ 3.

Therefore, it suffices to prove the homogeneous inequality

(a+ b+ c)[3(ab+ bc + ca)− a2 − b2 − c2]≥ 18abc.

This is equivalent to

2ab(a+ b) + 2bc(b+ c) + 2ca(c + a)≥ a3 + b3 + c3 + 9abc.

Using the known substitution

a = y + z, b = z + x , c = x + y, x , y, z ≥ 0,

the inequality can be written as

x3 + y3 + z3 + 3x yz ≥ x y(x + y) + yz(y + z) + zx(z + x),

which is just the third degree Schur’s inequality. The equality holds for an equilat-
eral triangle.

P 3.56. Let a, b, c be the lengths of the sides of a triangle. If

a+ b+ c = 3,

then
1
a
+

1
b
+

1
c
+

41
6
≥ 3(a2 + b2 + c2).

(Vasile Cîrtoaje, 2010)

Solution (by Vo Quoc Ba Can). Using the substitution

a =
y + z

2
, b =

z + x
2

, c =
x + y

2
,

where x , y, z ≥ 0 such that x + y + z = 3, the inequality becomes as follow

1
y + z

+
1

z + x
+

1
x + y

+
41
12
≥

3
8
[(y + z)2 + (z + x)2 + (x + y)2],
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∑ x + y + z
y + z

+
41
4
≥

9
4

�∑

x2 +
∑

x y
�

,

∑ x
y + z

+ 3+
41
4
≥

9
4

�

9−
∑

x y
�

,

∑ x
y + z

≥ 7−
9
4

∑

x y.

Let us denote t = x y + yz + zx . Since

∑ x
y + z

=
1
t

∑ x(x y + yz + zx)
y + z

≥
1
t

∑ x(x y + zx)
y + z

=
1
t

∑

x2 =
9− 2t

t
,

it suffices to show that
9− 2t

t
≥ 7−

9
4

t,

which is equivalent to
(t − 2)2 ≥ 0.

The equality holds for a degenerate triangle having a = 3/2, b = 1, c = 1/2 (or
any permutation thereof).

P 3.57. Let a ≥ b ≥ c such that

a+ b+ c = p, ab+ bc + ca = q,

where p and q are fixed real numbers satisfying p2 ≥ 3q.
(a) If a, b, c are nonnegative real numbers, then the product r = abc is minimal

only when a = b or c = 0, and is maximal only when b = c;
(b) If a, b, c are the lengths of the sides of a triangle (non-degenerate or degenerate),

then the product r = abc is minimal only when a = b ≥ c, and is maximal only when
b = c ≥

a
2

or b+ c = a.

(Vasile Cîrtoaje, 2005)

Solution. (a) Following Third Solution of P 2.53, we have c ∈ [c1, c2], where

c1 =











p− 2
p

p2 − 3q
3

, 3q ≤ p2 ≤ 4q

0, p2 ≥ 4q
,

c2 =
p−

p

p2 − 3q
3

.
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On the other hand, the function r(c) is strictly increasing on [c1, c2]. Since c attains
its minimum c1 only when a = b (if p2 ≤ 4q) or c = 0 (if p2 ≥ 4q), r is minimal
only when a = b or c = 0. Since c attains its maximum c2 only when b = c, r is
maximal only when b = c.

(b) Using the known substitution

a = y + z, b = z + x , c = x + y,

where 0≤ x ≤ y ≤ z, from

a+ b+ c = 2(x + y + z),

ab+ bc + ca = (x + y + z)2 + x y + yz + zx ,

abc = (x + y + z)(x y + yz + zx)− x yz,

it follows that

x + y + z =
p
2

, x y + yz + zx = q−
p2

4
,

hence

abc =
p
2

�

q−
p2

4

�

− x yz.

Therefore, the product abc is minimal when x yz is maximal; that is, according to
(a), only when x = y , which is equivalent to a = b ≥ c. Also, the product abc is
maximal when x yz is minimal; that is, according to (a), only when y = z or x = 0,
which is equivalent to b = c ≥ a/2 or b+ c = a.

Remark 1. Using the result in (a), we can prove by the contradiction method (as
in Remark 1 from P 2.53) the following generalization:

• If a1, a2, . . . , an are nonnegative numbers such that a1 ≥ a2 ≥ · · · ≥ an and

a1 + a2 + · · ·+ an = p, a2
1 + a2

2 + · · ·+ a2
n = p1,

where p and p1 are fixed real numbers satisfying p2 ≤ np1, then the product

a1a2 · · · an

is minimal for a1 = · · ·= an−1 ≥ an or an = 0, and maximal for a1 ≥ a2 = · · ·= an.

More general, according to Remark 3 from P 2.53, the following statement is
valid:

• If a1, a2, . . . , an ∈ [0, M] are real numbers such that a1 ≥ a2 ≥ · · · ≥ an and

a1 + a2 + · · ·+ an = p, a2
1 + a2

2 + · · ·+ a2
n = p1,

where p and p1 are fixed real numbers satisfying p2 ≤ np1, then the product

r = a1a2 · · · an
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is minimal for a1 = · · · = an−1 ≥ an or an = 0, and maximal for a1 ≥ a2 = · · · = an

or a1 = M.

Remark 2. The statements for real variables in Remark 2 and Remark 3 from P 2.53
are also valid for nonnegative variables a, b, c ∈ [m, M] and a1, a2, . . . , an ∈ [m, M],
where 0≤ m< M .

• If 0≤ m< M and a, b, c ∈ [m, M] such that a ≥ b ≥ c and

a+ b+ c = p, ab+ bc + ca = q,

where p and q are fixed real numbers satisfying p2 ≥ 3q, then the product

r = abc

is minimal when a = b ≥ c or c = m, and maximal when a ≥ b = c or a = M.

• If 0≤ m< M and a1, a2, . . . , an ∈ [m, M] are real numbers such that a1 ≥ a2 ≥
· · · ≥ an and

a1 + a2 + · · ·+ an = p, a2
1 + a2

2 + · · ·+ a2
n = p1,

where p and p1 are fixed real numbers satisfying p2 ≤ np1, then the product

r = a1a2 · · · an

is minimal for a1 = · · · = an−1 ≥ an or an = m, and maximal for a1 ≥ a2 = · · · = an

or a1 = M.

P 3.58. Let a ≥ b ≥ c > 0 be positive real numbers such that

a+ b+ c = p, abc = r,

where p and r are fixed positive numbers satisfying p3 ≥ 27r. Prove that

q = ab+ bc + ca

is minimal only when b = c, and is maximal only when a = b.
(Vasile Cîrtoaje, 2005)

Solution. Since p3 = 27r involves a = b = c = p/3, consider further that p3 > 27r.
As in P 2.53, we can show that

c ∈ [c1, c2], b ∈ [b1, b2], a ∈ [a1, a2], 0< c1 < c2 = b1 < b2 = a1 < a2,

where c1 is the smallest positive root of the equation

x3 − 2px2 + p2 x − 4r = 0,
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c2 and b1 are the smallest positive root of the equation

2x3 − px2 + r = 0,

b2 and a1 are the largest positive root of the equation

2x3 − px2 + r = 0,

a2 is the largest positive root of the equation

x3 − 2px2 + p2 x − 4r = 0.

In addition, if a = b, then c = c1, b = b2, a = a1, and if b = c, then c = c2, b = b1,
a = a2.

First solution. From

q = b(a+ c) + ac = b(p− b) +
r
b

,

we get

q(b) = pb− b2 +
r
b

.

Since

q′(b) = p− 2b−
r
b2
=
−(b− a)(b− c)

b
≥ 0,

q(b) is increasing on [b1, b2], hence q(b) is minimal only for b = b1, when b = c,
and is maximal only for b = b2, when b = a.

Second solution. From

q = a(b+ c) + bc = a(p− a) +
r
a

,

we get

q(a) = pa− a2 +
r
a

.

Since

q′(a) = p− 2a−
r
a2
=
−(a− b)(a− c)

a
≤ 0,

q(a) is decreasing on [a1, a2], hence q(a) is minimal only for a = a2, when b = c,
and is maximal only for a = a1, when a = b.

Third solution. From

q = c(a+ b) + ab = c(p− c) +
r
c

,

we get

q(c) = pc − c2 +
r
c

.
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Since

q′(c) = p− 2c −
r
c2
=
−(c − a)(c − b)

c
≤ 0,

q(c) is decreasing on [c1, c2], hence q(c) is minimal only for c = c2, when c = b,
and is maximal only for c = c1, when a = b.

Remark 1. Since

q = r
�

1
a
+

1
b
+

1
c

�

=
1
2
(p2 − a2 − b2 − c2),

we can extend the statement of P 3.58 as follows:

• If a ≥ b ≥ c are positive real numbers such that

a+ b+ c = p, abc = r > 0,

where p and r are fixed positive numbers satisfying p3 ≥ 27r, then the sums

q = ab+ bc + ca, q1 =
1
a
+

1
b
+

1
c

, p1 = −(a2 + b2 + c2)

are minimal only when b = c, and are maximal only when a = b.

Remark 2. Replacing a, b, c in P 3.58 with 1/a, 1/b, 1/c, respectively, we get the
following statement:

• If 0< a ≤ b ≤ c are positive real numbers such that

ab+ bc + ca = q, abc = r,

where q and r are fixed positive numbers satisfying q3 ≥ 27r2, then the sum

p = a+ b+ c

is minimal only when b = c, and is maximal only when a = b.

The statement remains valid by replacing q with q1 =
1
a
+

1
b
+

1
c

.

Remark 3. We can prove by the contradiction method (as in Remark 1 from P 2.53)
the following generalization:

• If a1, a2, . . . , an are positive real numbers such that a1 ≥ a2 ≥ · · · ≥ an and

a1 + a2 + · · ·+ an = np, a1a2 · · · an = r > 0,

where p and r are fixed positive numbers satisfying pn ≥ r, then the sums

q1 =
1
a1
+

1
a2
+ · · ·+

1
an

, p1 = −(a2
1 + a2

2 + · · ·+ a2
n)
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are minimal and maximal when n− 1 of a1, a2, . . . , an are equal, more precisely, they
are minimal when a1 ≥ a2 = · · ·= an, and are maximal when a1 = · · ·= an−1 ≥ an.

Replacing a1, a2, . . . , an with 1/a1, 1/a2, . . . , 1/an, respectively, we get:

• If a1, a2, . . . , an are positive real numbers such that a1 ≤ a2 ≤ · · · ≤ an and

1
a1
+

1
a2
+ · · ·+

1
an
=

n
p

, a1a2 · · · an = r > 0,

where p and r are fixed positive numbers satisfying pn ≤ r, then the sums

p = a1 + a2 + · · ·+ an, p2 = −
�

1
a2

1

+
1
a2

2

+ · · ·+
1
a2

n

�

are minimal and maximal when n− 1 of a1, a2, . . . , an are equal, more precisely, it is
minimal when a1 ≤ a2 = · · ·= an, and is maximal when a1 = · · ·= an−1 ≤ an.

Remark 4. Another extension of P 3.58 is the following:

• If 0< m< M and a, b, c ∈ [m, M] such that a ≥ b ≥ c and

a+ b+ c = p, abc = r,

where p and r are fixed positive numbers satisfying p3 ≥ 27r, then the sums

q = ab+ bc + ca, q1 =
1
a
+

1
b
+

1
c

, p1 = −(a2 + b2 + c2)

are minimal when b = c or a = M, and are maximal when a = b or c = m.

We have m≤ c1 or c1 ≤ m≤ c2, and M ≥ a2 or a1 ≤ M ≤ a2. Thus, we have

c ∈ [c′1, c2], c′1 =max{c1, m},

and
a ∈ [a1, a′2], a′2 =min{a2, M}.

According to Second Solution, the sum q = ab + bc + ca is minimal for a = a′2,
when either b = c or a = M . Similarly, according to Third Solution, the sum
q = ab+ bc + ca is maximal for c = c′1, when either a = b or c = m.

We can generalize this result as follows (Vasile Cîrtoaje, 2017):

• If 0< m< M and a1, a2, . . . , an ∈ [m, M] such that a1 ≥ a2 ≥ · · · ≥ an and

a1 + a2 + · · ·+ an = np, a1a2 · · · an = r,

where p and r are fixed real numbers satisfying pn ≥ r, then the sums

q1 =
1
a1
+

1
a2
+ · · ·+

1
an

, p1 = −(a2
1 + a2

2 + · · ·+ a2
n)
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are minimal for a1 ≥ a2 = · · · = an or a1 = M, and are maximal for a1 = · · · =
an−1 ≥ an or an = m.

Replacing a1, a2, . . . , an with 1/a1, 1/a2, . . . , 1/an, respectively, we get:

• If 0< m< M and a1, a2, . . . , an ∈ [m, M] such that a1 ≤ a2 ≤ · · · ≤ an and

1
a1
+

1
a2
+ · · ·+

1
an
=

n
p

, a1a2 · · · an = r,

where p and r are fixed real numbers satisfying pn ≤ r, then the sums

p = a1 + a2 + · · ·+ an, p2 = −
�

1
a2

1

+
1
a2

2

+ · · ·+
1
a2

n

�

are minimal for a1 ≤ a2 = · · ·= an or a1 = m, and are maximal for a1 = · · ·= an−1 ≤
an or an = M.

P 3.59. If a, b, c are positive real numbers such that

a+ b+ c = 3,

then
9

abc
+ 16≥

75
ab+ bc + ca

.

(Vasile Cîrtoaje, 2005)

Solution. Let
q = ab+ bc + ca.

For fixed q, the product abc is maximal when two of a, b, c are equal - see P 3.57-
(a). Therefore, it suffices to prove the inequality for

a = b, c = 3− 2a, a < 3/2.

We have
9

abc
+ 16−

75
ab+ bc + ca

=
9

a2c
+ 16−

75
a(a+ 2c)

=
9

a2(3− 2a)
+ 16−

25
a(2− a)

=
2(16a4 − 56a3 + 73a2 − 42a+ 9)

a2(3− 2a)(2− a)

=
2(a− 1)2(4a− 3)2

a2(3− 2a)(2− a)
≥ 0,

as desired. The equality holds for (a, b, c) = (1, 1,1), and also for (a, b, c) =
�

3
4

,
3
4

,
3
2

�

or any cyclic permutation.



Symmetric Polynomial Inequalities in Nonnegative Variables 293

P 3.60. If a, b, c are positive real numbers such that

a+ b+ c = 3,

then

8
�

1
a
+

1
b
+

1
c

�

+ 9≥ 10(a2 + b2 + c2).

(Vasile Cîrtoaje, 2006)

First Solution. Putting
q = ab+ bc + ca,

we can write the inequality as

8q
abc

+ 20q ≥ 81.

By P 3.57-(a), the product abc is maximal for fixed q when two of a, b, c are equal.
Therefore, it suffices to prove the inequality for

a = b, c = 3− 2a, a < 3/2.

We have

8q
abc

+ 20q− 81=
24a(2− a)
a2(3− 2a)

+ 60a(2− a)− 81

=
3a(40a4 − 140a3 + 174a2 − 89a+ 16)

a2(3− 2a)

=
3a(2a− 1)2(10a2 − 25a+ 16)

a2(3− 2a)
.

Since

10a2 − 25a+ 16= 10
�

a−
5
4

�2

+
3
8
> 0,

the proof is completed. The equality holds for (a, b, c) =
�

1
2

,
1
2

, 2
�

or any cyclic

permutation.

Second Solution (by Vo Quoc Ba Can). It is easy to check that the equality holds
when two of a, b, c are 1/2. Then, let us define

f (x) =
8
x
− 10x2 −αx − β ,

such that (2x−1)2 divides f (x). From f (1/2) = 0, we get α+2β = 27. Therefore,

f (x) =
8
x
− 10x2 − (27− 2β)x − β =

(1− 2x)h(x)
x

,
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where
h(x) = 5x2 − (β − 16)x + 8.

From h(1/2) = 0, we get β = 69/2, then α= 27− 2β = −42; therefore,

f (x) =
8
x
− 10x2 + 42x −

69
2
=
(1− 2x)2(16− 5x)

2x
.

From

f (a) + f (b) + f (c) = 8
�

1
a
+

1
b
+

1
c

�

− 10(a2 + b2 + c2) +
45
2

,

it follows that the desired inequality is equivalent to

f (a) + f (b) + f (c)≥
27
2

,

f (b) + f (c)≥
27
2
− f (a).

Assume that
a =max{a, b, c}, a ≥ 1.

Since
27
2
− f (a) =

2(a− 2)2(5a− 1)
a

,

we can rewrite the inequality as

(1− 2b)2(16− 5b)
b

+
(1− 2c)2(16− 5c)

c
≥

4(a− 2)2(5a− 1)
a

.

Since
16− 5b > 0, 16− 5c > 0,

the Cauchy-Schwarz inequality yields

(1− 2b)2(16− 5b)
b

+
(1− 2c)2(16− 5c)

c
≥
(1− 2b+ 1− 2c)2

b
16− 5b

+
c

16− 5c

=
4(a− 2)2

b
16− 5b

+
c

16− 5c

.

Therefore, it suffices to prove that

1
b

16− 5b
+

c
16− 5c

≥
5a− 1

a
,

which is equivalent to

a
5a− 1

≥
b

16− 5b
+

c
16− 5c

.
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Indeed,

a
5a− 1

−
b

16− 5b
−

c
16− 5c

≥
a

5a− 1
−

b+ c
16− 5a

=
3

(5a− 1)(16− 5a)
> 0.

Remark. Using the second method, we can prove the following more general in-
equality.

• If x1, x2, . . . , xn are positive real numbers such that

x1 + x2 + · · ·+ xn = n,

then

(n+ 1)2
�

1
x1
+ · · ·+

1
xn

�

≥ n(n2 − 3n− 6) + 4(n+ 2)(x2
1 + x2

2 + · · ·+ x2
n),

with equality for x1 = (n+1)/2 and x2 = · · ·= xn = 1/2 (or any cyclic permutation).

P 3.61. If a, b, c are positive real numbers such that

a+ b+ c = 3,

then
7(a2 + b2 + c2) + 8(a2 b2 + b2c2 + c2a2) + 4a2 b2c2 ≥ 49.

Solution. Let
q = ab+ bc + ca.

Since
a2 + b2 + c2 = 9− 2q,

a2 b2 + b2c2 + c2a2 = q2 − 6abc,

we can rewrite the inequality as

7(9− 2q) + 8(q2 − 6abc) + 4a2 b2c2 ≥ 49,

2(6− abc)2 + 4q2 − 7q− 65≥ 0.

Since

abc ≤
�

a+ b+ c
3

�3

= 1,



296 Vasile Cîrtoaje

we have 6− abc > 0. By P 3.57-(a), the product abc is maximal for fixed q when
two of a, b, c are equal. Therefore, it suffices to prove the inequality for a = b,
when c = 3− 2a. Since

q = a2 + 2ac = a2 + 2a(3− 2a) = 3a(2− a), abc = a2c = a2(3− 2a),

we have

2(6− abc)2 + 4q2 − 7q− 65= 8a6 − 24a5 + 54a4 − 96a3 + 83a2 − 42a+ 7

= (a− 1)2(2a− 1)2(2a2 + 7≥ 0.

The equality holds for a = b = c = 1, and for (a, b, c) =
�

1
2

,
1
2

,2
�

or any cyclic

permutation.

P 3.62. If a, b, c are nonnegative real numbers, then

(a3 + b3 + c3 + abc)2 ≥ 2(a2 + b2)(b2 + c2)(c2 + a2).

(Aleksandar Bulj, 2011)

First Solution. Let

p = a+ b+ c, q = ab+ bc + ca, r = abc.

Using the identities
a3 + b3 + c3 = 3r + p3 − 3pq

and

(a2 + b2)(b2 + c2)(c2 + a2) = (a2 + b2 + c2)(a2 b2 + b2c2 + c2a2)− a2 b2c2

= (p2 − 2q)(q2 − 2pr)− r2,

we can write the required inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) = 18r2 + 4p(3p2 − 8q)r + p6 − 6p4q+ 7p2q2 + 4q3.

Since
3p2 − 8q = 3(p2 − 3q) + q ≥ 0,

for fixed p and q, f6 is an increasing function of r. Therefore, it suffices to prove
the inequality f6(a, b, c) ≥ 0 for the case when r is minimal; that is, when one of
a, b, c is zero or two of a, b, c are equal (see P 3.57). For a = 0 and for b = c, the
original inequality becomes

(b− c)2(b4 + 2b3c + b2c2 + 2bc3 + c4)≥ 0
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and
a(a− b)2(a3 + 2a2 b+ ab2 + 4b3)≥ 0,

respectively. The equality holds for a = b = c, and also for a = 0 and b = c (or any
cyclic permutation).

Second Solution. Without loss of generality, assume that a =min{a, b, c}. From

a(a− b)(a− c)≥ 0,

we get
a3 + abc ≥ a2(b+ c),

and hence

a3 + b3 + c3 + abc ≥ a2(b+ c) + b3 + c3 = (b+ c)(a2 + b2 + c2 − bc).

On the other hand,

2(a2 + b2)(c2 + a2)≤
1
2
(2a2 + b2 + c2)2.

Therefore, it suffices to prove that

(b+ c)2(a2 + b2 + c2 − bc)2 ≥
1
2
(b2 + c2)(2a2 + b2 + c2)2.

We can obtain this inequality by multiplying the obvious inequality

a2 + b2 + c2 − bc ≥
1
2
(2a2 + b2 + c2)

and
(b+ c)2(a2 + b2 + c2 − bc)≥ (b2 + c2)(2a2 + b2 + c2).

The last inequality is equivalent to

(b− c)2(bc − a2)≥ 0,

which is also true.

Remark. Using the first method, we can prove the following stronger inequality
(Vasile Cîrtoaje, 2011).

• If a, b, c are nonnegative real numbers then

(a3 + b3 + c3 + abc)2 ≥ 2(a2 + b2)(b2 + c2)(c2 + a2) + 7(a− b)2(b− c)2(c − a)2.

Since

(a− b)2(b− c)2(c − a)2 = −27r2 + 2(9pq− 2p3)r + p2q2 − 4q3,
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we can write this inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) = 207r2 + 2(20p3 − 79pq)r + p6 − 6p4q+ 32q3.

We will show that for fixed p and q, f6 is an increasing function of r. From

f6 = 27r2 + 2pqr + 20g(r) + p6 − 6p4q+ 32q3,

where
g(r) = 9r2 + 2(p3 − 4pq)r,

it suffices to show that g(r) is increasing. Indeed, by the third degree Schur’s
inequality, we have

g ′(r) = 2(9r + p3 − 4pq)≥ 0.

Therefore, it suffices to prove the inequality f6(a, b, c) ≥ 0 for the case when r is
minimal; that is, when a = 0 or b = c (see P 3.57). In these cases, the original
inequality becomes

(b− c)4(b2 + 4bc + c2)≥ 0

and
a(a− b)2(a3 + 2a2 b+ ab2 + 4b3)≥ 0,

respectively.

P 3.63. If a, b, c are positive real numbers, then

(a+ b+ c − 3)(ab+ bc + ca− 3)≥ 3(abc − 1)(a+ b+ c − ab− bc − ca).

(Vasile Cîrtoaje, 2011)

Solution. Setting

p = a+ b+ c, q = ab+ bc + ca, r = abc,

the inequality becomes

(p− 3)(q− 3)≥ 3(r − 1)(p− q),

or
3r(q− p) + pq− 6q+ 9≥ 0.

First Solution. For fixed p and q, the linear function f (r) = 3r(q− p)+ pq−6q+9
is minimal when r is either minimal or maximal. Thus, according to P 3.57-(a), we
need only to prove that f (r)≥ 0 for a = 0 and for b = c.
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For a = 0, the inequality becomes

(b+ c)bc − 6bc + 9≥ 0.

Putting x =
p

bc, we have

(b+ c)bc − 6bc + 9≥ 2x3 − 6x2 + 9= 2(x + 1)(x − 2)2 + 1> 0.

For b = c, since p = a+ 2b, q = 2ab+ b2 and r = ab2, we need to show that

3ab2(2ab+ b2 − a− 2b) + (a+ 2b− 6)(2ab+ b2) + 9≥ 0;

that is,
Aa2 + Ba+ C ≥ 0,

where

A= b(6b2 − 3b+ 2), B = b(3b3 − 6b2 + 5b− 12), C = 2b3 − 6b2 + 9.

We have A> 0 and

C = 2(b3 − 3b2 + 4) + 1= 2(b+ 1)(b− 2)2 + 1> 0.

Consider two cases.

Case 1: b ≥ 12/5. Since

B = 3b2(b− 2) + b(5b− 12)> 0,

we have Aa2 + Ba+ C > 0.

Case 2: 0< b < 12/5. Since

Aa2 + Ba+ C = (Aa2 + C) + Ba ≥ a(2
p

AC + B),

it suffices to show that 4AC ≥ B2, which is equivalent to

4b(6b2 − 3b+ 2)(2b3 − 6b2 + 9)≥ b2(3b3 − 6b2 + 5b− 12)2,

b(b− 1)4(8+ 4b− b3)≥ 0.

This inequality is true since

8+ 4b− b3 = 8+ 4b− 3b2 + b2(3− b)> 8+ 4b− 3b2 > 0.

The equality holds for a = b = c = 1.

Second Solution. Consider the following two cases.

Case 1: p ≥ q. We have

3r(q− p) + pq− 6q+ 9= (q− 3r)(p− q) + (q− 3)2 ≥ 0
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since

q− 3r ≥ q−
q2

p
≥ 0.

Case 2: p ≤ q. For p ≥ 6, we have

3r(q− p) + pq− 6q+ 9= 3r(q− p) + q(p− 6) + 9> 0.

Consider further that p < 6. From p2 ≥ 3q ≥ 3p, we get p ≥ 3. From Schur’s
inequality

p3 + 9r ≥ 4pq,

we get
p3 + p2r ≥ 4pq,

hence
pr ≥ 4q− p2.

Using this result, we have

p[3r(q− p) + pq− 6q+ 9)]≥ 3(4q− p2)(q− p) + p(pq− 6q+ 9)

= 12q2 − 2p(p+ 9)q+ 3p(p2 + 3)

= 12

�

q−
p2 + 9p

12

�2

+
p(12− p)(p− 3)2

12
≥ 0.

P 3.64. Let a, b, c be nonnegative real numbers such that

ab+ bc + ca = 3.

Prove that
4(a3 + b3 + c3) + 7abc + 125≥ 48(a+ b+ c).

(Vasile Cîrtoaje, 2011)

Solution. Since

a3 + b3 + c3 = 3abc + (a+ b+ c)3 − 9(a+ b+ c),

we can write the inequality as

19abc + 4(a+ b+ c)3 − 84(a+ b+ c) + 125≥ 0.

As it is known, for fixed a+ b+ c, the product abc is minimal when a = 0 or b = c
(see P 3.57). Therefore it suffices to consider these cases.
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Case 1: a = 0. We need to show that bc = 3 yields

4(b3 + c3) + 125≥ 48(b+ c).

Since
b3 + c3 = (b+ c)3 − 3bc(b+ c) = (b+ c)3 − 9(b+ c)

and
b+ c ≥ 2

p

bc = 2
p

3,

we have

4(b3 + c3) + 125− 48(b+ c) = 4(b+ c)3 − 84(b+ c) + 125> 0.

Case 2: b = c. We need to show that 2ab+ b2 = 3 yields

4(a3 + 2b3) + 7ab2 + 125≥ 48(a+ 2b).

This inequality is equivalent to

8b6 − 114b4 + 250b3 − 171b2 + 27≥ 0,

(b− 1)2(2b− 3)2(2b2 + 10b+ 3)≥ 0.

The equality holds for a = b = c = 1, and also for a = 1/4 and b = c = 3/2 (or any
cyclic permutation).

P 3.65. If a, b, c ∈ [0, 1], then

(a) a
p

a+ b
p

b+ c
p

c + 4abc ≥ 2(ab+ bc + ca);

(b) a
p

a+ b
p

b+ c
p

c ≥
3
2
(ab+ bc + ca− abc);

(c) 3(a
p

a+ b
p

b+ c
p

c) +
500
81

abc ≥ 5(ab+ bc + ca).

(Vasile Cîrtoaje, 2012)

Solution. Consider the inequality

a
p

a+ b
p

b+ c
p

c + kabc ≥ m(ab+ bc + ca), k, m> 0.

This inequality is equivalent to

x3 + y3 + z3 + kx2 y2z2 ≥ m(x2 y2 + y2z2 + z2 x2),

where
x , y, z ∈ [0,1].
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In addition, using the notation

p = x + y + z, q = x y + yz + zx ,

we can rewrite the inequality as

kx2 y2z2 + (2mp+ 3)x yz + p3 − 3pq−mq2 ≥ 0.

Consider x ≤ y ≤ z. According to Remark 1 from P 3.57, for fixed p and q, the
product x yz is minimal when x = 0 or y = z. Therefore, it suffices to consider
these cases.

(a) We need to show that

x3 + y3 + z3 + 4x2 y2z2 ≥ 2(x2 y2 + y2z2 + z2 x2).

For x = 0, the required inequality becomes y3 + z3 ≥ 2y2z2. Indeed, we have

y3 + z3 − 2y2z2 ≥ y4 + z4 − 2y2z2 = (y2 − z2)2 ≥ 0.

For y = z, write the inequality as f (x)≥ 0, x ∈ [0,1], where

f (x) = x3 − 4x2 y2(1− y2) + 2y3(1− y), y ∈ [0, 1].

If y ∈ {0, 1}, we have f (x) = x3 ≥ 0. Consider further that y ∈ (0,1). From

f ′(x) = x[3x − 8y2(1− y2)],

it follows that f (x)is decreasing on [0, x1] and increasing on [x1, 1], where

x1 =
8y2(1− y2)

3
.

Since

y2(1− y2)≤
1
4

,

we have

x1 ∈
�

0,
2
3

�

.

Thus, it remains to show that f (x1)≥ 0, which is equivalent to

128y3(1− y)2(1+ y)3 ≤ 27.

Since y2(1− y2)≤ 1/4, it suffices to show that

32y(1− y)(1+ y)2 ≤ 27.
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Using the AM-GM inequality, we get

32y(1− y)(1+ y)2 = 1024 ·
y
2
(1− y)

�

1+ y
4

�2

≤ 1024







y
2
+ (1− y) + 2 ·

1+ y
4

4







4

=
81
4
< 27.

The equality holds for a = 0 and b = c = 1 (or any cyclic permutation), and also
for a = b = c = 0.

(b) We need to show that

2(x3 + y3 + z3) + 3x2 y2z2 ≥ 3(x2 y2 + y2z2 + z2 x2).

For x = 0, the required inequality becomes 2(y3 + z3)≥ 3y2z2. Indeed, we have

2(y3 + z3)− 3y2z2 ≥ 2(y4 + z4)− 4y2z2 = 2(y2 − z2)2 ≥ 0.

For y = z, write the inequality as f (x)≥ 0, x ∈ [0,1], where

f (x) = 2x3 − 3x2 y2(2− y2) + y3(4− 3y), y ∈ [0,1].

If y = 0, we have f (x) = x3 ≥ 0. Consider further that y ∈ (0, 1]. From

f ′(x) = 6x[x − y2(2− y2)],

it follows that f (x)is decreasing on [0, x1] and increasing on [x1, 1], where

x1 = y2(2− y2), x1 ∈ (0,1].

Therefore, we only need to show that f (x1)≥ 0, which is equivalent to

y3(2− y2)3 ≤ 4− 3y.

Indeed, since
y2(2− y2)≤ 1,

we have

y3(2− y2)3 − (4− 3y)≤ y(2− y2)2 − (4− 3y)

= (y − 1)2(y3 + 2y2 − y − 4)≤ 0.

The equality occurs for a = b = c = 1, and also for a = b = c = 0.

(c) We need to show that

3(x3 + y3 + z3) +
500
81

x2 y2z2 ≥ 5(x2 y2 + y2z2 + z2 x2),
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For x = 0, the required inequality becomes 3(y3 + z3)≥ 5y2z2. Indeed, we have

3(y3 + z3)− 5y2z2 ≥ 3(y4 + z4)− 6y2z2 = 3(y2 − z2)2 ≥ 0.

For y = z, write the inequality as f (x)≥ 0, x ∈ [0,1], where

f (x) = 3x3 − 10x2 y2
�

1−
50
81

y2
�

+ y3(6− 5y), y ∈ [0,1].

If y = 0, we have f (x) = 3x3 ≥ 0. For y ∈ (0, 1], from

f ′(x) = x
�

9x − 20y2
�

1−
50
81

y2
��

,

it follows that f (x) is decreasing on [0, x1] and increasing on [x1, 1], where

x1 =
20
9

y2
�

1−
50
81

y2
�

, x1 ∈ (0,1).

Therefore, it remains to show that f (x1)≥ 0, which is equivalent to

4000
243

y3
�

1−
50
81

y2
�3

≤ 6− 5y.

Substituting

y =
9t
10

, 0< t ≤
10
9

,

this inequality can be written as

t3(2− t2)3 ≤ 4− 3t,

Indeed, since
t2(2− t2)≤ 1,

we have

t3(2− t2)3 − (4− 3t)≤ t(2− t2)2 − (4− 3t)

= (t − 1)2(t3 + 2t2 − t − 4)≤ 0.

The equality holds for a = b = c = 0, and also for a = b = c = 81/100.

P 3.66. If

a, b, c ≥
13− 4

p
10

3
≈ 0.117

such that a+ b+ c = 9, then
p

a+
p

b+
p

c ≥
p

ab+ bc + ca.

(Vasile Cîrtoaje, 2018)
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Solution. Denote

k =
13− 4

p
10

3
and p

a = x ,
p

b = y,
p

c = z.

We need to show that

x + y + z ≥
Æ

(x y + yz + zx)2 − 2x yz(x + y + z)

for x ≥ y ≥ z ≥
p

k and (x + y + z)2 − 2(x y + yz + zx) = 9. According to Remark
2 from P 3.57, for fixed x + y + z and x y + yz + zx , the product x yz is minimal
for x = y ≥ z or z =

p
k. So, we only need to consider these cases. This means to

consider the cases a = b ≥ c ≥ k and a ≥ b ≥ c = k.

Case 1: a = b ≥ c ≥ k. We need to show that 2a+ c = 9 involves

2
p

a+
p

c ≥
p

a2 + 2ac,

that is
2
Æ

2(9− c) + 2
p

c ≥
Æ

3(9− c)(3+ c).

By squaring, the inequality becomes

8
Æ

2c(9− c)≥ −3c2 + 22c + 9.

This is true if
128c(9− c)≥ (−3c2 + 22c + 9)2,

which is equivalent to

3c4 − 44c3 + 186c2 − 252c + 27≤ 0,

(c − 3)2(3c2 − 26c + 3)≤ 0.

Since 3c2 − 26c + 3≤ 0 for c ∈ [k, 3], the inequality is true.

Case 2: a ≥ b ≥ c = k. We need to show that
p

a+
p

b+
p

k ≥
Æ

ab+ k(a+ b),

that is
q

a+ b+ 2
p

ab+
p

k ≥
Æ

ab+ k(a+ b),
q

9− k+ 2
p

ab+
p

k ≥
Æ

ab+ k(9− k).

From
(a− c)(b− c)≥ 0,

we get
ab ≥ c(a+ b)− c2 = c(9− 2c) = k(9− 2k)> 1.
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Substituting
p

ab = x , we need to show that f (x)≥ 0 for

1< x ≤
a+ b

2
=

9− k
2
≈ 4.4415,

where
f (x) =

p

2x + 9− k+
p

k−
Æ

x2 + k(9− k),

with
f ′(x)

1
p

2x + 9− k
−

x
p

x2 + k(9− k)
.

We show that f ′(x)< 0, therefore f is decreasing. This is true if

x2(2x + 9− k)> x2 + k(9− k),

that is
2x3 + (8− k)x2 − k(9− k)> 0.

Indeed,

2x3 + (8− k)x2 − k(9− k)> x2 + (8− k)x2 − k(9− k) = (9− k)(x2 − k)> 0.

So, we have

f (x)≥ f
�

9− k
2

�

= 0.

The inequality is an equality for a = b = c = 3, and also for a = b =
7+ 2

p
10

3

and c =
13− 4

p
10

3
(or any cyclic permutation).

P 3.67. Let a, b, c be the lengths of the sides of a triangle. If

a2 + b2 + c2 = 3,

then
a+ b+ c ≥ 2+ abc.

(Vasile Cîrtoaje, 2005)

Solution. Let
p = a+ b+ c, q = ab+ bc + ca.

We need to show that
p2 − 2q = 3

involves
p ≥ 2+ abc.
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First Solution. According to P 3.57-(b), for fixed p and q, the product abc is
maximal when c/2≤ a = b ≤ c or a+ b = c. Therefore, it suffices to consider only
these two cases.

Case 1: c/2≤ a = b ≤ c. From

3= 2b2 + c2 ≥ 3b2,

we get b ≤ 1. In addition, from

3= 2b2 + c2 ≤ 2b2 + 4b2 = 6b2,

it follows that 2b2 ≥ 1. Therefore, we need to prove that

2b2 + c2 = 3, b ≤ 1, 2b2 ≥ 1

involve
2b+ c ≥ 2+ b2c.

Since
2b+ c − 2− b2c = (1− b)(c + bc − 2),

it suffices to show that c(1+ b)≥ 2. This is true, since

c2(1+ b)2 − 4= (3− 2b2)(1+ b)2 − 4

= −1+ 6b+ b2 − 4b3 − 2b4

= (1− b)(−1+ 5b+ 6b2 + 2b3)≥ 0.

Case 2: a+ b = c. From a2 + b2 + c2 = 3, we get

2ab = 2c2 − 3, c2 ≥ 3/2.

In addition, from 4ab ≤ c2, we get c2 ≤ 2, and hence

3/2≤ c2 ≤ 2.

Since

a+ b+ c − 2− abc = 2c − 2− c(c2 −
3
2
) =
−2c3 + 7c − 4

2
,

we need to show that
2c3 − 7c + 4≤ 0.

From
(c2 − 2)(2c2 − 3)≤ 0,

we get
2c4 − 7c2 ≤ −6.

Therefore,
c(2c3 − 7c + 4)≤ −6+ 4c < 0.
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This completes the proof. The equality holds for a = b = c = 1.

Second Solution. Since
pq ≥ 9abc,

it suffices to show that p2 − 2q = 3 implies

9p ≥ 18+ pq;

that is,
18p ≥ 36+ p(p2 − 3),

p3 − 21p+ 36≤ 0,

(p− 3)(p2 + 3p− 12)≤ 0.

Since
p2 ≤ 3(a2 + b2 + c2) = 9,

we need to show that
p2 + 3p− 12≥ 0.

From
2(ab+ bc + ca)− a2 − b2 − c2 =

= (
p

a+
p

b+
p

c)(−
p

a+
p

b+
p

c)(
p

a−
p

b+
p

c)(
p

a+
p

b−
p

c)≥ 0,

we get
p2 ≥ 2(a2 + b2 + c2) = 6,

hence
p2 + 3p− 12≥ 6+ 3

p

6− 12> 0.

P 3.68. Let fn(a, b, c) be a symmetric homogeneous polynomial of degree n≤ 5. Prove
that

(a) the inequality fn(a, b, c) ≥ 0 holds for all nonnegative real numbers a, b, c if
and only if fn(a, 1, 1)≥ 0 and fn(0, b, c)≥ 0 for all a, b, c ≥ 0;

(b) the inequality fn(a, b, c) ≥ 0 holds for all lengths a, b, c of the sides of a non-
degenerate or degenerate triangle if and only if fn(x , 1, 1) ≥ 0 for 0 ≤ x ≤ 2, and
fn(y + z, y, z)≥ 0 for all y, z ≥ 0.

(Vasile Cîrtoaje, 2005)
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Solution. Let

p = a+ b+ c, q = ab+ bc + ca, r = abc.

Any symmetric homogeneous polynomial fn(a, b, c) of degree n≤ 5 can be written
as

fn(a, b, c) = An(p, q)r + Bn(p, q),

where An(p, q) and Bn(p, q) are polynomial functions. For fixed p and q, the linear
function

gn(r) = An(p, q)r + Bn(p, q)

is minimal when r is either minimal or maximal.

(a) By P 3.57-(a), for fixed p and q, the product r is minimal and maximal when
two of a, b, c are equal or one of a, b, c is 0. Due to symmetry and homogeneity,
the conclusion follows.

(b) By P 3.57-(b), for fixed p and q, the product r is minimal and maximal
when two of a, b, c are equal or one of a,b,c is the sum of the others. Due to
symmetry and homogeneity, the conclusion follows.

