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Chapter 1

Symmetric Rational Inequalities

1.1 Applications

1.1.

1.2.

1.3.

1.4.

If a, b are nonnegative real numbers, then

1 + 1 S 1
(14+a)® (1+Db)2  1+ab

Let a, b, c be positive real numbers. Prove that
(a) if abc <1, then

1 1 1
+ + >1;
2a+1 2b+1 2c+1

(b) if abc > 1, then
1 1 1
+ <
a+2 b+2 c+2

If 0<a,b,c<1,then

1 1 1 1 1 1
2 + + >3 + + .
a+b b+c c+a 2a+1 2b+1 2c+1

If a, b, c are nonnegative real numbers such that a + b + ¢ < 3, then

1 1 1 1 1 1
2 + + >5 + + .
a+b b+c c+a 2a+3 2b+3 2c+3
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1.5. If a, b, c are nonnegative real numbers, then

a®—bc b%—ca c2—ab

+ + > 0.
3a+b+c¢c 3b+4+c+a 3c+a+b

1.6. If a, b, c are positive real numbers, then

4a* — b? —c? +4b2—c2—a2 +4c2—a2—b2
a(b+c¢) b(c+a) c(a+b)

<3.

1.7. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1 1 1 3
a + + > :
@) az+bc b24+ca c24+ab  ab+bc+ca
1 1 1 2
b + + > .
(®) 2a2+bc 2b%2+4+ca 2c?2+ab ab+bc+ca
1 1 1 2
(©

+ + > .
az+2bc b2+2ca c2+2ab ab+bc+ca

1.8. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a(b+c) b(c+a) c(a+b)>2
a2+bc  b2+ca c24+ab

1.9. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a? b? c2 a b c
>

+ + > + - :
b2+c2 ¢24a?2 a2+b2 b+c c+a a+b

1.10. Let a, b, ¢ be positive real numbers. Prove that

1 1 N 1 > a + b + c
b+c c+a a+b a:+bc b2+ca c2+ab’

1.11. Let a, b, ¢ be positive real numbers. Prove that

1 + 1 + 1 > 2a + 2b + 2c
b+c c+a a+b 3a2+bc 3b24+ca 3c2+ab’
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1.12. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a b c >E_2(ab+bc+ca)_

- + ;
(@) b+c c+a a+b 6 3(a2+b2+c2)
a b c 3 ab+ bc+ca
b + + ——>WW3-1)|1——].
®) b+c c¢c+a a+b 2_(‘/_ )( a2+b2+c2)

1.13. Let a, b, ¢ be positive real numbers. Prove that

1 1 1 ( a+b+c )2
+ + < .
az+2bc b2+4+2ca c?2+2ab ab+ bc+ca

1.14. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a’(b+c) b%*c+a) c*(a+b)
b2 + 2 c2+a? a2+ b?

>a+b+c.

1.15. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a’+b? b%+c? c2+a2<3(a2+b2+c2)
a+b b+c c+a =~ a+b+c¢)

1.16. Let a, b, ¢ be positive real numbers. Prove that

1 1 1 9
+ + > .
a?+ab+b2 b2+bc+c2 c2+ca+a?” (a+b+c)?

1.17. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a? b? c? 1
+ + <-.
(2a+b)(2a+c) (@2b+c)2b+a) (2c+a)2c+b) 3

1.18. Let a, b, ¢ be positive real numbers. Prove that

a 1
(@) Z(2a+b)(2a+c)sa+b+c’

a® < 1
(2a2+b2)(2a2+c2) ~ a+b+c’

(b) 2
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1.19. If a, b, c are positive real numbers, then

1 1 2
> + .
Z(a+2b)(a+2c) “(a+b+c)> 3(ab+ bc+ca)

1.20. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

@ 1 N 1 4 1 S 4 )
(a—b)2 (b—c)®> (c—a)? ab+bc+ca’
1 1 1 3
b + + > ;
®) a2—ab+b2 b2—bc+c2 c2—ca+a2 ab+bc+ca’
1 1 1 5
(©

+ + > :
a2+ b2 b2+c2 c24a?2 " 2(ab+ bc+ca)

1.21. If a, b, c are positive real numbers, then

(a®>+b%)(a®+c?) (b2+c2)(b%2+a®) (c2+a®)(c®+b?) S 4 b4t
(a+b)(a+c) (b+c)(b+a) (c+a)(c+Db)

1.22. Let a, b, ¢ be positive real numbers such that a + b + ¢ = 3. Prove that

1 1 1
+ + <l1.
az+b+c b24+4c+a c2+a+b

1.23. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

a’?—bc b* —ca c*—ab

+ + > 0.
az+3 b2+3 c2+3

1.24. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

1—bc 1—ca 1—ab
+ + >
5+2a 5+2b 542

1.25. Let a, b, ¢ be positive real numbers such that a + b + ¢ = 3. Prove that

1 1 1 3
<

+ - <=
az+b2+2 b2+c2+2 c2+a?+2 4
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1.26.

1.27.

1.28.

1.29.

1.30.

1.31.

1.32.

1.33.

Let a, b, c be positive real numbers such that a + b + ¢ = 3. Prove that

1 1 1
- -
4a2+b%2+c2  4b2+c2+a? 4c2+a?+b?

1
<-.
2

Let a, b, c be nonnegative real numbers such that a + b + ¢ = 2. Prove that

bc + ca + ab <1
az+1 b2+1 241"

Let a, b, c be nonnegative real numbers such that a + b + ¢ = 1. Prove that

bc ca ab
+ +
a+1 b+1 c+1

1
<-.
4

Let a, b, c be positive real numbers such that a + b + c = 1. Prove that

1 1 1 3
+ + < .
a(2a2+1) b(2b2+1) c(2¢2+1)  1labc

Let a, b, c be positive real numbers such that a + b + ¢ = 3. Prove that

1 1
+ + <l1.
a3+b+c b34+c+a c3+a+b

Let a, b, c be positive real numbers such that a + b + ¢ = 3. Prove that

a? b? c?

+ - >
1+b3+c® 1+c3+a® 1+a®>+b3

Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

1 + 1 + 1 <§
6—ab 6—bc 6—ca” 5

Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

1 + 1 + 1 <
2a24+7 2b24+7  2c2+7

1
3
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1.34. Let a, b, c be nonnegative real numbers such that a + b 4+ ¢ = 3. Prove that
1 + 1 + 1 > 3
2a2+3 2b2+3  2c2+3 5
1.35. Let a, b, c be nonnegative real numbers such that ab + bc 4+ ca = 3. Prove
that
1 N 1 N 1 >a+b+c+ 3
a+b b+c c+a 6 a+b+c
1.36. Let a, b, c be nonnegative real numbers such that ab + bc 4+ ca = 3. Prove
that
1 + 1 + 1 > 3
a?+1 b2+1 c2+1 2
1.37. Let a, b, ¢ be positive real numbers such that ab + bc + ca = 3. Prove that
a® N b2 N c? -1
a?+b+c b2+c+a c24+a+b
1.38. Let a, b, ¢ be positive real numbers such that ab + bc + ca = 3. Prove that
bc+4 ca+4 ab+4 bc+2 ca+2 ab+2
+ + <3< + + .
al+4 b2+4 c2+4 az+2 b2+2 242
1.39. Let a, b, c be nonnegative real numbers such that ab + bc +ca = 3. If
k>2++/3,
then
1 + 1 + 1 < 3
a+k b+k c+k” 1+k
1.40. Let a, b, c be nonnegative real numbers such that a® + b%+¢? = 3. Prove that

a(b+c)+b(c+a)+c(a+b) <3
1+ bc 1+ca 1+ab
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1.41. Let a, b, ¢ be positive real numbers such that a® + b2 + c? = 3. Prove that

a?+b*> b*+c% ?+a?
+ + > 3.
a+b b+c c+a

1.42. Let a, b, ¢ be positive real numbers such that a® + b? + c?> = 3. Prove that

ab + be + cd +2<Z(a+b+c)
a+b b+c c+a ~6 )

1.43. Let a, b, ¢ be positive real numbers such that a® + b? + ¢ = 3. Prove that

@ 1,1 1 3
3—ab 3—bc 3—ca” 2’
1 1 1
b <1
®) 5—2ab+5—2bc+5—2ca_ ’
© 1 + 1 + 1 < 3
Ve—ab +6—bc V6—ca vJ6—1

1.44. Let a, b, ¢ be positive real numbers such that a® + b? + ¢ = 3. Prove that
1 + 1 + 1 > 3
1+a> 1+b> 1+4c¢5 2

1.45. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that

1 1 1
+ + >1
az+a+1 b2+b+1 c24c+1

1.46. Let a, b, c be positive real numbers such that abc = 1. Prove that

1 + 1 + 1 <3
az—a+1 b2—Db+1 c2—c+1"—

1.47. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that

3+a N 3+b + 3+¢c
(14+a)2 (1+b)2 (A+4c)2~
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1.48. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that

7—6a+7—6b +7—6c
2+a?2 2+b2 2+c?2

1.49. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that

a® b® c®

+ +
1+2a> 1+2b> 142c

1.50. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that

a 4 b + c
az+5 b2+5 245

1
<-—.
2
1.51. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that

1 1 1 2
Q+ar 402 Oror  Orol+b)+o -

1.52. Let a, b, c be nonnegative real numbers such that

1 1 1 3

+ + ==,
a+b b+c c+a 2
Prove that

3 2 1

> + )
a+b+c ab+bc+ca a2+ b2+c2

1.53. Let a, b, c be nonnegative real numbers such that
7(a® + b2+ c?)=11(ab + bc + ca).

Prove that
51 a b c
< <2.

— + +
28 b+c¢c c¢c+a a+b

1.54. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1 1 1 10
- + > :
a?+b%2 b2+c2 c2+a®? (a+b+c)?




Symmetric Rational Inequalities 9

1.55. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1 1 1 3
+ + = .
a2—ab+b2 b2—bc+c2 c2—ca+a?  max{ab,bc,ca}

1.56. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a(2a+b+c) b(2b+c+a) c(2c+a+Db) S
b2 +c2 c2 +a? az+b2

1.57. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a’(b+c)*> b%* c+a) c*(a+Db)?
b2 +c2 c2 +a? a?+ b2

> 2(ab+ bc+ca).

1.58. If a, b, c are positive real numbers, then
a a b c 1 1 1
3 —————+45(—+—+—|=8(-+=-+—].
sz—bc+c2 (bc ca ab) (a b c)

1.59. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
1 1 1
a+b b+4+c c+a
a? b2 c? 3(a? + b%2 +¢?)

+ + < .
a+b b+c c+a 2(a+b+c)

(a) 2abc( )+a2+b2+c222(ab+bc+ca);

(b)

1.60. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a’?—bc b* —ca c*—ab 3(ab+bc+ca)
> 3:

(a) + + ;
b2+c?  c24+a?> a%2+b? a?+ b2 + c?
a? b2 c2 ab+bc+ca 5
(b) + + + > —=;
b2+c2 c2+a? a?+b%2 a?+b%2+c2 2
a’?+bc b* +ca c*+ab_ ab+bc+ca
() >

+ + >
b2+c¢2  c2+a? a?+b?  a?+b%2+c?

1.61. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a® b? c? (a+b+c)?
+ + > .
b2+c2 c24+a%2 a?+b%2" 2(ab+ bc+ca)
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1.62. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

2ab N 2bc N 2ca +a2+b2+c2
(a+b)?2 (b+c) (c+a)?> ab+bc+ca

5
> .
2

1.63. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

ab + bc N ca +1>ab+bc+ca
(a+b)2 (b+c)? (c+a)* 4 a2+b2+c2’

1.64. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

3ab 3bc 3ca <ab+bc+ca 5

(a+b)2+(b+c)2+(c+a)2 Serbire 4

1.65. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a®+abc b3 +abc c*+abc

(a) + + >a?+b%+c%
b+c c+a a+b
34 2ab b® +2ab 34 2ab 1
(b) a+ac+ +ac+c+ac2_(a+b+c)2;
b+c c+a a+b 2
34+3abc  b%+3ab 34+ 3ab
(© - D e acZZ@b+m+aﬂ
b+c c+a a+b

1.66. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a® + 3abc N b+ 3abc N ¢+ 3abc
(b+c¢)? (c+a)? (a+b)2

>a+b+ec.

1.67. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
a®+3abc  b%*+3abc c>+3abc_ 3

+ + =5
(b+c)3 (c+a) (a+b)3 2

3a® + 13abc N 3b% + 13abc N 3c® +13abc
(b+c¢)3 (c+a) (a+b)?

(@

(b)
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1.68. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a’ b® c3 3,5 o
(a) + + +ab+bc+ca > —(a”+ b +c);
b+c c¢c4+a a+b 2

2a2+bc+2b2+ca 2c2+ab>9(a2+b2+c2)
b+c c+a a+b — 2a+b+c)

(b)

1.69. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a(b+c) b(c+a) c(a+b) -
b24+bc+c2 c24ca+a® a?+ab+b2

1.70. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a(b+c) N b(c+a) N c(a+b) 22+4l_[(a_b)2.

b2+ bc+c2 c24+ca+a?2 a?2+ab+ b2 a+b

1.71. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

ab—bc+ca+ bc—ca+ab+ca—ab+bc
b2 +c2 c2 +a? a?+ b2

3
= .
2

1.72. Let a, b, ¢ be nonnegative real numbers, no two of which are zero. If k > —2,
then

Zab+(k—1)bc+ca>3(k+1)
b2+kbc+c2 — k+2

1.73. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > —2,
then

ZBbc—a(b+c) < 3
b2+kbc+c2 ~ k+2

1.74. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove

that
ab+1 bc+1 ca+1>4

+ + > —.
az+b2 b +c2 c2+a? 3
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1.75. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that
5ab+1 + 5bc+1 N 5ca+1
(a+b)2 (b+c)2 (c+a)
1.76. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
a?—bc N b%—ca N c2—ab
2b2—3bc+2c%2  2c2—3ca+2a? 2a?2—3ab+2b%2
1.77. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
2a% — bc N 2b%—ca 2c¢2—ab
b2—bc+c2 c2—ca+a? a2—ab+b%2
1.78. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
a? b2 c?
+ + >1
2b2—bc+2c2 2c2—ca+2a2 2a%2—ab+2b2
1.79. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
1 1 1 9
+ + = .
4b2—bc +4c?  4c2—ca+4a®> 4a?—ab+4b%2 " 7(a?+b2+c?)
1.80. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
2a®?+bc  2b%4ca 2c*4+ab _ 9
-+ + > .
b2 +c? c2 +a? az+b2 2
1.81. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
2a% + 3bc 2b% + 3ca 2¢2+3ab
+ + > 5.
b2+ bc+c2 c24+ca+a? a2+ab+ b2
1.82. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

2a’ + 5bc N 2b% + 5ca N 2¢% +5ab - 21
(b+c)? (c+a)? (a+b)2 — 4




Symmetric Rational Inequalities 13

1.83. Let a, b, ¢ be nonnegative real numbers, no two of which are zero. If k > —2,
then

Z 2a% + (2k + 1)bc - 3(2k +3)
b2+kbc+c2 — k+2

1.84. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > —2,

then
Z 3bc —2a? < 3
b2+kbc+c2~ k+2°

1.85. If a, b, c are nonnegative real numbers, no two of which are zero, then

a’+16bc b*>+16ca c*>+16ab

P | 2t | @i = 10

1.86. If a, b, c are nonnegative real numbers, no two of which are zero, then

a’+128bc b*>+128ca c*>+128ab
+ > 46.
b2 + 2 c2+a? a?+ b?

1.87. If a, b, c are nonnegative real numbers, no two of which are zero, then

a’+64bc  b*>+64ca c*>+64ab
+ + > 18.
(b+c¢)? (c+a)? (a+b)?

1.88. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > —1,
then

>a+b+ec.

Z a?(b+c)+kabc
b2+ kbc + c2

-3
1.89. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > BE

then

Za3+(k+1)abc o gt bt
b2+ kbc+c2 '

1.90. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > 0,

then
2ak —pk—ck  apk—ck—agk 2ck—ak— bk

+ +
b2 —bc + c2 c2—ca+a? az—ab + b2

> 0.
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1.91. If a, b, c are the lengths of the sides of a triangle, then

b+c—a c+a—>b a+b—c 2(a+b+c)
(a) + + > ;
b2—bc+c? c2—ca+a?® a?—ab+b%2 " a2+ b2+ c?
2 32 _ 2
) 2bc—a N 2ca—b>b + 2ab—c > 0.

b2—bc+c2 c2—ca+a?2 a?2—ab+ b2

1.92. If a, b, c are nonnegative real numbers, then

a? b? c? 1
(a) + + <=
5a2+(b+c¢)?2 5b2+4+(c+a)? 5c2+(a+b)2 ™ 3
a’ b3 c3 1
(b) .

+ + <=
13a3+(b+c)® 13b3+(c+a)® 13c3+(a+b)3 7

1.93. If a, b, c are nonnegative real numbers, then

b%2+c2—a? N c?2+a®—b? N a?+ b%—c2 >1
2a2+(b+c)?>  2b2+(c+a)® 2c2+(a+Db)2 2

1.94. Let a, b, c be positive real numbers. If k > 0, then

3a?—2bc N 3b%—2ca N 3c?—2ab
ka2+(b—c)? kb2+(c—a)?> kc2+(a—b)>?

3
<-.
k

1.95. Let a, b, c be nonnegative real numbers, no two of which are zero. If k >
3+ /7, then

@ a + b 4 c > 9 )
a?+kbc b2+kca c2+kab  (1+k)(a+b+c)
) 1 1 1 > 9

+ + .
kaz+bc kb%2+ca kcz2+ab ~ (k+1)(ab+ bc+ca)

1.96. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1 1 1 6
+ + > .
2a2+bc  2b%2+ca 2c24+ab " a?+b2+c2+ab+bc+ca
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1.97. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1 1 1 1
+ + = .
22a2+5bc  22b2+5ca 22c2+5ab — (a+ b+c)?

1.98. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1 1 1 8
+ + = .
2a2+bc  2b%2+ca 2c2+ab  (a+b+c)?

1.99. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1 1 1 12
+ + = .
a2+ bc b2+4+ca c24+ab (a+b+c)?

1.100. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

1 1 1 1 2

+ + > + :

@) a2+2bc b2+2ca c2+2ab  a?+b2+c2 ab+bc+ca’
) a(b+c) b(c+a) c(a+b) > 1 ab+ bc+ca

a2+2bc  b2+4+2ca c2+2ab a2+ b2+c2’

1.101. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

@ a N b N C < atb+c
a2+2bc b2+2ca c2+2ab” ab+bc+ca’

2 2 2

®) a(b+c) b(c+a) cla+b) < a*+b*+c

az+2bc  b2+2ca c2+2ab " ab+ bc+ca’

1.102. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

@ a + b 4 c S a+b+c .
2a2+bc  2b%24+ca 2c2+ab a2+ b24c?’
) b+c c+a a+b > 6

+ + > :
2a2+ bc  2b2+4+ca 2c2+ab a+b+c
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1.103.

that

1.104.

then

1.105.

that

1.106.

1.107.

1.108.

1.109.

1.110.

(a)

(b)

Let a, b, c be nonnegative real numbers, no two of which are zero. Prove

a(b+c)+ b(c+a)+c(a+b) - (a+b+c)
a?+bc  b24+ca c2+ab a4+ b2+c?

Let a, b, c be nonnegative real numbers, no two of which are zero. If k > 0,

b2+ c2++/3bc  c?+a*+ +/3ca a2+b2+«/§ab>3(2+«/§)
a2+ kbc b2+ kca c2+kab 14k

Let a, b, c be nonnegative real numbers, no two of which are zero. Prove

1 1 1 8 6
- + + > :
az+b?2 b2+c?2 c2+a? a?+b2+c?2  ab+bc+ca

If a, b, ¢ are the lengths of the sides of a triangle, then

a(b+c) b(c+a) c(a+b)<2
a?+2bc  b2+2ca c2+2ab”

If a, b, c are real numbers, then

a®—bc N b%—ca N c>—ab
2a2+b2+c2  2b2+c2+a?  2c2+a?+b?

If a, b, c are nonnegative real numbers, then

3a2—bc N 3b%—ca N 3c2—ab <3
2a2+Db24c¢2  2b2+c2+a?  2c2+a2+b2 7 2

If a, b, c are nonnegative real numbers, then

(b +c)? (c +a)? (a+ b)?
4a2+b%2+c?2  4b2+c2+a? 4c2+a?+b?

If a, b, c are positive real numbers, then
> 1 3 .
11a2+2b2+2c2 = 5(ab+ bc +ca)’

1 1 1
< + .
4a2+b2+c2 = 2(a2+b2+c2) ab+bc+ca

)
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1.111. If a, b, c are nonnegative real numbers such that ab + bc + ca = 3, then

1/E+\/B+\/EZ§‘
b+c c¢c+a a+b 2

1.112. If a, b, c are nonnegative real numbers such that ab + bc + ca = 3, then

1 1 1 1 1 1
+ + > + + :
2+a 2+b 24+c¢c 1+b+c 1+c+a 1+a+b

1.113. If a, b, c are the lengths of the sides of a triangle, then

@ a®—bc N b%—ca N c2—ab “o
3a2+b24+c¢2  3b2+c2+a%  3c2+aZ+b27 7
a*—b%c? b* —c?a? c*—a’b?
(b)

+ + <0.
3a4+b*+c* 3b*+ct+a* 3ct+a*+ b4

1.114. If a, b, c are the lengths of the sides of a triangle, then

bc N ca N ab
4a2+b2+c2  4b2+c2+a?  4c2+a?+b?

1
= —.
2

1.115. If a, b, c are the lengths of the sides of a triangle, then

1 1 1 9
+ + < :
b2+c¢2 ¢24+a2 a2+ b2~ 2(ab+ bc+ca)

1.116. If a, b, c are the lengths of the sides of a triangle, then

+b b+ +
@ a c c+a > 5.
a—b b—c c—a
2 2 2, .2 2 2
) a“+b +b +c c“+a >3
az—Db2  b2—c2  c2—q2

1.117. If a, b, c are the lengths of the sides of a triangle, then

b+c c¢c+a a+b ( a b c )
+ + -+ + :
b+c c¢c+a a+b

a b c -
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1.118. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

Z 3a(b+c)—2bc
(

3
> —.
b+c)2a+b+c) 2

1.119. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

Z a(b+c)—2bc
(b+c)Ba+b+c)

1.120. Let a, b, ¢ be positive real numbers such that a? + b% + ¢2 > 3. Prove that

a’—a? b>—b? c®—c?

+ +
a’>+b2+c2 b5+c2+a? cS+a?+b?

> 0.

1.121. Let a, b, c be positive real numbers such that a® + b? + ¢? = a® + b> + c3.
Prove that
a® b? c?

+ +
b+c c¢c+a a+b

3
> —.
2

1.122. If a, b,c € [0,1], then

a b c

+ + <1.
bc+2 ca+2 ab+2

1.123. Let a, b, ¢ be positive real numbers such that a + b + ¢ = 2. Prove that

1 4 1 + 1
l1—ab 1—bc 1—ca

5(1—ab—bc—ca)( )+920.

1.124. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 2. Prove that

2—a®> 2—b%2 2-—¢?
+ + <3.
2—bc 2—ca 2—ab

1.125. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

3+5a®> 3+5b> 3+5c2
+ + > 12.
3—bc 3—ca 3—ab
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1.126. Let a, b, c be nonnegative real numbers such thata+ b +c¢ =2. If

—1 7
— <m< -,
7 8

then
a’+m b *+m +m _ 3(4+9m)
+ + > .
3—2bc 3—2ca 3—2ab 19

1.127. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

47 —7a®> 47—7b> 47—7c¢2
+ +

> 60.
1+ bc 1+ca 1+ab

1.128. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

26—7a®> 26—7b* 26—7¢*> 5
+ + < —.
1+ bc 1+ca 1+ab 2

1.129. If a, b, c are nonnegative real numbers, then

S5a(b+c)—6bc
E <3.
a?+b2+c2+bc

1.130. Let a, b, c be nonnegative real numbers, no two of which are zero, and let

X_a2+b2+c2
~ab+bc+ca
Prove that
() a b e 1l
b+c c¢+a a+b 2 x’
a b C 4
b 6 + + >5x+—;
®) (b+c c+a a+b) by
© @ ;b —§>1(x—1)
b+c c¢c+a a+b 23 x)
1.131. If q, b, ¢ are real numbers, then
1 1 1 9

+ + < .
a2+7(b2+c2) b2+7(c2+a2) c2+7(a®2+b%2) " 5(a+b+c)
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1.132. If a, b, ¢ are real numbers, then

bc ca ab 3
+ + <-.
3a2+b2+c2 3b2+c2+a? 3c2+a?+b%2 5

1.133. If a, b, ¢ are real numbers such that a + b + ¢ = 3, then

1 1 1
+ +
8+5(b2+c2) 8+5(c2+a2) 8+5(az+b2)

1
<-.
6

1.134. If q, b, c are real numbers, then

(a+b)atc)  (b+c)b+a) (c+a)(c+b) _4
a2 +4(b2+c2) b2+4(c2+a?) c2+4(a2+b2) " 3

1.135. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

1 1
< .
Z(b+c)(7a+b+c) ~ 2(ab+ bc +ca)

1.136. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

1 9
< .
Z b2+ c2+4a(b+c) ~ 10(ab+ bc+ca)

1.137. Let a, b, c be nonnegative real numbers, no two of which are zero. If a +
b+ c =3, then

1 1 1 9
+ + < .
3—ab 3—bc 3—ca  2(ab+ bc+ca)

1.138. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

bc ca ab 3
+ - <=
az+a+6 b2+b+6 c24+c+6 8

1.139. If a, b, c are nonnegative real numbers such that ab + bc + ca = 3, then

1 1 1 1
+ + = —.
8a2—2bc+21 8b2—2ca+21 8c2—2ab+21" 9
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1.140. Let a, b, c be real numbers, no two of which are zero. Prove that
a’+ bc N b2+ca+c2+ab - (a+b+c)
b2+c¢2  c24a2  a?+b% " a2+ b2+c2’

a’ + 3bc N b2+3ca c¢*+3ab - 6(ab + bc +ca)

b2 + 2 c2+a? a?+b%2 = a?2+b2+c?

(a)

(b)

1.141. Let a, b, c be real numbers, no two of which are zero. If ab + bc +ca > 0,

then
a(b+c¢) N b(c+a) +c(a+b) S i
b2+c¢2  ¢2+a? a?2+b2 10

1.142. If a, b, c are positive real numbers such that abc > 1, then
1 1 4
+ > .
a+b+c—3 abc—1 ab+bc+ca—3

1.143. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

Z (4b%2 —ac)(4c®>—ab) 27

< —abc.
b+c 2

1.144. Let a, b, c be nonnegative real numbers, no two of which are zero, such that
a+b+c=3.
Prove that

a N b N c
3a+bc 3b+ca 3c+ab

2
= -
3

1.145. Let a, b, ¢ be positive real numbers such that

(a+b+c)(1+l+1)=10.
a b c

Prove that
19 < a b C

< + +
12" b4+c c+a a+b

S
<-.
3
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1.146. Let a, b, c be nonnegative real numbers, no two of which are zero, such that
a+ b+ c = 3. Prove that

9 a b c
— < + + <I.
10 2a+bc 2b+ca 2c+ab

1.147. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that
a’ N b® N c? a’+b3+c?
2a2+bc  2b%2+4ca  2c2+ab T a?+b2+4c?’

1.148. If a, b, c are positive real numbers, then

a’ b® c3 a+b+c
+ + > .
4a2+4+bc  4b%2+ca 4c2+ab 5

1.149. If a, b, c are positive real numbers, then

1 + 1 + 1 > 3
(2+a)? (2+b)> (2+¢)> 6+4+ab+bc+ca

1.150. If a, b, c are positive real numbers, then

1 1 1 3
+ - > :
1+3a 1+3b 1+3c 3+abc

1.151. Let a, b, ¢ be real numbers, no two of which are zero. If 1 < k < 3, then

2ab 2bc 2ca
k k k > (k—1)(k2—1).
( +a2+b2)( +b2+c2)( +c2+a2)_( X )

1.152. If aq, b, ¢ are non-zero and distinct real numbers, then

l+i+l+3[ LENN. S ]>4(i+l+i)
a? bz 2 (a—b)2 (b—c)?> (c—a)?*] \ab bc cal’
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1.153. Let a, b, c be positive real numbers, and let

b b
A:E+—+k, B=—+£+k, C=£+E+k,
b a c b a b
where —2 < k < 4. Prove that

1 1 1 1 4
—+=+=< + :
A B C” k+2 A+B+C—k-2

1.154. If a, b, c are nonnegative real numbers, no two of which are zero, then

1 1 1 1 1 1
+ + > + + :
b24+bc+c2 c24+ca+a?2 a?2+ab+b2" 2a2+bc 2b2+ca 2c2+ab

1.155. If a, b, c are nonnegative real numbers such that a + b + ¢ < 3, then

1 1 1 1 1 1
(a) + + > + + ;
2a+1 2b+1 2c+1 a+2 b+2 c+2
1 1 1 1 1 1
(b) >

+ + > + + :
2ab+1 2bc+1 2ca+1 a2+2 b24+2 242

1.156. If a, b, c are nonnegative real numbers such that a + b + ¢ = 4, then

1 + 1 + 1 > 1 + 1 + 1
ab+2 bc+2 ca+2 a2+2 b2+2 242

1.157. If a, b, c are nonnegative real numbers, no two of which are zero, then
ab+bc+ca (a—b)*(b—c)*(c—a)? _
a2+b2+c2  (a2+b2)(b2+c2)(c2+a?)

ab+ bc+ca (a—Db)*(b—c)*(c—a)? <1
a2+b2+c¢2  (a2—ab+b2)(b2—bc+c2)(c2—ca+a?) =

(a)

(b)

1.158. If a, b, c are nonnegative real numbers, no two of which are zero, then

a?+b%+¢? o 9(a—b)*(b—c)*(c—a)?
ab+bc+ca (a+b)2(b+c)2(c+a)’
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1.159. If a, b, c are nonnegative real numbers, no two of which are zero, then

a®+ b% + c?

2 (a—b)*(b—c)*(c —a)?
ab+ bc+ca

>1+(1+v2 (a®+ b2)(b* + c2)(c? + a?)’

1.160. If a, b, c are nonnegative real numbers, no two of which are zero, then

2 + 2 + 2 > 5 + 5 + 5
a+b b+c c+a 3a+b+c 3b+c+a 3c+a+b

1.161. If a, b, c are real numbers, no two of which are zero, then

8a’ + 3bc N 8b% + 3ca N 8c?+3ab
b2+ bc+c2 c24+ca+a®2 a?+ab+ b2
8a? —5bc 8b%2 —5ca 8c?>—5ab

b + + >9.
(b) b2—bc+c2 c2—ca+a? az—ab+b2_9

(a)

>11;

1.162. If a, b, ¢ are real numbers, no two of which are zero, then

4a*+ bc N 4b*+ca N 4c*+ab
4b2+7bc+4c2  4c2+7ca+4a?  4a?+7ab+4b2

1.163. If a, b, c are real numbers, no two of which are equal, then

1 + 1 + 1 > 27
(a—b)2 (b—c)®> (c—a)*  4(a>+b2+c2—ab—bc—ca)’

1.164. If a, b, c are real numbers, no two of which are zero, then

1 1 1 14
+ + = .
a?—ab+b%> b2 —bc+c% c2—ca+a® " 3(a®+b%+c?)

1.165. If a, b, ¢ are real numbers, then

a’+ bc N b%+ca N c>+ab 21
2a2+Db24+c¢2  a2+4+2b2+c2  a2+b2+2c2 6
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1.166. If a, b, ¢ are real numbers, then

2b% +2¢% +3bc N 2¢% 4 2a?+ 3ca N 2a’*+ 2b% +3ab
(a+3b+3c)? (b+3c+3a)? (c+3a+3b)2

3
> —.
7

1.167. If a, b, c are nonnegative real numbers, then

6b% + 6¢%+ 13bc N 6¢% + 6a® + 13ca N 6a’ + 6b% + 13ab
(a+2b+ 2c)? (b +2c+2a)2 (c+2a+2b)2

1.168. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

3a? + 8bc N 3b% + 8ca N 3c?+8ab
9+b2+c2 9+c2+a? 9+a2+b2

1.169. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

5a’ + 6bc N 5b% + 6¢ca N 5¢? + 6ab
9+b2+c2 9+c2+a? 9+a2+b2

1.170. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

1 1 1 3
+ + <—.
az+bc+12 b2+ca+12 c24+ab+12° 14

1.171. If a, b, c are nonnegative real numbers, no two of which are zero, then

1 1 1 45
+ + > :
a2+ b2  b2+c2 c2+4+a?2  8(a?2+ b%z+c2)+2(ab+ bc+ca)

1.172. If a, b, ¢ are real numbers, no two of which are zero, then

a’?—7bc b*—7ca c*—7ab 9(ab+bc+ca)>
b2 + ¢2 a?+b2  a?+b? a?+ b2 +c?

1.173. If a, b, c are nonnegative real numbers, no two of which are zero, then

a’?—4bc  b*—4ca c*>—4ab 9(ab+bc+ca)>

9
+ >,
b2 +c? c2+a? a?+ b? a?+ b2 +c2 2
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1.174. If a, b, ¢ are real numbers such that abc # 0, then

2 2 2 2
(b+¢) +(c+a) +(a+b) > 9 10(a+b+c¢) .
a? b2 c? 3(a%+ b2 +c?)

1.175. Let a, b, c be real numbers, no two of which are zero. If ab + bc +ca > 0,
then

(a) a b c 3
b+c c+a a+b 2

(b) if ab <0, then

a b c
+ + > 2.
b+c c¢c+a a+b

1.176. If a, b, c are nonnegative real numbers, then

a + b N c >ab+bc+ca
7a+b+c 7b+c+a 7c+a+b  (a+b+c)?’

1.177. If a, b, c are positive real numbers such that abc = 1, then

a+b+c 1 1 1
+ - +
30 a+1 b+1 c+1

8
> —.
S5

1.178. Let f be a real function defined on an interval I, and let x, y,s € I such that
x +my = (1+m)s, where m > 0. Prove that the inequality

F)+mf(y) = (1+m)f(s)
holds if and only if
h(x,y) >0,
where () —g(y) W—£(s)
hx,y)= 878 oy FWZF)
X — u—s

1.179. Let a, b,c < 8 be real numbers such that a + b + ¢ = 3. Prove that

+ =
az+23  b2+23 ¢2+23 2

13a—1 13b—1 13c—1 _3
+ <
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3
1.180. Let a,b,c # 2 be nonnegative real numbers such that a + b + ¢ = 3. Prove

that

1.181.

1.182.

1.183.

1.184.

1.185.

1.186.

then

l1—a 1-b 1—c

(4a —3)2 " (4b—3)2 " (4c —3)2 0

If a, b, ¢ are the lengths of the sides of a triangle, then

a? b? c?

+ + >
4a2+4+5bc  4b2+5ca 4c2+5ab

1
3

If a, b, ¢ are the lengths of the sides of a triangle, then

1 1 1 3
+ + > .
7a2+b2+c2  7b%2+c24+a? 7c2+a?+b%? (a+b+c)?

Let a, b, c be the lengths of the sides of a triangle. If k > —2, then

Za(b+c)+(k+1)bc<3(k+3)
b2+kbc+c2 = k+2 °

Let a, b, c be the lengths of the sides of a triangle. If k > —2, then

Z 2a% + (4k +9)bc < 3(4k +11)
b2+kbc+c2 ~  k+2

If a, b, c are nnonnegative numbers such that abc = 1, then

1 1 1 1
(@a+1)2 (b+1)2 (c+1)* 2(a+b+c—1)"

If a, b, ¢ are positive real numbers such that

a<b<c, a’bc>1,

1 + 1 + 1 > 3
1+a3 1+4+b3 1+4+c¢3  14abc
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1.187. If a, b, c are positive real numbers such that
a<b<c, a*>1,
then

1 + 1 + 1 > 3
1+a® 1+4+b3 1+4+c¢3 1+abc’

1.188. If a, b, c are positive real numbers such that
a<b<c, 2a+c >3,

then
1 1 1 3

+ - > :
2 2 2 = atbic\2
3+a?2 3+b2 3+c 34 (@tbie)

1.189. If a, b, c are positive real numbers such that
a<b<c, 9a+8b>17,

then
1 1 1 3

+ + > :
2 2 2 = Th+c\2
3+a? 3+b%2 3+c 3+ (&thte)

1.190. Let a, b, c, d be positive real numbers such that abcd = 1. Prove that

> L <1
1+ab+ bc+ca

1.191. Leta, b, c,d be positive real numbers such that abcd = 1. Prove that

1 N 1 N 1 N 1 -1
(1+a)2 @A+b)2 (A+4+c)2 (Q+d)2—

1
1.192. Leta, b,c,d # 3 be positive real numbers such that abcd = 1. Prove that

1 1 1 1
+ + + >1
(B3a—1)2 (3b—1)* (3c—1)> (3d—1)*
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1.193. Let a, b, c, d be positive real numbers such that abcd = 1. Prove that

1 1 1
+ + + >1
l+a+a?+a® 1+b+b2+b% 1+c+c2+c® 1+d+d?+d8

1.194. Let a, b, c,d be positive real numbers such that abcd = 1. Prove that

1 1 1 1
+ + + >1
l+a+2a2 1+b+2b2 14c+2c2 1+4+d+2d2

1.195. Let a, b, ¢, d be positive real numbers such that abcd = 1. Prove that
1 1 1 1 9 25

—t oS ———— >
a b ¢ d a+b+c+d 4

1.196. If a, b, c,d are real numbers such that a+ b+ c+d =0, then

_1)2 _1)2 _1)2 _1)2
(a—1° , (b=1F (=1 (d=1F _
3a2+1  3b%2+1 3c2+1 3d2+1

1.197. If a,b,c,d > —5 such that a+ b + ¢ +d = 4, then

1—a + 1—b N 1—c 4 1—d >0
(1+a)2 @A+b)2 (A+4+c¢c)2 (Q+d)2—

1.198. Let a,,4a,,...,qa, be positive real numbers such that a, +a, +---+a, = n.
Prove that

N

1
<
Z(n+1)a§+a§+---+a§

1.199. Let ay,a,,...,qa, be real numbers such that a, +a,+---+a, = 0. Prove that

a,+1)  (ay+1)> a, + 1) n
@1 | @+1P | (@l n
a;+n—1 a;+n—1 az+n—1 n-—1

1.200. Let a,,a,,...,a, be positive real numbers such that a;a,---a, = 1. Prove
that
(a) ! + ! Fob >
1+(n—1)a; 1+ ((n—1)a, 1+(n—1)a,
1 1

1
(b) + +-+—F<1
a;+n—1 a,+n—1 a,+n—1
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1.201. Let a,,a,,...,a, be positive real numbers such that a,a,---a, = 1. Prove

that
1 1 1

2+ 2+...+—
l1—a;+na; 1—a,+na; 1—a, +na?

> 1.

1.202. Let a;,a,,...,a, be positive real numbers such that
k(n—k—1)
a;,ayg,...,q, = ——, k>1
v kn—k—1
and

a;a,---a, =1.

Prove that
1 1 1 n

- oot < :
a,+k a,+k a,+k  1+k

1.203. If a;,a,,...,a, > 0, then

1 1 1 n
+ 4+t > .
1+na;, 1+na, l1+na, n+aa,---a
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1.2 Solutions

P 1.1. If a, b are nonnegative real numbers, then

1 + 1 > 1
(14+a)® (1+Db)2  1+ab

First Solution. Use the Cauchy-Schwarz inequality as follows:

1+1_1> (b +a)? 1
(1+a)?2 (1+4+b)> 1+ab  b2(1+a)>+a2(1+b)2 1+ab
_ abla®+b*—2(a+Db)+2]
~ (14ab)[b2(1 +a)2+a2(1+ b)?]
_ ab[(a—1)*>+(b—1)?]
 (1+ab)[b2(1+a)2+a2(1+Db)2] "~

The equality holds for a = b = 1.
Second Solution. By the Cauchy-Schwarz inequality, we have
1 1
(a+b)(a+g) >(a+1)% (a+b)(—+b) > (1+b)%
a

hence
1 1 1 1 1
+ > + = )
(1+a)* (1+b)> (a+b)a+1/b) (a+b)(1/a+b) 1+ab
Third Solution. The desired inequality follows from the identity
1 N 1 1  abla=b)Y*+(1—ab)
(14a)2 (1+b)2 1+4+ab (14a)2(1+b)2(1+ab)

Remark. Replacing a by a/x and b by and b/x, where x is a positive number, we
get the inequality

1 1 1
+ > ,
(x+a)2 (x+Db)2  x2+4ab
which is valid for any x,a, b > 0.

P 1.2. Let a, b, ¢ be positive real numbers. Prove that

(a) if abc <1, then
1 1 1
+ + >
2a+1 2b+1 2c+1

(b) if abc = 1, then

1 1 1
+ + <l1.
a+2 b+2 c+2
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Solution. (a) Use the substitution

I S

b

a ) > )
¥z ZX Xy

where x,y,z > 0and 0 < k < 1. Applying the Cauchy-Schwarz inequality, we have
2
2
Z 1 :ZLZZ yz > (Z)’) _ 1
a+2 2kx2+yz 2x2+yz  Dlyz(2x2 + yz)

The equality holds fora=b =c=1.
(b) The desired inequality follows from the inequality in (a) by replacing a, b, c
with 1/a,1/b,1/c, respectively. The equality holds fora =b =c =1.

O

P13.If 0<a,b,c <1, then

1 1 1 1 1 1
2 + + >3 + + .
a+b b+c c+a 2a+1 2b+1 2c+1

Solution. Write the inequality as E(a, b,c) = 0, assume that 0 < a < b <c <1
and show that
E(a,b,c) > E(a,b,1) > E(a,1,1) > 0.

The inequality E(a, b,c) > E(a, b, 1) is equivalent to

( 1 1 ) ( 1 1 ) ( 1 1)
2 ————]+2 — —3 —=]>o0,
b+c b+1 c+a 1+a 2c+1 3

(1—c)[ ! + ! _ 1! ]>0
(b+c)b+1) (c+a)(l+a) 2c+1]

We have

1 + 1 B 1 > 1 + 1 _ 1
(b+c)(b+1) (c+a)1+4+a) 2c+1 (1+c)(1+1) (c+1)(1+1) 2c+1

C
“iDern 2

The inequality E(a, b,1) > E(a, 1,1) is equivalent to

(atsate)elits ) s)
a+b a+1 1+b 2 2b+1 3)°
2 1 2 ]

+ — >
(a+b)a+1) 1+b 2b+1

a-v)|
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We have
2 1 2 2 1 2
+ — > + —
(a+b)la+1) 1+b 2b+1 (1+b)(1+1) 1+b 2b+1
_ 2b >0
C(14+b)(@2b+1) "
Finally,
B(a,1,1) = 2a(1—a)

(a+1)(2a+1)

The equality holds for a = b = ¢ =1, and also fora =0 and b = ¢ = 1 (or any

cyclic permutation).
O

P 1.4. If a, b, c are nonnegative real numbers such that a+ b +c < 3, then

1 1 1 1 1 1
2 + + =5 + + .
a+b b+c c+a 2a+3 2b+3 2c+3
Solution. It suffices to prove the homogeneous inequality

Gy
S5
b+c 3a+b+c

We use the SOS (sum-of-squares) method. Without loss of generality, assume that

a>b>c.

Write the inequality as follows:

2a—b—c
)
(b+c)Ba+b+c)

Z(b+6)(3a+b+c) Z(b+c)(3a+b+c)_0’

Z(b+c)(3a+b+c) Z(c+a)(3b+c+a) =0,

1 1
Z(a_b)((b+c)(3a+b+c)_(c+a)(3b+c+a))20’
> (a—b)(a+b—c)a+b)(3c+a+b)>0.

Consider the nontrivial case a > b + ¢. Since a + b — ¢ > 0, it suffices to show that

(a—c)*(a+c—Db)a+c)Bb+c+a)=>(b—c)?(a—b—c)(b+c)Ba+b+c).
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This inequality is true since
(a—c)*>(b—c)’, a+c—b>a—b—c
and
(a+c)Bb+c+a)=(b+c)Ba+b+c).
The last inequality is equivalent to
(a—b)la+b—c)=0.

The equality holds for a = b =c =1, and also for a = b = 3/2 and ¢ = 0 (or any
cyclic permutation).
O

P 1.5. If a, b, c are nonnegative real numbers, then

a’—bc b%—ca c2—ab
+ + > 0.
3a+b+c¢c 3b+c+a 3c+a+b

Solution. We use the SOS method. Without loss of generality, assume that

a>b>c.
We have
a®>—bc o (a—b)a+c)+(a—c)a+b)
ZZ:3a+b+c_Z: 3a+b+c
. (a—b)(a+c) (b—a)(b+c)
_Z 3a+b+c +Z 3b+c+a
_Z (a—b)*(a+b—c)
B (Ba+b+c)Bb+c+a)

Since a + b —c¢ > 0, it suffices to show that
(b—c)Y*(b+c—a)Ba+b+c)+(c—a)*(c+a—b)(Bb+c+a)>0;
that is,
(a—c)*(c+a—b)Bb+c+a)=>(b—c)* (a—b—c)(Ba+b+c).

For the nontrivial case a > b + ¢, we can get this inequality by multiplying the
obvious inequalities
cta—b>a—b—c,

b*(a—c)* > a*(b—c)?
a(83b+c+a)=b(Ba+b+c),
a=>b.

The equality holds for a = b = ¢, and also for a = b and ¢ = 0 (or any cyclic

permutation).
O
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P 1.6. If a, b, c are positive real numbers, then

4a® —b% —c? +4b2—c2—a2 +4c2—a2—b2
a(b+c¢) b(c+a) c(a+b)

<3.

(Vasile Cirtoaje, 2006)

Solution. We use the SOS method. Write the inequality as follows:
2_p2_ .2
S [1 _ ‘M—C] >0,
a(b+c)

Zb2+c2—4a2+a(b+c) -

a(b+c¢) =0,
Z(bz—az)+a(b—a)+(c2—a2)+a(c—a) -0
a(b+¢) -
Z(b—a)(2a+b)—l-(c—a)(2a—l-c) >0
a(b +¢) -
Z(b—a)(2a+b) +Z(a—b)(2b+a) -

a(b +c¢) b(c+a) 7
Zc(a + b)(a—b)*(bc +ca—ab) > 0.

Without loss of generality, assume that

a=>b>c.
Since ca + ab — bc > 0, it suffices to show that

b(c +a)(c—a)*(ab + bc —ca) +c(a+ b)(a—b)*(bc+ca—ab) >0,
that is,
b(c +a)(a—c)*(ab+ bc—ca) > c(a+ b)(a—b)*(ab— bc —ca).

For the nontrivial case ab — bc —ca > 0, this inequality follows by multiplying the
inequalities
ab+ bc—ca>ab—bc—ca,

(a—c)*=(a—Db)?
b(c+a)>=c(a+b).
The equality holds fora=b =c¢



36 Vasile Cirtoaje

P 1.7. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1 1 1 3

a + + = ;
(@ a2+bc b24+ca c24+ab  ab+bc+ca
1 1 1 2
b + + = .
®) 2a2+bc  2b2+4+ca 2c24+ab ab+bc+ca
1 1 1 2
(0

+ + > .
az+2bc b2+2ca c2+2ab ab+bc+ca

(Vasile Cirtoaje, 2005)
Solution. (a) Since
ab+bc+ca a(b+c—a)
az+bc a2+ bc
we can write the inequality as

5

a(b+c—a) b(c+a—0>b) c(a+b—c)>0
a2+ bc b2 +ca c2+ab

Without loss of generality, assume that
a = min{a, b, c}.
Since b + ¢ —a > 0, it suffices to show that

b(c+a—b) cla+b—c) >0
b2+ ca c24+ab

This is equivalent to each of the following inequalities
(b2 +c»a?—(b+c)(b*>—=3bc+c>a+be(b—c)* >0,
(b—c)?a®>—(b+c)(b—c)a+bc(b—c)*+abc(a+b+c)>0,
(b—c)*(a—Db)a—c)+abc(a+b+c)>0.

The last inequality is obviously true. The equality holds for a = 0 and b = ¢ (or
any cyclic permutation thereof).

(b) Using the identities
2a2+ bc=a(2a—b—c)+ab+ bc+ca,
2b*+ca=b(2b—c—a)+ab + bc +ca,
2c¢2+ab=c(2c—a—>b)+ab+ bc+ca,
we can write the inequality as

1 1 1
+ + > 2
1+x 1+y 1+z
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where
_a(2a—b—c) __b(2b—c—a) _c(2c—a—D)

= , = , 2= .
ab+bc+ca Y ab+bc+ca ab+bc+ca
Without loss of generality, assume that a = min{a, b, c}. Since

1
x <0, >1,
1+x
it suffices to show that . .
— >1.
1+y 1+z
This is equivalent to
1> yz,

(ab+ bc+ca)*> > be(2b—c—a)(2c—a—b),
a*(b*+ bc +¢*) + 3abc(b +¢) + 2bc(b—c)* > 0.

The last inequality is obviously true. The equality holds for a = 0 and b = ¢ (or
any cyclic permutation thereof).

(c) According to the identities
a*+2bc=(a—b)(a—c)+ab+ bc +ca,

b*+2ca=(b—c)(b—a)+ab+bc+ca,
c*+2ab=(c—a)(c—b)+ab+ bc+ca,
we can write the inequality as

1 1 1

+ + > 2,
1+x 1+y 1+z
where
X_(a—b)(a—c) _(b—c)(b—a) Z_(c—a)(c—b)
" ab+bc+ca’ " ab+bc+ca’ ©  ab+bc+ca’
Since
xy+yz+zx=0
and
v — —(a—b)*(b—c)*(c—a)? <0
i (ab+ bc +ca)? -7
we have
1 1 1 1—2xyz

0.

+ + —2= >
1+x 1+y 1+z IT+x)(1+y)(1+2)



38 Vasile Cirtoaje

P 1.8. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
a(b+c) b(c+a) cla+b) -
a2+bc  b2+ca c24+ab

(Pham Kim Hung, 2006)

Solution. Without loss of generality, assume that a > b > ¢ and write the inequality

as
b(c+a)>(a—b)(a—c)+(a—c)(b—c)
b24ca ~  a?+bc c24+ab
Since
(a—b)(a—c)<(a—b)a<a—b
a2+ bc T a?+4+bc T a
and
(a—c)(b—c)<a(b—c)< b—c
c24+ab T c24ab ~ b’

it suffices to show that

b(c+a) a—b b-—c
> + .
b2+ ca a b

This inequality is equivalent to
b%(a—b)*—2abc(a—b) + a*c? +ab?*c >0,

(ab—Db?—ac)*+ab?c>0.

The equality holds for for a = b and ¢ = 0 (or any cyclic permutation).

P 1.9. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
az_i_bz_‘_c2 a+b+c
b2+c2 c24+a? a2+b2 b+c c+a a+b
(Vasile Cirtoaje, 2002)

Solution. Use the SOS method. We have
2

a a ab(a—b)+acla—c)
Z:(b2+c2_ b+c):Z (b2+c2)(b+c)

B ab(a—0>b) ba(b—a)
=2+ @ e+ D

ab(a— b)? -0
c2+a2)(b+c)(c+a)

The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic
permutation).

— 2 2 2
=(a“+b°+c +ab+bc+ca)Z(b2+C2)(

O
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P 1.10. Let a, b, c be positive real numbers. Prove that

1 N 1 N 1 S a + b 4 c
b+c c¢c+a a+b a2+bc b2+ca c2+ab’

First Solution. Without loss of generality, assume that a = min{a, b, c}. Since
1 a 1 a
Z b+c_za2+bc _Z(b+c_a2+bc)
:Z (a—b)a—c)
(b+c)(az+ bc)
and (a—b)(a—c) = 0, it suffices to show that

(b—c)(b—a) + (c—a)(c—b)
(c+a)(b2+ca) (a+b)(c2+ab)

This inequality is equivalent to
(b—)[(b*—a®)(c*+ab) + (a®* —c*)(b*+ca)] > 0,

a(b—c)*(b*+c*—a*+ab+ bc+ca) > 0.
The last inequality is clearly true. The equality holds fora=b =c.

Second Solution. Since

1 b c 1 1
25 :Z[(b+c)2+(b+c)2]zza[(a+b)2+(a+c)2]’

we can write the inequality as

1 1 1
Za[(a+b)2+(a+c)2_a2+bc]20

This is true since, according to Remark from P 1.1, we have

1 + 1 B 1 >0
(a+b)2 (a+c)> a?+bc

P 1.11. Let a, b, c be positive real numbers. Prove that

1 + 1 + 1 > 2a + 2b + 2¢
b+c c¢c+a a+b 3a2+bc 3b2+ca 3c2+ab’

(Vasile Cirtoaje, 2005)
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Solution. Since

1 2a 1 2a
Zb+c_23a2+bc :Z(b+c_3a2+bc)
_Z(a—b)(a—c)+a(2a—b—c)
B (b +c)(3az+ bc)

Z (a—b)la—c) >0
(b+c)(3az+ bc)
Z a(2a—b—c) > 0.
(b+c)(3a2+ bc)
In order to prove the first inequality, assume that a = min{a, b, c}. Since

(a—b)la—c)=0,

it suffices to show that

and

it is enough to show that
(b—c)(b—a) N (c—a)(c—b)
(c+a)(3b2+ca) (a+Db)3c2+ab)

This is equivalent to the obvious inequality

a(b—c)*(b?+c?>—a?+3ab + bc+3ca) > 0.

The second inequality can be proved by the SOS method. We have

Z a(2a—b—c) _Za(a—b)+a(a—c)
(b+¢)(3a2+ bc) (b+c)(3a2+ bc)

_ a(la—Db) b(b—a)
=2 (b+0)Ba2+bo) 2. c+0)(Bb2+ca)

a b
=2.(a=b) [(b T OB +be) (c+a)3b>+ ca)]
_ Z c(a—b)*[(a—b)*+c(a+b)]

L (b+c)c+a)3a2+bc)(3b24ca) T

The equality holds fora = b =c.

]

P 1.12. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a b c 13 2(ab+ bc +ca)
(@) + + > —— ;
b+c c¢c+a a+b~ 6 3(a®+b%2+c?)
a b c 3 ab+ bc+ca
b + + 2> (/3-1[1-——M—.
®) b+c c¢c+a a+b 2_(1/_ )( a2+b2+c2)

(Vasile Cirtoaje, 2006)
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Solution. (a) We use the SOS method. Rewrite the inequality as

a N b N c _§>%( _ab+bc+ca)
b+c c¢c+a a+b 2 3 a2+ b2+ ¢2
Since
(a=—b)+(a—c)
Z:(b+c ) Z 2(b+c¢)
b—a
_Zz(b+c) ZZ(c+a)
a—b>b 1
_Z (b+c c+a)
_ (a—b)2
_ZZ(b+c)(c+a)
and

g(l_ab+bc+ca)_z (a—b)?
3 a2+b2+c2 ) 4H3(a2+b2+c2)

the inequality can be restated as

1 1
—b)? [ — ] >0
2(a=b) 2(b+c)(c+a) 3(a®+b%+c2)
This is true since
3(@®+b2+c)—-2(b+c)c+a)=(a+b—c)*+2(a—Db)*>0.

The equality holds for a = b =c.

(b) Let
p=a+b+c, gq=ab+bc+ca, r=abc.

We have

Zb+c_z(b+c+1) 3= PZ——B

_p(@*+q)
pq—r

—3.

According to P 3.57-(a) in Volume 1, for fixed p and q, the product r is minimum
when a = 0 or b = c. Therefore, it suffices to prove the inequality for a = 0 and
forb=c=1.

Case 1: a = 0. The original inequality can be written as

b ¢ 3 bc
—+-——Z>W3-1D[|1- .
c+b 2_( )( b2+c2)
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It suffices to show that

4 c 3 bc
c b 2 b2 +c2
Denoting
b2+ 2
=25 122
bc
this inequality becomes
3 1
t——2>21—-—,
2 t

(t—2)(2t—1)>=0.

Case 2: b = c = 1. The original inequality becomes as follows:

2 2a+1
9+———>(f 1)(1— - )
2 a+1 a2+ 2

(a—1)? - (vV/3—=1)(a—1)?
2(a+1) az+2

(a—1)*(a—+V3+1)*>0.

>

The equality holds for a = b = ¢, and for

a
V3—1

tion).

P 1.13. Let a, b, c be positive real numbers. Prove that

1 1 1 a+b+c
+ + <
az+2bc b2+2ca c2+42ab

ab+ bc+ca

= b = ¢ (or any cyclic permuta-

]

(Vasile Cirtoaje, 2006)

First Solution. Assume that a > b > ¢ and write the inequality as

2
(a+b+c¢) —32Z(ab+bc+ca—1),

ab+ bc+ca a?+2bc

(a—b)?+(b—c)*+(a—Db)(b—c) Z(a—b)(a—c)

ab+ bc+ca

Since
(a—b)la—c)=0, (c—a)(c—b)=0,

it suffices to show that

az+ 2bc

(ab+ bc+ca)(a—b)(b— c)

(a—=b)*+(b—c)*+(a—b)(b—c)— b2 + 2ca
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This inequality is equivalent to

(a—b)2+(b—c)2—(a_b)z(b_c)z >0

b2+2ca
c(a—b)*(2a+2b—c)
b—c)*+ = 0.
(b=c) b2+ 2ca -

Clearly, the last inequality is true. The equality holds for a = b = c.
Second Solution. Assume that a > b > ¢ and write the desired inequality as

2
(a+b+c) _Szz(ab+bc+ca_1)’

ab+ bc+ca az+ 2bc

. Z(a—b)(a—c)+zw20,

ab+ bc+ca a2+ 2bc

ab+ bc+ca
1 - —_ — > .
E ( + 2+ 2be )(a b)(a—c)=>0

Since (c —a)(c—b) > 0 and a— b > 0, it suffices to prove that

ab+ bc+ca ab+ bc+ca
14— —c)+[1+——— —b)>0.
( az+ 2bc )(a 2 ( b2+ 2ca )(C )=

Write this inequality as

a—c c—b
—b+(ab+bc+ + >0
a4 (a C Ca)(az—l-Zbc b2+2CCl)_ ’

(a— b)[l + (ab+ bc+ca)(3ac+3bc—ab_zcz] o
(a2 +2bc)(b? + 2ca)
Since a — b > 0 and 2ac + 3bc — 2¢? > 0, it is enough to show that

(ab + bc + ca)(ac —ab)

(a2 + 2bc)(b2 + 2ca)
We have
(ab + bc +ca)(ac —ab) > 1+ (ab + bc +ca)(ac —ab)
(a2 +2bc)(b2+2ca) a2(b2 +ca)
2 2 12
_ (a+ b)c*+ (a®—b*)c > 0.
a(b?+ca)

P 1.14. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a’(b+c) b%*(c+a) c*(a+b)

>a+b+ec.
b2 +¢2 c2+a? a?+ b?

(Darij Grinberg, 2004)
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First Solution. Use the SOS method. We have

a*(b+c) a*(b+c)
Z b2 + c2 Z Z[ b2 + c2 ]
:Zab(a—b)+ac(a—c)

b2 + c2
ab(a—Db) ba(b—a)
=2 e "o
_Z ab(a+ b)(a—b)? -0
B (b2+c2)(c2+a?) —

The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic
permutation).

Second Solution. By virtue of the Cauchy-Schwarz inequality, we have

>0 Pb+e) [BeG+o]
b2 + 2 Zaz(b +c)(b2+c2)

Then, it suffices to show that

[Z a’(b+ c)]2 > (Z a) [Z a?(b+c)(b*+ cz)] .

Letp=a+b+cand q=ab+ bc+ca. Since

2
[Z a’(b + c)] = (pq —3abc)?
= p%q* —6abcpq + 9a?b*c?

and
> a¥(b+c)(b? +c?) =D (b+c)(a®b? + b*c? +c2a?) — bc?]
= 2p(a®b? + b*c* + c%a?) — Z b%c*(p—a)
= p(a®b? + b*c* + c*a*) + abcq = p(q* — 2abcp) + abeq,
the inequality can be written as
p%q*—6abcpq + 9a*b*c* > p*(q* — 2abcp) + abcpq,

abc(2p® +9abc —7pq) = 0.
Using Schur’s inequality
p®+9abc—4pq >0,
we have
2p* + 9abc — 7pq = p(p* —3q) = 0.
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P 1.15. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a’+b%> b*+c?* 2+a?  3(a*+b%+c?)
+ + <
a+b b+c c+a a+b+c)

Solution. Use the SOS method.
First Solution. Multiplying by 2(a + b + ¢), the inequality successively becomes:

Z(1+L)(b2+c2) <3(a?+ b%+¢?),
b+c

—(b*+cA) <> a?
ij—c Z
za(a—”Zif)zoﬁ

Z ab(a—b)—ac(c—a)
b+c

ab(a—b) ba(a—b)
it Sl = >0
Z b+c Z c+a
B2
Z ab(a—b) >0
(b+c)(c+a)

The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic
permutation).

Second Solution. Subtracting a + b + ¢ from the both sides, the desired inequality
becomes as follows:

3(a? + b% +¢?) (a2+b2 a+b)
_ b > _
a+b+c (a+ +C)_Z a+b 2 )

(a—b)? (a—b)?
Za+b+c ZZ(a+b)’
Z:(a+b—c)(a—b)2

a+b

Without loss of generality, assume that a > b > c. Since a+ b —c¢ > 0, it suffices to
prove that

> 0.

(a+c—Db)a—c)? - (a—b—c)(b—c)?
a+c - b+c '
This inequality is true because
—c_ b—c

> .
a+c b+c

Q

a+c—b>a—b—c, a—c=b—c,

The last inequality reduces to c(a —b) > 0.
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Third Solution. Write the inequality as follows:

Z[B(a2+b2) _a2+b2]>0
2(a+b+c) a+b |7

3

Z (a®>+b*)(a+b— 2c)

a+b
(a®>+ b*)(a—c) (a2+b2)(b—c)
Z a+b +Z a+b 20,
(a®> +b*)(a—c) (b2 +c*)(c—a)
>
Z a+b * Z b+c =0,
— )2 1.2
Z(a c)*(ab+bc+ca—>b )ZO.
(a+b)(b+c)
It suffices to prove that
— )2 _ _ 12
Z(a c)*(ab+bc—ca—>b )20.
(a+Db)(b+c)
Since
ab+bc—ca—b*=(a—b)(b—rc),
this inequality is equivalent to
—b)(b— — >0,
(a=b)(b—c)(c— a)Z( " b)(b 52
which is true because
Z c—a
(a+Db)(b+ c)

P 1.16. Let a, b, c be positive real numbers. Prove that

1 1 1 9

+ + > .
a?+ab+b2 b2+bc+c2 c24+ca+a? (a+b+c)?

(Vasile Cirtoaje, 2000)

First Solution. Due to homogeneity, we may assume that
a+b+c=1.

Let g =ab + bc + ca. Since

b’+bc+c*=(a+b+c)*—ala+b+c)—(ab+bc+ca)=1—a—q,
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we can write the inequality as

1
2Tma=g2®

9¢°® —6q*>—3q+1+9abc > 0.

From Schur’s inequality
(a+b+c)®+9abc>4(a+Db+c)ab+bc+ca),

we get
1+4+9abc—4q = 0.

Therefore,
9¢°> —6q*—3q +1+9abc = (1+9abc—4q)+q(3qg—1)*=0.

The equality holds for a = b =c.

Second Solution. Multiplying by a® + b% + c? + ab + bc + ca, the inequality can be

written as
9(ab + bc + ca)

a
+b+ +
(a C)Zb2+bc+c2 (a+b+c)?

By the Cauchy-Schwarz inequality, we have

Z a - (a+b+c)  a+b+c
b2+bc+c2~ Y a(b?+bc+c2) ab+bc+ca’

Then, it suffices to show that

(a+b+c)*>  9(ab+ bc+ca)
ab+ bc+ca (a+b+c)?

This follows immediately from the AM-GM inequality.

P 1.17. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a? N b* N c? 1
(2a+b)(2a+c) (2b+c)2b+a) (2c+a)2c+b) ™ 3

(Tigran Sloyan, 2005)
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First Solution. The inequality is equivalent to each of the inequalities

a’ a
Z[(2a+b)(2a+c)_3(a+b+c)] =0,

Z a(a—b)(a—c) > 0.
(2a+b)(2a+¢c)
Due to symmetry, we may consider

a>b>c.

Since c(c —a)(c — b) = 0, it suffices to prove that

a(a—b)(a—-c) b(b—c)(b—a) >0
(2a+b)(2a+c) (@b+c)2b+a) ~

This is equivalent to the obvious inequality

(a—b)*[(a+ b)(2ab —c*) +c(a*+ b*+5ab)] > 0.
The equality holds for a = b = ¢, and also for a = b and ¢ = 0 (or any cyclic
permutation).

Second Solution (by Vo Quoc Ba Can). Apply the Cauchy-Schwarz inequality in the
following manner

9a? _ (2a + a)? . 2a N a®
(2a+b)(2a+c) 2ala+b+c)+(2a2+bc) " a+b+c 2a2+bc’
Then,

9a? a?
<2+ —F— < 3.
Z(2a+b)(2a+c) - z:2a2+bc -

For the nontrivial case a, b, ¢ > 0, the right inequality is equivalent to

1
I
2+ bc/a?

which follows immediately from P 1.2-(b).
Remark. From the inequality in P 1.17 and Hoélder’s inequality

2

[Z . ] [Z va(2a+ b)(2a + c)J2 > (a+b+c),

(2a+b)(2a+c)

we get the following result:

e Ifa, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

Vaa+b)(2a+c)+ /b(2b +c)(2b+a) + y/c(2c +a)(2c + bc) > 9,

33
with equality fora = b = c =1, and for (a, b,c) = (0, > 5) (or any cyclic permutation).
OJ
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P 1.18. Let a, b, c be positive real numbers. Prove that

(a) >

a 1
< .
(2a+b)(2a+c) ~ a+b+c’

a® 1

< .
(2a2+b2)(2a2+c2)  a+b+c

(b) >

Solution. (a) Write the inequality as
Z[l_ ala+b+c) ]20’
3 (2a+b)(2a+¢c)

Z (a—=b)(a—c)
(2a+b)(2a+c) —

Assume that
a>b>c.

Since (a — b)(a —c) = 0, it suffices to prove that

(b—c)b—a)  (a—c)b—c)

(2b+c)2b+a) (2c+a)(2c+b)

(Vasile Cirtoaje, 2005)

In addition, since b—c>0and a—c > a—b = 0, it is enough to show that

1 1

(2c +a)(2c + b) = (2b+c)2b+a)

This is equivalent to the obvious inequality
(b—c)(a+4b+4c)=0.

The equality holds for a = b =c.

(b) We obtain the desired inequality by summing the inequalities

a’ a

<
(2a2+ b2)(2a2+c2) = (a+b+c)?’

b* b

<
(2b2 +c2)(2b24+a?) = (a+Db+c)?’

c3 c

<
(2c2+a2)(2c2+b2) ~ (a+b+c)?’

which are consequences of the Cauchy-Schwarz inequality. For example, from

(a®+ a®+ b?)(c* + a® + a?) > (ac + a® + ba)?,

the first inequality follows. The equality holds for a = b =c.
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P 1.19. If a, b, c are positive real numbers, then

1 1 2
> + .
Z(a+2b)(a+2c) “(a+b+c)> 3(ab+ bc+ca)

Solution. Write the inequality as follows:

Z[ 1 . 1 :|> 2 _ 2
(a+2b)(a+2c) (a+b+c)?] 3(ab+bc+ca) (a+b+c)?’

Z (b—c)? >Z (b—c)?

(a+2b)(a+2c)  “~3(ab+bc+ca)
be o

(a+2b)(a+2c)

(@a—b)(b—c)c—a)> .

Since

b—c b—c b—c
Z(a+2b)(a+2c) :Z[(a+2b)(a+2c) _3(ab+bc+ca)]

_(a—b)(b—c)(c—a)z 1
~ 3(ab+ bc+ca) (a+2b)(a+2c)
the desired inequality is equivalent to the obvious inequality

! > 0.
(a+2b)(a+2c)

(@a—b)X(b—c)X(c—a)* .

The equality holds for a = b, or b =c, or c = a.

P 1.20. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

@ 1 + 1 + 1 > 4 )
(a—b)2 (b—c)®> (c—a)? ab+bc+ca’
1 1 1 3
b + + > ;
®) a?—ab+b2 b2—bc+c2 c2—ca+a?2 ab+bc+ca’
1 1 1 5
(©) >

+ + = .
a?+b2 b2+c2 c24+a?2 2(ab+ bc+ca)
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Solution. Let

ab+bc+ca+ab+bc+ca+ab+bc+ca
a2—kab+ b2 b2—kbc+c2 c2—kca+a?

where k € [0,2]. We will prove that

Ek(a: b: C) =

Ek(aa b) C) 2 ak:
where
5—2k
2—k’
2+k, 1<k<2’

0<k<1

a, =

Assume that a < b < c and show that
Ei(a,b,c) = E.(0,b,c) = a.
The left inequality is true because
Ei(a,b,c)—E(0,b,c)

a
b%+ (1 +k)bc —ac b+c c2+(1+k)bc—ab
- b(a2 —kab + b2) b2 —kbc + c2 c(c2—kca+ a?)
S bc—ac 4 b+c + bc—ab > 0.
b(a2—kab+b2) b2—kbc+c?2 c(c2—kca+a?)
In order to prove the right inequality, E, (0, b,c) > a,, where
Ei(0,b,¢) = b2 —kbbcc +c2 * % * %’
we well use the AM-GM inequality. Thus, for k € [1,2], we have

bc b? —kbc + c?
E.(0,b,c) = + +k>2+k.
(0.0, = e be =
Also, for k € [0, 1], we have
bc b? —kbc + c?

E.(0.b,c)= +
(0.0, ) = e (2—k)2bc

+[1_(2—1k)2](§+%)+(2—kk)2
k  5—2k

2ﬂ+2[1_(2—k)2]+(2—k)2 -2k

For k € [1,2], the equality holds when a = 0 and b + % = 1+ k (or any cyclic

c
permutation). For k € [0, 1], the equality holds when a = 0 and b = ¢ (or any
cyclic permutation).

OJ



52 Vasile Cirtoaje

P 1.21. If a, b, c are positive real numbers, then
(a®+b%)(a®+c?) (b2+cA)(b%2+a®) (c2+a®)(c®+b?) S b 4
(a+b)(a+c) (b+c)(b+a) (c+a)(c+Db)
(Vasile Cirtoaje, 2011)

Solution. Using the identity
(a®+ b?*)(a® + c?) = b*c* + a®(a® + b* + ¢?),
we can write the inequality as follows:

2

b2c? 2, 12 o a
Z(a+b)(a+c)2(a T )[1 Z(a+b)(a+c)]’
Z b%c?(b +¢) > 2abc(a® + b? + ¢?),
Zas(b2+c2)222a3bc,

Z a®(b—c)*>0.
The equality holds for a = b =c.

P 1.22. Let a, b, c be positive real numbers such that a + b + ¢ = 3. Prove that

1 1 1
+ + <1.
al+b+c b2+c+a c2+a+b

First Solution. By virtue of the Cauchy-Schwarz inequality, we have
(a?+b+c)1+b+c)=>(a+b+0)
Therefore,

1 1+b+c 3+2(a+b+c)
Za2+b+c_z(a+b+c)2 (a+Db+c)?

The equality occurs fora=b =c=1.

Second Solution. Rewrite the inequality as

1 + 1 + 1 <
az—a+3 b2—b+3 c2—c+3 "

We see that the equality holds for a = b = ¢ = 1. Thus, if there exists a real number

k such that . ,
i (B)e
az—a+3 3
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for all a € [0, 3], then
1 1 1
Zaz—a+3_z[k+(3 k)a] 3k+(3 k)Za

! 1 (a—Df(a)
k+(§_k)a_a2—a+3 - 3(a2—a+3)

We have

where
f(a) = (1—3k)a*+ 3ka + 3(1 — 3k).

From f(1) =0, we get k = 4/9. Thus, setting k = 4/9, we get

—1)2(3 —
k+(1—k)a— 1 :(a 1)%(3 a)ZO.
3 a?—a+3 9(a2—a+3)

P 1.23. Let a, b, ¢ be real numbers such that a + b + ¢ = 3. Prove that

az—bc+ bz—ca+cz—ab
a’+3 b2+3 c2+3

(Vasile Cirtoaje, 2005)
Solution. Apply the SOS method. We have
a?—bc (a=b)la+c)+(a—c)a+b)
2 =
Z az+3 Z az+3

. (a=b)la+c) (b—a)(b+c)
_Z az+3 +Z b2 +3

a+c b+c
_Z(a_b)(a2+3_b2+3)

(a—b)?
=(3—ab—bc—ca)z(a2+3)(b2+3) > 0.

Thus, it suffices to show that
3—ab—bc—ca=0.
This follows immediately from the known inequality
(a+b+c)*>3(ab + bc +ca),
which is equivalent to
(a—b)2+(b—c)?+(c—a)*=>0.

The equality holds fora=b =c=1.
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P 1.24. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

1—bc 1—ca 1—ab
+ + >
54+2a 5+2b 5+2c

Solution. We apply the SOS method. Since
9(1—bc)=(a+b+c)*—9bc,

we can write the inequality as

Za2+b2+c2+2a(b+c)—7bc -
5+ 2a o

0.

From
(a—b)la+kb+mc)+(a—c)(la+kc+mb)=

=2a*—k(b*+c*) + (k+m—1)a(b +c)—2mbc,
choosing k = —2 and m = 7, we get
(a—b)a—2b+7c)+(a—c)(a—2c+7b)=2[a*+ b*+c*+2a(b +c)—7bc].

Therefore, the desired inequality becomes as follows:

Z(a—b)(a—2b+7c) +Z(a—c)(a—2c+7b) >0
54 2a 54 2a

2

(a=—b)(a—2b+7c) (b—a)(b—2a+ 7c)
Z 54+ 2a +Z 5+2b =

Z(a — B)(5 + 20)[(5 + 2b)(a—2b + 7¢) — (5 + 2a)(b — 2a + 7¢)] = 0,

0,

> (a—b)*(5+2c)(15 +4a +4b —14c) > 0,
> (a—b)*(5+2c)(a+b—c)>0.
Without loss of generality, assume that a > b > c. Clearly, it suffices to show that
(a—c)(5+2b)a+c—b)=>(b—c)*(5+2a)(a—b—c).
Sincea—c>b—c>0and a+c—b > a—b—c, we only need to show that
(a=c)(5+2b)=(b—c)(5+2a).