Remark. Similarly, we can prove the following statement, which does not involve
the homogeneity property.

• Let fn(a, b, c) be a symmetric polynomial function of degree n≤ 5. The inequality
fn(a, b, c)≥ 0 holds for all nonnegative real numbers a, b, c if and only if it holds for
a = 0 and for b = c.

P 3.69. If a, b, c are nonnegative real numbers such that

a+ b+ c = 3,

then
4(a4 + b4 + c4) + 45≥ 19(a2 + b2 + c2).

(Vasile Cîrtoaje, 2009)

First Solution. We use the mixing variables method. Write the inequality as

F(a, b, c)≥ 0,

where
F(a, b, c) = 4(a4 + b4 + c4) + 45− 19(a2 + b2 + c2).

Due to symmetry, we may assume that a ≤ b ≤ c. Let us denote

x =
b+ c

2
, 1≤ x ≤ 3/2.
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We will show that
F(a, b, c)≥ F(a, x , x)≥ 0.

We have

F(a, b, c)− F(a, x , x) = 4(b4 + b4 − 2x4)− 19(b2 + c2 − 2x2)

= 4[(b2 + c2)2 − 4x4] + 8(x4 − b2c2)− 19(b2 + c2 − 2x2)

= (b2 + c2 − 2x2)[4(b2 + c2 + 2x2)− 19] + 8(x2 − bc)(x2 + bc).

Since
b2 + c2 − 2x2 = 2(x2 − bc) =

1
2
(b− c)2,

we get

F(a, b, c)− F(a, x , x) =
1
2
(b− c)2[4(b2 + c2 + 2x2)− 19+ 4(x2 + bc)]

=
1
2
(b− c)2[4(x2 − bc) + 24x2 − 19]≥ 0.

Also,
F(a, x , x) = F(3− 2x , x , x) = 6(x − 1)2(3− 2x)(11− 6x)≥ 0.

This completes the proof. The equality holds for a = b = c = 1, and for a = 0 and
b = c = 3/2 (or any cyclic permutation).

Second Solution. Write the inequality in the homogeneous form f4(a, b, c) ≥ 0,
where

f4(a, b, c) = 36(a4 + b4 + c4) + 5(a+ b+ c)4 − 19(a2 + b2 + c2)(a+ b+ c)2.

According to P 3.68-(a), it suffices to prove that f4(a, 1, 1) ≥ 0 and f4(0, b, c) ≥ 0
for all a, b, c ≥ 0. We have

f4(a, 1, 1) = 2a(11a3 − 18a2 + 3a+ 4) = 2a(a− 1)2(11a+ 4)≥ 0,

f4(0, b, c) = 2(b− c)2(11b2 + 11c2 + 13bc).

Remark. Similarly, we can prove the following more general statement (Vasile
Cîrtoaje and Le Huu Dien Khue, 2008).
• Let α,β ,γ be real numbers such that

1+α+ β = 2γ.

The inequality
∑

a4 +α
∑

a2 b2 + βabc
∑

a ≥ γ
∑

ab(a2 + b2)

holds for all a, b, c ≥ 0 if and only if

α≥ (γ− 1)max{2,γ+ 1}.



Symmetric Polynomial Inequalities in Nonnegative Variables 311

P 3.70. Let a, b, c be nonnegative real numbers. If k ≤ 2, then
∑

a(a− b)(a− c)(a− kb)(a− kc)≥ 0.

(Vasile Cîrtoaje, 2008)

Solution. Let us denote

f5(a, b, c) =
∑

a(a− b)(a− c)(a− kb)(a− kc).

By P 3.68-(a), it suffices to show that f5(a, 1, 1) ≥ 0 and f5(0, b, c) ≥ 0 for all
a, b, c ≥ 0. Indeed, we have

f5(a, 1, 1) = a(a− 1)2(a− k)2 ≥ 0

and
f5(0, b, c) = (b+ c)(b− c)2(b2 − kbc + c2)≥ 0.

The equality holds for a = b = c, for a = 0 and b = c (or any cyclic permutation),
and for a/k = b = c, k > 0 (or any cyclic permutation).

P 3.71. Let a, b, c be nonnegative real numbers. If k ∈ R, then
∑

(b+ c)(a− b)(a− c)(a− kb)(a− kc)≥ 0.

(Vasile Cîrtoaje, 2008)

Solution. Let

f5(a, b, c) =
∑

(b+ c)(a− b)(a− c)(a− kb)(a− kc).

By P 3.68-(a), it suffices to show that f5(a, 1, 1) ≥ 0 and f5(0, b, c) ≥ 0 for all
a, b, c ≥ 0. Indeed, we have

f5(a, 1, 1) = 2(a− 1)2(a− k)2 ≥ 0

and
f5(0, b, c) = k2(b+ c)b2c2 + bc(b+ c)(b− c)2 ≥ 0.

The equality holds for a = b = c, for b = c = 0 (or any cyclic permutation), and
for a/k = b = c, k > 0 (or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a, b, c be nonnegative real numbers. If m≥ 0 and m(k− 2)≤ 1, then
∑

(ma+ b+ c)(a− b)(a− c)(a− kb)(a− kc)≥ 0.
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P 3.72. If a, b, c are nonnegative real numbers, then
∑

a(a− 2b)(a− 2c)(a− 5b)(a− 5c)≥ 0.

(Vasile Cîrtoaje, 2008)

Solution. Let

f5(a, b, c) =
∑

a(a− 2b)(a− 2c)(a− 5b)(a− 5c).

By P 3.68-(a), it suffices to show that f5(a, 1, 1) ≥ 0 and f5(0, b, c) ≥ 0 for all
a, b, c ≥ 0. Indeed, we have

f5(a, 1, 1) = a3(a− 7)2 + 20a3 − 60a2 + 44a+ 8

≥ 20a3 − 60a2 + 44a+ 8≥ 0,

since
20a3 − 60a2 + 44a+ 8> 20a2(a− 3)≥ 0

for a ≥ 3, and

20a3 − 60a2 + 44a+ 8= 5(2a− 3)2 + 8− a ≥ 8− a ≥ 0

for a ≤ 8. Also,
f5(0, b, c) = (b+ c)(b2 − 4bc + c2)2 ≥ 0.

The equality holds for a = 0 and b2 − 4bc + c2 = 0 (or any cyclic permutation).

P 3.73. If a, b, c are the lengths of the side of a triangle, then

a4 + b4 + c4 + 9abc(a+ b+ c)≤ 10(a2 b2 + b2c2 + c2a2).

First Solution. Let

f4(a, b, c) = 10(a2 b2 + b2c2 + c2a2)− a4 − b4 − c4 − 9abc(a+ b+ c).

By P 3.68-(b), it suffices to show that f4(x , 1, 1) ≥ 0 for 0 ≤ x ≤ 2 and f4(y +
z, y, z)≥ 0 for y, z ≥ 0. We have

f4(x , 1, 1) = 8− 18x + 11x2 − x4 = (2− x)(4+ x)(1− x)2 ≥ 0

and

f4(y + z, y, z) = 8(y2 + z2)2 − 2yz(y2 + z2)− 28y2z2

= 2(y − z)2(4y2 + 4z2 + 7yz)≥ 0.
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The equality holds for an equilateral triangle and for a degenerate triangle with
a/2= b = c (or any cyclic permutation).

Second Solution. We use the sum-of-squares method (SOS method). Write the
inequality as follows

9(
∑

b2c2 − abc
∑

a)− (
∑

a4 −
∑

b2c2)≥ 0,

9
∑

a2(b− c)2 −
∑

(b2 − c2)2 ≥ 0,

∑

(b− c)2(3a− b− c)(3a+ b+ c)≥ 0.

Without loss of generality, assume that a ≥ b ≥ c. Since

(b− c)2(3a− b− c)(3a+ b+ c)≥ 0,

it suffices to show that

(c − a)2(3b− c − a)(3b+ c + a) + (a− b)2(3c − a− b)(3c + a+ b)≥ 0.

Since
3b− c − a ≥ 2b− a ≥ b+ c − a ≥ 0

and (c − a)2 ≥ (a− b)2), it is enough to prove that

(3b− c − a)(3b+ c + a) + (3c − a− b)(3c + a+ b)≥ 0.

We have
(3b+ c + a)− (3c + a+ b) = 2(b− c)≥ 0,

hence

(3b− c − a)(3b+ c + a) + (3c − a− b)(3c + a+ b)≥
≥ (3b− c − a)(3c + a+ b) + (3c − a− b)(3c + a+ b)
= 2(b+ c − a)(3c + a+ b)≥ 0.

P 3.74. If a, b, c are the lengths of the sides of a triangle, then

3(a4 + b4 + c4) + 7abc(a+ b+ c)≤ 5
∑

ab(a2 + b2).
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Solution. Let

f4(a, b, c) = 5
∑

ab(a2 + b2)− 3(a4 + b4 + c4)− 7abc(a+ b+ c).

By P 3.68-(b), it suffices to show that f4(x , 1, 1) ≥ 0 for 0 ≤ x ≤ 2 and f4(y +
z, y, z)≥ 0 for y, z ≥ 0. Indeed,

f4(x , 1, 1) = 4− 4x − 7x2 + 10x3 − 3x4 = (2− x)(2+ 3x)(1− x)2 ≥ 0

and

f4(y + z, y, z) = 4(y2 + z2)2 + 4yz(y2 + z2)− 24y2z2

= 4(y − z)2(y2 + z2 + 3yz)≥ 0.

The equality holds for an equilateral triangle and for a degenerate triangle with
a/2= b = c (or any cyclic permutation).

P 3.75. If a, b, c are the lengths of the sides of a triangle, then

b2 + c2 − 6bc
a

+
c2 + a2 − 6ca

b
+

a2 + b2 − 6ab
c

+ 4(a+ b+ c)≤ 0.

(Vasile Cîrtoaje, 2005)

First Solution. Write the inequality as f4(a, b, c)≥ 0, where

f4(a, b, c) =
∑

bc(6bc − b2 − c2)− 4abc(a+ b+ c).

By P 3.68-(b), it suffices to show that f4(x , 1, 1) ≥ 0 for 0 ≤ x ≤ 2 and f4(y +
z, y, z)≥ 0 for y, z ≥ 0. Since

f4(x , 1, 1) = 2(2− 5x + 4x2 − x3) = 2(1− x)2(2− x)≥ 0

and

f4(y + z, y, z) = 4(y2 + z2)2 − 2yz(y2 + z2)− 12y2z2

= 2(y − z)2(2y2 + 3yz + 2z2)≥ 0,

the proof is completed. The equality holds for an equilateral triangle and for a
degenerate triangle with a/2= b = c (or any cyclic permutation).

Second Solution. We use the SOS method. Write the inequality as follows:
∑

bc(b2 + c2 − 6bc) + 4abc
∑

a ≤ 0,

∑

bc(b2 + c2 − 2bc)− 4(
∑

b2c2 − abc
∑

a)≤ 0,
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∑

bc(b− c)2 − 2
∑

a2(b− c)2 ≤ 0,
∑

(b− c)2(2a2 − bc)≥ 0.

Without loss of generality, assume that a ≥ b ≥ c. Since (b − c)2(2a2 − bc) ≥ 0, it
suffices to prove that

(c − a)2(2b2 − ca) + (a− b)2(2c2 − ab)≥ 0.

Since
2b2 − ca ≥ 2b2 − c(b+ c) = (b− c)(2b+ c)≥ 0

and (c − a)2 ≥ (a− b)2, it is enough to show that

(2b2 − ca) + (2c2 − ab)≥ 0.

Indeed,

(2b2 − ca) + (2c2 − ab) = (b− c)2 + (b+ c)(b+ c − a)≥ 0.

P 3.76. Let f6(a, b, c) be a sixth degree symmetric homogeneous polynomial written
in the form

f6(a, b, c) = Ar2 + B(p, q)r + C(p, q), A≤ 0,

where
p = a+ b+ c, q = ab+ bc + ca, r = abc.

Prove that

(a) the inequality f6(a, b, c) ≥ 0 holds for all nonnegative real numbers a, b, c if
and only if f6(a, 1, 1)≥ 0 and f6(0, b, c)≥ 0 for all a, b, c ≥ 0;

(b) the inequality f6(a, b, c) ≥ 0 holds for all for all lengths a, b, c of the sides of a
non-degenerate or degenerate triangle if and only if f6(x , 1, 1)≥ 0 for 0≤ x ≤ 2, and
f6(y + z, y, z)≥ 0 for all y, z ≥ 0.

(Vasile Cîrtoaje, 2006)

Solution. For fixed p and q, the function f defined by

f (r) = Ar2 + B(p, q)r + C(p, q)

is a quadratic concave function of r. Therefore, f (r) is minimal when r is minimal
or maximal. According to P 3.57, the conclusion follows. As we have shown in the
proof of P 2.75, A is called the highest coefficient of f6(a, b, c).

Remark 1. We can extend the part (a) of P 3.76 as follows:
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(a1) For A≤ 0, the inequality f6(a, b, c)≥ 0 holds for all nonnegative real num-
bers a, b, c satisfying p2 ≤ 4q if and only if f6(a, 1, 1)≥ 0 for all 0≤ a ≤ 4;.

(a2) For A ≤ 0, the inequality f6(a, b, c) ≥ 0 holds for all nonnegative real
numbers a, b, c satisfying p2 > 4q if and only if f6(a, 1, 1) ≥ 0 for all a > 4 and
f6(0, b, c)≥ 0 for all b, c ≥ 0.

Notice that the restriction 0 ≤ a ≤ 4 in (a1) follows by setting b = c = 1 in
p2 ≤ 4q. In addition, the condition f6(0, b, c)≥ 0 is not necessary in (a1) since a =
0 and p2 ≤ 4q involve b = c; therefore, the condition f6(0, b, c) ≥ 0 is equivalent
to f6(0,1, 1)≥ 0, which follows from f6(a, 1, 1)≥ 0 for all 0≤ a ≤ 4.

Also, the restriction a > 4 in (a2) follows by setting b = c = 1 in p2 > 4q.

Remark 2. The statement in P 3.76 and its extension in Remark 1 are also valid
in the more general case when f6(a, b, c) is a symmetric homogeneous function of
the form

f6(a, b, c) = Ar2 + B(p, q)r + C(p, q),

where B(p, q) and C(p, q) are rational functions.

P 3.77. If a, b, c are nonnegative real numbers, then
∑

a(b+ c)(a− b)(a− c)(a− 2b)(a− 2c)≥ (a− b)2(b− c)2(c − a)2.

(Vasile Cîrtoaje, 2008)

Solution. Let
p = a+ b+ c, q = ab+ bc + ca, r = abc,

and
f6(a, b, c) = f (a, b, c)− (a− b)2(b− c)2(c − a)2,

where
f (a, b, c) =

∑

a(b+ c)(a− b)(a− c)(a− 2b)(a− 2c).

Since
∑

a(b+ c)(a− b)(a− c)(a− 2b)(a− 2c) =

=
∑

a(p− a)(a2 + 2bc − q)(a2 + 6bc − 2q),

f (a, b, c) has the same highest coefficient A0 as

P1(a, b, c) = −
∑

a2(a2 + 2bc)(a2 + 6bc);

that is, according to Remark 2 from P 2.75,

A0 = P1(1,1, 1) = −3(1+ 2)(1+ 6) = −63.
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Then, f6(a, b, c) has the highest coefficient

A= A0 + 27= −36.

Since A < 0, according to P 3.76-(a), it suffices to prove that f6(a, 1, 1) ≥ 0 and
f6(0, b, c)≥ 0 for all a, b, c ≥ 0. Indeed, we have

f6(a, 1, 1) = 2a(a− 1)2(a− 2)2 ≥ 0

and
f6(0, b, c) = bc(b− c)4 ≥ 0.

The equality holds for a = b = c, for a = 0 and b = c (or any cyclic permutation),
and for a/2= b = c (or any cyclic permutation).

P 3.78. Let a, b, c be nonnegative real numbers.

(a) If 2≤ k ≤ 6, then

∑

a(a− b)(a− c)(a− kb)(a− kc) +
4(k− 2)(a− b)2(b− c)2(c − a)2

a+ b+ c
≥ 0;

(b) If k ≥ 6, then

∑

a(a− b)(a− c)(a− kb)(a− kc) +
(k+ 2)2(a− b)2(b− c)2(c − a)2

4(a+ b+ c)
≥ 0.

(Vasile Cîrtoaje, 2009)

Solution. a) We need to prove that f6(a, b, c)≥ 0, where

f6(a, b, c) = (a+ b+ c)
∑

a(a− b)(a− c)(a− kb)(a− kc)

+4(k− 2)(a− b)2(b− c)2(c − a)2.

Since f6(a, b, c) has the same highest coefficient as

4(k− 2)(a− b)2(b− c)2(c − a)2

and (a− b)2(b−c)2(c−a)2 has the highest coefficient −27, it follows that f6(a, b, c)
has the highest coefficient

A= −108(k− 2).

Since A≤ 0 for k ≥ 2, according to P 3.76-(a), it suffices to prove that f6(a, 1, 1)≥ 0
and f6(0, b, c)≥ 0 for all a, b, c ≥ 0. Indeed, we have

f6(a, 1, 1) = a(a+ 2)(a− 1)2(a− k)2 ≥ 0
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and
f6(0, b, c) = (b− c)6 + (6− k)bc(b− c)4 ≥ 0.

The equality holds for a = b = c, for a = 0 and b = c (or any cyclic permutation,
and for and for a/k = b = c (or any cyclic permutation).

(b) We need to prove that f6(a, b, c)≥ 0, where

f6(a, b, c) = 4(a+ b+ c)
∑

a(a− b)(a− c)(a− kb)(a− kc)

+(k+ 2)2(a− b)2(b− c)2(c − a)2.

Since f6(a, b, c) has the same highest coefficient as

(k+ 2)2(a− b)2(b− c)2(c − a)2

and (a− b)2(b−c)2(c−a)2 has the highest coefficient −27, it follows that f6(a, b, c)
has the highest coefficient

A= −27(k+ 2)2 < 0.

According to P 3.76-(a), it suffices to prove that f6(a, 1, 1) ≥ 0 and f6(0, b, c) ≥ 0
for all a, b, c ≥ 0. Indeed, we have

f6(a, 1, 1) = 4a(a+ 2)(a− 1)2(a− k)2 ≥ 0

and
f6(0, b, c) = (b− c)2[2(b2 + c2)− (k− 2)bc]2 ≥ 0.

The equality holds for a = b = c, for a = 0 and b = c (or any cyclic permutation,

and for and for a/k = b = c (or any cyclic permutation), and for a = 0 and
b
c
+

c
b
=

k− 2
2

(or any cyclic permutation).

P 3.79. If a, b, c are nonnegative real numbers, then

(3a2+2ab+3b2)(3b2+2bc+3c2)(3c2+2ca+3a2)≥ 8(a2+3bc)(b2+3ca)(c2+3ab).

Solution. Let
p = a+ b+ c, q = ab+ bc + ca,

f (a, b, c) = (3a2 + 2ab+ 3b2)(3b2 + 2bc + 3c2)(3c2 + 2ca+ 3a2),

g(a, b, c) = (a2 + 3bc)(b2 + 3ca)(c2 + 3ab).

We need to prove that f6(a, b, c)≥ 0, where

f6(a, b, c) = f (a, b, c)− 8g(a, b, c).
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By Remark 2 from P 2.75, f (a, b, c) has the highest coefficient

A1 = (2− 3)3 = −1,

and g(a, b, c) has the highest coefficient

A2 = g(1,1, 1) = 64.

Therefore, f6(a, b, c) has the highest coefficient

A= A1 − 8A2 = −1− 512= −513.

Then, by P 3.76-(a), it suffices to prove that f6(a, 1, 1) ≥ 0 and f6(0, b, c) ≥ 0 for
all nonnegative real a, b, c. Indeed,

f6(a, 1, 1) = 8(3a2 + 2a+ 3)2 − 8(a2 + 3)(3a+ 1)2

= 48(a+ 1)(a− 1)2 ≥ 0,

f6(0, b, c) = 3b2c2(9b2 − 2bc + 9c2)≥ 0.

The equality holds for a = b = c.

P 3.80. Let a, b, c be nonnegative real numbers such that

a+ b+ c = 2.

If
−2
3
≤ k ≤

11
8

,

then
(a2 + kab+ b2)(b2 + kbc + c2)(c2 + kca+ a2)≤ k+ 2.

(Vasile Cîrtoaje, 2011)

Solution. Let

f (a, b, c) = (a2 + kab+ b2)(b2 + kbc + c2)(c2 + kca+ a2).

We need to prove that f6(a, b, c)≥ 0, where

f6(a, b, c) = (k+ 2)(a+ b+ c)6 − 64 f (a, b, c).

According to Remark 2 from P 2.75, f (a, b, c) has the highest coefficient

A1 = (k− 1)3.
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Thus, f6(a, b, c) has the highest coefficient

A= −64A1 = 64(1− k)3.

Also, we have

f6(a, 1, 1) = (k+ 2)a[(a− 1)2 + 11− 8k][a3 + 14a2 + (8k+ 12)a+ 16]

and

f6(0, b, c) = (k+ 2)(b+ c)6 − 64b2c2(b2 + kbc + c2)

= (b− c)2
�

(k+ 2)(b2 + c2)2 + 8(k+ 2)bc(b2 + c2) + 4(7k− 2)b2c2
�

.

Case 1: 1 ≤ k ≤
11
8

. Since A≤ 0, according to P 3.76-(a), it suffices to prove that

f6(a, 1, 1) ≥ 0 and f6(0, b, c) ≥ 0 for all a, b, c ≥ 0. Clearly, these conditions are
satisfied. The equality holds for a = 0 and b = c = 1 (or any cyclic permutation).
If k = 11/8, then the equality holds also for a = b = c = 2/3.

Case 2:
−2
3
≤ k < 1. Since A > 0, we will use the highest coefficient cancellation

method. We will prove the sharper inequality g6(a, b, c)≥ 0, where

g6(a, b, c) = f6(a, b, c)− 64(1− k)3a2 b2c2.

Since g6(a, b, c) has the highest coefficient equal to zero, it suffices to show that
g6(a, 1, 1) ≥ 0 and g6(0, b, c) ≥ 0 for all a, b, c ≥ 0 (see P 3.76). The inequality
g6(a, 1, 1)≥ 0 is true if

(k+ 2)[(a− 1)2 + 11− 8k][a3 + 14a2 + (8k+ 12)a+ 16]≥ 64(1− k)3a.

It suffices to show that

(k+ 2)(11− 8k)(6a2 + (8k+ 12)a+ 16]≥ 64(1− k)3a.

Moreover, since 11− 8k > 8(1− k), we only need to show that

(k+ 2)[3a2 + (4k+ 6)a+ 8]≥ 4(1− k)2a.

Since

3a2 + (4k+ 6)a+ 8≥ 3(2a− 1) + (4k+ 6)a+ 8

= (4k+ 12)a+ 5> 4(k+ 3)a,

it is enough to show that

(k+ 2)(k+ 3)≥ (1− k)2.
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Indeed,

(k+ 2)(k+ 3)− (1− k)2 = 7k+ 5= 7
�

k+
2
3

�

+
1
3
> 0.

The inequality g6(0, b, c)≥ 0 is also true since

g6(0, b, c)≥ (b− c)2[4(k+ 2)b2c2 + 16(k+ 2)b2c2 + 4(7k− 2)b2c2]

= 16(3k+ 2)b2c2(b− c)2 ≥ 0.

Thus, the proof is completed. The equality holds for a = 0 and b = c = 1 (or any
cyclic permutation). If k = 11/8, then the equality holds also for a = b = c = 2/3.

P 3.81. Let a, b, c be nonnegative real numbers such that

a+ b+ c = 2.

Prove that
(2a2 + bc)(2b2 + ca)(2c2 + ab)≤ 4.

Solution. Write the inequality in the homogeneous form f6(a, b, c)≥ 0, where

f6(a, b, c) = (a+ b+ c)6 − 16(2a2 + bc)(2b2 + ca)(2c2 + ab).

Since f6(a, b, c) has the same highest coefficient A as P2(a, b, c), where

P2(a, b, c) = −16(2a2 + bc)(2b2 + ca)(2c2 + ab),

according to Remark 2 from P 2.75, we have

A= P2(1,1, 1) = −432.

Since A < 0, according to P 3.76-(a), it suffices to prove that f6(a, 1, 1) ≥ 0 and
f6(0, b, c)≥ 0 for all a, b, c ≥ 0. We have

f6(a, 1, 1) = a(a+ 2)2(a3 + 8a2 − 8a+ 32)

= a(a+ 2)2[a3 + 4a2 + 28+ 4(a− 1)2]≥ 0,

f6(0, b, c) = (b+ c)6 − 64b3c3 ≥ 0.

The equality holds for a = 0 and b = c = 1 (or any cyclic permutation).
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P 3.82. Let a, b, c be nonnegative real numbers, no two of which are zero. Then,

∑

(a− b)(a− c)(a− 2b)(a− 2c)≥
5(a− b)2(b− c)2(c − a)2

ab+ bc + ca
.

(Vasile Cîrtoaje, 2010)

Solution. Denote
p = a+ b+ c, q = ab+ bc + ca,

and write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) = q
∑

(a− b)(a− c)(a− 2b)(a− 2c)− 5(a− b)2(b− c)2(c − a)2.

Clearly, f6(a, b, c) has the highest coefficient

A= (−5)(−27) = 135.

Since A> 0, we will use the highest coefficient cancellation method. We have

f6(a, 1, 1) = (2a+ 1)(a− 1)2(a− 2)2, f6(0, b, c) = bc[(b+ c)2 − 6bc]2.

Consider two cases: p2 ≤ 4q and p2 > 4q.

Case 1: p2 ≤ 4q. Since

f6(1, 1,1) = 0, f6(2,1, 1) = 0,

we define the symmetric homogeneous polynomial of degree three

P(a, b, c) = abc + Bp3 + C pq

such that P(1,1, 1) = 0 and P(2,1, 1) = 0. We get B = 1/18 and C = −5/18, hence

P(a, b, c) = abc +
1

18
p3 −

5
18

pq.

Consider now the sharper inequality g6(a, b, c)≥ 0, where

g6(a, b, c) = f6(a, b, c)− 135P2(a, b, c).

Clearly, g6(a, b, c) has the highest coefficient A= 0. Then, according to Remark 1
from the proof of P 3.76, it suffices to prove that g6(a, 1, 1) ≥ 0 for 0 ≤ a ≤ 4. We
have

P(a, 1, 1) =
1
18
(a− 1)2(a− 2),

hence

g6(a, 1, 1) = f6(a, 1, 1)− 135P2(a, 1, 1)

=
1
12
(a− 1)2(a− 2)2(7+ 34a− 5a2)≥ 0.
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Case 2: p2 > 4q. Define the symmetric homogeneous function

R(a, b, c) = abc + C pq− (9C + 1)
q2

3p
,

which satisfies
R(1,1, 1) = 0,

R(a, 1, 1) =
(a− 1)2[3C(2a+ 1)− 1]

3(a+ 2)
,

R(0, b, c) =
bc[3C(b+ c)2 − (9C + 1)bc]

3(b+ c)
.

Consider further the sharper inequality g6(a, b, c)≥ 0, where

g6(a, b, c) = f6(a, b, c)− 135R2(a, b, c).

Since g6(a, b, c) has the highest coefficient A= 0, according to Remark 2 from the
proof of P 3.76, it suffices to prove that g6(a, 1, 1)≥ 0 for a > 4, and g6(0, b, c)≥ 0
for all b, c ≥ 0. Since f6(0, b, c) = bc[(b+ c)2−6bc]2, the inequality g6(0, b, c)≥ 0
holds for all b, c ≥ 0 only if

9C + 1
3C

= 6;

that is, C = 1/9. For this value of C , we have

R(a, 1, 1) =
2(a− 1)3

9(a+ 2)
, R(0, b, c) =

bc[(b+ c)2 − 6bc]
9(b+ c)

,

hence

g6(a, 1, 1) = f6(a, 1, 1)− 135R2(a, 1, 1) =
(a− 1)2

3(a+ 2)2
g(a),

where
g(a) = 3(2a+ 1)(a2 − 4)2 − 20(a− 1)4,

and

g6(0, b, c) = f6(0, b, c)− 135R2(0, b, c)

=
bc(3b2 + bc + 3c2)[(b+ c)2 − 6bc]2

3(b+ c)2
≥ 0.

To complete the proof, we need to show that g(a)≥ 0 for a > 4. This is true since
a2 − 4> (a− 1)2 and 3(2a+ 1)> 20.

The equality holds for a = b = c, for a/2= b = c (or any cyclic permutation),
and for a = 0 and b/c + c/b = 4 (or any cyclic permutation).
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P 3.83. If a, b, c are positive real numbers such that

abc = 1,

then
ab+ bc + ca+

50
a+ b+ c + 5

≥
37
4

.

(Michael Rozenberg, 2013)

Solution. For abc = 1 and fixed a+ b+ c, the sum ab+ bc + ca is minimal when
two of a, b, c are equal (see P 3.58). Thus,it suffices to prove the desired inequality
for a = b; that is, to show that a2c = 1 involves

a2 + 2ac +
50

2a+ c + 5
≥

37
4

.

This is equivalent to

a2 +
2
a
+

50a2

2a3 + 5a2 + 1
≥

37
4

,

which can be written in the obvious form

(a− 1)2(2a− 1)2(2a2 + 11a+ 8)≥ 0.

The equality holds for a = b = c = 1, and for a = b = 1/2 and c = 4 (or any cyclic
permutation).

P 3.84. If a, b, c are positive real numbers, then

(a+ b+ c − 3)
�

1
a
+

1
b
+

1
c
− 3

�

+ abc +
1

abc
≥ 2.

(Vasile Cîrtoaje, 2004)

Solution. Since the inequality does not exchange by substituting a, b, c with
1
a

,
1
b

,
1
c

,

respectively, we may consider only the case abc ≥ 1. Using the notation

p = a+ b+ c, r = abc, r ≥ 1,

we can write the inequality as

(p− 3)
�

ab+ bc + ca
r

− 3
�

+ r +
1
r
≥ 2.

By P 3.58, for fixed p and r, the sum q = ab+ bc+ca is minimal when two of a, b, c
are equal. Since p ≥ 3 3pr ≥ 3 (by the AM-GM inequality), it suffices to prove the
desired inequality for b = c, when it becomes as follows

a
�

b2 +
2
b
− 3

�

+
1
a

�

1
b2
+ 2b− 3

�

≥ 6
�

b+
1
b
− 2

�

,
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(b− 1)2
��

ab+
1

ab
− 2

�

+ 2
�

a+
1
a
− 2

��

≥ 0.

Since ab +
1

ab
≥ 2 and a +

1
a
≥ 2, the conclusion follows. The equality holds for

a = b = 1, or b = c = 1, or c = a = 1.

P 3.85. If a, b, c are positive real numbers such that

abc = 1,

then

(a)
3
7

�

ab+ bc + ca−
2
3

�

≥
s

2
3
(a+ b+ c)− 1;

(b) ab+ bc + ca− 3≥
46
27
(
p

a+ b+ c − 2− 1).

(Vasile Cîrtoaje, 2009)

Solution. Let
p = a+ b+ c, p ≥ 3.

For abc = 1 and fixed p, the sum ab + bc + ca is minimal when two of a, b, c are
equal (see P 3.58). Thus, it suffices to consider the case a = b.

(a) For a = b, the desired inequality is equivalent to

3a3 − 2a+ 6≥ 7

√

√4a3 − 3a2 + 2
3

.

By squaring, we get

(a− 1)2(3a− 1)2(3a2 + 8a+ 10)≥ 0,

which is true. The equality holds for a = b = c = 1, and also for (a, b, c) =
�

1
3

,
1
3

,9
�

or any cyclic permutation.

(b) For a = b, the desired inequality becomes

27a3 − 35a+ 54≥ 46
p

2a3 − 2a2 + 1.

By squaring, we get the obvious inequality

(a− 1)2(9a− 5)2(9a2 + 28a+ 32)≥ 0.

The equality holds for a = b = c = 1, and also for (a, b, c) =
�

5
9

,
5
9

,
81
25

�

or any

cyclic permutation.
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P 3.86. Let a, b, c be positive real numbers.

(a) If abc = 2, then

(a+ b+ c − 3)2 + 1≥
a2 + b2 + c2

3
;

(b) If abc =
1
2

, then

a2 + b2 + c2 + 3(3− a− b− c)2 ≥ 3.

(Vasile Cîrtoaje, 2007)

Solution. Let
p = a+ b+ c.

(a) Write the inequality as

(p− 3)2 + 1≥
p2 − 2(ab+ bc + ca)

3
.

For abc = 2 and fixed p, the sum ab + bc + ca is minimal when two of a, b, c are
equal (see P 3.58). Thus, it suffices to consider the case a = b, when the inequality
becomes as follows

�

2a+
2
a2
− 3

�2

+ 1≥
2a2

3
+

4
3a4

,

5a6 − 18a5 + 15a4 + 12a3 − 18a2 + 4≥ 0,

(a− 1)2(5a4 − 8a3 − 6a2 + 8a+ 4)≥ 0.

Since

5a4 − 8a3 − 6a2 + 8a+ 4= 4(a− 1)4 + a(a3 + 8a3 − 30a+ 24),

it suffices to prove that a3 + 8a3 − 30a+ 24≥ 0. Indeed, for a ≥ 1, we have

a3 + 8a3 − 30a+ 24= (a− 1)3 + 11a2 − 33a+ 25

= (a− 1)3 + 11(a−
3
2
)2 +

1
4
> 0,

and for a < 1, we have

a3 + 8a3 − 30a+ 24= a(1− a)2 + 2(2− a)(6− 5a)> 0.

The equality holds for (a, b, c) = (1, 1,2) or any cyclic permutation.

(b) Write the inequality as

p2 − 2(ab+ bc + ca) + 3(3− p)2 ≥ 3.
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For abc = 1/2 and fixed p, the sum ab+ bc+ ca is maximal when two of a, b, c are
equal (see P 3.58). Thus, it suffices to consider the case a = b, when the inequality
becomes in succession

2a2 +
1

4a2
+ 3

�

3− 2a−
1

2a2

�2

≥ 3,

14a6 − 36a5 + 24a4 + 6a3 − 9a2 + 1≥ 0,

(a− 1)2(14a4 − 8a3 − 6a2 + 2a+ 1)≥ 0.

Since

14a4 − 8a3 − 6a2 + 2a+ 1= (a− 1)4 + a(13a3 − 4a2 − 12a+ 6),

it suffices to prove that 13a3 − 4a2 − 12a+ 6≥ 0. Indeed,

9(13a3 − 4a2 − 12a+ 6) = 13(a+ 1)(3a− 2)2 + 2(a− 1)2 + a2 > 0.

The equality holds for (a, b, c) =
�

1,1,
1
2

�

or any cyclic permutation.

P 3.87. If a, b, c are positive real numbers such that

a+ b+ c = 3,

then

4
�

bc
a
+

ca
b
+

ab
c

�

+ 9abc ≥ 21.

Solution. Let
p = a+ b+ c, q = ab+ bc + ca, r = abc.

We write the required inequality in the homogeneous form

4p2q2

9r
+ 9r ≥

5p3

3
.

For fixed p and r, it suffices to consider the case when q is minimal; that is, when
two of a, b, c are equal (see P 3.58). Due to symmetry and homogeneity, we can
set b = c = 1, when

p = a+ 2, q = 2a+ 1, r = a,

the inequality becomes

4(a+ 2)2(2a+ 1)2 + 81a2 ≥ 15(a+ 2)3,

which is equivalent to
(a− 1)2(a− 4)2 ≥ 0.

The equality holds for a = b = c = 1, and for a = 2 and b = c = 1/2 (or any cyclic
permutation).
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P 3.88. If a, b, c are nonnegative real numbers such that

ab+ bc + ca = abc + 2,

then
a2 + b2 + c2 + abc ≥ 4.

(Vasile Cîrtoaje, 2011)

First Solution. Among the numbers 1 − a, 1 − b and 1 − c there are always two
with the same sign; let us say (1− b)(1− c)≥ 0. Thus, we have

a(1− b)(1− c)≥ 0,

a+ abc ≥ ab+ ac,

a+ (ab+ bc + ca− 2)≥ ab+ ac,

a+ bc ≥ 2,

and hence

a2 + b2 + c2 + abc − 4≥ a2 + 2bc + abc − 4

= (a+ 2)(a+ bc − 2)≥ 0.

The equality holds for a = b = c = 1, and for a = 0 and b = c =
p

2 (or any cyclic
permutation).

Second Solution. For a = 0, we need to show that bc = 2 involves b2 + c2 ≥ 4.
This is true since

b2 + c2 ≥ 2bc = 4.

Consider further that a, b, c are positive, and write the required inequality as

a2 + b2 + c2 + abc ≥ 2(ab+ bc + ca− abc),

3abc ≥ 2(ab+ bc + ca)− a2 − b2 − c2.

Let
p = a+ b+ c, q = ab+ bc + ca, r = abc.

We need to show that q = r + 2 implies 3r ≥ 4q − p2. For fixed q and r, the sum
p = a+ b+ c is minimal when two of a, b, c are equal (see Remark 2 from P 3.58).
Thus, it suffices to consider the case b = c, when p = a+2b, q = 2ab+ b2, r = ab2.
We need to prove that

2ab+ b2 = ab2 + 2

implies
3ab2 ≥ 4(2ab+ b2)− (a+ 2b)2,

which is equivalent to
a(a+ 3b2 − 4b)≥ 0.
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For the nontrivial case b < 4/3, we have

a+ 3b2 − 4b =
2− b2

b(2− b)
+ 3b2 − 4b =

(1− b)2(2+ 4b− 3b2)
b(2− b)

≥ 0.

P 3.89. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

(a+ b)(b+ c)(c + a)≥ (a+ bc)(b+ ca)(c + ab).

Solution. Write the inequality in the homogeneous form f6(a, b, c)≥ 0, where

f6(a, b, c) = p3(a+b)(b+c)(c+a)−(pa+3bc)(pb+3ca)(pc+3ab), p = a+b+c.

Clearly, f6(a, b, c) has the highest coefficient A= −27. Thus, according to P 3.76-
(a), it suffices to prove that f6(a, 1, 1) ≥ 0 and f6(0, b, c) ≥ 0 for a, b, c ≥ 0. We
have

f6(a, 1, 1) = 2(a+ 2)3(a+ 1)2 − 4(a2 + 2a+ 3)(2a+ 1)2

= 2(a5 + a3 − 4a2 + 2) = 2(a− 1)2(a3 + 2a2 + 4a+ 2)≥ 0.

Also,

f6(0, b, c) = bc(b+ c)4 − 3b2c2(b+ c)2 = bc(b+ c)2(b2 − bc + c2)≥ 0.

The equality holds for a = b = c = 1, and also for a = b = 0 and c = 3 (or any
cyclic permutation).

P 3.90. Let a, b, c be positive numbers such that

a+ b+ c ≤ 3
4
p

abc.

Prove that
a2 + b2 + c2 ≤ 3.

(Vasile Cîrtoaje, 2018)

Solution. By the AM-GM inequality, we have

a+ b+ c ≥ 3
3
p

abc,

and from
3

3
p

abc ≤ a+ b+ c ≤ 3
4
p

abc,
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we get abc ≤ 1. Denote
x =

6
p

abc, x ≤ 1.

Since

a2 + b2 + c2 = (a+ b+ c)2 − 2(ab+ bc + ca)≤ 9
p

abc − 6
3
p

a2 b2c2 = 9x3 − 6x4,

we only need to show that
9x3 − 6x4 ≤ 3,

which is equivalent to

(1− x)(1+ x + x2 − 2x3)≥ 0.

This is true since

1+ x + x2 − 2x3 = 1+ x(1− x2) + x2(1− x)> 0.

The equality occurs for a = b = c = 1.

P 3.91. If a, b, c are positive real numbers, then

�

b+ c
a
− 2−

p
2
�2

+
� c + a

b
− 2−

p
2
�2

+
�

a+ b
c
− 2−

p
2
�2

≥ 6.

(Vasile Cîrtoaje, 2012)

Solution. Without loss of generality, we can assume that a =max{a, b, c}. Let

m= 2+
p

2, t =
b+ c

2
.

We will show that
E(a, b, c)≥ E(a, t, t)≥ 6,

where

E =
�

b+ c
a
−m

�2

+
� c + a

b
−m

�2

+
�

a+ b
c
−m

�2

.