Indeed,
(@a=c)(5+2b)—(b—c)(5+2a)=(a—b)(5+2c)=>0.

The equality holds fora = b =c =1, and for a = b = 3/2 and ¢ = 0 (or any cyclic
permutation).
OJ



Symmetric Rational Inequalities 55

P 1.25. Let a, b, c be positive real numbers such that a + b + ¢ = 3. Prove that

1 1 1 3
+ + <-.
az+b2+2 b2+c2+2 c2+a’+2 4

(Vasile Cirtoaje, 2006)

Solution. Since

2 _ a* + b?
az+b2+2 az+b2+2’
we may write the inequality as
a* + b? b%+ c? c? +a?

3
- + > =
a?+b?2+2 b%2+c2+2 c2+4+a2+2 2

By the Cauchy-Schwarz inequality, we have

Z a® + b? S (Zm)z
a?+b24+2 " >Y(a2+b2+2)
_2>1a®+23 /(a2 + b2) (a2 +c?)
B 2>a2+6
S 2> a*+2> (a*+ bc)
B 2>a2+6
_32a*+9 3

2)Ya2+6 2

The equality holds fora=b=c=1.

P 1.26. Let a, b, ¢ be positive real numbers such that a + b + ¢ = 3. Prove that

+ - <-.
4a2+b%2+c2  4b2+c2+a? 4c2+a?+b? 2

1 1 1 1
<

(Vasile Cirtoaje, 2007)
Solution. According to the Cauchy-Schwarz inequality, we have

9 _ (a+Db+c)?
4a2+b2+c2 2a2+ (a2 + b2)+ (a2 +c2?)
b? c?

+ .
a?+b2  a?+c?

1
<+
2
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Therefore,

3 c*
2 Z(a2+b2 a2+c2)
3 a? 3 9
== =Z43=2,
2 Z(a2+b2 b2+a2) 2 2

The equality holds fora=b =c =1.

Z4a2+b2+c2 B

P 1.27. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 2. Prove that

bc ca ab

+ + <1.
at+1 b2+1 241

(Pham Kim Hung, 2005)

Solution. Let
p=a+b+c=2 q=ab+bc+ca, q<p?/3=4/3.

If a = 0, then the inequality reduces to 4ab < (a + b)?. Otherwise, for a, b,c > 0,

write the inequality as
> @ s S a
=< )
a(a2+1) ~ abc

Z(l_ a ) 1
a a*+1)” abc’

S S1,1. 1 1
a2+1 a b ¢ abc’

A

Using the inequality

az+1 "
which is equivalent to
a(a—1)*>0,

(2—a) (b +c)
O

Therefore, it suffices to prove that

we get

1+4+abcqg>q.
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By Schur’s inequality of degree four, we have

(P> —q)(4q—p*) _(4—q)(q— D

bc > =
abc 6p 3

Thus,

qé-9g-D _ _G=ag- 1)?
3 3
The equality holds if a = 0 and b = ¢ =1 (or any cyclic permutation).

1+abcq—q=>1+ > 0.

P 1.28. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 1. Prove that

bc ca ab 1

+ + <-.
a+1 b+1 c+1 4

(Vasile Cirtoaje, 2009)

First Solution. We have

Za+1_z(a+b)b+(c+a)
_Zbc(aib—i_c—ll-a)
:_Za+b 411 cljrca
:_Za-l—b 4 aC:b
~ i ars T2y

The equality holds fora = b = ¢ =1/3, and fora =0 and b = ¢ = 1/2 (or any
cyclic permutation).

Second Solution. It is easy to check that the inequality is true if one of a, b, c is
zero. Otherwise, write the inequality as

1 1 1 1
+ + < .
a(a+1) b(b+1) c(c+1)  4abc

Since
1 1 1

a(a+1) a a+1’
we may write the required inequality as

1 1 1 .1 1 1 1
>

+ + > =+ .
a+1 b+1 c¢c+1 a b ¢ 4abc
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In virtue of the Cauchy-Schwarz inequality, we have

1 1 1 9 9

+ + > =
a+1 b+1 c+1 (a+1)+(b+1)+(c+1) 4

Therefore, it suffices to prove that

9.1 1 1 1
>

4 "a b ¢ 4abc

This is equivalent to Schur’s inequality

(a+b+c)®+9abc>4(a+Db+c)ab+ bc+ca).

P 1.29. Let a, b, c be positive real numbers such that a + b + ¢ = 1. Prove that

1 1 1 3
+ + < .
a(2a2+1) b(2b2+1) c¢(2c¢2+1)  1labc

(Vasile Cirtoaje, 2009)

Solution. Since
1 1 2a

a(2a2+1) a 2a2+1°

we can write the inequality as

5 20 1.1 1 3
2a2+1 a b ¢ 1labc’

By the Cauchy-Schwarz inequality, we have

S o, @0
2a2+1 7 Ya(2a2+1) 2@ +b3+c3)+1°
Therefore, it suffices to show that
2 S 11g—3
2(a3+b3+c3)+1 ~ 1labc’
where ) ,
gq=ab+bc+ca, ¢q=< g(a+b+c)2:§_
Since

a®+b*+c*=3abc+(a+b+c)>*—3(a+b+c)ab+ bc+ca)=3abc+1—3q,
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we need to prove that
22abc > (11qg —3)(6abc + 3 —6q),

or, equivalently,
2(20 —33q)abc > 3(11g —3)(1 —2q).

From Schur’s inequality
(a+b+c)*+9abc>4(a+b+c)ab+ bc+ca),

we get
9abc > 4q —1.

Thus,

2(20—33q)abc—3(11g—3)(1—2q) =

2(20—33 —1
> A ;1)(4q ) _3(119—3)(1—29)
330> —233q+41 _ (1—3q)(41—110q) -0

9 B 9 -

This completes the proof. The equality holds fora=b =c =1/3.

P 1.30. Let a, b, ¢ be positive real numbers such that a + b + ¢ = 3. Prove that

1 1 1
+ + <l1.
a3+b+c b34+c+a c3+a+b

(Vasile Cirtoaje, 2009)

Solution. Write the inequality in the form

1 + 1 N 1 <1
a3—a+3 b3—b+3 3—c+3
Assume that a > b > c. There are two cases to consider.
Case 1: 2> a > b > c. The desired inequality follows by adding the inequalities
1 5—2a 1 5—2b 1 5—2c
< , < . < .
ad—a+3 9 b3—b+3 9 c3—c+3 9

These inequalities are true since

1 _5—2a_(a—1)2(a—2)(2a+3)<
al—a+3 9 9(a3—a+3) -
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Case 2: a > 2. Froma+b+c =3, we get b+c < 1. Since

1 1 1 1 1 1 1
> < + + <S4,
ad—a+3 a3—a+3 3—b 3—c 9 3—b 3—c

it suffices to prove that

1 1 8
— 4+ < -.
3—b 3—c 9
We have
1 1 8 —3—15(1—b—c)—8bc
3—b 3—c 9 9(3—b)(3—c)

The equality holds fora=b =c=1.

P 1.31. Let a, b, ¢ be positive real numbers such that a + b + ¢ = 3. Prove that

a? b? c?

+ + > 1.
1+b3+c¢® 1+c3+a® 1+a®+b3

Solution. Using the Cauchy-Schwarz inequality, we have

2

Z a > (Z az)

14+b34+¢3 7 Ya2(1+b3+c3)

and it remains to show that
(a>+b*>+c*)P? > (a®>+b*+c*) + Zazbz(a +b).

Let
p=a+b+c, qg=ab+bc+ca, q<3.

Since a® + b* + ¢* =9 —2q and
Z a*b*(a+b) = Zazbz(B —c)= BZ a*b*—qabc = 3¢*> —(q + 18)abc,
the desired inequality can be written as
(9—29)*>>(9—2q) +3q%>—(q + 18)abc,

q*>—34q +72+(q +18)abc > 0.

This inequality is clearly true for g < 2. Consider further that 2 < q < 3. By Schur’s
inequality of degree four, we get

(?*—9)4q—p*) _ O—)(49-9)

be >
ave 6p 18
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Therefore

(@ +18)(9—q)(49—9)
18
_ (3—q)(4¢* +21q —54) >0
18

q*—34q+72+(q+18)abc > q*—34q+ 72+

The equality holds fora=b=c=1.

P 1.32. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

1 + 1 + 1 <§
6—ab 6—bc 6—ca 5

Solution. Rewrite the inequality as
108 —48(ab + bc + ca) + 13abc(a + b +¢) — 3a?b*c* > 0,

4[9—4(ab + bc + ca) + 3abc]+ abc(1l —abc) = 0.
By the AM-GM inequality,

3
1= (%b-l—c) > abc.

Consequently, it suffices to show that
9—4(ab + bc+ca)+3abc > 0.

We see that the homogeneous form of this inequality is just Schur’s inequality of
third degree

(a+b+c)*+9abc>4(a+Db+c)ab+ bc+ca).

The equality holds fora = b =c =1, as well as fora =0 and b = ¢ = 3/2 (or any
cyclic permutation).
O

P 1.33. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

1 N 1 N 1 <1
2a24+7 2b2+4+7 2¢24+7 3

(Vasile Cirtoaje, 2005)
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Solution. Use the mixing variables method. Assume that a = max{a, b,c} and
prove that

1
E(Cl, b: C) < E(a,s,s) < 5:

where b
S:ig OSSSl,
2
1 1 1
E ’b’ = + + *
(a,b,c) 2a2+7 2b24+7  2c247
We have
1 1 1 1
E 39, —E JbJ = - + B
(a,s,s) (a,b,c) (252+7 2b2+7) (252+7 2C2+7)
B [(b—c)(b+s)+(c—b)(c+s)]
2247 2b2+7 2247

_ (b—c)*(7—4s*>—2bc)
O (2s2+7)(2b2 + 7)(2¢2 + 7))

Since bc < s? < 1, it follows that
7—4s>—2bc=1+4(1—52)+2(1—bc)>0,
hence E(a,s,s) > E(a, b, c). Also,

4(s —1)%(2s — 1)?
3(2a2+7)(2s2+7) —

1 1
——E(a,s,s) = —-—E(3—2s,s,5) =
5 E(a,5,5)= 2 —E( )

The equality holds fora = b =c =1, as well as fora =2 and b =c = 1/2 (or any

cyclic permutation).
O

P 1.34. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

1 1 1 3

+ + >
2a2+3  2b2+3  2¢2+3° 5

(Vasile Cirtoaje, 2005)
First Solution (by Nguyen Van Quy). Write the inequality as
Z ( 1 1 ) 2
—_— S -,
3 2a%2+3 5

P
< -.
2a2+5 5
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Using the Cauchy-Schwarz inequality gives

25 25
3(2a2+3) 6a2+(a+b+c)?
_ (2+2+1)?
© 2(2a2+be)+2a(a+b+c)+az+ b2 +c2
22 22 1

< + + ,
2(2a2+bc) 2a(a+b+c) a2+ b2+c2

hence

25a? 2a> 2a a?
— < — + +
23(2a2+3) Z:2a2+bc Za+b+c Za2+b2+c2
2a?
=> —— 43
Z 2a2+ bc
Therefore, it suffices to show that

2

a
P
2a2 + bc

For the nontrivial case a, b,c > 0, this is equivalent to

P
2+ bc/a?

which follows immediately from P 1.2-(b). The equality holds fora=b =c =1,
as well as for a =0 and b = ¢ = 3/2 (or any cyclic permutation).

Second Solution. First, we can check that the desired inequality becomes an equal-
ity fora=b =c =1, and for a =0 and b = ¢ = 3/2. Consider then the inequality
f(x) =0, where

_ T g
(2x2+3)2

flx)= —Bx, f'(x)=

—A
2x2+3

The conditions f(1) =0 and f’(1) = 0 involve A = 9/25 and B = —4/25. Also, the
conditions f(3/2) = 0 and f’(3/2) = 0 involve A= 22/75 and B = —8/75. Using
these values of A and B, we obtain the identities

1 9—4x _2(x—1)(4x—1)

2x24+3 25  25(2x2+3)
1 22-8x _ (2x—3)*(4x+1)
2x2+3 75  75(2x2+43)
and the inequalities
1 9—4x

X =

b

Al
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1 >22—8x
2x2+3 75

Without loss of generality, assume that a > b > c.

x = 0.

b

1
Case 1: a > b > ¢ > —. By summing the inequalities

4
1 29—4a, 1 29_4b, 1 29—4c’
2a2+3 25 2b2+3 25 2c2+3 25
we get
1 1 1 27—4(a+b+c) 3
+ + > ==,
2a24+3 2b2+3 2¢2+3 25 5
1
Case2:a2bZZZC.Wehave
1 22—8a 22—8b 1
> > + +
2a2+3 75 75 2c2+3
_ 44—8(a+Db) 1 _ 2048, 1
B 75 2c24+3 75 2c2+3°

Therefore, it suffices to show that

20+8c+ 1
75 2c2+3

which is equivalent to the obvious inequality

c(8c?—25c+12)>0.

1
CaseB:aZZZbZC. We have

1 1 1 2 3
>, > + > > 2.
2a2+3 2b2+3 2c2+3 1/84+43 5

P 1.35. Let a, b,c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

1 N 1 N 1 >a+b+c+ 3
a+b b+c cH+a 6 a+b+c’

(Vasile Cirtoaje, 2007)
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First Solution. Denoting
x=a+b+c, x >3,

we have

1 1 1  (a+b+c)+ab+bc+ca x?+3

+ = = .
a+b b+c c+a (a+b+c)(lab+bc+ca)—abc 3x—abc

Then, the inequality becomes

3(x® 4+ 9abc — 12x) + abc(x*—9) > 0.
This inequality is true since
x2=9>0, x®+9abc—12x>0.
The last inequality is just Schur’s inequality of degree three
(a+b+c)®+9abc>4(a+Db+c)ab+ bc+ca).

The equality holds fora = b =c =1, and for a = 0 and b = ¢ = /3 (or any cyclic
permutation).
Second Solution. We apply the SOS method. Write the inequality as follows:

1 1 1 a+b+c 3
+ + > + ,
a+b b+c c+a 2(ab+bc+ca) a+b+c

>

1 1 ) (a+b+c)
+ + >
b b+c c+a ab+ bc+ca
1 1 (a+b+c)
+ + —9>———"—3,
a+b b+c c+a) ab+ bc+ca

(b—c)? 1 ,
Z (a+b)(c+a) = 2(ab + bc +ca) Z(b—c) ’

ab+ bc +ca—a?
b—c)’>0
2 @it P79 =0

1
2 b
(a+ +c)(a+

Ka+b)+(b+d+{c+aﬂ(

3—a?
23+a2(b—c)220,

Without loss of generality, assume that a > b > c. Since 3 —c? > 0, it suffices to
show that

3—a? 3—b?
b—c)+
3720 3

(c—a)*>0.
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Having in view that
3—b?=ab+bc+ca—b?>>bla—b)=>0, (c—a)*>(b—c)?

it is enough to prove that
3—a®> 3-b?
+
3+a2 3+ b2

This is true since

3—a2+3—b2_ 2(9 —a?b?) _2c(a+b)(3+ab)>
3+a2 34+b2 (B3+a®)(B3+b2) (3+a2)(3+b2) ~

P 1.36. Let a, b,c be nonnegative real numbers such that ab + bc + ca = 3. Prove

that
1 + 1 + 1 >3
az+1 b2+1 241 2

(Vasile Cirtoaje, 2005)
First Solution. After expanding, the inequality can be restated as
a?+ b*+c*+3 > a®b* + b%c* + c*a® + 3a*b*c>.
From
(a+b+c)(ab+bc+ca)—9abc =a(b—c)*+b(c—a)*+c(a—b)*>0,

we get
a+b+c>3abc.

So, it suffices to show that
a?+b%+c?+3>a?b?+b%c? +c*a®> +abc(a+ b +o).

This is equivalent to the homogeneous inequalities
(ab+bc+ca)(a®+b*+c?*)+(ab+bc+ca)? > 3(a®b?+ b3 c*+c?a?)+3abc(a+b+c),
ab(a®+ b*) + be(b* + ¢*) + ca(c? + a®) > 2(a®b? + b*c? + c?a?),
ab(a—b)?>+ be(b—c)*+calc—a)* > 0.

The equality holds fora = b =c =1, and for a = 0 and b = ¢ = /3 (or any cyclic
permutation).

Second Solution. Without loss of generality, assume that

a =min{a, b, c}, bc > 1.
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From
(a+b+c)ab+ bc+ca)—9abc=a(b—c)*+b(c—a)*+c(a—b)* >0,

we get
a+b+c>3abc.

The desired inequality follows by summing the inequalities

1 1 2
+ > s
b2+1 ¢2+1 bc+1
1 2 3

+ > —.
a2+1 bc+1 2

We have

1 N 12 b(c—b) c(b—c)
b2+1 ¢2+1 bc+1 (b2+1)(bc+1) (c2+1)(bc+1)
_ (b—c)*(bc—1)
B2+ 1D)(c2+1)(bc+1) T

and

1 2 3 a®—bc+3—3a’bc  a(a+b+c—3abc)

+ J— ey =
at+1 bc+1 2 2(a2+1)(bc+1) 2(az+1)(bc+1)

Third Solution. Since

1 1 a’ 1 _1 b2 1 1 c?
a2+1 = a?+1 b2+1 b2+1° c2+1 = 241’

we can rewrite the inequality as

a’ N b2 4 c? <3
a?+1 b2+1 241~ 2

or, in the homogeneous form,

2

P
3a2+ab+bc+ca” 2

According to the Cauchy-Schwarz inequality, we have

4a> _ (a+a)? < a . a?
3a2+ab+bc+ca ala+b+c)+(2a2+bc) ~ a+b+c  2a2+bc’

4a? a?
<1+ _
Z3a2+ab+bc+ca z:2a2+bc

hence
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It suffices to show that ,

a
P
2a2 + bc

For the nontrivial case a, b,c > 0, this is equivalent to

1
I
2+ bc/a?

which follows immediately from P 1.2-(b).

Remark. We can write the inequality in P 1.36 in the homogeneous form
1 + 1 + 1 >
3a* 14 3b? - 3¢c? B

ab+ bc+ca ab+bc+ca ab+bc+ca

N w

1+

. 111 .
Substituting a, b, c by —, —, —, respectively, we get
Xy z

b'e y Z 3

+ + > .

3yz 3zx 3xy 2
X+———— y+— z+—
X+y+z xX+y+z X+y+z

So, we find the following result.

e If x,y,z are positive real numbers such that x + y +z = 3, then

b'e y Z 3
+ + > .
X+yz y+zx z+xy 2

P 1.37. Let a, b, c be positive real numbers such that ab + bc + ca = 3. Prove that

a? N b? N c2 -1
a2+b+c b24+c+a c2+a+b
(Vasile Cirtoaje, 2005)

Solution. We apply the Cauchy-Schwarz inequality in the following way

Z a? >(a3/2+b‘°’/2+c3/2)2 > a®+2(ab)*?
a2+b+c Ya(a2+b+c) >ad+6 -

Then, we still have to show that

(ab)*? + (be)*? + (ca)*’* = 3.
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By the AM-GM inequality, we have

(ab)®? + (ab)*? +1

1
__2__
2 2

3ab 1
b)3/2 = -
(ab) > g

hence

w

(@b)*’2 + (bc)* + (ca)* = Z(ab + be + ca) — % _3,

[\)

The equality holds fora=b=c=1.

P 1.38. Let a, b, ¢ be positive real numbers such that ab + bc + ca = 3. Prove that

bc+4 ca+4 ab+4 bc+2 ca+2 ab+2

<3<

+ + <o
az+4 b2+4 c2+4

- + .
az+2 b2+42 242

(Vasile Cirtoaje, 2007)

Solution. More general, using the SOS method, we will show that

bc+k ca+k ab+k )
—3]<0

k—3 + +
( )(a2+k b2+k c2+k

for k > 0. This inequality is equivalent to

Since
Z o ob —Z (a—b)(a+il)2tr(;—c)(a+b)
-y ierd et
=(k—ab—bc—ca) ) (a? iak;(ll;ZZ k)
=k=3)2, iak;(l;i k)’
we have

a’—bc 5 (a—b)?
2=, Gy =KD Z(a2+k)(b2+k)20'

The equality in both inequalities holds fora=b =c=1.
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P 1.39. Let a, b, c be nonnegative real numbers such that ab + bc +ca = 3. If
k>2++/3,
then
1 4 1 N 1 < 3
a+k b+k c+k” 1+k

(Vasile Cirtoaje, 2007)

Solution. Let us denote
p=a+b+c, p=3.

By expanding, the inequality becomes
k(k—2)p + 3abc > 3(k—1)2.
Since this inequality is true for p > 3(k — 1)?/(k? — 2k), consider further that

3(k—1)?
P= k=2

From Schur’s inequality

(a+b+c)®+9abc>4(ab+ bc+ca)la+b+c),

we get
9abc > 12p — p°.

Therefore, it suffices to prove that
3k(k—2)p +12p —p® > 9(k — 1),

or, equivalently,
(p—3)[B(k—1)*~p*—-3p] 0.

Thus, it remains to prove that
3(k—1)*—p*—3p=>0.
Since p < 3(k —1)?/(k?—2k) and k > 2 + +/3, we have

ok —1)* 9(k—1)
k2(k—2)2  k(k—2)
3(k—1)*(k*—3)(k?—4k +1)
= > 0.
k2(k — 2)2

3(k—1)*—p*—3p>3(k—1)*—

The equality holds for a = b = ¢ = 1. In the case k = 2 + +/3, the equality holds
also for a =0 and b = ¢ = +/3 (or any cyclic permutation).
O
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P 1.40. Let a, b, c be nonnegative real numbers such that a®>+ b?+c? = 3. Prove that

a(b+c)+b(c+a)+c(a+b) <3
1+ bc 1+ca 1+ab

(Vasile Cirtoaje, 2010)

Solution. Write the inequality in the homogeneous forms

Z a(b+c¢) <1,
az+ b2+ c2+3bc

Z[ a(b+c) B a ]<O
a?+b2+c2+3bc a+b4+c|” 7

Z ala—b)(a—c)
a2+ b2+c2+3bc
Without loss of generality, assume that a > b > c. Then, it suffices to prove that

ala—b)(a—c) + b(b—c)(b—a)
az+b2+4+c2+3bc a?+b2+4+c2+3ca

>

which is true if
ala—c) S b(b—c)

a2+ b2+4+c2+3bc  a?+b2+c2+3ca

Since
a(a—c)=b(b—c)

and
1 1

>
a2+ b2+c2+3bc a2+ b2+c2+3ca’

the conclusion follows. The equality holdsfora =b=c=1,andfora=b = +/3/2
and ¢ = 0 (or any cyclic permutation).

]

P 1.41. Let a, b, c be positive real numbers such that a*> + b*> + ¢* = 3. Prove that

a?+b> b*+c* c?+a’
+ + >
a+b b+c c+a

(Cezar Lupu, 2005)

First Solution. We apply the SOS method. Write the inequality in the homoge-
neous forms

b*+c* b+c
Z( btc 2 )2\/3(a2+b2+c2)—a—b—c,
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Z (b—c) _ 2(b—c)?

2b+c) " V3(@+b2+)+a+b+c

Since

V3@ +b2+c)+a+b+c>2(a+b+c)>2(b+o),
the conclusion follows. The equality holds fora=b=c=1.

Second Solution. By virtue of the Cauchy-Schwarz inequality, we have

Za2+b2 - (Zm)z 22,2 +2 4/ (a®+b2)(a? +c?)

a+b ~  Sla+b) 2> a
_2¥ @423 (@ +bo) _ 3% a’+(Xa)
- 2>a B 2>a
L9+ (a3
“25a T 2%a 77

P 1.42. Let a, b, c be positive real numbers such that a®> + b® + c?> = 3. Prove that

ab bc ca
+ +
a+b b+c c+a

+2§£(a+b+c).

(Vasile Cirtoaje, 2011)

Solution. We apply the SOS method. Write the inequality as
4bc

3 b+c— >8(3—a—b—c).

3o+ o) z0-0m0-0

4bc  (b—c)?
b+c b+c

Since
b+c—

and
9—(a+b+c)* 3(@+b*+c*)—(a+b+c)
3+a+b+c 3+a+b+c

1
- - b—c)?
3+a+b+cz( <)

3—a—b—c=

we can write the inequality as
S (b—c)*+S,(c—a)*+S.(a—b)* >0,

where
3 8

b+c 3+a+b+c

a=



Symmetric Rational Inequalities

73

Without loss of generality, assume that a > b > ¢, which involves S, > S, > S... If

S, +S.>0,

then
S, =>S5,=>0,

hence

S,(b—c)*+S,(c—a)*+S.(a—b)*>S,(c—a)*+S.(a— b)*
> (S, +S.)(a—b)*=>0.

By the Cauchy-Schwarz inequality, we have

S +s-—3( L )— 16
bt ™"\ a+c a+b 3+a+b+c
12 16

> —
“(a+c)+(a+b) 3+a+b+c
. 4(9—5a—b—c)
 (2a+b+c)B+a+b+c)

Therefore,we only need to show that
9>5a+b+c.
This follows immediately from the Cauchy-Schwarz inequality

(25+1+1)(a®?+b*+c?) > (5a+b+c).

Thus, the proof is completed. The equality holds for a = b = ¢ = 1, and also for

a=>5/3 and b =c =1/3 (or any cyclic permutation).

P 1.43. Let a, b, c be positive real numbers such that a® + b%> + ¢? = 3. Prove that

@ 1, 1,1 3
3—ab 3—bc 3—ca” 2’
1 1 1
b + + <1;
®) 5—2ab 5—2bc 5—2ca
1 1 1 3
(©

+ + < .
V6—ab +6—bc V6—ca V6-—1

]

(Vasile Cirtoaje, 2005)
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Solution. (a) Since

14 ab 14 2ab
3—ab 3—ab a?+ b2+ 2c%+ (a—b)?
2ab (a+Db)?
<l+————< s
a?+ b2 +2c? 2(a?+ b2 +2c?)

it suffices to prove that

(a+b)? N (b+c) N (c+a)
az+b2+2c2 b2+c2+2a%2 c2+a?+2b%2

By the Cauchy-Schwarz inequality, we have

(a+b)y (a+Db)? < a? N b2
a2+b2+2c2  (a2+c2)+(b2+c2) ~ a2+c2  b2+c?

Thus,

Y E S gat e Larat Lara
a’?+b2+2c2  “~a%+c? b2 +c2 a?+c? c2 +a?

The equality holds fora=b=c=1.

(b) Write the inequality in the homogeneous form
2, 12 2
Z a‘+b“+c <1
5(a? + b2+ c2)—6bc
2(a*+b*+c¢*) 3a%+3(b—c)?

5(a2+b2+c2)—6bc ~ 5(a+ b2 +c2)—6bc’

the inequality is equivalent to

Since

Z a®+(b—-c)? 1
5(a2+b2+c2)—6bc 3’

Assume that
a>b>c.

By the Cauchy-Schwarz inequality, we have

s @ () zerese

5(a2+ b2 +c2)—6bc — >.[5(a?+ b2 +c2)—6bc] 15>.a2—6> ab’

Z (b—c)? - [(b—c)+(a—c)+(a—b)]? _ 4(a—c)?
5(a?+ b2 +c2)—6bc —  >[5(a?+ b2+ c2)—6bc] 15> a2—6Y.ab’
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Therefore, it suffices to show that

>.a*+2> ab+4(a—c)? 1
15> a2—6>.ab -3

which is equivalent to
Zab +(a—c)*> Zaz,

(a—b)(b—c)=0.

(c) According to P 1.32, the following inequality holds

1 + 1 + 1 < §
6—a2b2 6—Db2¢2 6—c2a2” 5’
Since
26 1 L1
6—a2b?2  /6—ab +6+ab’

this inequality becomes

1 1 6v6
Z\/g—ab+2\/€+ab = 5 °

Thus, it suffices to show that

1 3
> .
zz«/€+ab_«/€+1

Since ab + bc + ca < a® + b? + ¢ = 3, by the Cauchy-Schwarz inequality, we have

1 9 9 3
> = > .
Z\/g+ab_2(w/6+ab) 3v6+ab+bc+ca V6+1

The equality holds fora=b =c =1.

P 1.44. Let a, b, c be positive real numbers such that a? + b% + ¢? = 3. Prove that

1+1+1>3
1+a> 14+b5 1+c¢5 2

(Vasile Cirtoaje, 2007)
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Solution. Let a = min{a, b, c}. There are two cases to consider.

1
Case 1: a > > The desired inequality follows by summing the inequalities

>9—5p?, >9—5c2.

> 5
1+a® 1+0b° 1+c®

To obtain these inequalities, we consider the inequality

>p+qx?,
1+ x5 pT4

where the real coefficients p and q will be determined such that (x —1)? is a factor
of the polynomial
P(x)=8—(1+x>)(p +qx?).

It is easy to check that P(1) = 0 involves p + q = 4, hence
P(x)=42—x*—x")—p(1—x*+x>—x") = (1—x)Q(x),
where
Q(x) =42 +2x + x>+ x>+ x* +x° +x®) —p(1 + x + x° + x°).
In addition, Q(1) = 0 involves p = 9, hence
P(x)=(1—x)*Gx>+10x*+6x3+2x2—2x—1)

=(1—x)*[x>+(2x—1)(2x*+6x3 +6x*>+4x +1)].

Clearly, we have P(x) > 0 for x >

1
>

1
Case 2: a < > Write the desired inequality as

1 1 b5c®—1
1+a5 2~ (1+b5)(1+c%)
Since
1 1,32 1 31
1+a> 2 33 2 66
and

(1+Db°)(1+c%)>(1+ v b5c5)?

it suffices to show that
31(1+ v b5¢5 )* > 66(b>c® —1).
For the nontrivial case bc > 1, this inequality is equivalent to

31(1+ v/ b3c> ) = 66(V b>c>—1),
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bc < (97/35)%/°.

Indeed, from
3=a?+b%+c%> b%>+c?>2bc,

we get
bc < 3/2 < (97/35)%5.

This completes the proof. The equality holds fora =b =c =1.

P 1.45. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that

1 1 1
+ + >1
al+a+1 b2+b+1 c2+4c+1

First Solution. Using the substitution

vz Z2X Xy

—_— C —
b 3
x? y?’ 22

where x, y, z are positive real numbers, the inequality becomes

4

X
E >1
x4+ x2yz + y2z2

By the Cauchy-Schwarz inequality, we have

> a > (Zx2)° DX INES

X+ x2yz+y222 T S(xt+ x2yz + y222) D xt+xyz Y x+ D y2a?

Therefore, it suffices to show that

Zzyzz2 > xysz,

which is equivalent to > x*(y —z)* > 0. The equality holds fora=b=c=1.

Second Solution. Using the substitution

y Z X
a==, b=—, c¢=-,
X y Z
where x, y,z > 0, we need to prove that
2 2 2

X Z
+ 4 + =1
x2+xy+y? y*+yz+z? z22+zx+22
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Since
x2(x?+ y*+ 22+ xy + yz +2x) 2+xzz(x+y+z)
=x

x2+xy+y? x2+xy+y?

multiplying by x? + y? + 2% + xy + yz + zXx, the inequality can be written as

Z x2z _ Xy +yztax
xX2+xy+y2 x+y+z

By the Cauchy-Schwarz inequality, we have

Z x3z - (ZXZ)Z _ xy+yz+zx

X24xy+y2 T a2 +xy+y?)  x+y+z

Remark. The inequality in P 1.45 is a particular case of the following more general
inequality (Vasile Cirtoaje, 2009).

e let a;,q,,...,a, (n = 3) be positive real numbers such that a;a,---a, = 1. If
DP,q = 0 such that p+q=n—1, then

Z: T >1.

P 1.46. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that

1 + 1 + 1
al—a+1 b2—b+1 <c2—c+1"

First Solution. Since

1 N 1 _2(a*+1) 2a*
a?—a+1 a?+a+1 a*+a2+1 a*t+az+1’

we can rewrite the inequality as

1 at
—+2) ——F—2>3
Za2+a+1 Za4+a2+1

Thus, it suffices to show that

1
Sae
a+a+1

a
PR ES
a*+a2+1

and
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The first inequality is just the inequality in P 1.45, while the second follows from
the first by substituting a, b,c with a2, b™2,¢c™2, respectively. The equality holds
fora=b=c=1.

Second Solution. Write the inequality as

G-7= )
) Y
3 az—a+1

Z (2a— 1)2
a?—a-+ 1
Let p=a+b+c and q = ab + bc+ca. By the Cauchy-Schwarz inequality, we have

g2 (2Xa-3)" _ (2p-3y

a2—a+1~ d(a?—a+1) p2—2q—p+3’
Thus, it suffices to show that
(2p—3)*=3(p*—2q—p +3),

which is equivalent to
p>+6q—9p > 0.

From the known inequality

(ab + bc +ca)?* > 3abc(a+ b +¢),

we get g% > 3p. Using this inequality and the AM-GM inequality, we find

p*+6q = p?+3q +3q = 3+v/9p2q2 = 3v/9p2(3p) = 9p.

P 1.47. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that

3+a N 3+b + 3+¢c
(14+a)2 (1+b)2 (A+c)2~

Solution. Using the inequality in P 1.1, we have
3+ 2 1
Z(1+§)2 :Z(1+a)2 +2 v
:Z[(Hla)z +(1—:b)2]+21—1|-c
ZZ1+1ab +Zl-cll—bab -

The equality holds fora=b =c=1.
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P 1.48. Let a, b, c be positive real numbers such that abc = 1. Prove that

7—6a+7—6b+7—6c N
2+a2 2+b2 2+4c2

(Vasile Cirtoaje, 2008)

Solution. Write the inequality as

(7_6a+1)+(7_6b+1)+(7_6C+1)24,
2+ a? 2+ b2 2+c2
N2 12 RY
(3—a) +(3 b) +(3 c) >
2+ a2 2+ b2 242

Substituting a, b,c by 1/a,1/b,1/c, respectively, we need to prove that abc = 1
involves

3a—1)? b—1)> —1)?
(Ba—1* , (8b—1F  (Be—1)*

2a%2+1 2b2+1 2c2+1
By the Cauchy-Schwarz inequality, we have

Z(3a—1)2 3%a-3) 9Ya? +183ab—183la+9.

2a2+1 Z(2a2+1) 2>a2+3
Thus, it suffices to prove that
9> a?+18> ab—18> a+9>4(2> a*+3),
which is equivalent to
fl@+f)+f(c)=3,
where 1
f(x)=x2+18(——x).

x

We use the mixing variables technique. Without loss of generality, assume that
a =max{a, b, c}, a>1, bc<l1.

Since
f(b)+f(c)—2f(\/a)=(b—c)2+18(\/3—«/5)2(%—1) >0,

it suffices to show that

fla)+2f(Vbe) >3,

which is equivalent to

f(x2)+2f(%)23, x = +/a,
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x®—18x*+36x3 —3x2—36x +20>0,
(x —1)*(x—2*(x +1)(x +5)>0.

The equality holds for a = b =c =1, and also fora =1/4 and b = ¢ = 2 (or any
cyclic permutation).
O

P 1.49. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that

a® b® c®

+ +
1+2a> 1+2b> 142c

(Vasile Cirtoaje, 2008)

Solution. Using the substitutions

2 2 2
a= x—, b= i y—, c= z—,
J vz zZx \J Xy
the inequality becomes
4

x
>1.
Z y222 +2x3/xyz
By the Cauchy-Schwarz inequality, we have
I S 0\ 5 SR 0.
y222+2x3Yxyz | D(y222 4+ 2x3YXyZ)  D.x2y2+2YXyz > x3

Therefore, we only need to show that

(sz)z > szyz +2€/x_ysz3.

Since, by the AM-GM inequality,

x+y+z=>3Jxyz,

it suffices to prove that

B(Z x2)? > BZ:ny2 + 2(2 x)(Z x%);
Zx4+32x2y2 > Zny(Xz +y%),

D> x—y)=o.
The equality holds fora=b =c=1.

that is,
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P 1.50. Let a, b, c be positive real numbers such that abc = 1. Prove that

a 4 b + c <1
az+5 b2+5 2457 2

(Vasile Cirtoaje, 2008)

Solution. Let
a b C

+ + :
a’?+5 b2+5 245
Without loss of generality, assume that a = min{a, b, c}.

Case 1: a < 1/5. We have

F(a,b,c) =

b 1 1
b < —— <
2V5b2 2452 25 /5 2

Case 2: a > 1/5. Use the mixing variables method. We will show that

F(a,b,c) < §+

1
F(a,b,c) <F(a,x,x) < —,

N

where

x=+vbc, a=1/x% x<+5.

The left inequality, F(a, b,c) < F(a, x, x), is equivalent to
(Vb — v©)*[10x(b + ¢) + 10x* — 25 — x*] > 0.
This is true since

10x(b +¢) + 10x* — 25 — x* > 20x? + 10x* — 25x% — x* = x*(5 — x?) > 0.
o . 1. .
The right inequality, F(a, x,x) < >’ is equivalent to

(x —1)*(5x*—10x®—2x>+6x+5) > 0.
It is also true since
5x*—10x> —2x% +6x +5=5(x — 1)* + 2x(5x% — 16x + 13)

and
5x2+13>24v/65x2> 16x.

The equality holds fora=b =c=1.
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P 1.51. Let a, b, c be positive real numbers such that abc = 1. Prove that

1 N 1 N 1 N 2 -
(1+a)? (Q+b)2 (A+c¢)2 (A+a)1+b)(A+c)

(Pham Van Thuan, 2006)

First Solution. There are two of a, b, c either greater than or equal to 1, or less
than or equal to 1. Let b and c be these numbers; that is, (1 —b)(1—c) > 0. Since

1 + 1 S 1
(1+b)2 (1+4+c)2 1+bc

(see P 1.1), it suffices to show that

1 1 2
+ + > 1.
(14a)? 1+bc (A+a)1+b)(1+c¢)

This inequality is equivalent to

b2c? N 1 N 2bc -1
(1+bc)2 1+bc (1+bc)(1+b)1+c)

which can be written in the obvious form

bc(1—0b)(1—c¢)
(1+bc)1+Db)(1+c)

The equality holds fora=b =c=1.

Second Solution. Setting
a=yz/x*, b=z2x/y? c=xy/?,

where x, y,z > 0, the inequality becomes

x4 2x2y?g?
>, + >1
(x2+yz)2  (x2+yz)(y2+2x)(z2+xy)
By the Cauchy-Schwarz inequality, we have

4 4

Z X >Z X 1 2x2y?g?
(x2+yz)2 ~ A (x2+y)(x2+22) (24 y2)(y2+22)(z2 +x2)’

Then, it suffices to show that
(2 + y)(y* +29)(2% + x) = (x* + y2)(y? + 2x) (2% + xy).
This inequality follows by multiplying the inequalities

(x®+y3)(x* +2%) = (x* + yz)?,
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(*+2)(% +x*) = (y* +2x)°,
(22 + xH) (22 + y?) > (22 + xy)>
Third Solution. We make the substitution

1 1+x 1 14y 1 1+z
14a 2 > 14b 2 7 14c 2°

which is equivalent to

1—x 1—y C_l—z
14y’ 1472

where
—1<x,y,2<1, x+y+z+xyz=0.

The desired inequality becomes
A+x)P+(1+y)+Q+2+(1+x)(1+y)(1+2) =>4,

4+ yr+22+(x+y+2)P+4(x+y+2)>0.
By virtue of the AM-GM inequality, we have

XP+y* 422+ (x+y+2)+ax+y+z)=x*+y*+2° +x’y*s* —4xyz

> 44/ x4y424 —4xyz = 4|xyz| —4xyz > 0.

P 1.52. Let a, b, c be nonnegative real numbers such that

1,1 1 3
a+b b+c c+a 2
Prove that
3 2 1
>

= + .
a+b+c ab+bc+ca a2+ b2+c2

Solution. Write the inequality in the homogeneous form

2 ( 1 1 1 ) 2 1
+ - > + :
a+b+c\a+b b+c c+a ab+bc+ca a?+b2+c?
Due to homogeneity, we may assume that

a+b+c=1, 0<a,b,c<1.
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Denote ¢ = ab+ bc +ca. From the known inequality (a+b+c)? > 3(ab+ bc+ca),
we get
1—-3q=0.

Rewrite the desired inequality as follows:

( 1 1 1 ) 2 1

2 + + >=+ ,

l1—-¢c 1—a 1-b g 1—2g
2(q+1)> 2—3q

g—abc ~ q(1—2q)’
q*(1—4q) + (2 —3q)abc > 0.

By Schur’s inequality, we have
(a+b+c)®+9abc>4(a+Db+c)ab+bc+ca),
1—4q > —9abc.
Then,
q*(1—4q)+ (2—3q)abc > —9q*abc + (2 —3q)abc
=(1-3q)(2+3q)abc > 0.

5
The equality holds fora=b=c=1,and fora=0and b =c = 3 (or any cyclic

permutation).
O

P 1.53. Let a, b, c be nonnegative real numbers such that
7(a®+ b? +c?)=11(ab + bc + ca).
Prove that

51 a b c
— < + + <2.
28 b+c¢c c¢c+a a+b

Solution. Due to homogeneity, we may assume that b + ¢ = 2. Let us denote
x=bc, 0<x<1.
By the hypothesis 7(a® + b? + ¢2) = 11(ab + bc + ca), we get

7a*> —22a + 28
25 )
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Notice that the condition x < 1 involves

1
-<a<3.
7
Since
a_ . b L_¢ __a a(b+c)+(b+c)*>—2bc
b+c c+a a+b b+c a2+ (b+c)a+ bc

a+2(a+2—x) _ 4a®+27a+11

2 a?+2a+x 8a2+7a+7

b

the required inequalities become

51 4a®+27a+11
—_— < <2
28 8a2+7a+7

We have
40’ +27a+11 51 _ (7a—1)(4a=7)

8a2+7a+7 28 28(8az+7a+7)

and

_4a3+27a+11 _ (B3—a)(2a—1) -0
8a2+7a+7  8a’+7a+7

This completes the proof. The left inequality becomes an equality for 7a = b = ¢
(or any cyclic permutation), while the right inequality is an equality for % =b=c

(or any cyclic permutation).
[

P 1.54. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1 1 1 10
+ + > .
a?+b% b2+4+c?2 c2+a? (a+b+c)

Solution. Assume that a = min{a, b, c}, and denote

x=b+= —c+2

Since
a?+b*><x? b2+cP<x*+y?% Z+a’<y?

(a+b+c)?=(x+y)?>4xy,

it suffices to show that
1 1 > 5

+ —> :
x2  x2+y? y2  2xy
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We have

LR +i_i:(i+i_i)+( 1 _ 1)
x2  x2+y? y? 2xy x2  y?2 xy x2+y? 2xy
_ =y Ge—y)
x2y? 2xy(x2+y?)
_ (x=y)2x*—xy+2y?)
B 2x2y2(x2+y?)

> 0.

The equality holds for a = 0 and b = ¢ (or any cyclic permutation).

P 1.55. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1 1 1 3
+ + = .
a2—ab+b2 b2—bc+c2 c2—ca+a?  max{ab,bc,ca}

Solution. Assume that
a =min{a, b,c}, bc=max{ab,bc,ca}.

Since

1 1 1 1 1 1

+ + > —+ + =,
az—ab+b%2 b2—bc+c2 c2—ca+a? b2 b2—bc+c? 2

it suffices to show that

We have
1 1 1 3 (b—c)*

L S - 0.
b2 b2—bc+c%2 2 bc b2c%2(b2—bc+c?)

The equality holds for a = b = ¢, and also a = 0 and b = ¢ (or any cyclic permuta-
tion).

]

P 1.56. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a(2a+b+c)+ b(2b+c+a)+c(2c+a+b)>
b2 +c2 c2 +a? az+b2
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Solution. By the Cauchy-Schwarz inequality, we have

Za(2a+b+c) - [Za(2a+b+c):|2
b24+c2 ~ Ya(2a+b+c)(b2+c2)

Thus, we still need to show that

Z(Z:a2 +Z:ab)2 > 32a(2a+ b+c)(b?+c?),

which is equivalent to

22a4+2acha +Z:ab(a2 +b%) > 6Za2b2.

We can obtain this inequality by adding Schur’s inequality of degree four

Za4+acha > Z:ab(a2 + b?)
Z:ab(a2 +b?) > ZZazbz,

multiplied by 2 and 3, respectively. The equality occurs fora = b =c, and fora =0
and b = ¢ (or any cyclic permutation).

and

]

P 1.57. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a?(b+c¢)> b c+a)® c*(a+b)?
b2 + 2 c2+a? a2+ b?

> 2(ab + bc + ca).

Solution. We apply the SOS method. Since

a®(b+c)) 2, 2a’bc

a )
b2 +¢2 b2 + 2

we can write the inequality as

2b
Z(Zaz—Zab)—Zaz(l—b2+ccz)20,
Zb_ 2
Sh-er-3 =T >0

2

Z(l— bz‘:cz)(b—c)zzo.
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2

az + b2

(1 bZ: )(b—c)2 ( Czlfaz)(a—c)zzo,

which is equivalent to

Without loss of generality, assume that a > b > ¢. Since 1 — > 0, it suffices

to prove that

(a®> —b% +c?)(a—c)? - (a®>—b%2—c?)(b— c)2
a2+ c? B b2+c2

This inequality follows by multiplying the inequalities

(a—c) _ (b—c)

a2+c2 T b2+c2

a’>—b*+c*>a*—b*—c?,

The latter inequality is true since

(a—c)2 (b—c)*  2bc 2ac _2c(a—b)(ab—c2)>

= > 0.
a+c2  b2+c2  b2+c2 a?+c  (b2+c2)(a+c2)

The equality occurs for a = b = ¢, and for a = b and ¢ = 0 (or any cyclic permuta-
tion).
O

P 1.58. If a, b, c are positive real numbers, then

a a b c 1 1 1

3 —————+45(—+—+—|=8(-+=-+-].

sz—bc+c2 (bc ca ab) (a b c)
(Vasile Cirtoaje, 2011)

Solution. In order to apply the SOS method, we multiply the inequality by abc
and write it as follows:

8(> =S be) - Z( o e EL)

2 2

(b—c)
4Z(b BZ b2 —bc + c2 =0,
Z (b—c)2(4b2—4bc+4c —3a2)

—bc+c?
Without loss of generality, assume that a>b=>c. Since

> 0.

4a®>—4ab +4b%>—3c* = (2a—b)* + 3(b*—c?) > 0,
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it suffices to prove that

(a—c)*(4a® —4ac +4c% — 3b2) (b—c)*(3a®>—4b% +4bc — 4c2)
az—ac+c? - b2 —bc +c2

Notice that
4a* —4ac + 4c* —3b* = (a —2¢)* + 3(a®* — b?) > 0.
Thus, the desired inequality follows by multiplying the inequalities
4a* —4ac + 4¢* —3b* > 3a®> — 4b* + 4bc — 4¢?

and

(a=c) _ (b—c)
a?—ac+c2 b2—bc+c?
The first inequality is equivalent to
(a—2c)*+(b—2c)*>0.
Also, we have

(a=cy*  (b—c) _ bc B ac
a2—ac+c2 b2—bc+c2 b2—bc+c2  a?—ac+c?
c(a—b)(ab—c?)
~ (b2—bc+c2)(a2—ac+c2)
The equality occurs for a = b = ¢, and for 2a = b = ¢ (or any cyclic permutation).
O

P 1.59. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1 1
2ab + +
(@ a C(a+b b+c c+a

a? b? c? 3(a®+ b2 +c?)
+ + < .
a+b b+c c+a 2(a+b+c)

)+a2+b2+c222(ab+bc+ca);

(b)

Solution. (a) First Solution. We have

2ach 5

a(2bc+ab + ac)
b+c

. ab(a+c) ac(a+ b)

_Z b+c +Z b+c
ab(a+c¢) ba(b+c¢)

_Z b+c Z c+a

at+c b+c
= b >2 b.
Za (b+c a+c) Za
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The equality occurs for a = b = ¢, and for a = 0 and b = ¢ (or any cyclic permuta-
tion).

Second Solution. Write the inequality as

2ab
Z( a C+a2—ab—ac)20.
b+c

We have
2abc  , )_ ab(a—b)+ac(a—c)
Z(b+c+a ab—ac —Z bt e

_ s ab(a—b) ba(b—a)
_Z b+c +Z c+a
_Z ab(a—b)? -0
(b +o)(c+a) T

(b) Since

Z a@ (a— ab
a+b a+b

we can write the desired inequality as

)=a+b+c—ZaTbb,
a

>a+b+c.

Z ab N 3(a?+ b%+c?)

a+b 2(a+b+c)

Multiplying by 2(a + b + ¢), the inequality can be written as
ZZ(1+bL—|-C)bC+3(a2+b2+CZ)2 2(a+Db+¢)?,

or
1
2abc —— +a*+b*+c%>>2(ab+ bc+ca),
Zb+c ( )

which is just the inequality in (a).

P 1.60. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a’?—bc b?>—ca c*>—ab 3(ab+ bc+ca)
> 3:

(@) + + ;
b2+c2  c2+a? a?2+b2 az+b2+c?
a’? b? c2 ab+bc+ca 5
®) + + + > =
b2+c2  c2+a? a?+b2 a?+b2+c?2 2
a’?+bc b* +ca c*+ab_ ab+bc+ca
(c) >

+ + >
b2+c¢2  c2+a? a?+b2 " a?2+Db2+c?
(Vasile Cirtoaje, 2014)
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Solution. (a) Use the SOS method. Write the inequality as follows:

2a? 2bc ab+ bc+ca
-1+ 1— —6(l1————|=0
Z(b2+c2 ) Z( b2+c2) ( a2+b2+cz)_ ?

2a%2 —b%—c? (b—c)? (b—c)?
2. b2 + 2 +Zb2+c2 Za2+b2+c2_

Since
2a? — b? —c? a’—c? b%—a?
Z b2 + c2 Zb2+c2 sz_,_cz sz_,_cz Zc2+a2
_Z (a®>—b?)? _Z (b2 —c?)?
S (b2 +c2)(c2+a?)  “(a?+Db2)(a%+c?)

we can write the inequality as

> (b—c)*s, >0,
where
B (b +c)? 1 3
“7 (a2+b2)(a%+c?) b2+c2  a?+b2+c?’
It suffices to show that S,,S,,S. = O for all nonnegative real numbers a, b, c, no
two of which are zero. Denoting x? = b% + ¢?, we have

x%+2bc 1 3
a*+a2x2+ b2z x2  a?+x?’

a =

and the inequality S, > 0 becomes
(a® —2x?)b%c? + 2x?(a® + x*)bc + (a® + x?)(a®* — x?)* > 0.

Clearly, this is true if
—2x*b*c* + 2x*bc > 0.

Indeed,
—2x2b%c* + 2x*bc = 2x?bc(x* — bc) = 2bc(b? + ¢?)(b?* + c* — bc) > 0.

The equality occurs for a = b = ¢, and for a = 0 and b = ¢ (or any cyclic permuta-
tion).

(b) First Solution. We get the desired inequality by summing the inequality
in (a) and the inequality

bc ca ab 1 _ 2(ab+ bc+ca)
+ + +=>
b2+c2 c2+a? a?2+b2 2 a?+ b2 +c?
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This inequality is equivalent to
2bc 4(ab + bc +ca)
+1)> +2,
Z(b2+c2 ) a?+ b2 +c2?
Z(b+C)2 2(a+ b +c)?

b2+c2 — a2+ b2+c2’
By the Cauchy-Schwarz inequality, we have

Z(b+c)2 [Sb+o] _2(a+b+c)’
b2+c2 = S(b2+c¢2)  a?+b24c?’

The equality occurs for a = b = ¢, and for a = 0 and b = ¢ (or any cyclic permuta-

tion).

Second Solution. Let

p=a+b+c, gq=ab+bc+ca, r=abc.

By the Cauchy-Schwarz inequality, we have

5 @ (Za®) (p2—2qp

b2+c2 = Y a2(b2+c2) 2(q2—2pr)
Therefore, it suffices to show that

(pZ—Zq)ZJr 2q
q?—2pr p?*—2q

> 5.

Consider the following cases: p? > 4q and 3q < p? < 4q.
Case 1: p?> > 4q. The inequality (*) is true if

(p* —2q)? L%
q? p?—2q

=5,

which is equivalent to the obvious inequality
(p*—49)[(p*—q)* —2¢*] = 0.
Case 2: 3q < p? < 4q. Using Schur’s inequality of degree four
6pr = (p* —q)(4qg —p?),
the inequality (*) is true if

3(p* —2q)? 29 .
3¢2—(p?2—q)(4g—p?) p*—2q
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which is equivalent to the obvious inequality

(p*>—3q)(p* —4q)(2p*> —5q) < 0.

Third Solution (by Nguyen Van Quy). Write the inequality (*) from the preceding
solution as follows:

(a?+ b2 + c?)? 2(ab + bc +ca) -
a?b? + b2c? + c2a? a?+ b2 +c?

(@®+b*+c*? - 2(ab + bc +ca)
a2b? + b2c? + c2a? B a?+ b2 +c2
a*+ b*+ c*—a?b? — b?c? — c2a? - 2(a®+ b%+c?>—ab—bc—-ca)
a2b? + b2c? + c2a? B a?+ b2 +c2 '

Since
2(a?b? + b?c* + c%a?) < Z ab(a®+ b?) < (ab + bc + ca)(a® + b* + ¢?),
it suffices to prove that

a*+ b*+ c*—a?b? — b*c? —c*a?

>a?+b%*+c2—ab—bc—ca,
ab+ bc+ca

which is just Schur’s inequality of degree four
a*+b*+c*+abc(a+b+c)>ab(a®+ b?) + be(b? + ¢?) + ca(c® + a?).

(c) We get the desired inequality by summing the inequality in (a) and the
inequality

2bc N 2ca N 2ab S 4(ab + bc + ca)
b2+c¢2 c?2+a? a?+b? a?+b2+c?
which was proved at the first solution of (b). The equality occurs for a = b = ¢,
and for a =0 and b = ¢ (or any cyclic permutation).

b

]

P 1.61. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a® N b2 N c? (a+b+c)?
b2+c2 c24a%2 a?+b2 " 2(ab+bc+ca)

Solution. Applying the Cauchy-Schwarz inequality, we get

Z a? - 5 az)2 (@4 +e)

b2+c2 = Y a2(b2+c2)  2(a?b?+ b2c2 +c2a?)’
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Therefore, it suffices to show that

(a® + b2 + c2)?

(a+b+c)?

2(a?b? + b2c? +c2a?) ~

which is equivalent to

(a® + b* + c*)?
a2b? + b2c? + c2a?

a*+ b*+ c*— a?b? — b*c? — c*a?

2(ab + bc +ca)’

- (a+b+c)*
“ab+ bc+ca

a’+b*>+c>—ab—bc—ca

a2b? + b2c? + c2a?

ab+ bc+ca

Since a®b? + b?c? + c2a® < (ab + bc + ca)?, it suffices to show that

a* + b* + c* — a®b?

—b%*c*—c?a®*> (a®*+ b*+c*—ab—bc—ca)(ab + bc + ca),

which is just Schur’s inequality of degree four

a*+b*+c*+abc(a+ b +c)>ab(a®+ b?) + be(b? + c?) + ca(c® + a?).

The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic

permutation).

]

P 1.62. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

2ab 2bc 2ca

a?+b*+c®2 5
>

@+b2  (broe

(c+a)?

ab+bc+ca 2
(Vasile Cirtoaje, 2006)

First Solution. We use the SOS method. Write the inequality as follows:

a’+b*+c* >Z[1_ 2bc ]
ab+ bc+ca - 2 (b+c)2)
b (b—c)? Z(b_C)Z
ab+bc+ca 4 (b+c)?’
(b—c¢)*S, +(c —a)S, +(a—b)*S, >0,
where
S :1_ab+bc+ca = _ab+bc+ca _ _ab+bc+ca
¢ (b+c) ~ (c+a) ° °F (a+Db)?

Without loss of generality, assume that a > b > c¢. We have S. > 0 and

S,>1—

(c+a)ic+b)

a—>b
>

(c+a)z

Cc+4a
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If b2S, + a®S, > 0, then

2
Db =), > (b—c)*S,+(c—a)*S, > (b—c)*S, + %(b — )%,

N2 12 2
:(b ) (bb;Sa+a Sb)ZO

We have

2 2 2, 12 b \? a \?
b°S,+a*S, =a*+ b=—(ab+ bc +ca) +( )

2a2+bz—(b+C)(C+a))|:(b+c)2+(c-cll-a)2]

:az(l_b+c)+b2(1_c+a)
c+a b+c
132
:(a b) (ab+bc+ca)20.
(b+c)c+a)

(wp
o+
(@)

The equality occurs for a = b =, and for a = b and ¢ = 0 (or any cyclic permuta-
tion).

Second Solution. Multiplying by ab + bc + ca, the inequality becomes

2a*b* 1 , 5
Z(a+b)2+2abcza+b+a + b2 42 5(ab+bc+ca)

2acha_|1_b +a2+b2+c2—2(ab+bc+ca)—Z%ab[ Z(a4—|c—lll)))2]

According to the second solution of P 1.59-(a), we can write the inequality as fol-

lows:
Z ab(a—b)? Z:ab(a—b)2
(b+c)c+a) 2(a+b)2 — 0.
(b—¢)?S, +(c—a)*S, +(a—b)?S, >
where .
S, = ——[2(b+c)*—(a+b)a+c)]
b+c
Without loss of generality, assume that a > b > c. We have S. > 0 and
S, = ———[2(a+c)* —(a+b)(b+0)] = ———[2(a+c)*—(2a)(a+0)]
a+c a+c
2
_2ac(ate)
a+tc

IfS,+S, =0, then

D b—c)?5, > (b—c)*S, +(a—c)?S, = (b—c)*(S, +5,) > 0.
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The inequality S, + S, > 0 is equivalent to

U o+ —(a+b)b+0)]> —[(a+b)a+c)—2(b+c)]
+c b+c

Since

it suffices to show that
2a+c)—(a+b)b+c)=(a+b)a+c)—2(b+c)
This is true since is equivalent to

(a—b)?+2c(a+b)+4c®>0.

P 1.63. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

ab + bc 4 ca +1>ab+bc+ca
(a+b)2 (b+c)? (c+a)* 4 a2+b2+c2’

(Vasile Cirtoaje, 2011)

First Solution. We use the SOS method. Write the inequality as follows:
_ab+bc+ca ZZ[E_ bc ],
a?+ b2 +c? 4 (b+c)?
Y (b—c) Z(b_C)Z
a2+ b2+c2 & (b+c)?’
Z4b24c2
b—c)? [2 - a—] >0
2b=0) (b+c)

_a2+b2+c2_1_|_2bc—a2> _( a )2
(b+c)2 (b+c)2 — ’

Since

it suffices to show that
(b—c¢)*S, +(c—a)*S, +(a—b)?*S, >0

where




98 Vasile Cirtoaje

Without loss of generality, assume that a > b > ¢. Since S, > 0 and S, > 0, if
b%S, +a*S, > 0, then

2
D b—)8, > (b—c)*S, +(c—a)®S, > (b—c)*S, + %(b — )%,

L N2(12 2
_(b-0) (bbfa+a5b)20

2 2
b25a+a28b=a2+b2—( ab ) —( ab )
b+c c+a

=a2[1—(bic)2]+b2[1—(cia)2]20.

The equality occurs for a = b = ¢, and for a = b and ¢ = 0 (or any cyclic permuta-
tion).

We have

Second Solution. Since (a + b)? < 2(a? + b?), it suffices to prove that

Z ab +1>ab+bc+ca
2(a2+b2) 4 a2+ b2+c2’

which is equivalent to

Z 2ab 1> 4(ab + bc +ca)

+
a2+b2 T a2+b24c2 7
Z:(a+b)2 4(ab+bc+ca)
a2+b2_ a?+ b2 +c?

Z:(a+b)2 2(a+b+c)?
a2+b2 T a2+b2+c?’
The last inequality follows immediately by the Cauchy-Schwarz inequality

Z (a+ b)2 [Di(a+b)]?
az+b2 Z(a2 +b2)’

Remark. The following generalization of the inequalities in P 1.62 and P 1.63
holds:

e Let a, b, c be nonnegative real numbers, no two of which are zero. If 0 < k < 2,
then

4ab a’+ b%+¢? ab + bc +ca
+ >3k—1+22—k)—/——m—.
Z(a+b)2 ab+ bc+ca ( )a2+b2+02
with equality for a = b = ¢, and for a = 0 and b = ¢ (or any cyclic permutation).
O
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P 1.64. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

3ab 3bc 3ca <ab+bc+ca E

+ + < +=.
(a+b)? (b+c)? (c+a)  a?+b*+c* 4
(Vasile Cirtoaje, 2011)

Solution. We use the SOS method. Write the inequality as follows:
1
BZ[__ bc ]Zl_ab+bc+ca’
4 (b+c)? a?+ b2 +c?
(b—c)? (b—c)?
3 > )
Z(b+c)2 Z:a2+b2+c2
(b—c¢)*S, +(c—a)*S, +(a—b)*S, >0

where

2 2 2 2 2 2 2 2 2
Sa:3(a +b +c)_2’ Sb:3(a +b +c)_2, SCZB(a + b*+c%)
(b+c)? (c+a)? (a+b)2

Without loss of generality, assume that a > b > c. Since S, > 0 and

—2.

a®+3b*+c*—4ac _ (a—2c)*+3(b*—c?) >0
(c +a)? B (c +a)? -

Sb:

if S, +S. = 0, then
D (b—c)*s, > (c—a)?s, +(a—b)S, > (a—b)*(S, +5.) > 0.

Using the Cauchy-Schwarz Inequality, we have

1 1
Sb+SC:3(a2+b2+cz)[(c+a)2+(a+b)2]_

12(*+b*+c*) |, Aa—b—cP+4b—c)P
~(c+aP+(a+b)?  (c+aP+(a+by

The equality occurs for a = b = ¢, and for % = b = ¢ (or any cyclic permutation).
U

P 1.65. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a®+abc b +abc c*+abc

a + + >a*+b*+c%
(@ b+c c+a a+b
34+ 2abc  b3+2ab 34+ 2ab 1
) a ac+ ac+c abc > Latbto2
b+c c+a a+b 2

34+3abc  b3+3ab 34+ 3ab
(c) a ac+ ac+c a622(ab+bc+ca).
b+c c+a a+b
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Solution. (a) First Solution. Write the inequality as

b+c

Z ala— b)(a—c)
b+c
Assume that a > b > c. Since (c —a)(c—b) > 0 and

a(a—b)(a—c) N b(b—c)(b—a) (a—b)*(a*+b*+c*+ab) -0
b+c b+c B (b+c)(c+a) -

> 0.

the conclusion follows. The equality occurs fora =b =c,and fora=band c=0
(or any cyclic permutation).

(b) Taking into account the inequality in (a), it suffices to show that

abc abc abc

+ + +a®+b*+c* > (a+b+c)2
b+c c+a a+bd

which is just the inequality (a) from P 1.59. The equality occurs for a = b = ¢, and
for a = b and ¢ = 0 (or any cyclic permutation).

(c) The desired inequality follows by adding the inequality in (a) and the in-
equality (a) from P 1.59. The equality occurs for a = b = ¢, and for a = b and
¢ = 0 (or any cyclic permutation).

OJ

P 1.66. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a®+3abc b%>+3abc 2 +3abc

+ + >a+b+c.
(b+0)? ' (c+a)  (a+bye —° ¢

(Vasile Cirtoaje, 2005)
Solution. We use the SOS method. We have
a® + 3abc a®+3abc  1_<a®—a(b®—bc+c?)
2. (b+c)? -2 Z[ (b+c)>2 ]_Z (b +c)>2
B Z aAb+c)—ab®+c) Z ab(a®—b?)+ac(a®—c?)
B (b+c) B (b+c)
_ v ab(a*—b?) ba(b*—a*) < ab(a®—b*)[(c+a)’—(b+c)’]
=2 iy Tl e — b+ P+ a)p
Z ab(a+b)(a—b)*[(c+a)*+(c+a)b+c)+(b+ c)z]
B (b+c)(c+a)

The equality occurs for a = b = ¢, and for a = 0 and b = ¢ (or any cyclic permuta-
tion).

O
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P 1.67. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a®+3abc b*>+3abc c2+3abc_ 3
(a) + + > —;
(b+c)3 (c+a) (a+b)3 2

3a®+ 13abc N 3b% +13abc N 3c¢®+ 13abc
(b+c) (c+a) (a+b)?

(b)

(Vasile Cirtoaje and Ji Chen, 2005)

Solution. (a) First Solution. Use the SOS method. We have

Z a®+ 3abc _Za(b+c)2+a(a2+bc—b2—c2)
(b+c)3 (b+c¢)3

_ a a®—a(b?— bc +¢?)
_Zb+c+z (b+c)3
§+Za3(b+c)—a(b3+c3)

T2 (b+c)*
3 ab(a®—b?)+ac(a®—c?)
=32 (b +o)

3 ab(a®—b?) ba(b?—a?
§+Z (b+c)* Z (c+a)4
§+Z:ab(a+b)(a—b)[(c+a)4 (b +¢)*]
2

(b+c)*c+a) = 0.

The equality occurs fora=b =c.

Second Solution. Assume that a > b > c. Since

a® + 3abc o b3+ 3abc - ¢ +3abc
b+c =~ c¢+a = a+b

and
1 1 1

> > ,
(b+c¢)?  (c+a)  (a+Db)?
by Chebyshev’s inequality, we get

3 3
Za +3abc21(za +3abc)z 1 .
(b+c) 3 b+c (b+c)?

Thus, it suffices to show that
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We can obtain this inequality by multiplying the known inequality (Iran-1996)
2. >
(b+¢)?> ~ 4(ab+ bc+ca)
and the inequality (c) from P 1.65.
(b) We have

Z 3a® +13abc Z 3a(b +c)? +4abc + 3a(a® + bc — b?> —¢?)
(b+c)3 (b+c¢)3

1 a®>—a(b?—bc +c?)
Z(b+c)3+3Z E

Since 1 3
Z (b+c¢)3 = (a+b)(b+c)(c+a)

(by the AM-GM inequality) and

Z a®—a(b?—bc +c?) :Z a’(b+c)—a(b®+c?)

(b+c)3 (b+c)

v ab(@®>—b*)+ac(a®*—c*)  ~ab(a®—b?) ba(b?—a?)
_Z (b+c)* _Z (b+c)* Z (c+a)
_ Z ab(a+b)(a—b)[(c+a)*—(b+c)*] >0

B (b+c)*c+a) -7

it suffices to prove that

3a 12abc
> + > 6
b+c (a+b)b+c)c+a)
This inequality is equivalent to the third degree Schur’s inequality
a®+ b3+ +3abc> Zab(a +b).

The equality occurs for a = b = ¢, and for a = 0 and b = ¢ (or any cyclic permuta-
tion).
O

P 1.68. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(@) @ + b° + ¢ +ab+bc+ca>3(a2+b2+cz)'
b+c c+a a+b — 2 ’

2a’ + bc N 2b% +ca N 2c%+ab - 9(a®+ b2 +c?)
b+c c+a a+b — 2(a+b+c)
(Vasile Cirtoaje, 2006)

(b)
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Solution. (a) We apply the SOS method. Write the inequality as

Z(b+c ) Z(a—b)z
2a° < ad*(a—b)+a*(a—c)
Z(b+c_a2)_z b+c

Z a*(a—>b) sz(b—a)_Z(a—b)z(a2+b2+ab+bc+ca)
B b+c c+a (b+c)c+a) ’
we can write the inequality as

Since

(b—c¢)*S, +(c—a)*S, +(a—b)*S, >0
where
S,=(b+c)(b*+c*—d?), S,=(c+a)c®*+a*—Db?), S.=(a+b)a*+b*—c?).
Without loss of generality, assume that a > b > ¢. Since S, > 0, S, > 0 and
S,+Sy,=(a+b)a—b)*+c*(a+b+2c)>0,
we have
D (b—c)*s, > (b—c)?S, +(a—c)?S, = (b—c)*(S, +5,) > 0.

The equality occurs for a = b = ¢, and for a = b and ¢ = 0 (or any cyclic permuta-
tion).

(b) Multiplying by a + b + c, the inequality can be written as

a 9
1 2q2 > Z(q2 2 2
E ( +b+c)( a +bc)_2(a + b*+c¢),

2a®+ab 5
Zu+ab+bc+ca2—(az+b2+c2).
b+c 2

This inequality follows using the inequality in (a) and the first inequality from P
1.59. The equality occurs for a = b = ¢, and for a = b and ¢ = 0 (or any cyclic

permutation).
[

P 1.69. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a(b+c) 4 b(c+a) N c(a+b)
b2+ bc+c2 c24ca+a®2 a?2+ab+ b2
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First Solution. Apply the SOS method. We have
a(b+c) ] [a(b+c)(a+b+c) ]
b —— 2= -2
(at +C)[Zb2+bc+c2 Z b2+ bc +c2 ¢

:Za(ab—l—ac—bz—cz) Zab(a—b)—ca(c—a)

b2+ bc +c2 b2+ bc +c2
:Z ab(a—Db) _Z ab(a—Db)
b2+ bc+c2 c2+ca+a?
ab(a—b)?

:(a+b+c)Z

0.
(b2 +bc+c?)(c2+ca+a?)

The equality occurs for a = b = ¢, and for a = 0 and b = ¢ (or any cyclic permuta-
tion).

Second Solution. By the AM-GM inequality, we have

4(b*+ bc+c*)(ab + bc +ca) < (b*+ bc +c¢*+ab + bc + ca)?
=(b+c)*(a+b+c)

Thus,

Z a(b+c¢) _Z a(b+c)(ab+ bc+ca)
b2+ bc+c2 (b2+ bc+c2)(ab + bc +ca)

>Z 4a(ab + bc + ca) _4(ab+bc+ca)Z a
T Zd(b+c)a+b+c)2  (a+b+c) b+c’

and it suffices to show that

Z a (a+b+c)?

b+c  2(ab+bc+ca)

This follows immediately from the Cauchy-Schwarz inequality

Z a >(a+b+c)2
b+c Dla(b+c)’

Third Solution. By the Cauchy-Schwarz inequality, we have

Z a(b +¢) o (a+b+c)
b2+bc+c2_za(b2+bc+c2)'
b+c

Thus, it is enough to show that

a(b?+ bc +c?)

2
(@a+b+c)*=2>" e
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Since
a(b>+bc+c?)

b+c

2 2
Za(b +bc+c)=2(ab+bc+ca)—abc( L + L + L ),
b+c b+c c4+a a+b

this inequality is equivalent to

a(b+c— ¢ )zab+ca—

b+c

1 1 1
2abc( + + )+a2+b2+c222(ab+bc+ca),
b+c c¢c+a a+b

which is just the inequality (a) from P 1.59.

Fourth Solution. By direct calculation, we can write the inequality as
Z ab(a*+b") > Z:azbz(a2 + b?),
which is equivalent to the obvious inequality

Zab(a —b)(a® =D >0.

P 1.70. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a(b+c¢) b(c+a) c(a+b) (a—b)2
+ + >2+ .
b2+ bc+c2 c24+ca+a? a2+4+ab+b2 41_[ a+b

(Vasile Cirtoaje, 2011)

Solution. For b = ¢ = 1, the inequality reduces to a(a — 1)? > 0. Assume further
that
a>b>c.

As we have shown in the first solution of the preceding P 1.69,

Z a(b+c¢) _Z_Z be(b—c)?
b2+bc+c2 = 4H(a2+ab+b2)(a2+ac+c2)

Therefore, it remains to show that
—c)2 _ 2
Z be(b—c¢) 2‘}l—[(a b) .
(a2+ab + b%)(a? + ac +c?) a+b

(a>+ab+b?*)(a®*+ac+c*) < (a+b)*(a+c)?

Since
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it suffices to show that
2 1N2
Z be(b—c¢) 241—[(a b) ’
(a+ b)2(a+c)? a+b

which is equivalent to
2
Z be(b +c¢) >4
(a—b)*(a—c)?

We have
Z be(b +¢)? - ab(a + b)?
(@a—b)2(a—c)*  (a—c)*(b—c)?
> ab(a + b)? _ (a + b)? >4
a2b2 ab
The equality occurs for a = b = ¢, and for a = b and ¢ = 0 (or any cyclic permuta-
tion). O

P 1.71. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

ab—bc+ca bc—ca+ab ca—ab+bc >§

+ + > =,
b2 +c2 c2+a? a?+ b? 2

Solution. Use the SOS method. We have
Z(ab—bc+ca _1) _Z(b+c)(2a—b—c)
b2 + ¢2 N 2(b2% + ¢2)

Z(b+c)(a—b) Z(b+c)(a—c)

2(b2+c2) 2(b2+c2)
Z(b+c)(a—b) Z(c+a)(b—a)
2(b2+c2) 2(c2 +a?)

_Z (a—b)?*(ab + bc +ca—c?)
N 2(b%2 +c2)(c2+a?)

Since
ab+bc+ca—c*=(b—c)(c—a)+2ab>(b—c)(c—a),

it suffices to show that
> (@®+b*)(a—bY(b—c)(c—a) > 0.
This inequality is equivalent to
(@a—b)(b—c)(c—a) ) (a—b)(a®+b*) >0,
(a—b)*(b—c)*(c—a)*>0.

The equality occurs for a = b = ¢, and for a = 0 and b = ¢ (or any cyclic permuta-

tion).
O
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P 1.72. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > —2,
then

Zab+(k—1)bc+ca S 3(k+1)
b2+kbc+c2 — k+2
(Vasile Cirtoaje, 2005)

First Solution. Apply the SOS method. Write the inequality as
Z[ab+(k—1)bc+ca _k+1] >0,

b2+ kbc + c2 k+2
A
E — >0,
b2+ kbc +c2

A= (b+c)(2a—b—c)+k(ab+ac—b*—c?).

where

Since

A=(b+c)[(a=—b)+(a—c)]+k[b(a—Db)+c(a—c)]
=(a—Db)[(k+1)b+c]+(a—c)[(k+1)c+b],

the inequality is equivalent to

Z(a—b) (k+1)b+c] Z(a—c) (k+1)c+b]

b2 + kbc + c2 b2+ kbc + c2 -
Z(a—b)[(k+1)b+c] Z(b—a) (k+1)a+c]>
b2 + kbc + c2 c2+kca + a? -7

> (b—c)*R,S, 20

R,=b*+kbc+c?* S,=a(b+c—a)+(k+1)bc.

where

Without loss of generality, assume that
a=b>c.
Case 1: k > —1. Since S, = a(b + ¢ —a), it suffices to show that
Za(b +c—a)(b—c)*R, > 0.
We have

Za(b +c—a)(b—c)*R,>a(b+c—a)(b—c)*R, +b(c+a—b)(c—a)R,
> (b—c)*[a(b+c—a)R,+ b(c+a—b)R,].

Thus, it is enough to prove that

a(b+c—a)R,+b(c+a—b)R, >0.
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Since b+ c—a > —(c+a—b), we have

a(b+c—a)R,+ b(c+a—Db)R, > (c+a—Db)(bR,—aR,)
=(c+a—>b)a—Db)ab—c?*)>0.

Case 2: —2 < k < 1. Since

S,=(a—b)(c—a)+(k+2)bc=(a—Db)(c—a),

we have
> (b—c)’R,S, = (a—b)(b—c)(c—a) Y (b—c)R,.
From
> (b—c)R, = > (b—)[b?+ be + 2 —(1—k)bc]
=D (=) —(1—k) D be(b—c)
=1 —k)(a—Db)(b—c)(c—a),
we get

(@=b)(b—c)c—a) D (b—cIR, = (1 —k)a—b)*(b—c)*(c—a)* > 0.

This completes the proof. The equality occurs for a = b = ¢, and also for a = b and
¢ = 0 (or any cyclic permutation).

Second Solution. Use the highest coefficient method (see P 3.76 in Volume 1). Let
p=a+b+c, gq=ab+bc+ca.
Write the inequality in the form f4(a, b,c) = 0, where
fola,b,c) =(k+2) > [a(b+c)+ (k—1)bc](a® + kab + b*)(a® + kac +c?)
—3(k+1)] [(0? +kbc+c?).

Since
a(b+c)+ (k—1)bc =(k—2)bc+q,

(a®? + kab + b*)(a® + kac + c*) = (p* — 2q + kab — ¢*)(p* — 2q + kac — b?),
fe(a, b, c) has the same highest coefficient A as
(k +2)(k—2)P,(a,b,c)—3(k +1)P,(a,b,c),
where

P,(a,b,c) = Z bc(kab —c?)(kac — b?), P,(a,b,c)= l_[(b2 + kbc + c?).
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According to Remark 2 from the proof of P 2.75 in Volume 1,
A= (k+2)(k—2)P,(1,1,1)=3(k+ 1)(k—1)* = —9(k — 1)

Since A < 0, according to P 3.76-(a) in Volume 1, it suffices to prove the original
inequality for b =c =1, and for a = 0.
For b = ¢ = 1, the inequality becomes as follows:
2a+k—1 2(ka+1) 3(k+1)
+ >
k+2 a?+ka+1 k+2
a—k—2 ka+1
+ >
k+2 a’?+ka+1
ala—1)>? -
(k+2)(a?+ka+1)

For a = 0, the inequality becomes:

5

2

(k—1)bc b ¢ _ 3(k+1)
— 4 4-> :
b24+c2+kbc ¢ Db k+2
k—1 3(k+1) b ¢
+x> =—+ = >2
x4k YT k42 T Ty =2
(x—2)[(k+2)x+k2+k+1]>
(k+2)(x +k) -

(b—c)*[(k+2)(b%+c?)+ (k*+k+1)bc]>0.
Remark. For k = 1 and k = 0, from P 1.72, we get the inequalities in P 1.69 and
P 1.71, respectively. Besides, for k = 2, we get the well-known inequality (Iran

1996):
1 1 1 9

+ + > :
(a+b)2 (b+c)2 (c+a)?*  4(ab+ bc+ca)

P 1.73. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > —2,
then

ZSbc—a(b+c) < 3
b2+kbc+c2 ~ k+2
(Vasile Cirtoaje, 2011)

Solution. Write the inequality in P 1.72 as
Z[l_ ab—+—(k—1)bc+ca]
b2+ kbc + c2 k
Z b%2+c?+bc—a(b+c) 2.3
b2+ kbc + c? k+

IA

3
+2’

2
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Since b%+ c* > 2bc, we get

ZBbc—a(b+c) < 3
b2+ kbc+c2 ~ k+2’

which is just the desired inequality. The equality occurs fora =b =c.

P 1.74. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove

that
ab+1 bc+1 ca+1>4

+ + = .
a?+b2 b%2+c?2 c2+a? 3

Solution. Write the inequality in the homogeneous form E(a, b,c) > 4, where

4ab+ bc+ca 4bc+ca+ab 4ca+ab+ be

E(a,b,c) = + +
( ) a?+ b? b2 + ¢2 c2+a?

Without loss of generality, assume that a = min{a, b, c}. We will show that

E(a,b,c) > E(0,b,c) > 4.

We have
E(a,b,c)—E(0,b,c) 4b*+c(b—a) , b+c  4c*+b(c—a) =0
a ~ b(aZz+1b2) b2 + 2 c(c2 +a?) ’
b 4bc c (b—20o)*
E(0,b,c)—4 =+ Cg4=2"9 5o
(0,,c) =4 c b2+c2 b bc(b2 +c2) —

The equality holds for a = 0 and b = ¢ = +/3 (or any cyclic permutation).

P 1.75. Let a, b,c be nonnegative real numbers such that ab + bc + ca = 3. Prove

that
S5ab+1 5bc+1 5ca+1

@+Db)?  b+o2  (cta)

Solution. Write the inequality as E(a, b, c) > 6, where

16ab+ bc+ca 16bc+ca+ab 16ca+ ab+ bc

Babd=—y " i (crap

Without loss of generality, assume that

a<b<ec.
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Case 1: 16b% > c(a + b). We will show that
E(a,b,c) > E(0,b,c) > 6.
Indeed,

E(a,b,c)—E(0,b,c) 16b*>—c(a+Db) 1 N 16¢%2—b(a+c¢)
a ~ b(a+b)? b+c c(c+a)?

b 16bc c (b—c)*
E(0,b,c)— 6=+ tioe=—0
(0,b,¢) c (b+c)2 b be(b+c)? —

Case 2: 16b% < c(a+ b). We have

(@ +b) Z “(at by a+b

16ab +bc+ca 16ab + 16b> _ 2(5b—3a)

E(a,b,c)—6> > 0.

The equality holds for a = 0 and b = ¢ = +/3 (or any cyclic permutation).

P 1.76. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
a®—bc b%—ca c2—ab
+ + =0
2b2—3bc+2c2  2c2—3ca+2a? 2a2—3ab+ 2b2
(Vasile Cirtoaje, 2005)

Solution. The hint is applying the Cauchy-Schwarz inequality after we made the
numerators of the fractions to be nonnegative and as small as possible. Thus, we

write the inequality as
(ot )as
2b2—3bc + 22 -

2 _ )2
Z a”+2(b—c) >3
2b2—3bc +2c2
Without loss of generality, assume that

a>b>c.
Using the Cauchy-Schwarz inequality gives

s (Sa2) | Sat+23a
2b2 —

3bc+2c2 ~ Y a?(2b2—3bc+2c2)  4Y.a%b2—3abc.a

and

Z (b—c)? - [a(b—c)+bla—c)+cla—b)]* 4b2%(a—c)?
2b2—3bc +2¢2 ~ > a2(2b2 — 3bc + 2c2) 4 a?b>—3abcdla’
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Therefore, it suffices to show that

> a*+2> a*b*+8b* (a—c)? -
4> a2b2—3abc D a -

By Schur’s inequality of degree four, we have

Za4+acha > Z:ab(a2 + b?) > ZZazbz.

Thus,it is enough to prove that

4% a*b*>—abc Y, a+8b*(a—c)?
=3,
4% a2b2—3abc D a

which is equivalent to
acha +b%(a—c)*> Zazbz,

ac(a—b)(b—c) = 0.

The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic
permutation).
OJ

P 1.77. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

2a? — bc N 2b% —ca N 2c2—ab
b2—bc+c2 c2—ca+a?2 a?2—ab+ b2

> 3.

(Vasile Cirtoaje, 2005)

Solution. Write the inequality such that the numerators of the fractions are non-
negative and as small as possible:

Z( 2a?— bc +1)>6
b2 —bc +c2 -

Z 2a% +(b—c)? >
b2—bc+c?
Applying the Cauchy-Schwarz inequality, we get

22a2+(b—c)2> 4(2Za2—2ab)2

b2—bc+cz — D[2a?+(b—c)2](b2—bc+c?)

Thus, we still have to prove that

2 (ZZaz —Z:ab)2 > SZ:[Za2 +(b—c)?](b?>—bc +c?).
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This inequality is equivalent to

22a4+2acha +Z:ab(a2 +b?) > 6Za2b2.

We can obtain it by summing up Schur’s inequality of degree four

Za4+acha > Z:ab(a2 + b?)
Z:ab(a2 +b?) > ZZazbz,

multiplied by 2 and 3, respectively. The equality holds fora = b =c¢, and fora =0
and b = ¢ (or any cyclic permutation).

and

]

P 1.78. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
a? b? c?
+ + >1
2b2—bc+2c2 2c2—ca+2a2 2a%2—ab+2b2
(Vasile Cirtoaje, 2005)

Solution. By the Cauchy-Schwarz inequality, we have

Z a® S (Xa?)

2b2—bc+2c2 Y a2(2b2— bc +2c2)’
Therefore, it suffices to show that

(Z az)2 > Z a?(2b*—bc + 2c?),

which is equivalent to

Za4+abc2a222a2b2.

This inequality follows by adding Schur’s inequality of degree four

Za4+abc2a > Z:ab(a2 + b?)
Z:ab(a2 +b?) > ZZazbz.

The equality holds for a = b = ¢, and for a = 0 and b = ¢ (or any cyclic permuta-
tion).

and

]
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P 1.79. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1 1 1 9
+ + = .
4b2—bc+4c?  4c2—ca+4a®> 4a?—ab+4b%2 " 7(a®+b%+c?)

(Vasile Cirtoaje, 2005)
Solution. Use the SOS method. Without loss of generality, assume that
a=b>c.

Write the inequality as

2 2 2
Z[7(a +b“+c )_3]20’
4b2 —bc +4c?

Z 7a*> —5b%—5c% + 3bc
>

—_ J

4b2 —bc +4c?
212 2Yy_afn2_
Z 5(2a* — b*—c*)—3(a*— bc) > 0.

4b2 — bc + 4c?

Since
2a*>—b*—c*=(a—b)(a+b)+(a—c)(a+c),
and
2(a®*—bc)=(a—Db)la+c)+(a—c)la+Db)

we have

10(2a%® — b%—c*)—6(a*—bc) =
=(a—Db)[10(a+b)—3(a+c)]+(a—c)[10(a+c)—3(a+ b)]
=(a—Db)(7a+10b—3c)+ (a—c)(7a + 10c — 3b).

Thus, we can write the desired inequality as follows:

>0,

Z (a—b)(7a+10b—3c) N Z (a—c)(7a+10c—3b)
4b% — bc + 4c> 4b2 — bc + 4¢2

Z (a—b)(7a+10b—3c) +Z (b—a)(7b+ 10a—3c) >0,
4b2 — bc + 4c2 4c2—ca + 4a?

Z (a—Db)?(28a? + 28b%—9c¢% + 68ab — 19bc — 19ca)
(4b2 — bc + 4c?)(4c? —ca +4a?)

Z (a—Db)?[(b—c)(28b +9c) + a(28a + 68b —19¢)]
(4b2— bc + 4c2)(4c2 —ca + 4a?)

> (a—Db)R.S, >0,

>

J
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where
R, =4b*—bc+4c*, R,=4c*—ca+4a®>, R, =4a’>—ab+4b?
S, =(c—a)(28c+9a) + b(28b + 68c —19a),
S, =(a—b)(28a+9b) + c(28c + 68a — 19b),
S, =(b—c)(28b +9c) +a(28a + 68b —19c).

Since S, > 0,S. >0 and R, =R, = R, > 0, we have

> (b—c)’R,S, = (b—c)’R,S, +(a—c)’R,S,
> (b—c)*R,S,+(b—c)*R,S,
=(b—c)*R,(S,+S;).

Thus, we only need to show that S, + S, > 0. Indeed,
S,+S, =19(a—b)*+49(a— b)c +56¢* > 0.
The equality holds for a = b = ¢, and for a = b and ¢ = 0 (or any cyclic permuta-

tion).
O

P 1.80. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

2a’>+bc  2b*4+ca 2c2+ab_ 9
+ + > 2.
b2 +c? c2+a?2  a?2+b2 2

(Vasile Cirtoaje, 2005)

First Solution. We apply the SOS method. Since

2(2a* + be) 2a — bz—c (b—c)?

and

2a?—b%—c? a?—b? a’—c b? b? —a?
Z b2 + c2 :Zb2+c2 Zb2+c2 Zb2+c2 Zc2+a2
_ Z(a ( 1 ) _ Z (a2 — b2)2
b2+c2 c2+az) 44 (b2+c2)(c2+a2)

> Z (a—b)*(a®+ b?)

(b2 +c2)(c2+a?)’
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we can write the inequality as

ZZ (b—c)?(b%+c?) S Z (b—c)?

(c2+a?)(a? + b2) b2 +c2’

or
(b—¢)?S, +(c—a)*S, +(a—b)?S, >0,

where
S, = 2(b*+c?*)*—(c* + a*)(a® + b?).

Without loss of generality, assume that a > b > ¢, which involves S, < S, < S.. If

S,+S,=0,
then
S.=>8,=>0,
hence
(b—¢)?S, +(c—a)*S, +(a—b)?S, > (b—c)*S,+ (a—c)*S,
> (b—c)*S,+5S,)=>0.
We have

S, +S, =(a*—b*)*+2c*(a*+ b*+2c?*) > 0.
The equality holds for a = b = ¢, and for a = b and ¢ = 0 (or any cyclic permuta-

tion).

Second Solution. Since

be > 2b%c?
T b2 42’
we have

2.2
2a’ + bc 2a* + —iffcz 1
>y —— 2 —92(a?b? + b3 + c2a? —_ .
Z b2 + 2 Z b2 + 2 ( )Z(bz+cz)z

Therefore, it suffices to show that

1 9
>
Z (b2 +c2)2 ~ 4(a2b? + b2c2 + c2a?)’
which is just the known Iran-1996 inequality (see Remark from P 1.72).

Third Solution. We get the desired inequality by summing the inequality in P
1.60-(a), namely

2a% —2bc N 2b%2—2ca 2c?—2ab 6(ab+ bc +ca) -
b2 +c2 c2+a? a?+ b2 a?+ b2 +c2

>
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and the inequality

3bc N 3ca N 3ab 3 S 6(ab + bc +ca)
b2+c2  c2+4+a? a?+b2 2 a?+b2+c?
This inequality is equivalent to

Z( 2bc +1)24(ab+bc+ca)+2,

b2 + 2 a?+ b2 +c2

Z:(b+c)2 - 2(a+ b +c)?
b2+c2 ~ a2+ b2+c2’
By the Cauchy-Schwarz inequality, we have

Z(b+c)2 [Sb+0)T _2a+b+c)
b24+c2 = Y(b2+c2)  a?+bi4c?’

P 1.81. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

2a’ + 3bc N 2b% + 3ca N 2¢%+3ab
b2+ bc+c2 c24+ca+a? a?+ab+ b2

(Vasile Cirtoaje, 2005)

Solution. We apply the SOS method. Write the inequality as

2
Z[B(Za + 3bc) _5] >0,
b2+ bc +c2

or
Z 6a? + 4bc — 5b% —5¢? 0
b2 + bc + 2 '
Since
a’—b* —c?=(a—Db)a+b)+(a—c)a+c)
and
2(a®—bc)=(a=b)a+c)+(a—c)a+D),
we have

6a%+ 4bc —5b% —5¢% = 5(2a® — b2 —¢?) — 4(a® — bc)
=(a—>b)[5(a+b)—2(a+c)]+(a—c)[5(a+c)—2(a+ b)]
=(a—b)(Ba+5b—2c)+ (a—c)(3a+5c—2b).

Thus, we can write the desired inequality as follows:

Z (a—b)(Ba+5b—2c) +Z (a—c)(3a+5c—2b)

>0,
b2+ bc +¢c2 b2 + bc + c2
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Z(a—b)(Sa—l—Sb—Zc)+Z(b—a)(3b+5a—2c)

b2+ bc +c2 c2+ca+a?

Z(a—b)Z(Sa +3b% —4c? +8ab+bc+ca)
(b2+ bc+c?)(c2+ca+a?)

(b—¢)*S, +(c—a)*S, +(a—b)*S, >0

>0,

20,

where
S, = (b*+ bc + c*)(—4a® + 3b* + 3c* + ab + 8bc + ca),

S, = (c* +ca +a*)(—4b?* + 3c¢* + 3a® + bc + 8ca + ab),
S. = (a*+ab + b*)(—4c*+3a*+3b*+ca + 8ab + bc).

Assume that a > b > c. Since S, > 0,

S, =(c*+ca+a*)(a—b)(3a+4b)+c(8a+b+3c)]=>0,

S, +S, > (b*+ bc +c?)(b—a)(3b +4a)+ (c* +ca+a*)(a—b)(3a +4b)
=(a—Db)?*[3(a+b)a+b+c)+ab—c*]>0,

we have
(b—c)*S,+(c—a)*S, + (a—b)?S, > (b—c)*S, + (a —c)*S,
> (b—c)*(S,+5S;,)>0.

The equality holds for a = b = ¢, and for a = 0 and b = ¢ (or any cyclic permuta-
tion).
O

P 1.82. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

2a®+5bc  2b%*+5ca 2c¢*+5ab - 21

b+0? | (c+a?  (@a+bR - 4

(Vasile Cirtoaje, 2005)

Solution. Use the SOS method.Write the inequality as follows:
[Za2 + 5bc 7]
E — = |20,
(b+c) 4

Z 4(a*— b?) + 4(a* —c*) —3(b —c)? -0
(b +c)? -7

b%—c c?—b? (b—c)?
Z(c+a)2 Z(a+b)2 Z(b+c)2_ ’
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42 (b—c)*(b+c)(2a+b+c) Z:(b—c)2
(c+a)2(a+ b)? (b+c) ™~
Substituting b + ¢ = x, c+a = y and a + b = z, we can rewrite the inequality in

the form
(y —2)*S, +(2—x)*S, + (x — y)*S, >

where
S, =4x*(y +2)—3y%° S, =4y’ (z+x)—32°x*, S, =42>(x+y)—3x%y®
Without loss of generality, assume that
O0<x<y<z 2zZx+Y,

which involves S, < S, <S,. If

x =9y =
Sy +8,=0,
then
S, =8, =0,
hence
2 2 2 2 2
(y—2)S,+(z—x)S, +(x—y)S, = (y —2)°S, +(z—x)°S,
> (y —2)*(S,+S,)=0.
We have

S, +S, =4xy(x®+y*) +4(x® + y*)z — 3(x* + y*)z*
>4xy(x®+y)+ 403+ y*)z —3(x% + y2)(x + y)z
=4xy(x*+y)+(x*—4xy + y)(x + y)z.

For the nontrivial case x* —4xy + y? < 0, we get
Se+S, =4xy(x*+y*) + (x* —4xy + y*)(x + y)?
>2xy(x+y)?+(x*—4xy + y*)(x + y)?
= (x—y)(x+y)

The equality holds for a = b = ¢, and for a = 0 and b = ¢ (or any cyclic permuta-
tion).
O

P 1.83. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > —2,
then

Z 2a% + (2k + 1)bc - 3(2k+3)
b2+kbc+c2 ~ k+2
(Vasile Cirtoaje, 2005)
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First Solution. There are two cases to consider.

Case 1: —2 < k < —1/2. Write the inequality as

Z[2a2+(2k+1)bc_2k+1]> 6
b2+ kbc + c2 k+2 1 k+2°

Z 2(k +2)a*—(2k + 1)(b —c)? > 6
b2+ kbc + c2 -

Since 2(k + 2)a®> — (2k + 1)(b —c¢)?> > 0 for —2 < k < —1/2, we can apply the

Cauchy-Schwarz inequality. Thus, it suffices to show that

[2(k +2) T a? — (2k +1) (b —c)2]’
ST2(k + 2)a2 — (2k + 1)(b— )2](b2 + kbc +¢2) —

which is equivalent to each of the following inequalities
2[(1—Kk) D a*+(2k+1) D ab]? -
S[2(k + 2)az — (2k + 1)(b—c)2](b2 + kbc +¢2) ~—
2(k+2) Y a*+2(k+2)abc Y a—(2k+1) > ab(a®+b*)>6 > a?b?,
2(k +2) [Z:a“+ach:a—Z:ab(a2 + bz)] +32ab(a— b)? > 0.

The last inequality is true since, by Schur’s inequality of degree four, we have

Za4+abc2a—2ab(a2+b2)20.

Case 2: k > —9/5. Use the SOS method. Without loss of generality, assume that
a > b > c. Write the inequality as

Z[2a2+(2k+1)bc_2k+3]>0
b2 + kbc + c2 k+2 17

Z 2(k +2)a? — (2k + 3)(b%2 + c?) + 2(k + 1)bc -0

b2+ kbc +c2 ’
Z (2k +3)(2a? — b? —c?)—2(k + 1)(a® — bc) -0
b2+ kbc + c2 -
Since
2a2—b?>—c?2=(a—b)a+b)+(a—c)la+c)
and
2(a®>—=bc)=(a—Db)la+c)+(a—c)(a+Db),
we have

(2k +3)(2a* — b*—c*)—2(k + 1)(a®*— bc) =
=(a—b)[(2k+3)(a+b)—(k+1)(a+c)]+(a—c)[(2k+3)(a+c)—(k+1)(a+b)]
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=(a—Db)[(k+2)a+(2k+3)b—(k+1)c]+(a—c)[(k+2)a+(2k+3)c—(k+1)b)].

Thus, we can write the desired inequality as

Z (a—Db)[(k+2)a+(2k+3)b—(k+ 1)c]

b2+ kbc + c2
+Z(a—c) (k+2)a+(2k+3)c—(k+1)b] 0,
b2+ kbc + c?
or
Z(a_b) (k+2)a+(2k+3)b— (k+1)c]
b2+ kbc + c2

+Z (b—a)[(k+2)b+(2k+3)a—(k+1)c] >0,

c2+ kca + a2
or

(b—c)’R,S, + (c —a)?R,Sy, + (a— b)*R.S. > 0,
where
R,=Db*+kbc+c* R,=c*+kca+a? R,=a*+kab+b?
S, = (k+2)(b*+c*)—(k+1)*a*+ (3k + 5)bc + (k* + k —1)a(b +¢)
=—(a—Db)[(k+1)Pa+(k+2)b]+c[(k2+k—1)a+ (3k+5)b+ (k+2)],
S, = (k+2)(c*+a*)—(k+1)*b*+ (3k +5)ca+ (k* + k —1)b(c + a)
=(a—b)[(k+2)a+ (k+1)*b]+c[(Bk +5)a+ (k?+k—1)b+ (k +2)c],
S.=(k+2)(a*+b*)—(k+1)*c*+(3k +5)ab + (k* + k—1)c(a + b)
=(k+2)(@*+b*)+Bk+5)ab+c[(k* +k—1)(a+b)—(k+1)*]
> (5k+9)ab + c[(k* + k—1)(a+ b) — (k + 1)%c].
We have S, > 0, since for the nontrivial case
(3k+5)a+ (k*+k—1)b+ (k+2)c <0,
we get
Sy > (a—b)[(k+2)a+(k+1)*b]+ b[(3k +5)a + (k* + k—1)b + (k + 2)c]
= (k+2)(a®*—b>) + (k+2)?ab + (k +2)bc > 0.
Also, we have S, > 0 for k > —9/5, since
(5k+9)ab+c[(k*+k—1)(a+b)—(k+1)*c] >
> (5k+9ac +c[(k2+k—1)(a+ b)—(k +1)*c]
= (k+2)(k +4)ac + (k* + k—1)bc — (k + 1)?c?

> (2k® + 7k + 7)bc — (k + 1)?c?
> (k+2)(k+3)c2>0.
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Therefore, it suffices to show that R,S, + R;S; = 0. From
bR, —aR, = (a—b)(ab—c*) >0,

we get
RS, +R,S, >R, (sa 4 %sb).

Thus, it suffices to show that

a
Sa+ 35, 20.

We have

bS,+aS, = (k+2)(a+ b)(a—b)*+cf(a,b,c)

> 2(k+2)b(a—b)*+cf(a,b,c),
hence a c
S, + ESb >2(k+2)(a—b)*+ Ef(a, b,c),

where

f(a,b,c)=b[(k*+k—1)a+ (3k+5)b]+a[(3k +5)a+ (k* +k—1)b]

+(k+2)c(a+b) = (3k+5)(a®+ b)) + 2(k>* + k—1)ab + (k + 2)c(a + b).

For the nontrivial case f(a, b,c) < 0, we have
S, + %Sb > 2(k +2)(a— b)* + f(a, b, c)

> 2(k+2)(a—b)*+ (3k +5)(a* + b?*) + 2(k* + k — 1)ab
= (5k +9)(a®+ b?) + 2(k* —k —5)ab > 2(k + 2)%ab > 0.

The proof is completed. The equality holds fora=b =c,and fora=b and c =0
(or any cyclic permutation).

Second Solution. We use the highest coefficient method (see P 3.76 in Volume 1).
Let
p=a+b+c, qg=ab+bc+ca.

Write the inequality as fg(a, b,c) > 0, where
fola, b,c) = (k+2) > [2a*+ (2k + 1)bc](a? + kab + b*)(a® + kac + c?)
—3(2k +3)| J(b?+kbe +c?).
Since

(a®+ kab + b*)(a® + kac + c®) = (p*> — 2q + kab — ¢*)(p* — 2q + kac — b?),
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fe(a, b, c) has the same highest coefficient A as
(k +2)P,y(a,b,c)—3(2k +3)P,(a, b,c),

where

Py(a,b,c) = > [2a®+ (2k + 1)bc](kab — c*)(kac — b?),
P,(a,b,c) = l_[(b2 + kbc +c?).
According to Remark 2 from the proof of P 2.75 in Volume 1, we have
A= (k+2)Py(1,1,1)—3(2k + 3)(k—1)*> = 9(2k + 3)(k — 1)2.
On the other hand,
fe(a,1,1) =2(k +2)a(a®* + ka + 1)(a—1)*(a + k +2) > 0,

f6(0,b,¢)
(b—c)?

For —2 < k < —3/2, we have A < 0. According to P 3.76-(a) in Volume 1, it

suffices to show that f¢(a,1,1) > 0 and f,(0, b,c) = O for all a, b,c > 0. The first
condition is clearly satisfied. The second condition is satisfied for all k > —2 since

=2(k +2)(b* + c*)* + 2(k + 2)*bc(b? + ¢?) + (4k* + 6k — 1)b*c%.

2(k +2)(b? + )% + (4k? + 6k — 1)b%c? > [8(k + 2) + 4k? + 6k — 1]b3c?
= (4k* + 14k + 15)b*c*> > 0.

For k > —3/2, when A > 0, we will apply the highest coefficient cancellation
method. Consider two cases: p? < 4q and p? > 4q.

Case 1: p* < 4q. Since
f6(15 ]-, 1) = f6(01 ]-, 1) = O)

define the homogeneous function
P(a,b,c)=abc+B(a+b+c)*+C(a+b+c)ab+ bc+ca)

such that P(1,1,1) = P(0,1,1) = 0; that is,
1
P(a,b,c)=abc+ §(a +b+c)— g(a +b+c)(ab+ bc+ca).

We will prove the sharper inequality g¢(a, b,c) = 0, where
g6(a: b’ C) = f6(a’ ba C) - 9(2k + 3)(k - 1)2p2(a’ b’ C)'

Clearly, g¢(a, b, c) has the highest coefficient A= 0. Then, according to Remark 1
from the proof of P 3.76 in Volume 1, it suffices to prove that g¢(a,1,1) = O for

0 <a<4. We have ,
—1
P(a,1,1)=%,
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hence

gs(a,1,1) = fe(a,1,1) —9(2k + 3)(k — 1)*P*(a,1,1) = a(a+)2g(a),
where

g(a)=18(k+2)(a*+ ka+1)(a+k+2)—(2k +3)(k—1)*a(a—1)>.
Since a® + ka + 1 > (k + 2)a, it suffices to show that

18(k +2)*(a+ k+2) > (2k +3)(k—1)*(a —1)%
Also, since (a —1)? < 2a + 1, it is enough to prove that h(a) > 0, where
h(a) =18(k +2)*(a + k+2) — (2k + 3)(k—1)*(2a + 1).

Since h(a) is a linear function, the inequality h(a) > 0 is true if h(0) > 0 and
h(4) = 0. Setting x = 2k + 3, x > 0, we get

h(0)=18(k+2)* —(2k +3)(k—1)* = %(8)(3 +37x%+2x+9)> 0.
Also,

%h(4) =2(k +2)*(k + 6) — (2k + 3)(k — 1)® = 3(7k? + 20k + 15) > 0.

Case 2: p> > 4q. We will prove the sharper inequality g¢(a, b, c) = 0, where
gs(a,b,c) = fe(a,b,c) —9(2k + 3)(k — 1)*a*b*c*.

We see that g¢(a, b, c) has the highest coefficient A = 0. According to Remark 1
from the proof of P 3.76 in Volume 1, it suffices to prove that g¢(a,1,1) > 0 for
a >4 and g¢(0, b,c) > 0 for all b,c > 0. We have

g6(a: 1: 1) = f6(a: 19 1) - 9(2k + 3)(k - 1)2a2
=a[2(k+2)(a®+ka+1)(a—1)*(a+k +2)—9(2k + 3)(k — 1)%a].

Since
a’+ka+1>(k+2)a, (a—1)2*>09,

it suffices to show that
2(k +2)*(a+k+2)> (2k +3)(k— 1)
Indeed,
2k +2)Y(a+k+2)—(2k +3)(k—1)* > 2(k + 2)*(k + 6) — (2k + 3)(k — 1)?
= 3(7k*+ 20k +15) > 0.

Also,
g6(05 b: C) = f6(0, b, C) > 0.



Symmetric Rational Inequalities 125

P 1.84. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > —2,

then
Z 3bc —2a? - 3
b2+ kbc+c2~ k+2

(Vasile Cirtoaje, 2011)

First Solution. Write the inequality as

Z[ 2a® —3bc N 3 ]> 6
b2+ kbc+c2 k+2] k+2°
Z 2(k +2)a?+ 3(b—c)?

b2+ kbc+c?
Applying the Cauchy-Schwarz inequality, it suffices to show that

[2(k+2) 3?2 +33(b—c)*]’ e
>[2(k +2)a2 +3(b—c)2](b2+kbc+c2) ~

> 6.

which is equivalent to each of the following inequalities

2|:(k+5)2a2—32ab:|2 -
>'[2(k +2)a2 + 3(b—c)2](b2 + kbc +c2) —

2(k + 8)Z:a4 +2(2k + 19)Z:a2b2 > 6(k + 2)acha +21 Z:ab(a2 +b?),
2(k+2)f(a,b,c)+3g(a,b,c) >0,

f(a, b,c):Za4+ZZa2b2—3acha,
g(a,b,c)= 42 a*+ 1OZ:a2b2 — 7Z:ab(a2 + b?).
We need to show that f(a, b,c) > 0 and g(a, b,c) > 0. Indeed,

f(a,b,c)= (Zaz)Z—BachaZ (Zab)z—BachaZO

where

and
g(a,b,c)= Y [2(a*+ b*) +10ab> — 7ab(a® + b?)]
= Z(a —b)*(2a®*—3ab +2b%) > 0.

The equality occurs fora=b =c.

Second Solution. Write the inequality in P 1.83 as

2[2_2a2+(2k+1)bc]< 3

b2+kbc+c2 |~ k+2°
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Z:Z(b2+cz)—bc—2a2 .3
b2+kbc+c2 T k+2
Since b*+ c* > 2bc, we get

Z 3bc —2a? - 3
b2+kbc+c2~ k+2°

which is just the desired inequality.

P 1.85. If a, b, c are nonnegative real numbers, no two of which are zero, then

a® + 16bc N b%2+16ca c¢*>+16ab
b2 +¢2 c2+a? a?+ b?

= 10.

(Vasile Cirtoaje, 2005)

Solution. Assume that a < b < ¢ and denote
a® + 16bc N b? + 16ca N c2+16ab
b2 + 2 c2+a? az+b2

E(a,b,c) =

Consider two cases.
Case 1: 16b3 > ac?. We will show that

E(a,b,c) = E(0,b,c) > 10.

We have
a® a(16¢® —ab?) a(16b%—ac?)
E(a,b,c)—E(0,b,c) = = 0.
(a,6,¢) = E(0,5,¢) b2+c2  c?(c?2+a?) b2(a?+ b2?)
Also,
16bc  b% (2
E(O,b,C)—lOI b2 + c2 +C_2+§_10
V(B2 4 2
_ (b—c)*(b*+c*+4bc) >0
b2c2(b2 +c2)
Case 2: 16b°® < ac?. It suffices to show that
c?2+16ab
@Z+b?
Indeed,
16b°
c?+16ab 10> _a +16ab 10
@+ b? =T 2+ b?
16b

=—-—10>16—-10>0.
a

This completes the proof. The equality holds for a = 0 and b = ¢ (or any cyclic

permutation).
O
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P 1.86. If a, b, c are nonnegative real numbers, no two of which are zero, then

a’+128bc  b?*+128ca c¢*>+128ab

+ > 46.
b2 +¢2 c2+a? a?+ b?
(Vasile Cirtoaje, 2005)
Solution. Let
a<b<c,
a’+128bc  b%2+128ca c¢*+128ab
E(a,b,c) =

b2 +c2 c? +a? a?+ b2

Consider two cases.

Case 1: 128b° > ac?. We will show that

E(a,b,c) = E(0,b,c) = 46.

We have
a? a(128c® —ab?) a(128b° —ac?)
E(a,b,c)—E(0,b,c) = " >
(a C) ( C) b2 + CZ CZ(CZ + aZ) bz(az + b2)
Also,
128b b? 2
E(0,b,c)—46= 8bc + 2+ 5 46

b2tc 2 b2
_ (b*+c?—4bc)*(b* +c* +8bc) -

0.
b2c2(b2 +¢2)

Case 2: 128b° < ac?. It suffices to show that

c?+128ab > 26
az+b2
Indeed,
128b°
c+128ab " q +128ab ;
a?+ b2 —46= a?+ b2 —4

_128b
B a

—46>128—-46> 0.

b
This completes the proof. The equality holds for a = 0 and — +% = 4 (or any cyclic
c

permutation).
O
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P 1.87. If a, b, c are nonnegative real numbers, no two of which are zero, then

a’+64bc  b%>+64ca c*+64ab
+ + > 18.
(b+c¢)? (c+a)? (a+b)2

(Vasile Cirtoaje, 2005)

Solution. Let
a<b<c,

E(@,b.c)= a? + 64bc N b2+64ca+c2+64ab
U7 (b4 (c+aP  (a+b)p

Consider two cases.
Case 1: 64b% > c?(a + 2b). We will show that

E(a,b,c) > E(0,b,c) > 18.

We have
a® a[64c® —b?(a+2c)]  a[64b>—c%*(a+2b)]
E(a,b,c)—E(0,b,c) = +
(a,b,c) ( <) (b+c¢)2 c2(c+a)? b2(a + b)>2
> 0.
Also,

2

2
64bc b C——18

E(0,b,c)—18 = + +
(0,b,¢) (b+c)2 2 b2
VA2 4 2
:(b c)*(b*+c +6bc)>0.
b2c2(b +c)?

Case 2: 64b% < c%(a + 2b). It suffices to show that

2
¢ +64ab o
(a+b)?
Indeed,
64b3
2 —— +64ab
c +64ab_182a+2b _18
(a+ b)2 (a+ b)2
= 64b —182%—18>0.
a+2b 3

This completes the proof. The equality holds for a = 0 and b = ¢ (or any cyclic

permutation).
[
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P 1.88. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > —1,
then

+b+c.

Z a?(b +c)+ kabc
=a
b2+ kbc + c2

Solution. We apply the SOS method. Write the inequality as follows:

Z [az(b +c)+kabe

>0
b2+ kbe + 2 a]— ’

122
Za(ab+ac b C)ZO,
b2+ kbc +c2

> ab(a?®+kab + b*)(a + b+ ke)(a— b)* > 0.
Without loss of generality, assume that
a=b>c.
Since a+ b+ kc > a+ b—c > 0, it suffices to show that
b(b%+ kbc+c2)(b+c+ka)b—c)?+a(c?+kca+a®>)(c+a+kb)(c—a)*>0.

Since
c+a+kb>c+a—b>0, c*+kca+a*>b*+kbc+c?,

it is enough to prove that
b(b+c+ka)(b—c)P+a(c+a+kb)c—a)*>0.
We have
b(b+c+ka)b—c)+a(c+a+kb)c—a)*>
> [b(b+c+ka)+a(c+a+kb)](b—c)?
=[a?+ b%+2kab +c(a+ b)J(b—c)?
>[(a—b)?+c(a+b)](b—c)*>0.

The equality holds for a = b = ¢, and for a = b and ¢ = 0 (or any cyclic permuta-
tion).
O
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—3
P 1.89. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > BE

then
+b+ec.

Z a® + (k + 1)abc -
b2+ kbc+c2 —
(Vasile Cirtoaje, 2009)

Solution. Use the SOS method. Write the inequality as follows:

3 3 2 2
Z[a +(k+1)abc_a]20’ Za a(b bc+c)>0

b2 + kbc + c2 b2+kbc+c2
3_ (B34 -3 2_ 12 2_ .2
Z(b+c)a a(b +c)20’ Zab(a b*) + ac(a c)Z ,
(b+c)(b2+kbc+c2) (b+c)(b2+ kbc+c2)

Z ab(a®—1b?) +Z ba(b*>—a?) >0

(b +¢c)(b2+ kbc +c2) (c+a)(c2+kca+a?)

> (a*—b*Pab(a®+kab + bH)[a>+ b? + ab+ (k+1)c(a+ b +¢)] > 0,
> (6% = c2)?be(b® + kbe + )8, > 0,

where
S, =b*+c*+bc+(k+1ala+b+c).

Without loss of generality, assume that
a=b=>c.
Since S, > 0, it suffices to show that
(b* —c?)*b(b* + kbc + c?)S, + (¢* — a®)*a(c* + kca + a®)S, > 0.

Since
(C2 _a2)2 > (bZ —CZ)Z, a> b,

2+ kca+a*—(b*+kbc+c*)=(a—b)a+b+kc)>0,

1
Sb=a2+c2+ac+(k+1)b(a+b+c)2a2+c2+ac—£b(a+b+c)
_ (a—b)(2a+b)+c(2a+2c—>b) >0,
2
it is enough to show that S, + S, > 0. Indeed,

S, +Sy=a*+b*+2c*+c(a+b)+(k+1)a+b)a+b+c)
1
2a2+b2+262+c(a+b)—§(a+b)(a+b+c)

12
:(a b) +c2(a+b+4c)20

This completes the proof. The equality holds for a = b = ¢, and also for a = b and
¢ =0 (or any cyclic permutation).

O
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P 1.90. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > 0,

then
2aF — bk —ck  2bF—ck—ak 2ck—dak—bF >0
b2 —bc +c2 c2—ca+a? a2—ab+ b2
(Vasile Cirtoaje, 2004)
Solution. Let
X=bk—=ck, v=c—d*, Z=d"—0F,

A=b* —bc+c% B=c?>—ca+d?* C=da*—ab+Db>
Without loss of generality, assume that a > b > c¢. This involves

A<B, A<C, X>0, Z>0.

Since
2a* — bk —c* _X+2Z X-7Z 2X+7

Zb2—bc+c2_ A B C
(1 1 2) (2 1 1)
=X[=-+=-Z]+2(2-==-=),
A B C A B C
it suffices to prove that
1 1 2
- +=—=2=0
A B C
Write this inequality as
1 1_1 1
___2___’
A C C B

that is,
(a—c)a+c—b)a*—ac+c*)>(b—c)a—b—c)(b*>—bc+c2).
For the nontrivial case a > b + ¢, this inequality follows from

a—c=>b—c,

a+c—b>a—b—c,
a’?—ac+c?>> b?>—bc+c2.

This completes the proof. The equality holds fora = b =c, and fora=b and c =

(or any cyclic permutation).

0

O
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P 1.91. If a, b, c are the lengths of the sides of a triangle, then

b+c—a c+a—>b a+b—c 2(a+b+c)
(a) + + > ;
b2—bc+c? c¢2—ca+a? a?—ab+b%2 a2+ b2+c?
2 12 )
) 2bc—a + 2ca—>b N 2ab—c >0

b2—bc+c2 c2—ca+a?2 a2—ab+ b2

(Vasile Cirtoaje, 2009)
Solution. (a) By the Cauchy-Schwarz inequality, we get

Z b+c—a o [Z(b+c—a):|2

b2—bc+c2~ D(b+c—a)(b?2—bc+c?2)

(Za)

- 2> a3 —>a?(b+c)+3abc

On the other hand, from

(b+c—a)(c+a—Db)la+b—c)=>0,

2abc < Zaz(b +c)—Za3

we get

hence

ZZaB—Zaz(b+c)+3abc < Za3+22a2(b+c) = (Za)z(za )

Therefore,

Z b+c—a 2 D>a
b2—bc+c2 ~ D>la?’
The equality holds for a degenerate triangle with a = b + ¢ (or any cyclic permuta-
tion).
(b) Since
2bc—a* _ (b—c)*+(b+c)*—a?
b2—bc+c2 b2 —bc+c?
we can write the inequality as

(b—c)? b+c—a
sz_ +(a+b+c)Z—b2_bc+sz6

_2,

Using the inequality in (a), it suffices to prove that

(b—c)? 2(a+b+c)2>6
b2 — bc+c2 az+b2+c2
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Write this inequality as

_(b=c) Z 2(b—c)?

b2—bc+c2 ~ 4= a2+ b2+ c?’
Z(b—c)z(a—b+c)(a+b—c) -0
bc + c2 '

Clearly, the last inequality is true. The equality holds for degenerate triangles with
either a/2 = b = ¢ (or any cyclic permutation), or a = 0 and b = ¢ (or any cyclic
permutation).

Remark. The following generalization of the inequality in (b) holds (Vasile Cirtoaje,
2009):

e Let a, b, c be the lengths of the sides of a triangle. If k > —1, then

Z 2(k +2)bc —a?
b2+ kbc +c2

with equality for a = 0 and b = ¢ (or any cyclic permutation).

P 1.92. If a, b, c are nonnegative real numbers, then

2 2 2
a b c 1

(@) + + < -
5a2+(b+c¢)>2 5b%2+(c+a)* 5c2+(a+b)2 " 3

a’ b3 o 1

(b)

- + <=
13a3+(b+c)® 13b3+(c+a)® 13c3+(a+b)® ~ 7
(Vo Quoc Ba Can and Vasile Cirtoaje, 2009)

Solution. (a) Apply the Cauchy-Schwarz inequality in the following manner

9 B (1+2)>2 - 1 L2
5a2+(b+c¢)2  (a2+b2+c2)+2(2a2+bc) ~ a2+b2+c2  2a2+bc’

Then,

9a® a* 2a* a?
<> 4> = —142) —
ZSa2+(b+c)2 Za2+b2+c2 Z:2a2+bc Z:2a2+bc

and it remains to show that )

a
I
2a2 + bc

For the nontrivial case a, b,c > 0, this is equivalent to

P
2+ bc/a?
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which follows immediately from P 1.2-(b). The equality holds for a = b = ¢, and
for a =0 and b = ¢ (or any cyclic permutation).

(b) By the Cauchy-Schwarz inequality, we have

49 . (1+6)?
13a3+ (b+c¢)3 (a3 + b3 +c3)+ 12a3+3bc(b +¢))
1 36
< + ,
al+b3+c¢3 12a3+3bc(b+c)

hence

3 3 3
Z 49a < Z a +Z 36a
13a3+(b+c)? a®+b3+¢3 12a3 + 3bc(b +¢)

1243
=1+ .
Z4a3+bc(b+c)

Thus, it suffices to show that

2a®
> <1.
4a3 + be(b+c¢)

For the nontrivial case a, b, ¢ > 0, this is equivalent to

>, ! <1
2+ be(b+c¢)/(2a3)

Since

[ [ped+c)/2a®) =] [bevbe/a® =1,

the inequality follows immediately from P 1.2-(b). The equality holds fora = b =,
and for a =0 and b = ¢ (or any cyclic permutation).
O

P 1.93. If a, b, c are nonnegative real numbers, then

b%+c?—a? N c? 4+ a®—b? N a’+ b2 —c? >1
202+ (b+c)?2 2b2+(c+a)® 2c2+(a+Db)2 2

(Vasile Cirtoaje, 2011)

Solution. We apply the SOS method. Write the inequality as follows:
Z [ b*+c*—a* 1 ]
———— |20,
2a2+(b+c)2 6
Z 5(b% + 2 —2a?) + 2(a®— bc) -
2a? + (b +¢)? -

0,
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Z5(b2—a2)+5(c2—a2)+(a—b)(a+c)+(a—c)(a+b) -0
2a2 + (b +c)? -

Z (b—a)[5(b+a)—(a+c)] +Z (c—a)[5(c+a)—(a+Db)]
2a2+ (b +c)? 2a2+ (b +c)>?

Z (b—a)[5(b+a)—(a+c)] +Z (a—b)[5(a+b)—(b+c)] >0,
2a? + (b +¢)? 2b2 4+ (c +a)?

Z(a —b)?*[2¢*+ (a+ b)*[2(a®* + b*) + c*+3ab—3c(a+ b)] >0,

D> (b—c)*R,S, >0,

>0,

where
R,=2a*+(b+c)*, S,=a*+2(b*+c?*)+3bc—3a(b+c).

Without loss of generality, assume that a > b > c. We have

S, =b*+2(c*+a*)+3ca—3b(c+a)=(a—b)(2a—b)+2c*+3c(a—b) >0,

S, =c*+2(a*+b*)+3ab—3c(a+b) > 7ab—3c(a+b) > 3a(b—c)+3b(a—c) > 0,

S,+S,=3(a—b)*+4c*>0.

Since
Z(b —¢)*R,S, = (b—c)’R,S, + (c —a)’R,S,

= (b - C)zRa(Sa + Sb) + [(C - Cl)sz - (b - C)ZRa]Sb:

it suffices to prove that
(a—c)*R, > (b—c)’R,.

We can get this by multiplying the inequalities
b*(a—c)* = a*(b—c)?

and
a’R, > b?R,.

The equality holds for a = b = ¢, and for a = b and ¢ = 0 (or any cyclic permuta-

tion).

P 1.94. Let a, b, ¢ be positive real numbers. If k > 0, then

3a?—2bc N 3b%—2ca N 3c?—2ab
kaz2+(b—c)? kb2+(c—a)? kc2+ (a—b)?

3
<-.
k

]

(Vasile Cirtoaje, 2011)
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Solution. Use the SOS method. Write the inequality as follows:

Z[l_ 3a%—2bc ]2
kK ka4 (b—c2]= "
z:b2+c2—2a2+2(k—1)(bc—a2)>
ka?+ (b —c)? N
Z(bz—a2)+(c —a®)+(k— 1)[(a+b)(c—a)+(a+c)(b—a)]
ka2 + (b —c)? 0;
Z(b—a)b+a+(k 1)(a+c)] Z(c—a)[c+a+(k—1)(a+b)]>
ka?+ (b —c)>? ka? + (b —c)? -
Z(b—a)b+a+(k 1)(a+c)] Z(a—b)[a+b+(k—1)(b+c)]>O.
ka2 + (b—c)? kb2 + (c —a)? -
Z(a —b)?[ke? + (a—b)?[(k—1)c? +2c(a+ b) + (k* —1)(ab + bc + ca)] > 0.

For k > 1, the inequality is clearly true. Consider further that 0 < k < 1. Since

0;

(k—1)c*+2c(a+ b)+ (k* —1)(ab + bc + ca) >
> —c*+2c(a+b)—(ab+bc+ca)=(b—c)(c—a),
it suffices to prove that
(@a—b)(b—c)(c—a) D (a—b)[ke? +(a—b)*] > 0.
Since
> (a=b)ke? +(a—b)*1=k > (a—b)c*+ > (a—bY’
=B —k)(a—b)(b—c)(c—a),

we have

(@a—b)(b—c)c—a) > (a—b)[ke® +(a—b)*]=
=(3—k)a—b)*(b—c)*(c—a)*>0.
This completes the proof. The equality holds for a = b =c.

P 1.95. Let a, b,c be nonnegative real numbers, no two of which are zero. If k >
3+ +/7, then

@ a + b + c > 9 )
a?+kbc b2+kca c2+kab  (1+k)la+b+c)
1 1 1 9
(b)

+ + > :
ka2+bc  kb%2+ca kc2+ab — (k+1)(ab+ bc+ca)

(Vasile Cirtoaje, 2005)
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Solution. (a) Assume that a = max{a, b, c}. Setting

b+c
t = , t<a,
2
by the Cauchy-Schwarz inequality, we get
b L (b+c)? B 4t2
b2+kca c2+kab = b(b2+kca)+c(c2+kab) 8t3—6bct + 2kabc
2t2 - 2t2 2

T 43+ (ka—3t)bc ~ 4t3 + (ka—3t)t2 T ttka

On the other hand,
a . _ @
a?+kbc — a?+kt?’

Therefore, it suffices to prove that

a 2 9

+ > ,
a?z+kt2 t+ka (k+1)(a+2t)

which is equivalent to
(a—t)*[(k*> —6k +2)a+ k(4k —5)t] > 0.
This inequality is true, since k* —6k + 2 > 0 and 4k —5 > 0. The equality holds for
a=b=c.
(b) For a = 0, the inequality becomes

1 1_ k(8=k)

—t—>

b2 ¢2 7 (k+1)bc
We have

1.1 k8—k) _ 2 _ k(8—K) _k2—6k+2>
b2 2 (k+1)bc ~ bc (k+1bc (k+1)bc ~

For a, b,c > 0, the desired inequality follows from the inequality in (a) by substi-
tuting a, b, c with 1/a,1/b, 1/c, respectively. The equality holds fora = b =c. In
the case k = 3 + +/7, the equality also holds for a = 0 and b = ¢ (or any cyclic
permutation).

O

P 1.96. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1 1 1 6
+ + > .
202+ bc  2b24ca 2c24+ab a?+b2+c2+ab+ bc+ca

(Vasile Cirtoaje, 2005)
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Solution. Applying the Cauchy-Schwarz inequality, we have
2
Z 1 [>(b+0¢)] _ 4a+b+c)
2a2+bc = D(b+c)2(2a2+bc) Db +c)2(2a% + be)’
Thus, it suffices to show that

2(a+b+c)(a®+b*+c*+ab+bc+ca)> BZ(b +¢)?(2a® + bo),

which is equivalent to

22a4+32ab(a2+ b2)+2acha > 1OZa2b2.

This follows by adding Schur’s inequality

22a4+2abc2a > 2Zab(a2+ b?)

SZ:ab(a2 +b%) > 102 a’b2.
The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic
permutation).

to the inequality

]

P 1.97. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1 1 1 1
+ + = .
22a%+5bc  22b2+5ca 22c2+5ab — (a+ b +c)?

(Vasile Cirtoaje, 2005)

Solution. Applying the Cauchy-Schwarz inequality, we have

o1 Y+ 4a+b+c)
22a2 +5bc = DI(b +c)2(22a% +5bc)  >.(b +c)2(22a% +5bc)’

Thus, it suffices to show that
4(a+b+c) > Z(b +¢)?(22a® + 5b¢),
which is equivalent to
42 a*+11 Z:ab(a2 + b3+ 4abcz a> BOZ a’b?.

This follows by adding Schur’s inequality
42 a*+ 4ach a> 42 ab(a®+ b?)

ISZ:ab(a2 +b%) > SOZaZbZ.
The equality holds for a = b =c.

to the inequality
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P 1.98. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
1 1 1 8
+ + = .
2a2+bc  2b24+ca 2c2+ab  (a+b+c)?
(Vasile Cirtoaje, 2005)

First Solution. Applying the Cauchy-Schwarz inequality, we have

Z 1 [Z(b‘*'c)]z _ 4a+b+c)
2a2+bc ~ Y(b+c)2(2a2+bc) Db +c)*(2a+ be)’

Thus, it suffices to show that
(a+b+c)* =2 (b+c)*(2a®+ be),
which is equivalent to

Z:a“+221ab(a2 + b2)+4acha > 6Za2b2.

We will prove the sharper inequality

Za4+22ab(a2+ b2)+abc2a > 6Za2b2.

This follows by adding Schur’s inequality

Za4+acha > Zab(a2+ b?)
BZ:ab(a2 +b?) > 6Za2b2.

The equality holds for a = 0 and b = ¢ (or any cyclic permutation).

to the inequality

Second Solution. Without loss of generality, we may assume that a > b > c. Since
the equality holds for ¢ = 0 and a = b, when
111
2a2+bc  2b2+ca  4c2+2ab’

write the inequality as

1 1 1 1 8
+ + + > )
2a%2+bc  2b%2+ca 4c2+2ab  4c2+2ab  (a+Db+c)?

then apply the Cauchy-Schwarz inequality. Thus, it suffices to prove that

16 8
>
(2a2 + bc) + (2b2 +ca) + (4c2 + 2ab) + (4c2+2ab) ~ (a+b+c)?’

which is equivalent to the obvious inequality

cla+b—2c)=0.
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P 1.99. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1 1 1 12
+ + > .
az+bc b2+ca c24+ab (a+b+c)?

(Vasile Cirtoaje, 2005)

Solution. Write the inequality such that the numerators of the fractions are non-
negative and as small as possible:

Z[ 1 1 ]> 9
a?+bc (a+b+c)2] (a+b+c)?

> 9.

Z (a+b+c)>—a®—bc
a?+ bc
Assuming that a + b + ¢ = 1, the inequality becomes

1—a?—bc
Sloaobe,
a2+ bc

By the Cauchy-Schwarz inequality, we have

Zl—az—bc - [Z(l—az—bc)]z

az2+bc ~ D(1—a2—bc)(a?+ bc)

Then, it suffices to prove that
2
(3 —Z a® —Z bc) > 92:(a2 +bc)— 9Z(a2 + bc)?,
which is equivalent to

(1—4q)(4—7q)+36abc >0, q=ab+ bc+ca.

For ¢ < 1/4, this inequality is clearly true. Consider further that ¢ > 1/4. By
Schur’s inequality of degree three

(a+b+c)*+9abc>4(a+Db+c)ab+ bc+ca),
we get 1 +9abc > 4q, and hence 36abc > 16q — 4. Thus,
(1—4q)(4—7q)+36abc > (1—4q)(4—7q)+16q—4=7q(4g—1)> 0.

The equality holds for a = 0 and b = ¢ (or any cyclic permutation).
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P 1.100. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

1 1 1 1 2
+ - > + ;
a?+2bc b2+2ca c24+2ab a?2+b2+4+c2 ab+bc+ca

(a)

a(b+c) b(c+a) cla+b) S ab+ bc+ca
a?+2bc  b%2+2ca c2+2ab a?+b2+c2’
(Darij Grinberg and Vasile Cirtoaje, 2005)

(b)

Solution. (a) Write the inequality as

>(b* + 2ca)(c* + 2ab) - ab + bc +ca + 2a? + 2b% + 2¢?
(a2 +2bc)(b2 +2ca)(c2 +2ab) — (a?+ b2+ c2)(ab+bc+ca)

Since
Z:(b2 +2ca)(c®+2ab) = (ab + bc +ca)(ab + bc + ca + 2a® + 2b% + 2¢?),
it suffices to show that
(a®+ b*+c*)(ab + bc + ca)* = (a® + 2bc)(b* + 2ca)(c* + 2ab),
which is just the inequality (a) in P 2.16 in Volume 1. The equality holds for a = b,
orb=c,orc=a.
(b) Write the inequality in (a) as

Z:ab+bc+ca>2 ab+ bc+ca
a2+2bc a2+ b2+¢2’
o (b+0) b b+b
a(b +c C ab+ bc+ca
— Y ————>2+———
Za2+2bc Za2+2bc_ az+ b2+ c2
The desired inequality follows by adding this inequality to

bc
1> _
- Z az+ 2bc

The last inequality is equivalent to
a2
IR
a? + 2bc
which follows by applying the AM-GM inequality as follows:
2 2

a a
_ >y —— =1
Za2+2bc Za2+b2+c2

The equality holds for a = b =c.
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P 1.101. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

@ a N b N C < a+b+c )
a?+2bc  b2+2ca c2+2ab” ab+bc+ca’

2, 12, .2

) a(b+c) b(c+a) cla+b) < a*+b*+c

a2+2bc  b2+2ca c2+2ab” ab+bc+ca’
(Vasile Cirtoaje, 2008)

Solution. (a) Use the SOS method. Write the inequality as

Za(l_ab+bc+ca)20’
a2+ 2bc

Z a(a—b)(a—c) >0
a?+2bc -

Assume that a > b > ¢. Since (c —a)(c — b) > 0, it suffices to show that

a(a—b)(a—c) N b(b—a)(b—c) > 0.
a2+ 2bc b2+ 2ca

This inequality is equivalent to
c(a—b)*[2a(a—c)+2b(b—c)+3ab]>0,

which is clearly true. The equality holds for a = b =, and for a = b and ¢ = 0 (or
any cyclic permutation).
(b) Since
a(b+c¢) ala+b+c) a®
a+2bc a2+ 2bc a2+ 2bc’
we can write the inequality as

a a’?+ b+ c? a?
a+b+c — <1+ + .
( )Za2+2bc ab+ bc+ca Za2+2bc

According to the inequality in (a), it suffices to show that

(a+b+c)2< a’+b%+c? Z a?

< + s
ab+ bc+ca ab+ bc+ca az+2bc
which is equivalent to
a2
di——2>1
az+ 2bc
Indeed,
2 2

a a
2, T 51
Za2+2bc Za2+b2+cz

The equality holds for a = b =c.
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P 1.102. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

@ a + b + c S a+b+c .
2a2+bc  2b%24+ca 2c24+ab a2+ b2+c?’
) b+c c+a a+b S 6

+ + = .
2a24+bc 2b%2+4+ca 2c2+ab  a+b+c
(Vasile Cirtoaje, 2008)

Solution. Assume that
a>b>c.

(a) Multiplying by a + b + ¢, we can write the inequality as follows:

Za(a+b+c)> (a+b+c)?
2a2+bc  a?+b2+c?’

3_(a+b+c)2 >Z[1_a(a+b+c)])

az+b2+c2 2a? + bc
—b)(a—c)
9 Y > (2 b2 ST @ b)a—c)
Dla=b)a—c)=(a®+b+c*) > Y
3a2—(b—c)?
E = 7 (q— —c)>
2a% + bc (a=b)a=c)=0,

3f(a,b,c)+(a—b)(b—c)(c—a)g(a,b,c) =0,

20 _ _
f(a,b,c)zza(a b)(a c)’ g(a,b,c)zz b—c

2a2 + bc 2a2+ bc’
It suffices to show that f(a, b,c) > 0 and g(a, b,c) < 0. We have

a*(a—b)(a—c) N b%(b—a)(b—c)

where

b,c)>
fla,b,c)= 2a2 + bc 2b2 +ca
- a?*(a—b)(b—-c) N b?(b—a)(b—-c)
2a2+ bc 2b2 +ca

_ a’c(a—Db)*(b—c)(a®+ab + b?)

> 0.
(2a2+ bc)(2b2 +ca)

Also,
b—c _(a—b)+(b—c) a—b
2a2+ bc 2b2 +ca 2c2+ab

1 1 1 1
_(a_b)(2c2+ab_2b2+ca)+(b_c)(2a2+bc_2b2+ca)
_(a=b)(b—c)[2b+2c—a 2b+2a-—c
 2b2+ca [ 2c2+ab  2a?+ bc ]
_2(a—b)(b—c)(c—a)(a2+b2+c2—ab—bc—ca)<

(2a%2+ bc)(2b2+ca)(2c2 +ab) a

g(a,b,c)=

0.
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The equality holds for a = b = ¢, and for a = b and ¢ = 0 (or any cyclic permuta-
tion).

(b) We apply the SOS method. Write the inequality as follows:

Z[(b+c)(a+b+c)_2]20’
2a2 + bc
Z(b2+ab—2a2)+(02+ca—2a2)>O
2a2 + bc -
Z:(b—a)(b+2a)+(c—a)(c+2a)>0
2a2 + bc -
(b—a)(b+2a) (a—b)(a+2b)
>0
Z 2a2 + bc +Z 2b2 +ca -

Z(a -b (Zij—i-zfa B 222_:2;6) =0,

Z(a —b)*(2¢%+ ab)(a®+ b*+3ab—ac—bc) > 0.
It suffices to show that

Z(a —b)*(2¢*+ ab)(a*+ b*+2ab—ac—bc) >0,
which is equivalent to

Z(a —b)*(2¢*+ab)(a+b)a+b—c)>0.
This inequality is true if
(b—c)?a?+be)(b+c)b+c—a)+(c—a)@2b2+ca)(c+a)(c+a—Db)>0;
that is,
(a—c)*(2b*+ca)(a+c)a+c—b)>(b—c)*(2a*+ bc)(b+c)a—Db—c).

Since
a+c>b+c¢c, a+c—b>a—b—c,

it is enough to prove that
(a—c)*(2b? +ca) = (b —c)*(2a® + bc).
We can obtain this inequality by multiplying the inequalities
b*(a—c)* > a*(b—c)?
and
a?(2b? + ca) > b*(2a® + bc).

The equality holds for a = b = ¢, and for a = b and ¢ = 0 (or any cyclic permuta-
tion).
OJ
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P 1.103. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove

that )
a(b+c)+ b(c+a)+c(a+b) S (a+b+c)

az+bc b2+ca c2+4+ab a2+ b2+c2’
(Pham Huu Duc, 2006)

Solution. Assume that a > b > ¢ and write the inequality as follows:
2
3_(a+b+c) Zz(l_ab+ac)’
a?+ b2 +c2 a?+ bc

ZZ(a—b)(a—C)Z (a2+b2+c2)2%

Z(a—b)(a—c)(a+b—c)(a—b+c) >0
a2+ bc -

2

It suffices to show that

(b—c)b—a)(b+c—a)(b—c+a) (c—a)(c—b)(c+a—Db)(c—a+Db)
+ >0
b%+ca c2+ab

2

which is equivalent to the obvious inequality

(b—c)*(c—a+ b)*(a®+ bc) -

(b2 +ca)(c? +ab) = 0.

The equality holds for a = b = ¢, and for a = b and ¢ = 0 (or any cyclic permuta-
tion).
O

P 1.104. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > 0,
then

b2+ c?++/3bc  c?+a’+/3ca a2+b2+1/§ab>3(2+1/§)
a2+ kbc b2 + kca c2+kab — 1+k

(Vasile Cirtoaje, 2013)

Solution. We use the highest coefficient method. Write the inequality in the form
fela, b,c) = 0, where

fola,b,c) = (1+k) D (b +c*+ v3bc)(b? + kea)(c? + kab)

—3(2+ v3)(a? + kbc)(b? + kca)(c? + kab).
Clearly, fs(a, b, c) has the same highest coefficient A as

(1+k)Py(a,b,c)—3(2+ V3 )P5(a, b, c),
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where
P,(a,b,c) = Z(\/gbc —a?)(b? + kca)(c? + kab),

Py(a, b,c) = (a* + kbc)(b? + kca)(c* + kab).
According to Remark 2 from the proof of P 2.75 in Volume 1, we have

A=(1+Kk)P,(1,1,1)—3(2+ v3)Py(1,1,1)
=3(vV3-1)(1+k)*—3(2+ V3 )1 +k)> =—9(1 + k)°.
Since A < 0, according to P 3.76-(a) in Volume 1, it suffices to prove the original

inequality for b =c =1 and for a = 0.
In the first case (b = ¢ = 1), the inequality is equivalent to

2+\/§+2(a2+\/§a+1)> 3(2+3)
az+k ka+1 - 1+k

2(a®+/3a+1) _ @2+ V3)(3a® + 2k —1)
ka+1 - (k+1)(a2+k) °

2
(a—1)2[(k+1)a2—(1+§)(k—z)a+(k—1+‘/§) ]zo_

>

2

For the nontrivial case k > 2, we have

2
(k+1)a2+(k—1+2‘/§) 22Vk+1(k—1+2ﬁ)a

zzﬁ(k— 1+‘/§)az (1+§)(k—2)a.

2

In the second case (a = 0), the original inequality can be written as
1/b ¢ b% 2 3(2++/3)
=+ —+V3 |+ =+ = |2
k(c b ) (CZ bz)_ 1+k

It suffices to show that

3(2++3)

1
Z2+V3)+2>
k( ) - +k

which is equivalent to

2

2
(k—1+‘/§) >0.
1+

3
The equality holds fora = b =c. If k = V3

, then the equality holds also for

a =0 and b = ¢ (or any cyclic permutation).
O
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P 1.105. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

1 N 1 4 1 4 8 S 6
a2+ b2 b2+c2  c24a? a2+b2+c2 ab+bc+ca
(Vasile Cirtoaje, 2013)

Solution. Multiplying by a? + b? + ¢?, the inequality becomes

a? b? c? 6(a?+ b% +c?)
+ + +11 > .
b24+c2 c24+a? a2+ b2 ab+ bc+ca

Since

a? b? c? 272 22, 2.2
+ + a*b®+ b c*+ca’) =
(b2+c2 c2+a? a2+b2)( )
L S
a?+b2 b2+c?2 c2+a?

=a4+b4+c4+a2b202( )2a4+b4+c4,

it suffices to show that

a*+ b*+c* - 6(a®+ b% +c?)
a2b2 + b2¢c2 4 c2q2 ~ ab+4+bc+ca’
which is equivalent to
(a® + b? + ¢2)? - 6(a%+ b2 +c?)
a2b2 + b2¢c2 + c2q2 ~ ab+bc+ca

Clearly, it is enough to prove that

(a2+b2+c2 )2+ - 6(a? + b?+c?)
ab+ bc+ca ab+bc+ca’

which is
2

(u—s) > 0.
ab+ bc+ca

b
The equality holds for a =0 and — + % = 3 (or any cyclic permutation).
c

P 1.106. If a, b, c are the lengths of the sides of a triangle, then

a(b+c) N b(c+a) N c(a+b) <9
a?+2bc b%2+4+2ca c¢%2+4+2ab

(Vo Quoc Ba Can and Vasile Cirtoaje, 2010)
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Solution. Write the inequality as
b+
S (1 _ a_aC) >1,
a? + 2bc
Z a?+2bc—ab—ac
a®+2bc

> 1.
Since
a*+2bc—ab—ac=bc—(a—c)(b—a)>|a—c|lb—al]—(a—c)(b—a) >0,

by the Cauchy-Schwarz inequality, we have

Za2+2bc—ab—ac - [Z(a2+2bc—ab—ac)]2
a2+ 2bc ~ >(a%+2bc)(a? + 2bc —ab—ac)

Thus, it suffices to prove that
(a2 +b%2+c?)?> Z:(a2 +2bc)(a?+ 2bc —ab —ac),
which reduces to the obvious inequality
ab(a—b)*+ bc(b—c)*+ca(c—a)*>0.

The equality holds for an equilateral triangle, and for a degenerate triangle with
a =0 and b = ¢ (or any cyclic permutation).
OJ

P 1.107. If a, b, c are real numbers, then
a®—bc N b%—ca N c>—ab
2a2+b2+c2  2b2+c2+a?  2c2+a?+b?
(Nguyen Anh Tuan, 2005)

First Solution. Rewrite the inequality as

Z(l_ a’?—bc )<§
2 2a24+b24c¢2) " 2
2
Z (b+¢) <3
2a% + b? +c?

If two of a, b, c are zero, then the inequality is trivial. Otherwise, applying the
Cauchy-Schwarz inequality, we get

2 2 2 2
Z (b+¢) :Z (b+¢) SZ( b N c )
2a?+ b2 +¢? (a%?+b2)+ (a®+c?) az+b?  a?+c?

b2 2
:Za2+b2+2b2i_a2:3
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The equality holds for a = b =c.
Second Solution. Use the SOS method. We have

(a—b)la+c)+(a—c)(a+b)
2
Z:2a2+b2+c2 Z 2a?+ b2 +c?

Z(a—b)(a+c) Z(b—a)(b+c)

2a2 + b2 +c? 2b% +c2 +a?
a+c b+c
= —b -
Z(a )(2a2+b2+c2 2b2+c2+a2)
—b)?
=(a®*+b*+c*—ab—bc— : .
(a c“—a ¢ Ca)Z(2a2+b2+c2)(2b2+62+az)_

P 1.108. If a, b, c are nonnegative real numbers, then
3a?—bc 3b%—ca 3c2—ab 3
+ + <
2a2+b2+c2  2b2+c2+a?  2c2+a?+b?
(Vasile Cirtoaje, 2008)

First Solution. Write the inequality as
(3 3a?—bc )
S(3-Becbe )y
2  2a%+b2+4c?
2
Z 8bc+3(b—c) > 6

2a2 + b2 + c2
By the Cauchy-Schwarz inequality, we have

[4bc+(b—c)2] _ 2(b+o)
2bc+§(b—c)2 b2+ c2+4bc

8bc+3(b—c)*=

Therefore, it suffices to prove that

Z (b+c)4 S 9
(222 + b2 + c2)(b? + 2 + 4bc) —

Using again the Cauchy-Schwarz inequality, we get

3 (b +c) - [>2(b+)]

(2a2+ b2+ c2)(b2+c2+4bc) — Di(2a%+ b2 +¢2)(b2 + c2+4bc) -

The equality holds for a = b = ¢, for a = 0 and b = ¢ (or any cyclic permutation),
and for b = ¢ = 0 (or any cyclic permutation).
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Second Solution. Use the SOS method. Write the inequality as
(1 3a*— bc )
P e Y
2  2a%+b2+c2
Z(b+c+2a)(b+c—2a) >0,
2a% + b2 +c?
Z(b+c+2a)(b—a)+(b+c+2a)(c—a) >0
2a2 + b2 +c2 -
2 — 2 —
Z(b+c+ a)(b—a) +Z(c+a+ b)(a—b) >0,
2a% + b2 +c? 2b2 +c2 +a?

Z(a—b)( c+a+2b b+c+2a )20’

2b2+c2+a2  2a%+ b2+ c2

>

Z(Sab +bc+ca—c?)(2c2+a*+b*)(a—b)*>0.

Clearly, it suffices to show that
Zc(a +b—c)(2c®2+a*+b*)(a—b)*>0.
Assume that a > b > c. It is enough to prove that
a(b+c—a)2a®>+ b2+ (b—c)?+blc+a—b)2b%+c?+a*)(c—a)?>0;
that is,
b(c+a—Db)(2b*+c*+a*)(a—c)* > ala—b—c)(2a®+ b*+c?)(b—c)*

Since c + a—b > a— b —c, it suffices to prove that

b(2b%+ 2+ a?)(a—c)* > a(2a® + b* + ) (b —c)%
We can obtain this inequality by multiplying the inequalities

b*(a—c)*> a*(b—c)?

and
a(2b? + c* +a?) > b(2a® + b* + ¢2).

The last inequality is equivalent to

(a—b)[(a—b)*+ab+c?]>0.
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P 1.109. If a, b, c are nonnegative real numbers, then

(b +c)? (c +a)? (a + b)?
4a?2+b%2+c?2 4b2+c2+a? 4c2+a?+b?

(Vasile Cirtoaje, 2005)

Solution. By the Cauchy-Schwarz inequality, we have

LA (S +erT

4a?+b2+c2 "~ D(b+c)2(4a + b2 +c2)

> a*+3> a*b* +4abc D a+2> ab(a®+ b?) -
> a*+5>.a2b% +4abc Y a+ Y. ab(a2+b2)

Z:ab(a2 +b?) > ZZazbz.
The equality holds for a = b = ¢, and for b = ¢ = 0 (or any cyclic permutation).

]

= 2dot

because

P 1.110. If a, b, c are positive real numbers, then

1 3
< .
11a2+2b2+2c2 = 5(ab+ bc +ca)’

(a) >

1 1 1
< + .
4a2+ b2 +c2 "~ 2(a?2+b2+c2) ab+bc+ca

(b) >

(Vasile Cirtoaje, 2008)

Solution. We will prove that

s k+2  _ 11-2k  2(k—1)
ka2+b2+c2 a2+ b2+c?2 ab+bc+ca

for any k > 1. Due to homogeneity, we may assume that a® + b? + ¢ = 3. On this
hypothesis, we need to show that

3 k+2 112k 2(k—1)
(k—1)a2+3~ 3 ab+bc+ca

Using the substitution m = 3/(k — 1), m > 0, the inequality can be written as

1 6
m(m+1 <3Im—-2+————.
( )Za2+m m ab+ bc+ca
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By the Cauchy-Schwarz inequality, we have

(@®+m)m+(m+1—a)*]>[avm+vVm(m+1—a)P?=m(m+1)?

and hence 5
+1 —1
mim )sa +m+2—2a,
az+m m+1
1
m(m+1 <3(m+2)—2 a.
(m+1) ) ———<3(m+2)-2)
Thus, it suffices to show that
6

3(m+2)—2> a<3m—-2+—
( ) Z ab+ bc+ca

that is,
(4—a—b—c)(ab+ bc+ca)<3.

Let p=a+ b +c. Since
2(ab+bc+ca)=(a+b+c)>—(a®>+b*+c*)=p*—3,
we get

6—2(4—a—b—c)lab+bc+ca)=6—(4—p)(p>—3)
=(P—-3P(p+2)=0.

This completes the proof. The equality holds for a = b =c.