Write the left inequality as

� c + a
b
−m

�2

+
�

a+ b
c
−m

�2

≥ 2
�

2a
b+ c

−m+ 1
�2

. (*)

According to the identity

2x2 + 2y2 = (x − y)2 + (x + y)2,
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we have

2
� c + a

b
−m

�2

+ 2
�

a+ b
c
−m

�2

=
�

c + a
b
−

a+ b
c

�2

+
�

c + a
b
+

a+ b
c
− 2m

�2

.

Thus, we can rewrite the inequality (*) as

�

c + a
b
−

a+ b
c

�2

≥ 4
�

2a
b+ c

−m+ 1
�2

−
�

c + a
b
+

a+ b
c
− 2m

�2

,

(a+ b+ c)2(b− c)2

b2c2
+
�

4a
b+ c

+
c + a

b
+

a+ b
c
− 4m+ 2

�

(a+ b+ c)(b− c)2

bc(b+ c)
≥ 0.

This is true if f (a)≥ 0, where

f (a) =
(a+ b+ c)(b+ c)

bc
+

4a
b+ c

+
c + a

b
+

a+ b
c
− 4m+ 2.

Since f (a) is increasing and a =max{a, b, c}, it suffices to show that f
�

b+ c
2

�

≥ 0.

Indeed,

f
�

b+ c
2

�

=
3(b− c)2

bc
+ 6− 4

p
2≥ 6− 4

p
2> 0.

Write now the right inequality E(a, t, t)≥ 6 as

�

b+ c
a
−m

�2

+ 2
�

2a
b+ c

−m+ 1
�2

≥ 6.

Setting
b+ c

a
= x , this inequality becomes

(x −m)2 + 2
�

2
x
−m+ 1

�2

≥ 6,

(x − 2)2(x −
p

2)2

x2
≥ 0.

The proof is completed. The equality holds for a = b = c, and for
a
p

2
= b = c (or

any cyclic permutation).

P 3.92. If a, b, c are positive real numbers, then

2(a3 + b3 + c3) + 9(ab+ bc + ca) + 39≥ 24(a+ b+ c).

(Vasile Cîrtoaje, 2010)
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Solution. Let p = a+b+c and q = ab+bc+ca. Since a3+b3+c3 = 3abc+p3−3pq,
we can write the inequality as

6abc + 2p3 + 3(3− 2p)q+ 39≥ 24p.

By Schur’s inequality of degree three, we have

9abc ≥ 4pq− p3.

Therefore, it suffices to show that

2
3
(4pq− p3) + 2p3 + 3(3− 2p)q+ 39≥ 24p,

which is equivalent to

4p3 + 117≥ 72p+ (10p− 27)q.

Case 1: 10p− 27≥ 0. Since 3q ≤ p2, we have

4p3 + 117− 72p− (10p− 27)q ≥ 4p3 + 117− 72p−
(10p− 27)p2

3

=
1
3
(p− 3)2(2p+ 39)≥ 0.

Case 2: 10p− 27< 0. From (3p− 8)2 ≥ 0, we get

9p2 − 48p+ 64≥ 0,

18q ≥ −9
∑

a2 + 48p− 64.

Using this inequality and
∑

(10a− 9) = 10p− 27< 0,

we get

2
�

2
∑

a3 + 9q+ 39− 24p
�

≥ 4
∑

a3 +
�

−9
∑

a2 + 48p− 64
�

+ 78− 48p

=
∑

�

4a3 − 9a2 +
14
3

�

>
∑

�

4a3 − 9a2 +
14
3

�

+
14
27

∑

(10a− 9)

=
∑

a
�

4a2 − 9a+
140
27

�

>
∑

a
�

4a2 − 9a+
81
16

�

=
∑

a
�

2a−
9
4

�2

≥ 0.

The equality holds for a = b = c = 1.
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P 3.93. If a, b, c are nonnegative real numbers such that a2 + b2 + c2 = 3, then

a3 + b3 + c3 − 3≥ |(a− b)(b− c)(c − a)|.

Solution. Assume that a ≤ b ≤ c, write the inequality in the homogeneous form

a3 + b3 + c3 − 3
�

a2 + b2 + c2

3

�3/2

≥ (b− a)(c − b)(c − a),

and use the substitution

b = a+ p, c = a+ q, 0≤ p ≤ q.

For fixed p and q, we need to show that

f (a)≥ pq(q− p),

where

f (a) = a3 + b3 + c3 − 3
�

a2 + b2 + c2

3

�3/2

.

Since a′ = b′ = c′ = 1, we have

f ′(a) = 3(a2 + b2 + c2)− 3(a+ b+ c)

√

√a2 + b2 + c2

3

= 9

√

√a2 + b2 + c2

3

�√

√a2 + b2 + c2

3
−

a+ b+ c
3

�

≥ 0.

Thus, f (a) is increasing, f (a)≥ f (0), and it suffices to show that f (0)≥ pq(q−p),
that is

p3 + q3 − 3

�

p2 + q2

3

�3/2

≥ pq(q− p).

Consider the non-trivial case p > 0. Due to homogeneity, we may assume that
p = 1 and q ≥ 1, when the inequality becomes as follows:

q3 − q2 + q+ 1≥ 3

�

1+ q2

3

�3/2

,

3(q3 − q2 + q+ 1)2 ≥ (q2 + 1)3,

q6 − 3q5 + 3q4 − 3q2 + 3q+ 1≥ 0,

q3(q− 1)3 + q3 − 3q2 + 3q+ 1≥ 0,

(q3 + 1)(q− 1)3 + 2≥ 0.

The last inequality is clearly true. The equality holds for a = b = c = 1.
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P 3.94. Let a, b, c be nonnegative real numbers such that a2+ b2+ c2 = 3. Prove that

1− abc ≥
5
3

min{(a− b)2, (b− c)2, (c − a)2}.

(Vasile Cîrtoaje, 2019)

Solution. Assume that a ≥ b ≥ c. For a = c, the inequality is a trivial equality.
Consider next that a > c. There are two cases to consider: a − b ≥ b − c and
a− b ≤ b− c.

Case 1: a− b ≥ b− c. Write the inequality in the homogeneous form f (a)≤ 0,
where

f (a) = abc +
5
3
(b− c)2 g1/2(a)− g3/2(a), g(a) =

a2 + b2 + c2

3
.

We will show that
f (a)≤ f (2b− c)≤ 0.

The left inequality is true if f ′(a)≤ 0. Since

g ′(a) =
2a
3

and

f ′(a) = bc +
5a(b− c)2

9g1/2
− ag1/2 = bc +

5a(b− c)2

9
− a,

we need to show that

a
�

1−
5(b− c)2

9

�

≥ bc.

Since a ≥ b, this is true if

1−
5(b− c)2

9
≥ c,

that is

3(1− c)≥
5(b− c)2

3
.

It is enough to show that
3(1− c)≥ 2(b− c)2.

From
3= a2 + b2 + c2 ≥ 2b2 + c2,

we get

b ≤

√

√3− c2

2
.

Thus, it suffices to show that

3(1− c)≥ 2

�√

√3− c2

2
− c

�2

,
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which is equivalent to
c(2
p

6− 2c2 − 3− c)≥ 0,

3c(1− c)(5+ 3c)

2
p

6− 2c2 + 3+ c
≥ 0.

Since f is decreasing and a ≥ 2b− c, we have f (a)≤ f (2b− c).
The inequality f (2b− c)≥ 0 is true if the original inequality holds for a = 2b− c.

Thus, we need to show that

3bc(2b− c) + 5(b− c)2 ≤ 3

for
(2b− c)2 + b2 + c2 = 3,

which involves
2(b− c)2 + 3b2 = 3, b ≤ 1.

Indeed, we have

3bc(2b− c) + 5(b− c)2 − 3≤ 3c(2b− c) + 5(b− c)2 − 3= 0.

Case 2: a− b ≤ b− c. We have

c ≤ 2b− a, 2b− a ≥ 0.

Write the inequality in the homogeneous form f (c)≤ 0, where

f (c) = abc +
5
3
(a− b)2 g1/2(c)− g3/2(c), g(c) =

a2 + b2 + c2

3
.

We will show that
f (c)≤ f (2b− a)≤ 0.

The left inequality is true if f ′(c)≥ 0. We have

g ′(c) =
2c
3

and

f ′(c) = ab+
5c(a− b)2

9g1/2
− cg1/2 = ab+

5c(b− c)2

9
− c ≥ ab− c ≥ b− c ≥ 0.

The inequality f (2b−a)≥ 0 is true if the original inequality holds for c = 2b−a.
Thus, we need to show that

3ab(2b− a) + 5(a− b)2 ≤ 3

for
a2 + b2 + (2b− a)2 = 3,
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which involves
2(a− b)2 + 3b2 = 3, b ≤ 1.

Indeed, we have

3ab(2b− a) + 5(a− b)2 − 3≤ 3a(2b− a) + 5(a− b)2 − 3= 0.

The proof is completed. The equality occurs for a = b = c = 1, and also for

a = 2
s

3
5

, b =
s

3
5

and c = 0 (or any permutation).

P 3.95. If a, b, c are nonnegative real numbers, then

a4 + b4 + c4 − a2 b2 − b2c2 − c2a2 ≥ 2|a3 b+ b3c + c3a− ab3 − bc3 − ca3|.

Solution. Assume that a ≤ b ≤ c and write the inequality as

(a2 − b2)2 + (b2 − c2)2 + (c2 − a2)2 ≥ 4(a+ b+ c)(a− b)(b− c)(c − a).

Using the substitution b = a+ p and c = a+q, where q ≥ p ≥ 0, the inequality can
be restated as

4Aa2 + 4Ba+ C ≥ 0,

where
A= p2 − pq+ q2, B = p3 + q(p− q)2,

C = p4 + 2p3q− p2q2 − 2pq3 + q4 = (p2 + pq− q2)2.

Since A≥ 0, B ≥ 0 and C ≥ 0, the inequality is obviously true. For a ≤ b ≤ c, the

equality occurs when a = b = c, and also when a = 0 and
c
b
=

1+
p

5
2

.

P 3.96. If a, b, c are nonnegative real numbers, then

a4 + b4 + c4 − abc(a+ b+ c)≥ 2
p

2 |a3 b+ b3c + c3a− ab3 − bc3 − ca3|.

(Pham Kim Hung, 2006)

Solution. Assume that a ≤ b ≤ c and write the inequality as

a2(a2 − bc) + b2(b2 − ca) + c2(c2 − ab)≥ 2
p

2(a+ b+ c)(a− b)(b− c)(c − a).

Using the substitution b = a + p and c = a + q, where q ≥ p ≥ 0, the inequality
becomes

Aa2 + Ba+ C ≥ 0,
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where

A= 5(p2 − pq+ q2), B = 4p3 + (6
p

2− 1)p2q− (6
p

2+ 1)pq2 + 4q3,

C = p4 + q4 + 2
p

2pq(p2 − q2).

Since
A≥ 0,

B ≥
25
4

p2q− 10pq2 + 4q3 = q
�

5p
2
− 2q

�2

≥ 0

and
C = (p2 +

p
2pq− q2)2 ≥ 0,

the conclusion follows. For a ≤ b ≤ c, the equality occurs when a = b = c, and

also when a = 0 and
c
b
=
p

2+
p

6
2

.

P 3.97. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

(a3 b+ b3c + c3a− 3abc)(ab3 + bc3 + ca3 − 3abc)≥ (a2 b2 + b2c2 + c2a2 − 3abc)2.

(Vasile Cîrtoaje, 2008)

Solution. Write the inequality in the homogeneous form

AB ≥ C2,

where
A= a3 b+ b3c + c3a− abc(a+ b+ c),

B = ab3 + bc3 + ca3 − abc(a+ b+ c),

C = a2 b2 + b2c2 + c2a2 − abc(a+ b+ c).

From the Cauchy-Schwarz inequality

(c + a+ b)(a3 b+ b3c + c3a)≥ abc(a+ b+ c)2,

it follows that A ≥ 0, with equality for a = b = c. Thus, the desired inequality
AB ≥ C2 is true if

At2 − 2C t + B ≥ 0

for all real t. This inequality is equivalent to

(a3 b+b3c+c3a)t2−2(a2 b2+b2c2+c2a2)t+ab3+bc3+ca3 ≥ abc(a+b+c)(t−1)2,

ab(at − b)2 + bc(bt − c)2 + ca(c t − a)2 ≥ abc(a+ b+ c)(t − 1)2.
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Clearly, the last inequality follows immediately from the Cauchy-Schwarz inequality

(c + a+ b)[ab(at − b)2 + bc(bt − c)2 + ca(c t − a)2]≥ abc(a+ b+ c)2(t − 1)2.

The equality holds for a = b = c, and also for a = 0 or b = 0 or c = 0.
Remark. Actually, the following identity holds:

AB − C2 = abc(a+ b+ c)(a2 + b2 + c2 − ab− bc − ca)2.

P 3.98. If a, b, c ≥ −5 such that

a+ b+ c = 3,

then
1− a

1+ a+ a2
+

1− b
1+ b+ b2

+
1− c

1+ c + c2
≥ 0.

(Vasile Cîrtoaje, 2014)

First Solution. Using the substitution

a = x − 5, b = y − 5, c = z − 5,

we need to prove that if x , y, z ≥ 0 such that x + y + z = 18, then

6− x
x2 − 9x + 21

+
6− y

y2 − 9y + 21
+

6− z
z2 − 9z + 21

≥ 0.

Denoting

p =
x + y + z

18
,

we can write this inequality as f5(x , y, z)≥ 0, where

f5(x , y, z) =
∑

(6p− x)(y2 − 9yp+ 21p2)(z2 − 9zp+ 21p2)

is a symmetric homogeneous polynomial of degree 5. According to Remark from
P 3.68, it suffices to prove this inequality for y = z and for x = 0. Therefore, we
only need to prove the original inequality for b = c and for a = −5.

Case 1: b = c =
3− a

2
. Since

1− b
1+ b+ b2

=
1− c

1+ c + c2
=

2(a− 1)
a2 − 8a+ 19

,

we need to show that

1− a
1+ a+ a2

+
4(a− 1)

a2 − 8a+ 19
≥ 0,
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which is equivalent to
(a− 1)2(a+ 5)≥ 0.

Case 2: a = −5, b+ c = 8. We can write the desired inequality as follows:
�

1
7
+

1− b
1+ b+ b2

�

+
�

1
7
+

1− c
1+ c + c2

�

≥ 0,

(b− 4)(b− 2)
1+ b+ b2

+
(c − 4)(c − 2)

1+ c + c2
≥ 0,

b− c
2

�

b− 2
1+ b+ b2

−
c − 2

1+ c + c2

�

≥ 0,

(b− c)2[3+ 2(b+ c)− bc]
2(1+ b+ b2)(1+ c + c2)

≥ 0.

The last inequality is true since

2(b+ c)− bc =
�

b+ c
2

�2

− bc =
�

b− c
2

�2

≥ 0.

The proof is completed. The equality occurs for a = b = c = 1, and also for a = −5
and b = c = 4 (or any cyclic permutation).

Second Solution. Assume that a ≤ b ≤ c and denote

E(a, b, c) =
1− a

1+ a+ a2
+

1− b
1+ b+ b2

+
1− c

1+ c + c2
.

We will show that
E(a, b, c)≥ E(a, t, t)≥ 0,

where

t =
b+ c

2
=

3− a
2

.

From −5≤ a ≤ 1 it follows that

t ∈ [1, 4].

Write the left inequality as follows:
�

1− b
1+ b+ b2

−
1− t

1+ t + t2

�

+
�

1− c
1+ c + c2

−
1− t

1+ t + t2

�

≥ 0,

(b− c)
�

(b− 1)t − b− 2
1+ b+ b2

−
(c − 1)t − c − 2

1+ c + c2

�

≥ 0,

(b− c)2[(2+ b+ c − bc)t + 1+ 2(b+ c) + bc]≥ 0,

(b− c)2[2t2 + 6t + 1− bc(t − 1)]≥ 0.
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The last inequality is true since

2t2 + 6t + 1− bc(t − 1)≥ 2t2 + 6t + 1− t2(t − 1)
= t(4− t)(1+ t) + 2t + 1> 0.

Also, we have

E(a, t, t) =
1− a

1+ a+ a2
+

2(1− t)
1+ t + t2

=
2(t − 1)

4t2 − 14t + 13
+

2(1− t)
1+ t + t2

=
6(1− t)2(4− t)

(4t2 − 14t + 13)(1+ t + t2)
≥ 0.

P 3.99. Let a, b, c 6=
1
k

be nonnegative real numbers such that

a+ b+ c = 3.

If k ≥
4
3

, then

1− a
(1− ka)2

+
1− b
(1− kb)2

+
1− c
(1− kc)2

≥ 0.

(Vasile Cîrtoaje, 2012)

Solution. Denoting p = (a+b+c)/3, we may write the inequality as f5(x , y, z)≥ 0,
where

f5(x , y, z) =
∑

(p− a)(p− kb)2(p− kc)2

is a symmetric homogeneous polynomial of degree 5. According to P 3.68, it suffices
to prove this inequality for b = c and for a = 0.

Case 1: b = c. Since a = 3−2b, the original inequality is equivalent to the following
sequence of inequalities:

1− a
(1− ka)2

+
2(1− b)
(1− kb)2

≥ 0,

2(b− 1)
(1− 3k+ 2kb)2

+
2(1− b)
(1− kb)2

≥ 0,

k(b− 1)2[k(3− b)− 2]≥ 0.

The last inequality holds since

k(3− b)− 2≥
4
3
(3− b)− 2=

2(3− 2b)
3

=
2a
3
≥ 0.
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Case 2: a = 0. Since b+ c = 3, the original inequality becomes as follows:

1≥
b− 1
(1− kb)2

+
c − 1
(1− kc)2

,

(1− kb)2(1− kc)2 ≥ (b− 1)(1− kc)2 + (c − 1)(1− kb)2,

(k2 bc − 3k+ 1)2 ≥ 1+ 6k− 9k2 + (5k2 − 4k)bc,

k3 b2c2 + 18k− 12≥ (6k2 + 3k− 4)bc.

Since
k3 b2c2 + 18k− 12≥ 2

Æ

k3(18k− 12) bc,

it suffices to show that

4k3(18k− 12)≥ (6k2 + 3k− 4)2,

which is equivalent to

36k4 − 84k3 + 39k2 + 24k− 16≥ 0,

(3k− 4)(12k3 − 12k2 − 3k+ 4)≥ 0.

The last inequality holds since

12k3 − 12k2 − 3k+ 4> 12k3 − 12k2 − 4k+ 4= 4(k− 1)(3k2 − 1)> 0.

The proof is completed. The equality occurs for a = b = c = 1. If k = 4/3, then
the equality holds also for a = 0 and b = c = 3/2 (or any cyclic permutation).

P 3.100. If a, b, c are positive real numbers such that

abc = 1,

then
3(2a2 + 1)(2b2 + 1)(2c2 + 1)≤ (a+ b+ c)4.

(Vasile Cîrtoaje, 2015)

Solution. Since

2a2 + 1= 2a2 + (abc)2/3 = a2/3[2a4/3 + (bc)2/3],

we can write the inequality in the homogeneous form

3[2a4/3 + (bc)2/3][2b4/3 + (ca)2/3][2c4/3 + (ab)2/3]≤ (a+ b+ c)4.
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Since the condition abc = 1 becomes superfluous, we may now assume that a +
b+ c = 3, when the inequality can be written as

[2a4/3 + (bc)2/3][2b4/3 + (ca)2/3][2c4/3 + (ab)2/3]≤ 27,

4
∑

a2 b2 + 2(abc)2/3
∑

a2 + 9(abc)4/3 ≤ 27.

By the AM-GM inequality, we have abc ≤ 1 and

2abc + 1≥ 3(abc)2/3.

Therefore, it suffices to show that

4
∑

a2 b2 +
2
3
(2abc + 1)

∑

a2 + 9abc ≤ 27,

which is equivalent to

(9+ 8q)r + 63+ 4q− 12q2 ≥ 0,

where
q = ab+ bc + ca, r = abc, 0< q ≤ 3, 0< r ≤ 1.

By Schur’s inequality

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ c + ca),

we get
3r ≥ 4q− 9,

hence

(9+ 8q)r + 63+ 4q− 12q2 ≥ (6+ 9q)r + 63+ 4q− 12q2

≥ (2+ 3q)(4q− 9) + 63+ 4q− 12q2

= 15(3− q)≥ 0.

The equality occurs for a = b = c = 1.

P 3.101. If a, b, c are positive real numbers such that

a+ b+ c =
p

3,

then

(3
p

3− 5)
�

1
a
+

1
b
+

1
b

�

≥ a2 + b2 + c2.

(Vasile Cîrtoaje, 2014)
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Solution. Assume that

a ≥ b ≥ c, a ≥
p

3
3

,

and show that
F(a, b, c)≥ F(a, x , x)≥ 0,

where

x =
b+ c

2
=
p

3− a
2

, F(a, b, c) = (3
p

3− 5)
�

1
a
+

1
b
+

1
b

�

− a2 − b2 − c2.

The left inequality is equivalent to

(b− c)2
�

2(3
p

3− 5)− bc(b+ c)
�

≥ 0.

This is true since

bc(b+ c)≤
(b+ c)3

4
=
(
p

3− a)3

4

≤
(
p

3−
p

3/3)3

4
=

2

3
p

3
< 2(3

p
3− 5).

The right inequality, F(a, x , x)≥ 0, is equivalent to
p

3 a4 − 5a3 + 3
p

3 a2 + 5(3− 2
p

3 )a+ 6
p

3− 10≥ 0,

(a− 1)2
�p

3 a2 − (5− 2
p

3 )a+ 6
p

3− 10
�

≥ 0.

Thus, it suffices to show that
p

3 a2 − (5− 2
p

3 )a+ 6
p

3− 10≥ 0.

This inequality is strict because

D = (5− 2
p

3 )2 − 4
p

3 (6
p

3− 10) = 20
p

3− 35< 0.

The equality occurs for a = 1 and b = c =
p

3− 1
2

(or any cyclic permutation).

P 3.102. If a, b, c ≥ 1 such that

a+ b+ c = 4,

then

12
�

1
a
+

1
b
+

1
b

�

≥ 5(a2 + b2 + c2).

(Vasile Cîrtoaje, 2014)
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Solution. Assume that

a ≥ b ≥ c, a ≥
4
3

,

and show that
F(a, b, c)≥ F(a, x , x)≥ 0,

where

F(a, b, c) = 12
�

1
a
+

1
b
+

1
b

�

− 5(a2 + b2 + c2)

and

x =
b+ c

2
.

From

x ≥
1+ 1

2
= 1, x =

4− a
2
≤

4− 4/3
2

=
4
3

,

we get

1≤ x ≤
4
3

.

The left inequality is equivalent to

(b− c)2[24− 5bc(b+ c)]≥ 0.

This is true since

5bc(b+ c)≤
5(b+ c)3

4
= 10x3 ≤

640
27

< 24.

The right inequality, F(a, x , x)≥ 0, is equivalent to

F(4− 2x , x , x)≥ 0,

15x4 − 70x3 + 120x2 − 89x + 24≥ 0,

(x − 1)(15x3 − 55x2 + 65x − 24)≥ 0,

(x − 1)[1− 5(x − 1)2(5− 3x)]≥ 0.

We only need to show that

1≥ 15(x − 1)2
�

5
3
− x

�

.

Since

(x − 1)
�

5
3
− x

�

≤
1
4

�

(x − 1) +
�

5
3
− x

��2

=
1
9

,

it suffices to show that

1≥
15
9
(x − 1),
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which is equivalent to

x ≤
8
5

.

The proof is completed. The equality occurs for a = 2 and b = c = 1 (or any cyclic
permutation).

P 3.103. If a, b, c are positive real numbers such that

a+ b+ c = 3, c ≤
15
32

,

then
1
a
+

1
b
+

1
c
≥ a2 + b2 + c2.

(Vasile Cîrtoaje, 2018)

Solution. Write the inequality as

a+ b
ab

+ 2ab ≥ (a+ b)2 + c2 −
1
c

.

Since
a+ b
ab

+ 2ab ≥ 2
Æ

2(a+ b),

it suffices to show that

2
Æ

2(a+ b)≥ (a+ b)2 + c2 −
1
c

,

which is equivalent to

Æ

8(3− c) +
1
c
+ 6c − 2c2 − 9≥ 0.

We can get this inequality by summing the inequalities

Æ

8(3− c)−
9
2
≥ 0

and
1
c
+ 6c − 2c2 −

9
2
≥ 0.

The first inequality reduces to c ≤
15
32

, and the second inequality to

(2− c)(1− 2c)2 ≥ 0.

The inequality is an equality for a = b = c = 1.



346 Vasile Cîrtoaje

P 3.104. If a ≥ b ≥ c ≥ 0 and ab+ bc + ca = 3 , then

(a) b+ c ≤ 2;

(b) b2 + bc + c2 ≤ 3.

(Vasile Cîrtoaje, 2018)

Solution. From
3a2 ≥ ab+ bc + ca = 3,

it follows that a ≥ 1, and from (a− b)(a− c)≥ 0, we get

a2 + bc ≥ a(b+ c),

hence
3= a(b+ c) + bc ≥ 2a(b+ c)− a2,

b+ c ≤
a2 + 3

2a
.

(a) It suffices to show that

a2 + 3
2a

≤ 2,

that is
(a− 1)(a− 3)≤ 0.

Since this is true for a ≤ 3, it remains to consider the case a ≥ 3, when

b+ c =
3− bc

a
≤

3
a
≤ 1< 2.

The equality occurs for a = b = c = 1.

(b) From

b2 + bc + c2 − 3= (b+ c)2 − bc = (b+ c)2 + a(b+ c)− 6≤
(a2 + 3)2

4a2
+

a2 + 3
2
− 6

=
3(a4 − 4a2 + 3)

4a2
=

3(a2 − 1)(a2 − 3)
4a2

,

it follows that b2 + bc + c2 ≤ 3 for a2 ≤ 3. Consider further the case a2 ≥ 3, when

b2 + bc + c2 ≤ (b+ c)2 =
�

3− bc
a

�2

≤
9
a2
≤ 3.

The equality occurs for a = b = c = 1, and also for a = b =
p

3 and c = 0.
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P 3.105. If a, b, c ∈
�

0, 1+
1
p

2

�

and a2 + b2 + c2 = 3, then

a+ b+ c ≥ abc + 2.

(Vasile Cîrtoaje, 2019)

Solution. Assume that a ≥ b ≥ c and denote x = b+ c. From

b+ c ≤
Æ

2(b2 + c2) =
p

6− 2a2

and
b+ c ≥

p

b2 + c2 =
p

3− a2.

we get
p

3− a2 ≤ x ≤
p

6− 2a2, 1≤ a ≤ 1+
1
p

2
.

Since
2bc = (b+ c)2 − b2 − c2 = (b+ c)2 + a2 − 3,

the required inequality can be written as

2a+ 2(b+ c)≥ a[(b+ c)2 + a2 − 3] + 4,

that is f (x)≤ 0, where

f (x) = ax2 − 2x + a3 − 5a+ 4.

Since f is a quadratic convex function, it suffices to show that f (
p

3− a2)≤ 0 and
f (
p

6− 2a2)≤ 0. We have

f
�p

3− a2
�

= 2(2− a−
p

3− a2) =
2(2a2 − 4a+ 1)

2− a+
p

3− a2
≤ 0.

Also,

f
�p

6− 2a2
�

= 4+ a− a3 − 2
p

6− 2a2 =
a6 − 2a4 − 8a3 + 9a2 + 8a− 8

4+ a− a3 + 2
p

6− 2a2

=
(a+ 1)(a− 1)2(a3 + a2 − 8)

4+ a− a3 + 2
p

6− 2a2
.

Because

a3 + a2 − 8≤
�

1+
1
p

2

�3

+
�

1+
1
p

2

�2

− 8=
11
p

2− 16
4

< 0,

we get f
�p

6− 2a2
�

≤ 0.
The inequality is an equality for a = b = c = 1, and also for

a = 1+
1
p

2
, b = 1−

1
p

2
, c = 0

(or any permutation).
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P 3.106. Let a, b, c ≥
1
6

be real numbers such that a2 + b2 + c2 = 3. Then,

a+ b+ c ≥ abc + 2.

(Vasile Cîrtoaje, 2019)

Solution. Assume that a =min{a, b, c}, hence
1
6
≤ a ≤ 1, and denote s = a+ b+ c

and x = b+ c. From
�

a−
1
6

��

b−
1
6

�

+
�

b−
1
6

��

c −
1
6

�

+
�

c −
1
6

��

a−
1
6

�

≥ 0,

we get

ab+ bc + ca+
1

12
≥

1
3
(a+ b+ c),

(a+ b+ c)2 − (a2 + b2 + c2) +
1
6
≥

2
3
(a+ b+ c),

6s2 − 4s− 17≥ 0,

hence

s ≥ k, k =
1
3
+

√

√53
18
≈ 2.0493. 6k2 − 4k− 17= 0.

From
k− a ≤ b+ c ≤

Æ

2(b2 + c2),

we get
k− a ≤ x ≤

p

6− 2a2.

Since
2bc = (b+ c)2 − (b2 + c2) = x2 − 3+ a2,

2abc + 4− 2(a+ b+ c) = a(x2 − 3+ a2) + 4− 2a− 2x ,

we may write the inequality as f (x)≤ 0, where

f (x) = ax2 − 2x + a3 − 5a+ 4.

Since f is a quadratic convex function, it is enough to show that f
�p

6− 2a2
�

≤ 0
and f (k− a)≥ 0.

The first inequality is equivalent to

−a3 + a+ 4≤ 2
p

6− 2a2.

This is true if
(−a3 + a+ 4)2 ≤ 4(6− 2a2),

that is
a6 − 2a4 − 8a3 + 9a2 + 8a− 8≤ 0,
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(a− 1)2(a4 + 2a3 + a2 − 8a− 8)≤ 0.

Since a < 1, the inequality is clearly true.
The second inequality is equivalent to

2a3 − 2ka2 + (k2 − 3)a+ 4− 2k ≤ 0,

which can be written as g(a)≤ 0, where

g(a) = 12a3 − 12ka2 + (4k− 1)a+ 24− 12k,

with
g ′(a) = 36a2 − 24ka+ 4k− 1= (6a− 1)(6a− 4k+ 1).

Since 6a− 1 ≥ 0 and 6a− 4k+ 1 ≤ 7− 4k < 0, we have g ′(a) ≤ 0, g(a) is strictly
decreasing, hence g(a)≤ g(1/6). So, it suffices to show that g(1/6)≤ 0. Indeed,

g(1/6) =
5(43− 105k)

9
≈ −0.01928< 0.

The equality occurs for a = b = c = 1.

P 3.107. If a, b, c are nonnegative real numbers such that

ab+ bc + ca+ 6abc = 9,

then
2(a+ b+ c)≥ ab+ bc + ca+ 3.

(Vasile Cîrtoaje, 2019)

Solution. For a = 0, we need to show that 2(b+ c)≥ bc + 3 for bc = 9. Indeed,

2(b+ c)− bc − 3≥ 4
p

bc − bc − 3= 0.

Assume now that a ≥ b ≥ c > 0. According to Remark 2 from P 3.58, for fixed
ab+ bc + ca and abc, the sum a+ b+ c is minimal when a ≥ b = c. Therefore, it
suffices to consider this case, when we need to show that

2a+ 4b ≥ 2ab+ b2 + 3

for

a =
9− b2

2b(3b+ 1)
, 0< b < 3.

Substituting a, the required inequality becomes

(1− b)2(1+ b)(3− b)≥ 0.
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The inequality is an equality for a = b = c = 1, and also for a = 0 and
b = c = 3 (or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• If a, b, c are nonnegative real numbers such that

ab+ bc + ca+ kabc = 3+ k, k > 0,

then
ab+ bc + ca− 3

a+ b+ c − 3
≤

k

2
p

k+ 3− 3
,

with equality for a = 0 and b = c = k (or any cyclic permutation).

For k = 1, we get that a+ b+ c + abc = 4 involves the nice inequality

a+ b+ c ≥ ab+ bc + ca.

P 3.108. If a, b, c are nonnegative real numbers such that

ab+ bc + ca+ abc = 4,

then
4(a+ b+ c) + 3a2 b2c2 ≥ 15.

(Vasile Cîrtoaje, 2019)

Solution. For a = 0, we need to show that 4(b+ c)≥ 15 for bc = 4. Indeed,

4(b+ c)− 15≥ 8
p

bc − 15= 1.

Assume now that a ≥ b ≥ c > 0. According to Remark 2 from P 3.58, for fixed
ab+ bc + ca and abc, the sum a+ b+ c is minimal when a ≥ b = c. Therefore, it
suffices to consider this case, when we need to show that

4a+ 8b+ 3a2 b4 ≥ 15

for

a =
2− b

b
, 0< b < 2.

Substituting a, the required inequality becomes

3b5 − 12b4 + 12b3 + 8b2 − 19b+ 8≥ 0,

(b− 1)2(3b3 − 6b2 − 3b+ 8)≥ 0.

This is true since

3b3 − 6b2 − 3b+ 8= (2− b)3 + b(2b− 3)2 > 0.

The inequality is an equality for a = b = c = 1.
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P 3.109. If a, b, c ∈
�

0,
5
3

�

such that a+ b+ c = 3, then

(a+ b)(b+ c)(c + a)≥ 8
3
p

abc.

(Vasile Cîrtoaje, 2018)

Solution. Assume that a ≥ b ≥ c and write the inequality as

(a+ b+ c)(ab+ bc + ca)≥ abc + 8
3
p

abc.

According to Remark 2 from P 3.57, for a + b + c = 3 and fixed ab + bc + ca, the

product abc is maximal when a ≥ b = c or a =
5
3

. Therefore, it suffices to consider

these cases.
Case 1: a ≥ b = c. For

b = c =
3− a

2
, a ∈

�

1,
5
3

�

,

the inequality is equivalent to
�

a+ 3
4

�6

(3− a)≥ 2a.

Substituting
a+ 3

4
= x , 1≤ x ≤

7
6

,

we need to show that
x6(3− 2x)≥ 4x − 3,

which is equivalent to
2x7 − 3x6 + 4x − 3≤ 0,

(x − 1)2(2x5 + x4 − x2 − 2x − 3)≤ 0.

Since

2x5 + x4 − x2 − 2x − 3= x(2x4 + x3 + 2x − 8)− 3(x − 1)2 ≤ x f (x),

where
f (x) = 2x4 + x3 + 2x − 8,

it is enough to show that f (x)≤ 0. Indeed, we have

f (x)≤ f
�

7
6

�

< 0.

Case 2: a =
5
3

. Since b+ c =
4
3

, we can write the inequality as

5+ bc ≥ 5
3

√

√5bc
3

.
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From
4
3
= b+ c ≥ 2

p

bc,

we get bc ≤
4
9

. Substituting

3

√

√5bc
3
= x , x ≤

3p20
3

,

the inequality becomes f (x)≥ 0, where

f (x) = 3x3 − 30x + 25.

Since
f ′(x) = 9x2 − 30≤ 3

p

400− 30< 0,

f is decreasing, hence

f (x)≥ f

� 3p20
3

�

= 5
�

49
9
− 2

3p
20
�

> 0.

The equality holds for a = b = c = 1.

Remark. In the absence of the condition a, b, c ≤
5
3

, the following inequality holds:

(a+ b)(b+ c)(c + a)≥ 8
p

abc.

According to P 3.57, it suffices to consider the case b = c =
3− a

2
, when the in-

equality becomes
(a+ 3)2 ≥ 16

p
a,

a+ 3≥ 4 4pa.

Indeed, by the AM-GM inequality, we have

a+ 3= a+ 1+ 1+ 1≥ 4 4
p

a · 1 · 1 · 1.

P 3.110. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then

a+ b+ c +
�

1−
1
p

3

�

(a− c)2 ≥ 3.

(Vasile Cîrtoaje, 2020)
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Proof. Denote

k = 1−
1
p

3
,

and write the inequality as

a+ b+ c + k(a− c)2 ≥ 3.

First Solution. Denote x = a+ c. Since

(a− c)2 = 2(a2 + c2)− (a+ c)2 = 2(3− b2)− x2,

we may write the inequality as f (x)≥ 0, where

f (x) = x + b+ k(6− 2b2 − x2)− 3.

For fixed b, we have x ∈ [m, M], where

m=
p

3− b2, M = b+
p

3− 2b2.

Indeed, from (a+ c)2 ≥ a2 + c2, we get

x ≥
p

3− b2 = m,

and from (b2 − a2)(b2 − c2)≤ 0, we get

a2c2 ≤ b2(a2 + c2)− b4 = 3b2 − 2b4, ac ≤ b
p

3− 2b2,

hence

x =
p

3− b2 + 2ac ≤
q

3− b2 + 2b
p

3− 2b2 = b+
p

3− 2b2 = M .

We have x = m for c = 0, and x = M for a = b or b = c. Since f (x) is a quadratic
concave function, it suffices to show that f (m) ≥ 0 and f (M) ≥ 0, that means to
prove the required inequality for c = 0, for a = b and for b = c.

Case 1: c = 0. We need to show that

a+ b+ ka2 ≥ 3

for a ≥ b ≥ 0 and a2 + b2 = 3. Write the inequality as follows:
p

3− b2 + b+ k(3− b2)≥ 3,

(1− kb)b ≥
p

3−
p

3− b2,

(1− kb)b ≥
b2

p
3+
p

3− b2
,
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(1− kb)
�p

3+
p

3− b2
�

≥ b.

Since the left hand side is decreasing and the right hand side is increasing with

respect to b, it is enough to prove the inequality for b =
s

3
2

, when it becomes

1−
p

6−
p

2
2

≥
p

2− 1,

4≥
p

6+
p

2.

Case 2: a = b ≥ c > 0. We need to show that

(2a+ c)
p

x + k(a− c)2 − 3x ≥ 0

for

x =
2a2 + c2

3
.

Due to homogeneity, we may set c = 1 (which involves a ≥ 1), when the inequality
becomes

(2a+ 1)
p

x + k(a− 1)2 − 3x ≥ 0,

where

x =
2a2 + 1

3
.

Write the inequality as follows:

k(a− 1)2 ≥
p

x(3
p

x − 2a− 1),

k(a− 1)2 ≥
2(a− 1)2

p
x

3
p

x + 2a+ 1
.

It is true if

k ≥
2
p

x
3
p

x + 2a+ 1
,

which is equivalent to
k(2a+ 1)≥ (2− 3k)

p
x ,

2a+ 1≥
p

2a2 + 1.

Case 3: a ≥ b = c > 0. We need to show that

(a+ 2c)
p

x + k(a− c)2 − 3x ≥ 0

for

x =
a2 + 2c2

3
.

Due to homogeneity, we may set c = 1 (which involves a ≥ 1), when the inequality
becomes

(a+ 2)
p

x + k(a− 1)2 − 3x ≥ 0,
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where

x =
a2 + 2

3
.

Write the inequality as follows:

k(a− 1)2 ≥
p

x(3
p

x − a− 2),

k(a− 1)2 ≥
2(a− 1)2

p
x

3
p

x + a+ 2
.

It is true if

k ≥
2
p

x
3
p

x + a+ 2
,

which is equivalent to
k(a+ 2)≥ (2− 3k)

p
x ,

a+ 2≥
p

a2 + 2.

The proof is completed. The equality occurs for a = b = c = 1, and also for
a =
p

3 and b = c = 0 (or any cyclic permutation).

Second Solution. Consider the nontrivial case a > c and write the inequality in the
homogeneous form f (b)≥ 0, where

f (b) = (a+ b+ c)
Æ

g(b) + k(a− c)2 − 3g(b), g =
a2 + b2 + c2

3
.

Since

g ′(b) =
2b
3

,

we have

f ′(b) =
p

g +
(a+ b+ c)b

3
p

g
− 2b = bh(b),

where

h(b) =
p

g
b
+

a+ b+ c
3
p

g
− 2,

h′(b) =
−pg

b2
+

1
3
p

g
+

1
3
p

g
−

b(a+ b+ c)
9g3/2

≤
−pg

b2
+

2
3
p

g
=
−3g + 2b2

2b2pg
≤ 0.

Since h(b) is a decreasing function, there are three possible cases: g(b)≥ 0 for b ∈
[c, a], hence f (b) is increasing on [c, a]; g(b) ≥ 0 for b ∈ [c, c1] and g(b) ≤ 0 for
b ∈ [c1, a], hence f (b) is increasing on [c, c1] and decreasing on [c1, a]; g(b) ≤ 0
for b ∈ [c, a], hence f (b) is decreasing on [c, a]. In all these cases f (b) is minimal
when b ∈ {c, a}. As a consequence, we only need to prove the required inequality
for b = a and b = c. Both cases were presented in the first solution.
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Remark. The inequality is symmetric because it can be written in the form

a+ b+ c +
�

1−
1
p

3

�

max{(a− b)2, (b− c)2, (c − a)2} ≥ 3,

without the condition a ≥ b ≥ c.