P 1.111. If a, b, c are nonnegative real numbers such that ab + bc + ca = 3, then

‘/E+ﬁ+‘/z2§.
b+c c¢c+a a+b 2

(Vasile Cirtoaje, 2006)

Solution. By the Cauchy-Schwarz inequality, we have

Ja (Za3/4)2 1 3/4)?
Zb+c = > a(b+c) =€(Za /4) '

Thus, it suffices to show that

A+ b= 3,

which follows immediately from Remark 1 from the proof of the inequality in P
3.33 in Volume 1. The equality occurs fora=b =c =1.
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Remark. Analogously, according to Remark 2 from the proof of P 3.33 in Volume
1, we can prove that

ak bk ck 3
+ + > —
b+c c¢c+a a+b 2
In2 In2
for allk23—4n3 ~ 0.476. Forl<:3——41 n3 , the equality occurs fora = b =
n n

¢ =1, and also for a = 0 and b = ¢ = ¥/3 (or any cyclic permutation).
O

P 1.112. If a, b, c are nonnegative real numbers such that ab + bc + ca > 3, then

1 1 1 1 1 1
- + > + + :
24a 2+b 24c¢ 14+b+c 1+c+a 1+a+b

(Vasile Cirtoaje, 2014)

Solution. Consider ¢ = min{a, b, c}, and denote

1 1 1 1 1 1

E(a,b,c) = + + — — — .
( ) 2+a 2+b 24+c¢c 1+b+c¢c 1+c+a 1+a+b

If ¢ > 1, the desired inequality E(a,b,c) > 0 follows by summing the obvious

inequalities
1 1
= s
2+a 1l+4+c+a
1 1
= >
2+Db l1+a+b
1 1
> .
2+c¢c 1+b+c
Consider further that ¢ < 1. From

_ 1—c B 1 + 1 + 1 B 1
2+a)1+c+a) 14+a+b 2+b 2+c 1+b+c

E(a,b,c) =

and

B 1—c B 1 + 1 + 1 _ 1
(2+b)(1+b+c) 1+a+b 2+a 2+c 1+c+ad’

E(a,b,c) =

it follows that E(a, b, c) is increasing in a and b. Based on this result, it suffices to
prove the desired inequality only for

ab+bc+ca=3.
Applying the AM-GM inequality, we get

3=ab+ bc+ca>3(abc)*®, abc<1,
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a+b+c>3vabc>3.
We will show that
1 1 1 1 1 1
+ + >1> + + .
2+a 2+b 2+c 1+b+c¢c 14+c+a 14+a+b

By direct calculation, we can show that the left inequality is equivalent to abc < 1,
while the right inequality is equivalent to a + b + ¢ > 2 + abc. Clearly, these are

true and the proof is completed. The equality occurs fora =b=c = 1.
O

P 1.113. If a, b, c are the lengths of the sides of a triangle, then

a®—bc b%—ca c2—ab

a + + <0;
@ 3a2+b2+c2 3b2+c2+a?  3c2+a?+b?

a* — b?c? N b* —c2a? N ct—a®b?
3a*+b4+c* 3b*+ct+a* 3ct+a*+ bt

(b)

(Nguyen Anh Tuan and Vasile Cirtoaje, 2006)

Solution. (a) Apply the SOS method. We have

(a=—b)la+c)+(a—c)(a+b)
2
Z:E‘»a2+bz+c2 Z 3a2+b%+c?

Z(a—b)(a+c) Z(b—a)(b+c)

3a2+ b2 +c? 3b2+c2+a?
a+c b+c
= —b -
Z(a )(3a2+b2+62 3b2+c2+a2)
(a—b)

= (a*+ b*+c*—2ab—2bc -2 :
(a ‘ “ ‘ ca)Z (3a2+ b2 +c2)(3b% +c% +a?)

Since

a’+b*+c*—2ab—2bc—2ca=ala—b—c)+b(b—c—a)+c(c—a—b) <0,

the conclusion follows. The equality holds for an equilateral triangle, and for a
degenerate triangle with a = 0 and b = ¢ (or any cyclic permutation).

(b) Using the same way as above, we get

a _b2 2 (Cl _b2)2
2 — =A s
Z 3a*+ b*+c* Z (8a*+ b* + c*)(3b* + c* + a%)
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where

A=a*+b*+c*—2a’b* — 2b*c* — 2c*a*
=—(a+b+c)la+b—c)(b+c—a)(c+a—Db)<O.
The equality holds for an equilateral triangle, and for a degenerate triangle with

a = b + ¢ (or any cyclic permutation).
U

P 1.114. If a, b, c are the lengths of the sides of a triangle, then
bc ca ab 1

+ + >,
4a2+b2+c2 4b2+c2+a?  4c2+a2+b?2 2
(Vasile Cirtoaje and Vo Quoc Ba Can, 2010)

Solution. We apply the SOS method. Write the inequality as

2bc b%c?
- >0,
Z(4a2+b2+c2 Z:a2b2+b2c2+c2a2)

2 32
Z be(2a®—bce)(b—c) > 0.

4a? + b2 + 2
Without loss of generality, assume that a > b > c. Then, it suffices to prove that

c(2b% —ca)(c —a)? N b(2c¢?—ab)(a— b)? -
4b2 + c2 + a2 4c2+az+b>

Since
2b*—ca>c(b+c)—ca=c(b+c—a)=>0

and
(2b%2—ca)+ (2c2—ab)=2(b%+c?)—a(b+c)=>(b+c)>—a(b+c¢)
=(b+c)(b+c—a)=0,
it is enough to show that

cla—c)? - b(a— b)?
4b2+c2+a% ~ 4c2+az+ b2

This follows by multiplying the inequalities
c*(a—c)* = b*(a—b)?
and
b S c
4b2+c2+a?  4c2+a2+ b2
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These inequalities are true, since
cla—c)—bla—b)=(b—c)(b+c—a)=0,

b(4c®> +a*+b*)—c(4b*> +c*+a*>)=(b—c)[(b—c)*+a*—bc]>0.

The equality occurs for an equilateral triangle, and for a degenerate triangle with
a = b and ¢ = 0 (or any cyclic permutation).
O

P 1.115. If a, b, c are the lengths of the sides of a triangle, then

1 1 1 9
+ + < .
b2+c2 ¢24a?2 a2+ b2~ 2(ab+ bc+ca)

(Vo Quoc Ba Can, 2008)

Solution. Apply the SOS method. Write the inequality as
[3 ab+ bc+ ca]
Z ——— |20,
2 b2 +¢?

Z 3(b%2+c?)—2(ab + bc +ca) -

b2 + 2 0
Z3b(b—a)+3c(c—a)+c(a—b)+b(a—c)>0
b2 + c2 -
Z(a—b)(c—Bb)+(a—c)(b—3c)>0
b2 + 2 -
a—>b)(c—3b b—a)(c—3a
N bz)(ﬂz )y c2)—f-a2 )so

Z:(a2 + b*)(a—Db)*(ca+cb +3c*—3ab) > 0.

Without loss of generality, assume that a > b > c. Since

ab+ac+3a*—3bc >0,
it suffices to prove that
(a®*+b*)(a—b)*(ca+cb+3c*—3ab)+(a*+c*)(a—c)*(ab+ bc+3b*—3ac) >0,
or, equivalently,

(a®+c*)(a—c)*(ab + bc +3b*—3ac) > (a® + b*)(a — b)*(3ab — 3¢ —ca —cb).
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Since
2
ab+bc+3b2—3ac=a(bc+3b )
(bc+3b2 )
>a
a(b —c)(4b+ 3c)
>0
b+c
and

(ab+ bc +3b%>—3ac)—(3ab—3c*>—ca—cb) =3(b*>+c?)+2bc —2a(b +¢)
> 3(b%+c?)+2bc —2(b +¢)?
=(b—c)*>0,

it suffices to show that
(a®>+c*)(a—c)* > (a®>+ b?)(a—b)>
This is equivalent to (b — c)A > 0, where

A=2a®>—2a*(b+c)+2a(b*>+ bc+c?)—(b+c)(b>+c2)
( b+ c)z a(3b? + 2bc + 3c?)
=2al|a— +

5 —(b+c)(b?*+?)

2 2 2
S b(3b* + 2bc+3c )—(b+c)(b2+c2)

_ (b—c)(b*+Dbc+2c?)
B 2

> 0.

The equality occurs for an equilateral triangle, and for a degenerate triangle with
a/2 = b = c (or any cyclic permutation).
O

P 1.116. If a, b, c are the lengths of the sides of a triangle, then

+b b+c c+
(a) a + + a > 5;
a—b b—c c—a
a?+b> b%>+c? 2+a?
(®) ity —ata g2

(Vasile Cirtoaje, 2003)



158 Vasile Cirtoaje

Solution. Since the inequalities are symmetric, we consider
a>b>c.
(@) Letx=a—cand y=b—c. Froma > b >c and a < b +, it follows
x>y>0, c=x—Y.
We have

a+b b+c+c+a_2c+x+y+2c+y_2c+x
a—b b—c c—a  x-—y y b
1 1 1 +

—ae( oot

X—y Yy Xx xX—y

2 + 2(x — +

L2 x4y (x=y) x+y

y x=Yy y xX=y

= (x_y+ Y )+125.
Y X—=Yy

(b) We will show that

a?+b*> b*+c% ?+a?
+ + 2> 3;
C—b2  hr_c2 ! 2_g2

that is,
b? c? a?

+ = .
a2—b2 b2—c2 " q2—c2

Since
a? < (b+c)?
a2—c2 " aq2—c2 ?

it suffices to prove that

b2 N c? >(b+c)2
a2 — b2 b2 —c2 az_cz'

This is equivalent to each of the following inequalities:

v 1 1 ,( 1 1\, _2bc
a2—b2  q2—c2 T b2—c2 q2—c2 )T q2—c2’

21,2 2 202 1.2
b2(b c)+c(a 1'?)2
aZ — b2 bZ — CZ
[b(b*—c?)—c(a®—Db?)]*>0.
This completes the proof. If a > b > c, then the equality holds for a degenerate

triangle with a = b+c and b/c = x;, where x; ~ 1.5321 is the positive root of the
equation x> —3x—1=0.

2bc,

O
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P 1.117. If a, b, c are the lengths of the sides of a triangle, then

b+c c¢c+a a+b a b c
+ + +3=6 + + :
a b c b+c c¢c+a a+b

Solution. We apply the SOS method. Write the inequality as

b 2
> 26—623(bec—3).
b+c b ¢ (b—c)?
2 —6=Z(;+g)—6=z -

2a—b—c c

Zb+c_ _Z b+c Zb+c Zb+c

_ (a—Db)
Zb-H: Zc+a Z(b+c)(c+a)

_ Z (b—c)?
 Ld(c+a)a+Db)

we can rewrite the inequality as

D a(b+c)(b—c)’s, >0

Since

and

where
S,=ala+b+c)—2bc.

Without loss of generality, assume that a > b > ¢. Since S, > 0,
S,=bla+b+c)—2ca=(b—c)la+b+c)+c(b+c—a)=0

and

> a(b+c)(b—c)?S, = b(c+a)(c—a)’S, +c(a+ b)(a—b)’S,

> (a—b)*[b(c +a)S, +c(a+b)S.],
it suffices to prove that
b(c+a)S,+c(a+b)S. > 0.
This is equivalent to each of the following inequalities

(a+b+c)a(b*+c?*)+ be(b+c)] > 2abc(2a+ b +c),

ala+b+c)(b—c)?*+(a+b+c)[2abc+ be(b+c)]>2abc(2a+b+c),

ala+b+c)b—c)+bc(a+b+c)b+c—a)>0.

Since the last inequality is true, the proof is completed. The equality occurs for an
equilateral triangle, and for a degenerate triangle with a/2 = b = ¢ (or any cyclic

permutation).

O
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P 1.118. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

Z 3a(b+c)—2bc

3

> —.

(b+c)(2a+b+c) 2
(Vasile Cirtoaje, 2009)

Solution. Use the SOS method. Write the inequality as follows:

Z[ 3a(b+c)—2bc _1]>0
(b+c)2a+b+c) 2] 7

Z:4a(b+c)—6bc—b2—c2 -
(b+c)2a+b+c)

Z b(a—b)+cla—c)+3b(a—c)+3c(a—Db) S

(b+c)(2a+b+c) -

Z(a—b)(b+3¢)+(a—c)(c+3b) >0
(b+c)(2a+b+c) -7

Z (a—b)(b+3c) +Z (b—a)(a+3c)

(b+c)(2a+b+c¢) (c+a)2b+c+a)

0,

b+3c a+3c
Z(a_b)[(b+c)(2a+b+c)_(c+a)(2b+c+a)]20’

(@a—b)(b—c)c—a) D (a®—b*)(a+b+2c)>0.

Since

Z(a2 —b2)(a+b+2¢)=(a—b)b—c)c—a),

the conclusion follows. The equality holds fora=b, or b=c, orc =a.

P 1.119. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that
Z a(b+c)—2bc
(b+c)Ba+b+c)

(Vasile Cirtoaje, 2009)
Solution. We apply the SOS method. Since

Z a(b+c)—2bc _Zb(a—c)+c(a—b)
(b+¢)(Ba+b+c) (b+c)(Ba+b+c)

_ c(b—a) c(a—b)
_Z(c+a)(3b+c+a)+Z(b+c)(3a+b+c)
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_Z cla+b—c)(a—>b)?
L (b+c)c+a)Ba+b+c)3Bb+c+a)
the inequality is equivalent to

Zc(a +b)(Bc+a+b)a+b—c)a—b)*>0.

Without loss of generality, assume that a > b > c. Since a+ b—c¢ > 0, it suffices to
show that

b(c+a)Bb+c+a)c+a—Db)a—c)*=a(b+c)Ba+b+c)a—b—c)b—c).
This is true since
c+a—b>a—b—c,
b*(a—c)* > a*(b—c)?,
c+ta=b+c,
a(3b+c+a)=b(3a+b+c).

The equality holds for a = b = ¢, and for a = b and ¢ = 0 (or any cyclic permuta-
tion).
O

P 1.120. Let a, b, ¢ be positive real numbers such that a® + b? + c? > 3. Prove that

a®—a? N b> —b? N c>—c? -0
a®+b24+¢2 bS+c2+a S+az+b2
(Vasile Cirtoaje, 2005)

Solution. The inequality is equivalent to

1 1 1 3
+ + < .
a>+b2+c2 bS5+c2+a? cS+a?+b? a?+b2+c?

Setting a =tx, b =ty and c = tz, where
xX,y,2>0, x*+y*+2*=3,

the condition a® + b% + ¢ > 3 implies t > 1, and the inequality becomes

1 1 1
+ + <1.
t3x>+y2+22  t3yS+22+x2 325+ x2+y?
We see that it suffices to prove this inequality for t = 1, when it becomes

1 1 1
+ + <
x>—x24+3 yS—y2+3 z°—2z2+3
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Without loss of generality, assume that x > y > z. There are two cases to consider.

Case 1: z < y < x < +/2. The desired inequality follows by adding the inequalities

1 3—x2 1 3—y? 1 3—z?
< , < , <
x>—x%24+3 6 y>—y2+3 6 25—22+43 6
We have
1 _3—x2_(x—l)z(x5+2x4—3x2—6x—3)<O
x>—x2+3 6 6(x>—x2+3) -
since

6 3
x5+2x4—3x2—6x—3:xz(x3+2x2—3————)
x x2

Sx2(2ﬁ+4—3—31/§—§)
2
=—x2(\/§+%) <o0.

Case 2: x > /2. From x? + y? + 2% = 3, it follows that y? + 2% < 1. Since

1 1 1
< <
x°—x2+3  (24/2—-1)x24+3 2(24/2—1)+3

1
<_
6

and
1 + 1 < 1 + 1
y5—y24+3 25—22+3 3—y2 33—z

it suffices to prove that

1 + 1 <§
3—y2 3—227 6

Indeed, we have

1 1 5 9(y*+2°—1)—5y%s?

+ =
3—y2 3—22 6 6(3 —y2)(3—22)

which completes the proof. The equality occurs fora=b =c=1.

Remark. Since abc > 1 involves a®+ b2+ c? > 3v/a2b2c? > 3, the inequality is also
true under the condition abc > 1. A proof of this inequality (which is a problem
from IMO-2005 - proposed by Hojoo Lee) is the following:

Z @ —a? >Z a’ —a? 1 Z( ) 1)
_— > = a“—-—1,
a> + b2 +c2 a®>+ad(b?+c2) a’?+b%+c? a

Z(az—%)ZZ(az—bc)=%Z(a—b)zzo.




Symmetric Rational Inequalities 163

P 1.121. Let a, b, c be positive real numbers such that a®> + b%> + c? = a® + b3 + ¢3.

Prove that
a? b? c?

+ +
b+c c¢c+a a+b

>3
2
(Pham Huu Duc, 2008)

First Solution. By the Cauchy-Schwarz inequality, we have

@ Z) _ Ee)(Ee)
Zb+c2Za4(b+c)_(Za3)(2ab)—abc2a2'

Z(ZaB)(Za2)+3acha22B(ZaB)(Zab).
Write this inequality as follows:
3(200°) (e~ 2lab) = (e —3abe) (2 a?) = 0
3(2060°) (e~ 2lab) = (250) (a* = 25ab) (e ) 0
(2ia*=2lab)[3 200 = (20e) (2ue?) ]z 0.

The last inequality is true since

Z(Zaz—Zab)zzm—b)Z >0

and
BZag—(Za) (Zaz) = Z:(a3 + b3)—Zab(a+ b)
= (a+b)a—b)*>0.

The equality occurs fora =b =c =1.

Second Solution. Write the inequality in the homogeneous form A > B, where

a? 3(a®+b3+c?)
A:22b+c_za’ b= e e -2

Since

_ ala—b)+ala—c) _ a(a—Db) b(b—a)
A_Z b+c _Z b+c +Z c+a

(a—b)?
_(a+b+c)z(b+c)(c+a)
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and
B 2@+ b°)—>abla+b) D(a+b)a—b)
B a?+b2+c2 a2+ b2+c?
we can write the inequality as

a+b+c a+b
— —b)?>0
Z[(b+c)(c+a) a2+b2+c2](a =0

(a® + b3+c3—2abc)2% > 0.

Since a® + b® + ¢ > 3abc, the conclusion follows.

P 1.122. Ifa,b,c € [0, 1], then

a b c
+ + <1.
bc+2 ca+2 ab+2

(Vasile Cirtoaje, 2010)
Solution. (a) First Solution. It suffices to show that

a N b N c <
abc+2 abc+2 abc+2

>

which is equivalent to
abc+2>a+b+c.

We have
abc+2—a—b—c=(1-b)(1—c)+(1—a)(1—bc)=0.

The equality holds fora =b =c =1, and fora =0 and b = ¢ = 1 (or any cyclic
permutation).

Second Solution. Assume that a = max{a, b, c}. It suffices to show that

a N b + c <1
bc+2 bc+2 bc+2

that is,
a+b+c)<2+bc.

We have
2+bc—a—b—c)=1—a+(1—->b)(1—c)=0.
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P 1.123. Let a, b, ¢ be positive real numbers such that a + b + ¢ = 2. Prove that

N
l1—ab 1—bc 1—ca

5(1—ab—bc—ca)( )+920.

(Vasile Cirtoaje, 2011)
Solution. Write the inequality as

_5a(b+c)_5b(c+a)_5c(a+b) >0
1—bc 1—ca 1—ab

24

Since
4(1—bc)>4—(b+c)*=(a+b+c)>—(b+c)*=ala+2b+2c),

it suffices to show that

b+c c+a a+b
6—5 — — >0,
a+2b+2c b+2c+2a c+2a+2b

which is equivalent to
b+c
>is(1-— |29,
a+2b+2c

5(a+b+c)Za L

—2>9,
+2b+ 2c

[Z(a +2b+ 2c)] (Z m) >9

The last inequality follows immediately from the AM-HM inequality. The equality
holds fora=b=c=2/3.
O

P 1.124. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 2. Prove that

2—a®> 2—-b% 2—¢?
+ + <3.
2—bc 2—ca 2—ab

(Vasile Cirtoaje, 2011)

First Solution. Write the inequality as follows:
2—a?
1— >0,
Z ( 2—bc )
Z a2 —bc >0
2—bc

> (a®—be)(2—ca)(2—ab) > 0,
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> (a® = be)[4—2a(b +c) +a’bc] > 0,

42:(a2 —bc)— ZZa(b +¢)(a®—bc) + ach a(a®—bc) > 0.
By virtue of the AM-GM inequality,

Za(az—bc) =a®+ b3+ c®—3abc>0.
Then, it suffices to prove that

2> (a?—bc)> > a(b+c)(a®— be).

Indeed, we have

Za(b +c)(a®—bc)= Za3(b +c¢)—abc Z(b +¢)
= Z:a(b3 +c*)—abc Z(b +c)= Za(b +¢)(b—c)?

a+(b+c)7? 2 _ 5 )
SZ[T] (b—cP=> (b—c)*=2> (a*—bo).
The equality holds fora = b =c¢=2/3, and for a =0 and b = ¢ =1 (or any cyclic
permutation).

Second Solution. We apply the SOS method. Write the inequality as follows:
Z a*—bc -0
2—bc
Z (a—b)la+c)+(a—c)a+ b)

2—bc 0,

(a—b)(a+¢c) (b—a)(b+c)
Z 2—bc Z 2—ca

Z:(a—b)2 —c(a+b)—c]>0
(2—bc)(2—ca) -

Z(a— b)2(2—ab)(1—c) = 0.

Assuming that a > b > c, it suffices to prove that

(b—c)*(2—=bc)1—a)+(c—a)*(2—ca)(1—b)>0.

Since
21—b)=a—b+c>0, (c—a)*=(b—c)?

it suffices to show that

(2—bc)(1—a)+(2—ca)(1—b)=0.
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We have
(2—bc)(1—a)+(2—ca)(1—b)=4—2(a+b)—c(a+b)+2abc

(a+b)+(2+c)]2_O
5 =0.

24—(a+b)(2+c)24—[

P 1.125. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

34+5a®> 3+4+5b> 3+45c2
+ >12.
3—bc 3—ca 3—ab

(Vasile Cirtoaje, 2010)

Solution. Use the SOS method. Write the inequality as follows:
3+ 5a?
S35 -4)=0
3—bc

2 _
ZSa +4bc 9>O

—_ 5

3—bc
ZSa2+4bc—(a+b+c)ZZO’
3—bc
Z4a2—b2—cz—2ab+2bc—2ca>
3—bc -
Z:Zaz—b2 c +2(a—b)(a—c)
3—bc 0.
Z(a—b)(a+b)+(a—c)(a+c)+2(a—b)(a—c)
3—bc 0.
Z[(a—b)(a+b)+(a—b)(a—c)] [(a=—c)a+c)+(a—c)la—Db)] >0
3—bc ’
Z(a—b)(2a+b—c)+(a—c)(2a+c—b) >0
3—bc ’
(a=—b)(2a+b—c) (b—a)(2b+a—c)
Z 3—bc Z 3—ca ’

Z (a—b)*[3—2c(a+ b)+c?] -0

(3—bc)(3—ca)
—bY(c—1)
Z (a—Db)(c—1) > 0.
(83—bc)(3—ca)
The equality holds fora=b =c=1.
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P 1.126. Let a, b, c be nonnegative real numbers such that a+ b +c =2. If

-1 7
—<m<s,
8

then
a’+m b *+m c*+m >3(4+9m)

+ + >
3—2bc 3—2ca 3—2ab 19

(Vasile Cirtoaje, 2010)

Solution. We apply the SOS method. Write the inequality as

2
Z(a +m _4+9m)20’
3—2bc 19

Z 19a® + 2(4 +9m)bc —12—8m -0
3—2bc -

Since
19a%+2(4+9m)bc —12—8m =

=19a%+2(4 +9m)bc — (3 +2m)(a + b + ¢)?
= (16 —2m)a® — (3 +2m)(b* + ¢? + 2ab + 2ac) + 2(1 + 7m)bc
= (3+2m)(2a*—b*—c*)+2(5—3m)(a®*+bc—ab—ac)+(4—10m)(ab+ac—2bc)
=(3+2m)(a®*—b*)+(5—3m)(a—b)(a—c)+(4—10m)c(a—b)
+(3+2m)(a®>—c2) +(5—3m)(a—c)(a—b) + (4—10m)b(a—¢c)
=(a—b)B+(a—c)C,

where
B=(8—m)a+(3+2m)b—(1+7m)c,

C=(8—m)a+(3+2m)c—(1+7m)b,

the inequality can be written as

B,+C, >0,
where (a— B)[(8— m)a +(3+2m)b— (1 + 7m)c]
a— —m)a -+ +2m — +/m)c
Bi=), 3_2bc ’
. (b—a)[(8—m)b+(3+2m)a—(1+7m)c]
Cl_z 3—2ca '
We have

_ (a_b)zsc
Bit = Z (3—2b¢)(3—2ca)’
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where

S. =3(5—3m)—2(8 —m)c(a + b) +2(1 + 7m)c?
=6(2m + 3)c* — 4(8 —m)c + 3(5 —3m)
8—m ]2 (1+7m)(7 —8m)
3(2m+3) 3(2m+3)

=6(2m + 3) [c —

Since S, > 0 for —1/7 < m < 7/8, the proof is completed. The equality holds for
a=>b=c=2/3. If m=—1/7, then the equality holds also fora =0and b=c =1
(or any cyclic permutation). If m = 7/8, then the equality holds also for a = 1 and
b =c=1/2 (or any cyclic permutation).

Remark. The following more general statement holds:

e Let a, b, c be nonnegative real numbers such that a+ b +c = 3. If

0<k<3, m<m<m,,

where
—00, 0<k< §
2
™M=) B-K(4-k 3 <k<3’
23—2k) ~ 2
o 36 —4k —k*>+4(9—k)4/3(3— k
2= 72+ k
then

a2+mbc+b2+mca+c2+mab>3(1+m)
9—kbc 9—kca 9—kab — 9—k ’

with equality fora=b=c =1. If 3/2 < k < 3 and m = m,, then the equality holds
also for

If m = m,, then the equality holds also for

L 3k=6+2/3C3-K) , _ _3-v3B—K
B k T k '

The inequalities in P 1.124, P 1.125 and P 1.126 are particular cases of this
result (for k =2 and m = m; = —1, for k =3 and m = m, = 1/5, and for k = 8/3,
respectively).

]
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P 1.127. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

47 —7a®> 47—7b> 47—7c?

+ + > 60.
1+ bc 1+ca 1+ab

(Vasile Cirtoaje, 2011)

Solution. We apply the SOS method. Write the inequality as follows:

2
2(47—761_20)20’
1+ bc

27 —7a®— 20bc
> >0,
1+ bc
ZS(a+b+c)2—7a2—20bc -0
1+ bc -
Z —3(2a®>—b*—c?)+2(a—b)(a—c)+8(ab—2bc +ca) -0
1+ bc -
Z—B(a—b)(a+b)+(a—b)(a—c)+8c(a—b)+
1+ bc
—3(a—c)la+c)+(a—c)la—b)+8b(a—c)
+Z 1+ bc =0,
(a—b)(—2a—3b+ 7c) (a—c)(—2a—3c+7b)
Z 1+ bc +Z 1+ bc =0,
(a—b)(—2a—3b+ 7c) (b—a)(—2b—3a+ 7¢)
Z 1+ bc +Z 1+ca =0,
Z (a—b)*[1—2c(a+ b) +7c?] >0
(1+ bc)(1+ca) -
Z (a—b)*(3c—1)? -0
(1+bc)(14ca)

The equality holds fora = b =c¢ =1, and for a = 7/3 and b = ¢ = 1/3 (or any
cyclic permutation).

Remark. The following more general statement holds:

e Let a, b, c be nonnegative real numbers such that a+ b +c = 3. If
k>0, mz=my,

where
36 +4k —k*>+4(9 + k)+/3(3 +k)
72—k

— k=72

, k#£72
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then
a’+mbc  b*+mca c*+mab < 3(1+m)

9+ kbc * 9+ kca 9+kab ~— 94k

5

with equality for a = b = ¢ = 1. If m = m,, then the equality holds also for

3k+6—24/3(3+k) v3(B+k)—3
a= = - - .
k ’ k

b=c

The inequality in P 1.127 is a particular case of this result (for k =9 and m =
m, =47/7).
O]

P 1.128. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

26—7a®> 26—7b%* 26—7c¢> 57
+ + < —.
1+ bc 1+ca 1+ab 2

(Vasile Cirtoaje, 2011)

Solution. Use the SOS method. Write the inequality as follows:
( 19 26—7a® )
S(2-2r)s,
2 1+ bc

2 —
Z 14a* +19bc —33 >0

—_ >

1+ bc
2 _ 2
Z42a +57bc—11(a+ b+¢) >0,
1+ bc
Z 11(2a2 —b%—c?)+9(a—b)(a—c)—13(ab —2bc + ca) -0
1+ bc -
Z 22(a—b)(a + b)+9(a—b)(a—c)—26c(a—b)+
1+ bc
+Z 22(a—c)(a+c)+9(a—c)(a—b)—26b(a—=c) >0,
1+ bc
Z (a—b)(81la+22b—35c) +Z (a—c)(31a+22¢c—35b) >0,
1+ bc 1+ bc
Z (a—b)(31a+22b—35c¢) +Z (b—a)(31b +22a—35c) >0,
1+ bc 1+ca
Z (a—Db)?[9+31c(a+ b)—35c?] -0
(1+ bc)(1+ca) -7

> (a—b)*(1+ab)(1+11c)(3—2c) > 0.
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Assume that a > b > ¢. Since 3 — 2c¢ > 0, it suffices to show that
(b—c)*(1+ bc)(1+11a)(3—2a) +(c—a)*(1 +ab)(1+11b)(3—2b) > 0;
that is,
(a—c)*(1+ab)(1+11b)(3—2b) > (b—c)* (1 + bc)(1+11a)(2a — 3).
Since 3—2b =a—b + ¢ > 0, we get this inequality by multiplying the inequalities
3—2b>2a—3,

a(l1+ab) = b(1+ bc),
a(1+11b) > b(1 + 11a),
b%*(a—c)* > a*(b—c)*.

The equality holds fora =b =c =1, and for a = b = 3/2 and ¢ = 0 (or any cyclic
permutation).

Remark. The following more general statement holds:

e Let a, b, c be nonnegative real numbers such that a+ b +c = 3. If

(B+k)4+k)
k>0, m<m,, mzzm

J

then
a?+mbc b%*4+mca c?>+mab - 3(1+m)

9+ kbc * 9+ kca * 9+kab = 9+k

2

with equality for a = b = ¢ = 1. When m = m,, the equality holds also for a = 0 and
b =c =3/2 (or any cyclic permutation).

The inequalities in P 1.128 is a particular cases of this result (for k = 9 and
m=m, =26/7).
O

P 1.129. If a, b, c are nonnegative real numbers, then

Z 5a(b+c)—6bc <

a2+b2+c2+bc”

(Vasile Cirtoaje, 2010)
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First Solution. Apply the SOS method. If two of a, b, ¢ are zero, then the inequality
is trivial. Consider further that

a?+b%>+c%?=1, a=>b>c, b>0,

and write the inequality as follows:

Z[l_ 5a(b +c)—6bc ]2 0,

a?+b2+c2+bc
Za2+b2+c2—5a(b+c)+7bc

a?+b2+c2+bc
Z (7b+2c—a)(c—a)—(7c+2b—a)(a—Db) >0

1+ bc B
Z(7c+2a—b)(a—b) _Z(7c+2b—a)(a—b) .
1+ca 1+ bc
> (a—b)*(1+ab)(3+ac +bc—7c?) > 0.

>0,

J

0,

Since
3+ac+bc—7c2=3a*+3b%+ac+bc—4c*>0,

it suffices to prove that
(1+bc)(3+ab+ac—7a*)(b—c)*+(1+ac)(3+ab+bc—7b*)(a—c)*>0.

Since
3+ab+ac—7b*=3(a*—b*)+3c*+bla—b)+bc>0

and 1+ ac > 1+ bc, it is enough to show that
(3+ab+ac—7a*>)(b—c)*+(3+ab+bc—7b>)(a—c)*>0.
From b(a—c) > a(b—c) > 0, we get b*(a —c)* > a?(b—c)?, hence
b(a—c)*>a(b—c)>
Thus, it suffices to show that
b(3+ab+ac—7a*)+a(3+ab+bc—7b%)>0.

This is true if
b(3+ab—7a*)+a(3+ab—7b*)>0.

Indeed,
b(3+ab—7a®>)+a(3+ab—7b%>)=3(a+ b)(1—2ab) >0,

since
1—2ab=(a—b)*+c?>0.
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The equality holds for a = b = ¢, and for a = b and ¢ = 0 (or any cyclic permuta-
tion).

Second Solution. Without loss of generality, assume that a? + b% + ¢ = 1 and
a < b <c. Setting

p=a+b+c, gq=ab+bc+ca, r=abc,
the inequality becomes
5q—11bc
2 Trhe <3
1+ bc
3] [ +be)+ > (11bc—5)(1 +ca)1 +ab) > 0,
3(1+q+pr+r?)+11(qg+2pr+3r*)—5q(3+2q+pr) >0,

36r%+5(5—q)pr+3—q—10qg>> 0.

According to P 3.57-(a) in Volume 1, for fixed p and q, the product r = abc is
minimum when b = ¢ or a = 0. Therefore, since 5—q > 4 > 0, it suffices to prove
the original homogeneous inequality for a = 0, and for b = ¢ = 1. For a = 0, the
original inequality becomes

—6bc 10bc
<3,
b2+c2+bc b2 +c?

(b—c)*(3b%2+5bc+3b%) >0,
while for b = ¢ =1, the original inequality becomes

10a—6 5—a
+ <
az+3 a+a+2

J

which is equivalent to
a(3a+1)(a—1)*>>0.

Remark. Similarly, we can prove the following generalization:

e Let a, b, c be nonnegative real numbers. If k > 0, then

3k,

Z (2k+3)a(b+c)+ (k+2)(k—3)bc <
a2+ b2+ c2+kbc -

with equality for a = b =, and for a = 0 and b = ¢ (or any cyclic permutation).
OJ
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P 1.130. Let a, b, c be nonnegative real numbers, no two of which are zero, and let

a’+ b%+¢2
X=—
ab+ bc+ca

Prove that
a b c 1 1
+ + —>x+—;
(@) b+c c+a a+b 2 X X
a b c 4
b 6 + + >5x + —;
®) (b+c c+a a+b) X b'e
a b c 3.1 1
+ + ——>-|x——
© b+c c+a a+b 2 B(X x)
(Vasile Cirtoaje, 2011)
Solution. We will prove the more general inequality
2 2b 2 2(1—k
a + + ¢ +1-3k>(2—k)x+ ( ),
b+c c+a a+b X
where
21+ 646

For k = 0, k = 1/3 and k = 4/3, we get the inequalities in (a), (b) and (c),
respectively. Let p =a+ b+c and q = ab + bc +ca. Since x = (p>—2q)/q, we can
write the inequality as follows:

a b
+
b+c c+a

Y= +1)=3+f0a),

C
+ > b bl
a+b_f(p q)

p(p*+q)

23+ f(p,q).
pq—abc

According to P 3.57-(a) in Volume 1, for fixed p and q, the product abc is minimum
when b = c or a = 0. Therefore, it suffices to prove the inequality for a = 0, and for
b = c¢ = 1. For a = 0, using the substitution y = b/c + ¢/b, the desired inequality

becomes )
2(1—
2y +1-3k>(2—k)y + (y ),

=2k =D+1]_
; >
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Since y > 2, this inequality is clearly true. For b = ¢ = 1, the desired inequality
becomes

_ 2 _
13k > (2—Kk)(a*+2) 4 2(1—k)(2a+1)
a+1 2a+1 az+2

which is equivalent to

a—+

b

a(a—1)*[ka*+3(1—k)a+6—4k] > 0.
For 0 < k < 1, this is obvious, and for 1 < k < (21 + 6+4/6)/25, we have

ka*+3(1—k)a+6—4k > [24/k(6—4k) +3(1 —k)]a = 0.

The equality holds for a = b = ¢, and for a = 0 and b = ¢ (or any cyclic permuta-
tion). If k = k,, then the equality holds also for (2+ +/6)a = 2b = 2¢ (or any cyclic

permutation).
[

P 1.131. If a, b, c are real numbers, then
1 1 1 9
+ + < .
a?+7(b2+c2)  b2+7(c2+a?) c2+7(a2+b2) " 5(a+b+c)?
(Vasile Cirtoaje, 2008)

Solution. We use the highest coefficient method. Let
p=a+b+c, qg=ab+bc+ca.
Write the inequality as fy(a, b,c) > 0, where
fe(a,b,c)=9 l_[(a2 +7b% + 7¢?) — 5p> z:(b2 + 7¢% 4+ 7a®)(c? + 7a® + 7b3).
Since
[ [@®+76%+7¢) =] 170> — 29) — 6a%],
fe(a, b, c) has the highest coefficient
A=9(—6)’<o0.
According to P 2.75 in Volume 1, it suffices to prove the original inequality for
b = c =1, when the inequality reduces to
1 2
@114 72218 = 5(a-9|—2)2’
(a—1)*(a—4)*>0.

Thus, the proof is completed. The equality holds fora =b =c, and fora/4=b =c¢
(or any cyclic permutation).

O
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P 1.132. If a, b, c are real numbers, then

bc ca ab 3

+ + <-.
3a2+b2+c? 3b2+c?2+a? 3c?2+a?+Db2 5

(Vasile Cirtoaje and Pham Kim Hung, 2005)

Solution. Use the highest coefficient method. Write the inequality as fs(a, b,c) = 0,
where

fe(a,b,c)=3 l_[(Ba2 +b%24c%)— SZ bc(3b% + 2+ a?®)(3¢? + a® + b?).

Let
p=a+b+c, q=ab+bc+ca.

From
fela,b,c) =3 l—[(Za2 +p*—2q)—5 Z bc(2b? + p* — 2q)(2c* + p* —2q),
it follows that f4(a, b, c) has the same highest coefficient A as
24a?b%c?—20 Z b3c3;

that is,
A=24—-60<0.

According to P 2.75 in Volume 1, it suffices to prove the original inequality for
b = ¢ =1, when the inequality is equivalent to

1 2a
+ <
3a2+2 a’+4

3
57

(a—1)*(3a—2)*>>0.

Thus, the proof is completed. The equality holds fora = b =, and for 3a/2=b =
¢ (or any cyclic permutation).

Remark. The inequality in P 1.132 is a particular case (k = 3) of the following
more general result (Vasile Cirtoaje, 2008):

e Let a,b,c be real numbers. If k > 1, then

Z k(k—3)a® +2(k—Dbe _ 3(k +1)(k—2)
ka2 + b2 + 2 - k+2 ’

with equality for a = b = ¢, and for ka/2 = b = ¢ (or any cyclic permutation).
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P 1.133. If a, b, c are real numbers such that a + b+ c = 3, then

1 1 1 1
+ + <-.
8+5(b2+c2) 8+5(c2+a2) 8+5(a2+b%2) " 6

(Vasile Cirtoaje, 2006)
Solution. Use the highest coefficient method. Denote
p=a+b+c, qg=ab+bc+ca,

and write the inequality in the homogeneous form

1 1 1 1
+ + <—,
8p2+45(b%+c2) 8p2+45(c2+a?) 8p2+45(a®+b%) " 6p2

which is equivalent to fg(a, b,c) > 0, where
foa,b,¢) = [(53p>—90q —454%)
—6p? > (53p* —90q — 45b%)(53p® — 90q — 45¢?).
Clearly, fq(a, b, c) has the highest coefficient
A=(—45)*<0.

According to P 2.75 in Volume 1, it suffices to prove the homogeneous inequality
for b =c =1; that is,

1 2 1
+ = :
8(a+2)24+90 8(a+2)2+45(1+a2?)  6(a+2)>

Using the substitution
a+2=3x,

the inequality becomes as follows:

1 2 1
+ < 5
72x24+90  72x2%2+4+45+45(3x —2)2) © 54x2

1 2 1
+ < ,
8x2+10 53x2—60x+25  6x2
x*—12x3 + 46x%—60x + 25> 0,

(x —1)*(x—=5)*>>0,
(a—1)*(a—13)*>0.

The equality holds fora =b =c =1, and for a = 13/5 and b = ¢ = 1/5 (or any
cyclic permutation).

O
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P 1.134. If a, b, c are real numbers, then

(a+b)la+c) N (b+c)(b+a) N (c+a)(c+Db) <4_1
a?+4(b2+c2) b2+4(c2+a2) c2+4(a2+0b2) " 3

(Vasile Cirtoaje, 2008)
Solution. Use the highest coefficient method. Let

p=a+b+c, qg=ab+bc+ca.

Write the inequality as f¢(a, b,c) = 0, where
fe(a,b,c) = 41_[(a2 +4b% + 4c?)
—3> (a+b)(a+c)(b? +4c* +4a*)(c? + 4a’ + 4b)

= 41—[(4p2 —8q—3a*)—3 Z:(a2 +q)(4p* —8q — 3b*)(4p* —8q — 3¢c?).
Thus, fs(a, b, c) has the highest coefficient
A=4(-3)P-3*<o0.

By P 2.75 in Volume 1, it suffices to prove the original inequality for b = ¢ = 1,
when the inequality is equivalent to

2
(a+1) +4(a+1) <
az+8  4a?+5

4
35

(a—1)*(2a—7)*=0.

The equality holds for a = b = ¢, and for 2a/7 = b = ¢ (or any cyclic permutation).
O

P 1.135. Let a, b,c be nonnegative real numbers, no two of which are zero. Prove
that

1 1
< .
Z (b+c)(7a+b+c)  2(ab+ bc+ca)
(Vasile Cirtoaje, 2009)

First Solution. Write the inequality as

Z[l_ 4(ab + bc +ca) ]21’
(b+c)(7a+b+¢c)

Z(b—c)2+3a(b+c) -
(b+c)(7a+b+c)
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By the Cauchy-Schwarz inequality, we have

Z(b—c)2+3a(b+c)> 4(a+b+c)*
(b+c)(7a+b+c) ~ Dl(b—c)2+3a(b+c)](b+c)(7a+b+c)

Therefore, it suffices to show that
4(a+b+c)t> Z:(b2 +c?—2bc+3ca+3ab)(b+c)(7a+ b +c).

Write this inequality as
Za4+abc2a +321ab(a2 + bz)—SZ:azb2 >0,
Za4+abc2a—2ab(a2 + b2)+4Zab(a— b)>> 0.
Z:a“+abczza—zzab(a2 +b%)>0

(Schur’s inequality of degree four), the conclusion follows. The equality holds for
a=b =c, and also for a =0 and b = ¢ (or any cyclic permutation).

Since

Second Solution. Use the highest coefficient method. We need to prove that f¢(a, b,c) >
0, where

foab,o)=] J(b+c)(7a+b+c)
—2(ab + bc + ca)Z(a +b)a+c)(7b+c+a)(7c+a+b).

Let p = a+b+c. Clearly, fs(a, b, c) has the same highest coefficient A as f (a, b, c),
where

f@bo=[Jo+oratbro=] [o-a)p+6a);
that is,
A=(—6)}<0.
Thus, by P 3.76-(a) in Volume 1, it suffices to prove the original inequality for
b=c=1, and for a =0.
For b = ¢ = 1, the inequality reduces to

1 2 1
+ <
2(7a+2)  (a+1)(a+8)~ 2(2a+1)

a(a—1)*>0.
For a = 0, the inequality can be written as

1 + 1 + 1 < 1
(b+c¢)®2 c(7b+c) b(7c+b) ~ 2bc’

1 N b*+ c* + 14bc 21
(b+¢)?  bc[7(b%+c2)+50bc] ~ 2bc’
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1 x+14 1
+ <-
x+2 7x+50 2

where

This reduces to the obvious inequality

(x —2)(5x + 28) > 0.

P 1.136. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

1 9
< .
Z b2+ c2+4a(b+c) ~ 10(ab+ bc+ca)
(Vasile Cirtoaje, 2009)

Solution. Use the highest coefficient method. Let
p=a+b+c, qg=ab+bc+ca.
We need to prove that f(a, b,c) = 0, where
fola,b,c)=9] J[b?*+c* +4a(b + )]
—10(ab + bc + ca)Z:[a2 +b*+4c(a+b)][a®+c*+4b(a+c)]
= 91_[(p2 +2q —a®*—4bc)—10q Z:(p2 +2q —c?—4ab)(p* + 2q — b* — 4ca).
Clearly, fs(a, b, c) has the same highest coefficient A as P;(a, b, c), where
Py(a,b,c)=-9 l_[(a2 +4bc).
According to Remark 2 from the proof of P 2.75 in Volume 1,
A=P,(1,1,1)=—9-125 < 0.
Thus, by P 3.76-(a) in Volume 1, it suffices to prove the original inequality for

b=c=1, and for a =0.
For b = ¢ = 1, the inequality reduces to

1 2 9
+ < ,
2(4a+1)  a2+4a+5" 10(2a+1)

a(a—1)*>0.
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For a = 0, the inequality becomes

1 1 1 9
+ + < ,
b2+c2 b2+4bc c2+4bc  10bc

1 N b2 +¢%+ 8bc < 9
b2+c2  4bc(b%+c2)+17b2¢2 ~ 10bc’
1 x+8 9
=+ <,
x 4x+17 10
(x—2)(26x +85) >0,

where

b
x:—+£, x = 2.
c b

The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic
permutation).
U

P 1.137. Let a, b, ¢ be nonnegative real numbers, no two of which are zero. If a+ b+
c =3, then
1 1 1 9

+ + < .
3—ab 3—bc 3—ca 2(ab+ bc+ca)
(Vasile Cirtoaje, 2011)

First Solution. We apply the SOS method. Write the inequality as

(3 ab+bc+ca)
S(3_gbtbereay,
2 3—bc

Z9—2a(b+c)—5bc >0,
3—bc
Za2+b2+c2—3bc
> 0.
3—bc

Since
2(a®+ b2 +c%2—3bc)=2(a®?—bc)+ 2(b%+ c?—ab—ac) + 2(ab + ac — 2bc)
=(a—b)(a+c)+(a—c)(a+b)—2b(a—b)—2c(a—c)+2c(a—b)+2b(a—=c)

=(a—b)(a—2b+3c)+(a—c)(a—2c+3b),

the required inequality is equivalent to

Z(a—b)(a—2b+3c)+(a—c)(a—2c+3b) >0
3—bc -
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Z(a—b)(a—2b+36)+Z(b—a)(b—2a+3c) >0
3 >

3—bc —ca

Z (a—b)*[9—c(a+Db+3c)]
(3—bc)(3—ca)

> (a—b)*(3—ab)(3+c)(3—2c) > 0.

Without loss of generality, assume that a > b > c. It suffices to prove that

b

>0,

(b—c)*(3—bc)(3+a)(3—2a)+(c—a)*(3—ca)(3+b)(3—2b)>0,
which is equivalent to
(a—c)*(3—ac)(3+b)(3—2b) > (b—c)*(3—bc)(a+3)(2a—3).

Since 3 —2b = a— b + ¢ = 0, we can obtain this inequality by multiplying the
inequalities
b%*(a—c)*> a*(b—c)?

a(3—ac) > b(3—bc),
a(3+b)(3—2b)=>b(a+3)(2a—3)=>0.
We have

a(3—ac)—b(3—bc)=(a—b)[3—c(a+b)]=(a—b)(3—3c+c?)
>(a—Db)(3—3c)=0.

Also, since a+ b <a+ b+ c =3, we have
a(3+b)(83—2b)—b(a+3)(2a—3)=9(a+ b)—6ab—2ab(a+ b)

>9(a+b)—12ab > 3(a+b)>*—12ab =3(a—b)* > 0.

The equality holds fora =b =c =1, and for a =0 and b = ¢ = 3/2 (or any cyclic
permutation).

Second Solution. Write the inequality in the homogeneous form

1 1 1 3
S_

+ +
p?—3ab p2—3bc p2—3ca q

2

where
p=a+b+c, qg=ab+bc+ca.

We need to prove that f(a, b,c) > 0, where

fe(a,b,0)=3] J(0* ~3be) —24 ) (p* ~3ca)(p® — 3ab).
Clearly, fy(a, b, c) has the highest coefficient

A=3(=3)<o0.
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Thus, by P 3.76-(a) in Volume 1, it suffices to prove the homogeneous inequality
for b=c=1, and fora =0.
For b = ¢ = 1, the homogeneous inequality reduces to

2 1 3
+ < ,
(a+2)2—3a (a+2)2—3 " 2(2a+1)

a’+3a+2 < 3
(ai2+a+4)(a2+4a+1) " 2(2a+1)

a(a+3)(a—1)*>0.

For a = 0, the homogeneous inequality can be written as

2 + 1 < 3
(b+c)?> (b+c)>2—3bc ™ 2bc’

(b—c)*(b%+c®+ be) -0
2bc(b+c)?(b2+c2—bc) —

P 1.138. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

bc ca ab 3

+ + < -—.
al+a+6 b2+b+6 c24+c+6 8

(Vasile Cirtoaje, 2009)
Solution. Write the inequality in the homogeneous form

bc + ca N ab <1
3a2+ap+2p2 3b2+bp+2p2 3c2+cp+2p2~ 8

p=a+b+c.

We need to prove that f(a, b,c) > 0, where
fe(a,b,c) = l_[(Ba2 +ap +2p?)— 82 bc(3b%+ bp +2p?)(3c¢ +cp + 2p?).
Clearly, f¢(a, b, c) has the same highest coefficient as
27a%b%c =72 ) b c%;

that is,
A=27-216<0.

By P 3.76-(a) in Volume 1, it suffices to prove the homogeneous inequality for
b=c=1, and for a =0.
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For b = ¢ =1, the homogeneous inequality reduces to

1 2a 1
< e

+ <
2(3a2+5a+4) 2a24+9a+13 " 8

6a*—11a’ +4a*+a >0,
a(6a+1)(a—1)*>>0.
For a = 0, the homogeneous inequality can be written as

bc
2(b+c¢)?

(b—c)*>0.

The equality holds fora =b =c =1, and for a =0 and b = ¢ = 3/2 (or any cyclic
permutation).

1
=35
8

]

P 1.139. If a, b, c are nonnegative real numbers such that ab + bc + ca = 3, then

1 1 1 1

+ + >
8a2—2bc+21 8b2—2ca+21 8c2—2ab+21 " 9
(Michael Rozenberg, 2013)

Solution. Write the inequality in the homogeneous form

1 1 1 1
+ + >—, gq=ab+bc+ca.
8a2—2bc+7q 8b%2—2ca+7q 8c2—2ab+7q 3q

We need to prove that f(a, b,c) > 0, where

fe(a,b,c)=3q Z(sz —2ca+7q)(8c2—2ab+7q)— l_[(8a2 —2bc +7q).

Clearly, fq(a, b, c) has the same highest coefficient as P,(a, b, c¢), where

Py(a,b,c) =—][ [(8a*—2bc).

According to Remark 2 from the proof of P 2.75 in Volume 1, we have
A=DP,(1,1,1)=—-6> < 0.

By P 3.76-(a) in Volume 1, it suffices to prove the homogeneous inequality for
b=c=1, and for a =0.
For b = ¢ = 1, the homogeneous inequality reduces to
1 2 1
+ > ,
8a2+14a+5 12a+15 3(2a+1)
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1 2 1
+ = s
(4a+5)(2a+1) 3(4a+5) 3(2a+1)

which is an identity.
For a = 0, the homogeneous inequality can be written as

1 1 2
+ > —,
b(8b+7c) c(8c+7b)  15bc

c b 2

+ > —

8b+7c 8c+7b 15
(b—c)*>0.

The equality holds when two of a, b, c are equal.

Remark. The following identity holds for ab + bc + ca = 3:

5 9 _ 8TI(a—by

8a2—2bc+21 [](8a2—2bc+21)

P 1.140. Let a, b, c be real numbers, no two of which are zero. Prove that

a’+bc b +ca c*+ab - (a+b+c)

(@) + + = ;
b2+c¢2  c2+a? a?+b?  a?+b%2+c?

a’ + 3bc N b%+3ca N c®+3ab - 6(ab + bc +ca)
b2 +¢2 c2+a? a’+b%2 = a?+b2+c?
(Vasile Cirtoaje, 2014)

(b)

Solution. (a) Using the known inequality

Z a? 3
>
b2+c¢2 7 2
and the Cauchy-Schwarz inequality yields
a*+ bc a? bc 1 bc
= + > -+
Zb2+c2 Zb2+c2 Zb2+c2 2(2 b2+c2)

Z(b+c)2 (S +0)] _(a+b+c)
2(b2+¢2) T D12(b2+¢2)  a?+b2+c?

The equality holds for a = b =c.
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(b) We have
a® + 3bc a? 3bc 3 3bc
- = [ > —
Z b2 + c2 sz+cz+zbz+cz—2+zbz+cz
(b +c)?
=—3+3 =—3+3
Z( b2+c2) 22(b2+c2)

3[2(b+c)] _ +3(Za)2_6(ab+bc+ca)
> 2(b2+c2) Saz  a?+b2+c2

The equality holds fora = b =c.

P 1.141. Let a, b, ¢ be real numbers such that ab + bc + ca = 0 and no two of which
are gero. Prove that
a(b+c¢) N b(c+a) N cla+b)
b2+c¢2  c¢2+a? a?+b?

IV

3
10°
(Vasile Cirtoaje, 2014)

Solution. Since the problem remains unchanged by replacing a, b, c with —a, —b, —c,
it suffices to consider the cases a,b,c>0anda <0, b >0, c > 0.

Case 1: a,b,c = 0. We have
Za(b+c) 2Z:a(b+c)
b? +c2 (b+c)?
a 3 3
b+c 2 10

Case 2: a <0, b >0, ¢ > 0. Replacing a by —a, we need to show that

b(c—a) +c(b—a)_a(b+c) S 3
az+c2  a?+b%2  b2+c2 10

where

a,b,c=0, a<

We show first that
b(c—a) S b(c—x)

az+c2  x2+4c?’

bc .. .
where x = hic’ x > a. This is equivalent to
c

b(x —a)[(c—a)x+ac+c*]>0,
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which is true because

2
(c—a)x+ac+c2=wzo
b+c

Similarly, we can show that

c(b—a) S c(b—x)
a?+b2 — x2+b2°

In addition, since
a(b+c) < x(b+c)

b2+c2 — b2+c2

it suffices to prove that

b(c—x) +c(b—x)_x(b+c) S 3
x2+c¢2  x2+b2  b2+4c¢2 T 10

Denote

(op
o

p= , ptq=1

Since
b(c—x) p cb—x) q
x2+c2  1+p? x2+b2  1+¢?
x(b+c)  bc  pq
b2+c2  b2+c2 1-2pq’

we need to show that

| B 3
1+p2 1+q2 1—2pqg 10

This inequality is equivalent to

1+pg  pq 3
2—2pq+p2q> 1—2pq 10’

(pq +2)*(1 —4pq) > 0.

Since
1—4pg=(p+q)*—4pg=(p—q)’* =0,
the proof is completed. The equality holds for —2a = b = ¢ (or any cyclic permu-

tation).
O

P 1.142. If a, b, c are positive real numbers such that abc > 1, then
1 1 4
+ > .
a+b+c—3 abc—1 ab+bc+ca—3
(Vasile Cirtoaje, 2011)
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Solution (by Vo Quoc Ba Can). By the AM-GM inequality, we have
a+b+c>3v abc > 3,

ab + bc +ca > v a2b2c2 > 3.

Without loss of generality, assume that a = min{a, b, c}. By the Cauchy-Schwarz
inequality, we have

1 1 abc—1 1 )2
— > — .
(a+b+c—3+abc—1)[a(a+b+c 3)+ a ]_(ﬁ—i_ﬁ)

Therefore, it suffices to prove that

bc—1
(a+1) a(a+b+c—3)+a ¢
>
4a ab+bc+ca—3
Since
abc—1 (a—1)°

ala+b+c—3)+ =ab+bc+ca—3+ ,

a
this inequality can be written as follows:

(a+1)* - (a—1)°
4a “a(ab+bc+ca—3)
(a—1)" (a—1)°
4a ~ alab+bc+ca—3)

(a—1)*(ab+bc+ca+1—4a)>0.

bc > y/(abc)? > 1,

ab+bc+ca+1—4a>a*+1+a*+1—4a=2(a—1)*=0.

This is true since
hence

The equality holds for a = b =1 and ¢ > 1 (or any cyclic permutation).

Remark. Using this inequality, we can prove P 3.84 in Volume 1, which states that

1 1 1 1
(a+b+c—=3)|-+—-+-—3|+abc+—2=2
a b c abc
for any positive real numbers a, b,c. This inequality is clearly true for abc = 1.
In addition, it remains unchanged by substituting a, b, ¢ with 1/a, 1/b, 1/c, re-
spectively. Therefore, it suffices to consider the case abc > 1. Sincea+b+c¢ >
3vabc > 3, we can write the required inequality as E > 0, where

(abc—1)?

E=ab+ bc+ca—3abc + ———.
a+b+c—3
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According to the inequality in P 1.142, we have

4 1
E > ab + bc +ca—3abc + b—lz( B )
> a ¢ +ca—3abc+(abc—1) ab+bc+ca—3 abc—1
4(abc—1)>?
_ B _ —1
(ab + bc +ca 3)+ab+bc+ca—3 Habe—1)
4(abc—1)2
2\| (ab+bc+ca—3)- —Habe—=1)=0.
> \J(a c+ca—3) ab+bc+ca—3 Habe—1)

P 1.143. Let a, b,c be nonnegative real numbers, no two of which are zero. Prove
that

Z (4b% —ac)(4c? —ab) abc
b+c 2 ’
(Vasile Cirtoaje, 2011)

Solution. Use the SOS method. Since

Z (4b% —ac)(4c?—ab) _ Z bc(16bc + a?) _42 a(b®+c?)

b+c b+c b+c
be(16bc +a?) s
= — 12
E B 4 E a(b®+c*)+12abc

2 1
—Zbc[ a 6bc—4(b+c)]+12abc
+c

2 RY)
=Zbc[ —4b ) ]+12abc
b+c b+c

we can write the inequality as follows:

2

Ry
Zbc[g— a |, 4b C)]zo,
2 +c b+c

bc(b—c)2 2a—b—c
SZ b+c bz b+c

In addition, since
2a—b—c (a—b)+(a—c) a—>b b—a
= +
Z b+c Z b+c Zb+c Zc+a
_Z (a—Db)? _Z (b—c)
Ld(b+c)c+a) “(c+a)a+b)
the inequality can be restated as

be(b—c)? (b—c)?
82 b—-i—c > abCZ m,
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Z bc(b —c)*(8a® + 8bc + 7ab + 7ac) -0
(a+b)(b+c)(c+a) a

Since the last form is obvious, the proof is completed. The equality holds for a =
b =, and also for a = 0 and b = ¢ (or any cyclic permutation).
O

P 1.144. Let a, b, c be nonnegative real numbers, no two of which are zero, such that
a+b+c=3.
Prove that

a N b N c
3a+bc 3b+ca 3c+ab

2
> .
3

Solution. Since
3a+bc=ala+b+c)+bc=(a+b)a+c),

we can write the inequality as follows:
2
a(b+c)+b(c+a)+c(a+b)> g(a + b)(b+c)(c+a),

6(ab + bc+ca)>2[(a+ b+ c)(ab + bc +ca)—abc],

2abc > 0.

The equality holds fora =0, or b=0, or c =0.

P 1.145. Let a, b, ¢ be positive real numbers such that

(a+b+c)(1+l+1)=10.
a b ¢

Prove that
19 a b C
— < + +
12" b4+c c+a a+b

S
<-.
3

(Vasile Cirtoaje, 2012)
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First Solution. Write the hypothesis

1 1 1
(a+b+d(—+—+—):10
a b c

as
b+c c¢c+a a+b
+ + =

7
a b c

and
(a+b)(b+c)(c+a)=9abc.

Using the substitution

b+c c+a a+b
x: 5 y: , Z: ,
a b C

we need to show that x + y +2z =7 and xyz =9 involve

or, equivalently,
127 x 9
Clearly, x, y,z € (0,7). The left inequality is equivalent to
(x—4)(2x—3)* <0,
while the right inequality is equivalent to
(x —1)(x—3)*>0.

These inequalities are true if 1 < x < 4. To show that 1 < x < 4, from (y +2)* >

4yz, we get

7—xp2 =2
X

(x—D(x—4)(x—9)=0,
1<x<4.

Thus, the proof is completed. The left inequality is an equality for 2a = b = ¢ (or
any cyclic permutation), and the right inequality is an equality for a/2 = b = ¢ (or
any cyclic permutation).

Second Solution. Due to homogeneity, assume that b+ ¢ = 2; this involves bc < 1.
From the hypothesis

1 1 1
(a+b+d(—+—+—)=1a
a b c
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we get
2a(a+2)
bc = ——.
9a—2
Since 212 .
po1=2=2)Qa—1)
9a—2
from the condition bc < 1, we get
1Sasz
2
We have
b L a(b+c)+b*+c®>  2a+4—2bc
c+a a+b a+(b+c)a+bc a2+2a+bc
_ 2(7a*+12a—4)  2(7a—2)
- 9a2(a+2) 9a2
hence
a b c a 2(7a—2) 9a®>+28a—8
+ + =—+ = :
b+c c¢c+a a+b 2 9a2 18a2

Thus, we need to show that

19 9a*+28a—8 _5
—<———F <=
12 18a2 3
These inequalities are true, since the left inequality is equivalent to
(2a—1)(3a—4)*>0,
and the right inequality is equivalent to
(a—2)(3a—2)*<0.

Remark. Similarly, we can prove the following generalization.

e Let a, b, c be positive real numbers such that
1 1 1 8k?
+b+c)|=+-+=]|=9+——,
(a C)(a b c) ? 1—k2
where k € (0,1). Then,
k2
1—k

k2<a b c

3
< + + —-<
1+k b+4+c c+a a+b 2
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P 1.146. Let a, b, c be nonnegative real numbers, no two of which are zero, such that
a+ b+ c = 3. Prove that

9 a b C

— < + + <1.
10 2a+bc 2b+ca 2c+ab

(Vasile Cirtoaje, 2012)

Solution. (a) Since
a 1 —bc

2a+tbc 2 2(2a + bc)’

we can write the right inequality as

bc
I
2a + bc

According to the Cauchy-Schwarz inequality, we have

Z be (Zbc)z _szc2+2abc2a:1

2a+bc” Ybc(2a+bc)  6abc+ . b2c?

The equality holds fora=b =c =1, and also fora=0,0r b=0, or c =0.
(b) First Solution. For the nontrivial case a,b,c > 0, we can write the left

inequality as
>
> .
g2 10
a

\| be [ca \| ab
X = —, Y= —, 2= —_—,
a b c

Z 1 9
> —_
2+x2 10
for all positive real numbers x, y, z satisfying xy + yz + zx = 3. By expanding, the
inequality becomes

Using the substitution

we need to show that

42)(2 + 48 > 9x?y?z? +82x2y2.

szyz = (ny)2—2xysz = 9—2xysz,

we can write the desired inequality as

Since

423(2 + 16xysz > 9x?y?z% + 24,
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which is equivalent to

4(p*—12) + 16xyzp > 9x2y?2?,
where p = x + y + 2. Using Schur’s inequality

PP +9xyz > 4p(xy + yz +2x),

which is equivalent to
p(p*—12) > —9xyz,

it suffices to prove that

36
_2DOX)E + 16xyzp > 9x?y?z2.

This is true if
36
—— +16p > 9xyz.
p

Since
xX+y+z> \/3(xy+yz+zx):3
and bvza
1= W > o/ x2y222,
we have

36 36
——+16p—9xy22—?+48—9>0.
p

Second Solution. As it is shown at the first solution, it suffices to show that
DI e
> —_—
24+x2 10

for all positive real numbers x, y,z satisfying xy + yz + zx = 3. Rewrite this in-
equality as

S8
< —.
2+ x2 5

Let p and q be two positive real numbers such that

p+q=+3.

By the Cauchy-Schwarz inequality, we have

x? 3x? _ (px +qx)?

2+ x2 - 20xy + yz+2x)+3x2  2x(x+y +2)+(x2+2yz2)

2 2,2
<P 4 IF
20x+y+z) x2+2yz
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Therefore,

X2 2X 2x2 2 X2
Z SZ P + 1 =p—+qzz—.
24 x2 2(x+y+2) x2+2yz 2 X2 +2yz

Thus, it suffices to prove that

2 2
p 9 X 6
—+ —_— <.
2 qzx2+2yz 5

x2
S
x24+2yz

Under this assumption, we only need to show that

We claim that

vl o

2
p 2
P oog<
5 q

3 3 > 6
Indeed, choosing p = % and q = g, we have p+q = +/3 and % +2q¢* = < To

x2

complete the proof, we need to prove the homogeneous inequality >, ———— < 2,

x2+2yz
yz 1
—_ > .
Z x2+2yz 2

By the Cauchy-Schwarz inequality, we get

which is equivalent to

>

Z yE (ZyZ)Z B >y 4+2xyz > x

1
X2+2yz = Slyz(x2+2yz) xyzdx+2> yx?: 2

P 1.147. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that
a’ b3 c? a’+b3+c3
+ + < .
2a%2+bc  2b%2+ca 2c2+ab  a?+b2+c2
(Vasile Cirtoaje, 2011)

Solution. Use the SOS method. Write the inequality as follows:

a? a?
E - =0,
a?+b2+c2  2a%?+bc

Z a’(a®+ bc—b%—c?)
2a2+ bc

>0,
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Z a’[a®(b+c)—b>—c3] -
b+ +be) —
Z a*b(a®—b?) + a®c(a® —c?)
(b +c)(2a2 + bc)
Z a*b(a®—b?) Z ba(b?—a? -0
(b +c)(2a2 + bc) (c+a)(2b2+ca) -7
Z ab(a+ b)(a—b)?*[2a?b? + c(a® + a®b + ab? + b3) + c%(a® + ab + b?)]
(b+c)(c+a)(2az+ bc)(2b2 + ca)

The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic
permutation).

=0,

> 0.

]

P 1.148. If a, b, c are positive real numbers, then

a’ b® c3 a+b+c
+ + >
4a2+4+ bc  4b%2+ca 4c2+ab 5

(Vasile Cirtoaje, 2011)

Solution. Use the SOS method. Write the inequality as follows:

3

a a
(ot 2)eo
4a2+bc 5

Z a(a®— bc) S0,
4a2 + bc
Z al[(a—b)la+c)+(a—c)(a+ b)]
4a2+ bc
a(a—b)(a+c) b(b—a)(b+c)
Z 4a2+ bc * Z 4b2+ca
Z c(a—b)*[(a—b)*+ bc+ca—ab]
(4a2 + bc)(4b2 + ca)
Clearly, it suffices to show that

>0,

> 0.

Z c(a—b)*(bc +ca—ab) o
(4a2+ bc)(4b2+ca) —

which can be written as
> (a—b)*(be +ca—ab)(4c® + abc) > 0.
Assume that a > b > c. Since ca +ab — bc > 0, it is enough to prove that

(c —a)*(ab + bc —ca)(4b® + abc) + (a— b)*(bc + ca—ab)(4c® +abc) > 0,
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which is equivalent to
(a—c)*(ab+ bc —ca)(4b®+ abc) > (a—b)*(ab — bc —ca)(4c® + abc).
This inequality is true since ab + bc —ca > 0 and
(a—c)*>(a—b)?, 4b>+abc>4c®+abc, ab+bc—ca>ab—bc—ca.

The equality holds for a = b =c.

P 1.149. If a, b, c are positive real numbers, then

1 1 1 3
+ + = .
(2+a)®> (2+b)?2 (2+4c)>  6+ab+bc+ca

(Vasile Cirtoaje, 2013)

Solution. By the Cauchy-Schwarz inequality, we have

Z 1 4(a+b+c)?
(24+a)2 ~ Dl(2+a)2(b+c)?
Thus, it suffices to show that
4a+b+c)*(6+ab+bc+ca)=3> (2+a(b+c).
This inequality is equivalent to
2p?q —3q* +3pr + 12q > 6(pq + 3r),

where
p=a+b+c, g=ab+bc+ca, r=abc.

According to AM-GM inequality, we have

(2p%q—3q> +3pr) + 12q > 24/12q(2p2q — 32 + 3pr).
Therefore, it is enough to prove the homogeneous inequality
4q(2p*q —3q* +3pr) = 3(pq + 3r)%,
which can be written as
5p2q* > 12q° + 6pqr + 27r2.
Since pq > 9r, we have

3(5p%q* —12q°® — 6pqr — 27r%) > 15p%q* — 36q¢° — 2p*q* — p*q?
=12¢%*(p*>—3q) > 0.

The equality holds fora=b =c=1.
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P 1.150. If a, b, c are positive real numbers, then

1 1 1 3
+ + > .
1+3a 1+3b 1+3c 3+abc

(Vasile Cirtoaje, 2013)

Solution. Set
p=a+b+c, g=ab+bc+ca, r= v abc,
and write the inequality as follows:

(3+7%) > (1+3b)(1+3c) > 3(1+3a)(1 +3b)(1 +3c),

(3+7r*)(3+6p+9q)>3(1+3p+9q+27r3),
r3(2p +3q) +2+3p > 26r°.
By virtue of the AM-GM inequality, we have

p=>3r, q=>3r?
Therefore, it suffices to show that
r3(6r +9r%) + 2+ 9r > 2613,
which is equivalent to the obvious inequality
(r—1)%(9r> +24r*+13r +2) > 0.

The equality holds fora=b=c=1.

P 1.151. Let a, b, c be real numbers, no two of which are zero. If 1 < k < 3, then

2ab 2bc 2ca
k+— )| k k > (k—1)(k2—1).
( +a2+b2)( +b2+c2)( +c2+a2)_( X )

(Vasile Cirtoaje and Vo Quoc Ba Can, 2011)

Solution. If a, b, c have the same sign, then

2ab 2bc 2ca
k+— || k k k3 k—1)(k*—1).
( +a2+b2)( +b2+c2)( +c2+a2)> > ( X )

Since the inequality remains unchanged by replacing a, b, ¢ with —a, —b, —c, it suf-
fices to consider further that a < 0 and b, ¢ > 0. Setting —a for a, we need to show

that 2ab 2b 2
a c ca

—_— —_ > —_ 2_

(k a2+b2)(k+b2+cz)(k c2+a2)_(k D ~1)
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for a,b,c = 0. Since

(k_ azzibbz) (k_ sziaaz) N [k_ L+ (;213))22] [k_l * Ez—:cczg}
(a—b)? N (a—C)Z]

a?+b?  c2+a?

2(k—1)2+(k—1)[

it suffices to prove that

[k—1+(a_b)2+(a_c)2](k+ 2be )zkz—l.

az+b?  c2+a? b2 +c2

According to Lemma below, we have

(a—Db)? N (a=c)* _ (b—c)
a2+b2  c2+a2  (b+c)?

Thus, it suffices to show that

(b—c)z]( 2bc ) )
k—1+ k + >k*—1
[ (b+c)2 b2+c2) ’

which is equivalent to the obvious inequality

(b—c)*+2(3—k)bc(b—c)* > 0.
The equality holds for a = b =c.
Lemma. If a,b,c > 0, no two of which are zero, then

(a—b)2+(a—6)2>(b—C)2
az+b2  a2+c2  (b+c)?

Proof. Consider two cases: a® < bc and a® > bc.
Case 1: a? < bc. By the Cauchy-Schwarz inequality, we have

(@-by (@)  [b-a+@=-9F _ (b—c)
a2+b2  a2+c2 ~ (a2+b2)+(a2+c2) 2a2+Db2+c2

Thus, it suffices to show that

1 1
>
2a2+b2+c2 — (b+c)?’

which is equivalent to a® < bc.
Case 2: a® > bc. By the Cauchy-Schwarz inequality, we have

(a—Db)? N (a—c)? - [c(b—a)+bla—c)]* a?(b—c)?
a2+b2  a?+c2 T c2(a?+b2)+b2(a2+c?)  a?(b?+c2)+2b2c2’
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Therefore, it suffices to prove that
a? .1
a?(b2+c2)+2b2%c2 ~ (b+c)?’

which reduces to bc(a? — bc) > 0.

P 1.152. If a, b, c are non-zero and distinct real numbers, then

l+i+i+3[ t 1 ]>4(i+i+i)
a? b2 2 (a—b)? (b—c)?> (c—a)?*] \ab bc cal’

Solution. Write the inequality as

1 1 1 1
(Z;_zb_c)wz(b_c)zzg -

In virtue of the AM-GM inequality, it suffices to prove that

2\J3(Z%_Zi)[z(b—lc)2]232i’

which is true if

(Za2n)[Zazs)2:(Zn) -

Since

o1 (Z 1 )2 L (Be-Za)
(b—c)? b—c (a—b)2(b—c)2(c—a)*’
we can rewrite this inequality as
4 (Z a’b?— ach a) (Z a? —Z:ab)2 >3(a+b+c)*(a—b)*(b—c)(c—a).
Using the notations
p=a+b+c, gq=ab+bc+ca, r=abc,
and the identity
(a—b)*(b—c)*(c—a)* =—27r*—2(2p* — 9q)pr + p*q* — 4¢°,
the inequality can be written as
4(q* —3pr)(p® —3¢)* = 3p*[—27r* —2(2p” — 99)pr + p*q* — 4¢°],

which is equivalent to
(9pr + p*q—69*)* > 0.



202 Vasile Cirtoaje

P 1.153. Let a, b, ¢ be positive real numbers, and let

a b b ¢ c a
A=—+—+k, B=—+—+k, C==-+—-+k
b a c b a b 7

where —2 < k < 4. Prove that
1 1 1 1 4
—+-+=< +
A B C k+2 A+B+C—k—2

(Vasile Cirtoaje, 2009)

Solution. Let us denote

We need to show that

Z b'e 1 4
x2+kx+1" k+2 Zx+2xy+2k 2

for all positive real numbers x, y,z satisfying xyz = 1. Write this inequality as
follows:

Z( 1 x )> 2 4
k+2 x2+kx+1) k+2 Yx+>xy+2k—2

Z (x—1)° 22 yz(x—1)°
x2+kx+1 " Zx+2xy+2k—2’

z:(x—l)2 —x+y+z+x(y+2z)—yz—2]

> 0.
x2+4+kx+1

Since
—x+y+z+x(y+2z)—yz—2=((x+1)(y+2z)—(x+yz+2)

= +Dy+2)=(x+Dyz+1) =—(x+ Dy - 1)(z—1),

the inequality is equivalent to

—1
x2+kx+1"

~-Dy-DE-1DY. =
that is, E > 0, where

E=—(x—1)(y—1E—1) > (x>~ D)(y* +ky + 1)(z* + kz +1).

We have
D -1 +ky + D)2+ kz+1) =

k-2 (Y- Yr) + (S 3
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=k(k—=2)(x—D(y—-DE-1)—-(*-1D(*-1D(E*-1)
=—(x—D—-DE-DIx+ Dy +1)(z+1)—k(k—2)],
hence
E=(x—-1D*(y—1*—1[(x+D(y+1)(z+1)—k(k—2)].
Since
(x +D(y + Dz +1)—k(k—2) > (2V/x)(2v¥)(2v2) — k(k—2)
=2+k)4—k)=0,

it follows that E > 0. The equality holds fora = b, or b =c, or c = a.

P 1.154. If a, b, c are nonnegative real numbers, no two of which are zero, then

1 1 1 1 1 1
+ + > + + :
b2+ bc+c2 c24+ca+a?2 a?+ab+b2" 2a2+bc 2b2+ca 2c2+ab
(Vasile Cirtoaje, 2014)

Solution. Write the inequality as follows:
( e )
3 e )zo
b2+ bc+c? 2a%+bc

Z —b*) +(a*—¢?)
(b%2+ bc +c2)(2a2 + bc)

a2
Z (b2 + bc + cz)(Za2 + bc) Z (c2+ca+ az)(2b2 + ca)
c(a®>—Db?)(a—D)
+b%*+c*—ab—bc— >0
(a ¢ C ca)Z (b2 + bc+c2)(c?2+ca+a?)(2a?+ bc)(2b2 +ca)
Clearly, the last inequality is obvious. The equality holds for a = b =c.