P 3.111. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then

1− abc ≤

√

√2
3
(a− c).

(Vasile C., 2018)

First Solution. Denoting x = ac, we need to show that f (x)≥ 0, where

f (x) = bx +

√

√2(3− b2 − 2x)
3

− 1.

For fixed b, b ∈
�

0,
s

3
2

�

, we have x ∈ [0, M], where

M = b
p

3− 2b2.

Indeed, from (b2 − a2)(b2 − c2)≤ 0, we get

a2c2 ≤ b2(a2 + c2)− b4 = 3b2 − 2b4, x ≤ b
p

3− 2b2 = M .

From

f ′′(x) = −

√

√2
3
·

1
(3− b2 − 2x)3/2

≤ 0,

it follows that f is a concave function, therefore it suffices to show that f (0) ≥ 0
and f (M)≥ 0. We have

f (0) =

√

√2(3− b2)
3

− 1≥ 0

because
3= a2 + b2 + c2 ≥ 2b2.

Since
p

3− b2 − 2M =
�

�

�

p

3− 2b2 − b
�

�

� ,
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we may write the inequality f (M)≥ 0 as follows:

√

√2
3

�

�

�

p

3− 2b2 − b
�

�

�≥ 1− b2
p

3− 2b2,

p
6|1− b2|

p
3− 2b2 + b

≥
(1− b2)2(1+ 2b2)

1+ b2
p

3− 2b2
.

This is true if p
6

p
3− 2b2 + b

≥
|1− b2|(1+ 2b2)

1+ b2
p

3− 2b2
.

Case 1: b ∈ [0,1]. We claim that

p
6

p
3− 2b2 + b

> 1≥
(1− b2)(1+ 2b2)

1+ b2
p

3− 2b2
.

Indeed, the left inequality is equivalent to

p

6− b >
p

3− 2b2,

which, by squaring, becomes

3b2 − 2
p

6 b+ 3≥ 0,

3(b− 1)2 + 2(3−
p

6)b ≥ 0,

while the right inequality is equivalent to

2b4 + b2(
p

3− 2b2 − 1)≥ 0.

Case 2: b ∈
�

1,
s

3
2

�

. We need to show that

p
6

p
3− 2b2 + b

≥
(b2 − 1)(1+ 2b2)

1+ b2
p

3− 2b2
,

which can be written as
A(b)

p

3− 2b2 ≥ B(b),

where

A(b) =
p

6 b2 − (b2 − 1)(1+ 2b2), B(b) = b(b2 − 1)(1+ 2b2)−
p

6.

This inequality is true because

A(b) = 1+ (
p

6+ 1)b2 − 2b4 > 3b2 − 2b4 = b2(3− 2b2)≥ 0
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and

B(b)≤ B

�√

√2
3

�

= 0.

The equality occurs for a = b = c = 1, and also for a = b =
s

3
2

and c = 0 (or

any cyclic permutation).

Second Solution (by Anhduy98). Denoting

p = a+ b+ c, q = ab+ bc + ca,

we have

q =
p2 − 3

2
, p ≤ 3.

Since
(a− c)2 − (a2 + b2 + c2 − ab− bc − ca) = (a− b)(b− c)≥ 0,

it is enough to show that

abc +

√

√2(a2 + b2 + c2 − ab− bc − ca)
3

≥ 1,

that is

abc ≥ 1−

√

√2(p2 − 3q)
3

or
abc ≥ 1− x ,

where

x =

√

√2(p2 − 3q)
3

.

From

p2 − 3q =
3x2

2
, p2 − 2q = 3,

we get

p =
Æ

3(3− x2), q =
3(2− x2)

2
, x ∈ [0,

p
2].

For x ≥ 1, the inequality abc ≥ 1− x is true because abc ≥ 0 ≥ 1− x . Consider
now that 1≤ x ≤

p
2. By Schur’s inequality

p3 + 9abc ≥ 4pq,

we get

3abc ≥ (1− x2)
Æ

3(3− x2).
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Thus, the inequality abc ≥ 1− x holds if

(1− x2)
Æ

3(3− x2)≥ 3(1− x),

which is true if
(1+ x)2(3− x2)≥ 3.

Indeed,
3− (1+ x)2(3− x2) = x[x(x2 − 2) + 2(x2 − 3)]≤ 0.

Third Solution. Denoting

F(a, b, c) = abc +

√

√2
3
(a− c)

and

x =

√

√a2 + b2

2
,

we can show that
F(a, b, c)≥ F(x , x , c)≥ 1.

Remark. The inequality is symmetric because it can be written in the form

1− abc ≤

√

√2
3

max{|a− b|, |b− c|, |c − a|},

without the condition a ≥ b ≥ c.

P 3.112. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then
1− abc ≤

7
10
(a− c)2.

(Vasile Cîrtoaje, 2018)

First Solution. Write the inequality as follows:

10abc + 7(a− c)2 ≥ 10,

10abc + 7(3− b2 − 2ac)≥ 10,

11− 7b2 ≥ 2(7− 5b)ac.
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From
3= a2 + b2 + c2 ≥ 2b2,

we get b ≤
s

3
2

, hence

11− 7b2 > 0, 7− 2b > 0.

On the other hand, from (b2 − a2)(b2 − c2)≤ 0, we get

a2c2 ≤ b2(a2 + c2)− b4 = 3b2 − 2b4, ac ≤ b
p

3− 2b2.

Thus, it is enough to show that

11− 7b2 ≥ 2(7− 5b)b
p

3− 2b2.

By squaring, this inequality becomes

200b6 − 560b5 + 141b4 + 840b3 − 742b2 + 121≥ 0,

or
(b− 1)2 f (b)≥ 0,

where

f (b) = 200b4 − 160b3 − 379b2 + 242b+ 121= 8b(5b− 6)2
�

b+
8
5

�

+101b2 −
1094

5
b+ 121> 100b2 + 120− 219b ≥

�

40
p

30− 219
�

b ≥ 0.

The proof is completed. The equality occurs for a = b = c = 1.

Second Solution (by Nguyen Van Huyen). Since

(a− c)2 − (a2 + b2 + c2 − ab− bc − ca) = (a− b)(b− c)≥ 0,

it is enough to show that

abc +
7
10
(a2 + b2 + c2 − ab− bc − ca)≥ 1,

which is equivalent to

10abc + 11≥ 7(ab+ bc + ca).

According to P 3.57, for a2+ b2+ c2 = 3 and fixed ab+ bc+ ca (which involve fixed
a+ b+ c and ab+ bc + ca), the product abc is minimal when c = 0 or a = b ≥ c.
Thus, we only need to consider these cases.
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Case 1: c = 0. We need to show that a2 + b2 = 3 involves 11 ≥ 7ab. Indeed,
we have

2(11− 7ab)≥ 22− 7(a2 + b2) = 1> 0.

Case 2: a = b ≥ c. We need to show that 2a2 + c2 = 3 involves

10a2c + 11≥ 7(a2 + 2ac),

which is equivalent to
(10c − 7)a2 + 11≥ 14ac,

1+ 30c + 7c2 − 10c3 ≥ 14c
p

6− 2c2.

Since c ≤ 1, the left side is positive. By squaring, the inequality becomes

100c6 − 140c5 − 159c4 + 400c3 − 262c2 + 60c + 1≥ 0,

(c − 1)2(100c4 + 60c3 − 139c2 + 62c + 1)≥ 0.

This is true because

100c4 + 60c3 − 139c2 + 62c + 1≥ 100c4 + 60c3 − 140c2 + 60c + 1

= (10c2 − 1)2 + 60c(c − 1)2 > 0.

P 3.113. If a ≥ b ≥ c ≥
1
3

and a2 + b2 + c2 = 3 , then

1− abc ≤
11
18
(a− c).

(Vasile C., 2018)

Solution. Denoting x = ac, we need to show that f (x)≥ 0, where

f (x) = bx − 1+
11
18

p

3− b2 − 2x .

From
(9a2 − 1)(9c2 − 1)≥ 0

and
(b2 − a2)(b2 − c2)≤ 0,

we get x ∈ [m, M], where

m=
1
9

p

26− 9b2, M = b
p

3− 2b2.
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We have x = m for c =
1
3

, and x = M for a = b or b = c. Since

f ′′(x) =
−11

18(3− b2 − 2x)3/
< 0,

f is concave. Therefore, it suffices to show that f (m) ≥ 0 and f (M) ≥ 0, that

means to prove the required inequality for c =
1
3

, for a = b and for b = c.

Case 1: c =
1
3

. We need to prove that

18ab+ 33a ≥ 65

for a2 + b2 =
26
9

and a ≥ b ≥
1
3

. From

26
9
= a2 + b2 ≤ 2a2

and
26
9
= a2 + b2 ≥ a2 +

1
9

,

we get
6
5
<

p
13
3
≤ a ≤

5
3

.

Write the required inequality as follows:

6a
p

26− 9a2 ≥ 65− 33a,

36a2(26− 9a2)≥ (65− 33a)2,

324a4 + 153a2 − 4290a+ 4225≤ 0,

(3a− 5)(108a3 + 180a2 + 351a− 845)≤ 0,

(3a− 5)[(5a− 6)(20a2 + 60a+ 141) + 8a3 + 6a+ 1]≤ 0.

It is true since 3a− 5≤ 0 and 5a− 6> 0.

Case 2: a = b. Consider the nontrivial case a = b > c, that is c < 1. We need
to prove that

11(a− c)≥ 18(1− a2c)

for 2a2 + c2 = 3,
1
3
≤ c < 1 and 3= 2a2 + c2 ≥ 2a2 +

1
9

, hence

a ≤
p

13
3

.



Symmetric Polynomial Inequalities in Nonnegative Variables 363

Write the required inequality as follows:

11(a2 − c2)
a+ c

≥ 9(2− 3c + c3),

33(1− c)(1+ c)
a+ c

≥ 18(1− c)2(2+ c),

11(1+ c)
a+ c

≥ 6(1− c)(2+ c),

11(1+ c)
6(1− c)(2+ c)

≥ a+ c.

We will show that

11(1+ c)
6(1− c)(2+ c)

− c ≥
26
21
>

p
13
3
≥ a.

The left inequality is equivalent to

42c3 + 94c2 + 45c − 27≥ 0,

(3c − 1)(14c2 + 36c + 27)≥ 0.

Case 3: b = c. Consider the nontrivial case a > b = c, that is a > 1. We need
to prove that

11(a− c)≥ 18(1− ac2)

for a2 + 2c2 = 3, and 3= a2 + 2c2 ≥ a2 +
1
9

, hence

1< a ≤
5
3

.

Write the required inequality as follows:

11(a2 − c2)
a+ c

≥ 9(a3 − 3a+ 2),

33(a− 1)(a+ 1)
a+ c

≥ 18(a− 1)2(a+ 2),

11(a+ 1)
a+ c

≥ 6(a− 1)(a+ 2),

11(a+ 1)
6(a− 1)(a+ 2)

≥ a+ c.

We will show that
11(a+ 1)

6(a− 1)(a+ 2)
− a ≥

16
3
− 3a ≥ c.



364 Vasile Cîrtoaje

The left inequality is equivalent to

12a3 − 20a2 − 45a+ 75≤ 0,

(5− 3a)(15− 4a2)≥ 0.

The right inequality is equivalent to

16− 9a ≥ 3

√

√3− a2

2
,

2(16− 9a)2 ≥ 9(3− a2),

171a2 − 576a+ 485≥ 0,

(5− 3a)(97− 57a)≥ 0.

The inequality is an equality for a = b = c = 1, and also for a =
5
3

, b = c =
1
3

(or any cyclic permutation).

P 3.114. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then

1−
p

abc ≤
2
3
(a− c)2.

(Vasile C., 2019)

First Solution. Denoting x = ac, we need to show that f (x)≥ 0, where

f (x) = 3
p

bx + 2(3− b2 − 2x)− 3= 3
p

bx − 4x + 3− 2b2.

For fixed b, b ∈
�

0,
s

3
2

�

, we have x ∈ [0, M], where

M = b
p

3− 2b2.

Indeed, from (b2 − a2)(b2 − c2)≤ 0, we get

a2c2 ≤ b2(a2 + c2)− b4 = 3b2 − 2b4, x ≤ b
p

3− 2b2 = M .

From

f ′′(x) = −
3
4

p

bx−3/2 < 0,
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it follows that f is a concave function, therefore it suffices to show that f (0) ≥ 0
and f (M)≥ 0. We have

f (0) = 3− 2b2 ≥ 0

because
3= a2 + b2 + c2 ≥ 2b2.

Write the inequality f (M)≥ 0 as follows:

3
p

bM − 4M + 3− 2b2 ≥ 0.

Using the substitution

x =
4
p

3− 2b2, 0≤ x ≤ 4p
3,

which yields M = bx2, the inequality becomes

3bx − 4bx2 + x4 ≥ 0,

x3 ≥ b(4x − 3).

Consider the nontrivial case x ≥ 4/3. By squaring, the inequality becomes

2x6 ≥ (3− x4)(4x − 3)2,

6x6 − 8x5 + 3x4 − 16x2 + 24x − 9≥ 0,

(x − 1)2(6x4 + 4x3 + 5x2 + 6x − 9)≥ 0.

It is true because

4x3 + 5x2 + 6x − 9= (4x − 3)(x2 + 2x + 3)≥ 0.

The equality occurs for a = b = c = 1, and also for a = b =
s

3
2

and c = 0 (or

any cyclic permutation).

Second Solution. Denoting

p = a+ b+ c, q = ab+ bc + ca,

we have

q =
p2 − 3

2
, p ≤ 3.

Since
(a− c)2 − (a2 + b2 + c2 − ab− bc − ca) = (a− b)(b− c)≥ 0,

it is enough to show that

1−
p

abc ≤
2
3
(a2 + b2 + c2 − ab− bc − ca),



366 Vasile Cîrtoaje

that is
p

abc ≥ 1− f rac23(p2 − 3q).

From
3= a2 + b2 + c2 = p2 − 2q,

we obtain

q =
p2 − 3

2
.

Thus, the required inequality can be written as
p

abc ≥
p2 − 6

3
.

Since the inequality is true for p ≤
p

6, consider further p ≥
p

6 and write the
inequality as

9abc ≥ (p2 − 6)2.

There are two cases to consider:
p

6≤ p ≤ 3 and p ≥ 3.

Case 1:
p

6≤ p ≤ 3. By Schur’s inequality of third degree, we have

9abc ≥ 4pq− p3 =
16p(p2 − 3)− (p2 − 3)3

8
.

Thus, it suffices to show that

16p(p2 − 3)− (p2 − 3)3

8
≥ (p2 − 6)2,

which is equivalent to

p6 − p4 − 16p3 − 69p2 + 48p+ 261≤ 0,

(p− 3)(p5 + 3p4 + 8p3 + 8p2 − 45p− 29)≤ 0.

This is true if
p5 + 3p4 + 8p3 + 8p2 − 45p− 87≥ 0.

Case 2: p ≥ 3. By Schur’s inequality of fourth degree, we have

6abcp ≥ (p2 − q)(4q− p2) =
1
2
(p2 + 3)(p2 − 6).

Thus, it suffices to show that

3(p2 + 3)(p2 − 6)
4p

≥ (p2 − 6)2,

which is true if
3(p2 + 3)

4p
≥ (p2 − 6),

4p3 − 3p2 − 24p− 9≥ 0,

(p− 3)(4p2 + 9p+ 3)≥ 0.
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P 3.115. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then
1− abc ≤

2
3

a(a− c)2.

(Vasile Cîrtoaje, 2020)

Solution. Let us denote

g =

√

√a2 + b2 + c2

3
,

and write the inequality in the homogeneous form f ≤ 0, where

f = 3g3 − 3abc − 2a(a− c)2.

For fixed a and b, since
g ′(c) =

c
3g

,

we have

f ′(c) = 3cg − 3ab+ 4a(a− c) = c
Æ

3(a2 + b2 + c2)− 3ab+ 4a(a− c).

We will show that

c
Æ

3(a2 + b2 + c2)− 3ab ≥ c
Æ

3(2a2 + c2)− 3a2,

which is equivalent to

3a(a− b)≥ c
Æ

3(2a2 + c2)− c
Æ

3(a2 + b2 + c2),

3a(a− b)≥
3c(a− b)(a+ b)

p

3(2a2 + c2) +
p

3(a2 + b2 + c2)
.

This is true if

1≥
a+ b

2
p

3(a2 + b2 + c2)
,

which is obvious. So, we have

f ′(c)≥ c
Æ

3(2a2 + c2)− 3a2 + 4a(a− c) = c
Æ

3(2a2 + c2) + a2 − 4ac

≥ c(2a+ c) + a2 − 4ac = (a− c)2 ≥ 0.

Since f (c) is increasing, we have f (c)≤ f (b), and it remains to prove that f (b)≤
0, that is

3
�

a2 + 2b2

3

�3/2

− 3ab2 − 2a(a− b)2 ≤ 0.
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For b = 0, the inequality is trivial. For b > 0, due to homogeneity, we may consider
b = 1, when a ≥ 1. The inequality becomes

3
�

a2 + 2
3

�3/2

− 3a− 2a(a− 1)2 ≤ 0,

2a3 − 4a2 + 5a ≥ 3
�

a2 + 2
3

�3/2

,

and, by squaring,

11a6 − 48a5 + 102a4 − 120a3 + 63a2 − 8≥ 0,

(a− 1)3(11a3 − 15a2 + 24a+ 8)≥ 0.

The last inequality is clearly true for a ≥ 1.
The equality occurs for a = b = c = 1.

Remark. Denoting

x =max{a, b, c}, y =min{a, b, c},

we may remove the condition a ≥ b ≥ c to write the inequality in the symmetric
form

1− abc ≥
2
3

x(x − y)2.

P 3.116. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then
1− abc ≤

1
9
(5a+ c)(a− c)2.

(Vasile Cîrtoaje, 2020)

Solution. Let us denote

g =

√

√a2 + b2 + c2

3
,

and write the inequality in the homogeneous form f ≤ 0, where

f = 3g3 − 3abc −
1
3
(5a+ c)(a− c)2.

For fixed a and b, since
g ′(c) =

c
3g

,
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we have

f ′(c) = 3cg − 3ab+ (a− c)(3a+ c) = c
Æ

3(a2 + b2 + c2)− 3ab+ (a− c)(3a+ c).

We will show that

c
Æ

3(a2 + b2 + c2)− 3ab ≥ c
Æ

3(2a2 + c2)− 3a2,

which is equivalent to

3a(a− b)≥ c
Æ

3(2a2 + c2)− c
Æ

3(a2 + b2 + c2),

3a(a− b)≥
3c(a− b)(a+ b)

p

3(2a2 + c2) +
p

3(a2 + b2 + c2)
.

This is true if

1≥
a+ b

2
p

3(a2 + b2 + c2)
,

which is obvious. So, we have

f ′(c)≥ c
Æ

3(2a2 + c2)− 3a2 + (a− c)(3a+ c) = c
Æ

3(2a2 + c2)− 2ac − c2

= c
�Æ

3(2a2 + c2)− 2a− c
�

=
2c(a− c)2

p

3(2a2 + c2) + 2a+ c
≥ 0.

Since f (c) is increasing, we have f (c)≤ f (b), and it remains to prove that f (b)≤
0, that is

9
�

a2 + 2b2

3

�3/2

− 9ab2 − (5a+ b)(a− b)2 ≤ 0.

For b = 0, the inequality is trivial. For b > 0, due to homogeneity, we may consider
b = 1, when a ≥ 1. The inequality becomes

9
�

a2 + 2
3

�3/2

− 9a− (5a+ 1)(a− 1)2 ≤ 0,

5a3 − 9a2 + 12a+ 1≥ 9
�

a2 + 2
3

�3/2

,

and, by squaring,
(5a3 − 9a2 + 12a+ 1)2 ≥ 3(a2 + 2)3,

22a6 − 90a5 + 183a4 − 206a3 + 90a2 + 24a− 23≥ 0,

(a− 1)3(22a3 − 24a2 + 45a+ 23)≥ 0.

The last inequality is clearly true for a ≥ 1.
The equality occurs for a = b = c = 1.
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P 3.117. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then
1− abc ≥

2
3
(b− c)2.

(Vasile Cîrtoaje, 2019)

First Solution. Write the inequality as follows:

3− 3abc ≥ 2(3− a2 − 2bc),

(4− 3a)bc ≥ 3− 2a2.

We have
3a2 ≥ a2 + b2 + c2 = 3, a ≥ 1.

Case 1: 1≤ a ≤
s

3
2

. From (a2 − b2)(a2 − c2)≥ 0, we get

b2c2 ≥ a2(b2 + c2)− a4 = a2(3− a2)− a4, bc ≥ a
p

3− 2a2.

Thus, it is enough to show that

a(4− 3a)
p

3− 2a2 ≥ 3− 2a2.

This is true if
a(4− 3a)≥

p

3− 2a2,

which, by squaring, becomes

3a4 − 8a3 + 6a2 − 1≥ 0,

(a− 1)3(3a+ 1)≥ 0.

Case 2:
s

3
2
≤ a ≤

4
3

. We have

3− 2a2 ≤ 0≤ (4− 3a)bc.

Case 3:
4
3
≤ a ≤

p
3. Since

2bc ≤ b2 + c2 = 3− a2,

it is enough to show that

(3a− 4)(3− a2)≤ 2(2a2 − 3).
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which is equivalent to
a3 − 3a+ 2≥ 0,

(a− 1)2(a+ 2)≥ 0.

The equality occurs for a = b = c = 1, and also for a = b =
s

3
2

and c = 0.

Second Solution (by Ali3985). From

3= a2 + b2 + c2 ≥ 2ab+ c2 ≥ 2b2 + c2,

we get

ab ≤
1
2
(3− c2), b ≤

3− c2

2
.

Thus,

abc +
2
3
(b− c)2 ≤

1
2

�

3− c2
�

c +
2
3

�√

√3− c2

2
− c

�2

,

and it remains to show that

1
2

�

3− c2
�

c +
2
3

�√

√3− c2

2
− c

�2

≤ 1,

which is equivalent to

8c

√

√3− c2

2
≥ −3c3 + 2c2 + 9c.

By squaring, the inequality becomes

c2(1− c)3(3c + 5)≥ 0.

This is true because
3c2 ≤ a2 + b2 + c2 = 3, c ≤ 1.

P 3.118. Let a, b, c be nonnegative real numbers such that

a2 + b2 + c2 = 3.

If a ≥ b ≥ c, then

1− abc ≥
2
3
(1+

p
2)(a− b)(b− c).

(Vasile Cîrtoaje, 2019)
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Solution. Write the inequality in the homogeneous form F ≥ 0, where

F = g3/2 − abc − k(a− b)(b− c)g1/2, k =
2
3
(1+

p
2), g =

a2 + b2 + c2

3
.

Denote
x = a− c, y = b− c, x ≥ y ≥ 0,

and consider that x and y are fixed. We need to show that F(c) ≥ 0. Since a′ =
b′ = c′ = 1 and

g ′ =
2
3
(a+ b+ c),

we have

F ′(c) = (a+ b+ c)g1/2 − (bc + ca+ ab)−
k
3
(a− b)(b− c)(a+ b+ c)g−1/2 ≥ E(c),

where
E(c) = (a+ b+ c)g1/2 − (ab+ bc + ca)− k(a− b)(b− c).

By the AM-GM inequality, we have

E′(c) = 3g1/2+
1
3
(a+ b+ c)2 g−1/2− 2(a+ b+ c)≥ 2(a+ b+ c)− 2(a+ b+ c) = 0.

As a consequence, E(c) is increasing, hence E(c)≥ E(0), where

E(0) = (a+ b)

√

√a2 + b2

3
− ab− k(a− b)b.

We will show that E(0)≥ 0. Since a2 + b2 ≥
1
2
(a+ b)2, it is enough to show that

1
p

6
(a+ b)2 ≥ ab+ k(a− b)b.

Since
p

6< 32/13 and k < 13/8, it suffices to prove that

13
32
(a+ b)2 ≥ ab+

13
8
(a− b)b,

which is equivalent to
13(a2 + 5b2)≥ 58ab.

Indeed,
13(a2 + 5b2)≥ 26

p
5 ab ≥ 58ab.

From E(c) ≥ E(0) ≥ 0, it follows that F ′(c) ≥ 0, F(c) is increasing, therefore
F(c)≥ F(0). So, we only need to show that F(0)≥ 0, that is

a2 + b2

3
− k(a− b)b ≥ 0,
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a2 + (3k+ 1)b2 ≥ 3kab.

Indeed, we have

a2 + (3k+ 1)b2 ≥ 2
p

3k+ 1 ab ≥ 3kab.

The proof is completed. The equality occurs for a = b = c = 1, and also for
a =
p

3k+ 1 b and c = 0, that is

a =
1
2

Æ

6+ 3
p

2, b =
1
2

Æ

6− 3
p

2, c = 0.

P 3.119. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then

(a) 1− abc ≥ 2b(a− b)(b− c);

(b) 1− abc ≥ (a− c)(a− b)(b− c);

(c) 1− abc ≥ a(a− b)(b− c);

(d) 1− abc ≥ (a+ c)(a− b)(b− c).

(Vasile Cîrtoaje, 2020)

Solution. (a) Since

4(a− b)(b− c)≤ (a− b+ b− c)2 = (a− c)2,

it is enough to show that

1− abc ≥
1
2

b(a− c)2,

which is equivalent to
2≥ b(a2 + c2),

2≥ b(3− b2),

(b− 1)2(b+ 2)≥ 0.

The equality occurs for a = b = c = 1.

(b) Write the inequality in the homogeneous form

�

a2 + b2 + c2

3

�3/2

− abc − (a− b)(b− c)(a− c)≥ 0.
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Use the substitution

a = x + c, b = y + c, x ≥ y ≥ 0,

and, for fixed x and y , write the inequality as f (c)≥ 0, where

f (c) =
�

a2 + b2 + c2

3

�3/2

− abc − (a− b)(b− c)(a− c).

Since
a′ = b′ = c′ = 1,

we have

f ′(c) = (a+ b+ c)
a2 + b2 + c2

3
− ab− bc − ca

≥
1
3
(a+ b+ c)2 − ab− bc − ca ≥ 0.

Since f (c) is increasing, we have f (c)≥ f (0). Therefore, it is enough to show that
f (0)≥ 0, that is

�

a2 + b2

3

�3/2

≥ ab(a− b).

By squaring, we need to show that

(a2 + b2)3 ≥ 27(a2 + b2 − 2ab)a2 b2,

(a2 + b2 − 3ab)2(a2 + b2 + 6ab)≥ 0.

The equality occurs for a = b = c = 1, and also for a2 + b2 − 3ab = 0 and c = 0,
that is

a =
p

5+ 1
2

, b =
p

5− 1
2

, c = 0.

(c) According to (a), the inequality is true if a ≤ 2b. Consider further the case
a ≥ 2b, denote

g =

√

√a2 + b2 + c2

3
, g ≤ a,

and write the inequality in the homogeneous form f ≥ 0, where

f = g3 − abc − a(a− b)(b− c).

For fixed a and b (a ≥ 2b), since

g ′(c) =
c

3g
,

we have
f ′(c) = cg − ab+ a(a− b) = cg + a(a− 2b)≥ 0.
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Thus, f (c) is increasing, hence

f (c)≥ f (0) =
�

a2 + b2

3

�3/2

− ab(a− b).

We only need to show that

(a2 + b2)3 ≥ 27a2 b2(a− b)2,

which is equivalent to

(a2 + b2)3 ≥ 27a2 b2(a2 + b2)− 54a3 b3 ≥ 0,

(a2 + b2 − 3ab)2(a2 + b2 + 6ab)≥ 0.

The equality occurs for a = b = c = 1, and also for

a =
p

5+ 1
2

, b =
p

5− 1
2

, c = 0.

(d) Write the required inequality as follows:

1≥ abc + (a+ c)(−b2 + ab+ bc − ca),

�

a2 + b2 + c2

3

�3/2

≥ (a+ c − b)(ab+ bc − ca),

(a2 + b2 + c2)3 ≥ 27(a− b+ c)2(ab+ bc − ca)2,

(a2 + b2 + c2)3 ≥ 27
�

a2 + b2 + c2 − 2(ab+ bc − ca)
�

(ab+ bc − ca)2,
�

a2 + b2 + c2 − 3(ab+ bc − ca)
�2 �

a2 + b2 + c2 + 6(ab+ bc − ac)
�

≥ 0.

The equality occurs for a = b = c = 1, and also for a2+ b2+ c2 = 3 and (a+ c)b =
1+ ac.

Remark Denoting

x =max{a, b, c}, y =min{a, b, c}, s = a+ b+ c,

we may remove the condition a ≥ b ≥ c to write the inequalities in the symmetric
forms:

(a) 1− abc ≥ 2(s− x − y)(2x + y − s))(s− x − 2y);

(b) 1− abc ≥ (x − y)(2x + y − s))(s− x − 2y);

(c) 1− abc ≥ x(2x + y − s))(s− x − 2y);

(d) 1− abc ≥ (x + y)(2x + y − s))(s− x − 2y).
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P 3.120. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then

(a) 1− abc ≥
2
3

b(a− b)2;

(b) 1− abc ≥
2

27
(2a+ 7b)(a− b)2.

(Vasile Cîrtoaje, 2020)

Solution. Let us denote

g =

√

√a2 + b2 + c2

3

and
f = g3 − abc.

For fixed a and b, since
g ′(c) =

c
3g

,

we have
f ′(c) = cg − ab ≤ bg − ab = b(g − a)≤ 0.

Since f (c) is decreasing, we have f (c)≥ f (b).

(a) We need to prove the homogeneous inequality

3 f (b)≥ 2b(a− b)2,

that is

3
�

a2 + 2b2

3

�3/2

− 3ab2 − 2b(a− b)2 ≥ 0.

For b = 0, the inequality is trivial. For b > 0, due to homogeneity, we may consider
b = 1, when a ≥ 1. The inequality becomes

3
�

a2 + 2
3

�3/2

− 3a− 2(a− 1)2 ≥ 0,

3
�

a2 + 2
3

�3/2

≥ 2a2 − a+ 2,

and, by squaring,
(a2 + 2)3 ≥ 3(2a2 − a+ 2)2,

a6 − 6a4 + 12a3 − 15a2 + 12a− 4≥ 0,

(a− 1)3(a3 + 3a2 + 4)≥ 0.
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The equality occurs for a = b = c = 1.

(b) We need to prove the homogeneous inequality

27 f (b)≥ 2b(2a+ 7b)(a− b)2,

that is

27
�

a2 + 2b2

3

�3/2

− 27ab2 − 2(2a+ 7b)(a− b)2 ≥ 0.

For b = 0, the inequality is trivial. For b > 0, due to homogeneity, we may consider
b = 1, when a ≥ 1. The inequality becomes

27
�

a2 + 2
3

�3/2

− 27a− 2(2a+ 7)(a− 1)2 ≥ 0,

27
�

a2 + 2
3

�3/2

≥ 4a3 + 6a2 + 3a+ 14,

and, by squaring,
27(a2 + 2)3 ≥ (4a3 + 6a2 + 3a+ 14)2,

11a6 − 48a5 + 102a4 − 148a3 + 147a2 − 84a+ 20≥ 0,

(a− 1)4(11a2 − 4a+ 20)≥ 0.

The equality occurs for a = b = c = 1.

P 3.121. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then

(a) 1− abc ≥
1
3
(b+ c)(b− c)2;

(b) 1− abc ≥
2
27
(7b+ 2c)(b− c)2.

(Vasile Cîrtoaje, 2020)

Solution. Let us denote

g =

√

√a2 + b2 + c2

3

and
f = g3 − abc.
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For fixed b and c, since
g ′(a) =

a
3g

,

we have
f ′(a) = ag − bc ≤ bg − bc = b(g − c)≥ 0.

Since f (a) is increasing, we have f (a)≥ f (b).

(a) We need to prove the homogeneous inequality

3 f (b)≥ (b+ c)(b− c)2,

that is

3
�

2b2 + c2

3

�3/2

− 3b2c − (b+ c)(b− c)2 ≥ 0.

For c = 0, the inequality is trivial. For c > 0, due to homogeneity, we may consider
c = 1, when b ≥ 1. The inequality becomes

3
�

2b2 + 1
3

�3/2

− 3b2 − (b+ 1)(b− 1)2 ≥ 0,

3
�

2b2 + 1
3

�3/2

≥ b3 + 2b2 − b+ 1,

and, by squaring,
(2b2 + 1)3 ≥ 3(b3 + 2b2 − b+ 1)2,

5b6 − 12b5 + 6b4 + 6b3 − 9b2 + 6b− 2≥ 0,

(b− 1)3(b+ 1)(5b2 − 2b+ 2)≥ 0.

The equality occurs for a = b = c = 1.

(b) We need to prove the homogeneous inequality

27 f (b)≥ 2(7b+ 2c)(b− c)2,

that is

27
�

2b2 + c2

3

�3/2

− 27b2c − 2(7b+ 2c)(b− c)2 ≥ 0.

For c = 0, the inequality is trivial. For c > 0, due to homogeneity, we may consider
c = 1, when b ≥ 1. The inequality becomes

27
�

2b2 + 1
3

�3/2

− 27b2 − 2(7b+ 2)(b− 1)2 ≥ 0,

27
�

2b2 + 1
3

�3/2

≥ 14b3 + 3b2 + 6b+ 4,
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and, by squaring,

27(2b2 + 1)3 ≥ (14b3 + 3b2 + 6b+ 4)2,

20b6 − 84b5 + 147b4 − 148b3 + 102b2 − 48b+ 11≥ 0,

(b− 1)4(20b2 − 4b+ 11)≥ 0.

The equality occurs for a = b = c = 1.

P 3.122. If a, b, c are nonnegative real numbers such that a2 + b2 + c2 = 3, then

(a) 1−
p

abc ≥ (a− b)(b− c);

(b) 1− 3pa2 b2c2 ≥
4
3
(a− b)(b− c).

(Vasile Cîrtoaje, 2020)

Solution. (a) Write the inequality as follows:

4− 4
p

abc ≥ 4(ab+ bc − b2 − ac),

a2 + b2 + c2 + 1− 4
p

abc ≥ 4(ab+ bc − b2 − ac),

(a− 2b+ c)2 + 1+ b2 + 2ac ≥ 4
p

abc,

(a− 2b+ c)2 + (1− b)2 + 2(
p

b−
p

ac)2 ≥ 0.

The equality occurs for a = b = c = 1.

(b) Write the inequality as follows (Kiyoras_2001):

a2 + b2 + c2 − 3
3
p

a2 b2c2 − 4(a− b)(b− c)≥ 0,

(a− 2b+ c)2 + b2 + 2ac − 3
3
p

a2 b2c2 ≥ 0.

Since
b2 + ac + ac ≥ 3

3
p

a2 b2c2.

(by AM-GM), the proof is completed. The equality occurs for a = b = c = 1.

Remark. The inequality (b) is stronger than (a) because

1−
p

abc ≥
3
4

�

1−
3
p

a2 b2c2
�

,

which is equivalent to
(x − 1)2(3x2 + 2x + 1)≥ 0,

where x = 6pabc.
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P 3.123. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then
1− abc ≥

2
3

b(
p

a−
p

c)2.

(Vasile Cîrtoaje, 2020)

Solution. Let us denote

g =

√

√a2 + b2 + c2

3
,

p

bc ≤ g ≤ a,

and write the inequality in the homogeneous form f ≥ 0, where

f = a2 + b2 + c2 −
3abc

g
− 2b(

p
a−
p

c)2.

For fixed b and c, since
g ′(a) =

a
3g

,

we have

f ′(a) = 2a−
3bc

g
+

a2 bc
g3
−

2b(
p

a−
p

c)
p

a

≥ 2a−
2bc

g
− 2b

�

1−
s

c
a

�

≥ 2a−
2bc
p

bc
− 2b

�

1−
s

c
a

�

= 2a− 2
p

bc − 2b
�

1−
s

c
a

�

≥ 2a− 2
p

ac − 2a
�

1−
s

c
a

�

= 0.

Since f (a) is increasing, we have f (a)≥ f (b), and it remains to prove that f (b)≥
0, that is

2b2 + c2 −
3b2c

g
≥ 2b(

p

b−
p

c)2,

where

g =

√

√2b2 + c2

3
.

For c = 0, the inequality is an equality. For c > 0, due to homogeneity, we may
consider c = 1, when b ≥ 1. The inequality becomes

2b2 + 1−
3b2

g
≥ 2b(

p

b− 1)2,

where

g =

√

√2b2 + 1
3

.
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Since

g ≥
2b+ 1

3
,

it is enough to show that

2b2 + 1−
9b2

2b+ 1
≥ 2b(

p

b− 1)2,

which is equivalent to

(b− 1)2(4b+ 1)
2b+ 1

≥ 2b(
p

b− 1)2.

This is true if
(
p

b+ 1)2(4b+ 1)
2b+ 1

≥ 2b,

which is equivalent to

8b(
p

b− 1) + 3(b− 1) + 2
p

b ≥ 0.

The equality occurs for a = b = c = 1, and also for a = b =
s

3
2

and c = 0.

Remark. We claim that, in the same conditions, the following stronger inequality
holds:

1− abc ≥
2
3
(b+ 2c)(

p
a−
p

c)2.

P 3.124. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then
1− abc ≥

8
3

b(
p

a−
p

b)2.

(Vasile Cîrtoaje, 2020)

Solution. Let us denote

g =

√

√a2 + b2 + c2

3
, g ≤ a,

and write the inequality in the homogeneous form f ≥ 0, where

f = a2 + b2 + c2 −
3abc

g
− 8b(

p
a−

p

b)2.
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For fixed a and b, since
g ′(c) =

c
3g

,

we have

f ′(c) = 2c −
3ab

g
+

abc2

g3
= 2c −

3ab
g
+

3abc2

g(a2 + b2 + c2)

= 2c −
3ab(a2 + b2)

g(a2 + b2 + c2)
≤ 2c −

2ab
g

≤ 2b−
2ab

g
= 2b

�

1−
a
g

�

≤ 0.

Since f (c) is decreasing, we have f (c)≥ f (b), and it remains to prove that f (b)≥
0, that is

a2 + 2b2 −
3ab2

g
≥ 8b(

p
a−

p

b)2,

where

g =

√

√a2 + 2b2

3
.

For b = 0, the inequality is true. For b > 0, due to homogeneity, we may consider
b = 1, when a ≥ 1. The inequality becomes

a2 + 2−
3a
g
≥ 8(
p

a− 1)2,

where

g =

√

√a2 + 2
3

.

Since

a2 + 2−
3a
g
=
(a2 + 2)2 − 9a2

g2

a2 + 2+ 3a
g

≥
(a2 + 2)2 − 9a2

g2

2(a2 + 2)

=
(a2 + 2)3 − 27a2

2(a2 + 2)2
=
(a2 − 1)2(a2 + 8)

2(a2 + 2)2
,

it suffices to show that

(a2 − 1)2(a2 + 8)
2(a2 + 2)2

≥ 8(
p

a− 1)2,

which is true if
(
p

a+ 1)2(a+ 1)2(a2 + 8)≥ 16(a2 + 2)2.

Denoting x =
p

a, x ≥ 1, we can write this inequality as follows:

(x + 1)2(x2 + 1)2(x4 + 8)≥ 16(x4 + 2)2,
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x10 + 2x9 − 13x8 + 4x7 + 11x6 + 18x5 − 39x4 + 32x3 + 24x2 + 16x − 56≥ 0,

(x − 1)h(x)≥ 0,

where

h(x) = x9 + 3x8 − 10x7 − 6x6 + 5x5 + 23x4 − 16x3 + 16x2 + 40x + 56

= x4h1(x) + 4x2(x − 2)2 + 40x + 56,

h1(x) = x5 + 3x4 − 10x3 − 6x2 + 5x + 19.

To complete the proof, we need to show that h1(x)≥ 0. Indeed, we have

54h1(x) = (3x − 5)2(6x3 + 38x2 + 41) + xh2(x) + 1,

where
h2(x) = 450x2 + 1500− 1643x ≥

�

300
p

30− 1643
�

x > 0.

The equality occurs for a = b = c = 1.

P 3.125. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then
1− abc ≥

1
3
(a+ 3c)(

p
a−
p

c)2.

(Vasile Cîrtoaje, 2020)

Solution. Let us denote

g =

√

√a2 + b2 + c2

3
, g ≤ a,

and write the inequality in the homogeneous form f ≥ 0, where

f = a2 + b2 + c2 −
3abc

g
− (a+ 3c)(

p
a−
p

c)2.

For fixed b and c, since
g ′(a) =

a
3g

,

we have

f ′(a) = 2a−
3bc

g
+

a2 bc
g3
− (
p

a−
p

c)2 − (a+ 3c)
�

1−
s

c
a

�
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= −
3bc

g
+

a2 bc
g3
− 4c + 3

�p
ac + c

s

c
a

�

≥ −
3bc

g
+

a2 bc
g3
+ 2c.

Due to homogeneity, we may consider g = 1, when

f ′(a)≥ −3bc + a2 bc + 2c = 2c − bc(3− a2)≥ 2c − ac(3− a2)

= c(2− 3a+ a3) = c(1− a)2(2+ a)≥ 0.

Since f (a) is increasing, we have f (a)≥ f (b), and it remains to prove that f (b)≥
0, that is

2b2 + c2 −
3b2c

g
≥ (b+ 3c)(

p

b−
p

c)2,

where

g =

√

√2b2 + c2

3
.

For c = 0, the inequality is an identity. For c > 0, due to homogeneity, we may
consider c = 1, when b ≥ 1. The inequality becomes

2b2 + 1−
3b2

g
≥ (b+ 3)(

p

b− 1)2,

where

g =

√

√2b2 + 1
3

.

Since

g ≥
2b+ 1

3
,

it suffices to show that

2b2 + 1−
9b2

2b+ 1
≥ (b+ 3)(

p

b− 1)2,

which is equivalent to

(b− 1)2(4b+ 1)
2b+ 1

≥ (b+ 3)(
p

b− 1)2.

This is true if
(
p

b+ 1)2(4b+ 1)≥ (b+ 3)(2b+ 1).

Since
(
p

b+ 1)2 > b+ 2,

we have

(
p

b+ 1)2(4b+ 1)− (b+ 3)(2b+ 1)> (b+ 2)(4b+ 1)− (b+ 3)(2b+ 1)
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= 2b2 + 2b− 1> 0.

The equality occurs for a = b = c = 1, and also for a =
p

3 and b = c = 0.

Remark. We claim that, in the same conditions, the following stronger inequality
holds:

1− abc ≥
1
3
(a+ 5c)(

p
a−
p

c)2.

P 3.126. If a, b, c are nonnegative real numbers such that a ≥ b ≥ c and

a2 + b2 + c2 = 3,

then
1− abc ≥

2
3
(a+ 3c)(

p

b−
p

c)2.

(Vasile Cîrtoaje, 2020)

Solution. Let us denote

g =

√

√a2 + b2 + c2

3
, g ≤ a,

and write the inequality in the homogeneous form f ≥ 0, where

f = a2 + b2 + c2 −
3abc

g
− 2(a+ 3c)(

p

b−
p

c)2.

For fixed b and c, since
g ′(a) =

a
3g

,

we have

f ′(a) = 2a−
3bc

g
+

a2 bc
g3
− 2(

p

b−
p

c)2

≥ 2a−
2bc

g
− 2(
p

a−
p

c)2 = 2(a− b) + 2c

�

2

√

√ b
c
−

b
g
− 1

�

.

To prove that f ′(a)≥ 0, it is sufficient to show that

2

√

√ b
c
≥

b
g
+ 1.

Since
b
g
=

3b
p

3(a2 + b2 + c2)
≤

3b
a+ b+ c

≤
3b

2b+ c
=

3
2+ c

b

,
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it suffices to show that

2

√

√ b
c
≥

3
2+ c

b

+ 1.

Denoting

x =
s

c
b

, 0≤ x ≤ 1,

the inequality becomes
2
x
≥

3
2+ x2

+ 1,

that is
4− 5x + 2x2 − x3 ≥ 0,

(1− x)(4− x + x2)≥ 0.

Since f (a) is increasing, we have f (a)≥ f (b), and it remains to prove that f (b)≥
0, that is

2b2 + c2 −
3b2c

g
≥ 2(b+ 3c)(

p

b−
p

c)2 ≥ 0,

where

g =

√

√2b2 + c2

3
.

For c = 0, the inequality is an identity. For c > 0, due to homogeneity, we may
consider c = 1, when b ≥ 1. The inequality becomes

2b2 + 1−
3b2

g
≥ 2(b+ 3)(

p

b− 1)2,

where

g =

√

√2b2 + 1
3

.

Since

2b2 + 1−
3b2

g
=
(2b2 + 1)2 − 9b4

g2

2b2 + 1+ 3b2

g

=
(2b2 + 1)3 − 27b4

(2b2 + 1)(2b2 + 1+ 3b2

g )
=

(b2 − 1)2(8b2 + 1)

(2b2 + 1)(2b2 + 1+ 3b2

g )

and
g ≥ 2b+ 1,

we have

2b2 + 1−
3b2

g
≥

(b2 − 1)2(8b2 + 1)

(2b2 + 1)(2b2 + 1+ 3b2

2b+1)

=
(b2 − 1)2(8b2 + 1)(2b+ 1)

(2b2 + 1)((4b3 + 11b2 + 2b+ 1)
.
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Thus, it suffices to show that

(b2 − 1)2(8b2 + 1)(2b+ 1)
(2b2 + 1)((4b3 + 11b2 + 2b+ 1)

≥ 2(b+ 3)(
p

b− 1)2,

which is true if

(
p

b+ 1)2(b+ 1)2(8b2 + 1)(2b+ 1)≥ 2(b+ 3)(2b2 + 1)(4b3 + 11b2 + 2b+ 1).

Consider two cases: 1≤ b ≤ 3 and b ≥ 3.

Case 1: 1≤ b ≤ 3. Since

(
p

b+ 1)2 − (b+ 3) = 2(
p

b− 1)≥ 0,

it suffices to show that

(b+ 1)2(8b2 + 1)(2b+ 1)≥ 2(2b2 + 1)(4b3 + 11b2 + 2b+ 1),

which is equivalent to
−b4 + 18b3 − 13b2 − 1≥ 0,

(b− 1)(−4b3 + 14b2 + b+ 1)≥ 0.

This is true because

−4b3 + 14b2 + b+ 1= 4b2(3− b) + 2b2 + b+ 1> 0.

Case 2: b ≥ 3. Since

(
p

b+ 1)2 − (b+ 4) = 2
p

b− 3≥ 2
p

3− 3> 0,

it suffices to show that

(b+ 4)(b+ 1)2(8b2 + 1)(2b+ 1)≥ 2(b+ 3)(2b2 + 1)(4b3 + 11b2 + 2b+ 1).

Moreover, since

(8b2 + 1)(2b+ 1)> 8b2(2b+ 1) = 8b(2b2 + b)≥ 8b(2b2 + 1),

it suffices to show that

4b(b+ 4)(b+ 1)2 ≥ (b+ 3)(4b3 + 11b2 + 2b+ 1),

which reduces to the obvious inequality

b3 + b2 + 9b− 3≥ 0.

The equality occurs for a = b = c = 1, and also for a =
p

3 and b = c = 0.
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P 3.127. Let
F(a, b, c) = 3(a2 + b2 + c2)− (a+ b+ c)2,

where a, b, c are positive real numbers such that a ≤ b ≤ c and

a2(b2 + c2)≥ 2.

Then,

F(a, b, c)≥ F
�

1
a

,
1
b

,
1
c

�

.

(Vasile Cîrtoaje, 2020)

Solution. From
2≤ a2(b2 + c2)≤ 2a2c2,

it follows that
ac ≥ 1, bc ≥ 1.

We need to show that

3(a2 + b2 + c2)− (a+ b+ c)2 ≥ 3
�

1
a2
+

1
b2
+

1
c2

�

−
�

1
a
+

1
b
+

1
c

�2

,

which is equivalent to

(a− b)2 + (b− c)2 + (c − a)2 ≥
(a− b)2

a2 b2
+
(b− c)2

b2c2
+
(c − a)2

c2a2
,

(a− b)2
�

1−
1

a2 b2

�

+ (b− c)2
�

1−
1

b2c2

�

+ (c − a)2
�

1−
1

c2a2

�

≥ 0 .

Since bc ≥ 1, it is enough to show that

(a− b)2
�

1−
1

a2 b2

�

+ (c − a)2
�

1−
1

c2a2

�

≥ 0 ,

that is
�

1−
a
c

�2�

c2 −
1
a2

�

≥
�

1−
a
b

�2� 1
a2
− b2

�

.

Since
1−

a
c
≥ 1−

a
b
≥ 0

it suffices to show that
c2 −

1
a2
≥

1
a2
− b2,

which is just the hypothesis a2(b2 + c2)≥ 2.
The proof is completed. The equality occurs for a = b = c ≥ 1, and also for

1
a
= b = c ≥ 1.

Remark. Since a(b + c) ≥ 2 implies a2(b2 + c2) ≥ 2, the inequality is true for
a(b+ c)≥ 2. In addition, it is true in the particular case a, b, c ≥ 1.
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P 3.128. Let
F(a, b, c) = a+ b+ c − 3

3
p

abc,

where a, b, c are positive real numbers. If

min{a, b, c} ≥
1

abc
,

then

F(a, b, c)≥ F
�

1
a

,
1
b

,
1
c

�

.

(Vasile Cîrtoaje, 2020)

Solution. Assume that a ≤ b ≤ c. Then, we have

a2 bc ≥ 1, bc ≥ 1.

Write the inequality as E(a, b, c)≥ 0, where

E(a, b, c) = a+ b+ c − 3
3
p

abc −
1
a
−

1
b
−

1
c
+

3
3pabc

,

and show that
E(a, b, c)≥ E(a,

p

bc,
p

bc)≥ 0.

The left inequality is equivalent to

(
p

b−
p

c)2(bc − 1)≥ 0.

Substituting
a = x3, bc = y6, x ≤ y, x y ≥ 1,

the right inequality becomes as follows:

E(x3, y3, y3)≥ 0,

x3 + 2y3 − 3x y2 −
�

1
x3
+

2
y3
−

3
x y2

�

≥ 0,

(x − y)2(x + 2y)−
�

1
x
−

1
y

�2�1
x
+

2
y

�

≥ 0.

After dividing by (x − y)2, we need to show that

x + 2y −
2x + y
x3 y3

≥ 0.

Indeed,

x + 2y −
2x + y
x3 y3

≥ x + 2y − (2x + y) = y − x ≥ 0.

The equality holds for a = b = c ≥ 1.

Remark. The inequality is true in the particular case a, b, c ≥ 1.
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P 3.129. Let
F(a, b, c) = a+ b+ c − 3

3
p

abc,

where a, b, c are positive real numbers such that a ≤ b ≤ c and

a(b+ c)≥ 2.

Then,

F(a, b, c)≥ F
�

1
a

,
1
b

,
1
c

�

.

(Vasile Cîrtoaje, 2020)

Solution. Since both side of the inequality are nonnegative, it suffices to prove the
homogeneous inequality

2
�

a+ b+ c − 3
3
p

abc
�

≥ a(b+ c)
�

1
a
+

1
b
+

1
c
−

3
3pabc

�

,

that is

2(a+ b+ c)− 6
3
p

abc ≥ b+ c +
(b+ c)2

bc
a−

3(b+ c)
3pbc

a2/3 .

For fixed b and c, write the inequality as f (a)≥ 0, a ∈ (0, b]. We will show that

f (a)≥ f (b)≥ 0.

To prove that f (a)≥ f (b), we show that f ′(a)≤ 0, which is equivalent to

2(b+ c)
3pabc

≤
b2 + c2

bc
+ 2

3

√

√ bc
a2

.

Since
b2 + c2

bc
+ 2

3

√

√ bc
a2
≥

2
p

2(b2 + c2)
3pabc

,

it suffices to show that
(b+ c)≤

Æ

2(b2 + c2),

which is true. The inequality f (b)≥ 0 has the form

2
�

2b+ c − 3
3
p

b2c
�

≥ b(b+ c)
�

2
b
+

1
c
−

3
3pb2c

�

.

Due to homogeneity, we may set b = 1, when the inequality has the form

2
�

2+ c − 3 3pc
�

≥ (1+ c)
�

2+
1
c
−

3
3pc

�

.

Denoting
t = 3pc, t ≥ 1,
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the inequality becomes as follows:

2c3(c3 + 2− 3c)≥ (c3 + 1)(2c3 − 3c2 + 1),

2c3(c − 1)2(c + 2)≥ (c3 + 1)(c − 1)2(2c + 1),

(c − 1)2(3c3 − 2c − 1)≥ 0,

(c − 1)3(3c2 + 3c + 1)≥ 1.

The equality holds for a = b = c ≥ 1.

Remark. Because a2 bc ≥ 1 yields a(b + c) ≥ 2, the inequality in P 3.128 follows
from the inequality in P 3.129.

P 3.130. Let
F(a, b, c, d) = a+ b+ c + d − 4

4
p

abcd,

where a, b, c, d are positive real numbers. If

min{a2, b2, c2, d2} ≥
1

abcd
,

then

F(a, b, c, d)≥ F
�

1
a

,
1
b

,
1
c

,
1
d

�

.

(Vasile Cîrtoaje, 2020)

Solution. By the AM-GM inequality, both sides of the inequality are nonnegative.
Assume that a ≤ b ≤ c ≤ d. Then, we have

a3 bcd ≥ 1, a ≤ x =
3
p

bcd ≥ 1, a3 x3 ≥ 1.

Write the inequality as E(a, b, c, d)≥ 0, where

E(a, b, c, d) = a+ b+ c + d − 4
4
p

abcd −
1
a
−

1
b
−

1
c
−

1
d
+

4
4pabcd

,

and show that
E(a, b, c, d)≥ E(a, x , x , x)≥ 0.

The left inequality shows that if a and bcd are fixed, then E(a, b, c, d) is minimal for
b = c = d. Using the contradiction method, assume for the sake of contradiction
that E(a, b, c, d) is minimal for b < d. This is false if

E(a, b, c, d)> E(a,
p

bd, c,
p

bd).
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Since

E(a, b, c, d)− E(a,
p

bd, c,
p

bd) = b+ d − 2
p

bd −
1
b
−

1
d
+

2
p

bd

= (
p

b−
p

d)2
�

1−
1
bd

�

,

we need to show that bd > 1. Indeed, we have

(bd)3 − 1≥ (bd)3 − a3 bcd ≥ a3(d3 − bcd)> 0.

Write now the right inequality E(a, x , x , x)≥ 0 as

a+ 3x − 4
4
p

ax3 ≥
1
a
+

3
x
−

4
ax3

.

It suffices to prove the homogeneous inequality

a+ 3x − 4
4
p

ax3 ≥ ax
�

1
a
+

3
x
−

4
ax3

�

,

which is equivalent to

2(x − a)≥ 4(
4
p

ax3 −
4
p

a3 x),

(
p

x −
p

a)( 4px − 4pa)2 ≥ 0.

The equality holds for a = b = c = d ≥ 1.

Remark. The inequality is true in the particular case a, b, c, d ≥ 1, which implies

min{a2, b2, c2, d2} ≥
1

abcd
.

P 3.131. Let a, b, c, d be nonnegative real numbers such that

a2 + b2 + c2 + d2 = 1.

Prove that
(1− a)(1− b)(1− c)(1− d) ≥ abcd.

(Vasile Cîrtoaje, 2001)

Solution. The desired inequality follows by multiplying the inequalities

(1− a)(1− b)≥ cd,

(1− c)(1− d)≥ ab.
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With regard to the first inequality, we have

2cd ≤ c2 + d2 = 1− a2 − b2,

and hence

2(1− a)(1− b)− 2cd ≥ 2(1− a)(1− b)− 1+ a2 + b2

= (1− a− b)2 ≥ 0.

The second inequality can be proved similarly. The equality holds for

a = b = c = d = 1/2,

and also for
a, b, c, d) = (1,0, 0,0)

or any cyclic permutation.

P 3.132. Let a, b, c, d and x be positive real numbers such that

1
a2
+

1
b2
+

1
c2
+

1
d2
=

4
x2

.

If x ≥ 2, then
(a− 1)(b− 1)(c − 1)(d − 1) ≥ (x − 1)4.

(Vasile Cîrtoaje, 2001)

Solution. The desired inequality follows by multiplying the inequalities

2(a− 1)(b− 1)≥ (x − 1)
�

ab
cd

x + x − 2
�

,

2(c − 1)(d − 1)≥ (x − 1)
�

cd
ab

x + x − 2
�

,

�

ab
cd

x + x − 2
��

cd
ab

x + x − 2
�

≥ 4(x − 1)2.

With regard to the first inequality, we write it as

2ab− 2(a+ b) + x(3− x)≥ x(x − 1)
ab
cd

.

Since
2
cd
≤

1
c2
+

1
d2
=

4
x2
−

1
a2
−

1
b2

,
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it suffices to show that

4ab− 4(a+ b) + 2x(3− x)≥ x(x − 1)ab
�

4
x2
−

1
a2
−

1
b2

�

.

This is equivalent to

4a2 b2 − 4ab(a+ b)x + 2x2(3− x)ab+ x2(x − 1)(a2 + b2)≥ 0,

which can be written in the obvious form

[2ab− (a+ b)x]2 + x2(x − 2)(a− b)2 ≥ 0.

The second inequality can be proved similarly. With regard to the third inequality,
we have

�

ab
cd

x + x − 2
��

cd
ab

x + x − 2
�

=

= 2x2 − 4x + 4+
�

ab
cd
+

cd
ab

�

x(x − 2)

≥ 2x2 − 4x + 4+ 2x(x − 2) = 4(x − 1)2.

The equality holds for a = b = c = d = x .

Remark. Setting x = 2 and substituting a, b, c, d by 1/a, 1/b, 1/c, 1/d, respectively,
we get the inequality from P 3.131.

P 3.133. If a, b, c, d are positive real numbers, then

(1+ a3)(1+ b3)(1+ c3)(1+ d3)
(1+ a2)(1+ b2)(1+ c2)(1+ d2)

≥
1+ abcd

2
.

(Vasile Cîrtoaje, 1992)

Solution. For a = b = c = d, the inequality can be written as

�

1+ a3

1+ a2

�4

≥
1+ a4

2
.

We will show that
�

1+ a3

1+ a2

�4

≥
�

1+ a3

1+ a

�2

≥
1+ a4

2
.

The left side inequality is equivalent to

(1+ a3)(1+ a)≥ (1+ a2)2,

a(1− a)2 ≥ 0,



Symmetric Polynomial Inequalities in Nonnegative Variables 395

while the right side inequality is equivalent to

2(1− a+ a2)2 ≥ 1+ a4,

(1− a)4 ≥ 0.

Multiplying the inequalities

�

1+ a3

1+ a2

�4

≥
1+ a4

2
,

�

1+ b3

1+ b2

�4

≥
1+ b4

2
,

�

1+ c3

1+ c2

�4

≥
1+ c4

2
,

�

1+ d3

1+ d2

�4

≥
1+ d4

2
,

yields

(1+ a3)(1+ b3)(1+ c3)(1+ d3)
(1+ a2)(1+ b2)(1+ c2)(1+ d2)

≥
1
2

4
Æ

(1+ a4)(1+ b4)(1+ c4)(1+ d4).

Applying the Cauchy-Schwarz inequality produces

(1+ a4)(1+ b4)(1+ c4)(1+ d4)≥ (1+ a2 b2)2(1+ c2d2)2 ≥ (1+ abcd)4,

from which the desired inequality follows. The equality holds for

a = b = c = d = 1.

P 3.134. Let a, b, c, d be positive real numbers such that

a+ b+ c + d = 4.

Prove that
�

a+
1
a
− 1

��

b+
1
b
− 1

��

c +
1
c
− 1

��

d +
1
d
− 1

�

+ 3≥
1
a
+

1
b
+

1
c
+

1
d

.

Solution. Write the inequality as

∏

�

1+
�

a+
1
a
− 2

��

≥
∑ 1

a
− 3.

Since
a+

1
a
− 2≥ 0, b+

1
b
− 2≥ 0,

c +
1
c
− 2≥ 0, d +

1
d
− 2≥ 0,
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applying Bernoulli’s inequality, it suffices to show that

1+
∑

�

a+
1
a
− 2

�

≥
∑ 1

a
− 3.

This is an identity, and then the proof is completed. The equality holds for

a = b = c = d = 1.

P 3.135. If a, b, c, d are nonnegative real numbers, then

4(a3 + b3 + c3 + d3) + 15(abc + bcd + cda+ dab)≥ (a+ b+ c + d)3.

Solution. Let

E(a, b, c, d) = 4(a3+ b3+ c3+ d3) + 15(abc + bcd + cda+ dab)− (a+ b+ c + d)3.

Without loss of generality, assume that a ≤ b ≤ c ≤ d. We will show that

E(a, b, c, d)≥ E(0, a+ b, c, d)≥ 0.

We have

E(a, b, c, d)− E(0, a+ b, c, d) = 4[a3 + b3 − (a+ b)3] + 15ab(c + d)
= 3ab[5(c + d)− 4(a+ b)]≥ 0.

Now, putting x = a+ b, we need to show that E(0, x , c, d)≥ 0, where

E(0, x , c, d) = 4(x3 + c3 + d3) + 15xcd − (x + c + d)3.

This is equivalent to Schur’s inequality

x3 + c3 + d3 + 3xcd ≥ xc(x + c) + cd(c + d) + d x(d + x).

The equality holds for a = 0 and b = c = d (or any cyclic permutation), and also
for a = b = 0 and c = d (or any permutation thereof).

P 3.136. Let a, b, c, d be positive real numbers such that

a+ b+ c + d = 4.

Prove that
1+ 2(abc + bcd + cda+ dab)≥ 9min{a, b, c, d}.

(Vasile Cîrtoaje, 2008)
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Solution. Assume that
a =min{a, b, c, d}

and write the inequality in the homogeneous forms

(a+ b+ c + d)3 + 128bcd + 128a(bc + cd + d b)≥ 36a(a+ b+ c + d)2.

Use now the substitution

b = a+ x , c = a+ y, d = a+ z, t = x + y + z,

where x , y, z, t ≥ 0. Since

a+ b+ c + d = 4a+ t,

bcd = (a+ x)(a+ y)(a+ z)≥ a3 + a2 t

and

bc + cd + d b = (a+ x)(a+ y) + (a+ y)(a+ z) + (a+ z)(a+ x)

= 3a2 + 2at + x y + yz + zx ≥ 3a2 + 2at,

it suffices to prove that

(4a+ t)3 + 128(a3 + a2 t) + 128a(3a2 + 2at)≥ 36a(4a+ t)2.

This inequality is equivalent to

t(t − 12a)2 ≥ 0.

The equality holds for a = b = c = d = 1, and also for (a, b, c, d) =
�

1
4

,
1
4

,
1
4

,
13
4

�

or any cyclic permutation.

P 3.137. Let a, b, c, d be nonnegative real numbers such that

a+ b+ c + d = 4.

Prove that
5(a2 + b2 + c2 + d2)≥ a3 + b3 + c3 + d3 + 16.

(Vasile Cîrtoaje, 2005)
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Solution. Assume that
a ≥ b ≥ c ≥ d.

First Solution. Use the mixing variables technique. Setting

x =
b+ c + d

3
,

we have
a+ 3x = 4, x ≤ 1.

We will show that
E(a, b, c, d)≥ E(a, x , x , x)≥ 0,

where
E(a, b, c, d) = 5(a2 + b2 + c2 + d2)− a3 − b3 − c3 − d3 − 16.

The left side inequality is equivalent to

5(b2 + c2 + d2 − 3x2)− (b3 + c3 + d3 − 3x3)≥ 0.

Since b2 + c2 + d2 − 3x2 ≥ 0 and x ≤ 1, it suffices to prove the homogeneous
inequality

5x(b2 + c2 + d2 − 3x2)− (b3 + c3 + d3 − 3x3)≥ 0,

which is equivalent to

2(b3 + c3 + d3) + 3b(c2 + d2) + 3c(d2 + b2) + 3d(b2 + c2)≥ 24bcd.

This is true, since b3 + c3 + d3 ≥ 3bcd and

b(c2 + d2) + c(d2 + b2) + d(b2 + c2 ≥ 2bcd + 2cd b+ 2d bc = 6bcd.

The right side inequality is also true, since

E(a, x , x , x) = 5(a2 + 3x2)− a3 − 3x3 − 16

= 5(4− 3x)2 + 15x2 − (4− 3x)3 − 3x3 − 16

= 24x(x − 1)2 ≥ 0.

This completes the proof. The equality holds for a = b = c = d = 1, and also for
(a, b, c, d) = (0,0, 0,4) or any cyclic permutation.

Second Solution. Write the inequality as
∑

(5a2 − a3 − 7a+ 3)≥ 0,

∑

(1− a)2(3− a)≥ 0.

For a ≤ 3, the inequality is clearly true. Otherwise, for 3< a ≤ 4, which involves

1> b ≥ c ≥ d ≥ 0,
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we get the required inequality by summing the inequalities

5a2 ≥ a3 + 16

and
5(b2 + c2 + d2)≥ b3 + c3 + d3.

We have

5a2 − a3 − 16= (4− a)(a2 − a− 4) = (4− a)[a(a− 3) + 2(a− 2)]≥ 0,

and
5(b2 + c2 + d2)≥ b2 + c2 + d2 ≥ b3 + c3 + d3.

Third Solution. Write the inequality as
∑

(a3 − 5a2 + 4a)≤ 0,

or
∑

(a− 1) f (a)≤ 0,

where
f (a) = a2 − 4a.

Since a+ b ≤ 4, we have

f (a)− f (b) = (a− b)(a+ b− 4)≤ 0,

and, similarly,
f (b)− f (c)≤ 0, f (c)− f (d)≤ 0.

Since
a− 1≥ b− 1≥ c − 1≥ d − 1

and
f (a)≤ f (b)≤ f (c)≤ f (d),

by Chebyshev’s inequality, we get

4
∑

(a− 1) f (a)≤
�∑

(a− 1)
��∑

f (a)
�

= 0.

Remark. Similarly, we can prove the following generalization:

• If a1, a2, . . . , an are nonnegative real numbers such that

a1 + a2 + · · ·+ an = n,

then
(n+ 1)(a2

1 + a2
2 + · · ·+ a2

n)≥ a3
1 + a3

2 + · · ·+ a3
n + n2.
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P 3.138. Let a, b, c, d be nonnegative real numbers such that

a+ b+ c + d = 4.

Prove that
3(a2 + b2 + c2 + d2) + 4abcd ≥ 16.

(Vasile Cîrtoaje, 2004)

Solution. We use the mixing variables method. Assume that

a =min{a, b, c, d}, a ≤ 1.

Setting

x =
b+ c + d

3
,

we have
a+ 3x = 4, 1≤ x ≤

4
3

.

We will show that
E(a, b, c, d)≥ E(a, x , x , x)≥ 0,

where
E(a, b, c, d) = 3(a2 + b2 + c2 + d2) + 4abcd − 16.

The left side inequality is equivalent to

3(b2 + c2 + d2 − 3x2)≥ 4a(x3 − bcd),

3(3x2 − bc − cd − d b)≥ 2a(x3 − bcd).

From Schur’s inequality

(b+ c + d)3 + 9bcd ≥ 4(b+ c + d)(bc + cd + d b),

we get
9x3 + 3bcd ≥ 4x(bc + cd + d b),

x3 − bcd ≤
4x
3
(3x2 − bc − cd − d b).

Therefore, it suffices to prove that

3(3x2 − bc − cd − d b)≥
8ax

3
(3x2 − bc − cd − d b);

that is,
(3x2 − bc − cd − d b)(9− 8ax)≥ 0.

This is true since

6(3x2 − bc − cd − d b) = (b− c)2 + (c − d)2 + (d − b)2 ≥ 0,
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and
3(9− 8ax) = 27− 8a(4− a) = 8(1− a)2 + 16(1− a) + 3> 0.

The right side inequality is also true, since

E(a, x , x , x) = 3a2 + 9x2 + 4ax3 − 16

= 3(4− 3x)2 + 9x2 + 4(4− 3x)x3 − 16

= 4(8− 18x + 9x2 + 4x3 − 3x4)

= 4(1− x)2(2+ x)(4− 3x)≥ 0.

This completes the proof. The equality holds for a = b = c = d = 1, and also for

(a, b, c, d) =
�

0,
4
3

,
4
3

,
4
3

�

or any cyclic permutation.

Remark. The following generalization holds (Vasile Cîrtoaje, 2005):

• Let a1, a2, . . . , an (n≥ 3) be nonnegative real numbers such that

a1 + a2 + · · ·+ an = n.

If k is a positive integer satisfying

2≤ k ≤ n+ 2,

then

ak
1 + ak

2 + · · ·+ ak
n

n
− 1≥ m(1− a1a2 · · · an), m=

� n
n− 1

�k−1
− 1.

P 3.139. Let a, b, c, d be nonnegative real numbers such that

a+ b+ c + d = 4.

Prove that
27(abc + cd + cda+ dab)≤ 44abcd + 64.

Solution. Use the mixing variables method. Without loss of generality, assume that

a ≥ b ≥ c ≥ d.

Setting x = (a+ b+ c)/3, we have

3x + d = 4, d ≤ x ≤ 4/3, x3 ≥ abc.

We will show that
E(a, b, c, d)≥ E(x , x , x , d)≥ 0.
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The left inequality is equivalent to

(x3 − abc) + d(3x2 − ab− bc − ca)≥
44
27

d(x3 − abc).

By Schur’s inequality

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca),

we get
9x3 + 3abc ≥ 4x(ab+ bc + ca),

and hence

3x2 − ab− bc − ca ≥
3(x3 − abc)

4x
≥ 0.

Therefore, it suffices to prove that

1+
3d
4x
≥

44
27

d.

Write this inequality in the homogeneous form

27(3x + d)(4x + 3d)≥ 704xd,

or, equivalently,
81(4x2 + d2)≥ 353xd.

This inequality is true, since

81(4x2 + d2)− 353xd ≥ 81(4x2 + d2 − 5xd) = 81(x − d)(4x − d)≥ 0.

The right inequality E(x , x , x , t)≥ 0 is also true, since

E(x , x , x , d) = (44x3 − 81x2)d − 27x3 + 64

= 4(16− 81x2 + 98x3 − 33x4)

= 4(1− x)2(16+ 32x − 33x2)

= 4(1− x)2(4− 3x)(4+ 11x)≥ 0.

This completes the proof. The equality holds for a = b = c = d = 1, and also for

(a, b, c, d) =
�

0,
4
3

,
4
3

,
4
3

�

or any cyclic permutation.

P 3.140. Let a, b, c, d be positive real numbers such that

a+ b+ c + d =
1
a
+

1
b
+

1
c
+

1
d

.

Prove that

(1− abcd)
�

a2 + b2 + c2 + d2 −
1
a2
−

1
b2
−

1
c2
−

1
d2

�

≥ 0.

(Vasile Cîrtoaje, 2007)
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Solution. From

(a+ b+ c + d)2 =
�

1
a
+

1
b
+

1
c
+

1
d

�2

,

we get

∑

a2 −
∑ 1

a2
= 2

∑

s ym

1
ab
− 2

∑

s ym

ab

= 2
∑

s ym

�

1
ab
− cd

�

= 2(1− abcd)
∑

s ym

1
ab

.

Thus, the inequality can be restated as

2(1− abcd)2
∑

s ym

1
ab
≥ 0,

which is obviously true. The equality holds for ab = cd = 1, or ac = bd = 1, or
ad = bc = 1.

P 3.141. Let a, b, c, d be positive real numbers such that

a+ b+ c + d = 1.

Prove that

(1− a)(1− b)(1− c)(1− d)
�

1
a
+

1
b
+

1
c
+

1
d

�

≥
81
16

.

(Keira, 2007)

Solution. Write the inequality as

E(a, b, c, d)≥
81
16

,

where

E(a, b, c, d) = (1− a)(1− b)(1− c)(1− d)
�

1
a
+

1
b
+

1
c
+

1
d

�

.

Without loss of generality, assume that

a ≤ b ≤ c ≤ d.

First, we show that for

a ≤ b ≤ c ≤ d, a+ b+ c + d = 1,
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F(a, b, c, d) is minimal when a = c. This is true if

E(a, b, c, d)≥ E
�a+ c

2
, b,

a+ c
2

, d
�

.

Since
(1− a)(1− c) = 1− a− c + ac = b+ d + ac

and
(1− b)(1− d) = 1− b− d + bd = a+ c + bd,

we have

E(a, b, c, d) = (b+ d + ac)(a+ c + bd)
�

a+ c
ac
+

b+ d
bd

�

,

and the inequality is equivalent to

(b+ d + ac)
�

a+ c
ac
+

b+ d
bd

�

≥
�

b+ d +
�a+ c

2

�2�� 4
a+ c

+
b+ d
bd

�

,

(a− c)2
�

4bd
ac
− a− c

�

≥ 0.

Since
4bd
ac
− a− c ≥ 4− a− c = 3+ b+ d > 0,

the last inequality is clearly true. Since E(a, b, c, d) is minimal when a = c, from
a ≤ b ≤ c ≤ d it follows that E(a, b, c, d) is minimal when a = b = c. Therefore, it
suffices to prove that 3a+ d = 4 involves

E(a, a, a, d)≥
81
16

.

This is equivalent to

21d4 + 61d3 − 57d2 − 153d + 128≥ 0,

(d − 1)2(21d2 + 103d + 128)≥ 0.

The equality holds for a = b = c = d = 1/4.

P 3.142. Let a, b, c, d be nonnegative real numbers such that

a+ b+ c + d = a3 + b3 + c3 + d3 = 2.

Prove that
a2 + b2 + c2 + d2 ≥

7
4

.

(Vasile Cîrtoaje, 2010)
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Solution. Let us denote
x = a2 + b2 + c2 + d2.

From
2= a3 + b3 + c3 + d3 ≥ a3 +

1
9
(b+ c + d)3 = a3 +

1
9
(2− a)3,

it follows that
(4a− 5)(a+ 1)2 ≤ 0,

hence a ≤
5
4

. Similarly, we have b, c, d ≤
5
4

. On the other hand,

5x = 5
∑

a2 = 4
∑

a3 +
∑

(5a2 − 4a3) = 8+
∑

a2(5− 4a)

and, by the Cauchy-Schwarz inequality,

∑

a2(5− 4a)≥
[
∑

a(5− 4a)]2
∑

(5− 4a)
=
(5
∑

a− 4
∑

a2)2

20− 4
∑

a
=
(5− 2x)2

3
.

Therefore, we have

5x ≥ 8+
(5− 2x)2

3
.

This is equivalent to
(4x − 7)(x − 7)≤ 0,

which involves x ≥
7
4

. The equality holds for (a, b, c, d) =
�

1
12

,
1
12

,
1
12

,
7
4

�

or any

cyclic permutation.

P 3.143. Let a, b, c, d ∈ (0, 4] such that

abcd = 1.

Prove that

(1+ 2a)(1+ 2b)(1+ 2c)(1+ 2d)≥ (5− 2a)(5− 2b)(5− 2c)(5− 2d).

(Vasile Cîrtoaje, 2011)

Solution. Assume that
a ≥ b ≥ c ≥ d.

For the nontrivial case where the right side of the inequality is positive, there are
two cases to consider.

Case 1: a < 5/2. In virtue of the AM-GM inequality, we have

(1+ 2a)(1+ 2b)(1+ 2c)(1+ 2d)≥ (3
3
p

a2)(3
3
p

b2)(3
3
p

c2)(3
3
p

d2) = 81,
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(5− 2a)(5− 2b)(5− 2c)(5− 2d)≤
�

(5− 2a) + (5− 2b) + (5− 2c) + (5− 2d)
4

�4

=
�

10− (a+ b+ c + d)
2

�4

≤
�

10− 4
4pabcd

2

�4

= 81,

from which the conclusion follows.

Case 2: a ≥ b > 5/2> c ≥ d. Write the inequality as

(1+ 2a)(1+ 2b)
(2a− 5)(2b− 5)

≥
(5− 2c)(5− 2d)
(1+ 2c)(1+ 2d)

,

1+ 4ab+ 2(a+ b)
25+ 4ab− 10(a+ b)

≥
25+ 4cd − 10(c + d)

1+ 4cd + 2(c + d)
.

According to the AM-GM inequality, it suffices to prove that

1+ 4ab+ 4
p

ab

25+ 4ab− 20
p

ab
≥

25+ 4cd − 20
p

cd

1+ 4cd + 4
p

cd
.

This is equivalent to
2
p

ab+ 1

2
p

ab− 5
≥

5− 2
p

cd

1+ 2
p

cd
,

2
p

ab+ 1

2
p

ab− 5
≥

5
p

ab− 2
p

ab+ 2
,

(4
p

ab− 1)(4−
p

ab)≥ 0.

The last inequality is true, since a, b ∈ (5/2, 4] involves 4−
p

ab ≥ 0.

The equality holds for a = b = c = d = 1, and for (a, b, c, d) =
�

4,4,
1
4

,
1
4

�

(or any

permutation thereof).

P 3.144. If a, b, c, d ∈
�

0,1+
1
p

6

�

and a2 + b2 + c2 + d2 = 4, then

a+ b+ c + d ≥ abcd + 3.

(Vasile Cîrtoaje, 2018)
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Solution. Assume that a ≥ b ≥ c ≥ d and denote

k = 1+
1
p

6
.

According to Remark 2 from P 3.57, if k ≥ a1 ≥ a2 ≥ · · · ≥ an ≥ 0 and

a1 + a2 + · · ·+ an = constant, a2
1 + a2

2 + · · ·+ a2
n = constant,

then the product a1a1 · · · an is maximal for a1 ≥ a2 = · · · = an or a1 = k. Thus, it is
enough to consider the cases a ≥ b = c = d and a = k. In addition, for a = k, it
suffices to consider the cases b = k and b ≥ c = d.

Case 1: a ≥ b = c = d. We need to show that

a+ 3b ≥ ab3 + 3

for
a2 + 3b2 = 4, k ≥ a ≥ b ≥ 0.

From

4− 3b2 = a2 ≤
�

1+
1
p

6

�2

,

we get

b ≥

√

√17− 2
p

6
18

>
1
p

3
,

hence
1
p

3
< b ≤ 1.

Write the inequality as
a(1− b3)− 3(1− b)≥ 0,

(1− b)[a(1+ b+ b2)− 3]≥ 0.

Since 1− b ≥ 0 and 1+ b + b2 ≥ 3b, it suffices to show that ab ≥ 1. Indeed, we
have

a2 b2 − 1= (4− 3b2)b2 − 1= (1− b2)(3b2 − 1)≥ 0.

Case 2: a = b = k. We need to show that

2k+ c + d ≥ k2cd + 3

for
c2 + d2 = 4− 2k2, k ≥ c ≥ d ≥ 0.

Denoting
x = c + d,
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from c2 + d2 = 4− 2k2, we get

2cd = x2 − 4+ 2k2.

Thus, the required inequality becomes as follows:

4k+ 2x ≥ k2(x2 + 2k2 − 4) + 6,

k2 x2 − 2x + 2k4 − 4k2 − 4k+ 6≤ 0.

3(7+ 2
p

6)x2 − 36x + 25− 4
p

6≤ 0,

75x2 − 36(7− 2
p

6)x + 271− 106
p

6≤ 0,

(3x − 3+
p

6)(75x − 177+ 47
p

6)≤ 0.

This is true if
3−
p

6
3

≤ x ≤
177− 47

p
6

75
.

Indeed, from
(c + d)2 ≥ c2 + d2 = 4− 2k2,

we get

x = c + d ≥
p

4− 2k2 =
3−
p

6
3

,

and from
(c + d)2 ≤ 2(c2 + d2) = 2(4− 2k2),

we get

x ≤
Æ

2(4− 2k2) =
3
p

2− 2
p

3
3

<
1
3
<

177− 47
p

6
75

.

Case 3: a = k, b ≥ c = d. We need to show that

k+ b+ 2d ≥ kbd2 + 3

for
b2 + 2d2 = 4− k2, k ≥ b ≥ d ≥ 0.

Write the inequality as
(1− kd2)b ≥ 3− k− 2d.

From
3d2 ≤ b2 + 2d2 = 4− k2,

we get

1− kd2 ≥ 1−
k(4− k2)

3
=

3
p

6− 5

18
p

6
> 0.
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Therefore, consider further the nontrivial case 3−k−2d ≥ 0, when d ≤
3− k

2
<

4
5

.

On the other hand, from

k2 + 2d2 ≥ b2 + 2d2 = 4− k2,

we get

d ≥
p

2− k2 =
1
p

2
−

1
p

3
>

1
8

.

Therefore, it suffices to show that

(1− kd2)2(4− k2 − 2d2)− (3− k− 2d)2 ≥ 0

for
1
8
≤ d ≤

4
5

.