P 1.155. If a, b, c are nonnegative real numbers such that a + b + ¢ < 3, then

1 1 1 1 1 1
(a) + + > + + ;
2a+1 2b+1 2c+1 a+2 b+2 c+2
1 1 1 1 1 1
(b

+ + > + + :
2ab+1 2bc+1 2ca+1 a2+4+2 b24+2 242
(Vasile Cirtoaje, 2014)
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Solution. Denote
p=a+b+c, 1/3¢q<p<3
g=ab+bc+ca, 0<g<3.
(a) Use the SOS method. Write the inequality as follows

Crenres)
Z >0,
2a+1 a+2

>, >0,
(2a+1)(a+2)
Z(a+b+c) 3a>
2a+1)(a+2) ~
Z(b—a)+(c—a)
(2a+1)(a+2)

>0,

Z(2a+1)(a+2) Z(2b+1)(b+2) 20,

1 1
Z(a_b)[(zzwr Db+2) (2a+1)(a+2)]’
> (a—b)*(2a+2b +5)(2c +1)(c +2) > 0.
The equality holds fora=b=c=1.

(b) Write the inequality as
1 1 1 3
> ——= |+,
ZZab-i—l Z(a2+2 2) 2
2 a?
+ >3
Z:2ab+1 Z:a2+2

By the Cauchy-Schwarz inequality, we have

Z 1 9 9
2ab+1 Z(Zab+ 1) 2g+3

and
Z a? > (Z a)2 _ p’
a?+2 " >(a2+2) p?*—2q+6
4. 26-9 _, 26-9_ 39
p?—2q+6 q+6 q+6
Therefore, it suffices to show that
18 3q

5

+ >
2q+3 q+6
which is equivalent to the obvious inequality q¢ < 3. The equality holds fora = b =
c=1.
OJ
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P 1.156. If a, b, c are nonnegative real numbers such that a + b + ¢ = 4, then

1 + 1 + 1 > 1 + 1 + 1
ab+2 bc+2 ca+2 a*+2 b2+2 242

(Vasile Cirtoaje, 2014)

First Solution (by Nguyen Van Quy). Use the SOS method. Rewrite the inequality

as follows:
( 2 1 1 )
S )
ab+2 a24+2 b2+2

Z[ a(a—Db) N b(b—a) ]>O
(ab+2)(a2+2) (ab+2)(b2+2)]
_ 122
Z (2—ab)(a—Db)*(c*+2) > 0.
ab+2
Without loss of generality, assume that a > b > ¢ > 0. Then,

2
bc<ac<a(b+c)<(a+b+c) _

<ac< < 2
2 8

and

Z (2—ab)(a—b)*(c*+2) - (2—ab)(a—b)*(c*>+2) N (2—ac)(a—c)*(b%+2)

ab+2 o ab+2 ac+2
- (2—ab)(a—b)*(c*+2) N (2—ac)(a—Db)*(c*+2)
- ab+2 ab+2
_ (4—ab—ac)(a—b)*(c*+2)
B ab+2
_(a—b—c)*(a—b)(c*+2)
B 4(ab +2)

The equality holds for a = b = ¢ = 4/3, and also fora =2 and b =c =1 (or any
cyclic permutation).

Second Solution. Write the inequality as

1 1 1\ 3
Zbc+222(a2+2_§)+§’

1 a? 3
+ > —.
Zbc+2 Z2(a2+2) 2

Assume that a > b > ¢, and denote

_b+c
=—

s p=bc, 0<s<
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By the Cauchy-Schwarz inequality, we have

b2 N c? - (b +c)? _ s2
2(b2+2)  2(c24+2) T 2(b24+2)+2(c2+2)+4 2s2—p+2

In addition,

1 N 1 alb+c)+4 2as+4
ca+2 ab+2 (ab+2)ac+2) a2p+4as+4

Therefore, it suffices to show that E(a, b,c) > 0, where

1 52 2(as +2) a® 3

+ + S
p+2 2s2—p+2 a?p+4das+4 2(a*+2) 2

E(a,b,c) =

Use the mixing variables method. We will prove that

E(a,b,c) > E(a,s,s) = 0.

We have
1 1 1 1
E(a,b,c)—E(a,s,s)Z(—— )-l—sz( — )
p+2 s2+2 2s2—p+2 s2+2
1 1
+2(as+2) ( — )
a’p+4as+4 a?s>+4as+4
___ s*-p s*(s*=p)
T (p+2)(s2+2) (s2+2)(2s2—p+2)
2a*(s*—p)
(a2p + 4as +4)(as +2)°
Since s> — p > 0, we need to show that
1 2a? s

0122 12)  (@praas+M)@s+2) - 2+2)22—p+2)

which is equivalent to

2a? p(s*+1)—2
(a?2p+4as+4)(as+2)  (p+2)(s2+2)(2s2—p+2)
Since
a’p +4as +4 < a’s*> +4as +4 = (as + 2)*
and

25> —p+2>s2+2,
it is enough to prove that

2a? - p(s?+1)—2
(as+2)3 — (p+2)(s2+2)?
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In addition, since
as+2=(4—2s)s+2<4

and
B 2(s+2)

‘+1)-2 2(s*+2

p+2 p+2 s2+2
it suffices to show that
2 2

a sc—1

- 2 —_—,
32 7 (52 +2)2
which is equivalent to

(2—35)*(2+s%)?* > 8(s*—1).

.. 4
Indeed, for the nontrivial case 1 <s < 3’ we have

2
(2—5)*(2+5*)*—8(s>—1) > (2 - g) (2452 —8(s*—1)

= g(s4 —14s%+22) = g [(7—s%)*—27]

2
Zﬂ (7—E) —27 =ﬁ>0.
9 9 729

To end the proof, we need to show that E(a,s,s) > 0. We have

1 52 2 a® 3
E(a,s,s)= + + + —=
s2+2 242 as+2 2(a%+2) 2

(s —1)%(3s — 4)?

= > 0.
2(s2+2)(14+2s—52)(2s2—8s+9)

P 1.157. If a, b, c are nonnegative real numbers, no two of which are zero, then

ab+bc+ca (a—b)*(b—c)*(c—a)? -
a?+b2+c2  (a2+b2)(b2+c2)(c2+a?)

(a)

ab+ bc+ca (a—Db)*(b—c)*(c —a)? <1
a2+b2+c¢2  (a2—ab+b2)(b2—bc+c2)(c2—ca+a?) =

(b)

(Vasile Cirtoaje, 2014)

Solution. (a) First Solution. Consider the nontrivial case where a, b, ¢ are distinct
and write the inequality as follows:
(a—Db)*(b—c)*(c —a)? < (a—b)2?+(b—c)*+(c—a)?
(a®+b2)(b2 +c2)(c2+a?) ~ 2(a%+ b2 +c?)

>
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(a®+b2) + (b2 +c2)+(c? +a?) < (a—b)?+(b—c)*+(c—a)?
(a2 +b2)(b2+c2)(c2+a?) ~— (a—Db)*(b—c)*(c—a)?

1 1
Z (b2 +c2)(c2+a?) = Z (b—c)2(c—a)*

Since
a’*+b*>(a—b)*, b*+c*=>(b—c)*, c*+a*>(c—a)?

the conclusion follows. The equality holds for a = b =c.

Second Solution. Assume that a > b > c. We have

ab+bc+ca (a—b)*(b—c)*(c—a)? < ab + bc+ca N (a—b)*(a—c)?
a?+b2+c2  (a®2+b2)(b%2+c?)(c?2+a?) ~ a?+b2+c*  (a?+b?)(a*+c?)
2ab + c? (a — b)?*a?
T a2+ b2+ a*(a?+b2+c?)
_2ab+c*+(a—b)* ;
a?+ b2+ c2 '

(b) Consider the nontrivial case where a, b, ¢ are distinct and write the inequal-
ity as follows:

(a—Db)*(b—c)*(c —a)? - (a—b)?+(b—c)?+(c—a)?
(a?—ab + b2)(b%2—bc +c?)(c2—ca+a?) 2(a%+ b2 +c?) ’
2(a? + b% +¢?) < (a=b)?+(b—c)*+(c—a)?
(a2—ab+b2)(b2—bc+c2)(c2—ca+a?) ~ (a—b2(b—c)2(c—a)* °
Z 1 - 2(a®+ b2 +c?)
(a—b)2(a—c)* ~ (a2—ab + b2)(b2— bc +c2)(c2—ca+a?)

Assume that a = min{a, b, ¢}, and use the substitution
b=a+x, c=a+y, x,y=0.

The inequality can be written as

L SRR
x2y?  x*(x—y)  yHx—y)?

= 2f(a),

where

3a>+2(x +y)a+x>+y?
(a2 +xa+x2)(a2+ya+y?)[a2+ (x+y)a+x2—xy+y2]

fla)=

We will show that

1 1 1

x2y? i x2(x — y)? " Yix—y)? =2/(0)=2f(@).
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The left inequality is equivalent to

x2+y2—xy> x2+y?
X2y2x—yP T x2yAx2—xy+y?)
Indeed,
x*+y*—xy x*+y? 1

= > 0.
X2y (x—y)* x2yA(x2—xy+y?) (x—y)P(x*—xy+y?)
Also, since
(a®+xa+x*)(a®*+ya+y?) > (x*+y?)a* +xy(x + y)a+ x*y?

and
A+ (x+y)a+x*—xy+y*>x*—xy+y?

we get f(a) < g(a), where

(@)= 3a*+2(x +y)a+ x>+ y?
SV I 1 yDa? + xy(x + y)a + x2y2](x2—xy + y2)°
Therefore,
x2 4 2
£0)—f(a)= y —g(a)

x2y3(x2—xy +y?)
B (x*—x?y* + yHa® + xy(x + y)(x — y)’a
Cox2y2(x2—xy + y2)[(x2 + y2)a + xy(x + y)a+x2y2] ~

Thus, the proof is completed. The equality holds for a = b =c.

P 1.158. If a, b, c are nonnegative real numbers, no two of which are zero, then

a?+ b2 +c? - 1_}_9(a—b)2(b—c)2(c—a)2
ab+bc+ca (a+b)2(b+c)?(c+a)’

(Vasile Cirtoaje, 2014)
Solution. Consider the nontrivial case where
0<a<b<uec,
and write the inequality as follows:

(a—b)?+(b—c)*+(c—a)? o 9(a—Db)*(b—c)*(c—a)?
2(ab + bc +ca) ~ (a+b)2(b+c)(c+a)’
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(a—b)?+(b—c)*+(c—a)? - 18(ab + bc +ca)
(a—b)2(b—c)?(c—a)> ~ (a+b)2(b+c)2(c+a)?
Z 1 S 18(ab + bc +ca)
(b—a)?(c—a)®> ~ (a+b)2(a+c)2(b+c)

Since

Z 1 _ 1 N 1 N 1 _ 2(b*+c*—bc)
(b—a)2(c—a)? ~ b2c2  b2(b—c)? c2(b—c)2  b2c2(b—c)?
and
ab+ bc+ca < ab+bc+ca < 1
(a+b)2(a+c)2(b+c)®~ (ab+bc+ca)2(b+c)?2 ™ be(b+c)?’

it suffices to show that

b?+c*—bc - 9
b2c2(b—c)? ~ be(b+c)?

Write this inequality as follows:

(b +c)?>—3bc - 9(b +c)*—36bc
bc - (b + )2 ’

(b +c¢)? 36bc
—12+ >0
bc (b+c)2

(b+c)*—12bc(b +¢)*> +36b%c? > 0,
[(b+c)*—6bc]?2>0.

Thus, the proof is completed. The equality holds for a = b = ¢, and also fora =0
and b/c +c/b =4 (or any cyclic permutation).
O

P 1.159. If a, b, c are nonnegative real numbers, no two of which are zero, then

2 2 2 _ 2 _ )2 _ 2
a*+b°+c > 14 (14 v2) (a=b)*(b—c)*(c—a) ‘
ab+ bc+ca (a%+ b2)(b2+c2)(c2+a2?)

(Vasile Cirtoaje, 2014)

Solution. Consider the nontrivial case where a, b, ¢ are distinct and denote k =
1+ +/2. Write the inequality as follows:
(a—b)2+(b—c)*+(c—a)? - k*(a—b)*(b—c)?*(c —a)?
2(ab + bc +ca) ~ (a2 + b2)(b2 +c2)(c2 +a2)’

(a—b)?+(b—c)*+(c—a)? - 2k*(ab + bc +ca)
(a—b)2(b—c)2(c—a)? ~ (a2+Db2)(b2+c2)(c2+a2)’
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Z 1 - 2k?*(ab + bc +ca)
(b—a)2(c—a)*> ~ (a®+b2)(b2+c2)(c2+a?)
Assume that a = min{a, b, c}, and use the substitution

b=a+x, c=a+y, x,y=0.

The inequality becomes

1 1
+ +
x?y?  x*x—y)*  yAx—y)

> 2k*f (a),

where

3a2+2(x+y)a+xy

a) = .
fla) (2az +2xa + x2)(2a% + 2ya + y?)[2a% + 2(x + y)a + x2 + y2]

We will show that
1 + 1 + 1
x2y? - x2(x—y)*  yAx—y)?

> 2k*£(0) > 2k*f (a).

We have
1 1 1 2(x% + y2 — 2k?
x?y?  xXx—y)?  yAx—y) x2y2(x—y)  x2y*(x2+y?)
2l 4y —(2+ V2))xy]? -0
S xX2y2x =y —xy+y) T
Also, since

(2a* + 2xa + x?)(2a® + 2ya + y?) > 2(x* + y*)a® + 2xy(x + y)a + x*y?

and
20 +2(x +y)a+ x>+ y* > x* + y?,
we get f(a) < g(a), where
3a®>+2(x+y)a+xy
[2(x2 + y2)a? + 2xy(x + y)a + x2y2](x2 + y2)

gla)=
Therefore,

1
fO)—f(a)= m—g(a)

_ (2x%+2y?—3xy)a? -0
Cxy (a2 + y2)[2(x2 + y2)aZ + 2xy(x + y)a + x2y2] T

Thus, the proof is completed. The equality holds for a = b = ¢, and also for a =0
and b/c +c¢/b =2+ +/2 (or any cyclic permutation).
OJ
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P 1.160. If a, b, c are nonnegative real numbers, no two of which are zero, then

2 + 2 + 2 > 5 + 5 + 5
a+b b+c c+a 3a+b+c 3b+c+a 3c+a+b

Solution. Use the SOS method. Write the inequality as follows:

ey
) ()
b+c 3a+b+c

2a—b—c
3
(b+c)(Ba+b+c)

Z a—b>b +Z a—c >0
(b+c)(Ba+b+c) (b+c)Ba+b+c)

Z(b+c)(3a+b+c) Z(c+a)(3b+c+a) =0,

Z (a—b)*(a+b—c)
(b+c)c+a)Ba+b+c)3b+c+a)

D> (b—c)*s, >0,

where
S,=(b+c—a)b+c)(Ba+b+c).

Assume that a > b > c. Since S, > 0, it suffices to show that
(b—c¢)*S, +(a—c)*S, > 0.
Since S, > 0, we have
(b—c)?*S,+ (a—c)*S, > (b—c)*S, + (b—c)*S, = (b—c)*(S, +S}).
Thus, it is enough to prove that S, + S, > 0, which is equivalent to
(c+a—>b)c+a)B8b+c+a)=(b+c—a)(b+c)Ba+b+c).

For the nontrivial case b +c—a > 0, since c+a—b = b + ¢ —a, we only need to
show that
(c+a)Bb+c+a)=(b+c)Ba+b+c).

Indeed,
(c+a)B3b+c+a)—(b+c)Ba+b+c)=(a—b)la+b—c)=>0.

The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic
permutation).
OJ
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P 1.161. If a, b, c are real numbers, no two of which are zero, then

8a’ + 3bc 8b% + 3ca 8c?+3ab

a + +
(@) b2+ bc+c2 c24+ca+a?2 a?+ab+ b2

>11;

b) 8a?—5bc N 8b% —5ca N 8c? —5ab >0
b2—bc+c2 c2—ca+a? a:—ab+b2 "7

(Vasile Cirtoaje, 2011)
Solution. Consider the more general inequality

a®+ mbc N b% + mca N ¢+ mab >3(m—+—1)
b2+ kbc+c? c24+kca+a® a*+kab+b%2 k+2

which can be written as fg(a, b,c) > 0, where

fela,b,c) =(k+2) Z:(a2 +mbc)(a®+ kab + b?)(a® + kac + c?)

—3(m + 1)1_[(b2 +kbe + c2).

Let
p=a+b+c, qg=ab+bc+ca.

From
fe(a,b,c) = (k+ Z)Z:(a2 + mbc)(kab — c*+ p* —2q)(kac — b* + p* —2q)
—3(m+1)[ J(kbe—a®+p>—29).
it follows that f,(a, b, c) has the same highest coefficient A as
(k + 2)p2(a5 b) C) - 3(m + 1)P3(a5 b; C))

where
Py(a,b,c) = Z:(a2 + mbc)(kab — c?)(kac — b?),

Py(a,b,c) = l_[(kbc —a?).

According to Remark 2 from the proof of P 2.75 in Volume 1,

A= (k+2)P,(1,1,1)—3(m+1)P4(1,1,1)
=3(k+2)m+1)(k—1)*—=3(m+1)(k—1)>=9(m+ 1)(k — 1)

Also, we have

fe(a,1,1) = (k +2)(a* + ka+ 1)(a—1)*[a® + (k + 2)a + 1 + 2k — 2m].
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(a) For our particular case m = 3/8 and k = 1, we have A = 0. Therefore,
according to P 2.75 in Volume 1, it suffices to prove that f¢(a,1,1) = 0 for all real
a. Indeed,

3 2
fe(a,1,1)=3(a*+a+1)(a—1)> (a + 5) > 0.
Thus, the proof is completed. The equality holds for a = b = ¢, and also for
—2a/3 = b = ¢ (or any cyclic permutation).
(b) For m =—5/8 and k = —1, we have

_ 27
2

A

and 1
fela,1,1) = Zr(a2 —a+1)(a—1)*(2a + 1)~

Since A > 0, we will use the highest coefficient cancellation method. Consider the
homogeneous polynomial

P(a,b,c) =abc +Bp®+ Cpq,

where B and C are real constants. Since the desired inequality becomes an equality

fora=b=c=1, and also fora =—1/2 and b = ¢ = 1, we will determine B and
C such that P(1,1,1) = P(—1/2,1,1) = 0; that is,
]
27 9
when
4p° _ 5pq

P(a,b,c)=abc+ — ,
27 9

P(a,1,1) = 22—7(a —1)*(2a +1).

We will show that .
fela,b,c) = ?Pz(a, b,c).

Let us denote 97
gs(a,b,c) = fo(a,b,c)— ?Pz(a, b,c).

Since g¢(a, b, c) has the highest coefficient equal to zero, it suffices to prove that
g¢(a,1,1) > 0 for all real a (see P 2.75 in Volume 1). Indeed,

27 1
gs(a,1,1) = f(a, 1, 1)—?P2(a, 1,1)= m(a—1)2(2a+1)2(19a2—11a+19) > 0.
The equality holds for a = b = ¢, and also for —2a = b = ¢ (or any cyclic permuta-

tion).
O
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P 1.162. If a, b, c are real numbers, no two of which are zero, then

4a* + bc N 4b* +ca N 4c® +ab
4b2+7bc+4c?  4c2+7ca+4a®>  4a’+7ab+4b%

(Vasile Cirtoaje, 2011)

Solution. Write the inequality as f¢(a, b,c) > 0, where

fela,b,c) = Z:(4a2 +bc)(4a*+7ab+4b*)(4a*+7ac +4c2)—l_[(4b2 +7bc+4c?).

Let
p=a+b+c, g=ab+bc+ca.

From

fola,b,c) =D (4a®+ be)(7ab—4c? + 4p* — 8g)(7ac — 4b* + 4p* —8q)

- l_[(7bc —4a* +4p* —8q),
it follows that f4(a, b, c) has the same highest coefficient A as
PZ(a7 b7 C) - P3(Cl, b: C)J

where
P,(a,b,c) = Z:(4a2 + bc)(7ab — 4c?)(7ac — 4b?),

Psy(a,b,c) = l_[(7bc —4a?).
According to Remark 2 from the proof of P 2.75 in Volume 1,
A=P,(1,1,1)—Py(1,1,1) = 135 —27 = 108.

Since A > 0, we will apply the highest coefficient cancellation method. Consider the
homogeneous polynomial

P(a,b,c) =abc +Bp>+Cpq,

where B and C are real constants. We will show that there are two real numbers B
and C such that the following sharper inequality holds

fe(a,b,c) > 108P%*(a, b, c).

Let us denote
g6(a) b} C) = f6(a1 b: C) - 108P2(a) b) C).

Clearly, g¢(a, b,c) has the highest coefficient equal to zero. Then, by P 2.75 in
Volume 1, it suffices to prove that there exist B and C such that g¢(a,1,1) > 0O for
all real a.
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We have
gé(a: 1: 1) = f6(a: 1: 1) - 108P2(a: 1, 1):

where
fo(a,1,1) = 4(4a> + 7a + 4)(a — 1)*(4a® + 15a + 16),

P(a,1,1)=a+B(a+2)°+Cla+2)(2a+1).

Let us denote g(a) = f¢(a,1,1). Since

g(=2)=0,
the condition
g'(=2)=0,
which involves C = —5/9, is necessary to have g(a) > 0 in the vicinity of a = —2.

On the other hand, from g(1) = 0, we get B = 4/27. For these values of B and C,
we get
2(a—1)*(2a+1)

P(a,1,1) = >

4
gs(a,1,1) = 2—7(a —1)%*(a +2)*(4164a* + 728a + 431) > 0.

The proof is completed. The equality holds for a = b = ¢, and for a = 0 and
b + ¢ =0 (or any cyclic permutation).
O

P 1.163. If a, b, c are real numbers, no two of which are equal, then

1 + 1 + 1 > 27
(a—b)2 (b—c)®> (c—a)*  4(a>+b2+c2—ab—bc—ca)’

First Solution. Write the inequality as follows:

[(a—b)2+(b—c)2+(a_c)2][(a_1b)2 + (b—lc)z + (a—lc)z] = 2?,

(a—Db)? (b—c)? (a—c)?* (a—c)? 27
[(a—c)z T la—op “][(a—b)z To—op #1)=7,

1 1 27
2+ y*+1 (—+—+1)2—,
G +y + D 5 32 >
where
a—b b—c

X = , Y= , x+y=1.
a—c a—c




Symmetric Rational Inequalities 217

We have

(x2+y2+1)(i+i+1)_§: Cot e —2) (- 1) >0
x2  y2 2 2x2(1—x)? -

The proof is completed. The equality holds for 2a = b + ¢ (or any cyclic permuta-
tion).

Second Solution. Assume that a > b > ¢. We have

L S 2 - 8 8
(a=b)>  (b—c? ™~ (a=b)b—c) [(a=b)+(b—c) (a—c)*

Therefore, it suffices to show that

9 > 27
(a—c)®> ~ 4a?+b2+c2—ab—bc—ca)’

which is equivalent to
(a—2b+c¢)*>0.

Third Solution. Write the inequality as f4(a, b,c) = 0, where
fe(a,b,c) = 4(a2+b2+c2—ab—bc—ca)Z(a—b)2(a—c)2—27(a—b)z(b—c)z(c—a)z.
Clearly, fq(a, b, c) has the same highest coefficient A as

—27(a —b)*(b—c)*(c —a)?;

that is,
A=-27(—27) =7209.

Since A > 0, we will use the highest coefficient cancellation method. Define the
homogeneous polynomial

P(a,b,c)=abc +B(a+b+c)3—(33+%)(a+b+c)(ab+bc+ca)

which satisfies P(1,1,1) = 0. We will show that there is a real value of B such that
the following sharper inequality holds

fe(a,b,c) = 729P%(a, b, c).

Let us denote
86(61, b: C) = f6(a5 b3 C) - 729P2(aJ b: C)'

Clearly, g¢(a, b,c) has the highest coefficient equal to zero. Then, by P 2.75 in
Volume 1, it suffices to prove that g¢(a, 1,1) > 0 for all real a. We have

fo(a,1,1) =4(a—1)°
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and 1
P(a,1,1) = §(a —1)*[9B(a +2) + 2],

hence

gs(a,1,1) = fo(a,1,1) — 729P%*(a, 1,1)
= (27B+2)(a+2)(a—1)*[(2—27B)a—54B —8].

Choosing B =—2/27, we get g¢(a,1,1) = 0 for all real a.
Remark. The inequality is equivalent to

(a—2b+c)*(b—2c+a)*(c—2a+b)*>0.

P 1.164. If a, b, c are real numbers, no two of which are zero, then

1 1 1 14
+ + > .
a?—ab+b2  b2—bc+c? c2—ca+a? " 3(a®+b%+c?)

(Vasile Cirtoaje and BJSL, 2014)
Solution. Write the inequality as f¢(a, b,c) > 0, where
fola,b,c) =3(a®+b* +¢) > (a*—ab + b*)(a> —ac +c?)
—14(a®—ab + b*)(b*— bc + ¢*)(c® —ca + a?).
Clearly, fi(a, b, c) has the same highest coefficient A as
—14(a®—ab + b?)(b*> — bc + c?)(c®* —ca + a?);
that is, according to Remark 2 from the proof of P 2.75 in Volume 1,
A=—-14(-1—-1)*=112.

Since A > 0, we apply the highest coefficient cancellation method. Consider the
homogeneous polynomial

P(a,b,c)=abc+B(a+b+c)*+C(a+Db+c)ab+bc+ca).

We will show that there are two real numbers B and C such that the following
sharper inequality holds

fe(a,b,c) > 112P%(a, b,c).

Let us denote
g6(az b: C) - f6(a: b: C) - 112P2(a5 b: C)'
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Clearly, g¢(a, b, c) has the highest coefficient equal to zero. By P 2.75 in Volume 1,
it suffices to prove that g¢(a,1,1) > 0 for all real a. We have

gs(a,1,1) = fs(a,1,1)—112P?*(a,1,1),

where
fe(a,1,1) = (a®*—a+1)(3a*—3a®+a*+8a +4),

P(a,1,1)=a+B(a+2)>+Cla+2)(2a+1).

Let us denote g(a) = g¢(a,1,1). Since
g(=2)=0,

the condition

g'(—2)=0,
which involves C = —4/7, is necessary to have g(a) > 0 in the vicinity of a = —2.
In addition, setting B = 9/56, we get

1
P(a,1,1) = £(9a3 —10a* + 4a + 8),

3
gs(a,1,1) = %(a6 + 4a® + 8a* + 16a® + 20a? + 16a + 16)

_ 3(a+2)%(a?+2)? -
N 28 -

0.

The proof is completed. The equality holds for a = 0 and b + ¢ = 0 (or any cyclic

permutation).
[

P 1.165. If a, b, c are real numbers, then

a’ + bc b%+ca c2+ab >1

+ + > .
2a2+b%2+c?2 a?+2b2+c2 a?+b%2+2c2 6

(Vasile Cirtoaje, 2010)

Solution. Write the inequality as f¢(a, b,c) > 0, where

fela,b,c) =6 Z:(a2 + bc)(a® + 2b* + c?)(a® + b* + 2¢?)
—(2a®+ b* + c*)(a® + 2b* + c*)(a® + b* + 2¢2).

Clearly, fs(a, b, c) has the same highest coefficient A as f (a, b, c), where

f(a,b,c)= 62:(a2 + bc)b?c® — a?b?c? = 17a?b%*c? + 6(a®b® + b3c® + 2a®);
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that is,
A=17+6-3=35.

Since A > 0, we apply the highest coefficient cancellation method. Consider the
homogeneous polynomial

P(a,b,c)=abc+B(a+b+c)*+C(a+b+c)ab+ bc+ca)

and show that there are two real numbers B and C such that the following sharper
inequality holds
fe(a, b,c) > 35P%(a, b,c).

Let us denote

gG(a: b: C) = f6(a) b; C) - 35P2(a9 b: C)'
Clearly, g¢(a, b, c) has the highest coefficient equal to zero. By P 2.75 in Volume 1,
it suffices to prove that g¢(a,1,1) > 0 for all real a. We have

g6(a9 1) 1) = f6(a9 1) 1) - 35P2(a7 15 1)5
where

fe(a,1,1) = 4(a* + 1)(a® + 3)(a + 3)?,

P(a,1,1)=a+B(a+2)°*+C(a+2)(2a+1).
Let
g(a) = g6(a9 1: 1)
Since g(—2) = 0, we can have g(a) = 0 in the vicinity of a = —2 only if g’(—2) = 0,
which involves C = 19/35. Since f,(—3,1,1) = 0, we enforce P(—3,1,1) = 0,
which provides B =—2/7. Thus,
—2(a+3)(5a2—4a+7)
35

2 1
P(a,1,1)=a—2(a+1) + 2(a+2)(2a+1) =
7 35
and
26(a,1,1) = 4(a® + 1)(a® +3)(a + 3)2 — %(a +3)X(5a2 —4a + 7)?
= %(a +3)%(a+2)*(5a%+7)>0.

The proof is completed. The equality holds for a = 0 and b + ¢ = 0 (or any cyclic
permutation), and also for —a/3 = b = ¢ (or any cyclic permutation).
U

P 1.166. If a, b, c are real numbers, then

2b% +2¢% + 3bc N 2¢% 4 2a?+ 3ca N 2a*+ 2b% +3ab
(a+3b+3c)? (b+3c+3a)? (c+3a+3b)2

(Vasile Cirtoaje, 2010)

3
> —.
7
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Solution. Write the inequality as f¢(a, b,c) = 0, where

fela,b,c) = 72:(2b2 +2c?+3bc)(b+3c+3a)’(c+3a+3b)*—3 l_[(a+3b +3c)%

We have
fo(a,1,1) = (a—1)*(a —8)*(3a + 4)>.
Let
p=a+b+c, g=ab+bc+ca, r=abc.
From

fola,b,c) =7 Y (2p> —4q +3bc —2a*)(3p — 2bY2(3p — 2c)* =3[ [(3p —2a)%,

it follows that f(a, b, c) has the same highest coefficient A as g(a, b, c), where

g(a,b,c)= 7Z(3bc—2a2)(—2b)2(—20)2—3 l_[(—Za)2 =48 (72 b3c — 18a2bzcz) ;

that is,
A=48(21—18) = 144.

Since the highest coefficient A is positive, we will use the highest coefficient cancel-
lation method. There are two cases to consider: p>+q > 0 and p?+q < 0.

Case 1: p*+q > 0. Since
f6(1,1,1) = f¢(8,1,1) =0,
define the homogeneous function
P(a,b,c)=r+Bp*+Cpq

such that P(1,1,1) = P(8,1,1) = 0; that is,

1 8
P 3b3 = + . 3__ )
(a,b,c)=r 25P ~ 5P

which leads to

45a+(a+2)°*—8(a+2)(2a+1) _ (a—1)*(a—8)

P(a,1,1) =
(@ 1,1) 45 45

We will show that the following sharper inequality holds for p? +q > 0:
fe(a,b,c) = 144P*(a, b, c).

Let us denote
g6(az b: C) - f6(a: b: C) - 144P2(a5 b: C)'
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Since the highest coefficient of g¢(a, b, ¢) is zero, it suffices to prove that g¢(a,1,1) >
0 for all real a such that (a +2)? +2a + 1 > 0, that is

ae(—oo,—5]u[—1,00)
(see Remark 3 from the proof of P 2.75 in Volume 1). We have
gs(a,1,1) = fs(a,1,1) — 144P*(a,1,1)

_ ﬁ(a —1)%(a—8)2[225(3a + 4)* — 16(a — 1)?]

= §7s(a —1)*(a—8)*(41a + 64)(7a+8) > 0.

Case 2: p?>+q < 0. Since
fe(1,1,1) = fo(—4/3,1,1) =0,
define the homogeneous function
P(a,b,c)=r+Bp*+Cpq
such that P(1,1,1) = P(—4/3,1,1) = 0; that is,

1 10
P Jb) =r+_- o — D
(a,b,c)=r+2p o P4

which leads to

9a+3(a+2)°—10(a+2)(2a+1) (a—1)*(3a+4)
9 B 9 '

We will show that the following sharper inequality holds for p? + g < 0:

fela,b,c) = 144P%(a, b, c).

P(a,1,1) =

Let us denote
g6(a: b: C) - f6(a: b: C) - 144P2(a1 b: C)'

Since the highest coefficient of g¢(a, b, ¢) is zero, it suffices to prove that g¢(a,1,1) >
0 for all real a such that (a +2)* +2a + 1 < 0, that is

ae€(—5,—1)
(see Remark 3 from the proof of P 2.75 in Volume 1). We have
g6(a,1,1) = fe(a,1,1) — 144P%*(a,1,1)
= é(a —1)*(3a +4)*[9(a —8)* —16(a — 1)]
= g(a —1)?*(Ba+4)*(20+a)(4—a) > 0.
The proof is completed. The equality holds for a = b = ¢, for a/8 = b = ¢ (or any

cyclic permutation), and also for —3a/4 = b = ¢ (or any cyclic permutation).
O



Symmetric Rational Inequalities 223

P 1.167. If a, b, c are nonnegative real numbers, then

6b% + 6¢%+ 13bc N 6¢c% + 6a® + 13ca N 6a’ + 6b% + 13ab
(a+2b+ 2c)? (b +2c+2a)? (c+2a+2b)2

(Vasile Cirtoaje, 2010)

Solution. Write the inequality as f¢(a, b,c) > 0, where
fe(a,b,c)=3 l_[(a +2b+2c)? —Z:(6b2 +6c2+13bc)(b+2c+2a)*(c+2a+2b)%

Let
p=a+b+c, g=ab+bc+ca.

From
fe(a,b,c)=3 l_[(Zp —a)*— Z:(6p2 —12q + 13bc —6a?)(2p — b)*(2p —¢)?,

it follows that f(a, b, c) has the same highest coefficient A as g(a, b, c), where

g(a,b,c)=3 l_[(—a)2 —Z(lec —6a%)(—b)*(—c)* = 21a®*b?c% — 132 b3c3;
that is,
A=21—-39=—-18.

Since the highest coefficient A is negative, it suffices to prove the desired inequality
for b=c =1, and for a = 0 (see P 3.76-(a) in Volume 1).
For b = ¢ =1, the inequality becomes

25 N 2(6a*+13a +6) <
(a+4)? (2a +3)?

2(6a® +13a +6) < 3a®+24a + 23
(2a+3)2 = (a+4)2 ’
5(2a +3)(a—1)?
(2a +3)%(a +4)?
For a = 0, the inequality turns into

> 0.

6b2% + 6¢2 +13bc N 6¢? N 6b> <
4(b+c)? (b+2c)? (2b+c)? —

3,

6b%+6c%2+13bc  6[(b%+c?)* +4bc(b? + ) + 6b%c?]
4(b + )2 (2b2+2c2+5bc)?
If bc = 0, then the inequality is an identity. For bc # 0, we may consider bc = 1
(due to homogeneity). Denoting

<3.

x=b%+c% x>2,
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the inequality becomes

6x +13  6(x?+4x +6)
+ <3,
4(x +2) (2x +5)2

which reduces to the obvious inequality
20x* +34x —13 > 0.

The equality holds for a = b = ¢, and also for a = b = 0 (or any cyclic permutation).
O

P 1.168. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

3a®+8bc N 3b*+8ca N 3c*+8ab
9+b2+c2 9+c2+a®> 9+a’+Db%2

(Vasile Cirtoaje, 2010)

Solution. Let
p=a+b+c, g=ab+bc+ca.

Write the inequality in the homogeneous form

3a* + 8bc N 3b*+8ca N 3c*+ 8ab
p?+b2+c2 p2+c2+a? p2+a?+b?

<3,

which is equivalent to f¢(a, b,c) = 0, where

fola,b,c)=3] J(?+ b2+ )= > (3a*+8bc)(p* + ¢ + a®)(p* + a® + b?).
From
fela,b,c)=3 l_[(Zp2 —2q—a*)— Z:(?;a2 +8bc)(2p* —2q — b*)(2p* — 2q — c?),

it follows that f (a, b, c) has the same highest coefficient A as g(a, b, c), where

g(a,b,c)=3 l_[(—a)2 — Z:(Ba2 + 8bc)(—b?)(—c?) = —12a%b%c? — 82 b3c3;
that is,
A=—12—24=—36.

Since the highest coefficient A is negative, it suffices to prove the homogeneous
inequality for b =c =1 and for a =0 (see P 3.76-(a) in Volume 1).
For b = c =1, we need to show that

3a2+8 2(3 + 8a)
(a+2)2+2 (a+2)2+a2+1" "~
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which is equivalent to
3a2+8 2(8a +3)
a?+4a+6 2a2+4a+5"

8a+3 < 6a+5
2a2+4a+5" a2+4a+6’
4a®—a®—10a+7>0,

(a—1)*(4a+7)=0.

b

For a = 0, we need to show that

8bc 3b? 3¢?

+ + <3.
(b+c)2+b2+c2 (b+c)2+c2 (b+c)2+b2 "~

Clearly, it suffices to show that

8bc 3(b2+c2)<
(b+c)2+b2+c2 (b+c)* ~

which is equivalent to
4bc 6bc

<
b2+c2+bc ™ (b+¢)*
be(b—c)* > 0.

The equality holds for a = b = ¢ =1, and also for a = b = 0 and ¢ = 3 (or any
cyclic permutation).

]

P 1.169. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

5a? + 6bc N 5b% + 6¢ca N 5¢% + 6ab
9+b2+c2 9+c2+a? 9+a?+b2

(Vasile Cirtoaje, 2010)

Solution. We use the highest coefficient method. Let
p=a+b+c, q=ab+bc+ca.
Write the inequality in the homogeneous form fy(a, b, c) > 0, where
fela,b,c) = Z:(Sa2 +6bc)(p* +c*+a?*)(p*+a*+b*)—3 l_[(p2 + b +c?).
From

fela,b,c) = Z:(Sa2 +6bc)(2p* —2q — b*)(2p* —2q —c?*)—3 l_[(sz —2q—a?),
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it follows that f,(a, b, c) has the same highest coefficient A as
f(a,b,¢)= > (5a*+6bc)(—b*)(—c?)—3(—a®)(—b*)(—c?) = 18a’b%c?+6 >  b*c?;

therefore,
A=18+18 =36.

On the other hand,

fo(a,1,1)=4a(2a®+4a+5)(a+1)(a—1)*=>0

and

f6(0,b,c) = 6bcBC + 5b%AB + 5¢*AC — 3ABC

= —3(A—2bc)BC + 5A(b*B + c2C),
where
A=(b+c)+b*+c%?, B=(b+c)*+b* C=(b+c)*+c*
Substituting
(b+c)*=4x, bc=y, x>y,

we have

A=2(4x—Yy), B=4x+b> C=4x+c?
A—2bc=4(2x—Yy),
BC =16x? + 4x(b* + c?) + b*c? = 16x? + 4x(4x —2y) + y* = 32x* — 8xy + y?,
b’B + c*C = 4x(b* +c?) + b* + ¢* = 2(16x% — 12xy + y?),
therefore
f6(0,b,¢c) =—12(2x — y)(32x% —8xy + ¥y*) + 20(4x — y)(16x* — 12xy + y?)
= 8(64x> —88x?y + 25xy* — y*) = 8(x — y)(64x* — 24xy + y?).
Since
f6(15 1: 1) = f6(0) ]-’ 1) = 0:

define the homogeneous function
P(a,b,c)=abc+B(a+b+c)*+C(a+b+c)ab+ bc+ca)

such that P(1,1,1) = P(0,1,1) = 0; that is,
1
P(a,b,c)=abc+ §(a +b+c)— g(a +b+c)(ab+ bc+ca).

We have ) ) .
—1 —1
P(a,lsl):%s 1)2(6151)]-):M

81 ’
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)2 N2
(b+c)(b—c) . P20,b,c) = 64x(x —y) .
9 81

We will prove the sharper inequality g¢(a, b,c) = 0, where

P(0,b,c)=

g6(a’ b; C) = f6(a) ba C) - 36P2(a1 b: C)'

Clearly, g¢(a, b,c) has the highest coefficient A = 0. Then, according to P 3.76-
(a) in Volume 1, it suffices to prove that g¢(a,1,1) = 0 and g¢(0,b,c) = 0 for
a,b,c>0.

We have

4a(a—1)*h(a)
9 ,

g6(a,1,1) = fs(a,1,1) —36P?*(a,1,1) =

where

h(a) =9(2a*+4a +5)(a +1)—a(a—1)?
>(a—1)?*(a+1)—ala—1)*=(a—1)*>0.
Also, we have

8(x—y)g(x,y)
9

86(0,b,¢) = £4(0,b,c) —36P*(0,b,¢c) =

5

where

g(x,y) = 9(64x*—24xy + y*) —32x(x — y)
> (64x% —24xy + y*)—32x(x —y) = 32x* + 8xy + y* > 0.
The equality holds for a = b =c =1, and also for a =0 and b = ¢ = 3/2 (or any

cyclic permutation).
O

P 1.170. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

1 1 1 3
+ + <—.
az+bc+12 b2+ca+12 c24+ab+12° 14

(Vasile Cirtoaje, 2010)

Solution. Write the inequality in the homogeneous form

1 1 1 9
+ + <,
3(a2+bc)+4p%  3(b%2+ca)+4p> 3(c2+ab)+4p% ~ 14p?

where
p=a+b+c.
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The inequality is equivalent to fg(a, b,c) = 0, where
fela,b,c)=9 l_[(3a2 +3bc +4p*) —14p® Z:(Bb2 +3ca +4p®)(3c* + 3ab + 4p?).
Clearly, fs(a, b, c) has the same highest coefficient A as

g(a,b,c) =243 l_[(a2 + bc).

According to Remark 2 from the proof of P 2.75 in Volume 1, we have
A=g(1,1,1) =243 -8 = 1944.

Since the highest coefficient A is positive, we will apply the highest coefficient can-
cellation method. We have

fe(a,1,1) =9[3a*+ 3 + 4(a +2)*][3a + 3 + 4(a + 2)*T?
—14(a +2)*[3a+3 +4(a+2)*]?
—28(a+2)*[3a+3+4(a+2)*][3a® + 3+ 4(a+2)?]
=9(7a*+ 16a + 19)(4a* + 19a + 19)* — 14(a + 2)*(4a® + 19a + 19)?
—28(a +2)*(4a* +19a + 19)(7a* + 16a + 19)
=3(4a* + 19a + 19)f (a),

where

f(a) =3(7a*+16a + 19)(4a* + 19a + 19) — 14(a + 2)*(6a* + 17a + 19)
=17a®—15a®>—21a +19 = (a —1)*(17a + 19);

therefore,
fe(a,1,1) = 3(4a* + 19a + 19)(a — 1)*(17a + 19).

Since
f6(1’ 1: 1) = f6(15 0: O) = 07

define the homogeneous function
P(a,b,c)=abc+B(a+b+c)*+C(a+b+c)ab+ bc+ca)
such that P(1,1,1) = P(1,0,0) = 0; that is,
P(a,b,c)=abc— %(a + b+c)(ab+ bc + ca).
We will prove the sharper inequality g¢(a, b,c) = 0, where

gs(a,b,c) = fo(a,b,c)—1944P%*(a, b, c).

Clearly, g¢(a, b, c) has the highest coefficient A = 0. Then, it suffices to prove that
g¢(a,1,1) >0 and g¢(0, b,c) = 0 for a, b,c > 0 (see P 3.76-(a) in Volume 1).
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To show that g¢(a, 1,1) > 0, which can be written as
fe(a,1,1)—1944P%*(a,1,1) > 0,
we see that
_(a+2)2a+1) _ —2(a—1)
9 9
4(a—1)*
81 ’

P(a,1,1)=a

3

P%(a,1,1) =
hence

gs(a,1,1) = 3(4a* +19a + 19)(a — 1)*(17a + 19) — 96(a — 1)*
= 3(a—1)*h(a),

where
h(a) = (4a®+19a + 19)(17a + 19) — 32(a — 1)>.

We need to show that h(a) > 0 for a > 0. Indeed, since
(4a*+19a+19)(17a +19) > (19a + 19)(17a + 17) > 32(a + 1)?,

we get
h(a)>32[(a+1)*—(a—1)?*]=128a > 0.

To show that g4(0, b,c) = 0, denote
x=(b+c)>, y=bhc.
We have

£4(0,b,¢) = 9ABC — 14x[BC +A(B + C)] = (9A— 14x)BC — 14xA(B + C),

where
A=4x+3y, B=4x+3b% C=4x+3c%
Since
9A—14x =22x +27y, B+C=8x+3(x—2y)=11x—6Yy,
BC =16x%+12x(x —2y) + 9y? = 28x2 —24xy + 9y?,
we get

f6(0,b,¢) = (22x + 27y)(28x* — 24xy + 9y?) — 14x(4x + 3y)(11x — 6y)
= 3y(34x*—66xy + 81y?).

Also,
_ 2
P(0,b,c) = —belbtc) P2(0,b,c) = =X
9 81
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Hence
26(0,b,c) = £¢(0,b,c) —1944P%(0,b,c) = 3y(34x>— 74xy + 81y?)
> 3y(25x2—90xy + 81y%) = 3y(5x —9y)? > 0.

The equality holds for a = b = ¢, and also for a = b = 0 (or any cyclic permutation).
O

P 1.171. If a, b, c are nonnegative real numbers, no two of which are zero, then

1 1 1 45
+ + > :
a2+ b2 b2+c2 c2+4a?2 " 8(a2+b2+c2)+2(ab+ bc+ca)

(Vasile Cirtoaje, 2014)

First Solution (by Nguyen Van Quy). Multiplying by a?+ b?+c?, the inequality be-
comes

Z a® L3> 45(a® + b% +¢?)
b2 + ¢2 ~ 8(a%+ b2+ c2)+2(ab+ bc+ca)
Applying the Cauchy-Schwarz inequality, we have

Z a? - > az)2 (@4 +e)

b2+c2 ~ > a2(b?+c?) ~ 2(a2b2 + b2¢2 4 c2a2)’
Therefore, it suffices to show that

(a? + b2 + ¢?)? S 45(a® + b% +c?)
2(a2b? + b%¢c2 + c2a?) ~ 8(a?+b2+c2)+2(ab + bc +ca)’

which is equivalent to

(@®+b*+c%)* - 45(a® + b% +c?) B
a?b? + b2c? + c2a? ~ 4(a?+b%2+c?)+ab+bc+ca

>

a*+ b*+ c*—a?b? — b?c? — ca? - 9(a®+ b%+c?>—ab—bc—-ca)
a?b? + b2c? + c2a? T 4(az+Db2+c2)+ab+bc+ca

By Schur’s inequality of degree four, we have

a*+ b*+c*—a?b?>—b%c?—c%a®> > (a®> + b* + c*—ab—bc —ca)(ab + bc + ca).
Therefore, it suffices to show that
[4(a®+ b*+c*)+ab + bc +cal(ab + bc + ca) > 9(a*b? + b*c? + c*a?).

Since
(ab + bc +ca)* > a?b? + b?c® + c%a?,
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this inequality is true if
4(a® + b%+c*)(ab + bc +ca) > 8(a?b? + b?c? + c%a?),
which is equivalent to the obvious inequality
ab(a—b)*+ bc(b—c)*+ca(c—a)*+abc(a+b+c)>0.

The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic
permutation).

Second Solution. Write the inequality as f(a, b,c) > 0, where
fela,b,c) = [8(a2 +b%+c?)+2(ab+ bc + ca)] Z(a2+b2)(a2+c2)—45 l—[(bz-l—cz).

Clearly, fy(a, b, c) has the same highest coefficient A as

fla,b,0)=—45] [(b*+cH) =—45] [(p*—2q—a?),
where p=a+b+cand g =ab+ bc +ca; that is,
A=45.
Since A > 0, we will apply the highest coefficient cancellation method. We have
fo(a,1,1) = 4a(2a + 5)(a®*+ 1)(a —1)?,
f6(0,b,c) = (b—c)*[8(b*+c*) + 18bc(b* + c?) + 15b3c?].

Since
f6(15 17 1) = f6(05 1: ]-) = 0)
define the homogeneous function

P(a,b,c)=abc+B(a+b+c)*+C(a+Db+c)ab+ bc+ca)

such that P(1,1,1) = P(0,1,1) = 0; that is,
1
P(a,b,c)=abc+ §(a +b+c)— g(a +b+c)(ab+ bc +ca).

We will show that the following sharper inequality holds
fe(a,b,c) > 45P*(a, b,c).

Let us denote
g6(a’ b; C) = f6(a) ba C) - 45P2(a1 b: C)'

Clearly, g¢(a, b, c) has the highest coefficient equal to zero. By P 3.76-(a) in Volume
1, it suffices to prove that g¢(a,1,1) > 0 and g¢(0, b,c) > 0 for all a, b,c > 0. We
have

a(a—1)?

P(a,1,1) = o
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hence

a(a—1)%(67a® +190a? + 67a + 180) -0

gs(a,1,1) = fs(a,1,1)—45P%*(a,1,1) = 5

Also, we have
(b+c)(b—c)?

9 >

P(0,b,c) =
hence

gG(O) b)C) = f6(03 b’ C) _45P2(01 b: C)
_ (b—c)’[67(b* + c*) +162bc(b* + ¢*) + 145b3¢?] -0
= 5 > 0.

P 1.172. If a, b, c are real numbers, no two of which are zero, then

a’—7bc N b%—7ca N c?—7ab  9(ab+ bc+ca)
b2 + ¢2 a?+b2  a?+b? a?+ b2 +c?

(Vasile Cirtoaje, 2014)

Solution. Let
p=a+b+c, gq=ab+bc+ca, r=abc.

Write the inequality as fg(a, b,c) > 0, where
fola, b,c) =(a® + b*+¢?) > (a> — 7bc)(a® + b?)(a? + ¢2)
+9(ab + bc+ca) l_[(b2 +¢?)

is a symmetric homogeneous polynomial of degree eight. Notice that any symmet-
ric homogeneous polynomial of degree eight fg(a, b, c) can be written in the form

fela,b,c)=A(p,q)r* + B(p,q)r + C(p,q),
where the highest polynomial A(p, q) has the form
Alp,q) = ap®+ Bq.

Since

fo(a, b,¢) =(p> —2q) > (a> — 7bc)(p? —2q — c2)(p* — 29 — b?)
+9q] J(0*—2q¢—a?),
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fs(a, b, c) has the same highest polynomial as
gs(a, b,c) =(p? —29) Y (a® = 7bc)(—c*)(—b?) + 9g(—a?)(—b?)(—c?)
=(p*—2q) (Sr2 — 72 b3c3) —9qr?;
that is,
Alp,q) = (p* —2¢)(3—21) —9q = —9(p* — 3¢).

Since A(p,q) < 0 for all real a, b, c, it suffices to prove the original inequality for
b =c =1 (see Lemma below). We need to show that

2
- 27aq —
a—=7 2(7a 1)+9(2a+1) >0,
2 az+1 az+2

which is equivalent to

(a—1)*(a+2)*(a®?—2a+3)>0.
The equality holds for a = b = ¢, and also for —a/2 = b = ¢ (or any cyclic permu-
tation).

Lemma. Let
p=a+b+c, gq=ab+bc+ca, r=abc,

and let fg(a, b, c) be a symmetric homogeneous polynomial of degree eight written in
the form

fs(a, b,¢) =Alp,q)r* +B(p,q)r + C(p,q),
where A(p,q) < O for all real a, b,c. The inequality fg(a,b,c) > 0 holds for all real
numbers a, b, ¢ if and only if fg(a,1,1) > 0 for all real a.

Proof. For fixed p and q,
hg(r) = A(p,)r* + B(p,Q)r + C(p,q)

is a concave quadratic function of r which is minimum when r is minimum or
maximum; that is, according to P 2.53 in Volume 1, when two of a, b, ¢ are equal.
Thus, the inequality fg(a, b,c) > 0 holds for all real numbers a, b, ¢ if and only if
fs(a,1,1) = 0 and f3(a,0,0) > O for all real a. The last condition is not necessary
because it follows from the first condition as follows:

fo(a,0,0) =1lim fy(a, t,t) = lim°fy(a/t,1,1) 2 0.

Notice that A(p, q) is called the highest polynomial of fg(a, b, c).

Remark. This Lemma can be extended for the case where the highest polynomial
A(p, g is not nonnegative for all real a, b, c.

o The inequality fg(a, b,c) > 0 in the preceding Lemma holds for all real numbers
a, b, ¢ satisfying
Alp,q) <0
if and only if fg(a,1,1) = 0 for all real a satisfying A(a +2,2a+ 1) < 0.
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P 1.173. If a, b, c are nonnegative real numbers, no two of which are zero, then

a2—4bc+b2—4ca c>—4ab 9(ab+ bc+ca)
b2 +¢2 c2+a? a?+ b? a?+ b2 +c?

(Vasile Cirtoaje, 2014)

>2,
2

Solution. Let
p=a+b+c, qgq=ab+bc+ca, r=abc.

Write the inequality as fg(a, b,c) > 0, where
fola, b,c) =2(a®+ b* +¢?) > (a> —4bc)(a® + b*)(a? + ¢?)
+9(2ab + 2bc + 2ca—a? —b*—¢?) l_[(b2 +¢?)

is a symmetric homogeneous polynomial of degree eight. Any symmetric homoge-
neous polynomial of degree eight can be written in the form

fs(a,b,c)=A(p,qQ)r* +B(p,)r + C(p,q),

where A(p,q) = ap? + Bq is called the highest polynomial of fg(a, b,c). From

fola,b,c) =2(p* —2q) D (a* — 4bc)(p® — 2 — c*)(p* — 2q — b?)
+9(4g—p*| J(0*—29-a?),

it follows that f3(a, b, c) has the same highest polynomial as

gs(a,b,) =2(p* —2q) D (a* —4be)b’c” + 9(4q — p*)(—a’b’c?)
=2(p*—2q) (Srz — 42 b3c3) —9(4q — pH)r?;
that is,
A(p,q) = 2(p* —2q)(3 —12) — 9(4q — p*) = —9p>.

Since A(p,q) < 0 for all a, b,c > 0, it suffices to prove the original inequality for
b=c¢ =1, and for a = 0 (see Lemma below).
For b = ¢ =1, the original inequality becomes

a’—4 2(4a—1) 9(2a+1)
_ + >
2 az+1 az+2

2
2 2
which is equivalent to

a(a+4)(a—1)*>0.

For a = 0, the original inequality turns into

b% 2 5bc 9
0 > Z
2

—+—+ >
2 b2 b24c2
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Substituting

the inequality becomes

(x2—2)+522,
X

(x —2)(2x* +4x —5) > 0.

Thus, the proof is completed. The equality holds for a = b = ¢, and also for a =0
and b = ¢ (or any cyclic permutation).

Lemma. Let
p=a+b+c, gq=ab+bc+ca, r=abc,

and let fg(a, b,c) be a symmetric homogeneous polynomial of degree eight written in
the form

fa(a,b,¢c) =Alp,Q)r* + B(p,)r + C(p,q),

where A(p,q) < O for all a,b,c > 0. The inequality fg(a,b,c) = 0 holds for all
a, b,c > 0 if and only if the inequalities fg(a,1,1) > 0 and f5(0, b,c) = 0 hold for all
a,b,c>0.

Proof. For fixed p and q,

hg(r) =A(p,q)r* +B(p,q)r + C(p,q)

is a concave quadratic function of r. Therefore, hg(r) is minimum when r is mini-
mum or maximum; that is, according to P 3.57 in Volume 1, when b =c or a = 0.
Thus, the conclusion follows. Notice that A(p, q) is called the highest polynomial of

fs(a, b,c).

Remark. This Lemma can be extended for the case where the highest polynomial
A(p, q is not nonnegative for all a, b,c > 0.

o The inequality fg(a,b,c) = 0 in the preceding Lemma holds for all a,b,c > 0
satisfying A(p,q) < 0 if and only if the inequalities fg(a,1,1) > 0 and f3(0,b,c) =0
hold for all a, b,c > 0 satisfying A(a +2,2a +1) <0 and A(b +c,bc) < 0.

O

P 1.174. If a, b, ¢ are real numbers such that abc # 0, then

(b+c)2+(c+a)2+(a+b)2> 10(a + b +c)?
a? b2 2 3(a?+b2+c2)

(Vasile Cirtoaje and Michael Rozenberg, 2014)
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Solution. Let
p=a+b+c, gq=ab+bc+ca, r=abc.

By the Cauchy-Schwarz inequality, we have

2 2
Z(b+C)2 - [+ 2(Xa’+Xab)”  2(p2—q)?
a2 T Sa¥b+c)? Dlab?+abcda  ¢—pr
Therefore, it suffices to show that
2 32 2
2(p*—q) S g4 10P ,
q*—pr 3(p*—2q)

which is equivalent to
3(p*—q)* _ 8p*—6q
q2—pr ~ p2—2q

Using Schur’s inequality
p®+9r > 4pq,
we get
4pq—p° _ p*—4p’q+9¢
9 9 '

q¢*—pr<q’—p-
Thus, it suffices to prove that

27(p* —q)? - 8p> —6q
p*—4p2q+9¢> ~ p*—2q°’

which is equivalent to the obvious inequality
p*(p*—3q)(19p*—13q) = 0.

The equality holds fora = b =c.

P 1.175. Let a, b, ¢ be real numbers such that ab + bc + ca = 0 and no two of which
are gero. Prove that

a b C 3
+ + B
b+c c¢c+a a+b 2

(@)

(b) if ab <0, then

a b c
+ + > 2.
b+c c¢c+a a+b

(Vasile Cirtoaje, 2014)
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Solution. Let as show first that b+c¢ # 0, c+a # 0 and a + b # 0. Indeed, if
b+c =0, then ab + bc + ca > 0 yields bc > 0, hence b = ¢ = 0, which is not
possible (because, by hypothesis, at most one of a, b, c can be zero).

(a) Use the SOS method. Write the inequality as follows:
a 9
+Q 2,
Z ( b+c 2
D2w+q(§:1 )
b+c
Z (a + b a+c 2)
a+c a+b

Z (b—c) >0,
(a+b)la+c)

v

9,

v

0,

Z (b—c)?
a2+ (ab+ bc+ca) —
Clearly, the last inequality is true. The equality holds for a = b = ¢ # 0.

(b) From ab + bc + ca > 0, it follows that if one of a, b, c is zero, then the
others are the same sign. In this case, the desired inequality is trivial. Consider
further that abc # 0. Since the problem remains unchanged by replacing a, b, ¢
with —a,—b, —c, it suffices to consider

a<0<b<c.
First Solution. We will show that
F(a,b,c)> F(0,b,c) > 2,
where

a b C

F(a,b,c) = + - :
(ab,¢) b+c c¢c+a a+b

The right inequality is true because
b
F(0,b,c)= -+ < >2.
c b

Since

1 b ¢
F(a’b’c)_F(O’b’c):a[b+c_c(c+a)_b(a+b)]’

the left inequality is true if

b 4 c - 1
c(c+a) bla+b)  b+c’
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From ab + bc + ca > 0, we get

—ca —ab
c+a>—>0, a+b>——>0,
b c
hence
b S b c S C
c(c+a)” ¢ bla+b) b2
Therefore, it suffices to prove that
b e, 1
c2 b2 b+c
Indeed, by virtue of the AM-GM inequality, we have
b c 1 2 1

4+ > = — > 0.
c2 b2 b+c” Vbc 2vbc

This completes the proof. The equality holds for a = 0 and b = ¢, or b = 0 and
a=c.

Second Solution. From b+ ¢ > 0 and
(b+c)(a+b)=b%+(ab+ bc+ca) >0,

(b+c)(c+a)=c*+(ab+ bc+ca)>0,

it follows that
a+b>0, c+a>0.

By virtue of the Cauchy-Schwarz inequality and AM-GM inequality, we have

a b c a (b +c¢)?
+ + >
b+c c¢c+a a+b b+c blct+a)+cla+b)
_a (b +c)?
" b4c  2bc+a(b+c)
a N (b +c)?

>
2a+b+c  (b+c)?

+a(b+c)

4a N 2(b+c¢) — 5
2a+b+c 2a+b+c

P 1.176. If a, b, c are nonnegative real numbers, then

a + b N c >ab+bc+ca
7a+b+c 7b+c+a 7c+a+b (a+b+c)’

(Vasile Cirtoaje, 2014)
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First Solution. Use the SOS method. Write the inequality as follows:

Z[ 2a a(b+c) ]
_ >0,
7a+b+c (a+b+c)?

Za[(a—b)+(a—c)](a—b—c) >0
7a+b+c -

J

Za(a—b)(a—b—c) +Z a(a—c)a—b—c) >0

7a+b+c 7a+b+c

>

a(a—b)(a—b—c) b(b—a)(b—c—a)
Z 7a+b+c +Z 7b+c+a =0

Z(a_b)[a(a—b—c)_ b(b—c—a)] >0,

7a+b+c 7b+c+a

>

Z(a —b)*(a®+ b*—c%?+14ab)(a+ b+ 7c) > 0.

Since
a’*+b*—c*+14ab>(a+b)*—c*=(a+b+c)a+b—c),

it suffices to show that
> (a—b)*a+b—c)(a+b+7c)>0.
Assume that a > b > c. It is enough to show that
(a—c)*(a—b+c)a+7b+c)+(b—c)*(—a+b+c)(7a+b+c)>0.

For the nontrivial case b > 0, we have
2 @ 2o 4 2
(a—c)* > ﬁ(b—c) > E(b—c) .
Thus, it suffices to prove that

ala—b+c)a+7b+c)+b(—a+b+c)(7a+b+c)=>0.

Since
a(a+7b+c)=>b(7a+b+c),

we have
ala—b+c)la+7b+c)+b(—a+b+c)(7a+b+c)=>

>bla—b+c)(7a+b+c)+b(—a+b+c)(7a+b+c)
=2bc(7a+b+c)=>0.

This completes the proof. The equality holds for a = b = ¢, and also for a = 0 and
b = ¢ (or any cyclic permutation).



240 Vasile Cirtoaje

Second Solution. Assume that
a<b<c¢, a+b+c=3,

and use the substitution

2a+1 2b+1 2c+1
X = , Y= , 2= .
3 3 3

We have b+ ¢ > 2 and

1
ngSySz, x+y+z=3, x<1, y+z=>2.

The inequality can be written as follows:

a b c 9—a?—b*>—c?

+ + > ,
2a+1 2b+1 2c+1 6
a?+b%+c? 1 1 1
> + + ,
3 2a+1 2b+1 2c+1
(2a+1)2+(2b+1)2+(2c+1)2—15> 1 N 1 N 1

12 ~2a+1 2b+1 2c+71’

1 1 1
o(x*+y*+2%) > 4(— +—+ —) +15.
X y z
We will use the mixing variables method. More precisely, we will show that

E(x,y,2) = E(x,t,t) >0,

where
t=(y+2)/2=(3—-x)/2,
2 2 2 ]. 1 1
E(x,y,2) =9(x*+ y*+2*)—4( =+ —+ = | - 15.
X Yy z
We have
1 1 2
B, ,9) = B, 6,0) =90 + 22— 26) —4 -+ = 2)
y z
_ 0 —2)[9yay +2)=8] _
2yz(y +2) -
since
9yz=02b+1)2c+1)=2(b+c)+1=5, y+z=>2.
Also,

—1)2 _ _
Bt t)=0x?+ 20— 15— 48 _ (= D"Bx—1B—3x)

0.
x t 2x(3—x)
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Third Solution. Write the inequality as fs(a, b,c) = 0, where fs(a, b,c) is a sym-
metric homogeneous inequality of degree five. According to P 3.68-(a) in Volume
1, it suffices to prove the inequality for a = 0 and for b = ¢ = 1, when the inequality
is equivalent to

(b—c)*(b%+c%24+11bc)>0

and
ala—1)*(a+14) >0,

respectively.

P 1.177. If a, b, c are positive real numbers such that abc = 1, then

a+b+c 1 1 1 8
+ - + > -
30 a+1 b+1 c¢+1 5

(Vasile Cirtoaje, 2018)

Solution. Assume that a > b > ¢, which involves ab > 1. Since a+ b > 2v ab and

1,2 (va—vb)*(vab—1) -0
a+l b+1 Vab+1 (a+D(b+1D(Vab+1)

it suffices to show that

2vab+c¢ 2 1 8
+ + > —.
30 Jab+1 c¢+1 5

Substituting v'ab = 1/t, which implies ¢ = t?, the inequality becomes

t3+2+ 2t N 1 >8
30t t+1 t24+1 5

t®+ 5+ 13t* — 45t +44t>— 16t +2 > 0,
(t—1D*[t*+3t3+2(3t—1)*] > 0.

The equality holds fora=b=c=1.
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P 1.178. Let f be a real function defined on an interval I, and let x, y,s € 1 such that
x +my = (1 + m)s, where m > 0. Prove that the inequality

FO)+mf(y)= (1 +m)f(s)
holds if and only if
h(x,y) =0,
where
h(x,y) = g(X)—g(y)’ o) = fW—f6)
xX—y u—s

(Vasile Cirtoaje, 2006)

Solution. From

f)+mf(y)=Q+m)f(s)=[f (x)=f(s)]+mlf (y)—f(s)]

=(x—s)g(x)+m(y —s)g(y)
m

1+m
m

=T —y)*h(x,y),

(x—y)glx)—gy)]

the conclusion follows.

Remark. From the proof above, it follows that P 1.178 is also valid for the case
where f is defined on I\ {u,} and x, y,s # u,.
Ll

P 1.179. Let a, b,c < 8 be real numbers such that a + b + ¢ = 3. Prove that

13a—1 13b—1 13c—1
- -
az+23 b2+23 2423

3
<-.
2

(Vasile Cirtoaje, 2008)

Solution. Write the inequality as

F@+f D)+ f©)= =,

where 1-13
—13u
u)= .
fw uz+23
Assume that a < b < ¢, and denote

_b+c
=

S
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We have
s= 3 —a’ 1<s<8
2
We claim that
f(b)+ f(c) = 2f(s).
To show this, according to P 1.178, it suffices to show that
h(b,c) >0,
where (5)— £(0) (W)~ £(5)
b)—g(c u)—f£(s
h(b,c) = gb—g, gu) = ]4-
— u—s
We have

_ (13s—1)u—s—299
© (s2+23)(w2+23)
(1—13s)bc+(s+299)(b+c)+23(13s—1)
(s2+23)(b2 +23)(c2+23) ’

g(u)

h(b,c) =

Since 1—13s < 0 and bc < 52, we get

(1—13s)s% + (s +299)(2s) + 23(13s — 1)
(s2423)(b2 + 23)(c2 +23)
=135+ 35+ 8975 — 23
 (s2423)(b2 +23)(c2+23)
- —13s%+ 352+ 8975 — 712
(s2 4+ 23)(b2 + 23)(c2 + 23)
_ (8 —5)(13s%2+101s —89) >0
(s2+23)(b2+23)(c2+23)

h(b,c) >

Therefore,

F@+FO)+ T+ 3> F@+2() + 2 = F@+2f (25°)+3
_1-13a  4(13a—37) N 3

a2+23  a?—6a+101 2
3(a—1)*(a+11)?

T 2@ +23) @ —6a+101) ~

The equality holds fora = b =c¢ =1, and also for a = —11 and b = ¢ = 7 (or any

cyclic permutation).
O
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3
P 1.180. Let a,b,c # 2 be nonnegative real numbers such that a + b + ¢ = 3. Prove

that
1—a 1-b 1—c
> 0.

(4a—32 " (4b—32  (4c—3) -

(Vasile Cirtoaje, 2006)

Solution. Write the inequality as

fla)+f(b)+f(c) =0,
where ,
—u
fluw)= m
Assume that a < b < ¢, and denote
b+c
s =
2
We have
3—a 3
s= , 1<s<—
2 2
We claim that
f(B)+ f(c) = 2f (s).
According to Remark from P 1.178, it suffices to show that
h(b,c) >0,
where (5)— () F =)
—g(c u)—f(s
hb,o) = S5 =52 g = =5 ==
— u—s
We have
16(s —1)u—16s + 15
glu)= ,
(4s —3)%(4u—3)?
1 —32(s — 1)bc + 64s%2 —90s + 27
_h(b: C) =
8 (4s —3)%(4b — 3)2(4c —3)2

Since s —1 > 0 and bc < s?, we get

—32(s — 1)s* + 64s> — 90s + 27
(4s —3)2(4b — 3)2(4c — 3)2

=325 4+96s*—90s + 27

(45 —3)2(4b —3)2(4c —3)2

_ (3—2s)(3 —4s)?

" (4s—3)2(4b—3)2(4c—3)2 ~

%h(b,c) >
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Therefore,

2
_ 1—a N a—1  12a(a—1)?
" (4a—3)2  (3—2a)2 (4a—3)2(3—2a) "

F@+f(B)+£(O) > F(a)+2f(s) = f(a) +2f (3_“)

The equality holds for a = b = ¢ =1, and also for a =0 and b = ¢ = 3/2 (or any
cyclic permutation).
O]

P 1.181. If a, b, c are the lengths of the sides of a triangle, then

—

a? b? c?
+ + > -,
4a2+4+5bc  4b%2+5ca 4c2+5ab " 3

(Vasile Cirtoaje, 2009)

Solution. Use the highest coefficient method. Write the inequality as fi(a, b,c) >
0, where

fe(a,b,c)=3 Z a?(4b% + 5ca)(4c? + 5ab) — l_[(4a2 +5bc)
= —45a*b*c* — 25abc Z a® +40 Z a’b’.
Since fi(a, b, c) has the highest coefficient
A=—45—-75+120=0,

according to P 3.76-(b) in Volume 1, it suffices to prove the original inequality for
b=c=1and0<a<2 and fora=>b+c.

Case 1: b=c =1, 0 <a < 2. The original inequality becomes

a? 2 1
+ > —,
4a24+5 5a+4 " 3

2—a)(a—1)*>0.
Case 2: a = b + c. Using the Cauchy-Schwarz inequality

b2 N c? - (b +c)?
4b2+5ca  4c2+5ab — 4(b%2+c2)+5a(b+c)’

it suffices to show that

a® N (b+c)? 1
4a2+5bc  4(b2+c2)+5a(b+c) 3’
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which is equivalent to

1 1 1
+ = .
4(b%2+c2)+13bc  9(b%2+c2)+10bc ~ 3(b2+c2+2bc)

Using the substitution

the inequality becomes

1 1 1
+ > ,
4x+13  9x+10 ~ 3(x+2)

(x—2)(3x—4)>0.

The equality holds for an equilateral triangle, and for a degenerate triangle with
a/2 = b = c (or any cyclic permutation).
O

P 1.182. If a, b, c are the lengths of the sides of a triangle, then

1 1 1 3
+ + > :
7a2+b2+c2  7b2+c2+a? 7c2+a?+b2 " (a+b+c)?

(Vo Quoc Ba Can, 2010)
Solution. Use the highest coefficient method. Denote
p=a+b+uc, qg=ab+bc+ca,
and write the inequality as fi(a, b,c) = 0, where
fs(a,b,c) =p? Z:(7b2 +c*+a*)(7c*+a*+b*) -3 l_[(7a2 + b +¢c?)
= p? > (6b*+ p> —2q)(6¢> + p> —29) — 3| [(6a>+p?—29).

Since f¢(a, b, c) has the highest coefficient

A=-3-6°<0,

according to P 3.76-(b) in Volume 1, it suffices to prove the original inequality for
b=c=1and0<a<2,andfora=b+c.

Case 1: b=c =1, 0 <a < 2. The original inequality reduces to

1 2 3
+ > ,
7a2+2 a?+8  (a+2)?

a(8—a)(a—1)*>0.
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Case 2: a = b + c. Write the inequality as

1 1 1 3
+ + > :
4(b2+c2)+7bc  4b2+c2+bc  4c2+b2+bc 2(b+c)?

Since

3 1 3 1 5
_ < _ —
2(b+c)2  4(b2+c2)+7bc ~ 2(b+c)®2 4(b2+c2)+8bc  4(b+c)?’

it suffices to show that

1 1 5
+ = s
4b24+c2+bc  4c2+b2+bc  4(b+c)?

which is equivalent to
4[5(b% + c?) 4+ 2bc][(b? + c®) + 2bc] > 5(4b* + ¢ + bc)(4c? + b* + be),
4[5(b* + c*)* + 12bc(b* + ¢?) + 4b*c*] = 5[4(b* + c*)* + 5bc(b? + ¢*) + 10b*c?],

bc[23(b—c)*+12bc] > 0.

The equality holds for an equilateral triangle, and for a degenerate triangle with
a =0 and b = ¢ (or any cyclic permutation).
O

P 1.183. Let a, b, c be the lengths of the sides of a triangle. If k > —2, then

Za(b+c)+(k+1)bc<3(k+3)
b2+ kbc + c2 - k+2

(Vasile Cirtoaje, 2009)
Solution. Use the highest coefficient method. Let
p=a+b+c, qg=ab+bc+ca.
Write the inequality as f¢(a, b,c) = 0, where
fola,b,c) =3k +3)| J(b? +kbc+c?)

—(k+2) > [a(b+c)+ (k+1)bc)(c? + kea + a?)(a® + kab + b?).

From
fola,b,c) =3k +3)[ [(p*—2q+ kbc—a?)

—(k+2) Z(q + kbc)(p? —2q + kca— b?)(p* —2q + kab —¢?),
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it follows that f,(a, b, c) has the same highest coefficient A as f (a, b, c), where
f(a,b,c)=3(k+3)Ps(a, b,c) —k(k +2)P,(a, b, c),

Py(a,b,c) = l_[(kbc —a?), P(a,b,c)= Z bc(kca — b*)(kab — c?).

According to Remark 2 from the proof of P 2.75 in Volume 1, we have

A=3(k+3)P;(1,1,1) —k(k+2)P,(1,1,1)
=3(k+3)(k—1)*—3k(k+2)(k—1)*=—9(k—1)*<0.
Taking into account P 3.76-(b) in Volume 1, it suffices to prove the original inequal-
ityforb=c=1and0<a<2, and fora=">b+c.
Case 1: b=c =1, 0 < a < 2. The original inequality reduces to
2a+k+1 2(k+2)a+2 3(k+3)
+ <
k+2 a?+ka+1 k+2
a—k—4+ (k+2)a+1 <0
k+2 a?+ka+1
(2—a)a—1)*>0.