After many calculations, we can show that this inequality is true.
The inequality is an equality for a = b = c = d = 1, and also for

a = b = 1+
1
p

6
, c = 1−

√

√2
3

, d = 0

(or any permutation).

Open Problem. If

1+
1

p

(n− 1)(n− 2)
≥ a1 ≥ a2 ≥ · · · ≥ an ≥ 0

and
a2

1 + a2
2 + · · ·+ a2

n = n,

then
a1 + a2 + · · ·+ an ≥ a1a2 · · · an + n− 1.

P 3.145. Let a, b, c, d be positive real numbers such that

(a+ b+ c + d)
�

1
a
+

1
b
+

1
c
+

1
d

�

≤ (1+
p

10 )2.

Prove that any three of a, b, c, d are the lengths of the sides of a triangle (non-degenerate
or degenerate).
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Solution. Without loss of generality, assume that

a ≥ b ≥ c ≥ d.

Clearly, any three of a, b, c, d are the lengths of the sides of a triangle if and only if
a ≤ c + d. By virtue of the Cauchy-Schwarz inequality, we have

(1+
p

10)2 ≥ (b+ a+ c + d)
�

1
b
+

1
a
+

1
c
+

1
d

�

≥

�

1+

√

√

(a+ c + d)
�

1
a
+

1
c
+

1
d

�

�2

≥

�

1+

√

√

(a+ c + d)
�

1
a
+

4
c + d

�

�2

,

hence

(a+ c + d)
�

1
a
+

4
c + d

�

≤ (1+
p

10)− 1= 10.

Writing this inequality as

(a− c − d)(4a− c − d)≤ 0,

we get a ≤ c + d. Thus, the proof is completed.

Remark 1. Notice that 11+ 2
p

10 is the largest value of the product

(a+ b+ c + d)
�

1
a
+

1
b
+

1
c
+

1
d

�

such that any three of the positive real numbers a, b, c, d are the lengths of the sides
of a triangle. In order to prove this, assume that

(a+ b+ c + d)
�

1
a
+

1
b
+

1
c
+

1
d

�

= k, k > 11+ 2
p

10.

This relation is satisfied for

a = p+
p

p2 − 1, b =

√

√a(a+ 2)
2a+ 1

, c = d = 1,

where

p =
(
p

k− 1)2 − 5
4

.

For k > 11+ 2
p

10, we get p > 5/4, then a > 2. Clearly, the numbers a, c and d
are not the lengths of the sides of a triangle.

Remark 2. In the same manner, we can prove the following generalization:
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• If a1, a2, . . . , an (n≥ 3) are positive real numbers such that

(a1 + a2 + · · ·+ an)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

≤ (n+
p

10− 3)2,

then any three of a1, a2, . . . , an are the lengths of the sides of a triangle.

P 3.146. Let a, b, c, d be positive real numbers such that

(a+ b+ c + d)
�

1
a
+

1
b
+

1
c
+

1
d

�

≤
119
6

.

Prove that there exist three of a, b, c, d which are the lengths of the sides of a triangle
(non-degenerate or degenerate).

(Vasile Cîrtoaje, 2010)

Solution. Without loss of generality, assume that

a ≥ b ≥ c ≥ d.

We need to show that either a ≤ b+ c or b ≤ c + d. For the sake of contradiction,
consider that

a > b+ c, b > c + d.

It suffices to show that

(a+ b+ c + d)
�

1
a
+

1
b
+

1
c
+

1
d

�

>
119
6

.

Notice that for a = 3, b = 2 and c = d = 1, we have a = b+ c, b = c + d and

(a+ b+ c + d)
�

1
a
+

1
b
+

1
c
+

1
d

�

=
119
6

.

Therefore, we apply the Cauchy-Schwarz inequality in the following manner

[a+ (b+ c + d)]
�

9
a
+

16
b+ c + d

�

≥ (3+ 4)2 = 49;

that is,

a+ b+ c + d ≥
49

9
a
+

16
b+ c + d

.

Thus, it suffices to show that

1
a
+

1
b
+

1
c
+

1
d
>

17
42

�

9
a
+

16
b+ c + d

�

.
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From

(b+ c + d)
�

1
b
+

1
c
+

1
d

�

− 10≥ (b+ c + d)
�

1
b
+

4
c + d

�

− 10

=
(b− c − d)(4b− c − d)

b(c + d)
> 0,

we get
1
b
+

1
c
+

1
d
>

10
b+ c + d

.

So, it suffices to show that

1
a
+

10
b+ c + d

≥
17
42

�

9
a
+

16
b+ c + d

�

.

This is equivalent to
4a ≥ 3(b+ c + d),

which is true, since

4a− 3(b+ c + d) = 4(a− b− c) + (b− c − d) + 2(c − d)> 0.

P 3.147. Let a, b, c, d be positive real numbers such that

3(a+ b+ c + d)2 ≥ 11(a2 + b2 + c2 + d2).

Prove that any three of a, b, c, d are the lengths of the sides of a triangle (non-degenerate
or degenerate).

(Vasile Cîrtoaje, 2010)

Solution. Without loss of generality, assume that

a ≥ b ≥ c ≥ d.

Then, any three of a, b, c, d are the lengths of the sides of a triangle if and only if

a ≤ c + d.

To prove this, let us denote

x =
c + d

2
, x ≤ b.

Since c2 + d2 ≥ 2x2, we have

3(a+ b+ 2x)2 ≥ 11(a2 + b2 + 2x2),
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which can be written as

8b2 − 6(a+ 2x)b+ 11a2 + 22x2 − 3(a+ 2x)2 ≤ 0,

8
�

b−
3(a+ 2x)

8

�2

+ 11a2 + 22x2 −
33
8
(a+ 2x)2 ≤ 0.

This involves
a2 + 2x2 −

3
8
(a+ 2x)2 ≤ 0,

(a− 2x)(5a− 2x)≤ 0,

from which we get a ≤ 2x; that is,

a− c − d ≤ 0.

Thus, the proof is completed.

Remark 1. Notice that 11/3 is the smallest value of the ratio

(a+ b+ c + d)2

a2 + b2 + c2 + d2

such that any three of the positive real numbers a, b, c, d are the lengths of the sides
of a triangle. In order to prove this, assume that

(a+ b+ c + d)2 = k(a2 + b2 + c2 + d2), 1< k <
11
3

.

This relation is satisfied for

a =
7+

p

k(66− 17k)
k− 1

, b = 3, c = d = 2.

Since a > 4 for 1 < k < 11/3, the numbers a, c and d are not the lengths of the
sides of a triangle.

Remark 2. In the same manner, we can prove the following generalization:

• If a1, a2, . . . , an (n≥ 3) are positive real numbers such that

3(a1 + a2 + · · ·+ an)
2 ≥ (3n− 1)(a2

1 + a2
2 + · · ·+ a2

n).

then any three of a1, a2, . . . , an are the lengths of the sides of a triangle.

Notice that n− 1/3 is the smallest value of the ratio

(a1 + a2 + · · ·+ an)2

a2
1 + a2

2 + · · ·+ a2
n

such that any three of the positive real numbers a1, a2, . . . , an are the lengths of the
sides of a triangle. To prove this, assume that

(a1 + a2 + · · ·+ an)
2 = k(a2

1 + a2
2 + · · ·+ a2

n), 1< k < n−
1
3

.
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This relation is satisfied for

a1 =
3n− 5+

p

k[3(n− 2)(3n− 1)− k(9n− 19)]
k− 1

,

a2 = · · ·= an−2 = 3, an−1 = an = 2.

Since a1 > 4 for 1 < k < n− 1/3, the numbers a1, an−1 and an are not the lengths
of the sides of a triangle.

P 3.148. Let a, b, c, d be positive real numbers such that

15(a+ b+ c + d)2 ≥ 49(a2 + b2 + c2 + d2).

Prove that there exist three of a, b, c, d which are the lengths of the sides of a triangle
(non-degenerate or degenerate).

(Vasile Cîrtoaje, 2010)

Solution. Without loss of generality, assume that

a ≥ b ≥ c ≥ d.

We need to show that either a ≤ b+ c or b ≤ c + d. For the sake of contradiction,
consider that

a > b+ c, b > c + d.

To complete the proof, it suffices to show that

15(a+ b+ c + d)2 < 49(a2 + b2 + c2 + d2).

Notice that for a = 3, b = 2 and c = d = 1, we have

a = b+ c, b = c + d,

and
15(a+ b+ c + d)2 = 49(a2 + b2 + c2 + d2).

Therefore, we apply the Cauchy-Schwarz inequality in the following manner

(3+ 4)
�

a2

3
+
(b+ c + d)2

4

�

≥ (a+ b+ c + d)2.

Based on this result, it suffices to show that

a2

3
+
(b+ c + d)2

4
<

7
15
(a2 + b2 + c2 + d2),
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which is equivalent to

2a2 + 7(b2 + c2 + d2)>
15
4
(b+ c + d)2.

Since

8(b2 + c2 + d2)− 3(b+ c + d)2 = 5b2 − 6b(c + d) + 5(c2 + d2)− 6cd

≥ 5b2 − 6b(c + d) + (c + d)2

= (b− c − d)(5b− c − d)> 0,

it is enough to prove that

2a2 +
21
8
(b+ c + d)2 ≥

15
4
(b+ c + d)2,

which is equivalent to
4a ≥ 3(b+ c + d).

Indeed, we have

4a− 3(b+ c + d) = 4(a− b− c) + (b− c − d) + 2(c − d)> 0.

P 3.149. Let a, b, c, d be nonnegative real numbers such that

a2 + b2 + c2 + d2 = 4.

If a ≥ b ≥ c ≥ d, then

a+ b+ c + d + (2−
p

2)(a− d)2 ≥ 4.

(Vasile Cîrtoaje, 2019)

Solution. For a = d, the inequality is a trivial equality. Consider next that a >
d, give up the condition b ≥ c (consider only that b, c ∈ [d, a]) and write the
inequality in the homogeneous form f ≥ 0, where

f = (a+ b+ c + d)
p

g + (2−
p

2)(a− d)2 − 4g, g =
a2 + b2 + c2 + d2

4
.

For fixed a, c and d, f and g are functions of b, b ∈ [d, a]. Since

g ′(b) =
b
2

,
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we have

f ′(b) =
p

g +
(a+ b+ c + d)b

4
p

g
− 2b = bh(b),

where

h(b) =
p

g
b
+

a+ b+ c + d
4
p

g
− 2,

h′(b) =
−pg

b2
+

1
4
p

g
+

1
4
p

g
−

b(a+ b+ c + d)
16g3/2

≤
−pg

b2
+

1
2
p

g
=
−2g + b2

2b2pg
≤ 0.

Since h(b) is a decreasing function, there are three possible cases: (1) h(b) ≥ 0
for b ∈ [d, a], hence f (b) is increasing on [d, a]; (2) h(b) ≥ 0 for b ∈ [d, d1] and
h(b) ≤ 0 for b ∈ [d1, a], hence f (b) is increasing on [d, d1] and decreasing on
[d1, a]; (3) h(b) ≤ 0 for b ∈ [d, a], hence f (b) is decreasing on [d, a]. In all these
cases f (b) is minimal when b ∈ {d, a}. As a consequence, we only need to prove
the required inequality for b ∈ {d, a}. Similarly, we only need to prove the required
inequality for c ∈ {d, a}. So, we need to show that

[ka+ (4− k)d]
p

g + (2−
p

2)(a− d)2 − 4g ≥ 0,

where

g =
ka2 + (4− k)d2

4
, k ∈ {1,2, 3}.

For d = 0, the inequality reduces to

(k
p

k− 2k+ 4− 2
p

2)a2 ≥ 0,

which is true for k ∈ {1, 2,3}. Next, due to homogeneity, we may set d = 1 (which
involves a > 1). The inequality becomes

(ka+ 4− k]
p

x + (2−
p

2)(a− 1)2 − 4x ≥ 0,

with

x =
ka2 + 4− k

4
, x ≥ 1.

Write the inequality as

(2−
p

2)(a− 1)2 ≥
p

x
�

4
p

x − ka− 4+ k
�

,

(2−
p

2)(a− 1)2 ≥
k(4− k)(a− 1)2

p
x

4
p

x + ka+ 4− k
.

This is true if

(2−
p

2)(ka+ 4− k)≥ (4k− k2 − 8+ 4
p

2)
p

x .
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Case 1: k = 1. Since

x =
a2 + 3

4
,

the inequality becomes

(4− 2
p

2)(a+ 3)≥ (4
p

2− 5)
p

a2 + 3.

It follows by multiplying the inequalities

4− 2
p

2> 4
p

2− 5

and
a+ 3>

p

a2 + 3.

Case 2: k = 2. Since

x =
a2 + 1

2
,

the inequality becomes
a+ 1≥

p

a2 + 1,

which is clearly true.
Case 3: k = 3. Since

x =
3a2 + 1

4
,

the inequality becomes

(4− 2
p

2)(3a+ 1)≥ (4
p

2− 5)
p

3a2 + 1.

It follows by multiplying the inequalities

4− 2
p

2> 4
p

2− 5

and
3a+ 1>

p

3a2 + 1.

The proof is completed. The equality occurs for a = b = c = d = 1, and also for
a = b =

p
2 and c = d = 0.

Remark. Similarly, we can prove the following statements:

• Let a1, a2, a3, a4, a5 be nonnegative real numbers such that

a2
1 + a2

2 + a2
3 + a2

4 + a2
5 = 5.

If a1 ≥ a2 ≥ a3 ≥ a4 ≥ a5, then

1−
a1 + a2 + a3 + a4 + a5

5
≤

2
5

�

1−

√

√2
5

�

(a1 − a5)
2,
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with equality for a1 = a2 = a3 = a4 = a5 = 1, and also for a1 = a2 =
s

5
2

and

a3 = a4 = a5 = 0.

• Let a1, a2, a3, a4, a5, a6 be nonnegative real numbers such that

a2
1 + a2

2 + a2
3 + a2

4 + a2
5 + a2

6 = 6.

If a1 ≥ a2 ≥ a3 ≥ a4 ≥ a5 ≥ a6, then

1−
a1 + a2 + a3 + a4 + a5 + a6

6
≤

1
2

�

1−
1
p

2

�

(a1 − a6)
2,

with equality for a1 = a2 = a3 = a4 = a5 = a6 = 1, and also for a1 = a2 = a3 =
p

2
and a4 = a5 = a6 = 0.

• Let a1, a2, . . . , an be nonnegative real numbers such that

a2
1 + a2

2 + · · ·+ a2
n = n.

If a1 ≥ a2 ≥ · · · ≥ an, then

1−
a1 + a2 + · · ·+ an

n
≤

4
27
(a1 − an)

2,

with equality for a1 = a2 = · · ·= an = 1.

P 3.150. Let a, b, c, d be nonnegative real numbers such that

a2 + b2 + c2 + d2 = 4.

If a ≥ b ≥ c ≥ d, then

1− abcd ≤
p

3
2
(a− d).

(Vasile Cîrtoaje, 2019)

Solution. For a = d, the inequality is a trivial equality. It is also true for d = 0,
because we have

4= a2 + b2 + c2 ≤ 3a2,

hence p
3

2
a ≥ 1.

Consider next that a > d > 0, give up the condition b ≥ c (consider only that
b, c ∈ [d, a]) and write the inequality in the homogeneous form f ≥ 0, where

f = abcd +
p

3
2
(a− d)g3/2 − g2, g =

a2 + b2 + c2 + d2

4
.
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For fixed a, c and d, f and g are functions of b, b ∈ [d, a]. Since

g ′(b) =
b
2

,

we have

f ′(b) = acd +
3
p

3
8
(a− d)b

Æ

g(b)− bg(b) = b
Æ

g(b) h(b),

where

h(b) =
acd

b
p

g(b)
+

3
p

3
8
(a− d)−

Æ

g(b).

Since h(b) is a decreasing function, there are three possible cases: g(b) ≥ 0 for
b ∈ [d, a], hence f (b) is increasing on [a, d]; g(b) ≥ 0 for b ∈ [d, d1] and g(b) ≤
0 for b ∈ [d1, a], hence f (b) is increasing on [d, d1] and decreasing on [d1, a];
g(b) ≤ 0 for b ∈ [d, a], hence f (b) is decreasing on [a, d]. In all these cases f (b)
is minimal when b ∈ {d, a}. As a consequence, we only need to prove the required
inequality for b ∈ {d, a}. Similarly, we only need to prove the required inequality
for c ∈ {d, a}. So, we need to show that

akd4−k +
p

3
2
(a− d)g3/2 − g2 ≥ 0,

where

g =
ka2 + (4− k)d2

4
, k ∈ {1,2, 3}.

Due to homogeneity, we may set d = 1 (which involves a > 1), when the inequality
becomes

ak +
p

3
2
(a− 1)x3/2 ≥ x2.

with

x =
ka2 + 4− k

4
> 1.

Case 1: k = 1. Since

x =
a2 + 3

4
,

the inequality becomes

16a+
p

3(a− 1)(a2 + 3)3/2 ≥ (a2 + 3)2,

p
3(a− 1)(a2 + 3)3/2 ≥ (a− 1)2(a2 + 2a+ 9).

and, by squaring,

2a(a− 1)2(a5 − a4 + 6a3 + 2a2 + 25a+ 63)≥ 0.
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Clearly, it is true for a > 1.

Case 2: k = 2. Since

x =
a2 + 1

2
,

the inequality becomes

8a2 +
p

6(a− 1)(a2 + 1)3/2 ≥ 2(a2 + 1)2,
p

6(a− 1)(a2 + 1)3/2 ≥ 2(a2 − 1)2,

and, by squaring,

2(a− 1)2(a6 − 4a5 + 11a4 + 8a3 + 11a2 − 4a+ 1)≥ 0.

This is true because

a6−4a5+11a4+8a3+11a2−4a+1= a2(a−1)4+5a4+12a3+6a2+(2a−1)2 > 0.

Case 3: k = 3. Since

x =
3a2 + 1

4
,

the inequality becomes

16a3 +
p

3(a− 1)(3a2 + 1)3/2 ≥ (3a2 + 1)2,
p

3(a− 1)(3a2 + 1)3/2 ≥ (a− 1)2(9a2 + 2a+ 1).

and, by squaring,

2(a− 1)2(63a5 + 25a4 + 2a3 + 6a2 − a+ 1)≥ 0.

Clearly, it is true for a > 1.

The proof is completed. The equality occurs for a = b = c = d = 1, and also for

a = b = c =
2
p

3
and d = 0.

Remark. The following more general statement holds for n≤ 6:

• If a1, a2, . . . , an (n≤ 6) are nonnegative real numbers such that

a2
1 + a2

2 + · · ·+ a2
n = n, a1 ≥ a2 ≥ · · · ≥ an.

then

1− a1a2 · · · an ≤

√

√

1−
1
n
(a1 − an),

with equality for a1 = a2 = · · ·= an = 1, and also for a1 = a2 = · · ·= an−1 =
s

n
n− 1

and an = 0.
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To prove this inequality, we need to show that

1− ak bn−k ≤

√

√

1−
1
n
(a− b)

for a ≥ 1≥ b ≥ 0 and

ka2 + (n− k)b2 = n, k ∈ {1, 2, . . . , n− 1}.

P 3.151. Let a, b, c, d be nonnegative real numbers such that

a2 + b2 + c2 + d2 = 4.

If a ≥ b ≥ c ≥ d, then

1−
p

abcd ≤
3
4
(a− d)2.

(Vasile Cîrtoaje, 2019)

Proof. For a = d, the inequality is a trivial equality. Consider next that a > d, give
up the condition b ≥ c (consider only that b, c ∈ [d, a]) and write the inequality in
the homogeneous form f ≥ 0, where

f = 4
p

abcd + 3(a− d)2 − (a2 + b2 + c2 + d2)2.

First Solution. For fixed a, c and d, f is a function of b, b ∈ [d, a]. We have

f ′(b) = 2

√

√acd
b
− 2b.

Since f ′(b) is a decreasing function, there are three possible cases: (1) f ′(b) ≥ 0
for b ∈ [d, a], hence f (b) is increasing on [d, a]; (2) f ′(b) ≥ 0 for b ∈ [d, d1]
and f ′(b) ≤ 0 for b ∈ [d1, a], hence f (b) is increasing on [d, d1] and decreasing
on [d1, a]; (3) f ′(b) ≤ 0 for b ∈ [d, a], hence f (b) is decreasing on [d, a]. In all
these cases, if the inequality f (b) holds for the extreme values of b, then it holds
for all possible values of b. Thus, we only need to prove the required inequality for
b ∈ {a, d}. Similarly, we only need to prove the required inequality for c ∈ {a, d}.
So, we need to show that

4
p

akd4−k + 3(a− d)2 ≥ ka2 + (4− k)d2,

where
k ∈ {1,2, 3}.
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For d = 0, the inequality reduces to

(3− k)a2 ≥ 0,

which is true for k ∈ {1,2, 3}. Next, due to homogeneity, we may set d = 1.
Substituting x =

p
a, x ≥ 1, the required inequality becomes

3(x2 − 1)2 ≥ kx4 − 4x k + 4− k.

Case 1: k = 1. We need to show that

3(x2 − 1)2 ≥ x4 − 4x + 3,

that is
3(x2 − 1)2 ≥ (x − 1)2(x2 + 2x + 3),

x(x − 1)2(3x + 1)≥ 0.

Case 2: k = 2. We need to show that

3(x2 − 1)2 ≥ 2x4 − 4x2 + 2,

that is
3(x2 − 1)2 ≥ 2x4 − 4x2 + 2,

3(x2 − 1)2 ≥ 2(x2 − 1)2.

Case 3: k = 3. We need to show that

3(x2 − 1)2 ≥ 3x4 − 4x3 + 1,

that is
3(x2 − 1)2 ≥ (x − 1)2(3x2 + 2x + 1),

(x − 1)2(2x + 1)≥ 0.

The proof is completed. The equality occurs for a = b = c = d = 1, and also for

a = b = c =
2
p

3
and d = 0.

Second Solution (by Marius Stanean). Replacing a, b, c, d with a2, b2, c2, d2, respec-
tively, we need to sow that a ≥ b ≥ c ≥ d ≥ 0 yields the homogeneous inequality
F(a, b, c, d)≥ 0, where

F(a, b, c, d) = 4abcd − 3(a2 − d2)2 − a4 − b4 − c4 − d4.

We will sow that
F(a, b, c, d)≥ F(a, a, c, d)≥ 0.

The left inequality is equivalent to

a4 − b4)≥ 4acd(a− b,
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which is true if
(a+ b)(a2 + b2)≥ 4acd.

Indeed,

(a+ b)(a2 + b2)− 4acd ≥ 2ab(a+ b)− 4ab2 = 2ab(a− b)≥ 0.

For fixed a and d, we have

G(c) = F(a, a, c, d) = −c4 + 4a2cd + a4 − 6a2d2 + 2d4, c ∈ [d, a].

Since G is concave, it is enough to show that G(a)≥ 0 and G(d)≥ 0. We have

G(a) = 2d(a− d)2(2a+ d)≥ 0,

G(d) = (a2 − d2)2 ≥ 0.

Third Solution. Write the inequality in the homogeneous form

a2 + b2 + c2 + d2 − 4
p

abcd ≤
3
4
(a− d)2.

As known (see Remark from the proof of P 2.104), for fixed a and d, if b, c ∈ [d, a],
then Jensen’s difference

a2 + b2 + c2 + d2 − 4
p

abcd

is maximal when b, c ∈ {a, d}, as shown in the first solution.

Remark. The following more general statement holds for n≤ 6:

• If a1, a2, . . . , an (n≤ 6) are nonnegative real numbers such that

a2
1 + a2

2 + · · ·+ a2
n = n, a1 ≥ a2 ≥ · · · ≥ an.

then

1−
p

a1a2 · · · an ≤
�

1−
1
n

�

(a1 − an)
2,

with equality for a1 = a2 = · · ·= an = 1, and also for a1 = · · ·= an−1 =
s

n
n− 1

and

an = 0.

To prove this inequality, we need to show that

1−
p

ak bn−k ≤
�

1−
1
n

�

(a− b)2

for a ≥ 1≥ b ≥ 0 and

ka2 + (n− k)b2 = n, k ∈ {1, 2, . . . , n− 1}.
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P 3.152. If a, b, c, d are nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a2 + b2 + c2 + d2 = 4,

then
1− (abcd)3/4 ≤

3
4
(a− d)2.

(Vasie Cirtoaje, 2020)

Solution. For a = d, the inequality is a trivial equality. Consider next that a >
d, give up the condition b ≥ c (consider only that b, c ∈ [d, a]) and write the
inequality in the homogeneous form f ≥ 0, where

f =
4(abcd)3/4

g1/2
+ 3(a− d)2 − (a2 + b2 + c2 + d2),

where

g =
a2 + b2 + c2 + d2

4
.

For fixed a, c and d, f is a function of b, b ∈ [d, a]. We have

g ′(b) =
b
2

and

f ′(b) =
3(acd)3/4

b1/4 g1/2
−

2(abcd)3/4 g ′

g3/2
− 2b

=
3(acd)3/4

b1/4 g1/2
−

b7/4(acd)3/4

g3/2
− 2b =

(acd)3/4 g(b)
b1/4h1/2

,

where
h(b) = 3−

1

1+ a2+c2+d2

b2

− 2b5/4 g1/2.

Since h(b) is a decreasing function, there are three possible cases: (1) h(b) ≥ 0
for b ∈ [d, a], hence f (b) is increasing on [d, a]; (2) h(b) ≥ 0 for b ∈ [d, d1] and
h(b) ≤ 0 for b ∈ [d1, a], hence f (b) is increasing on [d, d1] and decreasing on
[d1, a]; (3) h(b) ≤ 0 for b ∈ [d, a], hence f (b) is decreasing on [d, a]. In all these
cases, if the inequality f (b) holds for the extreme values of b, then it holds for
all possible values of b. Thus, we only need to prove the required inequality for
b ∈ {a, d}. Similarly, we only need to prove the required inequality for c ∈ {a, d}.
So, we need to show that f ≥ 0 for b, c ∈ {a, d}, that is

8(akd4−k)3/4
p

ka2 + (4− k)d2
+ 3(a− d)2 − ka2 − (4− k)d2 ≥ 0,

or
8(akd4−k)3/4 ≥ [(k− 3)a2 + 6ad + (1− k)d2]

Æ

ka2 + (4− k)d2,
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where
k ∈ {1,2, 3}.

For d = 0, the inequality reduces to

(3− k)a2 ≥ 0,

which is true for k ∈ {1,2, 3}. Next, due to homogeneity, we may set d = 1. So, we
need to show that a ≥ 1 yields

8a3k/4 ≥ [(k− 3)a2 + 6a+ 1− k]
p

ka2 + 4− k.

This is true if

64a3k/2 ≥ [(k− 3)a2 + 6a+ 1− k]2(ka2 + 4− k)

for a ≥ 1 and (k− 3)a2 + 6a+ 1− k ≥ 0.
Case 1: k = 1. We need to show that

16≥
p

a(3− a)2(a2 + 3)

for 1≤ a ≤ 3. Since 2
p

a ≤ a+ 1, it suffices to show that

32≥ (a+ 1)(a− 3)2(a2 + 3),

which is equivalent to

a5 − 5a4 + 6a3 − 6a2 + 9a− 5≤ 0,

(a− 1)2[a2(a− 3)− a− 5]≤ 0.

Case 2: k = 2. We need to show that

32a3 ≥ (−a2 + 6a− 1)2(a2 + 1)

for 1≤ a ≤ 3+
p

10< 7. Write the required inequality as follows:

a6 − 12a5 + 39a2 − 56a3 + 39a2 − 12a+ 1≤ 0,

(a− 1)4(a2 − 8a+ 1)≤ 0.

It is true because
a2 − 8a+ 1= −a(7− a)− (a− 1)< 0.

Case 3: k = 3. We need to show that

16a9/2 ≥ (3a− 1)2(a2 + 1)

for a ≥ 1. Since

a9/2 ≥
2a5

a+ 1
,
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it suffices to show that

32a5 ≥ (a+ 1)(3a− 1)2(3a2 + 1),

which is equivalent to

5a5 − 9a4 + 6a3 − 6a2 + 5a− 1≥ 0,

(a− 1)2(5a3 + a2 + 3a− 1)≥ 0.

The proof is completed. The equality occurs for a = b = c = d = 1, and also for

a = b = c =
2
p

3
and d = 0.

Remark. Since abcd ≤ 1, the inequality in P 3.152 is stronger than the inequality
in the preceding P 3.151.

P 3.153. Let a, b, c, d be nonnegative real numbers such that

a2 + b2 + c2 + d2 = 4.

If a ≥ b ≥ c ≥ d, then

(a) 1−
p

abcd ≥
1
2
(b− c)2;

(b) 1−
p

abcd ≥
1
4
(a− d)2.

(Vasile Cîrtoaje, 2019)

Proof. (a) Since
b− c ≤

p

ab−
p

cd,

it suffices to show that

1−
p

abcd ≥
1
2
(
p

ab−
p

cd)2,

which is equivalent to

a2 + b2 + c2 + d2 − 4
p

abcd ≥ 2ab+ 2cd − 4
p

abcd,

(a− b)2 + (c − d)2 ≥ 0.

The equality occurs for
a = b = x , c = d = y,

where x and y are nonnegative numbers such that x ≥ y and x2 + y2 = 2.
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(b) Write the inequality as follows:

a2 + b2 + c2 + d2 − 4
p

abcd ≥ (a− d)2,

b2 + c2 + 2ad ≥ 4
p

abcd,

(b− c)2 + 2
�p

bc −
p

ad
�2
≥ 0.

The equality occurs for
b = c =

p

ad, a+ d = 2.

P 3.154. Let a, b, c, d be nonnegative real numbers such that

a2 + b2 + c2 + d2 = 4.

If a ≥ b ≥ c ≥ d, then

1− abcd ≥
3
4
(c − d)2.

(Vasile Cîrtoaje, 2019)

Solution. Write the inequality in the homogeneous form

(a2 + b2 + c2 + d2)2 − 16abcd ≥ 3(c − d)2(a2 + b2 + c2 + d2),

(a2 + b2 + c2 + d2)(a2 + b2 + 6cd − 2c2 − 2d2)− 16abcd ≥ 0.

Denoting
x =

p

ab, x ≥ b ≥ c,

since a2 + b2 ≥ 2x2, it is enough to show that F(x)≥ 0, where

F(x) = (2x2 + c2 + d2)(x2 + 3cd − c2 − d2)− 8x2cd.

We will show that
F(x)≥ F(c)≥ 0.

We have

F(x)− F(c) = 2(x4 − c4) + (6cd − c2 − d2)(x2 − c2)− 8cd(x2 − c2)

= (x2 − c2)(2x2 + c2 − d2 − 2cd)≥ (x2 − c2)(3c2 − d2 − 2cd)

= (x2 − c2)(c − d)(3c + d)≥ 0

and
F(c) = (2c2 + d2)(3cd − d2)− 8c3d = d(c − d)3 ≥ 0.

The proof is completed. The equality occurs for a = b = c = d = 1, and also for

a = b = c =
2
p

3
, d = 0.
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P 3.155. Let a, b, c, d be nonnegative real numbers such that

a2 + b2 + c2 + d2 = 4.

If a ≥ b ≥ c ≥ d, then

(a) 1− abcd ≥ (a− b)(c − d);

(b) 1− abcd ≥
1+
p

3
2

(a− b)(c − d).

(Vasile Cîrtoaje, 2019)

Solution. (a) After homogenization, we need to prove that (ki yoras_2001)

a2 + b2 + c2 + d2 − 4
p

abcd ≥ 4(a− b)(c − d),

which is equivalent to

(a− b)2 + (c − d)2 + 2(ab+ cd)− 4
p

abcd ≥ 4(a− b)(c − d),

(a− b− c + d)2 + 2(ab+ cd)− 4
p

abcd ≥ 2(a− b)(c − d).

Thus, it suffices to prove that

ab+ cd − 2
p

abcd ≥ ac + bd − ad − bc,

that is
(ad + bc − 2

p

abcd + (ab+ cd − ac − bd)≥ 0,
�p

ad −
p

bc
�2
+ (a− d)(b− c)≥ 0,

which is true. The equality occurs for a = b = c = d = 1.

(b) Denote

k =
1+
p

3
2

,

and write the inequality in the homogeneous form f (a, b, c, d)≥ 0, where

f (a, b, c, d) = a2 + b2 + c2 + d2 − 4k(a− b)(c − d)−
16abcd

a2 + b2 + c2 + d2
.

We will show that
f (a, b, c, d)≥ f (a, z, z, d)≥ 0,

where

z =
b+ c

2
.

We have
f (a, b, c, d)− f (a, z, z, d) = A+ 4kB + 16adC ,
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where

A= b2 + c2 − 2z2 =
1
2
(b− c)2≥ 0,

B = (a− z)(z − d)− (a− b)(c − d) = (a+ d)z − ac − bd − (z2 − bc)

=
1
2
(b− c)(a− d)−

1
4
(b− c)2 =

1
4
(b− c)(2a− b+ c − 2d)

≥
1
4
(b− c)(b+ c − 2d)≥ 0,

C =
z2

a2 + 2z2 + d2
−

bc
a2 + b2 + c2 + d2

=
(a2 + d2)(z2 − bc) + z2(b− c)2

(a2 + 2z2 + d2)(a2 + b2 + c2 + d2)
≥ 0.

Since A ≥ 0, B ≥ 0 and C ≥ 0, the inequality f (a, b, c, d) ≥ f (a, z, z, d) is true.
Further, we need to show that a ≥ z ≥ c yields f (a, z, z, d)≥ 0, that is

a2 + 2z2 + d2 −
16az2d

a2 + 2z2 + d2
≥ 4k(a− z)(z − d).

Denote

x = ad, y =
a2 + d2

2
.

Since
(a− z)(z − d) = z(a+ d)− ad − z2 = z

Æ

2(x + y)− x − z2,

the inequality is equivalent to

y + z2 −
4xz2

y + z2
≥ 2k

�

z
Æ

2(x + y)− x − z2
�

.

For z = 0, which involves x = 0, the inequality is clearly true. For z > 0, due to
homogeneity, we may consider z = 1. From

0≤ (a− z)(z − d) =
Æ

2(x + y)− x − 1,

it follows

x ≤
p

2y − 1, y ≥
1
2

.

So, we need to show that for fixed y ∈
�

1
2

,∞
�

, we have f (x)≥ 0, where

f (x) = y + 1−
4x

y + 1
− (1+

p
3)
�
Æ

2(x + y)− x − 1
�

, 0≤ x ≤
p

2y − 1.

There are two cases to consider:
1
2
≤ y ≤ 2 and y ≥ 2
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Case 1:
1
2
≤ y ≤ 2. Since 2k < 3, it suffices to show that

y + 1−
4x

y + 1
≥ 3

�
Æ

2(x + y)− x − 1
�

.

In addition, by Bernoulli’s Inequality, we have

Æ

2(x + y) = 2

s

x + y
2
= 2

√

√

1+
x + y − 2

2

≤ 2
�

1+
x + y − 2

4

�

=
x + y + 2

2
.

Thus, it is enough to show that

y + 1−
4x

y + 1
≥ 3

�

x + y + 2
2

− x − 1
�

,

that is
(2− y)(y + 1)≥ (5− 3y)x .

For the nontrivial case
1
2
≤ y ≤

5
3

, it suffices to show that

(2− y)(y + 1)≥ (5− 3y)
p

2y − 1.

By squaring, the inequality becomes

y4 − 20y3 + 66y2 − 76y + 29≥ 0,

(y − 1)2(y2 − 18y + 29)≥ 0.

It is true because

y2 − 18y + 29= (y − 3)2 + 4(5− 3y)> 0.

Case 2: y ≥ 2. Since x + y ≥ y ≥ 2, we have

f ′(x) =
−4

y + 1
+ (1+

p
3)

�

1−
1

p

2(x + y)

�

≥
−4
3
+

1
2
(1+

p
3) =

3
p

3− 5
6

> 0.

Therefore, f is increasing, hence

f (x)≥ f (0) = y + 1− (1+
p

3)
�p

2y − 1
�

=
1
2

�p

2y − 1−
p

3
�2
≥ 0.

The proof is completed. The equality occurs for a = b = c = d = 1, and also for

a =

√

√

2
�

1+
1
p

3

�

, b = c =

√

√

1−
1
p

3
, d = 0 .
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P 3.156. Let a, b, c, d be nonnegative real numbers such that

a2 + b2 + c2 + d2 = 4.

If a ≥ b ≥ c ≥ d, then

1− abcd ≥ 3(a− b)(b− c)(c − d)(a− d).

(Vasile Cîrtoaje, 2019)

Solution. Write the inequality in the homogeneous form

(a2 + b2 + c2 + d2)2 − 16abcd − 48(a− b)(b− c)(c − d)(a− d)≥ 0.

Using the substitution

a = x + d, b = y + d, c = z + d, x ≥ y ≥ z ≥ 0,

for fixed x , y, z, we may write the inequality as f (d)≥ 0. Since

a′ = b′ = c = d ′ = 1,

we have

1
4

f ′(d) = (a+ b+ c + d)(a2 + b2 + c2 + d2)− 4(bcd + acd + abd + abc).

Since
�

∑

c yc

a

��

∑

c yc

a2

�

≥
2
3

�

∑

c yc

a

��

∑

s ym

ab

�

= 2
∑

c yc

abc +
2
3

∑

c yc

a(b2 + c2 + d2)

≥ 2
∑

c yc

abc +
2
3

∑

c yc

a(bc + cd + da) = 4
∑

c yc

abc,

we have f ′(d) ≥ 0. Therefore, f (d) is increasing and hence f (d) ≥ f (0). So, it is
enough to show that f (0)≥ 0, that is

(a2 + b2 + c2)2 ≥ 48(a− b)(b− c)ac.

Since
a2 + b2 + c2 ≥ a2 + b2

and
4(b− c)c ≤ b2,

it suffices to show that
(a2 + b2)2 ≥ 12ab2(a− b),
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which is equivalent to

a4 − 10a2 b2 + 12ab3 + b4 ≥ 0,

(a− 2b)2(a− b)(a+ 5b) + 7a2 − 24ab+ 21b2 ≥ 0.

(a− 2b)2(a− b)(a+ 5b) + 7
�

a−
12
7

b
�2

+
3
7

b2 ≥ 0.

The proof is completed. The equality occurs for a = b = c = d = 1.

P 3.157. Let a, b, c, d be nonnegative real numbers such that

a2 + b2 + c2 + d2 = 4.

If a ≥ b ≥ c ≥ d, then

(a) 1−
p

abcd ≥
1
3
(b− d)2;

(b) 1− (abcd)3/4 ≥
1
2
(b− d)2.

(Vasile Cîrtoaje, 2019)

Solution. (a) Write the inequality in the homogeneous form

3(a2 + b2 + c2 + d2)2 − 12
p

abcd ≥ 4(b− d)2,

or F(a, b, c, d)≥ 0, where

F(a, b, c, d) = 3a2 − b2 + 3c2 − d2 + 8bd − 12
p

abcd.

We will show that
F(a, b, c, d)≥ F(b, b, c, d)≥ 0.

We have

F(a, b, c, d)− F(b, b, c, d) = 3(a2 − b2)− 12
p

bcd (
p

a−
p

b)

= 3(
p

a−
p

b)
�

(
p

a+
p

b)(a+ b)− 4
p

bcd
�

≥ 0.

In addition,
F(b, b, c, d) = 2b2 + 4(2d − 3

p

cd)b+ 3c2 − d2

= 2(b+ 2d − 3
p

cd )2 + 3(c2 − 6cd + 8d
p

cd − 3d2)

= 2(b+ 2d − 3
p

cd )2 + 3(
p

c −
p

d )3(
p

c + 3
p

d)≥ 0.

The equality occurs for a = b = c = d = 1.
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(b) Let us denote

g =

√

√a2 + b2 + c2 + d2

4
, h=

4
p

abcd,

which satisfy
a ≥ g ≥ h.

For fixed b, c, d, write the inequality in the homogeneous form f (a)≥ 0, where

f (a) = a2 + b2 + c2 + d2 −
4h3

g
− 2(b− d)2.

Since

g ′(a) =
a

4g
, h′(a) =

h
4a

,

we have

f ′(a) = 2a−
12h2h′

g
+

4h3 g ′

g2
= 2a−

3h3

ag
+

ah3

g3

=
a2(2g3 + h3)− 3g2h3

ag3
≥

g2(2g3 + h3)− 3g2h3

ag3
=

2(g3 − h3)
ag

≥ 0.

hence f is increasing, therefore f (a) ≥ f (b). So, we only need to prove that
f (b)≥ 0, that is

2b2 + c2 + d2 −
8(b2cd)3/4
p

2b2 + c2 + d2
− 2(b− d)2 ≥ 0,

(4bd + c2 − d2)
p

2b2 + c2 + d2 ≥ 8(b2cd)3/4.

Due to homogeneity, we may set (for the nontrivial case d > 0)

b =
1
cd

,

when the inequality becomes

�

c2 − d2 + 4

√

√d
c

�√

√

c2 + d2 +
2
cd
≥ 8.

Denoting
d = cx2, 0≤ x ≤ 1,

we need to show that

(c2 − c2 x4 + 4x)

√

√

c2 + c2 x4 +
2

c2 x2
≥ 8,
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or, by squaring,

(c2 − c2 x4 + 4x)2
�

c2 + c2 x4 +
2

c2 x2

�

≥ 8,

that is

x2(1− x4)2(1+ x4)c8 + 8x3(1− x4)(1+ x4)c6 + 2[(1− x4)2 + 8x4(1+ x4)]c4+

+16x(1− x4 − 4x)c2 + 32x2 ≥ 0.

Write the inequality in the form

(1+ x4)
�

x(1− x4)c4 + 4x2c2 − 4x
�2
+ Ac4 + Bc2 + C ,

where
A= 2(1− x4)(4x6 − x4 + 4x2 + 1≥ 0,

B = 16x(2x6 − x4 + 2x2 − 4x + 1),

C = 16x2(1− x4)≥ 0.

The inequality is true for 0≤ x ≤
1
4

because

B ≥ 16x[x2(1− x2) + 1− 4x]> 0.

For
1
4
≤ x ≤ 1, since

Ac4 + Bc2 + C ≥ (2
p

AC + B)c2,

it suffices to show that 2
p

AC + B ≥ 0. This is true if 4AC ≥ B2, that is

4x14−9x12+4x10−15x8+32x7−4x6−16x5−7x4+32x3−36x2+16x −1≥ 0,

which is equivalent to
(x − 1)4 f (x)≥ 0,

where

f (x) = 4x10+16x9+31x8+44x7+54x6+60x5+46x4+28x3+18x2+12x−1≥ 0.

The equality occurs for a = b = c = d = 1, and also for a = b =
p

2 and c = d = 0.

P 3.158. Let a, b, c, d be nonnegative real numbers such that

a4 + b4 + c4 + d4 = 4.

If a ≥ b ≥ c ≥ d, then

(a) 1−
p

abcd ≥
1
2
(ac − bd)2;

(b) 1− abcd ≥
1
p

2
(ac − bd)2.

(Vasile Cîrtoaje, 2019)
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Solution. Firstly, we show that

a4c4 + b4d4 ≤ 2. (*)

We have:

2− a4c4 − b4d4 = 2+ (a4 − b4)(b4 − c4)− b4(a4 + c4 + d4 − b4)

= 2+ (a4 − b4)(b4 − c4)− b4(4− 2b4)

= (a4 − b4)(b4 − c4) + 2(b4 − 1)2 ≥ 0.

(a) Using the notation

x =
p

ac, y =
p

bd,

and having in view (*), it suffices to show that x8 + y8 ≤ 2 yields

2− 2x y ≥ (x2 − y2)2,

that is
2(1− x y + x2 y2)≥ x4 + y4.

By squaring, the inequality becomes

4(1− x y + x2 y2)2 ≥ x8 + y8 + 2x4 y4.

This is true if
2(1− x y + x2 y2)2 ≥ 1+ x4 y4,

that is equivalent to
(1− x y)4 ≥ 0.

The equality occurs for a = b = c = d = 1.

(b) First Solution. Using the notation

x = ac, y = bd,

and having in view (*), it suffices to show that x4 + y4 ≤ 2 yields
p

2 (1− x y)≥ (x − y)2,

that is p
2+
p

2(
p

2− 1)x y ≥ x2 + y2.

Since
x2 + y2 =

p

x4 + y4 + 2x2 y2 ≤
p

2+ 2x2 y2,

we only need to show that

1+ (
p

2− 1)x y ≥
p

1+ x2 y2.
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By squaring, the inequality becomes

x y(1− x y)≥ 0.

This is true because
2≥ x4 + y4 ≥ 2x2 y2.

The equality occurs for a = b = c = d = 1, and also for a = 4p2, b = c = 1 and
d = 0.

Second Solution (by ki yoras_2001). Write the inequality in the homoge-
neous form f (a, b, c, d)≥ 0, where

f (a, b, c, d) = a4 + b4 + c4 + d4 − 2
p

2(a2c2 + b2d2) + 4(
p

2− 1)abcd.

We will show that
f (a, b, c, d)≥ f (a, c, c, d).

We have:

f (a, b, c, d)− f (a, c, c, d) = b4 − c4 − 2
p

2d2(b2 − c2) + 4(
p

2− 1)acd(b− c)

= (b− c)
�

(b+ c)(b2 + c2)− 2
p

2d2(b+ c) + 4(
p

2− 1)acd
�

≥ (b− c)
�

2d2(b+ c)− 2
p

2d2(b+ c) + 2(
p

2− 1)(b+ c)d2
�

= 0.

Further, write the inequality f (a, c, c, d)≥ 0 as

2c4 +
�

4(
p

2− 1)ad − 2
p

2(a2 + d2)
�

c2 + a4 + d4 ≥ 0.

Since
2c4 + a4 + d4 ≥ 2c2

Æ

2(a4 + d4) = 2c2
Æ

(2(a2 + d2)2 − 4a2d2,

we only need to show that

Æ

2(a2 + d2)2 − 4a2d2 ≥
p

2(a2 + d2)− 2(
p

2− 1)ad.

This is true because, by squaring, it becomes

ad(a− d)2 ≥ 0.

Third Solution. Write the inequality in the homogeneous form

a4 + b4 + c4 + d4 − 4abcd − 2
p

2 (ac − bd)2 ≥ 0,

and use the substitution

a = x + d, b = y + d, c = z + d, x ≥ y ≥ z ≥ 0.
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For fixed x , y, z, we may write the inequality as f (d)≥ 0. Since

a′ = b′ = c = d ′ = 1,

we have

1
4

f ′(d) = a3+ b3+ c3+d3− (abc+ bcd+ cda+dab)−
p

2 (ac− bd)(a+ c− b−d),

1
4

f ′′(d) = 3(a2 + b2 + c2 + d2)− 2
∑

s ym

ab−
p

2 (a+ c − b− d)2.

Since
3(a2 + b2 + c2 + d2)− 2

∑

s ym

ab− 2(a+ c − b− d)2 =

= (a− b− c + d)2 + 4(a− d)(b− c)≥ 0,

it follows that f ′′ ≥ 0, f ′ is increasing, hence

1
4

f ′(d)≥
1
4

f ′(0) = a3 + b3 + c3 − abc −
p

2 ac(a+ c − b)

= a3 + b3 + c3 + (
p

2− 1)abc −
p

2 ac(a+ c)

≥ a3 + 2c3 + (
p

2− 1)ac2 −
p

2 ac(a+ c)

= a(a− c)2 + (2−
p

2 )a2c − 2ac2 + 2c3

≥ a(a− c)2 +
1
2

a2c − 2ac2 + 2c3 = a(a− c)2 +
1
2

c(a− 2c)2 ≥ 0.

Since f ′ ≥ 0, f is increasing, therefore

f (d)≥ f (0) = a4 + b4 + c4 − 2
p

2 a2c2 ≥ a4 + 2c4 − 2
p

2 a2c2

= (a2 −
p

2 c2)2 ≥ 0.

P 3.159. If a, b, c, d are nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a4 + b4 + c4 + d4 = 4,

then

1− abcd ≥
3
4
(ad − bc)2.

(Vasie Cirtoaje, 2020)
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Solution. Write the inequality in the homogeneous form f (a, b, c, d)≥ 0, where

f (a, b, c, d) = a4 + b4 + c4 + d4 + 2abcd − 3(a2d2 + b2d2).

We will show that

f (a, b, c, d)≥ f (b, b, c, d)≥ f (c, c, c, d)≥ 0.

Since

f (a, b, c, d)− f (b, b, c, d) = (a4 − b4) + 2bcd(a− b)− 3d2(a2 − b2),

we have f (a, b, c, d)≥ f (b, b, c, d) if

a2 + b2 +
2bcd
a+ b

− 3d2 ≥ 0,

which is true if

a2 + b2 +
bcd
a
− 3d2 ≥ 0.

We have

a2 + b2 +
bcd
a
− 3d2 ≥ a2 +

bcd
a
− 2d2

≥ 2
p

abcd − 2d2 ≥ 0.

The inequality f (b, b, c, d)≥ f (c, c, c, d) is equivalent to

2(b4 − c4) + 2cd(b2 − c2)− 3(c2 + d2)(b2 − c2)≥ 0,

which is true if
2(b2 + c2) + 2cd − 3(c2 + d2)≥ 0.

Indeed,

2(b2 + c2) + 2cd − 3(c2 + d2)≥ 2(c2 + c2) + 2cd − 3(c2 + d2)

= (c − d)(c + 3d)≥ 0.

Finally, we have

f (c, c, c, d) = 3c4 + d4 + 2c3d − 3c2(c2 + d2) = d(2c3 − 3c2d + d3)

= d(c − d)2(2c + d)≥ 0.

The proof is completed. The equality occurs for a = b = c = d = 1, and also for

a = b = c = 4

s

4
3

and d = 0.
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P 3.160. If a, b, c, d are nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c + d = 4,

then

(a)
a4 + b4 + c4 + d4

4
− abcd ≥ 2(b− c)2,

(b)
a4 + b4 + c4 + d4

4
− abcd ≥

3
2
(a− b)2;

(c)
a4 + b4 + c4 + d4

4
− abcd ≥

4
3
(a− c)2;

(d)
a4 + b4 + c4 + d4

4
− abcd ≥

4
3
(c − d)2.

(Vasile Cîrtoaje, 2020)

Solution. (a) For fixed b, c, d. write the left inequality in the homogeneous form
f (a)≥ 0, where

f (a) = 2(a4 + b4 + c4 + d4) − 8abcd − (b− c)2(a+ b+ c + d)2.

Since

1
2

f ′(a) = 4a3 − 4bcd − (b− c)2(a+ b+ c + d)≥ 4a3 − 4acd − (a− c)2(2a+ c + d)

≥ 4a3 − 4ac2 − (a− c)2(2a+ 2c) = 2(a− c)(a2 + 2ac + c2)≥ 0,

f (a) is increasing, hence

f (a)≥ f (b) = 2(2b4 + c4 + d4)− 8b2cd − (b− c)2(2b+ c + d)2.

So, we need to show that g(d)≥ 0, where

g(d) = 2(2b4 + c4 + d4)− 8b2cd − (b− c)2(2b+ c + d)2.

Since
1
2

g ′(d) = 4(d3 − b2c)− (b− c)2(2b+ c + d)≤ 0,

g(d) is decreasing, hence

g(d)≥ g(c) = 4(b4 + c4)− 8b2c2 − 4(b− c)2(b+ c)2 = 0.

The equality occurs for a = b, c = d, a+ c = 2.

(b) Write the inequality as

f (a, b, c, d)≥
3
8
(a− b)2(a+ b+ c + d)2,
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where f (a, b, c, d) = a4 + b4 + c4 + d4 − 4abcd. Since

f (a, b, c, d)− f (a, b, c, c) = −(c4 − d4) + 4abc(c − d)

= (c − d)(−c3 − c2d − cd2 − d3 + 4abc)≥ 0,

it suffices to show that

f (a, b, c, c)≥
3
8
(a− b)2(a+ b+ 2c)2.

Since
f (a, b, c, c)− f (a, b, b, b) = −2(b4 − c4) + 4ab(b2 − c2)

= 2(b2 − c2)(2ab− b2 − c2)≥ 0,

it suffices to show that

f (a, b, b, b)≥
3
8
(a− b)2(a+ 3b)2,

which is equivalent to

8(a− b)2(a2 + 2ab+ 3b2)≥ 3(a− b)2(a+ 3b)2,

(a− b)3(5a+ 3b)≥ 0.

The equality occurs for a = b = c = d = 1.

(c) Write the inequality as

f (a, b, c, d)≥
1
3
(a− c)2(a+ b+ c + d)2,

where f (a, b, c, d) = a4 + b4 + c4 + d4 − 4abcd. Since

f (a, b, c, d)− f (a, b, c, c) = −(c4 − d4) + 4abc(c − d)

= (c − d)(−c3 − c2d − cd2 − d3 + 4abc)≥ 0,

it suffices to show that

f (a, b, c, c)≥
1
3
(a− c)2(a+ b+ 2c)2,

that is
3(a4 + b4 + 2c4)− 12abc2 ≥ (a− c)2(a+ b+ 2c)2.

Use the substitution

a = x + c, b = y + c, x ≥ y ≥ 0,

and, for fixed x , y , write the inequality in the homogeneous form f (c)≥ 0, where

f (c) = 3(a4 + b4 + 2c4)− 12abc2 − (a− c)2(a+ b+ 2c)2.
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Since
a′ = b′ = c′ = 1,

we have

1
4

f ′(c) = 3(a3 + b3 + 2c3)− 3(2abc + ac2 + bc2)− (a− c)2(a+ b+ 2c),

1
4

f ′′(c) = 9(a2 + b2 + 2c2)− 6(ab+ 2ac + 2bc + c2)− 4(a− c)2,

1
24

f ′′(c) = 3(a+ b+ 2c)− 3(a+ b+ 2c) = 0,

therefore

1
4

f ′′(c) =
1
4

f ′′(0) = 9(a2 + b2)− 6ab− 4a2 ≥ 5a2 − 6ab+ 9b2

= 4a2 + (a− 3b)2 ≥ 0,

f ′(c) is increasing, hence

1
4

f ′(c)≥
1
4

f ′(0) = 3(a3 + b3)− a2(a+ b)≥ 0,

f (c) is increasing, hence

f (c)≥ f (0) = 3(a4 + b4)− a2(a+ b)2 = 2a4 − 2a3 b− a2 b2 + 3b4

= (a− b)2(2a2 + 2ab+ b2) + 2b2 ≥ 0.

The equality occurs for a = b = c = d = 1.

(d) Write the inequality as f (a, b, c, d)≥ 0, where

F(a, b, c, d) = 3(a4 + b4 + c4 + d4)− 12abcd − (c − d)2(a+ b+ c + d)2.

Denote

x =
a+ b

2
, a ≥ x ≥ b,

and show that

F(a, b, c, d)≥ F(x , x , c, d)≥ F(c, c, c, d)≥ 0.

Since a4 + b4 ≥ 2x4 and x2 ≥ abc, we have

F(a, b, c, d)− F(x , x , c, d) = 3(a4 + b4 − 2x4) + 12cd(x2 − ab)≥ 0.

Further, we have

F(x , x , c, d) = 6x4 + 3(c4 + d4)− 12x2cd − (c − d)2(2x + c + d)2,
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F(x , x , c, d)− F(c, c, c, d) = 6(x4− c4)−12cd(x2− c2)−2(c−d)2(x− c)(x+2c+d)

= 6(x2 − c2)(x2 + c2 − 2cd)− 2(c − d)2(x − c)(x + 2c + d)

≥ 6(x2 − c2)(c − d)2 − 2(c − d)2(x − c)(x + 2c + d)

= 2(x − c)(c − d)2(2x + c − d)≥ 0

and
F(c, c, c, d) = 9c4 + 3d4 − 12c3d − (c − d)2(3c + d)2

= 3(c − d)2(3c3 + 2cd + d2)− (c − d)2(3c + d)2

= 2(c − d)2d2 ≥ 0.

The equality occurs for a = b = c = d = 1, an also for a = b = c = 4/3 and d = 0.

P 3.161. If a, b, c, d are nonnegative real numbers such that a ≥ b ≥ c ≥ d and
a+ d ≥ b+ c, then

a+ b+ c + d − 4
4
p

abcd ≤ 2
�p

a−
p

d
�2

.

(Vasile Cîrtoaje, 2020)

Solution. For fixed b, c and d, write the inequality as f (a)≥ 0, where

f (a) = 2
�p

a−
p

d
�2
− a− b− c − d + 4

4
p

abcd

= a− b− c + d + 4
4
p

abcd − 4
p

ad.

Denote

x =
4

√

√d
a

, x ≤ 1.

Since

f ′(a) = 1+
4

√

√ bcd
a3
− 2

√

√d
a
≥ 1+

4

√

√d3

a3
− 2

√

√d
a

= 1+ x3 − 2x2 = (1− x)(1+ x − x2)≥ 0,

f is increasing, therefore f (a) ≥ f (b + c − d). So, we only need to show that
f (b+ c − d)≥ 0, that is

4
Æ

(b+ c − d)bcd ≥
Æ

(b+ c − d)d.

This is true if
bc ≥ (b+ c − d)d,

which is equivalent to the obvious inequality

(b− d)(c − d)≥ 0.

The equality occurs for a = b = c = d, and also for a = b+ c and d = 0.
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P 3.162. If a, b, c, d are nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ kd ≥ b+ c, k = (1+
p

2 )4 ≈ 33.970,

then
a+ b+ c + d − 4

4
p

abcd ≤ 2
�p

a−
p

d
�2

.

(Vasile Cîrtoaje, 2020)

Solution. For fixed b, c and d, write the inequality as f (a)≥ 0, where

f (a) = 2
�p

a−
p

d
�2
− a− b− c − d + 4

4
p

abcd

= a− b− c + d + 4
4
p

abcd − 4
p

ad.

Denote

x =
4

√

√d
a

, x ≤ 1.

Since

f ′(a) = 1+
4

√

√ bcd
a3
− 2

√

√d
a
≥ 1+

4

√

√d3

a3
− 2

√

√d
a

= 1+ x3 − 2x2 = (1− x)(1+ x − x2)≥ 0,

it follows that f (a) is increasing, therefore f (a)≥ f (b+ c− kd) (if b+ c− kd ≥ b)
and f (a)≥ f (b). There are two cases to consider: c ≥ kd and d ≤ c ≤ kd.

Case 1: c ≥ kd. Since f (a)≥ f (b+ c − kd), we need to show that

f (b+ c − kd)≥ 0,

that is
−(k− 1)d + 4 4

Æ

(b+ c − kd)bcd − 4
Æ

(b+ c − kd)d ≥ 0.

From
(b− kd)(c − kd)≥ 0,

we get
bc ≥ k(b+ c − kd)d.

Thus, it is enough to show that

−(k− 1)d + 4 4
Æ

k(b+ c − kd)2d2 − 4
Æ

(b+ c − kd)d ≥ 0,

which is equivalent to

−(k− 1)d + 4
�

4
p

k− 1
�Æ

(b+ c − kd)d ≥ 0.
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For d = 0, the inequality is an equality. For d > 0, due to homogeneity, we may set
d = 1 (hence c ≥ k), when the inequality becomes

4
�

4
p

k− 1
�p

b+ c − k ≥ k− 1.

Since b+ c ≥ 2c ≥ 2k, we only need to show that

4
�

4
p

k− 1
�p

k ≥ k− 1.

Denoting
m=

4
p

k = 1+
p

2,

we have
4
�

4
p

k− 1
�p

k− (k− 1) = 4(m− 1)m2 − (m4 − 1)

= (m− 1)2(1+ 2m−m2) = 0.

Case 2: d ≤ c ≤ kd. Since f (a) ≥ f (b), we need to show that f (b) ≥ 0, that
is g(b)≥ 0, where

g(b) = −c + d + 4
4
p

b2cd − 4
p

bd.

We will show that g(b)≥ g(c)≥ 0. Since

g ′(b) =
2
� 4pcd −

p
d
�

p
b

≥ 0,

g(b) is increasing, therefore g(b)≥ g(c). The inequality g(c)≥ 0 has the form

−c + d + 4
4
p

c3d − 4
p

c ≥ 0.

Due to homogeneity, we may set d = 1, when 1 ≤ c ≤ k. We need to show that
h(c)≥ 0, where

h(c) = −c + 1+ 4
4
p

c3 − 4
p

c ≥ 0.

Since h(c) is concave, it is enough to show that h(1) ≥ 0 and h(k) ≥ 0. Indeed,
h(1) = 0 and

h(k) = −k+ 1+ 4
4
p

k3 − 4
p

k = 0.

The proof is completed. The equality occurs for a = b = c = d, for a = b + c and
d = 0, and for a = b = c = kd.

Remark. Let
k1 ≤ k = (1+

p
2 )4.

Since a+ k1d ≥ b+ c yields a+ kd ≥ b+ c, it follows that the inequality is true for
all nonnegative real numbers a, b, c, d such that a ≥ b ≥ c ≥ d and a+k1d ≥ b+ c.
For k1 < k, the equality occurs when a = b = c = d, and when a = b+ c and d = 0.
The particular cases k1 = −1, k1 = 0 and k1 = 1 are relevant.
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P 3.163. If a, b, c, d are nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ d ≥ 2c,

then
a+ b+ c + d − 4

4
p

abcd ≤
5
2

�p
a−

p

d
�2

.

(Vasile Cîrtoaje, 2020)

Solution. For fixed b, c and d, write the inequality as f (a)≥ 0, where

f (a) = 5
�p

a−
p

d
�2
− 2(a+ b+ c + d) + 8

4
p

abcd

= 3a− 2b− 2c + 3d + 8
4
p

abcd − 10
p

ad.

Denote

x =
4

√

√d
a

, x ≤ 1.

Since

f ′(a) = 3+ 2
4

√

√ bcd
a3
− 5

√

√d
a
≥ 3+ 2

4

√

√d3

a3
− 5

√

√d
a

= 3+ 2x3 − 5x2 = (1− x)(3+ 3x − 2x2)≥ 0,

it follows that f (a) is increasing, therefore f (a) ≥ f (b) and f (a) ≥ f (2c − d) (if
2c − d ≥ b). There are two cases to consider: b ≥ 2c − d and c ≤ b ≤ 2c − d.

Case 1: b ≥ 2c− d. Since f (a)≥ f (b), we need to show that f (b)≥ 0, that is
equivalent to g(b)≥ 0, where

g(b) = b− 2c + 3d + 8
4
p

b2cd − 10
p

bd.

Since

g ′(b) = 1+ 4
4

√

√ cd
b2
− 5

√

√d
b
≥ 1+ 4

4

√

√d2

b2
− 5

√

√d
b

= 1−

√

√d
b
≥ 0,

g(b) is increasing, hence

g(b)≥ g(2c − d) = 2d + 8 4
Æ

(2c − d)2cd − 10
Æ

(2c − d)d

= 2d + 2
p

2c − d
�

4
4
p

cd − 5
p

d
�

.

So, we need to show that

d ≥
p

2c − d
�

5
p

d − 4
4
p

cd
�

.
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For d = 0, this inequality is an equality. For d > 0, due to homogeneity, we may set
d = 1 (hence c ≥ 1), when the inequality becomes

1≥
p

2c − 1
�

5− 4 4pc
�

.

Since p
2c − 1≤ c,

it suffices to show that
1≥ c

�

5− 4 4pc
�

.

By the AM-GM inequality, we have

1+ 4c 4pc = 1+ c 4pc + c 4pc + c 4pc + c 4pc ≥ 5
5
p

c5 = 5c.

Case 2: c ≤ b ≤ 2c − d. Since f (a) ≥ f (2c − d), we need to show that
f (2c − d)≥ 0, that is equivalent to h(b)≥ 0, where

h(b) = −2b+ 4c + 8 4
Æ

(2c − d)bcd − 10
Æ

(2c − d)d.

We will show that
h(b)≥ h(2c − d)≥ 0.

Since

h′(b) = −2+ 2
4

√

√(2c − d)cd
b3

≤ −2+ 2
4

√

√(2c − d)d
c2

≤ 0,

it follows that h(b) is decreasing, hence h(b) ≥ h(2c − d). Further, the inequality
h(2c − d)≥ 0 is equivalent to

2d + 8 4
Æ

(2c − d)2cd − 10
Æ

(2c − d)d ≥ 0,

which was proved in the case 1.
The proof is completed. The equality occurs for a = b = c = d, and also for

a = b = 2c and d = 0.

P 3.164. If a, b, c, d are nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ kd ≥ 2c, k = (3+ 2
p

3 )4 ≈ 1745.95,

then

a+ b+ c + d − 4
4
p

abcd ≤
5
2

�p
a−

p

d
�2

.

(Vasile Cîrtoaje, 2020)
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Solution. For fixed b, c and d, write the inequality as f (a)≥ 0, where

f (a) = 5
�p

a−
p

d
�2
− 2(a+ b+ c + d) + 8

4
p

abcd

= 3a− 2b− 2c + 3d + 8
4
p

abcd − 10
p

ad.

Denote

x =
4

√

√d
a

, x ≤ 1.

Since

f ′(a) = 3+ 2
4

√

√ bcd
a3
− 5

√

√d
a
≥ 3+ 2

4

√

√d3

a3
− 5

√

√d
a

= 3+ 2x3 − 5x2 = (1− x)(3+ 3x − 2x2)≥ 0,

it follows that f (a) is increasing, therefore f (a) ≥ f (b) and f (a) ≥ f (2c − kd) (if
2c − kd ≥ b). There are two cases to consider: b ≥ 2c − kd and b ≤ 2c − kd.

Case 1: b ≥ 2c−kd, b ≥ c. Since f (a)≥ f (b), we need to show that f (b)≥ 0,
that is equivalent to g(b)≥ 0, where

g(b) = b− 2c + 3d + 8
4
p

b2cd − 10
p

bd.

Since

g ′(b) = 1+ 4
4

√

√ cd
b2
− 5

√

√d
b
≥ 1+ 4

4

√

√d2

b2
− 5

√

√d
b

= 1−

√

√d
b
≥ 0,

g(b) is increasing. There are two sub-cases to consider: c ≥ kd and c ≤ kd.

Sub-case c ≥ kd. We have

g(b)≥ g(2c − kd) = (3− k)d + 8 4
Æ

(2c − kd)2cd − 10
Æ

(2c − kd)d

≥ (3− k)d + 8 4
Æ

(2c − kd)2kd2 − 10
Æ

(2c − kd)d

= (3− k)d + 2
Æ

(2c − kd)d
�

4
4
p

k− 5
�

≥
�

3− k+ 2
p

k (4
4
p

k− 5)
�

d = 0.

Denoting
m=

4
p

k = 3+ 2
p

3,

we have
3− k+ 2

p

k (4
4
p

k− 5) = 3−m4 + 2m2(4m− 5)

= 3− 10m2 + 8m3 −m4 = (1−m)2(3+ 6m−m2) = 0.
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Sub-case c ≤ kd. Since

g(b)≥ g(c) = −c + 3d + 8
4
p

c3d − 10
p

cd,

we need to show that

−c + 3d + 8
4
p

c3d − 10
p

cd ≥ 0.

Due to homogeneity, we may set d = 1. So, we need to show that c ≤ k yields

−c + 3+ 8
4
p

c3 − 10
p

c ≥ 0.

Denoting
x = 4pc, x ≤

4
p

k = 3+ 2
p

3,

we have
−c + 3+ 8

4
p

c3 − 10
p

c = −x4 + 3+ 8x3 − 10x2

= 3− 10x2 + 8x3 − x4 = (1− x)2(3+ 6x − x2)≥ 0.

Case 2: b ≤ 2c − kd, b ≥ c. From c ≤ b ≤ 2c − kd, it follows that

c ≥ kd.

Since f (a) ≥ f (2c − kd), we need to show that f (2c − kd) ≥ 0, that is equivalent
to g(b)≥ 0, where

g(b) = −2b+ 4c + 3(1− k)d + 8 4
Æ

(2c − kd)bcd − 10
Æ

(2c − kd)d.

We will show that
g(b)≥ g(2c − kd)≥ 0.

We have

g ′(b) = −2+ 2
4

√

√(2c − kd)cd
b3

≤ −2+ 2
4

√

√(2c − kd)d
c2

.

Since
c2 − (2c − kd)d = (c − d)2 + (k− 1)d2 ≥ 0,

it follows that g ′(b)≤ 0, g(b) is decreasing, hence g(b)≥ g(2c− kd). Further, the
inequality g(2c − kd)≥ 0 is equivalent to

(3− k)d + 8 4
Æ

(2c − kd)2cd − 10
Æ

(2c − kd)d ≥ 0,

(3− k)d + 2
p

2c − kd
�

4
4
p

cd − 5
p

d
�

≥ 0.

Since c ≥ kd, we have

4
4
p

cd − 5
p

d ≥
�

4
4
p

k− 5
�p

d ≥ 0.
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Thus, it suffices to prove the inequality for c = kd, that is

(3− k) + 2
p

k
�

4
4
p

k− 5
�

≥ 0,

which is an equality.
The proof is completed. The equality occurs for a = b = 2c and d = 0, and also

for a = b = c = kd.

Remark. Let
k1 ≤ k = (3+ 2

p
3 )4.

Since a + k1d ≥ 2c yields a + kd ≥ 2c, it follows that the inequality is true for all
nonnegative real numbers a, b, c, d such that a ≥ b ≥ c ≥ d and a+ k1d ≥ 2c. For
k1 < k, the equality occurs when a = b = 2c and d = 0. The particular cases k1 = 0
and k1 = 1 are relevant.

P 3.165. If a, b, c, d are nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c + d = 4,

then

(a− d)2 ≤
a4 + b4 + c4 + d4

4
− abcd ≤ 4(a− d)2.

(Vasile Cîrtoaje, 2020)

Solution. (a) Write the left inequality in the homogeneous form

2(a4 + b4 + c4 + d4) − 8abcd ≥
1
2
(a− d)2(a+ b+ c + d)2.

Since
8=

1
2
(a+ b+ c + d)2 ≤ (b+ c)2 + (a+ d)2,

it suffices to prove the homogeneous inequality F(a, b, c, d)≥ 0, where

F(a, b, c, d) = 2(a4 + b4 + c4 + d4)− 8abcd − (a− d)2[(b+ c)2 + (a+ d)2].

Denote

x =
b+ c

2
, a ≥ x ≥ d,

and show that
F(a, b, c, d)≥ F(a, x , x , d)≥ 0.

Since b4 + c4 ≥ 2x4 and x2 ≥ bc, we have

F(a, b, c, d)− F(a, x , x , d) = 4(b4 + c4 − 2x4) + 16ad(x2 − bc)≥ 0.
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Further, we have

F(a, x , x , d) = 4x4 + 2(a4 + d4)− 8ad x2 − (a− d)2
�

4x2 + (a+ d)2
�

= (2x2 − a2 − d2)2 ≥ 0.

The equality occurs for a = b = c = d = 1.

(b) Write the right inequality in the homogeneous form

a4 + b4 + c4 + d4 − 4abcd ≤ (a− d)2(a+ b+ c + d)2.

Use the substitution

a = x + d, b = y + d, c = z + d, x ≥ y ≥ z ≥ 0,

and, for fixed x , y, z, write the inequality in the homogeneous form f (d)≥ 0, where

f (d) = a4 + b4 + c4 + d4 − 4abcd − (a− d)2(a+ b+ c + d)2.

Since
a′ = b′ = c′ = d ′ = 1,

we have

1
4

f ′(d) = a3 + b3 + c3 + d3 − (bcd + cda+ dab+ abc)− 2(a− d)2(a+ b+ c + d),

1
4

f ′′(d) = 3(a2 + b2 + c2 + d2)− 2
∑

s ym

ab− 8(a− d)2,

1
4

f ′′′(d) = 6(a+ b+ c + d)− 6(a+ b+ c + d) = 0,

therefore

1
4

f ′′(d) =
1
4

f ′′(0) = 3(a2+ b2+ c2)−2(ab+ bc+ ca)−8a2 ≤ −5a2+3(b2+ c2)−ab

= 3(b2 − a2) + 2(c2 − a2) + c2 − ab ≤ 0,

f ′(d) is decreasing, hence

1
4

f ′(d)≤
1
4

f ′(0) = a3 + b3 + c3 − abc − 2a2(a+ b+ c)

≤ a3 + b3 + c3 − a2(a+ b+ c) = b(b2 − a2) + c(c2 − a2)≤ 0,

f (d) is decreasing, hence

f (d)≤ f (0) = a4 + b4 + c4 − a2(a+ b+ c)2 ≤ a4 + b4 + c4 − a2(a2 +2 b+ c2)

= b2(a2 − b2) + c2(c2 − a2)≤ 0.

The equality occurs for b = c = d = 0.
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P 3.166. Let a, b, c, d, e be nonnegative real numbers.

(a) If a+ b+ c = 3(d + e), then

4(a4 + b4 + c4 + d4 + e4)≥ (a2 + b2 + c2 + d2 + e2)2;

(b) If a+ b+ c = d + e, then

12(a4 + b4 + c4 + d4 + e4)≤ 7(a2 + b2 + c2 + d2 + e2)2.

(Vasile Cîrtoaje, 2010)

Solution. (a) Let

E(a, b, c, d, e) = 4(a4 + b4 + c4 + d4 + e4)− (a2 + b2 + c2 + d2 + e2)2.

We will show that

E(a, b, c, d, e)≥ E(a, b, c, d + e, 0)≥ 0.

The left side inequality is equivalent to

de(a2 + b2 + c2 − 3d2 − 3e2 − 5de)≥ 0.

This is true since

a2 + b2 + c2 − 3d2 − 3e2 − 5de ≥
1
3
(a+ b+ c)2 − 3d2 − 3e2 − 5de

= 3(d + e)2 − 3d2 − 3e2 − 5de = de ≥ 0.

Also, in virtue of the Cauchy-Schwarz inequality, we have

E(a, b, c, d + e, 0) = 4[a4 + b4 + c4 + (d + e)4]− [a2 + b2 + c2 + (d + e)2]2 ≥ 0.

The equality holds for a = b = c = d and e = 0, or for a = b = c = e and d = 0.

(b) Let

E(a, b, c, d, e) = 7(a2 + b2 + c2 + d2 + e2)2 − 12(a4 + b4 + c4 + d4 + e4).

We will show that

E(a, b, c, d, e)≥ E(a, b, c, d + e, 0)≥ 0.

The left side inequality is equivalent to

de[12(d2 + e2) + 11de− 7(a2 + b2 + c2)]≥ 0.
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This is true since

12(d2 + e2) + 11de− 7(a2 + b2 + c2)≥ 12(d2 + e2) + 11de− 7(a+ b+ c)2

= 12(d2 + e2) + 11de− 7(d + e)2

= 5(d2 + e2)− 3de ≥ 0.

Also, we have

1
4

E(a, b, c, d + e, 0) =
1
4

E(a, b, c, a+ b+ c, 0)

=
∑

a4 + 2
∑

ab(a2 + b2) + 3
∑

a2 b2 − 8abc
∑

a

≥
∑

a2 b2 + 4
∑

a2 b2 + 3
∑

a2 b2 − 8abc
∑

a

= 8
�∑

a2 b2 − abc
∑

a
�

= 4
∑

a2(b− c)2 ≥ 0.

The equality holds for a = b = c = d/3 and e = 0, or for a = b = c = e/3 and
d = 0.

P 3.167. Let a, b, c, d, e be nonnegative real numbers such that

a+ b+ c + d + e = 5.

Prove that

a4 + b4 + c4 + d4 + e4 + 150≤ 31(a2 + b2 + c2 + d2 + e2).

(Vasile Cîrtoaje, 2007)

Solution. Write the inequality as
∑

(a4 − 31a2 + 30a)≤ 0,

or
∑

(1− a) f (a)≤ 0,

where
f (a) = a3 + a2 − 30a.

Without loss of generality, assume that a ≥ b ≥ c ≥ d ≥ e. Since a + b ≤ 5, we
have

f (a)− f (b) = (a− b)(a2 + ab+ b2 + a+ b− 30)

≤ (a− b)[(a+ b)2 + a+ b− 30]
= (a− b)(a+ b− 5)(a+ b+ 6)≤ 0.
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Similarly,
f (b)− f (c)≤ 0, f (c)− f (d)≤ 0, f (d)− f (e)≤ 0.

Since
a− 1≥ b− 1≥ c − 1≥ d − 1≥ e− 1

and
f (a)≤ f (b)≤ f (c)≤ f (d)≤ f (e),

by Chebyshev’s inequality, we get

5
∑

(a− 1) f (a)≤
�∑

(a− 1)
��∑

f (a)
�

= 0.

The equality holds for a = b = c = d = e = 1, and for (a, b, c, d, e) = (5, 0,0, 0,0)
or any cyclic permutation.

Remark. Similarly, we can prove the following generalization:

• If a1, a2, . . . , an are nonnegative real numbers such that

a1 + a2 + · · ·+ an = n,

then
a4

1 + a4
2 + · · ·+ a4

n + n2(n+ 1)≤ (n2 + n+ 1)(a2
1 + a2

2 + · · ·+ a2
n).

P 3.168. Let a, b, c, d, e be positive real numbers such that

a2 + b2 + c2 + d2 + e2 = 5.

Prove that
abcde(a4 + b4 + c4 + d4 + e4)≤ 5.

(Vasile Cîrtoaje, 2006)

First Solution. Without loss of generality, assume that

a ≤ b ≤ c ≤ d ≤ e.

First, we prove that the expression

E(a, b, c, d, e) = abcde(a4 + b4 + c4 + d4 + e4)

is maximal for a = d. We need to show that

E(a, b, c, d, e)≤ E

�√

√a2 + d2

2
, b, c,

√

√a2 + d2

2
, e

�

.
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This inequality is true if

4ad(a4 + b4 + c4 + d4 + e4)≤ (a2 + d2)[(a2 + d2)2 + 2(b4 + c4 + e4)],

which is equivalent to

(a2 + d2)3 − 4ad(a4 + d4) + 2(b4 + c4 + e4)(a− d)2 ≥ 0.

Since

(a2 + d2)3 − 4ad(a4 + d4) = (a2 + d2)3 − 4ad(a2 + d2)2 + 8a3d3

= (a2 + d2)[(a2 + d2)− 2ad]2 − 4a2d2(a2 + d2) + 8a3d3

= (a2 + d2)(a− d)4 − 4a2d2(a− d)2

≥ −4a2d2(a− d)2,

it suffices to show that
b4 + c4 + e4 ≥ 2a2d2.

Indeed, we have

b4 + c4 + e4 − 2a2d2 ≥ b4 + a4 + d4 − 2a2d2 = b4 + (a2 − d2)2 > 0.

Since E(a, b, c, d, e) is maximal for a = d and, on the other hand, a ≤ b ≤ c ≤ d, it
follows that E(a, b, c, d, e) is maximal for a = b = c = d. Then, it suffices to show
that the desired homogeneous inequality

�

a2 + b2 + c2 + d2 + e2

5

�9

≥ (abcde)2
�

a4 + b4 + c4 + d4 + e4

5

�2

holds for a = b = c = d = 1. Denoting e2 by x , we need to show that f (x) ≥ 0 for
x > 0, where

f (x) = 9 ln
4+ x

5
− ln x − 2 ln

4+ x2

5
.

From

f ′(x) =
9

4+ x
−

1
x
−

4x
4+ x2

=
4(x − 1)(x − 2)2

x(4+ x)(4+ x2)
,

it follows that f (x) is decreasing for 0< x ≤ 1 and increasing for x ≥ 1. Therefore,
f (x) ≥ f (1) = 0. This completes the proof. The equality holds if and only if
a = b = c = d = e = 1.

Second Solution. Replacing a, b, c, d, e by
p

a,
p

b,
p

c,
p

d,
p

e, we need to show
the homogeneous inequality

�

a+ b+ c + d + e
5

�9

≥ abcde
�

a2 + b2 + c2 + d2 + e2

5

�2

,
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where a, b, c, d, e are positive real numbers. According to Remark 1 from P 3.57, it
suffices to prove this inequality for b = c = d = e = 1; that is, to show that

�

a+ 4
5

�9

≥ a
�

a2 + 4
5

�2

.

Taking logarithms of both sides, we need to prove that f (a)≥ 0, where

f (a) = 9 ln (a+ 4)− 7 ln5− ln a− 2 ln (a2 + 4).

From

f ′(a) =
9

a+ 4
−

1
a
−

4a
a2 + 4

=
4(a− 1)(a− 2)2

a(a+ 4)(a2 + 4)
,

it follows that f (a) is decreasing for 0< a ≤ 1 and increasing for a ≥ 1; therefore,
f (a)≥ f (1) = 0.

Remark. The following more general statement holds (Vasile Cirtoaje, 2006):

• If a1, a2, . . . , an are positive real numbers such that

a1 + a2 + · · ·+ an = n,

then
(a1a2 · · · an)

1p
n−1 (a2

1 + a2
2 + · · ·+ a2

n)≤ n.