5

J

Case 2: a = b + c. Write the inequality as follows:

Z[a(b+c)+(k+1)bc_1] 3

< _-
b2 + kbc + c2 T k42’

Z:ab+bc+ca—b2—c2< 3

b2 + kbc + c2 T k+2

3bc N bc —c? N bc — b? - 3
b2+kbc+c2 b2+ (k+2)(bc+c2) 2+ (k+2)(bc+Db2) " k+2

Since

3bc < 3
b2+ kbc+c2 ™ k+2°

it suffices to prove that

bc —c? N bc — b? <0
b2+ (k+2)(bc+c2) 2+ (k+2)(bc+b2)~

This reduces to the obvious inequality
(b—c)*(b%2+bc+c?)>0.

The equality holds for an equilateral triangle, and for a degenerate triangle with
a/2 = b = ¢ (or any cyclic permutation).
OJ
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P 1.184. Let a, b, c be the lengths of the sides of a triangle. If k > —2, then

Z 2a?% + (4k +9)bc < 3(4k +11)
b2+kbc+c2 ~  k+2

(Vasile Cirtoaje, 2009)
Solution. Use the highest coefficient method. Let
p=a+b+c, q=ab+bc+ca.
Write the inequality as fg(a, b,c) > 0, where

fola,b,c) =34k +11) | J(b*+kbc +c?)

—(k+2) Z[2a2 + (4k + 9)bc](c? + kea + a?)(a® + kab + b?).

From
fela,b,c) =3(4k +11) l_[(p2 —2q + kbc —a?)

—(k + Z)Z:[Za2 + (4k +9)bc](p? —2q + kca — b?)(p* — 2q + kab — ¢?),
it follows that f4(a, b, c) has the same highest coefficient A as f (a, b, c), where

f(a,b,c)=3(4k +11)P;(a, b,c) — (k +2)P,(a, b,c),

Py(a,b,c) = J(kbe—a?),
Py(a,b,c) = > [2a® + (4k + 9)bc](kea — b*)(kab —c?).
According to Remark 2 from the proof of P 2.75 in Volume 1, we have
A=3(4k +11)P;(1,1,1) — (k + 2)P,(1,1,1)

=3(4k +11)(k— 1) —3(k + 2)(4k + 11)(k — 1)?
=—9(4k +11)(k—1)* < 0.

Taking into account P 3.76-(b) in Volume 1, it suffices to prove the original inequal-
ityforb=c=1and0<a<2,andfora=b+c.

Case 1: b=c =1, 0 < a < 2. The original inequality reduces to

2a2+4k+9+2(4k+9)a+4< 3(4k +11)
k+2 ai+ka+1 — k42

2

a’?—4k—12 (4k+9)a+2
+ <0,
k+2 a2+ka+1
2—a)(a—1)*>0,
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Case 2: a = b + c. Write the inequality as follows:
Z [Za2 + (4k +9)bc _4]
b2+ kbc + c2
Z 2a* —4b?—4c? + 9bc <0
b2+ kbc + c2 T k+2
13bc —2b? —2c? N bc —2b? + ¢? N bc—2c?+ b? <9
b2+ kbc + c2 b2+ (k+2)(bc+c2) c2+(k+2)(bc+Db2) ™ k+2

Since

IA

9
k+2’

9  13bc—2b*-2c*  (2k+13)(b—c)’
k+ 2 b2+kbc+c2  (k+2)(b2+kbc +c2)

and
bc —2b% + ¢? bc —2c? + b?

b2+ (k+2)(bc+c2) | 2+ (k+2)(bc+b2)
(b—c)*(b%+c?+3bc)—2(k + 2)(b? —c?)?
b2+ (k+ 2)(be + c2)][c® + (k + 2)(be + b2]’
we only need to show that

2k +13 2(k +2)(b+c)*—b*—c?>—3bc -0
(k+2)(b2+kbc+c2)  [b2+(k+2)(bc+c2)][c2+ (k+2)(bc+b2] —

Using the substitution

the inequality can be written as

2k +13 N (2k+3)x +4k+5 >0
(k+2)(x+k) (k+2)x2+(k+2)(k+3)x+2k2+6k+5 "

which is equivalent to
4(k+2)(k+4)x2+2(k+2)Bx+C >0,
where

B =2k*+13k+22, C =8k®>+51k*+ 98k + 65.

Since
B=2(k+2)?+5(k+2)+4>0,
C=8(k+2)°*+2k*+ (k+1)*>0,
the conclusion follows. The equality holds for an equilateral triangle, and for a

degenerate triangle with a/2 = b = ¢ (or any cyclic permutation).
O
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P 1.185. If a, b, ¢ are nnonnegative numbers such that abc = 1, then

1 1 1 1
(a+1)2 (b+1)2 (c+1)2 2(a+b+c—1) "

(Vasile Cirtoaje, 2018)

Solution. Let
p=a+b+c, q=ab+bc+ca.

By the Cauchy-Schwarz inequality, we have
2.2 2
Z 1 _ Z bc > (Z bc)
(a+1)2 (1+0bc)? ~ D(1+bc)?
2

q
C q2+29—2p+3’

Thus we only need to show that

q? 1
+ >1,
q?+2q—2p+3 2(p—1)

which is equivalent to
(g—2p+3)*>0.

The equality occurs fora=b =c =1.

P 1.186. If a, b, c are positive real numbers such that
a<b<c, a’bc>1,
then

1 + 1 + 1 > 3
1+a3 1+4+b3 1+4c¢3  1+4abc

(Vasile Cirtoaje, 2008)

Solution. Since

L S (x—y)(xy—1)
1+x2 14+y2 14+xy QA+x2)A+y)(A+xy)’
we have
1 1 2
+ > ,
1+b3 1+4+c¢3 1+t
where

t=+bc, at=>1, t=1, t=>a.
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So, we only need to show that

1 2 3
+ > s
1+a3 1+¢3 1+ at?

which is equivalent to
a(t®>—a?) - 2t3(t —a)
1+a® = 1+¢83
(t—a)*[at’(2a+t)—a—2t]>0.

This is true since
at’(2a+t)—a—2t>t(2a+t)—a—2t =(t—1)*+(at—1)+a(t—1)>0.
The equality occurs fora=b =c > 1.
Remark 1. The inequality is true for the weaker condition
a®bc>1,

that is a*t®> > 1. Since bc > 1, it suffices to show that at?(2a +t)—a—2t > 0.
This is true if the following homogeneous inequality is true:

at?

W(ZQ'F t)>a+2t,

that is
t13(2a 4 t) > a*’®(a + 20).

Setting a = 1 and t = z* > 1, the inequality becomes as follows:
2(2+2%)>1+22°,
2zt —1>22(22—1),
(z2—1)(z—1)*>0.
Remark 2. The inequality is also true for the condition
a’b®>1.
Indeed, if a*b®> > 1, then b > 1, bc > b®> > 1 and
a*(bc)*? > 1,
which is equivalent to to the condition a®°bc > 1 from Remark 1.

Remark 3. From P 1.186, the following statement follows (V. Cirtoaje and V. Vor-
nicu):
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e Ifa,b,c,d are positive real numbers such that
a>b>c>d, abcd > 1,

then
1 1 1 3

+ + = .
1+a3 1+b3 14c¢®  14+abc

This is valid because ¢ < b < a and c?ba > 1.

P 1.187. If a, b, c are positive real numbers such that
a<b<c, d*>1,

then
1 1 1 3

+ + > .
14+a3 1+b3 1+4c¢3  1+4+abc

(Vasile Cirtoaje, 2021)

Solution. Denote

d=+ac, d=1.
If d =1, then ac = 1 and a?c > 1 yield a = b = ¢ = 1, and the required inequality
is an equality. Consider next that d > 1. For fixed a and c, write the inequality as
f(b) = 0, where

L + L + 1 _ 3 bela,c]
14+a® 14+b3 1+4¢3 1+abc’ T

and calculate the derivative

f(b) =

d> b?
(1+d2b)z (14 b3)2
_ (db2=1)(b—d)[d(1 + b*) + b(d?b +1)]
B (1+d2b)2(1 + b3)2 '

1, _
gf (b) =

Ifa < %, then f’(b) < 0 for b € [1/V/d,d] and f’(b) > 0 for b € [a,1/v/d]U
[d,c], hence f(b) is decreasing on [1/+/d,d] and increasing on [a,1/v/d]U[d,c].

1
Thus, it suffices to show that f(a) > 0and f(d) > 0. Ifa > ﬁ’ then f’(b) < 0 for

b €[a,d]and f'(b) =0 for b € [d, c], f(b) is decreasing on [a,d] and increasing
on [d,c], hence it suffices to show that f(d) > 0. In conclusion, we only need to
show that f(a) > 0 and f(d) = 0. Write the inequality f(a) = 0 as follows:
2 1 3
+ >
1+a3 1+4+c¢3  1+a%c

>
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2a%(c —a) - c(c?—a?)
1+a® = 1+4¢3
(c—a)*[a®c(a+2c)—2a—c]>0.

b

This is true because
a’cla+2c)—2a—c>(a+2c)—2a—c=c—a>0.

Write now the inequality f(d) > 0 as

1 1 2
+ = .
1+a® 1+4¢3 1+ (ac)3/?

Since
11 2 (x=yPxy—1)
1+x2 1+y2 1+xy (Q+x2)1+y)(1+xy)’
the inequality is equivalent to

(as/z _ C3/2)2 [(ac)?’/z _ 1] > 0.

This is true because
(ac)® > (a®c)*>1.

The equality occurs fora=b=c > 1.

P 1.188. If a, b, c are positive real numbers such that
a<b<c, 2a+c >3,

then
1 1 1 3

- + > :
2 2 2 = bte)\2
3+a 3+5b 3+c 3+(a36)

(Vasile Cirtoaje, 2021)

Solution. Denote

a+b+c
s=——-—, s=>1.
3
For fixed a and c, write the inequality as f(b) > 0, where
1 1 1 3
b)= + + — , bela,c],
0=t sve ~ 319 La,c]
and calculate the derivative
s b _ (b—s)g(b)

1., .
()= (3+52)2 (3+b2)2  (3+s2)2(3+b2)2°
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where
g(b) = bs(b*+ bs +s*+6)—9.
Denote n
d=2"C 4>1.
2

Ifd =1,thena+c =2and 2a+c > 3 yield a = b = ¢ = 1, and the required
inequality is an equality. Consider next that d > 1. Since

b+ 2d
s= s
3
we have
2(b—d)
b—s= ,
3
2 2 2d)
<f_<?(b)=b(b;r d)[b2+b(b;r d)+(b+9d) +6]—9.

Since g(b) is strictly increasing, g(0) = —9 and
g(d)=3(d*+2d*—3) >0,

there is an unique d; € (0,d) such that g(d;) =0, g(b) <0for b <d, and g(b) >0
for b > d,. If a < dy, then f'(b) < 0 for b € [d;,d] and f'(b) = 0 for b €
[a,d;]U[d,c], hence f(b) is decreasing on [d,, d ] and increasing on [a, d; ]U[d,c].
Thus, it suffices to show that f(a) > 0 and f(d) > 0. If a > d,, then f’(b) < 0 for
b €[a,d] and f'(b) >0 for b € [d,c], f(b) is decreasing on [a,d ] and increasing
on [d,c], hence it suffices to show that f(d) > 0. In conclusion, we only need to
show that f(a) > 0 and f(d) = 0. Denoting

_2a+c
==

p

we may write the inequality f(a) > 0 as follows:
2 1 3
+ > ,
3+a? 3+c2  3+p?

2(p* —a?) S c®—p?
3+a2 ~ 3+c2’
(a—c)*[(a+c)p+ac—3]=>0,

(a—c)*(2a*+ 6ac +c*—9)>0.

This is true because

2a*+6ac+c*—9=(2a+c)*—9+2a(c—a)>0.
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Write now the inequality f(d) = 0 as follows:

1 1 2
+ > s
3+a2 3+c2 3+d?
d>—a® _ *—d?
= ,
3+a? 3+c?
(a—c)*[(a+c)d+ac)—3]>0,
(a—c)*(a*+4ac +c*—6) > 0.

This is true because
3(a® +4ac +c?)—18 > 3(a® + 4ac +c*)—2(2a+c)*=(c—a)(c +5a) > 0.

The equality occurs fora=b =c > 1, and also fora=b =0 and ¢ = 3.

P 1.189. If a, b, c are positive real numbers such that
a<b<c, 9a+8b>17,

then
1 1 1 3
>

+ + :
2 2 2 = btc\2
3+a 3+5b 3+c 3+(a+3+6)

(Vasile Cirtoaje, 2021)
Solution. From a < b < ¢ and 9a + 8b > 17, it follows that
1<b<c¢, a+b+c=>3.
As in the preceding P 1.188, denote

a+b+c
s:—

s 1<s<g,
3

and, for fixed a and b, write the inequality as f (c) > 0, where

1 1 1 3
A0 3+a2 3+b% 3+c2  3+4s2  °
We show that
fle)=f()=o0.
Since
lf’(c)z s B c :(c—s)[cs(c2+cs+sz+6)—9] >0,
2 (3+s2)2  (3+c2)? (3+52)%(3+c2)?
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f(c) is increasing, therefore f(c) > f(b). Denote

_a+2b
=—

Write now the inequality f(b) = 0 as follows:

1 2 3
+ = ,
3+a?2 3+b2 3+p2

p*—a? S 2(b*—p?)
3+a2 = 3+b2
(a—b)*[(a+b)p+ab—3]>0,

b

(a—b)*(a®+6ab+2b>—9)>0.

This is true if
16(a® + 6ab + 2b*) > (7a + 5b)?,

which is equivalent to
(b—a)(b+220a) > 0.

The equality occurs fora=b=c > 1.

Remark. Actually, the inequality is valid for the weaker condition

ka+b>k+1, k = -1,

Sl e

when the inequality
(k + 1)*(a® + 6ab + 2b2) > 9(ka + b)?,

reduces to the form
a(b—a)>0.

The equality occurs fora=b=c>1,and alsofora=0and b=c =

e

P 1.190. Let a, b, c,d be positive real numbers such that abcd = 1. Prove that

>, L <1
1+ab+ bc+ca
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Solution. From

1+1+12 1 N 1 N 1 :\/a+«/3+ﬁ’
a b ¢ Vbc +ca Vab vabc
we get
ab+bc+ca2\/abc(1/a+\/3+\/z)=‘/a+‘/‘/g+‘/€.
Therefore,

> e S !
1+ab+bc+ca Ja+Vb+Jc+d

which is just the required inequality. The equality occurs fora=b=c=d =1.
O

P 1.191. Let a, b, c,d be positive real numbers such that abcd = 1. Prove that

1 1 1 1
+ + + 21
(1+a)2 @@A+b)2 (A+4+c)2 (Q+4+d)2"—

(Vasile Cirtoaje, 1995)

First Solution. The inequality follows by summing the following inequalities (see

P1.1): ) ) )

+ > ,
(1+a)? (1+4+b)2 " 1+4+ab
1 1 1 ab
+ = = .
(1+c¢)? (A+4d)? 14cd 1+ab
The equality occurs fora=b=c=d = 1.

Second Solution. Using the substitution
1 1 1 1
a=—, = —,

where x,y,z,t are positive real numbers such that xyzt = 1, the inequality be-

comes
.X'6 y6 Z6 t6

N2 + 12 + N\ + 1\° =1
3 0 e
x y b4 t
By the Cauchy-Schwarz inequality, we get
o (Z) (Zx)
2 = 2 :
(x3+l) Z(x3+l) Dx64+2D x2+ D x2y22

X
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Thus, it suffices to prove the homogeneous inequality
203y + 32+ P + 32 + 3 e+ 22%) > 2xyth:x2 + szyzzz.

We can get it by summing the inequalities

43y + 32+ P+ y3 32+ y3 e+ 22%) > 6chth:)(2
and

2033+ X2+ P + 32 + Yy + 2% > Bszyzzz,
Write these inequalities as

Z:JcB(y3 +22+t3—3yzt) >0
and
Z:(XB)/3 +y323 + 23x% — 3x%y%2%) > 0,

respectively. By the AM-GM inequality, we have

Y +2+3>3yzt, Py 4y +2°x3 > 3x%y%2

Thus the conclusion follows.

Third Solution. Using the substitution

vz _zt _ tx Xy
w Ty T 4=

where x, y,z,t are positive real numbers, the inequality becomes

x4 v o4 ¢4

+ + + >1
(x2+yz)? (y2+zt)?2 (22+tx)? (t2+xy)?

Using the Cauchy-Schwarz inequality two times, we deduce

x o4 x4 o4

(x2+ yz)? - (22 +tx)? = (x2+ y2)(x2 +22) " (22 +t2)(22 + x2)

1 ( x* N z* ) x? + 22
x2+22\x24+y2  2241t2)  x2+y2+2z2+ 2’
hence
x* z* x? + z*
(x2+ yz)? - (22 +tx)2  x2+y24+z241t2

Adding this to the similar inequality

y4 N t4 - y2+t2
(y2+zt)2  (t24xy)?2  x2+y2+2z2+1t2
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we get the required inequality.

Fourth Solution. Using the substitution

where x, y, z,t are positive real numbers, the inequality can be written as

y2 22 tZ XZ

Gty2 G+ef Gror T ap ]

By the Cauchy-Schwarz inequality and the AM-GM inequality, we get

y2 o R2yG+a)P
(x+y)? ~ D(x+y)2(y +2)?

[+ yP+ i+l +E+ )2+ (E+x)TP
Ay E+H Oy 22+ (t+x)2] T

Remark. The following generalization holds true (Vasile Cirtoaje, 2005):

e Letay,a,,...,a, be positive real numbers such that a,a,---a, = 1. Ifk > /n—1,

then
1 1 1 n

+ +-0 4 > .
(1+kay)?  (1+ka,)? (1+ka,)?  (1+k)2

1
P 1.192. Let a,b,c,d # 3 be positive real numbers such that abcd = 1. Prove that

P SR SR
(Ba—1)2  (3b—1)22  (Bc—1)? (Bd—12"

(Vasile Cirtoaje, 2006)

First Solution. It suffices to show that

1 a?
(Ba—1)2 " a3+b3+c3+d3

This inequality is equivalent to
6a2+b3+c2+d3>9a},

which follows by the AM-GM inequality, as follows:

6a2+b3+c3+d3>9va12b-3¢c-3d-3 =9a".
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The equality occurs fora=b=c=d = 1.
Second Solution. Leta < b <c¢ <d. If a <2/3, then
1
—>1,
(3a—1)2

and the desired inequality is clearly true. Otherwise, if 2/3 <a < b <c < d, we
have
4a®—(3a—1)?*=(a—1)*(4a—1) >0.

Using this result and the AM-GM inequality, we get

1 1 1 Y 1
—2>= ) =2\ =1
Z (3a—1)2 42 a3 = \ a3b3c3d3

Third Solution. We have

11 _a(a—l)z(a+2)(a2+3)> .
(Ba—1)2 (a®+1)2  (Ba—1)Xa3+1)2 ~

1 1
2ia 1y > 2@y

Thus, it suffices to prove that

therefore,

1
—>1,
I

which is an immediate consequence of the inequality in P 1.191.

P 1.193. Let a, b, c,d be positive real numbers such that abcd = 1. Prove that

1 1 1 1
+ + + >1
l+a+a?+a® 1+b+b2+b3 1+c+c2+c3 1+d+d?+d3

(Vasile Cirtoaje, 1999)

First Solution. We get the desired inequality by summing the inequalities

1 1 1
+ = )
l1+a+a?+a®> 14+b+b2+b3 " 1+(ab)’/?
1 1 1

+ = .
l+c+c24+c3 14+d+d?2+d3® 1+ (cd)3/?
Thus, it suffices to show that
1 1 1
+ > ,
1+x2+x%+x6  1+y2+y++y5  1+x3y3
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where x and y are positive real numbers. Putting p = xy and s = x? + xy + y?,
this inequality becomes

pP(x®+y®)+p*(p—1)(x*+yH—p*(p*—p+1)(x*+y*)—p®—p*+2p*—p*+1 >0,

PP =y +p*(p— D=y —p*(p*—p+D(x—y) +p°—p*—p*+1>0,
p’s*(x—y)?+p*(p—1)(s+p)*(x—y)*—p*(p*—p+1)(x—y)*+p°—p*—p*+1 >0,
p*(s+1)(ps—1)(x—y)* +(p*—1)(p*—1) > 0.

If ps—1 > 0, then the inequality is clearly true. Consider further that ps < 1. From
ps <1 ands > 3p, we get p? < 1/3. Write the desired inequality in the form

p*(1+s)1—ps)(x—y) <(1—p>)(1—p*.
Since
p(x—y)=p(s—3p) <1-3p*<1—p?
it suffices to show that
p(1+s)(1—ps)<1—p*
Indeed,

4p(1+s)(1—ps) <[p(1+s)+(1—ps) =1 +p)* <2(1+p?) <4(1—pH.

The equality occurs fora=b=c=d =1.

Second Solution. Assume that a > b > ¢ > d, and write the inequality as

1
> >1.
(1+a)(1+a2)
Since
1 1 1 1 1 1
< < , < < ,
l14a 14+b 1+c 14a®> 1+Db2 142

by Chebyshev’s inequality, it suffices to prove that

1( 1 + 1 + 1 )( 1 + 1 + 1 )+ 1 > 1
3\1+a 1+b 1+c/\14+a%> 1+b%2 1+c2 1+d)(1+d?) —
On the other hand, from Remark 3 of P 1.186, we have

1 1 1 3 3vd
+ + > - = -
1+4a 1+b 1+c 1++vabc Vd+1

and
1 1 1 3 3vdz2

+ + > = .
1+a2 1+b2 1+4c¢2~ 1++va2b2c2 Jd2+1
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Thus, it suffices to prove that

3d + ! > 1.
Q+Vd)(1+vd2) (1+d)(1+d?)

Putting x = v/d, this inequality becomes as follows:

3x3 N 1 -1
(1+x)(1+x2) (1+x3)(1+x6) " 7

331 —=x+x)A—=x2+xH)+1> 1 +x3)(Q +x9),
x3(2—3x+2x3=3x5+2x%) >0,
(1 =x)2+x+x3+2x)>0.
Remark. The following generalization holds true (Vasile Cirtoaje, 2004):

e Ifa,,a,,...,a, are positive real numbers such that a,a,---a, =1, then

1 1 1

n—1+ n—1+'”+
1+a;+---+aj 1+a,+---+a; 1+a,+--+art

> 1.

P 1.194. Let a, b, c,d be positive real numbers such that abcd = 1. Prove that

1 1 1 1
+ + + >1
l1+a+2a2 14+b+2b2 1+4+c+2c2 1+d+2d2

(Vasile Cirtoaje, 2006)

Solution. We will show that

1 1
2 ,
1+a+2a? " 1+ak+a%+ a3k

where k = 5/6. Then, it suffices to show that

Zl+ak+a2’<+a3’< zh

which immediately follows from the inequality in P 1.193. Setting a = x°, x > 0,
the claimed inequality can be written as
1 > 1
1+ x6+2x12 7 1+ x5+ x104 x15°

which is equivalent to
xP+x°+1>2x7 +x.
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We can prove it by summing the AM-GM inequalities
x°+4 > 5x
and
5x'+4x°+1>10x".
This completes the proof. The equality occurs fora=b=c=d =1.

Remark. The inequalities in P 1.191, P 1.193 and P 1.194 are particular cases of
the following more general inequality (Vasile Cirtoaje, 2009):

e Letay,a,,...,a, (n > 4) be positive real numbers such that a,a,---a, = 1. If
D,q, T are nonnegative real numbers satisfying p+q +r =n—1, then

> 1.

“~1+pa;+ qa’ +ra’

P 1.195. Let a, b, c,d be positive real numbers such that abcd = 1. Prove that

1+1+1+1+ 9 >25
a b ¢ d a+b+c+d 4

Solution (by Vo Quoc Ba Can). Replacinga, b,c,d bya*, b* c* d*, respectively, the
inequality becomes as follows:

1 + 1 + 1 + 1 + 9 > 25
a* b4 ¢4 d* a*+Dbi+ct+d* T 4abed’
1 1 1 1 4 9 9

a4 b4+c_4+ﬁ_abcd24abcd_a4+b4+c4+d4’

1 1 +i+l_ 4 >9(a4+b4+c4+d4—4abcd)

a* b* ¢* d* abcd~ 4abcd(a*+ b*+ct+dY)
Using the identities

a*+ b*+c*+d*—4abcd = (a®> — b?)* + (c* — d?)* + 2(ab — cd)?,

1.1, 1 1 4 (a®—b*)?* (*—d?*)?* 2(ab—cd)?

e i = ,
a* b* ¢* d* abcd a*b4 ctd4 azb2¢c2d2

the inequality can be written as

(a®—b?)? N (c?2—d?)? N 2(ab —cd)? - 9[(a®— b?)* + (c?—d?)*> + 2(ab —cd)?]
a*b* ctd4 a2b2c2d? 4abcd(a*+ b*+ c*+d*) ’




Symmetric Rational Inequalities 265

4cd(a* + b*+ct+dh)
a3b3 B

(a2_b2)2|: 9]+(C2_d2)2|:
4(a* +b*+c*+d)
abcd

4ab(a*+ b*+c*+dh
c3d3 —?

+2(ab—cd)? [ 9] > 0.
By the AM-GM inequality, we have
a*+b*+c*+d* > 4abcd.

Therefore, it suffices to show that

4ed(a* +b*+ct+d*)

b3 > 0.

(@22

44 P4y 4y g4
9]_}_(62_612)2[4ab(a +b*+c"+d )_9]

c3d3
Without loss of generality, assume that a > ¢ > d > b. Since

(@ — b2)? > (¢ — d?)?
and

4cd(a*+ b*+c*+dY) - 4(a*+ b +c*+dh) - 4(a*+3b%) S
a3b3 - a3b - a3b

9,

it is enough to prove that

[4cd(a4+ b* +c*+d*) _9] N [4ab(a4+ b*+ct+d*)

a3b3 c3d?3 9] 0.

which is equivalent to

4 4 4 g4 [ _Cd ab
2(a*+b*+c"+d )(a3b3+c3d3)29'

Indeed, by the AM-GM inequality,

2(a4+b4+c4+d4)( cd + ab )ZSabcd(

o ab )=16>5

2
abed

The equality occurs fora=b=c=d =1.

P 1.196. Ifa, b,c,d are real numbers such that a+ b +c+d =0, then

—1)? —1)2 132 132
(a—1) (b—=1) (c—1) (d—-1)F _
3a2+1 3b%2+1 3c2+1 3d?+1
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Solution. Since
~3(a—1)* _ (Ba+1)?

3a2+1  3a2+1°

we can write the inequality as
Z (Ba+ 1)2
3a2+1
On the other hand, since

4a> =3a’ +(b+c+d)* <3a®>+3(b*+c?+d?) =3(a®>+ b* +c? +d?),

Na*+b*+c*+d?*)+4
4 2

3a2+1s§(a2+b2+c2+d2)+1=

we have

=4.

Z:(Ba-f—l)2 43>(3a+ 1)

3a2+1 ~ 9(a?2+b2+c2+d?)+4

The equality holds fora=b=c=d =0, and alsofora=1and b=c=d =—-1/3
(or any cyclic permutation).

Remark. The following generalization is also true.

e Ifa,,a,,...,a, are real numbers such that a; +a, +---+a, =0, then

(a; —1) (a,—1) " (a,—1)
(n—1a?+1 (n—1)aZ+1 (n—1a2+1" ~
with equality for a; =a, =---=a, =0, and also fora; =l and a, = a; =+ =
a, =—1/(n—1) (or any cyclic permutation).

P 1.197. Ifa,b,c,d > —5 such that a+ b+ c +d = 4, then

1—a + 1—b 4 1—c + 1—-d >0
(1+a)2 @A+b)2 (A+4+c)2 (Q+d)2"—

Solution. Assume that a < b < ¢ < d. We show first that x € R\ {—1} involves

1—x —1
= o °
(1+ x)2 8

and x € [—5,1/3]\ {—1} involves

1—x 3
> —.
(I1+x)2 8
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Indeed, we have
1—x N 1 (x— 3)?
(1+x)2 8 8(1+x)2~

and
1-x 3 _ (5+x)(1—3x) S

(1+x)2 8  8(1+x)2
Therefore, if a < 1/3, then

1—a 1-b 1—c 1—d 3 1 1 1
+ + + =
(1+a)? (1A+b)2 @@A+c)? (1+d)? 8 8

Assume now that 1/3 <a < b <c¢ <d. Since
l-a>1-b>1—-c>1-d

and
1 1 1 1
> > = )
(I4+a)?  (1+b)2  (A+c)2 (A+d)?

by Chebyshev’s inequality, we have

1—a 4 1-b N 1—c N 1—-d -
(14+a)2 (A+b)2 (A+4+c)2 (1+d)2"—

23 [X0-0) X

The equality holds fora=b=c=d=1,and alsofora=—-5and b=c=d =3
(or any cyclic permutation).

]

P 1.198. Let a,,a,,...,a, be positive real numbers such that a; +a,+---+a, =n.
Prove that

N =

1
<
Z(n+1)a§+a§+---+ag -
(Vasile Cirtoaje, 2008)
First Solution. By the Cauchy-Schwarz inequality, we have
Z n? _Z (a; +a,+---+a,)?
(n+1)aj +a; + 2a1+(a§+a§)+---+(a§+ag)
2
a
< _|_ et n
Z ( a? +a? a+ a%)
n nn-—1 2
nnn-)_n
2 2 2
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from which the conclusion follows. The equality holds for a; =a, =---=a, = 1.

Second Solution. Write the inequality as

2, 2 2 2, 2 2
Z ajt+a;+---+a; <a1+a2+---+an
(n+Dai+as+---+a2 "~ 2
Since
a+a+---+a na?

=1— ,
(n+1a?+a;+--+a? (n+1Da?+as+--+a?

we need to prove that
2

Z a2 af+a§+---+an>1
+ > 1.

n a+a’+---+a n

(n+1)a?+a;+---+a? 2

By the Cauchy-Schwarz inequality, we have

2
Z a4 > (a1 +ay+--+a,)
(n+Dai+a;+--+a2  Yl(n+1Da?+ad+--+a?]
n

2 12 :12 q2 :
( 1 2 o n)
Ihen, it SUfﬁCCS to prove that

2 2 2
n a1+a2+ +an

2 24 ... 2
aj+a; + +a; n

which follows immediately from the AM-GM inequality.

P 1.199. Let a,,a,,...,a, be real numbers such that a; + a, +---+a, = 0. Prove
that

a, +1)? a, +1)? a +1)? n
@+ | @+ | @t o
a;+n—1 a;+n—1 a%—}-n—l n—1
(Vasile Cirtoaje, 2010)

Solution. Without loss of generality, assume that a = max{da?,a , ai}. Since

1’ 2’

(a,+1* n (n—1—a,)?
a,%+n—1_n—1 (n—1)(a2+n—-1)

we can write the inequality as

Z( +1)2 (n—1—a,)’

a?+n—1 (n—1)(a2+n—1)



Symmetric Rational Inequalities 269

From the Cauchy-Schwarz inequality

S| |2 Bern].
we get

S lar1f | (-1-a)

2 - —1 :
—'a; +n—1 Zlflzl ai2+(n_1)z

Thus, it suffices to show that

n—1

Z:al.2+(n—1)2 <(n—1)(a’+n—1),
i=1

which is clearly true. The proof is completed. The equality holds for 4 _ a, =
n —_—

as =---=a, (or any cyclic permutation).
O

P 1.200. Let a,,a,,...,a, be positive real numbers such that a;a,---a, = 1. Prove

that
(a) L + L +o ! >1
a DY s ——— ;
1+(n—1)a; 1+((n—1)a, 1+(n—1)a,
1 1 1
(b) + ++—=<1
a+n—1 a,+n—1 a,+n—1

(Vasile Cirtoaje, 1991)
Solution. (a) First Solution. Let k = (n—1)/n. We can get the required inequality
by summing the inequalities
1 a;*

=
1+(n—1a; ~ a*+a;*+---+ak

fori=1,2,---,n. The inequality is equivalent to

—k —k —k —k 1—k
a“+--+af ta - +a Z(Tl—l)ai s

which follows from the AM-GM inequality. The equality holds for a; = a, =--- =
a,=1.

Second Solution. Replacing all a; by 1/a;, the inequality becomes

a; a a,
+ +od—2>1.
a;+n—1 a,+n-—1 a,+n—1
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By the Cauchy-Schwarz inequality, we have

S_a (X va)

a;+n—1" >la;+n—1)

Thus, we still have to prove that

(Z \/a_l)2 > Zal +n(n—1),

> 2y/aa; > n(n—1).

1<i<j<n

which is equivalent to

Since a,a, - - - a,, = 1, this inequality follows from the AM-GM inequality.
Third Solution. Use the contradiction method. Assume that

1 1 1
+ +...+—
1+(n—1)a; 1+(n—1)a, 1+(n—1)a,

<1

and show that a;a,---a,, > 1 (which contradicts the hypothesis a,a,---a, = 1).
Let

1
X, =———, 0<x;<1, i=1,2,---,n.
1+(n_1)ai
Since
1—x; 19
= J l_ J )- )nJ
' (n_]‘)xl

we need to show that
X, +x, 4+ +x,<1

implies
(1 _Xl)(l _xz)' : (1 _Xn) > (n— 1)nX1X2 X,

Using the AM-GM inequality, we have

1/(n—-1)
1—xi>Zxk2(n—1)(l_[xk) .

ki ki

Multiplying the inequalities

1/(n=1)
1—xi>(n—1)(l_[xk) L i=120m,

ki
the conclusion follows.

(b) This inequality follows from the inequality in (a) by replacing all a; with
1/a;. The equality holds for a; =a, =---=a, =1.
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Remark. The inequalities in P 1.200 are particular cases of the following more
general results (Vasile Cirtoaje, 2005):

e letay,aq,,...,a, be positive real numbers such that a;a,---a, = 1. If
0<k<n—1, p>n'*-1,

then
1 1 1 n

+ + -t > :
(1+pa))k  (1+pay)k (1+pa)k — (1+p)k

e Let ay,q,,...,a, be positive real numbers such that aya,---a, = 1. If

1 n 1/k
k> s O<p£( ) —1,
n—1 n—1

then
1 1 1 n

+ 4+t < :
(1+pa))k  (1+pay)k (1+pa)k — (1+p)k

P 1.201. Let a,,a,,...,a, be positive real numbers such that a;a,---a, = 1. Prove
that

1 1 1
5+ s+t ————>1.
l1—a;+na; 1—a,+na; 1—a,+na?

(Vasile Cirtoaje, 2009)

Solution. First, we show that

1 1
>
1—x+nx2 1+(n—1)xk

where x >0 and k =2+ . Write the inequality as

n—1
(n—1)x* + x > nx?.

We can get this inequality using the AM-GM inequality as follows:

(n—1)xF +x > nV x—Dkx = nx?2.
Thus, it suffices to show that

1 1 1
-+ e —————— > 1,
1+(n—1)a; 1+(n—1)a, 1+(n—1)ak

which follows immediately from the inequality (a) in the preceding P 1.200. The
equality holds for a; =a, =---=aqa, = 1.
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Remark 1. Similarly, we can prove the following more general statement.

e let ay,q,,...,a, be positive real numbers such that a;a,---a, = 1. If p and q
are real numbers such thatp+q=n—1and n—1 < q < (y/n+ 1), then

1 1 1
5+ st ———>1
1+pa;+qa; 1+pa,+qa; 1+ pa, +qa?

Remark 2. We can extend the inequality in Remark 1 as follows (Vasile Cirtoaje,
2009).

e [et a,,qs,,...,a, be positive real numbers such that a;a,---a, = 1. If p and q
are real numbers such that p+q=n—1and 0 < q < (v/n+ 1), then

1 1
+ o >1,
1+pa, +qa® 1+pa,+qad; 1+ pa, +qa?

P 1.202. Let aq,a,, ..., a, be positive real numbers such that
k(n—k—1)
a,,dyy..., a0, > ——, k>1
v "T kn—k—1
and

a,a,---a, = 1.

Prove that
1 1 1 n
<

+ ot < :
a,+k a,+k a,+k  1+k
(Vasile Cirtoaje, 2005)

Solution. We use the induction method. Let

E (a,,a a)—1+1++1 n
S R P a,+k 1+k

For n = 2, we have

(1-R(a = V@) _

E,(a;,a,) = <O0.
2(a1, 02) (1+k)(a; +k)(ay +k)
Assume that the inequality is true for n — 1 numbers (n > 3), and prove that
E, (ay,a,,...,a,) =0 for a;a,---a, =1 and aq,a,,...,a, = p,, where
k(n—k—1)
Pn=—F—7 -
kn—k—1

Due to symmetry, we may assume that a; > 1 and a, < 1. There are two cases to
consider.
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Case 1: a;a, < k*. From a,a, = a,, p,_; < p, and a;,4a,, .. .,a, = p,, it follows that
a,dy, dg, ", > Ppq-

Then, by the induction hypothesis, we have E,_;(a;a,,a,,...,a,) < 0; thus, it suf-
fices to show that

E (a;,a,,...,a,) < E,_i(a;ay,a,,...,a,).

This is equivalent to

1 1 1 1

+ - — <0,
a,+k a,+k aa,+k 14k
which reduces to the obvious inequality
(a; = 1)1 —ay)(a;a, —k?*) < 0.
Case 2: a,a, = k?. Since
1 N 1 a, +a,+ 2k < a, +a,+ 2k 1
a,+k ay,+k  aja,+k(a,+a)+k? " k2+k(a,+a,)+k2  k
and
1 1 n—2 kn—k—1
4+t < = ,
as+k a,+k  p,+k  k(k+1)
we have
E, (a;,a a)<1+kn_k_1— " __o
mELTRIT e k(k+1) 14k
Thus, the proof is completed. The equality holds for a; =a, =---=a, = 1.

Remark. For k = n—1, we get the inequality (b) in P 1.200.

P 1.203. If a;,a,,...,a, = 0, then

1 1 1 n
+ oot > :
1+na, 1+na, l1+na, n+aa,---aq,

(Vasile Cirtoaje, 2013)

Solution. If one of a;,a,,...,q, is zero, the inequality is obvious. Consider further
that a;,a,,...,a, > 0 and let

r=4/a;a,---a,.
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By the Cauchy-Schwarz inequality, we have

1+na; ~ D(14na)ayas---a, D.a,a5---a,+n2rt

Z 1 - (Z m)z (Z Vagds - an)2

Therefore, it suffices to show that

(n+r") (Z m)z > nZazag---an +n3rn.

By the AM-GM inequality, we have

(Z m)z > Z:aza3 cra, +n(n—1)r"1

Thus, it is enough to prove that
(n+r") [Z a,as---a, +n(n— 1)r”_1] > nZ a,as---a, +nrt,
which is equivalent to
rnz:aza3 coea, +n(n—1Dr*" 2 (n— D" > nrn
Also, by the AM-GM inequality;,
Z:aza3 e, =nr
and it suffices to show the inequality
nr? 4 n(n—1Dr 4+ n¥(n—1Drv > nrh,
which can be rewritten as
n?r Y (r"—nr+n—1)>0.

Indeed, by the AM-GM inequality, we get

r"+n—1=r”+1+---+12nm=nr.

The equality holds fora, =a, =---=a, =1.



Chapter 2

Symmetric Nonrational Inequalities

2.1 Applications

2
2.1. If a, b are nonnegative real numbers such that a®>+ b?> <1+ ﬁ’ then

a b < v/ 2(a? + b2)

+ < .
2a2+1 2b2+1 a’+b%+1

2.2. If a, b, ¢ are real numbers, then

Z\/az—ab+bzs \/6(a2+b2+c2)—3(ab+bc+ca).

2.3. If a, b, ¢ are positive real numbers, then

2 2 2
avb+c+bvc+a+cva+b> be + cd + ab )
Vb+c Vc+a +Ja+b

2.4. If a, b, c are nonnegative real numbers, then

2+b2+ 2
\/az—ab+b2+\/bz—bc+c2+\/cz—ca+azﬁ3\ %.

2.5. If a, b, ¢ are nonnegative real numbers, then

2 2 2
\la2+b2—§ab+\Jb2+c2—§bc+%c2+a2—§ca22\/a2+b2+c2.

275
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2.6. If a, b, c are nonnegative real numbers, then

Z\/a2+ab+b22 V4(a2 + b2 + c2) + 5(ab + be + ca).

2.7. If a, b, ¢ are positive real numbers, then

Z\/a2+ab+bzs \/5(a2+b2+c2)+4(ab+bc+ca).

2.8. If a, b, ¢ are nonnegative real numbers, then

Z\/a2+ab+b2SZ\/a2+b2+c2+\/ab+bc+ca.

2.9. If a, b, ¢ are nonnegative real numbers, then

va2+2bc+ v/ b2+2ca+ v c2+2ab < vVa2+b2+c2+2vab+ bc+ca.

2.10. If a, b, ¢ are nonnegative real numbers, then

1 1 1 1 2
>

+ + > + .
vaz+2bc Vb2+2ca +c2+2ab  vaz+b2+c2 +ab+bc+ca

2.11. If a, b, ¢ are positive real numbers, then

\/2a2+bc+\/2b2+ca+\/2c2+abs2\/a2+b2+c2+\/ab+bc+ca.

2.12. Let a, b, ¢ be nonnegative real numbers such that a+b+c =3. If k = v/3—1,
then

> Vala+kb)(a+ke) <3v3.

2.13. If a, b, ¢ are nonnegative real numbers such that a + b + ¢ = 3, then

> Va2a+b)(2a+c)=9.
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2.14.

2.15.

2.16.

2.17.

2.18.

2.19.

2.20.

2.21.

Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

Vb2+c2+a(b+c)++/c2+a2+b(c+a)+ /a2 +b>+c(a+b)>6.

Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

(a) va(3a2+abc) + +/b(3b2 +abc) + v/c(3c2+ abc) > 6;
(b) v/3a2+abc+ v/3b2+abc+ v/3c2+abc > 3+v/3 +abc.
Let a, b, c be positive real numbers such that ab + bc + ca = 3. Prove that

ay/(a+2b)(a+2c)+ by/(b+2c)(b+2a) +cy/(c +2a)(c +2b) > 9.

Let a, b, c be nonnegative real numbers such that a + b + ¢ = 1. Prove that

Va+(b—c)2++/b+(c—a)2++/c+(a—b)2> V3.

Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

\Ja(b+c)+\J b(c+a)+\jc(a+b)>2

a2+ bc b2 + ca c2+ab ~—

Let a, b, c be positive real numbers such that abc = 1. Prove that

1 1 1

3 +3 +3 >1
va2+25a+1 vVb2+25b+1 Vc2+25c+1

If a, b, c are nonnegative real numbers, then

\/a2+bc+\/b2+ca+\/c2+ab§;(a+b+c).

If a, b, c are nonnegative real numbers, then

Va2 +9bc+ v/b2+9ca+ Vc2+9ab >5vab+ bc +ca.
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2.22.

2.23.

2.24.

2.25.

2.26.

2.27.

2.28.

2.29.

If a, b, c are nonnegative real numbers, then

Z \/(a2 +4bc)(b2 + 4ca) = 5(ab + ac + bc).

If a, b, c are nonnegative real numbers, then

Z /(@ +9bc)(b2 +9ca) = 7(ab + ac + bc).

If a, b, c are nonnegative real numbers, then

Z V(@2 +b2)(b2+¢2) < (a+ b +c)

If a, b, c are nonnegative real numbers, then

> /(a2 +ab+b2) (b2 + bc +¢2) = (a+b+c)*

If a, b, ¢ are nonnegative real numbers, then

> /(a2 +7ab+ b2)(b2 + 7bc +c2) > 7(ab + ac + be).

If a, b, ¢ are nonnegative real numbers, then

Z\J (a2+zab+b2) (b2+zbc+c2) < E(a+ b+c).
9 9 12

If a, b, c are nonnegative real numbers, then

1 1 1
ZQ (a2+—ab+b2)(b2+—bc+c2) <t bror
3 3 60

If a, b, c are nonnegative real numbers, then

= + b + = >1
V4b2+bc+4c2  Vaci+ca+4az  vV4a2+ab +4b2
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2.30.

2.31.

2.32.

2.33.

2.34.

2.35.

2.36.

2.37.

If a, b, c are nonnegative real numbers, then

a N b N c S a+b+c
VP2t bc+c2 J2Z+ca+a®? Vai+ab+b? +ab+bctca

If a, b, c are nonnegative real numbers, then

a 4 b 4 C < a+b+c
vaZ+2bc +vb2+2ca +Vc2+2ab +vab+bc+ca

If a, b, ¢ are nonnegative real numbers, then

a®+ b3+ 3+ 3abc > a*v a2+ 3bc + b2V b2 + 3ca + c>V c2 + 3ab.

Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a b c
<1

+ + <
v4a2+5bc  +/4b2+5ca +4c2+5ab

Let a, b, c be nonnegative real numbers. Prove that

av4a?+5bc + bV 4b2 +5ca +cvV4c2 +5ab > (a+ b +¢)>.

Let a, b, c be nonnegative real numbers. Prove that

ava2+3bc+bv b2+3ca+cvVc2+3ab>2(ab+ bc+ca).

Let a, b, c be nonnegative real numbers. Prove that

ava?+8bc+bvb2+8ca+cvc2+8ab<(a+b+c)

Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a® + 2bc b% + 2ca c2+2ab
+ + >3+ ab + bc +ca.

Vb2+bc+c2 +c2+ca+a? +Va2+ab+ b2
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2.38. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > 1,
then
Clk+1 bk+1 Ck+1 ak + bk +Ck

+ - < :
2a2+4+bc  2b%2+4+ca 2c2+ab a+b+c

2.39. If a, b, ¢ are positive real numbers, then

a’®—bc b%—ca c2—ab
(a) + + >0
v/3a2+2bc  V/3b2+4+2ca +/3c2+2ab
a®—bc b%—ca c2—ab

(b)

\/8a2+(b+c)2+ \/8b2+(c+a)2+ V8c2+(a+Db)2

2.40. Let a, b, c be positive real numbers. If 0 < k < 1+ 2+/2, then

a®—bc b%—ca c2—ab
+ + =0
JkZ+b2+c?  JkbPt+a®  Vke+ @2+ b2

2.41. If a, b, c are nonnegative real numbers, then

(a?=bc)Vb+c+ (b2 —ca)vc+a+(c2—ab)Va+b>0.

2.42. If a, b, c are nonnegative real numbers, then

(a®—bc)v a2 +4bc+ (b —ca)V b2 +4ca + (c?—ab)v/ c2+ 4ab > 0.

2.43. If a, b, c are nonnegative real numbers, then

a3 b3 c3
—_—+ + > 1.
a’+(b+c)? b3+ (c+a)? c3+(a+b)?
2.44. If a, b, ¢ are positive real numbers, then

1 1 1 1 1 1
142 >1 1 2 24 c2)| — 4+ —4+ = .
\J(a+b+c)(a+b+c)_ +\J +\J(a +b +C)(a2+b2+c2)
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2.45. If a, b, ¢ are positive real numbers, then

1 1 1 1 1 1
5+\l2(a2+b2+62)(—+—+—)—2 Z(a+b+c)(—+—+—).
az b2 2 a b ¢

2.46. If a, b, c are real numbers, then

2(1+abc) + /2(1 +a2)(1 + b2)(1 +c2) > (1 +a)(1 + b)(1 +¢).
2.47. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
a2+ bc b2+ ca c2+ab 1
+ + >2+—.
b2 +c2 c2 +a? a?+ b2 V2

2.48. If a, b, c are nonnegative real numbers, then

\/a(2a+b+c)+\/b(2b+c+a)+\/c(2c+a+b)2 \/12(ab+bc+ca).

2.49. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

ay/(4a +5b)(4a+ 5c) + by/(4b + 5¢)(4b + 5a) + c4/ (4c + 5a)(4c + 5b) > 27.

2.50. Let a, b,c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

ay/(a+3b)(a+3c)+by/(b+3c)(b+3a)+cy/(c+3a)(c+3b) > 12.

2.51. Let a, b, ¢ be nonnegative real numbers such that a®+ b?+c? = 3. Prove that

\/2+7ab+\/2+7bc—l—\/2—I—7ca23\/3(ab+bc+ca).

2.52. Let a, b, ¢ be nonnegative real numbers such that a®+ b?+c? = 3. Prove that

a + b N c <1
2a24+1 2b24+1 2c2+1 "~
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2.53. Let a, b,c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

(a) > v/a(b+c)(a2+ bc) = 6;
(b) > a(b+c)va2+2bc > 64/3;
(©) >'a(b+c)v/(a+2b)(a+2c)=18.

2.54. Let a, b,c be nonnegative real numbers such that ab + bc + ca = 3. Prove

that
avbc+3+bvca+3+cvab+3=>6.

2.55. Let a, b, c be nonnegative real numbers such that a + b 4+ ¢ = 3. Prove that

(a) >(b+c)Vb2+c2+7bc > 18;
(b) >(b+c)Vb2+c2+10bc < 124/3.

2.56. Let a, b, c be nonnegative real numbers such then a + b + ¢ = 2. Prove that

vVa+4bc+ Vb+4ca+ v c+4ab>4+vab + bc + ca.

2.57. If a, b, c are nonnegative real numbers, then

\/a2+b2+7ab+\/b2+c2+7bc+\/c2+a2+7ca25\/ab+bc+ca.

2.58. If a, b, c are nonnegative real numbers, then

\/a2+b2+5ab+\/b2+c2+5bc+\/cz+a2+5ca2\/21(ab+bc+ca).

2.59. Let a, b,c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

a\/a2+5+b\/b2+5+c\/c2+52\E(a+b+c)2.
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2.60. Let a, b, c be nonnegative real numbers such that a®+ b%+c? = 1. Prove that

av2+3bc+bv2+3ca+cv2+3ab>(a+b+c)

2.61. Let a, b,c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

@ a\J2a+bc+b\J2b+ca+c\J2c+ab23

3 3 3 ’

) a\J a(1+3b+c)+b\l b(1+3c+a)+c\j c(1+;+b)23-

2.62. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

V/8(a2+bc) +9+ 4/8(b2 +ca) + 9+ y/8(c2 + ab) +9 > 15.

2.63. Let a, b,c be nonnegative real numbers such that a+b+c =3. If k >

@ | \O

then

Va2 +bc+k+vVb2+cat+k++/c2+ab+k>3vV2+k.

2.64. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

v ad+2bc+ v/ b3 +2ca+ v/ ¢ +2ab > 3+3.

2.65. If a, b, ¢ are positive real numbers, then

va2+bc Vb2+ca +c2+ab 3vV2
+ + = .
b+c c+a a+b 2

2.66. If a, b, c are nonnegative real numbers, no two of which are zero,then

\/bc+4a(b+c)+ \/ca+4b(c+a)+ vab+4c(a+b) S
b+c c+a a+b B

4
>
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2.67. If a, b, c are nonnegative real numbers, no two of which are zero,then

ava?+3bc N bv'b2+3ca N cvc2+3ab

>a+b+c.
b+c c+a a+b

2.68. If a, b, c are nonnegative real numbers, no two of which are zero,then

Q 2a(b+c) +\J 2b(c+a) +% 2c(a+b)
(2b +¢)(b +2¢) (2¢ + a)(c + 2a) (2a+Db)(a+2b) ~

2.69. If a, b, ¢ are nonnegative real numbers such that ab + bc + ca = 3, then

bc N ca N ab <1< bc + ca + ab
J3a2+6 Vs3b2+e6 J3c2+6_ _J6a2+3 V 6b2 +3 \J6c2+3'

2.70. Let a, b, c be nonnegative real numbers such that ab+bc+ca=3. If k > 1,
than

a“(b+c)+ b (c+a)+ck(a+b) > 6.

2.71. Let a, b, c be nonnegative real numbers such that a + b +c¢ = 2. If
2<k<3,

than
a“(b+c)+ b (c+a)+cF(a+ D) < 2.

2.72. Let a, b,c be nonnegative real numbers, no two of which are zero. If m >
n > 0, than
b™+c™ c"+a™ a™+b

b+c—2a)+ +a—2b)+ +b—2c)>0.
b"+c"( ¢—2a) c”+a“(c ¢ ) a“+b"(a €)=

2.73. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that

Vae—a+1+vVae—a+1+vVa2—a+1>a+b+c.
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2.74. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that

V16a2+9+ v/ 16b2+9+ 1/ 16b2+9>4(a+ b +c) + 3.

2.75. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that

V/25a2 + 144 + v/25b2 + 144 + v/25¢2 + 144 < 5(a + b + ¢) + 24.

2.76. If a, b are positive real numbers such that ab + bc + ca = 3, then

(a) va2+3+vb2+3++v/b2+3>a+b+c+3;
(b) Va+b+vb+c++vc+a>+/4la+b+c)+6.

2.77. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

V(5a2 +3)(5b2 + 3) + 4/(5b2 + 3)(5¢2 + 3) + 4/ (5¢2 + 3)(5a2 + 3) > 24.

2.78. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

2 4 b2 4 c2) + 42
\/a2+1+\/b2+1+\/c2+12\]4(a 3C) 42

2.79. If a, b, ¢ are nonnegative real numbers such that a + b + ¢ = 3, then

(a) Vaz+3+vVb2+3++/c2+3> 4/2(a%+ b2 +¢2) + 30;

(b) V3a2+1+vV3b2+ 1+ v3c2+1 2> 4/2(a2+ b2 +c2) + 30.

2.80. If a, b, ¢ are nonnegative real numbers such that a + b + ¢ = 3, then

V/(32a2 +3)(32b2 + 3) + 4/(32b2 + 3)(32¢2 + 3) + 1/(32c2 + 3)(32a2 + 3) < 105.

2.81. If a, b, ¢ are positive real numbers, then

a+b
c

c+a
b

-3

—3‘+ > 2.
a

b+
c_g‘
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2.82. If a, b, ¢ are real numbers such that abc # 0, then

a+b
c

b+c
a

> 2.

‘c+a)
b

2.83. Let a, b, c be nonnegative real numbers, no two of which are zero, and let

Y= 2a _2b . 2c
b+c’ y_c+a’ a+b’
Prove that
(a) VXV + JYZ+ /2X = xyz+2;
(b) xX+y+z+ /Xy+,/yz+ /2Xx = 6;
(© VX+ /Y +2>4/8+xyz;
JYZ WES
G) Y2 L VEX VY S

x+2 y+2 z+4+2

2.84. Let a, b, c be nonnegative real numbers, no two of which are zero, and let

Y= 2a _ 2b . 2c
N ’ y_c+a’ a+b

Prove that

V1+24x+4/1+24y +v1+24z > 15.

2.85. If a, b, ¢ are positive real numbers, then
\J 7a \J 7b q 7c
+ + <3.
a+3b+3c b+3c+3a c+3a+3b

2.86. If a, b, ¢ are positive real numbers such that a + b + ¢ = 3, then

v a2(b? +¢2) + 4/ b2(c? + a2) + y/c(a? + b2) < 3V2,

2.87. If a, b, ¢ are nonnegative real numbers, no two of which are zero, then

1 1 1 1 2
+ + > + :
a+b b+c c+a a+b+c Jab+bc+ca
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2.88. If a,b > 1, then

1 1 1 1
— - + .
V3ab+1 2 +/3a+1 +/3b+1

1
2.89. Let a, b, c be positive real numbers such thata+b+c=3. If k > —2, then

(abc)(a® +b% +c?) < 3.

2.90. Ifa,b,c €[0,4] and ab + bc + ca = 4, then

Vat+b+vVbtc+veta<3++5.

2.91. Let

Ja@2+b2+c2 a+b+
F(anJC): = 3 ‘ _a 3 C:

where a, b, ¢ are positive real numbers such that
a*bc>1, a<b<c.
Then,

F(a,b,c)ZF(l,l,l).
a b

c

2.92. Let

Ja@2+b2+c2 a+b+
F(anJC): = 3 ‘ _a 3 C:

where a, b, ¢ are positive real numbers such that
a’(b+c¢)>1, a<b<ec.
Then,

F(a,b,c)ZF(l,l,l).
a b

c
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\|@2+Db2+c2 a+b+
F(a,b,c) = a 3 . 3 C,

where a, b, ¢ are positive real numbers such that

2.93. Let

a*(b*+c*)>2, a<b<ec.
Then,
111
F(a,b,c) > F(—, —,—).
a b c
2.94. Let 3
F(Cl, b, C) = V3 abc— T 1 1
atste
where a, b, ¢ are positive real numbers such that
a*b’c’ > 1, a>b>c.
Then,
111
F(a,b,c) > F( , )
b’ ¢
2.95. Let

F(a,b,c,d) = vabed — — 4

1 1°
atstota
where a, b, ¢, d are positive real numbers. If ab > 1 and cd > 1, then then

1111
F(a,b,c,d)=F .
(@,b,¢,d) (a b’c’d)

2.96. Let a, b, ¢, d be nonnegative real numbers such that a® + b%> + ¢2 +d? = 1.
Prove that

Vi—a+V1-b+Vi—c+V1—d=va+Vb+/c+Vd.

2.97. Let a, b, c, d be positive real numbers. Prove that
A+2> +vB+4,

where

A= (a+b+c+d)( +1—+1+1)—1Q
b ¢ d

1 1 1 1
_ 2
(a+b-+c+d)(7-l)+ '+@)_16
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2.98. Leta,,a,,...,a, be nonnegative real numbers such that a;, +a,+---+a, = 1.
Prove that

V3a,+1++/3a,+1+--++/3a,+1>n+1.

2.99. Let a;,a,,...,a, be positive real numbers such that a;a,---a, = 1. Prove
that

1 1 1

+ +ot >1
V1i+(n2—1a;, 1+ ((n2—1)a, V1+(n2—1)q,

2.100. Let a;,a,,...,a, be positive real numbers such that a,a,---a, = 1. Prove
that

n

S

1+ +/1+4n(n—1)q;

N |~

2.101. If a4, a,,...,qa, are positive real numbers such that a;a,---a, =1, then

2 24 ... 2
ajy+a;+ +an

a1+a2+---+an2n—1+\]
n

2.102. If a;,a,,...,a, are positive real numbers such that a,a,---a, =1, then

\/(n—l)(af+a§+---+a,21)+n—\/n(n—1)2a1+a2+---+an.

2.103. Let ay,a,, ..., a, be positive real numbers such that a,a,---a, > 1. If k > 1,

then
k

al
S
ak+a,+-+a

n

2.104. Let a,,a,,...,a, be positive real numbers such that a;a,---a, > 1. If

<k<1,
n—2

then

al
S
ak+a,+-+a
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2.105. Leta,,a,,...,a, be nonnegative real numbers such that a; +a,+- - -+a, > n.

If1<k<n+1, then
a
>— <1
a+ay+-+a,

2.106. Leta,,a,,...,a, be positive real numbers such that a,a,---a, = 1. If k > 1,

then
a
-
a;t+a,+---+a,

2.107. Let a,,a,,...,a, be positive real numbers such that a;a,---a, > 1. If

—1—

<k<1,
n—2

then

a,
S
a“+a,+-+a

n

2.108. Leta,,a,,...,a, be positive real numbers such that a,a,---a, =1. If k > 0,
then
1
-
a;t+a,+---+a,
2.109. Leta,,a,,...,a, be nonnegative real numbers such that a; +a,+---+a, < n.
If0<k<1,then
1 1 1
- + - oot - > 1.
a;t+a,+---+a, a+a,+---+aq, a; +a,+---+afg

2.110. Let a;,a,,...,a, be positive real numbers. If k > 1, then

k 4k k k ok k
Za2+a3+~~+an - n(a; +a; +---+a;)
a,+as+---+a, a,ta,+---+a,

2.111. Let f be a convex function on the closed interval [a, b], and leta,, a,, ..., qa, €
[a, b] such that
a, +a,+---+a,=pa+qb,

where p,q > 0 such that p + g = n. Prove that

fla)+f(ay)+---+ f(a,) < pf(a)+qf (b).
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2.2 Solutions

2
P 2.1. If a, b are nonnegative real numbers such that a®> + b> <1+ ﬁ, then

a b < v 2(a? + b2)

+ < .
2a2+1 2b2+1 az+b2+1
(Vasile Cirtoaje, 2012)

Solution. With

+ L
‘/§J

_a’+b?
=0

s p=ab, 0<p<s<

N | =

the inequality becomes as follows:

2p+1)v2(s+p) _ 245
4p2+4s+1 " 2+1°

2s _12(2p+1)(25—+—1)_1

s+p 4p2 +4s+1
s—p S 2s—p)2p—1)

2s o 4p2+4s+1
(s+p) —+1
S+p

Thus, we need to show that

b

1 . 22p-1)
2s _4p2+4s+1'
+1

(s+p)(

Since > 1, it suffices to show that

S+p

1 _ _2(2p—1)

2s 2s _4p2+4s+1’
(s+p) +
5+p S+p

which is equivalent to

4p* +4s+1>4(2p—1)4/2s(s + p).

For the nontrivial case 2p — 1 > 0, which involves 2s —1 > 0, since 24/2s(s + p) <
2s + (s + p), it suffices to show that

4p*+4s+1>2(2p—1)(3s +p),
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that is
10s +1 > 2p(6s —1).

We have
10s+1—2p(6s—1)>10s+1—2s(6s—1) =1+ 125 — 1252 > 0.

The equality holds for a = b.

P 2.2. If a, b, c are real numbers, then

Z\/az—ab+bzs \/6(a2+b2+c2)—3(ab+bc+ca).

Solution. By squaring, the inequality becomes as follows:

2(ab + bc+ca)+ ZZ \/(a2 —ab + b2)(a? —ac +c2) < 4(a* + b* + ¢?),

Z(\/az—ab+b2—\/a2—ac+c2)220.

The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic
permutation).
O

P 2.3. If a, b, c are positive real numbers, then

2 2 2
avb+c+bvc+a+cva+b be @ + ab .
1/b+c Je+a +a+b

(Lorian Saceanu, 2015)

Solution. Use the SOS method. Write the inequality as follows:

Savire-> 2

>0,

\/_

Za(b+c)—2bc >0,
vb+c

(a—c) c(a—b)
=153
b+c

c(b—a) c(a—b)
2 e Pl et
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1 1
Zc(a_b)(«/b+c_ «/c+a)20’

Z c(a—b)? 0
Vb+o)(c+a)(VD+c+c+a) '
The equality holds fora = b =c.

P 2.4. If a, b, c are nonnegative real numbers, then

2_|_b2_|_ 2
\/az—ab+b2+\/bz—bc+c2+\/c2—ca+a2S3\ %.

Solution (by Nguyen Van Quy). Assume that ¢ = min{a, b, c}. Since

b>—bc +c* < b?

and
c2—ca+a*<a?

it suffices to show that

2+b2+ 2
\/az—ab+b2+b+a33\ %.

Using the Cauchy-Schwarz inequality, we have

\/az—ab+b2+a+b£\“(aZ—ab+b2)+@](1+k)

k> 0.

Q (1+K[(1+k)(a?+ b2) +(2—k)ab]
k ;)
Choosing k = 2, we get

\|@+b2 . laZ+b2+c?
va2—ab+b2+a+b<3 a 2 <3 %:3,

The equality holds for a = b and ¢ = 0 (or any cyclic permutation).

P 2.5. If a, b, c are nonnegative real numbers, then

2 2 2
\la2+b2—§ab—|—\Jb2+c2—§bc+Qc2+a2—§ca22\/a2+b2+c2.

(Vasile Cirtoaje, 2012)
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First Solution. By squaring, the inequality becomes

ZZ \/(Ba2 +3b2—2ab)(3a? + 3c2 —2ac) > 6(a* + b*+c*) + 2(ab + bc +ca),

2
6(a2+b2+c2—ab—bc—ca)2Z(\/3a2+3b2—2ab—\/3a2+3c2—2ac) ,

b—c)*(3b+3c—2a)?
3 (b—cP>>. (b= ) ,
(\/3a2+3b2—2ab+ \/3a2+362—2ac)

_ 2
Z(b—c)z 1 (3b+3c—2a) .
(v/9a2+9b2—6ab + v/9a2 + 9c2 — 6ac)

Since

v 9a2 +9b2 —6ab = \/(Bb—a)2+8a2 > |3b—al,

V9a2 +9¢c2 —6ac = \/(30-61)2 +8a2>|3c—a,

it suffices to show that

I3b + 3¢ — 24| )2
b—c)? 1—( > 0.
2. C)[ 13b—al + |3c —dq

This is true since
3b+3c—2a|=|3b—a)+(3c—a)| < |3b—a|+|3c—al.

The equality holds for a = b = ¢, and also for b = ¢ = 0 (or any cyclic permutation).

Second Solution. Assume that a > b > c. Write the inequality as

V@@+b)2+2a—b2++/(b+c)2+2(b—c)2++/(a+c)2+2(a—c)?>

> 2\/3(a2 + b2 +¢2).

By Minkowski’s inequality, it suffices to show that

VI@a+b)+(b+c)+(a+c)2+2[(a—b)+(b—c)+(a—c)]? > 24/3(a + b? +c2?),

which is equivalent to

\/(a+ b+c)2+2(a—c)?> \/3(a2+ b2 + c2).
By squaring, the inequality turns into

(a=Db)(b—c)=0.
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P 2.6. If a, b, c are nonnegative real numbers, then

Z\/a2+ab+b22 \/4(a2+b2+c2)+5(ab+bc+ca).
(Vasile Cirtoaje, 2009)

First Solution. By squaring, the inequality becomes

Z\/(a2+ab+b2)(az+ac+c2)2(a+b+c)2.

Using the Cauchy-Schwarz inequality, we get

Z\/(a2+ab+b2)(a2+ac+c2):z\J[(a+g)2+37172][(a+%)2+3?c2]
ZZ[(a+g)(a+%)+%}=(a+b+c)2.

The equality holds for a = b = ¢, and also for b = ¢ = 0 (or any cyclic permutation).

Second Solution. Assume that a > b > c. By Minkowski’s inequality, we get
ZZVa2+ab+b2ZZ\/B(a+b)2+(a—b)2

> \/3[(a+b)-f—(b+c)+(c+a)]2+[(a—b)+(b—c)+(a—c)]2
=2\/3(a+b+c)2+(a—c)2.

Therefore, it suffices to show that

3(a+b+c)+(a—c)*>4(a®+b*+c?)+5(ab + bc +ca),
which is equivalent to the obvious inequality
(a—Db)(b—c)=0.
Remark. Similarly, we can prove the following generalization.

e Let a, b, c be nonnegative real numbers. If |k| < 2, then

Z\/a2+kab+b22 V(a2 + b2+ c2) + (3k + 2)(ab + be + ca),

with equality for a = b = ¢, and also for b = ¢ = 0 (or any cyclic permutation).

For k = —2/3 and k = 1, we get the inequalities in P 2.5 and P 2.6, respectively.
For k = —1 and k = 0, we get the inequalities

Z\/az—ab+b22 \/4(a2—l—b2+c2)—ab—bc—ca,

Z\/a2+b22 \/4(a2+b2+c2)+2(ab+bc+ca).
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P 2.7. If a, b, c are positive real numbers, then

Z Vaz+ab+b2< \/5(a2+ b2+ c2)+4(ab + bc + ca).
(Michael Rozenberg, 2008)

First Solution (by Vo Quoc Ba Can). Using the Cauchy-Schwarz inequality, we have

(Z\/b2+bc+c2)2 < [Z(b+c)] (Z %)
:2(a+b+c)(2%)ZZZ(1+$)(b2+bc+c2)

2a(b? + bc + ¢?)
b+c

=4(a2+b2+c2)+2(ab+bc+ca)+Z

bc
=4(a*+ b*+c?*)+2(ab + bc + +E 2 (b+ — )
(a c?)+2(a c+ca) a c e

1
= 4(a*+ b*+c?) +6(ab + bc + ca) —2abc ) ——.
(a c?)+6(a c+ca)—2a CZb+c
Thus, it suffices to prove that
1
4(a2+b2+c2)+6(ab+bc+ca)—2abcz ae < 5(a*+b*+c*)+4(ab+bc+ca),
c

which is equivalent to Schur’s inequality

1
b+c¢’

2(ab+bc+ca)Sa2+b2+c2+2abcz

We can prove this inequality by writing it as follows:

(a+b+c)2322a(a+ be ),

b+c

a
b+c¢’

(a+b+c)2S[Za(b+c)]Zbic.

Clearly, the last inequality follows from the Cauchy-Schwarz inequality. The equal-
ity holds fora = b =c.

(a+b+c)? S2(ab+bc+ca)z

Second Solution. Use the SOS method. Let us denote
A=+vVb2+bc+c2, B=+vc2+ca+a2 C=+a%*+ab+ b2

Without loss of generality, assume that a > b > c¢. By squaring, the inequality

becomes
2>'BC<3> a®+3> ab,
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ZaZ—Zab SZ(B—C)Z,

> b —cy? sz(a+b+c)22%.

Since
(B+C)Y* <2(B*+C*»)=2(2a*+b*+c*+ca+ab),

it suffices to show that

Z(b—c)zs(a+b+c)22 (b—c)” ,

2a2+ b2+c2+ca+ab

which is equivalent to
D> (b—c)*s, >0,

where
_ —a*+ab+2bc+ca

2024 b2+c2+ca+ab’
_ —b%+bc+2ca+ab -0
2b2+c2+a2+ab+bc
_ —c*+ca+2ab+bc
224 a2+ b2+bc+ca

a

Sh

Since
2
Z(b —¢)*S, > (b—c)®S, +(a—c)*S, > (b—c)*S, + %(b —c)*S,
S, S
> (b—¢)?S, + <(b—c)?S, = a(b—c)? (—“ + —”),
b a b

we only need to prove that

which is equivalent to

—b%+bc+2ca+ab o a’?—ab—2bc—ca
b(2b2+c2+a2+ab+bc) — a(2a2+b2+c2+ca+ab)’

Consider the nontrivial case where a> —ab — 2bc —ca > 0. Since
(2a®>+ b2 +c?>+ca+ab)—(2b*+c2+a?+ab+bc)=(a—Db)a+b+c)>0,
it suffices to show that

—b%2+bc+2ca+ab - a’?—ab—2bc—ca
b - a '

Indeed,

a(—=b*+ bc +2ca +ab)—b(a* —ab —2bc —ca) = 2c(a* + ab + b*) > 0.
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P 2.8. If a, b, c are nonnegative real numbers, then

Z\/a2+ab+b2SZ\/a2+b2+c2+\/ab+bc+ca.

(Vasile Cirtoaje, 2010)

First Solution (by Nguyen Van Quy). Assume that a = max{a, b, c}. Since

Va2 +ab+b2+ v c2+ca+a? < 4/2[(a®+ab + b2) + (2 +ca +a?)],
it suffices to show that

2VA+ Vb2 4 be+c2 < 2VX + VY,

where
1
A=a2+§(b2+c2+ab+ac), X=a*+b*+c* Y=ab+bc+ca.

Write the desired inequality as follows:

2(VA—VX) < VY —V b2+ bc+c2,

2(A—X) < Y — (b2 + bc +¢?)
VA+VX " VY + Vb2 +bc+c?
b(a—b)+c(a—c)< b(a—b)+c(a—c)‘

VA+ VX VY +vV/b2+bc+c?

Since b(a — b) + c(a —c¢) > 0, we only need to show that

VA+ VX > VY + 4/ b2+ bc+c2.

This inequality is true because X > Y and

VA> v/ b2+ bc + c2.

Indeed,
24—b%>—bc—c?)=2a%+(b+c)a—(b+c))=2a—-b—c)la+b+c)>0.

The equality holds for a = b = ¢, and also for b = ¢ = 0 (or any cyclic permutation).

Second Solution. In the first solution of P 2.7, we have shown that
1
E Vb2 + be+ ) <4(a®+ b2 +c?)+6(ab + be +ca)— 2ab E —.
( cc)_(a c?)+6(a c+ca)—2abc e

Thus, it suffices to prove that

1 2
4(a2+b2+c2)+6(ab+bc+ca)—2abcZ —< (2 Vaz+b2+c2++Vab+bc+ ca) ,
b+c
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which is equivalent to

2ach bL—i-c + 4\/(a2 + b2+ c2)(ab+ bc+ca) = 5(ab + bc + ca).

Since

Z 1 > 9 _ 9
b+c Di(b+c) 2(a+b+c)

it is enough to prove that

9abc

e — 2 2 2 >
a+b+c+4‘/(a + b2+ c2)(ab + bc +ca) > 5(ab + bc +ca),

which can be written as

9abc

+4+/q(p?—2q) = 5q,

where
p=a+b+c, g=ab+bc+ca.

For p? > 4q, this inequality is true because 44/q(p2 — 2q) > 5q. Consider further

3q <p*<4q.
By Schur’s inequality of third degree, we have

b
9abc > 4q—p2.

Therefore, it suffices to show that

(49 —p*) +4+/q(p2—2q) = 5¢,

which is
44/q(p>—2q) = p* +q.
Indeed,
16q(p* —2q) — (p* +q)* = (p>—3¢)(11g —p*) = 0.

Third Solution. Let us denote

A=+VDb2+bc+c2, B=+c2+ca+a?, C=+va%2+ab+ b2
X=vVa2+b2+c2, Y=+ab+ bc+ca.

By squaring, the inequality becomes

ZZBCSZZa2+4XY,

> B-CPz20X-Y)
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(b—cp® _ [Zb—c?T
2(a+b+c)2Z(B+C)22 TSR
Since

B+C<(c+a)+(a+b)=2a+b+c,

it suffices to show that

(b-cy _[Z—cr]

2(a+b+c)22(2a+b+c)2 =T XYy

According to the Cauchy-Schwarz inequality, we have

L (S —crT

(2a+b+c)2~ d(b—c)2(2a+b+c)?
Therefore, it is enough to prove that

2(a+b+c)? - 1
dDI(b—c)2(2a+b+c)2 ~ (X+Y)

which is
(a+b+c)’X+Y) > %Z(b —c)*(2a+b+c).
We see that
(a+b+c)X+Y)12> (Za2+22ab)(2a2+2ab)
= (2e?) +3(2ab) (Xat) +2(ab)
> Za4 + Z%Z:ab(a2 + b))+ 4Z:a2b2
and

Z(b —c)*(2a+b+c) = Z(b —c)*[4a*+4a(b+c)+ (b +c)*]
= 42 a*(b—c)*+ 4Za(b —c)(b*—=c*)+ Z:(b2 —c?)?

< 8Za2b2+42a(b3 +c3)+22a4.

Thus, it suffices to show that

Z:a“+321ab(a2 + b2)+4Za2b2 > 4Z:a2b2 +2Z:a(b3 +¢c?) +Za4,

which is equivalent to the obvious inequality

Z:ab(a2 + b2) > 0.
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P 2.9. If a, b, c are nonnegative real numbers, then

Va2 +2bc+ Vb2 +2ca+vVc2+2ab < Va2 + b2+ c2+2vVab + be + ca.
(Vasile Cirtoaje and Nguyen Van Quy, 1989)

Solution (by Nguyen Van Quy). Let

X=+a2+b%2+c2, Y=+vab+ bc+ca.

Consider the nontrivial case when no two of a, b, ¢ are zero and write the inequality
as
> (x=va2+2bc) = 20X -),

Z (b—c)? S Z:(b—c)2
X+vVaZ+2bc  X+Y

By the Cauchy-Schwarz inequality, we have

b (S -]
X+vaZ+2bc  D(b—c)2(X +Va%+2bc )

Therefore, it suffices to show that

>(b—c)? o1
>(b—c)? (X + vaZ+2bc ) TX+Y’

which is equivalent to

Z:(b—c)2 (Y— \/a2+2bc) > 0.

From 2
(Y - M) > 0.
we get
2 2
Y-V +2be >~ _(‘21;21’0) _ (a—bz)l(fc—a).
Thus, 2
Z(b—c)z(y_m)zz(b—c) (az;b)(C—a)
_(a=Db)(b—c)(c—a) N
o 2Y Z(b C)—O.

The equality holds fora = b, or b =c, or c = a.
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P 2.10. If a, b, c are nonnegative real numbers, then

1 1 1 1 2
+ + > + .
vaz+2bc vb2+2ca Vc2+2ab Vaz+b2+c2 +Vab+bc+ca

(Vasile Cirtoaje, 1989)

Solution . Let

X=+vVa2+b2+c2, Y=+ab+ bc+ca.

Consider the nontrivial case when Y > 0 and write the inequality as

1 1 1 1
Y7 x) 227 x)
Z (b—c)? Z(b —c)?

Va2 +2bc( X+Va2+2b) YX+Y)

By the Cauchy-Schwarz inequality, we have

5 (b—cy N [ —cr]
Va2+2b X+Va2+2b) Z(b—c)ZVa2+2bc(X+1/a2+2bc).

Therefore, it suffices to show that

>(b—c)? - 1
S(b—c)?vaz+2bc(X + Va2 +2bc) YX+Y)

which is equivalent to
D> (b —cP[XY —Xv/a2+2bc+(a—b)(c—a)] = 0
Since
D (b—cP(a—b)c—a)=(a—b)(b—c)c—a) Y (b—c)=0,

we can write the inequality as

> (b—cyx (Y — Va2 +2bc) >0,
D> b—cP(v—va2+2bc)20

We have proved this inequality at the preceding problem P 2.9. The equality holds
fora=b,or b=c,orc=a.
O
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P 2.11. If a, b, c are positive real numbers, then

v 2a2+ bc+ v/ 2b2 +ca+ v2c2+ab <2v a2+ b2 +c2+ vVab + bc +ca.

Solution. We will apply Lemma below for
X =2a%+bc, Y=2b%+ca, Z=2c*>+ab

and
A=B=a*+b*+c% C=ab+bc+ca.

We have
X+Y+Z=A+B+C, A=B>C.

Without loss of generality, assume that
a>b>c,

which involves
X>2Y >~Z.

By Lemma below, it suffices to show that
max{X,Y,Z}>A, min{X,Y,Z} <C.
Indeed, we have
max{X,Y,Z}—A=X—-A=(a®>—b*)+c(b—c)>0,
min{X,Y,Z}—-C=Z—C=c(2c—a—b)<0.
Equality holds for a = b =c.

Lemma. If X,Y,Z and A, B, C are positive real numbers such that
X+Y+Z=A+B+C,
max{X,Y,Z} > max{A,B,C}, min{X,Y,Z} <min{A,B,C},
then

VX + VY +VZ < VA+VB++C.

Proof On the assumption that X >Y > Z and A> B > C, we have
X=A ZZC,

hence

VX+ VY +VZ —VA—VB—v/C=(X—VA)+ (VY —-VB)+(WZ—-+C)
X-A Y-B Z-C X—-A Y—-B Z-C
< + + < + +
2VA 2vB 2/C ~ 2¥B 2vB 2V/C
cC—7Z Z-C 1 1
T VB | 2/ ‘(C_Z)(ﬁ_ﬁ)so'

Remark. This Lemma is a particular case of Karamata’s inequality.
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P 2.12. Let a, b, c be nonnegative real numbers such that a+b+c = 3. Ifk = v/3—1,
then

Z \/a(a +kb)(a +ke) < 3v3.

Solution. By the Cauchy-Schwarz inequality, we have

> Vala+kb)at+ke) </ (Dla)[Dla+kb)a+ke)].

Thus, it suffices to show that

\/Z(a+kb)(a+kc)§a+b+c,

which is an identity. The equality holds for a = b = ¢ =1, and also for a = 3 and
b =c =0 (or any cyclic permutation).
O

P 2.13. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

Z \/a(2a +b)(2a+c)=09.

Solution. Write the inequality as follows:

Z[\/a(Za +b)(2a+c)—ay/3(a+b +c)] =0,
> (a—b)a—c)E, >0,

where

- Ja
“ V@2a+b)Ra+tc)++/3ala+tb+c)
Assume that a > b > c. Since (c —a)(c— b)E, = 0, it suffices to show that

(a—c)E, = (b—C)Ey,

which is equivalent to

(a—b)\/?)ab(a +b+ c)+(a—c)\/a(2b +c)(2b+a)> (b—c)\/b(Za + b)(2a + ¢).

This is true if

(a—c)y/a(@b+c)(2b +a) > (b—c)y/b(2a + b)(2a + ¢).

For the nontrivial case b > ¢, we have

b—c

Q
o

>

v

S5
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Therefore, it is enough to show that

a?(2b +c)(2b +a) > b*(2a + b)(2a + ¢).
Write this inequality as

a?(2ab + 2bc + ca) > b%*(2ab + bc + 2ca).

It is true if
a(2ab + 2bc + ca) = b(2ab + bc + 2ca).

Indeed,
a(2ab + 2bc +ca)— b(2ab + bc + 2ca) = (a — b)(2ab + bc + ca) > 0.

The equality holds for a = b = ¢ =1, and also for a = b = 3/2 and ¢ = 0 (or any
cyclic permutation).
O]

P 2.14. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

Vbh2+c2+alb+c)+/c2+a2+b(c+a)+ a2+ b2+c(a+b)>6.

Solution. Denote
A=b*+c*+a(b+c), B=c*+a*+b(c+a), C=a’+b*+c(a+b),
and write the inequality in the homogeneous form
VA+VB+VC>2(a+b+c).

Further, we use the SOS method.

First Solution. By squaring, the inequality becomes

22@2 22a2+62 bc,
>b—c)*= > (VB-VC),
D> (b—c)*s, >0,

where
_ (b+c—a)

%=1 B o

Since

2
>1_(b+c a) :a(a+3b+3c)

S, >
B+C B+C

>0, S,>0, S.>0,
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the conclusion follows. The equality holds for a = b = ¢ = 1, and also for a = 3
and b = ¢ = 0 (or any cyclic permutation).

Second Solution. Write the desired inequality as follows:
Z(«/Z —b—c)>0,

Zc(a—b)+b(a—c)
VA+b+c

Z c(a—>b) Z c(b—a) >0

VA+b+c VB+c+a o

Zc(a—b)[a—b—(\/z \/_)]
(VA+b+c)VB+c+a)

20,

It suffices to show that
(a—b)a—b+ (VB—VA)]>0.
Indeed,

(a—b)[a—b+(¢E—¢Z)]=(a—b)2(1+ a+b_c)z

VB + VA

because, for the nontrivial case a + b — ¢ < 0, we have

+b— +b—
14482744707,

B+ /A c+e

16
Generalization. Let a, b, c be nonnegative real numbers. If 0 < k < rX then

> /(b+c)*+k(ab—2bc+ca)=2(a+b+c).

1
Notice that if k = ?6, then the equality holds for a = b = ¢ = 1, for a = 0 and

b = ¢ (or any cyclic permutation), and for b = ¢ = 0 (or any cyclic permutation).
O

P 2.15. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

(@) va(3a2+ abc) + 4/b(3b%+abc) + v/c(3c2 + abc) > 6;
(b) v/3a2+abc + v/3b2+abc + v/3c2+abc > 3v3 +abc.

(Lorian Saceanu, 2015)
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Solution. (a) Write the inequality in the homogeneous form

BZa\/ (a+b)a+c)>2(a+b+c)

First Solution. Use the SOS method. Write the inequality as

Zaz—ZabZEZa(Va+b—«/a+c)2,
Z(b—c)ZZBZ( a(b—c)?

1/a+b+1/a—+-c)2’

> (b—c)*s, >0,

where
3a
Se=1— -
(w/a+b+\/a+c)

Since

3a

(21-—————>0, §,>0, S.>0,
(va+va)

the inequality is true. The equality holds fora =b =c =1.

Second Solution. By Holder’s inequality, we have

3
[Z a4y/(a+b)(a+ c)]2 > 2 C;) = 27a
2 (a+b)(a+c) 2

Therefore, it suffices to show that

Z+<§
(a+b)la+c) ™ 4

This inequality has the homogeneous form

Z a < 9
(a+b)la+c)” 4la+b+c)

which is equivalent to the obvious inequality

Z:a(b—c)2 > 0.

(b) By squaring, the inequality becomes

E’»Z:a2 + ZZ \/(Bb2 +abc)(3c2+abc) > 27+ 6abc.

According to the Cauchy-Schwarz inequality, we have

\/(sz +abc)(3c2+abc) > 3bc +abc.

(a+b)(a+c)
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Therefore, it suffices to show that
3Z:a2 + 62 bc + 6abc > 27 + 6abc,
which is an identity. The equality holds for a = b = ¢ = 1, and also for a = 0, or

b=0,0rc=0.
]

P 2.16. Let a, b, ¢ be positive real numbers such that ab + bc + ca = 3. Prove that

ay/(a+2b)(a+2c)+ by/(b+2c)(b+2a)+cy/(c+2a)(c+2b) > 9.

First Solution. Use the SOS method. Write the inequality as follows:

a\/(a+2b)(a+2c) > 3(ab + bc+ca),

)3

Zaz—ZabZ %Za(\/a+2b—1/a+2c)2,
Z(b_C)ZZ‘I'Z( a(b—c)?

va+2b+ 1/a—+-2c)2’
D> (b—c)*s, >0,

where 4
S,=1— = .
(\/a+2b+«/a+2c)
Since 4
§g>1———" =0, §,>0, S.>0,
(Va++va)

the inequality is true. The equality holds fora =b =c =1.
Second Solution. We use the AM-GM inequality to get

_ 2a(a+ 2b)(a + 2c) 2a(a+2b)(a + 2c)
2uaVlerabar20=2, e S 2 ) o + (0 20

! Za(a+2b)(a+2c).

Ca+b+c

Thus, it suffices to show that
Za(a +2b)(a+2c)=9(a+b+c).
Write this inequality in the homogeneous form

Za(a +2b)(a+2c)=>3(a+b+c)(ab+ bc+ca),
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which is equivalent to Schur’s inequality of degree three

a®+b*+c®+3abc > ab(a+ b)+ be(b +¢) +calc + a).

P 2.17. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 1. Prove that

\/a+(b—c)2+ \/b+(c—a)2+ \/c+(a—b)2 > /3.
(Phan Thanh Nam, 2007)

Solution. By squaring, the inequality becomes

Z VIa+(b—c)21[b+(c—a)?]>3(ab + bc +ca).

Applying the Cauchy-Schwarz inequality, it suffices to show that

Z \/E+Z(b—c)(a—c) > 3(ab + bc +ca).

This is equivalent to the homogeneous inequality

(Za) (Z \/E) +Z:a2 >4(ab+ bc+ca).

Making the substitution x = 4/a, y = v'b, z = /¢, the inequality turns into

() (S)+ w24 T

which is equivalent to
Zx4 + Z:xy(x2 +y3)+ xysz > 4Zx2y2.

4Z:x2y2 < ZZ:xy(x2 +y2),

Since

it suffices to show that
Zx“ +xysz > Z:xy(x2 + ),
1

which is just Schur’s inequality of degree four. The equality holds fora=b =c = 3

1
and fora=0and b =c = B (or any cyclic permutation).
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P 2.18. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

\Ja(b+c)+\J b(c+a)_i_\jc(a+b)>2

a?+ bc b2+ ca c2+ab

(Vasile Cirtoaje, 2006)

Solution. Using the AM-GM inequality gives

a(b+c) a(b+c¢) S 2a(b+c) _ 2a(b+c)
J az+bc V(@ +bc)(ab +ac) (a®+bc)+(ab+ac) ~(a+b)a+c)

Therefore, it suffices to show that

a(b+c) N b(c+a) N cla+b) 51,
(a+b)la+c) (b+c)b+a) (c+a)c+b)

which is equivalent to
a(b+c)?*+b(c+a)’+cla+b)*=(a+b)b+c)c+a),

4abc > 0.

The equality holds for a = 0 and b = ¢ (or any cyclic permutation).

P 2.19. Let a, b, c be positive real numbers such that abc = 1. Prove that

1 1 1
- + - + - >1
va2+25a+1 vVb2+25b+1 Vc2+25c+1

Solution. Replacing a, b, c by a®, b3, ¢, respectively, we need to show that abc = 1

yields
1 1 1

3 + 3 + 3
va®+25a3+1 v/b6+25b34+1 c6+25c3+1
We first show that

> 1.

1 1
> .
Va®+25a3+1 a’+ta+1

This is equivalent to
(a®>+a+1)P2>a®+254°+1,

which is true since

(a®>+a+1)>°—(a®+25a°+1)=3a(a—1)*(a®?+ 4a+1) > 0.
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Therefore, it suffices to prove that

1 1 1
+ + >1
a+a+1 b2+b+1 b2+b+1
Putting ya oy xy
a—;, :ﬁ’ c=z—2, x,y,2>0

we need to show that .

X
>1
Z X4 +x2yz +y222

Indeed, the Cauchy-Schwarz inequality gives

Z x4 - (sz)z _ dixt+2> y2g? -
X+ x2yz+y222 T Y (et +x2yz +y222)  Dxt4xyzdx+ Dy
The equality holds fora=b =c=1.

OJ

P 2.20. If a, b, c are nonnegative real numbers, then

\/a2+bc+\/b2+ca+\/c2+abs%(a+b+c).

(Pham Kim Hung, 2005)

Solution. Without loss of generality, assume that a > b > c¢. Since the equality
occurs for a = b and ¢ = 0, we use the inequalities

\/a2+cha+%

and

Vb2+ca+Vc2+ab< \/2(b2+ca)+2(c2+ab).

Thus, it suffices to prove that

a+3b+2c

\/2(b2+ca)+2(c2+ab)£ :

By squaring, this inequality becomes
a®+ b*—4c*>—2ab +12bc —4ca > 0,

(a—b—2c)*+8c(b—c)>0.

The equality holds for a = b and ¢ = 0 (or any cyclic permutation).
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P 2.21. If a, b, c are nonnegative real numbers, then

Vaz+9bc+ v/ b2 +9ca+ vc2+9ab > 5+vab + be + ca.
(Vasile Cirtoaje, 2012)
Solution (by Nguyen Van Quy). Assume that
¢ =min{a, b, c}.

Since the equality occurs for a = b and ¢ = 0, we use the inequality

VvV c2+9ab >3V ab.

On the other hand, by Minkowski’s inequality, we have

Va2 +9bc+ v/b2 +9ca > \/(a+b)2+9c(ﬁ+ \/3)2.

Therefore, it suffices to show that

\/(a+b)2+9c(\/a+ \/E)ZZSVab+bc+ca—3\/£.

By squaring, this inequality becomes

(a+ b)*+18cvab +30+/ab(ab + bc + ca) > 34ab + 16c(a + b).

Since

cla+ b)}2 _ c(a+b)(3ab—ac— bc) >0

ab(ab + bc+ca)— [ab +
3 9

it suffices to show that f(c) > 0 for 0 < ¢ < v'ab, where

f(c)=(a+b)*+18cvab+[30ab+10c(a+ b)]—34ab—16¢c(a + b)
=(a+b)>*—4ab+6c(3vVab—a—D).
Since f(c) is a linear function, we only need to prove that f(0) > 0 and f(+ab) >

0. We have
f(0)=(a—b)*=0,

f(vab) = (a+b)?+14ab—6(a+b)Vab > (a+b)*+9ab—6(a + b)Vab
=(a+b—3x/£)220.

The equality holds for a = b and ¢ = 0 (or any cyclic permutation).
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P 2.22. If a, b, c are nonnegative real numbers, then

Z \/(a2 +4bc)(b2 + 4ca) = 5(ab + ac + bc).
(Vasile Cirtoaje, 2012)

Solution. Assume that
a>b>c.

First Solution (by Michael Rozenberg). Use the SOS method. For b = ¢ = 0, the
inequality is trivial. Consider further that b > 0 and write the inequality as follows:

Z [\/(bz +4ca)(c2 + 4ab) — (bc + 2ab + 2ac)] >0,

b+ 4a)(e + 4ab)—(be+ 2ab + 2ac)’
J(b2+ 4ca) (@ + 4ab) + be+2a(b+c)

D> (b—c)*s, >0,

where
a(b+c—a)
S, = — A= 1/(b2+4ca)(c2 + 4ab) + bc + 2a(b +¢),
S, = w, B = 4/(c2 + 4ab)(a2 + 4bc) + ca + 2b(c + a),
cla+b—c)
S, = — C= \/(a2 +4bc)(b%+4ac) +ab + 2c(a + b).

Since S, > 0 and S, > 0, we have

2
D (b—c)8, > (b—c)*S, +(a—c)*S, > (b—c)*S, + %(b — )%,

a bS as
_ - ( a+—b).
AU S

Thus, it suffices to prove that

bSa aSb
+ —>
b

0,
a

which is equivalent to

b(b+c—a)+a(c+a—b) -
A B

0.

Since

b(b+c—a) +a(c+a—b) > b(b—a) +a(a—b) _ (a—b)(aA—bB)’
A B A B AB
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it is enough to show that
aA—bB > 0.

Indeed,

aA—bB = \/c2+4ab|:a\/b2+4ca—b\/a2+4bc:|+2(a—b)(ab+bc+ca)

_ 4c(@®—Db*)Vc2+4ab
av b2+ 4ca+ bva2+4bc

The equality holds for a = b = ¢, and also for a = b and ¢ = 0 (or any cyclic
permutation).

+2(a—b)(ab+ bc+ca) = 0.

Second Solution (by Nguyen Van Quy). Write the inequality as

2
(\/a2+4bc+\/b2+4ca+\/c2+4ab) >a?+b%2+c?+14(ab + bc +ca),

Va2 +4bc+ Vb2 +4ca+ V2 +4ab > \/a2+b2+c2+14(ab+bc+ca).

For t = 2c, the inequality (b) in Lemma below becomes

Va2 +4bc+ Vb2 +4ca > \/(a+b)2+8(a+b)c.

Thus, it suffices to show that

\/(a+b)2+8(a+b)c+\/c2+4ab2 \/a2+b2+c2+14(ab+bc+ca).

By squaring, this inequality becomes

VI(a+b)2+8(a+b)c](c2+4ab) > 4ab+3(a+b)c,

2(a+ b)c® —2(a+ b)*c? +2ab(a + b)c +ab(a+ b)?> —4a?*b? >0,
2(a+b)(a—c)(b—c)c+ab(a—b)*>0.

Lemma. Let a,b and t be nonnegative numbers such that

t <2(a+b).
Then,
(a) V(a2 +2bt)(b2+2at)>ab+ (a+b)t;
(b) vaz+2bt + v/b2+2at > +/(a+ b)> +4(a + b)t.

Proof. (a) By squaring, the inequality becomes
(a—Db)*t[2(a+Db)—t]>0,

which is clearly true.

(b) By squaring, this inequality turns into the inequality in (a).
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P 2.23. If a, b, c are nonnegative real numbers, then

Z \/(a2 +9bc)(b2+9ca) = 7(ab + ac + bc).

(Vasile Cirtoaje, 2012)

Solution (by Nguyen Van Quy). We see that the equality holds for a = b and ¢ = 0.
Without loss of generality, assume that

¢ =min{a, b, c}.

For t = 4c, the inequality (a) in Lemma from the preceding P 2.22 becomes

V(a2 +8bc)(b2 +8ca) > ab + 4(a + b)c.

Thus, we have

\/(a2 +9bc)(b2+9ca) = ab+4(a+ b)c

and

Ve2 +9ab(\/a2 +9bc + v/ b2 +9ca) >3V ab -2\4/(a2 +9bc)(b2 +9ca)

> 6vab-+/ab +4(a+ b)c = 31/4a2b2 + 16abc(a + b)
> 3\/4a2b2 +4abc(a+ b)+c2(a+ b)2 =3(2ab + bc + ca).

Therefore,

Z \/(a2 +9bc)(b%+9ca) = (ab + 4bc + 4ca) + 3(2ab + bc + ca)
= 7(ab+ bc + ca).

The equality holds for a = b and ¢ = 0 (or any cyclic permutation).

P 2.24. If a, b, c are nonnegative real numbers, then

V(@ +b2)(b2 +c2) + /(b2 + c2)(c2 + a2) + 1/(c2 + a2)(a2 + b2) < (a + b + ¢)*.
(Vasile Cirtoaje, 2007)
Solution. Without loss of generality, assume that
a =min{a, b, c}.

Let us denote a

=24b, z=2Z4c
YTy EELTC
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Since
a?+b*<y? b*+c?<y*+2% c*+at<i?

it suffices to prove that
yz+(y+2)Vy2+22 < (y +2)>
This is true since
vz > 0.
Y2+yz+22+(y +2)V/y2+22

The equality holds for a = b = 0 (or any cyclic permutation).

Yi+yz+22—(y+2)Vyr+22=

P 2.25. If a, b, c are nonnegative real numbers, then

Z\/(a2+ab+b2)(b2+bc+c2)2(a+b+c)2.

Solution. By the Cauchy-Schwarz inequality, we have

2 2 2 2
(a®+ab+b*)(a®+ac+c?) = [(a+9) +£] [(a+5) +3i]
2 4 2 4

2(a+é)(a+£)+3—bc:a2+a(b+c)+bc.
2 2 4 2

Then,

a(b+c)

V(a2 +ab + b2)(a2 +ac +c2) > a’+ +bc|=(a+b+c)
2.

The equality holds for a = b = ¢, and also for b = ¢ = 0 (or any cyclic permutation).
O

P 2.26. If a, b, c are nonnegative real numbers, then

Z \/(a2 + 7ab + b2)(b2+ 7bc +c2) > 7(ab + ac + bc).

(Vasile Cirtoaje, 2012)
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First Solution. Without loss of generality, assume that
¢ =min{a, b, c}.

We see that the equality holds for a = b and ¢ = 0. Since

\/(a2 + 7ac+c2)(b2+7bc+c2)=>(a+2c)(b+2c)=ab+2c(a+b),

it suffices to show that

\/a2+7ab+b2(\/a2+7ac+\/b2+7bc)26ab+5c(a+b).

By Minkowski’s inequality, we have

\/a2+7ac+\/b2+7bc2\/(a+b)2+7c(\/a+\/g)2

28ab
Z\J(a+b)2+7c(a+b)+ 8a ‘
a+b

Therefore, it suffices to show that

28ab
(a®+ 7ab + b?) [(a +b)?+7c(a+b)+ jl_ bc] > (6ab + 5bc + 5ca)?.
a
1
Due to homogeneity, we may assume that a+ b = 1. Let us denote d = ab, d < e
Since oqb
c< v _ 2d,
a+b

1
we need to show that f(c)>0for0<c<2d < > where

f(c)=(1+5d)(1+7c+28cd)—(6d + 5c).
Since f(c) is concave, it suffices to show that f(0) > 0 and f(2d) > 0. Indeed,
f(0)=1+5d—36d>=(1—4d)(1+9d)>0
and
f(2d) = (1+5d)(1 + 14d + 56d?) — 256d> > (1 + 4d)(1 + 14d + 56d*) — 256d?

=(1—4d)(1+22d —56d*) > d(1—4d)(22—56d) > 0.
The equality holds for a = b and ¢ = 0 (or any cyclic permutation).

Second Solution. We will use the inequality

2xy
x+y’

VX2+7xy+y2>x+y+ x,y 20,
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which, by squaring, reduces to
xy(x—y)*>0.

We have

Z\/(a2+7ab+b2)(a2+7ac+c2)22(a+b+%)(a+c+azicc)
2a%b 2a? 2ab
SN0 N i
2a’b 2a’c 2a2b 2b2a
Za+b Za+c_za+b Zb+a=22ab

Z 2abc 18abc 9abc
a+b Z(a+b) Ta+b+c

Since

and

it suffices to show that

Zaz a—9|-abb-cl—c = ZZab

which is just Schur’s inequality of degree three.

P 2.27. If a, b, c are nonnegative real numbers, then

Z\J (a2+zab+b2) (b2+zbc+c2) < E(a+ b+c)>
9 9 12

(Vasile Cirtoaje, 2012)

Solution (by Nguyen Van Quy). Without loss of generality, assume that
¢ =min{a, b, c}.

It is easy to see that the equality holds for a = b = 1 and ¢ = 0. By the AM-GM
inequality, the following inequality holds for any k > 0:

12\]a2+zab+b2 \Ja2+zac+c2+\]b2+zbc+c2 <
9 9 9
36 7 7 7 ’
S—(a2+—ab+b2)+k \Ja2+—ac+cz+\Jb2+—bc+cz )
k 9 9 9
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We can use this inequality to prove the original inequality only if

2
ﬁ( 2+Zab+b2):k \Ja2+zac+c2+\Jb2+zbc+c2
k 9 9 9

for a = b =1 and ¢ = 0. This condition if satisfied for k = 5. Therefore, it suffices
to show that

36
IZ\J (a2 +Lact cz) (b2 +Lbe+ cz) + = (az +Zab+ b2)+
9 9 5 9

2
+5(\Ja2+gac+c2+\Jb2+gbc+c2) <13(a+b+c)*

which is equivalent to

2
ZZ\J (az + gac + cz) (bz + gbc + cz) < Hat b)s +94ab +3c% + —199C(; + b),

Since

1 1
2\] (a2+ Zac+c2)(b2+ Zbc+c2) < 2\ (a2+ —6ac) (b2+ —6bc)
9 9 9 9
1 1
22\ a(b+—6c)-b(a+—6c)
9 9
Sa(b+Ec)+b(a+Ec)
9 9

— b+ 16¢c(a + b)

2

we only need to prove that

b 24+ b%)+102ab 1 b
22[ab+8c(a9+ )]<4(a +b%)+ a L34 99¢(a + ).

- 5 9
This reduces to the obvious inequality

132
4(a5 b) +23c(c;+ b)+3c220.

Thus, the proof is completed. The equality holds for a = b and ¢ = 0 (or any cyclic
permutation).
O
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P 2.28. If a, b, c are nonnegative real numbers, then

1 1 1
Z\J (a2+ —ab+ bz) (b2+ —bc+c2) <atrpror
3 3 60
(Vasile Cirtoaje, 2012)

Solution (by Nguyen Van Quy). Without loss of generality, assume that
¢ =min{a, b, c}.

It is easy to see that the equality holds for ¢ = 0 and 11(a® + b%) = 38ab. By the
AM-GM inequality, the following inequality holds for any k > 0:

1 1 1
6O\la2+§ab+b2(\la2+§ac+c2+\lb2+§bc+c2)s

2
1 1 1
s3—6(a2+§ab+b2)+25k(\Ja2+§ac+c2+\lb2+§bc+c2) )

k

We can use this inequality to prove the original inequality only if the equality

2

1 1 1
ﬁ( 2-l-—ab—+-b2)=25k \a2+—ac—+-c2—+-\b2+—bc+c2
k 3 3 3

holds for ¢ = 0 and 11(a® + b?) = 38ab. This necessary condition if satisfied for
k = 1. Therefore, it suffices to show that

1 1 1
60\J (az + Eab + bz) (bz + gbc + cz) +36 (az + Eab + bz) +

2
1 1
+25(\Ja2+§ac+c2+\lb2+§bc+cz) <61(a+b+c)?

which is equivalent to

1 1 31 +b
10\J (az + 34¢ + 02) (bz + gbc + 02) < 10ab +c*+ M.

Z\J (a2+1ac+c2) (b2+ 1bc+c2) < 2\ (a2+fac) (b2+ﬂbc)
3 3 3 3
=2\ a(b+ic)-b(a+‘—lc)
3
Sa(b+‘—lc)+b(a+é—lc)

3 3

Since

w
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we only need to prove that

2c(a + b)] 31c(a+b)
— 5 _—

<10ab+c*+ 3

10 [ab—l—

This reduces to the obvious inequality
3c2+11c(a+b)>0.

Thus, the proof is completed. The equality holds for 11(a?+ b?) = 38ab and ¢ =0
(or any cyclic permutation).
]

P 2.29. If a, b, c are nonnegative real numbers, then

= + b + c >1
V4b2+bc+4c2  vAc2+ca+4a?  v4a?+ab+4b2

(Pham Kim Hung, 2006)

Solution. By Holder’s inequality, we have

(Z a )ZZZ (ZG)S _Za3+32ab(a+b)+6abc.

V4bZ + be + 4c2 a(4b2+bc+4c2) 4> ab(a+ b)+3abc

Thus, it suffices to show that

ZaB +3abc > Zab(a +b),

which is Schur’s inequality of degree three. The equality holds for a = b = ¢, and
also for a = 0 and b = ¢ (or any cyclic permutation).
O

P 2.30. If a, b, c are nonnegative real numbers, then

a N b N c S a+b+c
Vb2+bc+c2 J2Z+ca+a®? Vai+ab+b? +ab+bc+tca

Solution. By Holder’s inequality, we have

(Z a )2> (Xa) ()
Vb2 + bc +c2 _Za(b2+bc+cz) Zab ’
from which the desired inequality follows. The equality holds for a = b = ¢, and

also for a =0 and b = ¢ (or any cyclic permutation).
O
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P 2.31. If a, b, c are nonnegative real numbers, then

a + b + c < a+b+c
Va2+2bc +vb2+2ca +c2+2ab +Vab+bc+ca

(Ho Phu Thai, 2007)

Solution. Without loss of generality, assume that
a=b=>c.

First Solution. Since

c c
< ,
vc2+2ab vab+ bc+ca

it suffices to show that

a 4 b < a+b
va2+2bc +b2+2ca +ab+bc+ca

which is equivalent to

a(va2+2bc—+ab + bc +ca) - b(vab + bc +ca— Vb2 + 2ca)

vaz+ 2bc B Vb2 + 2ca
Since
\/a2+2bc—\/ab+bc+ca20
and

a S b
JvaZ+2bc vbZ+2ca

it suffices to show that

Va2 +2bc—+vab+bc+ca> \/ab+bc+ca—\/b2+2ca,

which is equivalent to

va2+2bc+ /b2 +2ca>2vab+ bc +ca.

Using the AM-GM inequality, it suffices to show that

(a®+2bc)(b? +2ca) > (ab + bc + ca)?,
which is equivalent to the obvious inequality
cla—b)*(2a+2b—c)>0.

The equality holds for a = b = ¢, and also for a = b and ¢ = 0 (or any cyclic
permutation).
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Second Solution. By the Cauchy-Schwarz inequality, we have
2
a a
- | < S
(Z m) < (X)X )
Thus, it suffices to prove that
Z a <_4a +b+c
a?+2bc = ab+bc+ca’
This is equivalent to
Z a( 1 . 1 ) >0
ab+bc+ca a2+2bc)” "’
Z a(a—b)(a—c) >0
a2+ 2bc
We have
Z ala—b)(a—-c) S a(a—b)(a—c) N b(b—c)(b—a)
a’?+2bc —  a%?+2bc b2+ 2ca
_ cla—b)*[2a(a—c)+2b(b—c)+3ab] -0
B (a2 +2bc)(b? + 2ca) -
O

P 2.32. If a, b, c are nonnegative real numbers, then

a®+ b3 +c3+3abc > a?vVa? +3bc+ bV b2 + 3ca + c2v/c2 + 3ab.

(Vo Quoc Ba Can, 2008)

Solution. For a = 0, the inequality is an identity. Consider further that a, b,c > 0,

and write the inequality as follows:

Zaz(v a2+ 3bc—a) < 3abc,

3a’bc
S 3 e,
va2+3bc+a

1
<1
Z V1+3bc/a2+1

Using the notation

1 1 1

3 y: b Z: 3
v1+3bc/a2+1 v1+4+3ca/b2+1 v1+3ab/c2+1
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implies

be 1-2x ca_1-2y ab_1-2z
a2 3x2’ b2 3y2’ 2 3z2°

1
0<x,y,2<—,
VESY

(1—2x)(1—2y)(1—22) = 27x%y?2%

We need to prove that
x+y+z<1

1
for0<x,y,z< 3 such that (1—2x)(1—2y)(1—22) = 27x?y?z2. To do it, we will
use the contradiction method. Thus, assume that

1
X+y+z>1, O<x,y,z<§,
and show that
(1—2x)(1—2y)(1—22) < 27x%y?z%
We have
(I1-2x)1—-2y)1—-22)<(x+y+z—2x)(x+y+2z—2y)(x+y+2—22)
<(+z—x)z+x—y)x+y—2)x+y+2)?
<3(y+z—x)z+x—y)x+y—2)(x+y+2)(x*+y*+2%)
=3(2x%y% + 2y%2% + 222x2 — x* — y* — 2 (x* + y2 + 2%).
Therefore, it suffices to show that

(2x%y? 4+ 2y%2% + 22°x% — x* — y* — 2 (x® + y? + 22) < 9x?y?2?,

which is equivalent to
x®+y%+2° +3x%y%? > Zlyzzz(y2 + 22).

Clearly, this is just Schur’s inequality of degree three applied to x?, y2,z2. So, the
proof is completed. The equality holds fora = b =, and also fora=0o0or b =0
orc=0.

O

P 2.33. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a b c
<1

+ + <
v4a2+5bc  +/4b2+5ca +4c2+5ab

(Vasile Cirtoaje, 2004)
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First Solution (by Vo Quoc Ba Can). If one of a, b, c is zero, then the desired in-
equality is an equality. Consider next that a, b,c > 0 and denote

a b c ( 1)
X=—, = g=—— x,y,2€(0,=|].
v4a?+5bc Y v4b2 + 5ca v4c? +5ab Y 2

We have
bc 1—4x*> ca_ 1—4y*> ab 1-—42°

a2 5x2 ° b2 5y2 2 522

and
(1—4x*)(1—4y>)(1—42%) = 125x%y?z>.

We use the contradiction method. For the sake of contradiction, assume that x +
y +2z > 1. Using the AM-GM inequality and the Cauchy-Schwarz inequality, we
have

1

e [ [a-4x» < é [ [l +y +2)?—4x?]
1

= EH(3x+y+z)-l_[(y+z—x)
(L oo

< é(x2+y2+zz)(x+y+z)l_[(y +z—Xx)

x2y2g? =

1
= §(x2 + ¥y +2)[2(x%y? + y22® + 22x?) — x* — y* — 2],

hence
Ox?y?z? < (x*+ y* +22)[2(x*y? + y?2® + 2%x%) — x* — y* — 27,

x® + y6 +2°%+ 3x2y?z? < Zx2y2(x2 + ).

The last inequality contradicts Schur’s inequality
x®+ y® +2°+3x%y%z% > Z:xzyz(x2 +y2).

Thus, the proof is completed. The equality holds for a = b = ¢, and also for a =0
orb=0orc=0.

Second Solution. Use the mixing variables method. In the nontrivial case when

b b
a,b,c >0, setting x = —g, y= Z—Czl and z = a_2 (that implies xyz = 1), the desired
c
inequality becomes E(x, y,z) < 1, where

1 1 1
+ + :
V4+5x /4+5y +4+52

E(x,y,z)=
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Without loss of generality, we may assume that
x>2y=>z, x=2=21, yz<1.

We will prove that
E(x,y,2) < E(x,/yz,4/yz) < 1.
The left inequality has the form
1 1 1
+ < .
V4+5y V4+5z  /4+5./yz

For the nontrivial case y # 2, consider y > z and denote

Ytz
==

Pb=vYz,

S

q=1/(4+5y)(4+52).
We have s > p, p < 1 and

q = +/16+40s + 25p2 > /16 + 40p + 25p2 = 4 + 5p.

By squaring, the desired inequality becomes in succession as follows:

+ +=< ,
4+5y 4+5z q 4+5p

1 1 2<4

+ J— < J—
4+5y 4+5z2 4+5p 4+5p ¢
8+10s_ 2 < 2(q—4—5p)
q? 4+5p~ q(4+5p)

1 1 2 2 2
<

b

(s—p)(5p—4) < 8(s—p)
q?(4+5p) "~ q(4+5p)q+4+5p)
S5p—4 < 8

q ~ q+4+5p°
25p*—16 < (12—5p)q.
The last inequality is true since
(12—5p)q —25p*+ 16 > (12—5p)(4 + 5p) — 25p* + 16
=2(8—5p)(4+5p) > 0.
In order to prove the right inequality, namely

1 + 2 <
V4+5x 4/4+5/yz
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let us denote

V4+5/yz=3t, te(2/3,1].

1 25
X=—=———,
yz  (9t2—4)?

Since

the inequality becomes

9t2—4 2

+ <1
3v/36t4—32t2+21 3t

>

(2—36) (V3614 —3262+ 21 —3t2—2t) < 0.

Since 2 — 3t < 0, we still have to show that

V3614 —32¢2 421 > 32 + 2t.
Indeed, we have

36t*—32t2+21—(3t2+2t)  =3(t —1)*(9t2 + 14t + 7) > 0.

P 2.34. Let a, b, c be nonnegative real numbers. Prove that

av/4a2 +5bc + b/ 4b2 +5ca +cvV4c2 +5ab > (a+ b +¢)>.
(Vasile Cirtoaje, 2004)

First Solution. Write the inequality as

Za(v4a2+5bc—2a)22(ab+bc+ca)—a2—b2—c2,

> 2(ab + bc +ca)—a®—b*—c2.

5abcz !
v4a2+5bc + 2a

Writing Schur’s inequality
a®+b*+c*+3abc > Z:ab(a2 + b?)

in the form
9abc
a+b+c

it suffices to prove that

> 2(ab + bc +ca)—a®—b*—c?,

5 9
> .
Z\/4a2+5bc+2a a+b+c
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Letp=a+b+cand g =ab + bc + ca. By the AM-GM inequality, we have

2 2
faaz ¥ 5he — 2v/(16a +20bc)(3b +3¢)* _ (16a’ +20bc) +(3b +3c)
12(b +c¢) 12(b +¢)

16a* +16bc +10(b +c)*>  8a*+5b* + 5¢ + 18bc
12(b+¢) B 6(b +c) ’

hence

5 5
Z v4a2+5bc+2a ZZ 8a? + 5b% + 5¢2 + 18bc
6(b+c)
:Z 30(b+¢) :Z 30(b+¢) '
8a? + 5b2 4+ 5c¢2+ 12ab + 18bc + 12ac 5p? +2q + 3a?+ 6bc
Thus, it suffices to show that

3 30(b +¢) 9
5p2+2q+3a2+6bc  p’

+ 2a

By the Cauchy-Schwarz inequality, we get

2
Z 30(b +c¢) - 30[ X (b +¢)]
5p2+2q+3a2+6bc — >.(b+c)(5p%+2q + 3a2 + 6bc)
B 120p2 B 120p?
 10p3+4pq+9 . be(b+c)  10p3+13pq—27abc’

Therefore, it is enough to show that

120p? 29
10p3 + 13pq—27abc ~ p’

which is equivalent to
10p® +81abc > 39pq.

From Schur’s inequality p* + 9abc > 4pq and the known inequality pq > 9abc, we
have
10p® + 81abc —39pq = 10(p> + 9abc — 4pq) + pq — 9abc > 0.

This completes the proof. The equality holds for a = b = ¢, and also for a = 0 and
b = ¢ (or any cyclic permutation).

Second Solution. By the Cauchy-Schwarz inequality, we have

(Zav 4a2+5bc) (Z \/ﬁ) >(a+b+c).

From this inequality and the inequality in P 2.33, namely

a
— <1,
Z v4a2 + 5bc
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the desired inequality follows.

Remark. Using the same way as in the second solution, we can prove the following
inequalities for a, b, c > 0 satisfying abc = 1:

avV4a2+5+bvV4b2+5+cv/4c2+5> (a+ b +c);

Vaa* +5+vV4b* + 5+ Vact + 5= (a+ b +c).

The first inequality is a consequence of the the Cauchy-Schwarz inequality

(Za\/4a2+5)(z1/%)2(a+b+c)2

and the inequality

a
———<1, abc=1,
Z v4a2+5
which follows from the inequality in P 2.33 by replacing bc/a?, ca/b?, ab/c? with
1/a?, 1/b?%, 1/c?, respectively.
The second inequality is a consequence of the the Cauchy-Schwarz inequality

(Zv4a4+5)(2ﬁ)2(a+b+c)2

and the inequality
2

a
S 21 abe=1,
4a4+5

which follows from the inequality in P 2.33 by replacing bc/a?, ca/b?, ab/c? with
1/a* 1/b* 1/c*, respectively.
]

P 2.35. Let a, b, c be nonnegative real numbers. Prove that

ava?+3bc+bv b2+3ca+cvc2+3ab>2(ab+ bc+ca).
(Vasile Cirtoaje, 2005)

First Solution (by Vo Quoc Ba Can). Using the AM-GM inequality yields

S avairabe= 3 bt 360

v/ (b +¢c)2(a? + 3bc)

- Z 2a(b +c)(a? + 3bc)
~ 4 (b+c)®+(a?+3bc)
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Thus, it suffices to prove that

2a(b +c)(a? + 3bc)
> .
Z a?+b2+c2+5bc _Za(b+c)

We will use the SOS method. Write the inequality as follows:

>

Z a(b+c)(a®?—b%—c%+ bc) -0
a2+ b2+ c2+5bc B
Z a3(§)+c)—a(b3 +c%) >0
a2+ b%+c%2+5bc
Z ab(a?—b?)—ac(c®—a?)
a2+ b2+ c2+5bc

Z ab(a?— b?) _Z ba(a?—b?) -0
a2+ b2+ c2+5bc b2+c2+a2+5ca
Z 5abc(a + b)(a— b)?
(

> 0.
a2+ b2+ c2+5bc)(a?+ b2+ c2+ 5ac)

The equality holds a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic permuta-
tion).

b

=0,

Second Solution. Write the inequality as
Z(a\/a2+3bc—a2) > 2(ab+ bc+ca)—a®—b>—c2

Due to homogeneity, we may assume that a + b + ¢ = 3. By the AM-GM inequality,
we have

3abc 12abc
ava?+3bc—a*= =
va2+3bc+a 2+/4(a%+3bc)+4a

12abc
T 4+a2+3bc+4a

Thus, it suffices to show that

1 2 2 2
12abcz4+a2+3bc+4a > 2(ab+ bc+ca)—a*— b —c”.

On the other hand, by Schur’s inequality of degree three, we have

9abc

———— >2(ab+bc+ca)—a®—b>—c%
a+b+c

Therefore, it is enough to prove that

1 3
= .
Z4+a2+3bc+4a “ 4(a+Db+c)
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By the Cauchy-Schwarz inequality, we have

1 9 9
Z4+a2+3bc+4a = S G+ +3bct4a)  24+S a2+35ab
27
8(Xa)’ +33a2+93 ab
9>a .3
11(Xa)’+3Xab  42a

P 2.36. Let a, b, c be nonnegative real numbers. Prove that

ava2+8bc+bvb2+8ca+cvVc2+8ab<(a+b+c)

Solution. Multiplying by a + b + c, the inequality becomes

Za\/(a+b+c)2(a2+8bc) <(a+b+c).

Since

24/(a+ b +c)2(a2+8bc) < (a+b+c)?+(a*+8bc),

it suffices to show that
Z a[(a+b+c)*+(a*+8bc)]<2(a+b+c),
which can be written as
a®+ b3+ c®+24abc < (a+b+c).
This inequality is equivalent to
a(b—c)?*+b(c—a)*+c(a—Db)*>0.

The equality holds for a = b = ¢, and also for b = ¢ = 0 (or any cyclic permutation).
O

P 2.37. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a® + 2bc b% +2ca c2+2ab
+ + >3vab+ bc +ca.

Vb2+bc+c2 Vc2+ca+a: Vaz+ab+ b2

(Michael Rozenberg and Marius Stanean, 2011)
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Solution. By the AM-GM inequality, we have

Z a®+ 2bc _Z 2(a*+2bc)vab + bc +ca
v b2+ bc + c2 24/ (b2 + bc +c2)(ab + bc + ca)

2
ZVab+bc+caZ 2(a” +2bc)

(b2+4+ bc+c2)+(ab+ bc +ca)

2
= \/ab+bc+caz(b 2(a” +2bc)

+c)a+b+c)

Thus, it suffices to show that

a2+2bc+ b2+2ca+c2+2ab
b+c c+a a+b

3
> —(a+b+c).
2
This inequality is equivalent to
1
a*+b*+c*+abc(a+b+c)> EZab(a+ b)%.
We can prove this inequality by summing Schur’s inequality of fourth degree
a*+b*+c*+abcla+b+c)> Z:ab(a2 +b?)
and the obvious inequality
1
Z:ab(a2 +b%) > EZab(a + b)%

The equality holds for a = b =c.

P 2.38. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > 1,
then
<+ pk+1 okl ak + bk 4 ck
+ + < .
2a2+bc  2b%2+ca 2c%2+ab a+b+c
(Vasile Cirtoaje and Vo Quoc Ba Can, 2011)

Solution. Write the inequality as follows:

a ak+1
>, — >0,
a+b+c 2a%2+bc
k(q — _
Z a“(a—b)(a—c) >0
2a2+ bc
Assume that a > b > ¢. Since (¢ —a)(c — b) = 0, it suffices to show that
k(,__ _ ki — —
a“(a—b)(a—c) N b*(b—a)(b—c) > 0.
2a2 + bc 2b%+ca
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This is true if ) )
a (a—c)_ b“(b—c) >0

2a24+bc  2b2+ca

which is equivalent to
af(a—c)(2b? + ca) > b (b —c)(2a% + be).
Since a*/b* > a/b, it remains to show that
a(a—c)(2b? +ca) > b(b—c)(2a® + bc),
which is equivalent to the obvious inequality
(a—Db)c[a®+3ab +b% —c(a+Db)]>0.

The equality holds for a = b = ¢, and also for a = b and ¢ = 0 (or any cyclic

permutation).
O

P 2.39. If a, b, c are positive real numbers, then

a’®—bc b%—ca c2—ab
(a) + + >
V3a2+2bc  +/3b2+2ca +/3c2+2ab
2 2 2 _
) a“— bc b*—ca N c—ab >0.

+ =
V8a2+(b+c)2 /8b2+(c+a)® +1/8c2+(a+ b)?
(Vasile Cirtoaje, 2006)

Solution. (a) Use the SOS technique. Let

A=+V3a?+2bc, B=+3b%2+2ca, C = +3c2+2ab.

We have
a’—bc (a—b)a+c)+(a—c)a+b)
S
(a—b)(a+¢c) (b—a)(b+c)
=24t
at+c b+c
=Z(a—b)( 3 )
_Z:a—b.(a-+—c)ZBZ—(b+c)2A2
B AB (a+c)B+(b+c)A ’
hence

a®>—bc _~cla—b)* 2(a—Db)*+cla+b+2c)
22 @tB+(btoa -
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The equality holds for a = b =c.

(b) Let

A=4/8a?2+(b+c)?, B=4/8b2+(c+a), C= \/8c2+(a+b)2b.

As we have shown before,

a®>—bc _~oa—b (a+c)’B*—(b+c)’A
2, A _ZAB'

(a+c)B+(b+c)A
hence , ,
a®— bc (a—Db) G
2 = . >0
Z A Z AB (a+c)B+(b+c)A ™~
since

C,=[(a+c)+(b+c)]l(a+c)+(b+c)*]—8ac(b+c)—8bc(a+c)
>[(a+c)+(b+c)](4ac +4bc)—8ac(b+c)—8bc(a+c)
=4c(a—Db)*>0.

The equality holds fora = b =c.

P 2.40. Let a, b, c be positive real numbers. If 0 < k < 1+ 2+/2, then

a’—bc b%—ca c2—ab
+ + >0
vkaz+b2+c2 vVkb2+c2+a? Vkc2+a?+b2?

Solution. Use the SOS method. Let

A=V ka?+b2+c2, B=+Vkb2+c2+a%, C=+Vkc?2+a?+ b2

As we have shown at the preceding problem,

a?— bc a—b (a+c)*B?>—(b+c)%A?
ST ‘

AB (a+c)B+(b+c)A "’
therefore , ,
a®—bc (a—Db) Cy
2 = .
Z A Z AB (a+c)B+(b+c)A
where

C,=(a*+b*+c*)(a+b+2c)—(k—1)c(2ab + bc + ca).
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It suffices to show that C; > 0. Putting a+ b = 2x, we have a®*+ b? > 2x?, ab < x?,
hence

C, > (a®+b*+c*)(a+b+2c)—2v2 c(2ab + be + ca)
> (2x2 4 c?)(2x +2¢) — 2v2 ¢(2x2 + 2¢cx)
=2(x +¢c)(xvV2—c)*>0.
The equality holds fora = b =c.

P 2.41. If a, b, c are nonnegative real numbers, then

(a>—bc)Vb+c+ (b —ca)vc+a+(c*—ab)Va+b=>0.

First Solution. Let us denote

b+c c+a a+b

x =
hence
a=y*+z*—x* b=z"+x*—y* c=x*+y*—2%
The inequality turns into
xy(+y)+yz(y? +2%) +2x(22 +x°) = X2y (x +¥) + ¥22%(y +2) +22x* (2 + x),
which is equivalent to the obvious inequality
xy(x+y)x—y)Y +yz(y +2)(y —2)* +2x(z + x)(z — x)* > 0.

The equality holds for a = b = ¢, and also for b = ¢ = 0 (or any cyclic permutation).

Second Solution. Use the SOS technique. Write the inequality as
A(a® —bc)+B(b%>—ca)+C(c2—ab) >0,

where

b+c, B=+c+a, C=+a+bh.
We have

2> Al@®>—bc)= > Alla—b)(a+c)+(a—c)(a+b)]
= Ala—b)a+c)+ ) B(b—a)(b+c)
= (a—b)[A(a+c)—B(b+c)]
_ Z(a 1. A%(a+c)>—B%(b+c)?

Ala+c)+B(b+c)
_Z(a—b)z(a+c)(b+c) >0
B Ala+c)+B(b+c) —
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P 2.42. If a, b, c are nonnegative real numbers, then

(a®*—bc)v a2 +4bc+ (b*—ca)Vv b2 +4ca+ (c*—ab)v/ c2+4ab > 0.
(Vasile Cirtoaje, 2005)

Solution. If two of a, b, c are zero, then the inequality is clearly true. Otherwise,
write the inequality as
AX+BY +CZ =0,

where

Ja& ¥ abe VPtaa . _ J@+aab

> - >

b+c cta ~ a+b
X=(a®>=bc)(b+c), Y=(b*—bc)(b+c), Z=(c*—ab)(a+D).

b

Without loss of generality, assume that
a=>b>c.

We have
X>0, Z<0, X+Y+Z=0.

In addition,
X—Y=abla—b)+2(a>—b*>)c+(a—b)c?>0

and
A _B%— a*—b*+2(a®—c®)c + (a®> — ¢?)c? + 4abc(a—b) — 4(a — b)c®
a (b +c)?(c+a)?
- 4abc(a—b)—4(a—b)c®  4c(a—b)(ab—c?) -
B (b +c)?(c+a)?  (b+cR(ct+ay T
Since

2(AX +BY +CZ)=(A—B)(X —Y)+(A+B)(X +Y)+2CZ
=(A-B)(X—-Y)—(A+B—2C)Z,

it suffices to show that
A+B—-2C=0.
This is true if AB > C2. Using the Cauchy-Schwarz inequality gives

ab+4cvab - ab + 2cv/ab + 2¢?
“(b+c)c+a) ™ (b+c)cH+a)

Thus, it is enough to show that

(a+ b)2(ab +2cvab +2c¢%) > (b + c)(c + a)(c? + 4ab).
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Write this inequality as

2
ab(a—b)*+2cv ab(a+ b)(\/a— \/3) +c?[2(a+b)*—5ab—c(a+b)—c*]>0
It is true since

2(a+b)*—5ab—c(a+b)—c? =a(2a—b—c)+b(b—c)+ b2 —c?>0.

The equality holds for a = b = ¢, and also for a = b and ¢ = 0 (or any cyclic

permutation).
]

P 2.43. If a, b, c are nonnegative real numbers, then

I e
—_—+ + > 1.
a’+(b+c)? b3+ (c+a)? c3+(a+b):

Solution. For a = 0, the inequality reduces to the obvious inequality
Vbi+vVeE=vb3+cd.

For a, b, c > 0, write the inequality as

For any x > 0, we have

(1+x)+(1—x+x?)
2

Vi+x3= \/(1+x)(1—x+x2)§

1
=1+ =x2
2

Therefore, we get

2
> — - @
Z b2+c Za2+b2—+—c2
a2
The equality holds for a = b = ¢, and also for b = ¢ = 0 (or any cyclic permutation).
O
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P 2.44. If a, b, c are positive real numbers, then

1 1 1 1 1 1
%(a+b+c)(—+—+—)21+ 1+\J(a2+b2+c2)( +—=+ )
a b ¢ \ b2
(Vasile Cirtoaje, 2002)

Solution. Using the Cauchy-Schwarz inequality, we have

(Z0) () \(Der2Xme) (D2 +2301)
=\ (D) (D2 )+ 2\ () (2 )
\(Z)(Za) (S (23)

hence

NEaE) ] =@ (E0):
(E(ED)-r=\r{Ea(2).

The equality holds if and only if

Ea)(Z5)=(Z5)Zw)

which is equivalent to

(a2 —bc)(b%?—ca)(c?—ab) =0.

Consequently, the equality occurs for a®> = bc or b?> = ca or c*> = ab.

P 2.45. If a, b, c are positive real numbers, then

5+\l2(az+b2+62)(1 + 1y 1) 2 2(a+b+c)(%+%+1).

b2 c

(Vasile Cirtoaje, 2004)
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Solution. Let us denote
=8y b e b c a
b e YTdTh e
From
1 1 1
2 2 2 —
2(Cl +b°+c )(;4‘? —2)—2—
a? b2 2 b2 2 a?
= (ﬁ+c—2+¥)+2(;+ﬁ+c—2)+4
=2(x*—2y)+2(y*—2x)+4
=(x+y—2+(x—y)
> (x4 y —2)?
and
1 1 1
(a+b+c)|—+—-+—-|=x+y+3,
a b ¢
we get
2(a? + b2 +c2) l+i+l —2>2x+y—2
a2 b2 2 a Y
1 1 1
=(a+b+c)(—+—+—)—5.
a b ¢
The equality occurs fora=b or b=c or c =a.
O

P 2.46. If a, b, c are real numbers, then

2(1+abc) + v/2(1 +a2)(1 + b2)(1 +c2) > (1 +a)(1 + b)(1 + ).

(Wolfgang Berndt, 2006)
First Solution. Denoting

p=a+b+c, gq=ab+bc+ca, r=abc,

the inequality becomes

V2(pr+q2+r2—2pr—2q+1)>p+q—r—1.

It suffices to show that

2(p*+q@*+r*—2pr—2q+1)=(p+q—r—1)



340 Vasile Cirtoaje

which is equivalent to
p>+q*+r*—2pq+2qr—2pr+2p—2q—2r+1>0,

(p—q—r+1)%*>0.

The equality holds for p+1 = g+ r and q > 1. The last condition follows from
pt+tq—r—1=0.

Second Solution. Since

2(1+a®>)=1+a)*+(1—a)?

and
(1+bH(1+cH)=(b+c)+(bc—1)

by the Cauchy-Schwarz inequality, we get

V2 +a2)(1+b2)(1+c2) > (1 +a)b+c)+(1—a)(bc—1)
=1+a)(1+b)(1+c)—2(1+abc).

P 2.47. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

az+ bc b2+ca c2+ab 1
+ + >24+ —.
b2 +c2 c? +a? a?+ b2 V2

(Vo Quoc Ba Can, 2006)

Solution. Assume that

It suffices to show that
\Ja2+c2+\Jb2+c2+\J ab >2+i
b2 + 2 c2+a? a2+b2 " " /2

= a2+ c2 _\/@
- \Jb2+c2’ Y=V

, o (a—b)ab—c?) S
—y*= 0
oy b(b2+¢2) 7

Let us denote

From

it follows that
x=zy=1
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Also, from

x+1_(y+1):(x—y)(xy—1)20
y xy

x
\ja2+c2 \Jb2+c2 \/7 \
b2 + 2 c2+a?

Therefore, it is enough to show that

E+ 94_ ab >2+i

V b Ja Ja2+b2_ V2’
b 1 ab

V% J @+ b2

(vVa-— \/_)2 (a—b)?
vab \/2(a2+v2(1/a2+b2+\/2ab)

Since 2v'ab < 4/2(a? + b2), it suffices to show that

(Va++vb)?
~ Va2 +b2++/2ab

we have

which is equivalent to

Indeed,

2(\/a2+b2+\/2ab)> \/2(a2+b2)+2\/52a+b+2\/a_=(\/5+ \/3)2.

The equality holds for a = b and ¢ = 0 (or any cyclic permutation).

P 2.48. If a, b, c are nonnegative real numbers, then

\/a(2a+b+c)+ \/b(2b+c+a)+ \/c(26+a+b)2 \/12(ab+bc+ca).
(Vasile Cirtoaje, 2012)

Solution. By squaring, the inequality becomes

a2+b2+c2+z\/bc(2b+c+a)(2c+a+b)25(ab+bc+ca).

Using the Cauchy-Schwarz inequality yields

Z \/bc(2b+c+a)(2c+a+ b) :Z \/(2b2+ bc+ab)(2c2+ bc + ac)
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22(2bc+bc+a\/a)=3(ab+bc+ca)+Za\/E.

Therefore, it suffices to show that

a’+ b2+c2+Zav bc > 2(ab + bc + ca).
We can get this inequality by summing Schur’s inequality

a2+b2+c2+Za chZ\/ab(a+b)

and

Z\/E(a+b)22(ab+bc+ca).

The last inequality is equivalent to the obvious inequality
2
Z\/ab (1/5—\/3) > 0.
The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic

permutation).
O

P 2.49. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

ay/(4a +5b)(4a + 5¢) + by/(4b + 5¢)(4b + 5a) + ¢4/ (4c + 5a)(4c + 5b) > 27.
(Vasile Cirtoaje, 2010)
Solution. Use the SOS technique. Assume that
a>b=>c,

consider the nontrivial case b > 0, and write the inequality in the following equiv-
alent homogeneous forms:

Za\/(4a +5b)(4a+5¢c)>3(a+b+c)
20"~ S ab)= S a(vaa+5b - vAa T,
25a(b —c)?
(b—c)*=
2. Z(

1/4a+5b+1/4a+5c)2’

D> (b—c)*s, >0,

where
25a

=1— .
(1/4a+5b+ 1/4a+5c)2
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Since
25b 25b
Sp=1— ;=>1— =0
(v4b +5¢ + V4D + 5a) (v4b + VD)
and
25c¢ 25¢ 25
S.=1- ~>1-— ~=1-"—>0,
(vV4c+5a+v/4c +5b) (v/9¢ + v/9¢) 36
we have

2
Db =), > (b—c)*S,+(a—c)*S, > (b—c)*S, + %(b —c)%s,

—So-cp(

Thus, it suffices to prove that

b a
=S +-=S, .
a ® bb)

b

25, + 25, >0.

a b

We have

25a a(1/4a+5b—\/4a)2

=1 s
(V4a+5b+ v4a)’ b

25b _,_b(vab+5a—vap)
(V4b + v4b +5a)° a’

S, >1—

S, =21—

b

hence

¢ Gg b («/4a+5b—«/@)2+a (vV4b+5a—v4b)’
“TpPTa b b a

4a%2 5a 4b2 5p a b
= — =\ =+ = |-7=+=]-1
4(% b2+b+\J a2+a) 7(b+a) 0

=4\/4x2+5x—8+2\/20x+4 —7x—10,

b

a

where

a b
XxX=—+-—2=2.
b a

To end the proof, we only need to show that x > 2 yields

4\/4x2+5x—8+2v20x+41 > 7x +10.
By squaring, this inequality becomes

15x2 —60x — 228 +324/20x + 41 > 0.
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Indeed,

15x2 —60x — 228 + 324/ 20x + 41 > 15x* — 60x —228 + 32+/81 = 15(x —2)* > 0.

The equality holds fora = b =c¢ =1, and also fora = b = % and ¢ = 0 (or any

cyclic permutation).
O

P 2.50. Let a, b,c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

ay/(a+3b)(a+3c)+by/(b+3c)(b+3a)+cy/(c+3a)(c+3b) > 12.

(Vasile Cirtoaje, 2010)

Solution. Use the SOS method. Assume thata > b > ¢ (b > 0), and write the
inequality as

Za\/(a+3b)(a+36) > 4(ab + bc + ca),
2> =S aby=S"a(Va+3b—va¥3c),

Z(b—C)ZZZ( 9a(b—c)?

Va+3b+va+3c)
D> (b—c)*s, >0,
where 9
S,=1— = .
(Va+3b+ Va+3c)

Since ob ob

Sy=1— ->1-—————— =0

(Vb +3c+vb+3a) (Vb + v4b)
and
S.=1— X >1-— 2 12y,
(\/c+3a+1/c+3b) («/ﬁﬂ/ﬁ) 16

we have

2
D b—c)*S, > (b—c)*S, +(a—c)?S, > (b—c)S, + %(b — )%,

a b a
==(b— 2(—5 —5).



Symmetric Nonrational Inequalities 345

Thus, it suffices to prove that

b a
=S, +=-S,>0.
a b
We have ,
¢ 1 9a . a(va+3b—4a)
"7 (Va¥r3b+va) b? ’
‘o1 9b : b(vb+3a—+b)’
b=+ = 1= 5
(VB+vb+3a) a’
hence
b a b (va+3b—ﬁ)2 a (vb+3a—\/3)2
=S+ S, =—— +-—
a b a b b a
az 3a b2 3b a b
=2(\|=+—+\(=+—|-[=-+-]-6
(\Jbz b \Ja2 a) (b a)
— 2V x243x—2+2V3x +10—x—6,
where
x—g+é>2
b a7

To end the proof, it remains to show that

2V x24+35x—2+2v/3x F 10> x + 6

for x > 2. By squaring, this inequality becomes

3x2—44+84/3x+10> 0.

Indeed,
3x?2—44+8v/3x+10>12—44+32=0.

The equality holds for a = b = ¢ = 1, and also for a = b = +/3 and ¢ = 0 (or any

cyclic permutation).
OJ

P 2.51. Let a, b, c be nonnegative real numbers such that a®>+ b?+c? = 3. Prove that

\/2+7ab+\/2+7bc+\/2+7ca23\/3(ab+bc+ca).

(Vasile Cirtoaje, 2010)
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Solution. Use the SOS method. Consider a > b > c. Since the inequality is trivial
for b = ¢ = 0, we may assume that b > 0. By squaring, the desired inequality
becomes

6+ ZZ \/(2 + 7ab)(2 + 7ac) > 20(ab + bc + ca),

2
6(a2+b2+c2—ab—bc—ca)ZZ(\/2+7ab—\/2+7ac) ,

SZ(b—c)ZZZ( 49a%(b —c)?

V2+7ab+vV2F7ac)

D> (b—c)*s, >0,

where

2
S =1— 49a 2,
(vV6+21ab + v6+21ac)
b2
5, =1- 49 5
(vV6+21ab+ v6+21bc)
2
S —1— 49c

(vV6+2Tac + v6+21bc)"

Since 6 > 2(a? + b?) > 4ab, we have

2 2
S >1— 49a >1- 49a 2:1_2’
(v4ab +21ab + v/6) (5v/ab +2+ab) b

2 2
5 51— 49b IR . )
(v4ab +21ab + V6) (5vab +2vab) a

2 2
S.=1- e AP L LU M.
(v4ab + 21ac + v/4ab + 21bc) (5¢+5¢) 100
Therefore,

D> (b—c)?S, = (b—c)*S, +(c—a)’s,

Z(b—C)Z(l—%)+(c—a)2(1—9)

a
132 2
:(a b)*(ab 6)20.
ab

The equality holds fora =b =c¢ =1, and also for a = b = +/3 and ¢ = 0 (or any

cyclic permutation).
O
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P 2.52. Let a, b, c be nonnegative real numbers such that a®>+ b?+c? = 3. Prove that

a + b N C <1
2a24+1 2b24+1 2c2+1 "~

(Vasile Cirtoaje, 2006)

Solution. Assume that a < b < ¢ and denote

a 4 b N c
2a2+1 2b2+1 2c2+1°

f(a,b,c)=

We will show that
fla,b,c) < f(s,s,c) <1,

a?+ b?
s = , s<1.
2

The inequality f (a, b,c) < f(s,s, c) follows from P 2.1. The inequality f (s,s,c) < 1
is equivalent to

where

2s C
+ <
25241 2c2+1

2

where
2s2+c¢2=3, O0<s<l<ec.

Write the requested inequality as follows:

1 C 2s 2

3 22+1° 2241 3
(c=1)(2c—1) S 2(1—s)(2s—1)
2c2+1 o 252 +1
(c2—1)(2c—1) - 2(1—s53)(2s—1)
(c+1)(2c2+1)  (1+s)(2s2+1)°

2

Since
c2—1=2(1-s%>0,

we only need to show that

2c—1 > 25—1
(c+1)(2c2+1)  (s+1)(2s2+1)

which is equivalent to (c —s)A > 0, where
A=2(s+c)>+2(s+c)+3—65c —4sc(s +c).

Substituting
X=—— y= \/E: x> Y,
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we need to show that A(x, y) > 0, where

Alx,y) =8x*+4x +3—6y*—8xy>.

From
3 =252 +c%>2v2sc =2v2y?,
we get
*\2/

We will show that
Alx,y)=A(y,y) = 0.

We have

Alx,y) =AY, y) =4(x—y)2x +2y +1-2y*) > 4(x — y)[2y(2—y)+ 1] =0

and
Aly,y)=3+4y +2y*—8y>.
From

3 4 2
A(y,y)=y3(—3+—2+——8),
oyt y

3
it follows that it suffices to show that A(y,y) > 0 for y =\ 2_1/5 Indeed, we have

3 3
A(J’,J’)=3+2y2—4(2y2—1)y:3+__4(_ —1)}/
V2 V2

_3vV2+3-4(3—V2)y _ B
- V2  V2[3v2+3+4(3—v2)y]

where
B=(3vV2+3)?—16(3—v2)*y?>=9(vV2+1)>—12v2(3 — v2)?

=57(3—2v2) > 0.

The equality holds fora=b =c =1.
Remark. The following more general statement is also valid.

e Ifa,b,c,d are nonnegative real numbers such that a® + b> + c> + d? = 4, then

a + b + C + d <ﬂ
2a2+1 2b241 2c¢2+1 2d2+4+1° 3°
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P 2.53. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

(a) >'v/a(b+c)(a2+ bc) = 6;
(b) > a(b+c)Va2+2bc > 643;
©) > a(b+c)v/(a+2b)(a+2c)>18.

(Vasile Cirtoaje, 2010)

Solution. Assume that
a=>b>c, b>0.

(a) Write the inequality in the homogeneous form

Z \/a(b +c¢)(az+ bc) > 2(ab + bc + ca).

First Solution. Write the homogeneous inequality as

Z\/a(b+c)[\/a2+bc—\/a(b+c)]20,
Z(a—b)(a—c)\/a(b+c) >0

va2+bc++alb+c)
Since (¢ —a)(c — b) > 0, it suffices to show that

(a=b)la—c)v/a(b+c) N (b—c)(b—a)y/b(c+a) -0
vaz+bc++/a(b+c) Vb2+ca++/blc+a)

This is true if

(a—c)va(b+c) S (b—c)y/b(c+a)

Ja@+bc++alb+c) vbZ+ca++/blcta)

Since

\/a(b+c)2 \/b(c+a),
it suffices to show that
a—c b—c
JVaZ+bc++alb+c) vVDi+ca++/blcta)

Moreover, since

vaz+bc> \/a(b+c), Vb2+ca< \/b(c+a),

it is enough to show that
a—c b—c
>

vaZ¥bc Vbi+ca
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Indeed, we have
(a—c)*(b%>+ca)—(b—c)*(a®>+bc)=(a—b)(a®>+b*>+c*+3ab—3bc—3ca) >0,
because

a’?+ b2+ c?+3ab—3bc—3ca=(a?—bc)+(b—c)*+3a(b—c)>0.

The equality holds for a = b = ¢ = 1, and also for a = b = +/3 and ¢ = 0 (or any
cyclic permutation).

Second Solution. By squaring, the homogeneous inequality becomes

Z a(b+c)(a2+bc)+2z v be(a+b)(a+c)(b2+ca)(c? +ab) > 4(ab+bc+ca)’.

Since
(b2 +ca)(c*+ab)—bc(a+b)a+c)=a(b+c)(b—c)*>0,

it suffices to show that
Za(b +c¢)(a®+ be) + ZZ bc(a+ b)(a+c) > 4(ab + bc +ca)?,

which is equivalent to
Z be(b—c)* > 0.

(b) Write the inequality as
Za(b +c)V a2+ 2bc > 2(ab + bc+ca)Vab + bc +ca,

Za(b+c)[\/a2+2bc—\/ab+bc+caJ20,

Z a(b+c)(a—b)(a—c)
va2+2bc+Vab+bc+ca
Since (¢ —a)(c — b) = 0, it suffices to show that

a(b+c)(a—b)(a—c) N b(c+a)(b—c)(b—a) >0
Va2 +2bc++vab+bc+ca +b2+2ca++Vab+bc+ca

This is true if

a(b+c)(a—c) S b(c+a)(b—¢c)
VaZ+2bc+Vab+bc+ca Vb2+2ca+vVab+bc+ca

Since
(b+c)la—c)=(c+a)(b—rc),

it suffices to show that

a b
> .
vaz+2bc++vab+bc+ca vb2+2ca+ vab+bc+ca
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Moreover, since

\/a2+2bc2\/ab+bc+ca, \/b2+20aS\/ab+bc+ca,
it is enough to show that
a b
> .
va2+2bc Vb2+2ca

Indeed, we have
a?(b? + 2ca) — b%(a® + 2bc) = 2¢(a®* — b3) > 0.

The equality holds for a = b = ¢ = 1, and also for a = b = +/3 and ¢ = 0 (or any
cyclic permutation).

(c) Write the inequality as follows:

Za(b + c)\/(a +2b)(a+2c)=>2(ab+ bc+ ca)\/B(ab + bc + ca),

Za(b+c)[\/(a+2b)(a+2c)—\/B(ab+ bc+ca)] >0,
Z a(b+c)(a—b)(a—c)
V(a+2b)a+2c)+ v/3(ab +bc+ca)
Since (¢ —a)(c — b) = 0, it suffices to show that
a(b+c)(a—c) S b(c+a)(b—¢c)
V@a+2b)a+2c)++/3(b+bc+ca) (b+20)b+2a)+ /3(ab+bc+ca)

Since
(b+c)a—c)=(c+a)(b—c),

it suffices to show that
a S b
V(a+2b)(a+2c)++/3(ab+bc+ca) +(b+2c)(b+2a)+ \/S(ab+bc+ca)'

Moreover, since

\/(a +2b)(a+2c) > \/S(ab + bc +ca), \/(b +2c)(b+2a)< \/S(ab + bc+ca),
it is enough to show that
a S b
J@+2b)a+2c) /(b+20)b+2a)

This is true if

va S vb
V@a+2b)a+2c) /(b+20)(0b+2a)
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Indeed, we have
a(b+2c)(b+2a)—b(a+2b)(a+2c)=(a—b)(ab+4bc+4ca) > 0.
The equality holds for a = b = ¢ =1, and also fora = b = +/3 and ¢ = 0 (or any

cyclic permutation).
O

P 2.54. Let a, b,c be nonnegative real numbers such that ab + bc + ca = 3. Prove

that
avVbc+3+bvca+3+cvab+3=>6.
(Vasile Cirtoaje, 2010)

Solution. Use the SOS method. Denote
A=+ab+2bc+ca, B=+vbc+2ca+ab, C=+vca+2ab+ b,

and write the inequality as follows:

ZaAZ 2(ab + bc +ca),

D la(A—b—c)>0,

Z a(ab + ac — b2 —c?)
A+b+c

>0

_ >

Zab(a—b)+ac(a—c) >0
A+b+c

ab(a—Db) ba(b—a)

- 77 - >
ZA-i—b—}-c +Z B+c+a =0,
Zab(a—b)( L - L )20,

A+b+c B+4+c+a

> labla+b+C)a—b)a—b+B—A)>0,

5

Zab(a+b+6)(a—b)2(1+Ai—B) >0.

The equality holds for a = b =c =1, and for a = 0 and b = ¢ = +/3 (or any cyclic
permutation).
O
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P 2.55. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

(@) >(b+c)Vb2+c2+7bc > 18;
(b) >(b+c)vb2+c2+10bc < 124/3.

(Vasile Cirtoaje, 2010)

Solution. Use the SOS technique.

(a) Write the inequality in the equivalent homogeneous forms

Z(b+c)\/b2+c2+7bc22(a+b+c)2,
Z[(b+c)v b2+cz+7bc—b2—c2—4bc]20,

Z (b +¢)?(b?+c%+7bc)—(b%+c%+4bc)? -0
(b+c)Vb2+cZ+7bc+ b2 +c2+4bc

Z be(b—c)? -0
(b+c)VbZ+cZ+7bc+ b2 +c2+4bc

3
The equality holds fora = b =c=1,fora=0and b =c¢ = > (or any cyclic
permutation), and for a = 3 and b = ¢ = 0 (or any cyclic permutation).

(b) Write the inequality as follows:

Z(b +¢)4/3(b2 +c2+10bc) < 4(a+ b +c)?,

> [2b2 +2¢2 +8bc — (b +¢)y/3(b? + 2+ 10bc) | > 0,

Z 4(b%+c2+4bc)*—3(b +c)*(b* + c> + 10bc) >0
2b2+2¢2+8bc + (b +¢)/3(b2+ 2+ 10bc)
_ )4
> (b—c) > 0.
2b2 4+ 2c248bc + (b +¢)v/3(b2 +c2 +10bc)
The equality holds fora=b =c =1.