P 3.169. Let a, b, c, d, e be positive real numbers such that

a+ b+ c + d + e = 5.

Prove that
1
a
+

1
b
+

1
c
+

1
d
+

1
e
+

20
a2 + b2 + c2 + d2 + e2

≥ 9.

(Vasile Cîrtoaje, 2006)

Solution. Without loss of generality, assume that

a ≤ b ≤ c ≤ d ≤ e.

First, we prove that the expression

E(a, b, c, d, e) =
1
a
+

1
b
+

1
c
+

1
e
+

20
a2 + b2 + c2 + d2 + e2

is minimal when a = d. If this is true, then E(a, b, c, d, e) is minimal when a = b =
c = d, and it suffices to prove the desired inequality for a = b = c = d, when it is
equivalent to the obvious inequality

(a− 1)2(6a− 5)2 ≥ 0.



456 Vasile Cîrtoaje

Therefore, it remains to show that

E(a, b, c, d, d)≥ E
�

a+ d
2

, b, c,
a+ d

2
, e
�

.

This inequality is equivalent to

(a− d)2

ad(a+ d)
≥

20(a− d)2

(a2 + b2 + c2 + d2 + e2)[(a+ d)2 + 2b2 + 2c2 + 2e2]
.

Since

a2 + b2 + c2 + d2 + e2 ≥
1
5
(a+ b+ c + d + e)2 = a+ b+ c + d + e,

it suffices to show that

(a+ b+ c + d + e)[(a+ d)2 + 2b2 + 2c2 + 2e2]≥ 20ad(a+ d).

Since
a+ b+ c + d + e ≥ a+ a+ a+ d + d = 3a+ 2d

and

(a+ d)2 + 2b2 + 2c2 + 2e2 ≥ (a+ d)2 + 2a2 + 2a2 + 2d2 = 5a2 + 2ad + 3d2,

it is enough to prove that

(3a+ 2d)(5a2 + 2ad + 3d2)≥ 20ad(a+ d).

This is true, since

(3a+ 2d)(5a2 + 2ad + 3d2)− 20ad(a+ d) = 15a3 − 4a2d − 7ad2 + 6d3

> 5a3 − 4a2d − 7ad2 + 6d3

= (a− d)2(5a+ 6d)≥ 0.

The proof is completed. The equality holds for a = b = c = d = e = 1, and also for

(a, b, c, d, e) =
�

5
6

,
5
6

,
5
6

,
5
6

,
5
3

�

or any cyclic permutation.

Remark. The following more general statement holds (Vasile Cirtoaje, 2006):

• If a1, a2, . . . , an are positive real numbers such that

a1 + a2 + · · ·+ an = n,

then
1
a1
+

1
a2
+ · · ·+

1
an
+

2n
p

n− 1
a2

1 + a2
2 + · · ·+ a2

n

≥ n+ 2
p

n− 1.
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P 3.170. If a, b, c, d, e ≥ 1, then

�

a+
1
a

��

b+
1
b

��

c +
1
c

��

d +
1
d

��

e+
1
e

�

+ 68≥

≥ 4(a+ b+ c + d + e)
�

1
a
+

1
b
+

1
c
+

1
d
+

1
e

�

.

(Vo Quoc Ba Can and Vasile Cîrtoaje, 2011)

Solution. Write the inequality as E(a, b, c, d, e)≥ 0, and denote

A=
�

a+
1
a

��

b+
1
b

��

c +
1
c

��

d +
1
d

�

, A≥ 16.

We claim that
E(a, b, c, d, e)≥ E(a, b, c, d, 1).

If this is true, then (by symmetry)

E(a, b, c, d, e)≥ E(a, b, c, d, 1)≥ ...≥ E(a, 1, 1, 1, 1) = 0,

and the proof is completed. Since

E(a, b, c, d, e)− E(a, b, c, d, 1) = (e− 1)
�

B −
C
e

�

,

we need to show that

B −
C
e
≥ 0,

where

B = A− 4
�

1
a
+

1
b
+

1
c
+

1
d

�

,

C = A− 4(a+ b+ c + d).

Since A≥ 16 and
1
a
+

1
b
+

1
c
+

1
d
≤ 4,

it follows that B ≥ 0. For the non-trivial case C ≥ 0, we have

B −
C
e
≥ B − C = 4

�

a−
1
a

�

+ 4
�

b−
1
b

�

+ 4
�

c −
1
c

�

+ 4
�

d −
1
d

�

≥ 0.

The equality holds for a = b = c = d = 1 (or any cyclic permutation).
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P 3.171. If a, b, c and x , y, z are nonnegative real numbers such that

x3 + y3 + z3 = a3 + b3 + c3,

then
(a+ b+ c)(x + y + z)≥ x y + yz + zx + ab+ bc + ca.

(Vasile Cîrtoaje, 2020)

Solution. Denote
t = x + y + z.

From the known inequalities

(x + y + z)3 ≥ x3 + y3 + z3, (x + y + x)3 ≤ 9(x3 + y3 + z3),

we get
x + y + z ≥ 3

p

x3 + y3 + z3 =
3
p

a3 + b3 + c3,

x + y + z ≤ 3
Æ

9(x3 + y3 + z3) = 3
Æ

9(a3 + b3 + c3),

hence
t1 ≤ t ≤ t2,

where
t1 =

3
p

a3 + b3 + c3, t2 =
3
Æ

9(a3 + b3 + c3).

On the other hand, it is enough to prove the inequality

(a+ b+ c)(x + y + z)≥
(a+ b+ c)2

3
+
(x + y + z)2

3
,

or, better, the inequality

(a+ b+ c)(x + y + z)≥
5(a+ b+ c)2

12
+
(x + y + z)2

3
,

which is equivalent to

5t2 − 12(x + y + z)t + 4(x + y + z)2 ≤ 0,

[t − 2(x + y + z)) [5t − 2(x + y + z)]≤ 0.

This is true if t1 ≥
2
5
(x + y + z) and t2 ≤ 2(x + y + z. Thus, we need to show that

x3 + y3 + z3 ≥
8

125
(x + y + z)3

and
4(x3 + y3 + z3)≤ 8(x + y + z)3.
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These follow immediately from the known inequalities

x3 + y3 + z3 ≥
1
9
(x + y + z)3

and
x3 + y3 + z3 ≤ (x + y + z)3.

The equality holds for a = b = x = y = z = 0.

Remark 1. Using the same method, we can prove the stronger inequalities

3k(a+ b+ c)(x + y + z)≥ (x y + yz + zx)2 + (ab+ bc + ca)2,

k(a+ b+ c)(x + y + z)≥ x y + yz + zx + ab+ bc + ca,

where

k =
1

3p3
+

3p3
9
≈ 0.8536.

Remark 2. In the same conditions, the following inequality holds:

k(a+ b+ c)(x + y + z)≥ x y + yz + zx + ab+ bc + ca, k =
1

3p3
≈ 0.6934,

with equality for a = b = c = x = y = z. If a ≥ b ≥ c and x ≥ y ≥ z, the equality

occurs also for a = b = c =
x

3p3
and y = z = 0, and for x = y = z =

a
3p3

and

b = c = 0.

P 3.172. Let a, b, c, d, e, f be nonnegative real numbers such that

a2 + b2 + c2 + d2 + e2 + f 2 = 6.

If a ≥ b ≥ c ≥ d ≥ e ≥ f , then

1− abcde f ≤
3
2
(a− f )2.

(Vasile Cîrtoaje, 2019)

Solution. For a = f , the inequality is a trivial equality. Consider next that a > f ,
give up the condition b ≥ c ≥ d ≥ e (consider only that b, c, d, e ∈ [ f , a]) and write
the inequality in the homogeneous form T ≥ 0, where

T = 216abcde f + 9(a− f )2G2 − G3, G = a2 + b2 + c2 + d2 + e2 + f 2.

For fixed a, c, d, e and f , T is a function of b, b ∈ [ f , a]. We have

T ′(b) = 216acde f + 36(a− f )2 bG − 6bG2 = 6bGE(b),
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where

E(b) =
36acde f

bG
+ 6(a− f )2 − G.

Since E(b) is a decreasing function, there are three possible cases: (1) E(b) ≥ 0
for b ∈ [ f , a], hence T (b) is increasing on [ f , a]; (2) E(b) ≥ 0 for b ∈ [ f , f1] and
E(b) ≤ 0 for b ∈ [ f1, a], hence T (b) is increasing on [ f , f1] and decreasing on
[ f1, a]; (3) E(b) ≤ 0 for b ∈ [ f , a], hence T (b) is decreasing on [ f , a]. In all these
cases T (b) is minimal when b ∈ {a, f }. As a consequence, we only need to prove
the required inequality for b ∈ {a, f }. Similarly, we only need to prove the required
inequality for c, d, e ∈ {a, f }. So, we need to show that

216ak f 6−k + 9(a− f )2[ka2 + (6− k) f 2]2 − [ka2 + (6− k) f 2]3 ≥ 0,

where
k ∈ {1,2, 3,4, 5}.

For f = 0, the inequality reduces to

k(9− k)a4 ≥ 0,

which is true for k ∈ {1,2, 3,4, 5}. Next, due to homogeneity, we may set d = 1
(which involves a > 1). The required inequality becomes

9(a− 1)2(ka2 + 6− k)2 ≥ (ka2 + 6− k)3 − 216ak.

Case 1: k = 1. We need to show that

9(a− 1)2(a2 + 5)2 ≥ (a2 + 5)3 − 216a,

9(a− 1)2(a2 + 5)2 ≥ (a− 1)2(a4 + 2a3 + 18a2 + 34a+ 125),

2(a− 1)2(4a4 − a3 + 36a2 − 17a+ 50)≥ 0.

The last inequality is true because

2a4 − a3 + 36a2 − 17a+ 50> 4a2(a− 1)2 + 2(2a− 5)2 > 0.

Case 2: k = 2. We need to show that

9(a− 1)2(a2 + 2)2 ≥ 2(a2 + 2)3 − 54a2,

9(a− 1)2(a2 + 2)2 ≥ 2(a2 − 1)2(a2 + 8),

(a− 1)2(7a4 − 4a3 + 18a2 − 32a+ 20)≥ 0.

The last inequality is true because

7a4 − 4a3 + 18a2 − 32a+ 20> 2a2(a− 1)2 + 16(a− 1)2 > 0.
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Case 3: k = 3. We need to show that

3(a− 1)2(a2 + 1)2 ≥ (a2 + 1)3 − 8a3,

9(a− 1)2(a2 + 2)2 ≥ (a− 1)2(a4 + 2a3 + 6a2 + 2a+ 1),

2(a− 1)3(a3 − 1)≥ 0.

Case 4: k = 4. We need to show that

9(a− 1)2(2a2 + 1)2 ≥ 2(2a2 + 1)3 − 54a4,

9(a− 1)2(2a2 + 1)2 ≥ 2(a2 − 1)2(8a2 + 1),

(a− 1)2(20a4 − 32a3 + 18a2 − 4a+ 7)≥ 0.

The last inequality is true because

20a4 − 32a3 + 18a2 − 4a+ 7> 16a2(a− 1)2 + 2(a− 1)2 > 0.

Case 5: k = 5. We need to show that

9(a− 1)2(5a2 + 1)2 ≥ (5a2 + 1)3 − 216a5,

9(a− 1)2(5a2 + 1)2 ≥ (a− 1)2(125a4 + 34a3 + 18a2 + 2a+ 1),

2(a− 1)2(50a4 − 17a3 + 36a2 − a+ 4)≥ 0.

The last inequality is true because

50a4 − 17a3 + 36a2 − a+ 4> 2a2(5a− 2)2 + 4(a− 1)2 > 0.

The proof is completed. The equality occurs for a = b = c = d = e = f = 1.

Remark. The following more general statement holds:

• If a1, a2, . . . , an are nonnegative real numbers such that

a2
1 + a2

2 + · · ·+ a2
n = n, a1 ≥ a2 ≥ · · · ≥ an,

then
1− a1a2 · · · an ≤

n
4
(a1 − an)

2,

with equality for a1 = a2 = · · ·= an = 1.

To prove this inequality, we need to show that

4− 4ak bn−k ≤ n(a− b)2

for a ≥ 1≥ b ≥ 0 and

ka2 + (n− k)b2 = n, k ∈ {1, 2, . . . , n− 1}.
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P 3.173. Let a1, a2, . . . , an and b1, b2, . . . , bnbe nonnegative real numbers such that

a2
1 + a2

2 + · · ·+ a2
n = b2

1 + b2
2 + · · ·+ b2

n.

Then, for n= 3 and n= 4, the following inequalities holds:

(n− 1)(a1 + a2 + · · ·+ an)(b1 + b2 + · · ·+ bn)≥ n

�

∑

i< j

aia j +
∑

i< j

bi b j

�

.

(Vasile Cîrtoaje, 2020)

Solution. Denote

a = a1 + a2 + · · ·+ an, b = b1 + b2 + · · ·+ bn, c =
q

n(b2
1 + b2

2 + · · ·+ b2
n),

and write the inequality as

2(n− 1)ab+ 2c2 ≥ na2 + nb2.

We have

a ≤
q

n(a2
1 + a2

2 + · · ·+ a2
n) =

q

n(b2
1 + b2

2 + · · ·+ b2
n) = c

and
a ≥

q

a2
1 + a2

2 + · · ·+ a2
n =

q

b2
1 + b2

2 + · · ·+ b2
n =

c
p

n
.

For fixed b and c, we may write the required inequality as f (a)≤ 0, where

f (a) = na2 − 2(n− 1)ab+ nb2 − 2c2

is a quadratic convex function. Thus, it is enough to show that f (c) ≤ 0 and
f (c/
p

n)≤ 0. We have

f (c) = nb2 − 2(n− 1)bc + (n− 2)c2 = (b− c)[nb− (n− 2)c]≤ 0.

Since b ≤ c and nb ≥ (n − 2)c for n = 3 and n = 4, we have f (c) ≤ 0. The
inequality f (c/

p
n)≤ 0 is equivalent to

nb2 −
2(n− 1)
p

n
bc − c2 ≤ 0.

Since c ≥ b, it is enough to show that

n−
2(n− 1)
p

n
− 1≤ 0,

which is true for n= 3 and n= 4.
The proof is completed. The equality occurs when all ai and bi are equal.
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P 3.174. Let a, b, c and x , y, z be positive real numbers such that

(a+ b+ c)(x + y + z) = (a2 + b2 + c2)(x2 + y2 + z2) = 4.

Prove that
abcx yz <

1
36

.

(Vasile Cîrtoaje, 1997)

Solution. Using the AM-GM inequality, we have

4(ab+ bc + ca)(x y + yz + zx) =

= [(a+ b+ c)2 − (a2 + b2 + c2)][(x + y + z)2 − (x2 + y2 + z2)]

= 20− (a+ b+ c)2(x2 + y2 + z2)− (x + y + z)2(a2 + b2 + c2)

≤ 20− 2(a+ b+ c)(x + y + z)
Æ

(a2 + b2 + c2)(x2 + y2 + z2) = 4,

hence
(ab+ bc + ca)(x y + yz + zx)≤ 1.

On the other hand, multiplying the well-known inequalities

(ab+ bc + ca)2 ≥ 3abc(a+ b+ c)

and
(x y + yz + zx)2 ≥ 3x yz(x + y + z),

we get
(ab+ bc + ca)2(x y + yz + zx)2 ≥ 36abcx yz,

hence
1≥ (ab+ bc + ca)2(x y + yz + zx)2 ≥ 36abcx yz.

In order to have 36abcx yz = 1, the following relations are necessary:

(ab+ bc + ca)2 = 3abc(a+ b+ c)

and
(x y + yz + zx)2 = 3x yz(x + y + z).

These relations imply a = b = c and x = y = z, which contradict the hypothesis

(a+ b+ c)(x + y + z) = (a2 + b2 + c2)(x2 + y2 + z2) = 4.

Consequently, we have abcx yz <
1

36
.

Remark. The following sharper result holds (Vasile Cirtoaje and Vo Quoc Ba Can,
2008):
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• If a, b, c and x , y, z are positive real numbers such that

(a+ b+ c)(x + y + z) = (a2 + b2 + c2)(x2 + y2 + z2) = 4,

then
abcx yz ≤

16
729

,

with equality for (a, b, c) =
�

1
3

,
1
3

,
4
3

�

(or any cyclic permutation) and (x , y, z) =
�

1
3

,
1
3

,
4
3

�

(or any cyclic permutation).

P 3.175. Let a1, a2, · · · , an (n≥ 3) be positive real numbers such that

a1 + a2 + · · ·+ an = a2
1 + a2

2 + · · ·+ a2
n = n− 1.

Prove that
1
a1
+

1
a2
+ · · ·+

1
an
≥

n2(2n− 3)
2(n− 1)(n− 2)

.

(Vasile Cîrtoaje, 2010)

Solution. By the Cauchy-Schwarz inequality, we have

n− 1= a2
1 + a2

2 + · · ·+ a2
n ≥
(a1 + a2 + · · ·+ an−1)2

n− 1
+ a2

n

=
(n− 1− an)2

n− 1
+ a2

n,

which provides

an ≤
2(n− 1)

n
.

Similarly, ai ≤ 2(n− 1)/n for all i. The hint for proving the given inequality is to
apply the Cauchy-Schwarz inequality after we made the numerators nonnegative
and as small as possible. So, since 2n− 2− nai ≥ 0, we have

∑ 1
a1
=
∑

�

1
a1
−

n
2n− 2

�

+
n2

2n− 2

=
1

2(n− 1)

∑ 2n− 2− na1

a1
+

n2

2n− 2

≥
1

2(n− 1)
·

�∑

(2n− 2− na1)
�2

∑

a1(2n− 2− na1)
+

n2

2n− 2

=
1

2(n− 1)
·

�

n(2n− 2)− n
∑

a1

�2

(2n− 2)
∑

a1 − n
∑

a2
1

+
n2

2n− 2

=
1

2(n− 1)
·

n2(n− 1)2

(n− 1)(n− 2)
+

n2

2n− 2
=

n2(2n− 3)
2(n− 1)(n− 2)

,
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from where the conclusion follows. The equality holds for a1 = a2 = · · · = an−1 =
1− 2/n and an = 2− 2/n (or any cyclic permutation).

P 3.176. Let a1, a2, · · · , an be positive real numbers such that

a1 + a2 + · · ·+ an = n.

Prove that

n2
�

1
a1
+

1
a2
+ · · ·+

1
an
− n

�

≥ 4(n− 1)(a2
1 + a2

2 + · · ·+ a2
n − n).

(Vasile Cîrtoaje, 2004)

Solution. From

1
n
(a1 + a2 + · · ·+ an)

2 ≤ a2
1 + a2

2 + · · ·+ a2
n < (a1 + a2 + · · ·+ an)

2,

it follows that
n≤ a2

1 + a2
2 + · · ·+ a2

n < n2.

Thus, we can use the substitution

a2
1 + a2

2 + · · ·+ a2
n = n+ n(n− 1)t2,

where 0≤ t < 1. On the other hand, from

a2
1 + a2

2 + · · ·+ a2
n ≥ a2

1 +
(a2 + · · ·+ an)2

n− 1
= a2

1 +
(n− a1)2

n− 1
,

we get

n+ n(n− 1)t2 ≥ a2
1 +
(n− a1)2

n− 1
,

which involves 1− (n− 1)t ≤ a1 ≤ 1+ (n− 1)t; similarly, we get

1− (n− 1)t ≤ ai ≤ 1+ (n− 1)t

for any i. We will apply now the Cauchy-Schwarz inequality after we made the
numerators nonnegative and as small as possible. Since

∑ 1
a1
=
∑ 1

1+ (n− 1)t
+
∑

�

1
a1
−

1
1+ (n− 1)t

�

=
n

1+ (n− 1)t
+

1
1+ (n− 1)t

∑ 1+ (n− 1)t − a1

a1

and
a2

1 + a2
2 + · · ·+ a2

n − n= n(n− 1)t2,
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we can write the desired inequality as

∑ 1+ (n− 1)t − a1

a1
≥ n(n− 1)t +

4(n− 1)2 t2[1+ (n− 1)t]
n

.

By virtue of the Cauchy-Schwarz inequality, we have

∑ 1+ (n− 1)t − a1

a1
≥

�∑

(1+ (n− 1)t − a1)
�2

∑

a1(1+ (n− 1)t − a1)

=

�

n+ n(n− 1)t −
∑

a1

�2

(1+ (n− 1)t)
∑

a1 −
∑

a2
1

=
n(n− 1)t

1− t
,

Therefore, it suffices to prove that

n(n− 1)t
1− t

≥ n(n− 1)t +
4(n− 1)2 t2[(1+ (n− 1)t])

n
.

This inequality is true if

4(n− 1)(1− t)[1+ (n− 1)t]≤ n2.

Indeed,

4(n− 1)(1− t)[1+ (n− 1)t]≤ [(n− 1)(1− t) + 1+ (n− 1)t]2 = n2.

The equality holds for a1 = a2 = · · · = an = 1, and also for a1 =
n
2

and a2 = · · · =

an =
n

2n− 2
(or any cyclic permutation).

P 3.177. If a1, a2, . . . , an are positive real numbers such that

a1 + a2 + · · ·+ an = n, a2, a3, . . . , an ≥ 1,

then
1
a1
+

1
a2
+ · · ·+

1
an
≥ a2

1 + a2
2 + · · ·+ a2

n.

(Vasile C., 2021)

Solution. We will use the induction method. For n = 2, we need to show that
a1 + a2 = 2 involves

1
a1
+

1
a2
≥ a2

1 + a2
2.
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This is equivalent to
(a1a2 − 1)2 ≥ 0.

Next, consider n≥ 3 and assume that

a1 ≤ 1≤ a2 ≤ · · · ≤ an.

For fixed a1 and a3, . . . , an−1, write the required inequality as f (a2)≥ 0, where

f (a2) =
1
a1
+

1
a2
+ · · ·+

1
an
− (a2

1 + a2
2 + · · ·+ a2

n), an = n− a1 − a2 − · · · − an.

We will show that
f (a2)≥ f (1)≥ 0.

Since
2a2

2a2
n ≥ 2a2

n ≥ 2an ≥ a2 + an,

we have

f ′(a2) =
−1
a2

2

+
1
a2

n

− 2(a2 − an) = (an − a2)

�

2−
a2 + an

a2
2a2

n

�

≥ 0,

f (a2) is increasing, hence f (a2)≥ f (1). The inequality f (1)≥ 0 has the form

1
a1
+

1
a3
+ · · ·+

1
an
≥ a2

1 + a2
3 + · · ·+ a2

n.

where an = n− 1− a1 − a3 − · · · − an−1 and a1 ≤ 1 ≤ a3 ≤ · · · ≤ an. Clearly, this is
true by the induction hypothesis.

The equality occurs for a1 = a2 = · · ·= an = 1.

P 3.178. Let a1, a2, · · · , an be nonnegative real numbers such that

a1 + a2 + · · ·+ an = n.

Prove that
(n+ 1)(a2

1 + a2
2 + · · ·+ a2

n)≥ n2 + a3
1 + a3

2 + · · ·+ a3
n.

(Vasile Cîrtoaje, 2002)

First Solution. If a1 = a2 = · · · = an, then the equality holds. Otherwise, as in the
preceding proof, we will use the substitution

a2
1 + a2

2 + · · ·+ a2
n = n+ n(n− 1)t2, 0< t ≤ 1;

in addition, we have

1− (n− 1)t ≤ ai ≤ 1+ (n− 1)t, i = 1, 2, . . . , n.
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From the Cauchy-Schwarz inequality

∑

[1+ (n− 1)t − a1]a
2
1 ≥
[
∑

(1+ (n− 1)t − a1)a1]2
∑

[1+ (n− 1)t − a1]
= n(n− 1)t(1− t)2,

we get
∑

a3
1 ≤ [1+ (n− 1)t]

∑

a2
1 − n(n− 1)t(1− t)2

= n[(n− 1)(n− 2)t3 + 3(n− 1)t2 + 1].

Therefore, it suffices to show that

(n+ 1)[n+ n(n− 1)t2]≥ n2 + n[(n− 1)(n− 2)t3 + 3(n− 1)t2 + 1],

which is equivalent to the obvious inequality

n(n− 1)(n− 2)t2(1− t)≥ 0.

For n = 2, the original inequality is an identity. For n ≥ 3, the equality holds for
a1 = a2 = · · · = an = 1, and also for a1 = n and a2 = · · · = an = 0 (or any cyclic
permutation).

Second Solution. Assume that

a1 ≥ a2 ≥ · · · ≥ an.

Replacing n2 by n(a1 + a2 + · · ·+ an), the desired inequality becomes as follows
∑

[(n+ 1)a2
1 − na1 − a3

1]≥ 0,
∑

(a1 − 1)(na1 − a2
1)≥ 0.

Since
a1 − 1≥ a2 − 1≥ · · · ≥ an − 1

and
na1 − a2

1 ≥ na2 − a2
2 ≥ · · · ≥ nan − a2

n,

we apply Chebyshev’s inequality to get

n
∑

(a1 − 1)(na1 − a2
1)≥

�∑

(a1 − 1)
��∑

(na1 − a2
1)
�

= 0.

P 3.179. Let a1, a2, · · · , an be nonnegative real numbers such that

a1 + a2 + · · ·+ an = n.

Prove that

(n− 1)(a3
1 + a3

2 + · · ·+ a3
n) + n2 ≥ (2n− 1)(a2

1 + a2
2 + · · ·+ a2

n).

(Vasile Cîrtoaje, 2002)
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Solution. For a1 = a2 = · · · = an, the equality holds. Otherwise, as in the proof of
P 3.171, we will use the substitution

a2
1 + a2

2 + · · ·+ a2
n = n+ n(n− 1)t2, 0< t ≤ 1;

in addition, for any i, we have

1− (n− 1)t ≤ ai ≤ 1+ (n− 1)t.

By the Cauchy-Schwarz inequality, we have

∑

[a1 − 1+ (n− 1)t]a2
1 ≥
[
∑

(a1 − 1+ (n− 1)t)a1]2
∑

[a1 − 1+ (n− 1)t]
= n(n− 1)t(t + 1)2,

which yields
∑

a3
1 ≥ n(n− 1)t(t + 1)2 + [1− (n− 1)t]

∑

a2
1

= n[1+ 3(n− 1)t2 − (n− 1)(n− 2)t3].

Therefore, it suffices to show that

(n− 1)n[1+ 3(n− 1)t2 − (n− 1)(n− 2)t3] + n2 ≥ (2n− 1)[n+ n(n− 1)t2],

which is equivalent to the obvious inequality

n(n− 1)(n− 2)t2[1− (n− 1)t]≥ 0.

The equality holds for a1 = a2 = · · · = an = 1, and also for a1 = 0 and a2 = · · · =
an =

n
n− 1

(or any cyclic permutation).

P 3.180. Let a1, a2, . . . , an (n≥ 3) be positive real numbers such that

a1 + a2 + · · ·+ an = n.

Prove that
a2

1 + a2
2 + · · ·+ a2

n − n≥
n

n− 1
(1− a1a2 · · · an).

Solution. According to Remark 1 from P 3.57, for a2
1+a2

2+· · ·+a2
n = constant, the

product a1a2 · · · an is minimal when one of a1, a2, . . . , an is zero or n−1 numbers of
a1, a2, . . . , an are equal. Therefore, it suffices to consider these cases.

Case 1: a1 = 0. We need to show that a2 + a3 + · · ·+ an = n involves

a2
2 + a2

3 + · · ·+ a2
n ≥

n2

n− 1
.
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Indeed, by the Cauchy-Schwarz inequality, we have

a2
2 + a2

3 + · · ·+ a2
n ≥

1
n− 1

(a2 + a3 + · · ·+ an)
2 =

n2

n− 1
.

Case 2: a2 = a3 = · · ·= an. Setting a1 = x and a2 = y , we need to show that

x + (n− 1)y = n

involves
x2 + (n− 1)y2 − n+

n
n− 1

�

x yn−1 − 1
�

≥ 0.

By Bernoulli’s inequality, we have

yn−1 =
�

1+
1− x
n− 1

�n−1

≥ 1+ (1− x) = 2− x .

Therefore, it suffices to prove that

x2 + (n− 1)y2 − n+
n

n− 1
[x(2− x)− 1]≥ 0,

which is an identity. The equality holds for a1 = a2 = · · · = an = 1/n, and also for

a1 = 0 and a2 = · · ·= an =
n

n− 1
(or any cyclic permutation).

P 3.181. If a1, a2, . . . , an are positive numbers such that a1 + a2 + · · ·+ an = n and

a1a2 · · · an ≤
1

(n− 1)n−2
,

then
1
a1
+

1
a2
+ · · ·+

1
an
≥ a2

1 + a2
2 + · · ·+ a2

n.

(Vasile Cîrtoaje, 2018)

Solution. According to Remark 3 from P 3.58, the following statement is valid:

• If a1, a2, . . . , an are positive real numbers so that

a1 + a2 + · · ·+ an = n , a1a2 · · · an = constant , a1 ≥ a2 ≥ · · · ≥ an ,

then the sums
1
a1
+

1
a2
+ · · ·+

1
an
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and
−(a2

1 + a2
2 + · · ·+ a2

n)

are minimal when a1 ≥ a2 = · · ·= an.
Thus, it is enough to consider the case a1 ≥ a2 = · · ·= an, that means to show that

1
x
+

n− 1
y
≥ x2 + (n− 1)y2

for
x + (n− 1)y = n, x yn−1 ≤

1
(n− 1)n−2

, n> x ≥ 1≥ y > 0.

Write the inequality as follows:

(n− 1)(1− y3)
y

≥
x3 − 1

x
,

(n− 1)(1− y)(1+ y + y2)
y

≥
(x − 1)(x2 + x + 1)

x
,

(n− 1)(1− y)(1+ y + y2)
y

≥
(n− 1)(1− y)(x2 + x + 1)

x
,

(1− y)
�

1
y
+ y − x −

1
x

�

≥ 0,

(1− y)(x − y)(1− x y)≥ 0,

(1− y)2(1− x y)≥ 0.

So, we need to show that 1−x y ≥ 0. For x = 1, which implies y = 1, the inequality
is an equality. Consider further x > 1. Since

1− x y = 1−
(n− x)x

n− 1
=
(x − 1)(x − n+ 1)

n− 1
,

we need to prove that x ≥ n − 1. Write the hypothesis x yn−1 ≤
1

(n− 1)n−2
as

f (x)≥ 0, where
f (x) = n− 1− x(n− x)n−1.

From
f ′(x) = n(n− x)n−2(x − 1)> 0,

it follows that f is strictly increasing. Since f (n− 1) = 0, the hypothesis f (x) ≥ 0
involves x ≥ n− 1.

The inequality is an equality for a1 = n− 1 and a2 = · · · = an =
1

n− 1
(or any

cyclic permutation).
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P 3.182. If a1, a2, . . . , an are nonnegative real numbers such that

a1 ≤ a2 ≤ · · · ≤ an,

then
a1 + a2 + · · ·+ an

n
− n
p

a1a2 · · · an ≤
�

1−
1
n

�

�
p

an −
p

a1

�2
.

(Vasile Cîrtoaje, 2005)

Solution. Based on Lemma below (or Remark from P 2.104 applied to the function
− ln x), it suffices to consider the case when k−1 of a2, a3, . . . , an−1 are equal to a1,
and the other n−1−k of a2, a3, . . . , an−1 are equal to an, where k ∈ {1,2, . . . , n−1}.
The required inequality becomes

ka1 + (n− k)an − n n
q

ak
1an−k

n ≤ (n− 1)
�
p

an −
p

a1

�2
,

(n− k− 1)a1 + (k− 1)an + n n
q

ak
1an−k

n ≥ (2n− 2)
p

a1an.

Clearly, this inequality follows from the AM-GM inequality applied to 2n− 2 num-
bers. The equality occurs when a1 = a2 = · · · = an, and also when a1 = 0 and
a2 = a3 = · · ·= an.

Lemma (Vasile Cîrtoaje, 1990). Let a1, a2, . . . , an be nonnegative real numbers such
that

a1 ≤ a2 ≤ · · · ≤ an.

For fixed a1 and an, the expression

E = a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an

is maximum when a2, a3, . . . , an−1 ∈ {a1, an}.

Proof. For fixed a1, a3, . . . , an, define the function

f (a2) = a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an.

Denote
b2 = n−1

p

a1a3 · · · an.

From

f ′(a2) = 1− n

√

√a1a3 · · · an

an−1
2

= 1−
�

b2

a2

�(n−1)/n

,

it follows that f ′(a2)≥ 0 for x2 ∈ [a1, b2], and f ′(a2)≤ 0 for x2 ∈ [b2, an], f (a2) is
increasing on [a1, b2] and decreasing on [b2, an], therefore f (a2) is maximal when
a2 ∈ {a1, an}. Similarly, the expression E is maximal when x3, . . . , xn−1 ∈ {a1, an}.
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P 3.183. Let a1, a2, . . . , an (n≥ 3) be positive real numbers such that

a1 ≤ a2 ≤ · · · ≤ an,

(a1 + a2 + · · ·+ an)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

= k.

(a) If n2 < k ≤ n2 +
i(n− i)

2
, i ∈ {2, 3, · · · , n− 1}, then ai−1, ai and ai+1 are

the lengths of the sides of a non-degenerate or degenerate triangle;

(b) If n2 < k ≤ αn, where αn =
9n2

8
for even n, and αn =

9n2 − 1
8

for odd n,

then there exist three numbers ai which are the lengths of the sides of a non-degenerate
or degenerate triangle.

(Vasile Cîrtoaje, 2010)

Solution. From the AM-HM inequality, we have

(a1 + a2 + · · ·+ an)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

≥ n2,

with equality if and only if a1 = a2 = · · · = an. Therefore, the hypothesis k > n2 in
(a) and (b) involves a1 < an.

(a) For the sake of contradiction, assume that ai−1, ai and ai+1 are not the
lengths of the sides of a triangle; that is,

ai+1 > ai−1 + ai.

Let us denote
x =

a1 + · · ·+ ai−1

i − 1
,

y =
ai+1 + · · ·+ an

n− i
,

A(x , y) = (i − 1)x + ai + (n− i)y,

B(x , y) =
i − 1

x
+

1
ai
+

n− i
y

,

f (x , y) = A(x , y)B(x , y).

We have
x ≤ ai−1 ≤ ai < ai+1 ≤ y, x < y,

A(x , y) = a1 + a2 + · · ·+ an,

B(x , y)≤
�

1
a1
+ · · ·+

1
ai−1

�

+
1
ai
+
�

1
ai+1

+ · · ·+
1
an

�

=
1
a1
+

1
a2
+ · · ·+

1
an

,

f (x , y)≤ (a1 + a2 + · · ·+ an)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

= k.
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On the other hand, we claim that

f (x , y)> f (ai−1, ai−1 + ai).

This inequality is equivalent to

[ai−1 y − (ai−1 + ai)x][(ai−1 + ai)y − ai−1 x]> 0,

and is true since y ≥ ai+1 > ai−1 + ai and x ≤ ai−1 imply

ai−1 y − (ai−1 + ai)x > ai−1(ai−1 + ai)− (ai−1 + ai)ai−1 = 0.

Then, we have

k ≥ f (x , y)> f (ai−1, ai−1 + ai)

= [(n− 1)ai−1 + (n− i + 1)ai]
�

i − 1
ai−1

+
1
ai
+

n− i
ai−1 + ai

�

≥ n2 +
i(n− i)

2
,

which contradicts the hypothesis k ≤ n2 +
i(n− i)

2
. Setting ai−1 = 1 and denoting

ai = t, t ≥ 1, the last inequality becomes

[n− 1+ (n− i + 1)t][1+ nt + (i − 1)t2]
t(1+ t)

≥ n2 +
i(n− i)

2
,

or
(t − 1)(C t2 + Dt + E)≥ 0,

where

C = 2(i − 1)(n− i + 1), D = (i − 2)(n− i), E = −2(n− 1).

This is true, since

C t2 + Dt + E ≥ C + D+ E = 3(i − 2)(n− i)≥ 0.

(b) We apply the result of (a). If n is even, then n2 +
i(n− i)

2
attains its max-

imum
9n2

8
for i =

n
2

. If n is odd, then n2 +
i(n− i)

2
attains its maximum

9n2 − 1
8

for i =
n± 1

2
.
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P 3.184. Let a1, a2, . . . , an (n≥ 3) be positive real numbers such that

a1 ≤ a2 ≤ · · · ≤ an,

(a1 + a2 + · · ·+ an)
2 = k(a2

1 + a2
2 + · · ·+ a2

n).

(a) If
(2n− i)2

4n− 3i
≤ k < n, i ∈ {2, 3, · · · , n− 1}, then ai−1, ai and ai+1 are the

lengths of the sides of a non-degenerate or degenerate triangle;

(b) If
8n+ 1

9
≤ k < n, then there exist three numbers ai which are the lengths

of the sides of a non-degenerate or degenerate triangle.

(Vasile Cîrtoaje, 2010)

Solution. From the the Cauchy-Schwarz inequality, we have

(a1 + a2 + · · ·+ an)
2 ≤ n(a2

1 + a2
2 + · · ·+ a2

n),

with equality if and only if a1 = a2 = · · · = an. Therefore, the hypothesis k < n in
(a) and (b) involves a1 < an.

(a) For the sake of contradiction, assume that ai−1, ai and ai+1 are not the
lengths of the sides of a triangle; that is,

ai+1 > ai−1 + ai.

Let us denote
x =

a1 + · · ·+ ai−1

i − 1
,

y =
ai+1 + · · ·+ an

n− i
,

A(x , y) = (i − 1)x + ai + (n− i)y,

B(x , y) = (i − 1)x2 + a2
i + (n− i)y2,

f (x , y) =
A2(x , y)
B(x , y)

.

We have
x ≤ ai−1 ≤ ai < ai+1 ≤ y, x < y,

A(x , y) = a1 + a2 + · · ·+ an,

B(x , y)≤ (a2
1 + · · ·+ a2

i−1) + a2
i + (a

2
i+1 + · · ·+ a2

n) = a2
1 + a2

2 + · · ·+ a2
n,

f (x , y)≥
(a1 + a2 + · · ·+ an)2

a2
1 + a2

2 + · · ·+ a2
n

= k.

On the other hand, from

∂ f (x , y)
∂ x

=
2(i − 1)AC

B2
> 0
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and
∂ f (x , y)
∂ y

=
2(n− i)AD

B2
< 0,

where
C = ai(ai − x) + (n− i)y(y − x)> 0,

D = ai(ai − y) + (i − 1)x(x − y)< 0,

it follows that f (x , y) is strictly increasing with respect to x and strictly decreasing
with respect to y . Then, since x ≤ ai−1 and y ≥ ai+1 > ai−1 + ai, we have

f (x , y)< f (ai−1, ai−1 + ai).

This involves
k < f (ai−1, ai−1 + ai),

hence

k <
[(i − 1)ai−1 + ai + (n− i)(ai−1 + ai)]2

(i − 1)a2
i−1 + a2

i + (n− i)(ai−1 + ai)2

=
[(n− 1)ai−1 + (n− i + 1)ai]2

(n− 1)a2
i−1 + 2(n− i)ai−1ai + (n− i + 1)a2

i

≤
(2n− i)2

4n− 3i
,

which contradicts the hypothesis k ≥
(2n− i)2

4n− 3i
. Setting ai−1 = 1 and denoting

ai = t, t ≥ 1, the last inequality becomes

[n− 1+ (n− i + 1)t]2

n− 1+ 2(n− i)t + (n− i + 1)t2
≤
(2n− i)2

4n− 3i
,

or
(t − 1)(Et − F)≥ 0,

where
E = (n− i + 1)[(3i − 4)n− 2i2 + 3i],

F = (n− 1)[(4− i)n+ i2 − 3i].

Since
E = (n− i + 1)[(3i − 4)(n− i − 1) + i2 + 2i − 4]> 0,

we get
Et − F ≥ E − F = 2(i − 2)(n− i)(2n− i)≥ 0.

(b) According to (a), it suffices to show that there exists i ∈ {2,3, · · · , n− 1}
such that

(2n− i)2

4n− 3i
≤

8n+ 1
9

;
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that is,
4n− 3i ≥ (2n− 3i)2.

Since one of the numbers
2n− 1

3
,

2n
3

and
2n+ 1

3
is integer, it suffices to prove this

inequality for all i ∈
§

2n− 1
3

,
2n
3

,
2n+ 1

3

ª

. Indeed, for these cases, the inequality

reduces to 2n≥ 0, 2n≥ 0 and 2n− 2≥ 0, respectively.
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