P 2.56. Let a, b, c be nonnegative real numbers such then a + b + ¢ = 2. Prove that

vVa+4bc+Vb+4ca+ vc+4ab >4+ ab + bc + ca.

(Vasile Cirtoaje, 2012)
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Solution. Without loss of generality, assume that
¢ =min{a, b, c}.

Using Minkowski’s inequality gives

Va+4abc+vVb+4ca> \/(ﬁ+ \/3)2+4c(\/6+ \/E)Zz(\/&+ \/3)\/1+4c.

Therefore, it suffices to show that

(1/5+\/E)\/1+4c24\/ab+bc+ca—\/c+4ab.

By squaring, this inequality becomes

(a +b+2vV ab) (1+4c)+8\/(ab + bc+ca)(c+4ab) > 16(ab+bc+ca)+c+4ab.
According to Lemma below, it suffices to show that

(a+b+2\/ab)(1+4c)+8(2ab+bc+ca)2 16(ab + bc +ca)+c+4ab,

which is equivalent to

a+b—c+2vab+8cvab=4(ab+ bc +ca).

Write this inequality in the homogeneous form

(a+b+c)(a+b—c+2Vab)+16cVab28(ab+bc+ca).

Due to homogeneity, we may assume that a + b = 1. Let us denote

d=+vab, 0<d<

N =

We need to show that f(c) > 0 for 0 < ¢ < d, where

fc)=(1+c)(1—c+2d)+16cd —8d*—8¢
=(1—2d)(1+4d)+2(9d —4)c —c>.

Since f (c) is concave, it suffices to show that f(0) > 0 and f(d) > 0. Indeed,
f(0)=(1—-2d)(1+4d)=>0,

f(d)=(3d—1)>>0.

Thus, the proof is completed. The equality holds for a = b =1 and ¢ = 0 (or any
cyclic permutation).
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Lemma (by Nguyen Van Quy). Let a, b, c be nonnegative real numbers such then
c¢=min{a,b,c}, a+b+c=2.

Then,

\/(ab + bc +ca)(c +4ab) = 2ab + bc +ca.

Proof. By squaring, the inequality becomes
c[ab+ bc+ca—c(a+ b)*]>0.
We need to show that
(a+b+c)ab+bc+ca)—2c(a+b)*>0.
We have

(a+Db+c)ab+bc+ca)—2c(a+b)*>(a+b)b+c)c+a)—2c(a+b)?
=(a+b)la—c)(b—c)=0.

P 2.57. If a, b, c are nonnegative real numbers, then

Va2 +b2+7ab+ Vb2 +c2+7bc+ V2 + a2+ 7ca > 5vab + be + ca.
(Vasile Cirtoaje, 2012)
Solution (by Nguyen Van Quy). Assume that
¢ =min{a, b, c}.

Using Minkowski’s inequality yields

2

\/b2+c2+7bc+\/a2+c2+7ca2\/(a+b)2+4c2+7c(\/5+\/g)

Therefore, it suffices to show that

2
\/(a+b)2+4c2+7c(\/5+\/3) > 5+v/ab+ bc +ca— v a2+ b2 + 7ab.

By squaring, this inequality becomes

2¢2+ 7cv ab +54/(a% + b2 + 7ab)(ab + bc + ca) > 15ab + 9c(a + b).
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1
Due to homogeneity, we may assume that a + b = 1, which implies ¢ < > Let us

denote x = ab. We need to show that f(x) >0 forc®> < x < 7 where

F(x)=2c%+7cv/x +54/(1+5x)(c + x) — 15x — 9c.

Since
—7c 5(5¢ —1)?

4 44/[5x2+ (5¢+ 1)x +c]3

<0

£ =

1
f(c) is concave. Thus, it suffices to show that f(c?) > 0 and f (4_1) > 0.
Write the inequality f(c?) > 0 as

54/(1 + 5¢2)(c + ¢2) > 6¢% + 9c.
By squaring, this inequality turns into

c(89¢® +17¢%*—56¢ +25)> 0,
which is true since

89¢® 4+ 17¢* —56¢ + 25 > 12¢* —56¢ + 25 = (1 — 2¢)(25 — 6¢) > 0.

1
Write the inequality f (Z) >0 as

8c2—22c+15(V4c+1-1) >0,

Making the substitution t = v/4c + 1, t > 1, the inequality becomes
(t—1)(2+t*—12t +18)>0.
It is true since
P+t —12t +18 > 2> — 12t + 18 =2(t —3)* > 0.

Thus, the proof is completed. The equality holds for a = b and ¢ = 0 (or any cyclic
permutation).
O

P 2.58. If a, b, c are nonnegative real numbers, then

Va2 +b2+5ab+ vV b2+c2+5bc+ vV c2+a2+5ca> \/21(ab+bc+ca).

(Nguyen Van Quy, 2012)
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Solution. Without loss of generality, assume that ¢ = min{a, b, c}. Using Minkowski’s
inequality, we have

\/(a+c)2+3ac+\/(b+c)2+3bc2\/(a+b+2c)2+3c(1/5+\/3)2.

Therefore, it suffices to show that

2
\/(a+b+2c)2+30(\/5+ \/3) > 4/21(ab + bc + ca) — v a2 + b2 + 5ab.

By squaring, this inequality becomes

2¢% +3cv ab + 4/21(a2 + b2 + 5ab)(ab + bc + ca) > 12ab + 7c(a + b).

Due to homogeneity, we may assume that a + b = 1. Let us denote x = ab. We

1
need to show that f(x) >0 forc*> < x < 7 where

F(x)=2¢%+3cv/x + /21(1 + 3x)(c + x) — 12x — 7c.

Since

—3c v/21(3¢c —1)?
4/x3  44/[3x2+(Bc+ 1)x +c]?

f'(x)= <0

1
f(c) is concave. Thus, it suffices to show that f(c?) > 0 and f (4_1) > 0.
Write the inequality f(c?) > 0 as

V21(1 +3¢2)(c +¢2) = 7(c + ¢2).
By squaring, this inequality turns into
c(c+1)(1—2c)(3—c) =0,

which is clearly true.
. . . 1
Write the inequality f (Z) >0 as
8c?—22c+74/3(4c+1)—12>0.
1
Using the substitution 3t>=4c+1, t > ﬁ, the inequality becomes

(t—1)*(3t*+6t—4)>0.

This is true since
3t2+6t—4>1+2v/3—-4>0.

Thus, the proof is completed. The equality holds fora=b =c.
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P 2.59. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

2
avVa2+5+bvVb2+5+cVc2+5> \ 3 (a+b+c)
(Vasile Cirtoaje, 2010)

Solution. Write the inequality in the homogeneous form

Za\/3a2 +5(ab+bc+ca)> V2 (a+Db+c)
Due to homogeneity, we may assume that
ab+bc+ca=1.
By squaring, the inequality becomes

Za4+22 bcy/(3b2+5)(3c2 +5) > 122a2b2+19abc2a+32ab(a2+b2).

Applying Lemma below for x = 3b2, y = 3¢? and d = 5, we have

24/(3b2 +5)(3¢2 + 5) > 3(b* + ¢?) + 10— %(b2 —c?)?,

hence

2bc4/(3b2 +5)(3c2 +5) > 3bc(b + ¢) + 10bc — %bc(bz —c?)?,

2> bey/(3b2+5)(3c2+5) 23> be(b*+c2)+10( bc)z—%z be(b*—c?)?

9
_ 272 2 2y 2 232
=10 E a“b®+ 20abc E a+3 E ab(a®+ b?) 20 E be(b® —c?)”.
Therefore, it suffices to show that

Za4+ 1OZ:a2b2 +20ach:a+BZ:ab(a2 +b?)— %Z bc(b?—c?)* >

> 122:a2b2 + 19ach:a+BZ:ab(a2 +b?),

which is equivalent to

Za4—22a2b2+acha—%Zbc(bz—cz)z > 0.

To prove this inequality, we use the SOS method. Since

Z(Za4—22a2b2 +acha) :Z(Za4—2a2b2)—2(2a2b2—acha)
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_ Z(bz _Cz)z —ZaZ(b _C)z,

we can write the inequality as

D> (b—c)*s, >0,
where 9
S, =(b+c)*—a*— —bc(b+c)
10
In addition, since

be(b +¢)?

S, (b+cP—a®—be(b+c)P=(b+cp—a?— 0TS
oz (b+cf—a cbte)y=(b+cy—a ab+bc+ca’

_a(b+c)’—a*(ab+ bc+ca)
B ab+ bc+ca

b

it is enough to show that
> (b—c)E, >0,
where
E,=a(b+c)*—a?*(ab + bc + ca).

Assume that
a>b>c, b>0

Since
E, = b(c+a)®—b%*(ab+ bc+ca) > b(c+a)®—b*(c+a)(c+b)
> b(c+a))—b*(c+a)=b(c+a)*(c+a—>b)>0,
E.=c(a+b)*—c*(ab+bc+ca)>c(a+b)*—c*(a+b)(b+c)
>cla+b)P—c*(a+b)P=cla+b)?(a+b—c)=>0
and
E, E, (b+c) (c+a)
=TT + A —2(ab+ bc+ca)
3 2 3 2
> b”+2b% -+-a +b2a C—2(ab+bc+ca)
a
2 12y2 2
_ (a®*—=Db*)*+2c(a+ b)(a—Db) >0,
ab
we get

az b2

D> (b= c)E, > (b—c)E, + (a—c)’E, = a*(b—c)? (ﬁ + ﬂ) > 0.

The equality holds fora =b = ¢ = 1, and also for a = b = +/3 and ¢ = 0 (or any
cyclic permutation).
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Lemma. If x >0, y > 0and d > 0, then

2\/(x+d)(y+d)zx+y+zd—4id(x—y)2.

Proof. We have

2xy +2d(x +y) S 2xy +2d(x+y)

24/ (x+d)(y+d)—2d = >
v g Voa+dDy+d)+d D g

4xy +4d(x+y) (x—y) (x—y)
= =xX+ty————=2x+ty— .
x+y+4d x+y+4d 4d

P 2.60. Let a, b, c be nonnegative real numbers such that a®>+ b?+c? = 1. Prove that

av2+3bc+bv2+3ca+cv2+3ab>(a+b+c)
(Vasile Cirtoaje, 2010)

Solution. Write the inequality as

> av2+3bc>1+2g,

where ¢ = ab + bc + ca. By squaring, the inequality becomes

1+3abc » a+2> bey/(2+3ab)(2+3ac) > 4q +4¢>.

Applying Lemma from the preceding P 2.59 for x = 3ab, y = 3ac and d = 2, we
have

24/(2+3ab)(2+3ac) > 3a(b+c¢c) +4— %az(b —c)?

hence

2bcy/(2+ 3ab)(2+3ac) > 3abe(b+c¢) +4— gazbc(b —c)?

ZZ bcy/(2+3ab)(2 + 3ac) > 6acha +4q — gacha(b —c)%

Therefore, it suffices to show that

1+3ach:a+6ach:a+4q—§abc2]a(b—c)2 > 4q + 447,

which is equivalent to

1+ 9acha —4q* > gacha(b —c)?.
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Since
a*+ b*+c*=1-2(a*b*+ b c* +c?a?) =1—-2¢* + 4acha,

from Schur’s inequality of fourth degree
at+ b4+c4+2abc2a > (Zaz) (Zab),

122q2+q—6acha.

Thus, it is enough to prove that

(2q2 +q— 6acha) + 9acha —4q* > gacha(b —c)%;

we get

that is,
8 (q —2g*+3abc Za) > 9abcz a(b—c)>.

Since

q—2q2+3acha=(Zaz)(Zab)—Z(Zab)z+3acha
= be(b? +c¢*)—2> b= > be(b—c),

we need to show that
> be(8—9a%)(b—c)* > 0.

Since
8—9a% =8(b*+c*)—a*> b*+c*—a?,

it suffices to prove the homogeneous inequality
Z be(b? +c%2—a?)(b—c)*>0.
Assume that a > b > c. It is enough to show that
be(b? +c2—a®)(b—c)?+ca(c?+a®>—b?)(c—a)* > 0.
This is true if
a(c*+a*—b*)(a—c)* = b(a®*—b*—c*)(b—c)>.
For the nontrivial case a®? — b* — ¢* > 0, this inequality follows from

a>b, c>+a*—b*>a*-b*>—c? (a—c)*=>(b—c)

The equality holds fora = b =c¢ = and fora =0and b =c = (or any

el

1
. . V3
cyclic permutation).
O
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P 2.61. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

@ a\J2a+bc+b\J2b+ca+c\j26+ab23;
3 3 3
) a\J a(1+3b+c)+b\J b(1+3c+a)+C\J C(1+§+b)23

(Vasile Cirtoaje, 2010)

Solution. (a) If two of a, b, ¢ are zero, then the inequality is trivial. Otherwise, by
Holder’s inequality, we have

e

2a + bc 2a+bc

Therefore, it suffices to show that

a
> <1.
2a + bc
Since
2a 1 bc
2a+bc 2a + bc’

we can write this inequality as

bc
> >1.
2a + bc

By the Cauchy-Schwarz inequality, we have

s, (o) (Zbe)

2a+bc ~ D) bc(2a+ be) - 2abc D a+ Y. b2c2 N

3
The equality holds fora=b=c=1,andfora=0and b =c = > (or any cyclic
permutation).

(b) Write the inequality in the homogeneous form

Za\/a(a+4b+4c)2(a+b+c)2.

By squaring, the inequality becomes

Zbc\/bc(b +4c +4a)(c +4a +4b) > SZ b%c? +6acha.

Applying the Cauchy-Schwarz inequality, we have

V(b +4c+4a)(c+4a+4b)=+/(4a+b+c+3c)(4a+b+c+3b)
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>4a+b+c+ 3V bc,

hence

bey/be(b + 4c + 4a)(c + 4a + 4b) > (4a+ b + c)bc v/ be + 3b%c?,

ZbC\/bc(b +4c+4a)(c+4a+4b) > Z(4a +b+c)bcvV bc +BZ b%c2.

Thus, it is enough to show that
Z(4a +b+c)bcV bc> 6acha.
Replacing a, b, ¢ by a?, b2, ¢?, respectively, this inequality becomes

Z:(4a2 + b% +c?)b3c® > 6a*b*c? Zaz,

(Z az) (Z b3c3) + 3a?b?c? Z bc > 6a%b3c? Z a?,
(Z az) (Z a’b®— 3a2b2c2) > 3a*b*c? (Z a’— Z ab) .

Use next the SOS method. Since

Z:aSb3 —3a%b%c? = (Z ab) (Zazbz—acha) = % (Z ab)ZaZ(b—c)Z,
and
Slar=Sab =3 b0,

we can write the inequality as

D> (b—c)*s, >0,

S, =a* (Z a2) (Z ab) —3a*b*c%
Assume that a > b > c. Since S, > S, > 0 and
S, +S.=(b*+c?) (Z az) (Z ab) —6a*b?*c?
> 2bc (Z az) (Z ab) —6a*b*c?

> 2bca® (Z ab) —6a*b?*c* = 2a*bc(ab + ac —2bc) > 0,

where

we get
D> (b—c)?S, > (c—a)?s, +(a—b)?S, > (a—b)*(S, +5.) > 0.

The equality holds fora = b = ¢ =1, and also for a = 3 and b = ¢ = 0 (or any
cyclic permutation).
OJ
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P 2.62. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

\/8(a2+bc)+9+ \/8(b2+ca)+9+ \/8(c2+ab)+92 15.
(Vasile Cirtoaje, 2013)
Solution. Use the SOS technique. Let ¢ = ab + bc + ca and
A=Ba—-b—c)*+8q, B=Bb—c—a)*+8q, C=(3c—a—b)*+8q.
Since

8(a®*+bc)+9=8(a*+q)+9—8a(b+c)=8(a*+q)+9—8a(3—a)
=(4a—3)*+8qg=(3a—b—c)*+8q=A4,

we can rewrite the inequality as follows:

> VA= 15,
Z[w/;\—(?)a+ b+¢c)]=0,

2bc—ca—ab
5
VA+3a+b+c

Z[ b(c—a) c(b—a) ]>0
VA+3a+b+c VA+3a+b+cl

c(a—b) c(b—a)
Zﬁ+3b+c+a+zw/17\+3a+b+c =0,
D> cla—b)WC+3c+a+b)VA—vB+2(a—b)] >0,
4(a+b—c)
vA+ VB

Without loss of generality, assume that a > b > c. Since a + b —c > 0, it suffices to
show that

Zc(a—b)z(x/f+3c+a+b)[ +1]20.

b(a—c)z(\/§+3b+c+a)[4(c+a_b) ]

4(a—b—c)

a(b—c)z(w/z+3a+b+c)|: VB vC 1]

This inequality follows from the inequalities
b*(a—c)*>a*(b—c)?

a(VB+3b+c+a)> b(VA+3a+b+c),
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w+1>w_1
VA++/C ~ JVB+JC

Write the second inequality as

a’B — b%A

m+(ﬂ—b)(d+b+€)20.

Since

a’B—b?A=(a—b)(a+ b +c)(a*+ b*—6ab + bc + ca) + 8q(a* — b?)
>(a—b)(a+Db+c)a®+b*—6ab)>—4ab(a—b)(a+b+c),

it suffices to show that
—4ab
1>0

——————+12>0.
avB +bvA
Indeed, from vA> 4/8q > 2v/ab and vB > 1/8q > 2V ab, we get

avB+ bvVA—4ab > 2(a+ b)Vab—4ab =2vab(a+b—2+4/ab)>0.

The third inequality holds if

>2(a—b—c)
~ VB+4/C

It suffices to show that v/B > a and v/C > a. We have

1

B—a*=8q—2a(3b—c)+(3b—c)>*>8ab—2a(3b—c)=2a(b+c)>0
and
C—a*>=8q—2a(3c—b)+(3c—b)*>8ab—2a(3c — b) = 2a(5b—3c) > 0.

The equality holds for a = b = ¢ =1, and also for a = 3 and b = ¢ = 0 (or any
cyclic permutation). O

|0

P 2.63. Let a, b,c be nonnegative real numbers such that a+b+c=3. If k >
then

Va2 +bct+k+vVb2+ca+tk+vVc2+ab+k>3vV2+k.

Solution. We will show that

> V8@ +bc+k) > > /(3a+b+c)*+8k—9>6¢/2(k +2).
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The right inequality is equivalent to

> V(2a+372+8k—926y/2(k +2),

which follows immediately from Jensen’s inequality applied to the convex function
f :[0,00) — R defined by

f(x)=1/(2x +3)2 + 8k —9.

To prove the left inequality, we use the SOS method. By means of the substitutions
A, =8(a®*+bc+k), B,=8(b*+ca+k), C,=8(c*+ab+k),
A,=(3a+b+c)*+8k—9, B,=(3b+c+a)*+8k—9, C,=(3c+a+b)*+8k—9,

we can write the inequality as follows:

A —A, B, —B, G- Cz

VA A Bt VE eV G

2bc—ca—ab 2ca—ab—bc 2ab—bc—ca

+ + >0,
VAI+VA,  VBi+VB, /GG

b(c—a) c(b—a)
Z[\/_+\/_+\/_+\/_]
cla—>b) c(b—a)
2 T m A
D cla—b)VC + V(WA — VB + (VA — VB)] 2 0,

N2 2(a+b—c) 2a+2b+c
Zmzmﬁhﬁﬂfwf_fwam

Without loss of generality, assume that a > b > c. Clearly, the desired inequality
is true for b + ¢ > a. Consider further the case b+c < a. Sincea+b—c > 0, it
suffices to show that

v 2(b+c—a) 2b+2c+a
a(b—) (\/E+\/A_z)[\/_+\/_ rw@]

+b(a—c)2(\/_+\/_)[f;2_f\/_) jffa;z]
2

Since
b*(a—c)* > a*(b—c)?,
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it suffices to show that

e o s,
2
+a(+/B, + \/_)[fﬁirf\/b_)+ f/ciia;_b] 0.
From
2B, — b*A; = 8c(a®*— b*) + 8k(a*—b*) >0
and

’B, —b?A, = (a—b)(a+ b +c)(a*+ b*+ 6ab + bc + ca) + (8k —9)(a* — b*) > 0,
we get a4/B; = b4/A, and a+/B, > b+/A,, hence
a(4/ By + v/ By) = b(v/A; + VA,).
Therefore, it is enough to show that

2(b+c—a) 2b+2c+a 2(c+a—b) 2c+2a+b >0,
VB /G VBt G Ot A Gt A

This is true if

2b

—2b
+ >0
VBi+4/C C+ VA

and
—2a 2a

2a
+ + >0
VBit+/C VC +H VA G+ VA,

The first inequality is true because A; —B; = 8(a—b)(a + b —c) = 0. The second
inequality can be written as

1

1 1
+ = .

Since
1 1 4

+ = ,
VC+ VAL G+ VA G+ A+ VG VA,

it suffices to show that

4v/B1 +3VC 2 VA + /A + VG,

Taking account of
C,—Cy, =4(2ab—bc—ca) >0,

Cl_Bl :8(b_c)(a_b_C)20,
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A, —A, =4(ab—2bc +ca) >0,
we have
44/B +34/Ci— VA — VA, — V/C, 2 4V/B; +2/C — VA, — VA,
> 4+/By +2v/B — VA, — VA,
=2(3v/B; — VA4,).
In addition,
9B, — A, = 64k —8a* + 72b* — 4ab + 68ac
> 72 —8a”+ 72b* — 4ab + 68ac
=8(a+ b +c)*—8a?+72b*>—4ab + 68ac
= 4(20b% + 2¢? + 3ab + 4bc + 21ac) > 0.

Thus, the proof is completed. The equality holds fora =b =c=1. If k = 9/8,
then the equality holds also for a = 3 and b = ¢ = 0 (or any cyclic permutation).
O

P 2.64. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

Va3 +2bc+ Vb3 +2ca+ vV c3+2ab > 3v/3.
(Nguyen Van Quy, 2013)

Solution. Since
(a®+2bc)(a+2bc) > (a® + 2bc)?,

it suffices to prove that

a? + 2bc
3v/3.
Z:1/a+2b

By Holder’s inequality, we have

(Z %)Zzwz +2bc)(a+2bc) > [Z(az + 2bc)]3 =(a+b+c)b.
a c

Therefore, it suffices to show that
(a+b+c)°>27 z:(a2 +2bc)(a + 2bc).
which is equivalent to
(a+b+c)*> Z:(a2 +2bc)(a®+ 6bc +ca + ab).
Indeed,
(a+b+c)* —z:(a2 +2bc)(a®+6bc+ca+ab) = BZab(a —b)>o0.

The equality holds fora = b = ¢ =1, and also for a = 3 and b = ¢ = 0 (or any
cyclic permutation).
OJ
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P 2.65. If a, b, c are positive real numbers, then

va2+bc Vb2+ca +c2+ab 3vV2
+ + = .
b+c c+a a+b 2

(Vasile Cirtoaje, 2006)

Solution. According to the well-known inequality
(x+y+2)>3(xy+yz+zx), x,y,2>0,

it suffices to show that

Z V(b2 +ca)(c2 +ab)

>3
(c+a)(a+b) 2

Replacing a, b, ¢ by a?, b?, ¢, respectively, the inequality becomes

2> (b2 + )/ (b + c2a2)(c* + a2b2) = 3(a® + bA)(b? + c2)(c +a?).

Multiplying the Cauchy-Schwarz inequalities

V(b2 + c2)(b* + c2a2) > b® + ac?,

V(€2 + b2)(c* + a2b2) > ¢® + ab?,

we get

(b% + c2)4/(b* + c2a2)(c* + a2b2) > (b + ac?)(c® + ab?)
= b3c® +a(b® +c®) + a’b?c%
Therefore, it suffices to show that
2> b33 +2 > a(b® +¢%) + 6a’bc® > 3(a® + b)(b? + c?)(c> + a?).
This inequality is equivalent to
2> b3 +2 ) be(b*+c*) >3 > bAcA(b+c?),
> be[2b%? +2(b* + c*) = 3be(b? + ¢2)] > 0,

> be(b—c)2(2b* + be +2¢2) > 0.
The equality holds for a = b =c.



370 Vasile Cirtoaje

P 2.66. If a, b, c are nonnegative real numbers, no two of which are zero,then

v/ bc+4a(b+c) \/ca+4b(c+a)+ vab+4c(a+b) >2

b+c c+a a+b 2
(Vasile Cirtoaje, 2006)

Solution. Let us denote
A=4ab+ bc+4ca, B=4ab+4bc+ca, C=ab+4bc+4ca.

By squaring, the inequality becomes

A VvBC 81
P AP Wowrroews B

According to the known inequality Iran-1996, namely

>

Zab+bc+ca 9
(b+c¢c)2 ~ 4

(see Remark from the proof of P 1.72), we have

ab+ bc+ca a 9 a
Z(b+c)2_Z (b+c) 32b+c22+32b+c‘

On the other hand, from Lemma below, we have

2ab
VBC > 2ab + 4bc + 2ca + ba ¢

+c

2a(b? + c?) + 4bc(b +c) + 6abc

VBC2 b+c ’
22 vBC - 4> a(b*+c*)+8>.be(b+c)+36abc
(c+a)(a+b) (a+b)(b+c)c+a) ’

ZZ vBC S 12> be(b + ¢) + 36abc
(c+a)(a+b) ~ (a+b)b+c)+a)
Thus, it suffices to show that

BZ a 12> be(b +c) + 36abc > 18
b+c (a+b)(b+c)c+a)

This is equivalent to Schur’s inequality of degree three

ZaB +3abc > Z be(b +¢).

The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic
permutation).
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Lemma. If a, b, c are nonnegative real numbers, no two of which are zero, then

2abc
b+¢’

\/(4ab +4bc +ca)(ab +4bc +4ca) = 2ab + 4bc + 2ca +

with equality for b = ¢, and also for abc = 0.
Proof. We use the AM-GM inequality as follows:

\/(4ab +4bc +ca)(ab +4bc + 4ca) —2ab —4bc —2ca =

_ abc(9a + 4b + 4c¢)

v/ (4ab + 4bc + ca)(ab + 4bc + 4ca) + 2ab + 4bc + 2ca
S 2abc(9a +4b +4c)
~ (4ab+4bc+ca)+ (ab+4bc+4ca)+4ab + 8bc +4ca

_ 2abc(9a +4b +4c)
"~ 9ab+16bc +9ca

Thus, it suffices to show that

9a +4b + 4c S 1
9ab+16bc+9ca ~ b+c’

Indeed,

(9a +4b +4c)(b +c)— (9ab + 16bc + 9ca) = 4(b—c)* = 0.

P 2.67. If a, b, c are nonnegative real numbers, no two of which are zero,then

ava?+3bc N bv'b2+3ca N cvc2+3ab

>a+b+c.
b+c c+a a+b

(Cezar Lupu, 2006)

Solution. Using the AM-GM inequality, we have

ava?+3bc 2a(a?+ 3bc) - 2a(a?+ 3bc) _ 2a®+6abc
b+c _2\/(b+c)2(a2+3bc)_(b+C)2+(a2+3bc)_ S+ 5bc

where S = a? + b% + ¢2. Thus, it suffices to show that

2a® + 6abc
g2 babe Ly
S +5bc
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Write this inequality as
2a*+6b
EZa(E———ﬁ—l)ZQ
S+ 5bc

AX+BY +XZ >0,

or, equivalently,

where
1 1 1

A=—— B= , C=—",
S+5bc S+ 5ca S +5ab
X=a*+abc—a(b®+c?), Y=>b3+abc—b(c*+a?®), Z=c>+abc—c(a®+b?).

Without loss of generality, assume that a > b > c. We have
A>B>C,
X=a(a?=b)+ac(b—c)=>0, Z=c(c2=b>)+ac(b—a)<0
and, according to Schur’s inequality of third degree,
X+Y+Z =Za3 +3abc—Za(b2+c2) > 0.
Therefore,
AX +BY +CZ>BX +BY +BZ=B(X+Y +Z) > 0.

The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic
permutation).

Remark. We can also prove the inequality AX + BY +X Z > 0 by the SOS procedure.
Write this inequality as follows:

>0,

Z a(a® + bc—b%—c?)
S+ 5bc

Z a(a®?b+a?c—b®—c?) -
(b+c¢)(S+5bc)

Z ab(a®—b?)+ac(a®—c?) -0
(b+c¢)(S+5bc) -

ab(a?—b?) ba(b?—a?)
2 (b1 o)(S +5b0) +2, c+a)S+5ca) =
Z ab(a+ b)(a—b)*[S +5c(a+Db+c)] -
(b+c)(c+a)S+5bc)(S+5ca)

2
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P 2.68. If a, b, c are nonnegative real numbers, no two of which are zero,then
2a(b+c) +\J 2b(c+a) +% 2c(a+b) S
(2b+c)(b + 2¢) (2¢ + a)(c + 2a) (2a+b)(a+2b) —
(Vasile Cirtoaje, 2006)

Solution. Making the substitution

x=+va, y=+vb, z=4,

the inequality becomes

2(y2+22)
Z X\l (2y2+22)(y2 + 222) =2

2(y2+22) S y+z
(2y2+22)(y2+222)  y2+yz+322
Indeed, be squaring and direct calculation, this inequality reduces to

We claim that

y22*(y —2)* > 0.
Thus, it suffices to show that
Z x(y +2) Y
y2+yz+22

which is just the inequality in P 1.69. The equality holds for a = b = ¢, and also
for a =0 and b = ¢ (or any cyclic permutation).
O

P 2.69. If a, b, c are nonnegative real numbers such that ab + bc + ca = 3, then

bc N ca N ab <1< bc 4 ca 4 ab
J3a2+6 V3bp2+6 J3c2+6_ _J6a2+3 V6b2+3 \J6c2+3'

(Vasile Cirtoaje, 2011)

Solution. By the Cauchy-Schwarz inequality, we have

(2 = (S Zm)
(Z \JE)Z = Z a21+2'

hence
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Therefore, to prove the original left inequality, it suffices to show that

1
Za2+2S1

This inequality is equivalent to

2

Za2a+221

By the Cauchy-Schwarz inequality, we get

Z a® >(a+b+c)2_(a+b+c)2_1
a2+2 =~ Y(a2+2) Da2+6

The equality occurs fora=b=c =1.
To prove the original right inequality we apply Holder’s inequality as follows:

(Z \IE)Z [> b2c?(6a? +3)] = (D be) .

Thus, it suffices to show that

(ab+ bc+ca)® > Z b%c?(6a® + ab + bc + ca),

which is equivalent to
(ab+ bc +ca) [(ab + bc + ca)? —Z bzcz] > 18ab%c?,

2abc(ab + bc + ca)(a + b +¢) > 18a®b?c?,
2acha(b —c)*>0.

The equality occurs for a = b = ¢ = 1, and for a = 0 and bc = 3 (or any cyclic
permutation).
O

P 2.70. Let a, b, c be nonnegative real numbers such that ab+bc+ca =3. If k> 1,
than
a“(b+c)+bc+a)+ck(a+b)>6.

Solution. Let
E=d"(b+¢)+ b (c+a)+c*(a+b).

We consider two cases.
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Case 1: k > 2. Applying Jensen’s inequality to the convex function f(x) = x*71,

x = 0, we get

E =(ab+ac)d“ + (bc+ ba)b* ! + (ca+ cb)ck™
(ab+ac)a+ (bc+ ba)b+ (ca+cb)c ]k_l
2(ab + bc +ca)
_ 6[a2(b +c)+b*(c+a)+c(a+ b)}k_1
6

22(ab+bc+ca)[

Thus, it suffices to show that

a’(b+c)+ b (c+a)+c%(a+b)>6.
Write this inequality as

(ab+ bc+ca)(a+b+c)—3abc>6,

a+b+c>2+abc.

It is true since

a+b+62\/3(ab+bc+ca)=3

b 3
abc < (%) =1.

and

Case 2: 1 < k < 2. We have
E=d"'(3—bc)+ b1 (3—ca)+c'(3—ab)

=3(a* + b + ) —ak T pR ! [(ab)z_k +(be)* ™+ (ca)z_k] .

Since 0 < 2—k < 1, f(x) = x> is concave for x > 0. Thus, by Jensen’s inequality,

we have
ab+ bc+ ca)z_k

(ab)* ™ + (bc)* ™ + (ca)* ™ <3 ( 3

=3,

hence
E >3(a" + b 4 ) — 3¢k TRl

Consequently, it suffices to show that
a4 bR 4 KT > gk phlcRT 4o,
Due to symmetry, we may assume that

a>b>c,
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which involves )
ab > g(ab + bc+ca)>1.

Let
x =+Vak1bk1, —x>1.
From
2>3—ab=bc+ca>2cvab,
we get
1
c< s
vab
hence
-1 _ 1
c < -
X

Write the required inequality as
a1t +pl—2> (ak_lbk_1 — 1) ck,
It suffices to show that

ak—l bk—l -1

X

adt+pl—2>

Since

a7 + b > 24/ ak-1pk-1 = 2x,

we only need to prove that

x2—1
2x —2 2> .
X

Indeed,
2 132
1 _ (x—1) >
x x
The equality holds fora=b =c =1.

ox—2-% 0.

P 2.71. Let a, b, c be nonnegative real numbers such that a+ b +c = 2. If
2<k<3,

than
a“(b+c)+ b (c+a)+cfa+b) <2.
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Solution. Denote by E,(a, b, c) the left hand side of the inequality, assume that
a<b<c,

and show that
E.(a,b,c) < E.(0,a+ b,c) <2.

The left inequality is equivalent to

ac—b(ak_1 + b < (a+b)k—ak—bk

Clearly, it suffices to consider ¢ = b, when the inequality becomes
2a* + b*"Y(a+b) < (a + bk
Since 2a* < a*~'(a + b), it remains to show that
a1+ b < (a+ b)Y,

which is true since

ak‘1+bk‘1_( a )k—1+( b )k—1< a b _.
(a+b)1  \a+b a+b “a+b a+b

Using the notation d = a + b, we can write the right inequality E,(0,a + b,c) < 2

in the form
cd(cFt+d¥H) <2,

where ¢ + d = 2. By the Power-Mean inequality , we have

k=1 4 gk—1 1/(k=1) B (c2+d2)1/2
2 - 2 ’

c2+d2) -

k4 dl< 2(

Thus, it suffices to show that

PPN
cd(c . ) <1,

which is equivalent to
cd(2—cd)*V2 <1,

Since 2—cd > 1, we have
cd2—cd)* V2 <cd2—cd)=1—(1—cd)?* < 1.

The equality holds for a =0 and b = ¢ =1 (or any cyclic permutation).
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P 2.72. Let a, b, c be nonnegative real numbers, no two of which are zero. If

m>nz=0,
than
b™+c™ c+a™ a™+ b™
b+c—2a)+ c+a—2b)+ a+b—2c)>0.
b"+c”( ) c”+a“( ) a”+b”( )

(Vasile Cirtoaje, 2006)
Solution. Write the inequality as
AX+BY +CZ >0,

where
_bm+cm B_c’”+am _am+bm

© bndcen’ T cntar’ am+ bn
X=b+c—2a, Y=c+a—2b, Z=a+b—2c, X+Y+Z=0.

Without loss of generality, assume that

3

a<b<c,
which involves X > Y > Z and X > 0. Since
2(AX+BY +CZ)=(2A—B—-C)X+(B+C)X+2(BY +CZ)
—(2A—B—C)X—(B+C)(Y +2)+2(BY +CZ)
=(2A—B—C)X +(B—C)(Y —2),
it suffices to show that B > C and 2A—B — C > 0. The inequality B > C can be

written as
bncn(cm—n _ bm—n) + an(cm _ bm) _ am(cn _ bn) > 0’

bc"(c™"—=b™" ") +a" [¢c"—b"—a™ " (c"—b")] = 0.
This is true since ¢™" > b™ " and
c"—=b"—a™ " (c"=b)=c"—=b"—=b" " (c"—=Db")=c"(c""—=Db"") = 0.
The inequality 2A—B — C > 0 follows from
2A>b™ "+ ™, b >C, ¢c™">B.

Indeed, we have

(bn _ Cn)(bm—n _ Cm—n)

2A— bm—n _Cm—n — 2 0

>

b+ cn
n(jm—-n__ ,m—n
bm—n_C:a(b a )20’
an+ br
nf.m—n _ ,m—n
emn_p =TT ma
c"+an

The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic
permutation).
OJ
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P 2.73. Let a, b, c be positive real numbers such that abc = 1. Prove that

Va2—a+1+vVb2—b+1++vVc2—c+1>a+b+ec.
(Vasile Cirtoaje, 2012)

First Solution. Among a—1, b—1 and c—1 there are two with the same sign. Let
(b—1)(c—1) =0, that is,

t<—, t=b+c—1.

Q| =

By Minkowsky’s inequality, we have

2 2
\/bz—b+1+\/c2—c+1=\j(b—%) +§+\l(c—l) +%2\/t2+3.

4

Thus, it suffices to show that

Va2—a+1+vVe2+3=a+b+c,

which is equivalent to

vaz—a+1+f(t)=a+1,

where

f()y=vt2+3—t.
Clearly, f (t) is decreasing for t < 0. Since

3

0= ==

1
f(t) is also decreasing for t > 0. Then, f(t) > f (—), and it suffices to show that
a

1
\/az—a+1+f(—)2a+1,
a

1 1
a2—a+1+\|—=+3=a+—-+1.
a? a

By squaring, this inequality becomes

which is equivalent to

1 2
Z\J(az—a+1)(—2+3)23a+——1.
a

a
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Indeed, by the Cauchy-Schwarz inequality, we have

2\] (a2—a+1)(%+3)=\J[(Z—a)2+3a2](%+3)

2—a

2
+3a=3a+——1.
a a

=

The equality holds fora = b =c.
Second Solution. If the inequality
1 3
Vx2—x+1—x2= —(——1)
2\x2+x+1
holds for all x > 0, then it suffices to prove that

1 1 1
+ + >1
al+a+1 b2+b+1 c2+4c+1

3

which is just the known inequality in P 1.45. The above inequality in x is equivalent

to
1—x >(1—x)(2+x)

Vii—x+14+x 20x24+x+1)°
(x—1)[(x+2)Vx2—x+ —xz—Z]ZO,
3x2(x —1)? -0
(x+2)Vx2—x+1+x2+2

P 2.74. Let a, b, c be positive real numbers such that abc = 1. Prove that

V16a2+9+ v/16b2+9+v/16b2+9>4(a+b+c) +3.
(MEMO, 2012)

First Solution (by Vo Quoc Ba Can). Since

Vv 16a2+9—4a = 2

V16a2+9+4a’
the inequality is equivalent to
N TEr
V16a2+9+4a 3’

By the AM-GM inequality, we have

16a%+9
2\/16a2+932aT+2a+3,
a
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16a* + 18(2a% +2a +1
(V162749 +4a) < 20T F2 | 1gq 3 1820 +2at1)
2a+3 2a+3

Thus, it suffices to show that
Z 2a+3 >3
2a2+2a+1

2a+3 > 3
2a2+2a+1  ad/S+a*5+1
holds for all a > 0, then it suffices to show that

If the inequality

1
E —_— 21,
ad’s +a*>+1

which follows immediately from the inequality in P 1.45. Therefore, using the
substitution x = a'/®, x > 0, we need to show that

2x°+3 > 3
2x10 4+ 2x54+1  x84+x4+17

which is equivalent to
2x* (x> =3x*+x+ 1) +x*—4x+3>0.
This is true since, by the AM-GM inequality, we have
x®+x+1>3v/x5-x-1=3x2

and

x*+3=x*+1+1+1>4vx%-1-1-1=4x.
The equality holds fora=b =c=1.

Second Solution. Making the substitution

x=4v16a?4+9—4a, y=+16b2+9—4b, z2=4/16c2+9—4c, x,y,z>0,

which involves

a
we need to show that
(9—xH)(9—y?*)(9—2*) =512xyz

yields
xX+y+z=>3.
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Use the contradiction method. Assume that
x+y+z<3,

and show that
(9—x*)(9—y*)(9—2%) > 512xys=.

According to the AM-GM inequality, we get
3+x=14+1+1+x>4vx, 3+y>4yy, 3+z>4vz,

hence
B+x)B3+y)B8+2)=64xyz.

Therefore, it suffices to prove that
(3—x)(3—y)(3—2) > 8+4/x3y323.
Since

X+y+z

3
>Xyz,
3 ) Y

we have

B—x)B3—y)B8—2)=9B3—x—y—2)+3(xy+yz+2zx)—XxYy2
>3(xy +yz+2x)—xyz>9(xyz)*® —xyz
> 8(xyz)?® > 8(xyz)®/".

P 2.75. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that

V2502 + 144 4+ v/ 25b2 + 144 4+ v/25¢2 + 144 < 5(a + b + ¢) + 24.
(Vasile Cirtoaje, 2012)

First Solution. Since

144
v/ 25a2 + 144 —5a =

V25a2 + 144+ 5a°
the inequality is equivalent to
> ! <1
V25a2+144+5a 6
If the inequality
1 1

<
V2502 + 144 +5a ~ 6+/5q18/13 + 4
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holds for all a > 0, then it suffices to show that

1
—_—— <1,
2 s

which follows immediately from P 2.33. Using the substitution x = a/'3, x > 0,
we only need to show that

v/ 25x26 + 144 4+ 5x13 > 64/5x18 + 4,

By squaring, the inequality becomes

10x3(v/25x26 + 144 + 5x 2 —18x>) > 0.

This is true if
25x20 + 144 > (18x° —5x13)?,

which is equivalent to
5x'% +4 > 9x1°.

By the AM-GM inequality, we have

Sx®+4=xB®+xB+xB+x®+xB+1+1+1+1

> 04/x18.x18.x18.x18.x18.7.1.1-1 =9x1°,

The equality holds fora=b=c=1.

Second Solution. Making the substitution

8x =4 25a%2+144—5a, 8y =+ 25b2+144—5b, 8z = v/ 25c2+144—5c,

which involves

we need to show that
(9—4x*)(9—4y?)(9 —42*) = 125xyz

involves
x+y+z<3.

Use the contradiction method. Assume that
X+y+z>3,

and show that
(9—4x?)(9 —4y*)(9—42*) < 125xyz.



384 Vasile Cirtoaje

Since

12x* 3(y+z—x)(y +2+3x)
x+y+z_ XxX+y+sz

9—4x?<3(x+y+z)—

it suffices to prove the homogeneous inequality
27AB < 125xyz(x + y +2)°,

where
A=(y+z—x)z+x—y)x+y—z2),

B=(y+z+3x)(z+x+3y)(x+y+32).

Consider the nontrivial case A > 0. By the AM-GM inequality, we have
125
B< —(x+y+2)’.
o7 Xty +2)

Therefore, it suffices to show that
A<xysz,

which is a well known inequality (equivalent to Schur’s inequality of degree three).
Ll

P 2.76. If a, b are positive real numbers such that ab + bc + ca = 3, then

(@) va2+3++v/b2+3++vb2+3>a+b+c+3;

(b) Va+b+vVb+c++vc+a>+/4a+b+c)+6.
(Lee Sang Hoon, 2007)

Solution. (a) First Solution (by Pham Thanh Hung). By squaring, the inequality
becomes

D V(b2 +3)(c2+3)23(1+a+b+o).

Since
(b2 +3)(c2+3)=(b+c)b+a)c+a)c+b)=(b+c)*(a*+3)

1
> Z(b +¢)*(a+3)?,

we have

Z\/(b2+3)(cz+3)2 %Z(b+c)(a+3)= %(6Za+22bc)

=3(a+b+c+1).
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The equality holds fora=b =c =1.

Second Solution. Use the SOS method. Write the inequality as follows:

\/(a+b)(a+c)+\/(b+c)(b+a)+\/(c+a)(c+b)2a+b+c+3,

2[a+b+c—\/3(ab+bc+ca)]ZZ(\/a+ \/ﬁ)
Z(b C)2>Z (b—c)? N

\/a+b+\/a+c)

a+b+c+\/3(ab+bc+ca)

Z Sa(b_c)2 >0
(\/a+b+1/a+c)2 -

where

Sa:(\/a+b+Va+c)2—a—b—c—\/S(ab+bc+ca).

The inequality is true since

Sa=3(a+b+c)+2\/(a+b)(a+c)—\/B(ab+bc+ca)

>2\/a2+(ab+bc—+—ca)—\/B(ab+bc+ca)>O.

Third Solution. Use the substitution
x=va*+3—a, y=vb2+3—-b, 2=Vc2+3—c¢c, x,y,z>0.

We need to show that
x+y+z=>3.

We have

Zyz=Z[\/(b+a)(b+c)—b][\/(c+a)(c+b)—c]

= Z(b+c)\/ (a+ b)(a+c)—Zb\/ (c+a)(c+ b)—ZC\/(b +a)(b +c)+z bc
=Y b+ (@a+b)a+)— Y cy/@+b)a+c)— Y by/(a+c)a+b)+ Y b
= Zbc = 3.

x+y+22\/3(xy+yz+zx)=3.

Thus, we get

(b) By squaring, we get the inequality in (a).
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P 2.77. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

V(5a2 +3)(5b2 + 3) + /(5b2 + 3)(5¢2 + 3) + 1/(5¢2 + 3)(5a2 + 3) > 24.
(Nguyen Van Quy, 2012)
Solution. Assume that
a=>b>c, 1<a<3, b+c<2.
Using the notation
A=5a*+3, B=5b*+3, C=5c%+3,
we can write the inequality as follows:

VA(VB++vC)+vVBC > 24,

VA(B+C+2vBC) = 24— VBC.
Consider the nontrivial case vBC < 24. The inequality is true if
A(B+C+2vBC)> (24— vBC)',
which is equivalent to
A(A+B+C+48)> (A+24—VBC) .
Applying Lemma below for k =5/3 and m = 4/15 yields
5vBC > 25bc + 15 + 4(b —c)?.
Therefore, it suffices to show that
25A(A+ B+ C +48) > [5A+120—25bc — 15— 4(b —c¢)*]?,
which is equivalent to
25(5a% + 3)[5(a? + b + ¢?) + 57] > [25a® + 120 — 25bc — 4(b — ¢)* 2.
Since
5(@®>+ b2 +c>)+57=5a?+5(b+c)?*—10bc +57 = 2(5a®>—15a + 51 — 5bc)
and

25a® 4+ 120 —25bc —4(b —c)* = 25a* + 120 — 4(b + c)* — 9bc
= 3(7a® + 8a + 28 — 3bc),
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we need to show that
50(5a® + 3)(5a* — 15a + 51 — 5bc) > 9(7a* + 8a + 28 — 3bc)?.
From bc < (b +¢)?/4 and (a — b)(a—c) > 0, we get
(3—a)?
4 >
Consider a fixed, a > 1, and denote x = bc. So, we only need to prove that
f(x)>0 for

bc <

bc > a(b +c)—a* = 3a—2a>

2_
3a_2a2 <x< a6—a-i_9’
4
where
f(x)=50(5a*+3)(5a*—15a + 51 — 5x) — 9(7a* + 8a + 28 — 3x)>.

2_
a 6a+9)20.

Since f is concave, it suffices to show that f (3a—2a?) > 0 and f ( 2

Indeed, we have

f(3a—2a?) = 3(743a* — 24224 + 2813a* — 1332a + 198)
=3(a—1)*[(a—1)(743a—193)+5]>0,

2_6a+ 375
f(a a 9): 176 (25a* — 140a® + 286a% — 2524 + 81)

4
= %(a —1)*(5a—9)*>0.

Thus, the proof is completed. The equality holds for a = b = ¢ = 1, and also for
a=9/5and b =c = 3/5 (or any cyclic permutation).

Lemma. Let b,c > O0suchthat b+c<2. Ifk>0and0<m<

, th
k42 e

V (kb2 +1)(ke2 +1) > kbc+ 1+ m(b—c)>.
Proof. By squaring, the inequality becomes
(b—c)*[k—2m—2kmbc —m?(b—c)*]> 0.
This is true since
k —2m —2kmbc —m?(b —c)? = k — 2m — 2m(k — 2m)bc — m?(b + ¢)?

_ m(k —2m)
2

>k—2m (b+¢)>—m?(b+c)?

k
:k—2m—7m(b+c)22k—2m—2km20.
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P 2.78. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

2 2 2
\/a2+1+\/b2+1+\/cz+12\14(a +b ;—c )+42.

(Vasile Cirtoaje, 2014)
Solution. Assume that
a>b>c, a=>1, b+c<2.

By squaring, the inequality becomes

2 b2 2 33
VA(VB+vC)+vBC> L™ ;C My

2 2 2
JA(B+C+2vBC)+vBC = LHP Zc £33

where
A=a*+1, B=Db*+1, C=c*+1.

Applying Lemma from the preceding problem P 2.77 for k = 1 and m = 1/4 gives
1
VBC>bc+1+ Z(b —c)*

Therefore, it suffices to show that

a?+b>+c%+33
6 bl

\lA[B+C+2bc+2+%(b—c)2}+bc+1+%(b—c)22

which is equivalent to

64/2(a2 +1)[3(b +¢)? + 8 —4bc] = 2a® — (b + c)? + 54— 4bc,

64/2(a2 + 1)(3a2 — 18a + 35 — 4bc) > a® + 6a + 45 — 4bc.
From bc < (b +¢)?/4 and (a— b)(a—c) > 0, we get
(3—a)?
4
Consider a fixed, a > 1, and denote x = bc. So, we only need to prove that
f(x) =0 for

bc < bc>a(b+c)—a*=3a—2a>

2_
3a—2a23xsa?++9,

where

f(x)=72(a*+1)(3a*—18a + 35 —4x) — (a® + 6a + 45 — 4x)*.
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2 _
a 6a+9)20

Since f is concave, it suffices to show that f (3a—2a?) > 0 and f ( 2

Indeed,

f(3a—2a*) =9(79a* — 228a> + 274a* — 180a + 55)
=9(a—1)*(79a*—70a + 55 > 0,

a’—6a+9
(o

2 ) = 144(a* — 6a® + 13a* — 12a + 4)

=144(a—1)*(a—2)*>0.

The equality holds fora = b =c =1, and also fora =2 and b = ¢ = 1/2 (or any
cyclic permutation).

O

P 2.79. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

(@) Va2 +3+vV/b2+3+V/c2+3> 4/2(a? + b2 +¢2) + 30;

(b) V3a2+1+vV3b2+1++v3c2+ 1> +/2(a? + b2 +c2) + 30.
(Vasile Cirtoaje, 2014)

Solution. Assume that
a=>b>c, a>1, b+c<2.

(a) By squaring, the inequality becomes

2 b2 2 21
VA(VB+vC)+vBC> LT ZC Ly

2 2 2
JA(B+C+2vBC)+vBC 2 LH° erc 2l

where
A=a’>+3, B=b>+3, C=c?+3.

Applying Lemma from problem P 2.77 for k =1/3 and m = 1/9 gives
1
vBC > bc+3+§(b—c)2.

Therefore, it suffices to show that

a’?+b*>+c2+21
2 b

2 1
\lA[B+C+2bc+6+E(b—c)2:|+bc+3+§(b—c)22
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which is equivalent to

24/3(a? + 3)[5(b +¢)2 + 36 —8bc] = 3a® + (b + c)? + 45 — 4bc,

\/B(a2 +3)(5a2 —30a + 81 — 8bc) > 2a* — 3a + 27 — 2bc.
From bc < (b +¢)?/4 and (a—b)(a—c) > 0, we get

(3—a)’

bc < ,
4

bc>a(b+c)—a?=3a—2a>

Consider a fixed, a > 1, and denote x = bc. So, we only need to prove that
f(x)>=0 for

2_
3a—2a2SxSa?++9,

where

f(x)=3(a®+3)(5a*>—30a + 81 —8x) — (2a®> — 3a + 27 — 2x)*.

= 0.

a2—6a+9)

Since f is concave, it suffices to show that f (3a—2a?) > 0 and f ( 2

Indeed,
f(3a—2a*)=27a*(a—1)*>0,

>—6a+ 2
f (%) = %(a4—8a3+22a2—24a+9)

= %{(a— 1)*(a—3)*>0.

The equality holds fora = b = ¢ =1, and also for a = 3 and b = ¢ = 0 (or any
cyclic permutation).

(b) By squaring, the inequality becomes

27 — 2_1,2_ .2
VA(VE+C)+vVEC > “2” <

2 12 2
JA(B+C+2VBC)+ VBT > 2 azb -,

where
A=3a®+1, B=3b%2+1, C=3c%+1.

Applying Lemma from problem P 2.77 for k = 3 and m = 1/3 gives

vBC >3bc+1+ %(b —c)2
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Therefore, it suffices to show that

27 —a®—b%>—c?
2 3

\JA[B+C+6bc+2+%(b—c)2]+3bc+1+%(b—c)22

which is equivalent to

24/3(3a2+1)[11(b + ¢)2 + 12—8bc] > 75 — 3a> — 5(b + c)*> — 4bc,

V/3(3a2 +1)(11a2 —66a + 111 —8bc) > 15 + 15a — 4a® — 2bc.
From bc < (b +¢)?/4 and (a—b)(a—c) > 0, we get

3 — 2
ch( 4a), bc > a(b +c)—a®=3a—2a°

Consider a fixed, a > 1, and denote x = bc. So, we only need to prove that
f(x)>0 for
2_
3a—2a<x< 277 6a+9,
4
where

f(x)=3(3a*+1)(11a®>—66a + 111 —8x) — (15 + 15a — 4a* — 2x)*.

2_
a 6a+9)20.

Since f is concave, it suffices to show that f (3a—2a?) > O and f ( 2

Indeed,
f(3a—2a*)=27(a—1)*(3a—2)>*>0,

>—6a+ 2
f (%) = :7(9a4 —48a® + 94a* — 80a + 25)
27
= ?(a —1)*(3a—5)*>0.
The equality holds fora = b =c¢ =1, and also for a = 5/3 and b = ¢ = 2/3 (or any
cyclic permutation).
Remark. Similarly, we can prove the following generalization.

e Let a, b, c be nonnegative real numbers such that a+ b +c = 3. If k > 0, then

8k(a2+ b2 + c2)+ 3(9k2 + 10k +9)
3(k+1)

b

\/ka2+1+\/kb2+1+\/kc2+12\J

3k+1
2k

k—
with equality for a = b = ¢ =1, and also for a = and b=c= 3 (or any

cyclic permutation).
O
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P 2.80. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

V(3242 +3)(32b2 + 3) + 4/(32b2 + 3)(32¢2 + 3) + 1/(32c2 + 3)(32a2 + 3) < 105.
(Vasile Cirtoaje, 2014)
Solution. Assume that
a<b<c, a<1, b+c>2.

Denote
A=32a*>+3, B=32b%+3, C=32c%2+3,

and write the inequality as follows:

vA(VB++v/C)+ vBC <105,

VA-VB+C+2vBC <105— vBC.

By Lemma below, we have
VBC <5(b+c¢)*+12bc+3<8(b+c)*+3<8(a+b+c)*+3=75<105.
Therefore, we can write the desired inequality as
A(B+C+2vBC) <(105—vBC),
which is equivalent to
A(A+B+C+210) < (A+105—vBC)>
According to Lemma below, it suffices to show that
A(A+B+C +210) < [A+105—5(b*+ ¢?)—22bc — 373,
which is equivalent to
[32a® + 105 — 5(b? + ¢?)—22bc]* > (32a* + 3)[32(a® + b* + ¢*) + 219].
Since
32(a*+b*+c*)+219 = 32a*+32(b+c)*—64bc+219 = 64a*—192a +507—64bc
and
32a%+105—5(b%*+c?)—22bc = 32a®+105—5(b+c)>*—12bc = 3(9a*+10a+20—4bc),
we need to show that

9(9a? + 10a + 20 — 4bc)? > (32a? + 3)(64a® — 192a + 507 — 64bc).
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From bc < (b +¢)?/4, we get

32
bc < (8=a) .
4
Consider a fixed, 0 < a < 1, and denote x = bc. So, we only need to prove that

f(x)=0 for

2 _
O<x<a 6a+9

— — )

4
where

F(x)=9(9a* + 10a + 20 — 4x)* — (32a* + 3)(64a* — 192a + 507 — 64x).
Since

f'(x) = 72(4x — 9a* — 10a — 20) + 64(32a* + 3)
< 72[(a®—6a +9)—9a% —10a — 20) + 64(32a% + 3)
=8[184a(a—1)+ (44a—75)] <0,

) . a’*—6a+9 . .
f is decreasing, hence f(x) > f — ) Therefore, it suffices to show that

2-6
f (%) > 0. We have

2_¢
f (#) =9[9a? 4+ 10a + 20 — (a®> — 6a + 9)]?

—(32a* + 3)[64a® —192a + 507 — 16(a® — 6a + 9)]
=9(8a?+ 16a + 11)? — (32a? + 3)(48a? — 96a + 363)
=192a(a —1)*(18 —5a) = 0.
Thus, the proof is completed. The equality holds for a = b = ¢ = 1, and also for
a=0and b =c = 3/2 (or any cyclic permutation).

Lemma. If b,c > 0 such that b + ¢ > 2, then

v (32b2 + 3)(32¢2 + 3) < 5(b% + ¢*) + 22bc + 3.
Proof. By squaring, the inequality becomes
(5b2 4+ 5¢2 4+ 22bc)* — 322b%c? > 96(b? + ¢*) — 6(5b? + 5¢2 + 22bc),

5(b—c)?(5b% +5c¢% + 54bc) > 66(b —c)>.

It suffices to show that
5(5b%+ 5¢* + 10bc) > 100,

which is equivalent to the obvious inequality (b + c)? > 4.
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P 2.81. If a, b, c are positive real numbers, then

a+b
c

b+c
a

c+a

— —3|=2.
b

_3H 3|+

(Vasile Cirtoaje, 2012)

Solution. Without loss of generality, assume thata > b > c.

Case 1: a > b + c. We have

‘b+c_3'+ a+b_3‘+‘c+a_3‘2 b+c_3‘: _b+c )
a b a a
Case 2: a < b+ c. We have
b+c_3+ a-+-b_3 c+a_3‘2 b+c_3+’c+a_3‘
a c b a b
:(3_b+c)+(3_c+a)26_b+b_b+a:2+(a—b)(2b—a)22.
a b a b ab

Thus, the proof is completed. The equality holds for % = b = ¢ (or any cyclic

permutation).
O

P 2.82. If a, b, ¢ are real numbers such that abc # 0, then

b+c ‘c+a) a+b
> 2.
a b c
First Solution. Let
la| = max{|al,|b], [c|}.
We have
b+c c+a a+b b+c c+a a+b
> +
a b c a a a
> I(—b—C)+(C|JTa)+(a+b)I Y
a

The equality holds fora =1, b =—1 and |c| < 1 (or any permutation).

Second Solution. Since the inequality remains unchanged by replacing a, b, c with
—a,—b,—c, it suffices to consider two cases: a,b,c >0, and a <0, b,c > 0.

Case 1: a,b,c > 0. We have

a+b (a b) (b c) c a
- =({=-+—|+|=-+= +(—+—)26.
c b a c b a ¢

b+c
a

c+a
b
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Case 2: a < 0 and b,c > 0. Replacing a by —a, we need to show that

b+ - —b
C-|-|a C|-|-|a |22

a b c

for all a, b,c > 0. Without loss of generality, assume that b > c. There are three
case to consider: b>c>a,b>a>canda>b>c.
For b > ¢ > a, we have

b+c J|a—c| Ja—b|_ b+c
+ + > > 2.

a b C a

For b > a > c, we have

_ _ _ —hH)2 _
b+c+|a c|+|a b|_22b+c+a c_2:(a b)*+c(b a)2

0.
a b c a b ab

For a > b > c, we have

b+c J|a—c| |a—Db] b+c a—c a-—b>b
+ + —2= + +

-2
a b C a b c
b —b 1 1 —b)? —b)(ab—c?
:(E+——2)+a +c(—__):(a )" (a—b)a C)ZO.
b a C a b ab abc
Third Solution. Using the substitution
b+c c+a a+b
X = > Y= , 2= 5
a b c
we need to show that
x+y+z+2=xyz, x,¥,2€R,
involves
lx| +|y| + 2] > 2.
If xyz <0, then
—X—y—2=2—Xxy2 =2,
hence
x| +lyl+lzl =[x +y+sz|=|-x—y—z|2—x—y—2>2.

If xyz > 0, then either x,y,z > 0 or only one of x, y,z is positive (for instance,
x>0and y,z <0).

Case 1: x,y,z > 0. We need to show that x + y + 2 > 2. We have

Xyz=x+y+z+2>2
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and, by the AM-GM inequality, we get
x+y+z>3Yxyz>3V2>2,
Case 2: x > 0 and y,z < 0. Replacing y,z by —y,—z, we need to prove that
X—y—2+2=xyz

involves
x+y+z=2

for all x, y,z > 0. Since
x+y+z—2=x+y+z—(xyz—x+y+2z)=x(2—yz),
we need to show that yz < 2. Indeed, we have
X+2=y+z+xyz=>2,/yz+xyz,

x(1—yz)+2(1—4yz)=0,
(1—-vyz)[x(1+Vyz)+2]=0,

hence
yz<1<2.

P 2.83. Let a, b, c be nonnegative real numbers, no two of which are zero, and let

= 2a _2b g 2c
“b+c YT ctra T a+b
Prove that
(a) VXY + JYZ+ V2X = xyz +2;
(b) X+y+z+ /Xy + Y2+ /2x > 6;
(0 VX+ Y+ V2> 4/8+xyz;
JYZ Y/ WES
(d YE | VEX VXY g,

x+2 y+2 z+2°
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Solution. (a) Since

_ 24/bc(a+b)(c+a) - 2+/bc (a + v'be)

VyE= (a+b)c+a) ~ (a+b)c+a)
_ 2a(b+c)v'bc + 2bc(b +c¢) . _4abc+2bc(b+c)
 (a+b)b+c)c+a) T (a+b)b+c)c+a)
we have
12abc+2> be(b+¢)
Z‘/ﬁz (a+b)(b+c)(c+a)
g Babc +2=xyz+2
T @rb)bro)(cta) O yETS

The equality holds for a = b =, and also fora=0or b =0 or c =0.

(b) First Solution. Taking into account the inequality (a), it suffices to show
that

X+y+z+xyz =>4,
which is equivalent to Schur’s inequality of degree three

a®+b*+c®+3abc > Zab(a+ b).

The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic
permutation).

Second Solution. We use the SOS technique. Write the inequality as

4> (x-1)=> (vy—v5).

Since
. (a—b)+(a—c) ﬂ b—a
Z(x—l)—z b+c _Zb+c+zc+a
_Z (a—Db)? _Z (b—c)?
Ld(b+c)c+a) “A(a+Db)a+c)
and
(ﬁ—ﬁ)zz (y—2)? 2(b—c)*(a+b+c)?

(v + ﬁ)z - (a+b)(a+c)(\/b2+ab+«/c2+ac)2’

we can write the inequality as

> (b—c)*s, >0,
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where
(a+b+c)

S,=(b+c)|2— 5 |-
(\/b2+ab+\/c2+ac)

By Minkowski’s inequality, we have

(\/b2+ab+\/c2+ac)22(b+c)2+a(\/g+1/€)2

>(b+c)P+alb+c)=(b+c)a+b+c),

hence
a+b+c

S >(b+ 2—
az( C)( b+c

) =b+c—a.
Thus, it suffices to show that
> b—c)}(b+c—a)=0,

which is just Schur’s inequality of third degree.

Third Solution. Using the Cauchy-Schwarz inequality yields

a_ b L (a+b+c)? _ (a+b+c)
b+c c+a a+b  alb+c)+blc+a)+cla+b) 2(ab+bc+ca)

Also, using Holder’s inequality, we have

2
a b c (a+b+c)?
J +\ +1/ > :
b+c c+a a+b a?(b+c)+b2(c+a)+c2(a+b)

Thus, it suffices to prove that

(a+b+c)2+ 2(a+b+c)? - 19
ab+bc+ca a2(b+c)+b2(c+a)+c2(a+b)

Due to homogeneity, we may assume that a + b + ¢ = 1. Substituting
gq=ab+bc+ca, 3q<1,

the inequality becomes

1 2
-+ ——2=12.
g q—3abc

The fourth degree Schur’s inequality
6abep > (p*—q)(4g—p*), p=a+b+c,

gives
6abc > (1—q)(4q—1).
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Therefore,

1 2 1 1—3q)(1 —4q)?
S 12>-+ 4 _12= f)( ) -,
q q-—3abc q 2¢—(1—q)(4q—1) q(492—3q+1)

(c) By squaring, the inequality becomes
X+y+z+2/Xxy+2/yz2+24/2x >8+xyz.
Based on the inequality in (a), it suffices to show that
xX+y+z+2(xyz+2)=>8+xyz,

which is equivalent to
X+y+z+xyz =>4,
a®+ b3 +c®+3abc > Zab(a + b).

The last form is just Schur’s inequality of third degree. The equality holds for a =
b =c, and also for a = 0 and b = ¢ (or any cyclic permutation).

(d) Write the inequality as

D(b+c)yyE=2a+b+c).
First Solution. Since
_ 2y/bc(a+b)(c+a) _ 2v/be (a+vbe)
VyE= (a+b)(c+a) = (a+b)(c+a)

_ 2a(b +¢)Vbc+2bc(b +¢) > 4abc + 2bc(b +¢)
 (a+Db)b+o)c+a) T (a+b)b+c)c+a)

it suffices to show that
Z(b +c)[2abc + be(b+¢)] = (a+b +c)a+b)(b +c)c+a),

which is an identity. The equality holds for a = b = ¢, and also fora=0or b —0
orc=0.

Second Solution. Let
q=ab+ bc+ca.
Since

2b 2c 2'%'%_ 4bc

' ="2b |, 2¢ )
a+b c+a 2=+ 2 bc+q

c+a

JyE=

we can write the inequality as follows:

Z—Zbc(b+c) >a+b+c,
bc+q
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Y[Seeezo

Z be(b—a) + be(c—a)+ b(c? —a?) + c(b?—a?)

=0,
bc+q
Z c(b—a)(2b+a)+b(c—a)(2c+a) >0
bc+q -
c(b—a)(2b+a) c(a—b)(2a+b)
Z bc+gq +Z ca+q =0,

Zc(a—b)[2a+b—2b+a]20,

ca+q bc+g

Z c(a—Db)lg(a—b)—c(a®— b*)] >0

(ca+q)(bc+q)

(a—b)?
abcz (ca+q)(bc+q) = 0.

P 2.84. Let a, b, c be nonnegative real numbers, no two of which are zero, and let

2a 2b 2c

, = , 2= .
b+c Y c+a a+b

Prove that

V1+24x+4/1+24y + v 1+24z > 15.

(Vasile Cirtoaje, 2005)

Solution (by Vo Quoc Ba Can). Assume that ¢ = min{a, b,c}, hence z < 1. By
Holder’s inequality

2
a b
(‘/ b+c+ \ c+a) [a®(b+c)+ b (c+a)] = (a+Db)°,

we get
2 2(a+b)? _ 2(a+Db)?
(ﬁ-l_ ﬁ) = c(a2+b2)+ab(a+b) cla+Db)2+ab(a+b—2c)
2(a+b)? _ 8(a+b) 8

> = = .
B c(a+b)2+%(a+b)2(a+b—2c) a+b+2c 1+z

Using this result and Minkowski’s inequality, we have

48
V1+24x + 1+ 24y > /(1+1)2+24(V/x + y¥)? > 2\ 1+ ——.
Z
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Therefore, it suffices to show that

2\ 1+ 48 4+ 41424z > 15.
1+2

v 1+ 24z = 5¢,

t2+
2\ n3
25t2+423

By squaring, this inequality becomes

Using the substitution

<t<l,

gl =

the inequality turns into

25t* —150t% + 244t — 138t + 19 < 0,
which is equivalent to the obvious inequality
(t—1)*(5t—1)(5t—19) < 0.

The equality holds for a = b = ¢, and also for a = b and ¢ = 0 (or any cyclic
permutation).
O]

P 2.85. If a, b, c are positive real numbers, then

\J 7a \J 7b q 7c
+ + <3.
a+3b+3c b+3c+3a c+3a+3b

(Vasile Cirtoaje, 2005)

First Solution. Using the substitution

X 7a 7b 7c
= _— = _— Z = _
Ja+3b+3¢’ Y Jb+3c+3a’ \Jc+3a+3b’

we have
(x2—7)a+3x%b+3x%c=0

3y?a+(y*—=7)b+3y%c=0 ,
322a+32°b+(22—7)c=0
which involves

3y y*—7 3y* |=0;
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that is,
F(x,y,z)=0,
where
F(x,y,2) = 4x*y?z* + 8Z:x2y2 + 7Z:x2 —49.
We need to show that F(x,y,z) = 0 involves x + y +z < 3, where x,y,z > 0. To
do this, we use the contradiction method. Assume that x +y +2 > 3 and show that
F(x,y,z) > 0. Since F(x,y,z) is strictly increasing in each of its arguments, it is

enough to prove that x + y +z = 3 involves F(x, y,z) > 0. We will use the mixing
variables technique. Assume that x = max{x, y,z} and denote

+2z
tzyT, 0<t<1<x.

We will show that
F(x,y,z)>F(x,t, t)>0.

We have

F(x,y,2)—F(x,t,t) = (8x*+ 7)(y* +2* — 2t*) — 4(x* + 2)(t* — y°2?)
= 28X +7)y 2 = (¢ + (e + y2)y —2Y
> %(8;(2 + 7y —2)* —2(x* + 2)t*(y —2)?
= %(43(2 —1)(y—2)*=0

and

_ }l(x —1)%(x — 2)%(x2 — 6x +23) > 0.

3—x 3—x
F(x,t, t)=F(x, )

27 2

The equality holds for a = b = ¢, and also for % = b = ¢ (or any cyclic permuta-
tion).

Second Solution. Due to homogeneity, we may assume that a + b + ¢ = 3, when
the inequality becomes
S <3
9—2a
Using the substitution
Y= 7a _ 7b g 7c
N \J 9—2a" 7~ \J 9—2p" °° J 9—2c’

we need to show that if x, y,z are positive real numbers such that

1 1
sz2+7:§’
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then
x+y+z<3.

For the sake of contradiction, assume that x+y+z > 3 and show that F(x, y,z) <0,

where 1 .
F(x,y,z)= ——.
(x,7,2) 22x2+7 3

Since F(x, y,2) is strictly decreasing in each of its arguments, it is enough to prove
that x + y + 2z = 3 involves F(x, y,2z) < 0. This is just the inequality in P 1.33.
O

P 2.86. If a, b, c are positive real numbers such that a + b + ¢ = 3, then
v a2(b? +c2) + 3/ b2(c? + a2) + y/c2(a? + b2) < 3V2,
(Michael Rozenberg, 2013)

Solution. By Holder’s inequality, we have

[Z v a2(b2 + cz):l3 < [Z a(b+ c):l2 Z (Z::CC;.

Therefore, it suffices to show that

Z b2 +¢? < 27
(b+¢)?2 ~ 2(ab+ bc+ca)?’

which is equivalent to the homogeneous inequalities
bZ + 2 4
Tl
(b +c)? 6q
2bc
>
(b+ c)2 6q2

p=a+b+c, qg=ab+bc+ca.

where

According to P 1.62, the following inequality holds

Z 2bc +p_>
(b+c) q

Thus, it is enough to show that

[\JI\O

which is equivalent to

The equality holds fora=b =c=1.
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P 2.87. If a, b, c are nonnegative real numbers, no two of which are zero, then

1 1 1 1 2
+ + > + .
a+b b+c c+a a+b+c Jab+bc+ca

(Vasile Cirtoaje, 2005)

Solution. Using the notation
p=a+b+c, q=ab+bc+ca, r=abc,

we can write the inequality as
2

Prg_ 1, 2

pg—r p /4
According to P 3.57-(a) in Volume 1, for fixed p and q, the product r = abc is
minimum when two of a, b, ¢ are equal or one of a, b, ¢ is zero. Therefore, it suffices
to prove the inequality for b = ¢ = 1 and for a = 0. For a = 0, the inequality reduces
to

1 1 2
— + —_ 2 —_—,
b ¢ Vbc
which is obvious. For b = ¢ = 1, the inequality becomes as follows:
1 2 1 2
—+ > + ,
2 a+1 a+2 42a+1
1 1 2 2
- — >

2 a+2° J2a+1 a+1
a 2(a+1—\/T+1)
2(a +2) = (a+1)v2a+1
a_ 2a?
2(a+2) " (a+1)v2a+1(a+1++v2a+1)
So, we need to show that

1 2a
2(a+2) = (a+1)vV2a+1(a+1++v2a+1)

Consider two cases: 0 <a <1anda>1.

Case 1: 0 <a <1. Since

vV2a+1(a+1++v2a+1)>vV2a+1(v2a+1++v2a+1)=22a+1),

it suffices to prove that

1 > a
2(@+2) ~ (a+1)(2a+1)
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which is equivalent to 1 —a > 0.
Case 2: a > 1. Write the desired inequality as

1 2a
ﬂa+2)2(a+1)ﬂa+1h@a+1+2a+1}

First, we will show that

(a+1)v2a+1>3a.

Indeed, by squaring, we get the obvious inequality
a®+a(a—2)2+1>0.

Therefore, it suffices to show that

1 S 2a
2(a+2) ~ (a+1)(Ba+2a+1)

which is equivalent to (a — 1) > 0.
The equality holds for a = 0 and b = ¢ (or any cyclic permutation).

P 2.88. Ifa,b>1, then
1 1 1 1
—_— -2 - :
vV3ab+1 2 43a+1 +V3b+1

Solution. Using the substitution

2 2
X = —, y:—s x:y€(071]7
V3a+1 v3b+1
the desired inequality can be written as
X > =>x+y—1
y Xiyl—x2_y214° y—L

Consider the nontrivial case x + y —1 > 0, and denote
t=x+y—1, p=uxy.

We have
1>p>t>0.

Since
x2+y2 = (x+y)2—2xy =(t+ 1)2—2p,
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we need to prove that

3
>t.
p\J PP+2p—(2—2t+3
By squaring, we get the inequality
(P—-0lB—tIp+t(1-t)(3+1)] =0,

which is clearly true. The equality holds fora =b = 1.

1
P 2.89. Let a, b, c be positive real numbers such thata+b+c=3. If k > E, then

(abc)*(a® + b? +c?) < 3.
(Vasile Cirtoaje, 2006)
Solution. Since

3
abc < (%M) =1,

it suffices to prove the desired inequality for k = 1/+/2. Write the inequality in the
homogeneous form

a+b+c)3k+2

(abc)(a®>+b%+c?) <3 ( 3

According to P 3.57-(a) in Volume 1, for fixed a+b+c and ab+ bc+ca, the product
abc is maximum when two of a, b, c are equal. Therefore, it suffices to prove the
homogeneous inequality for b = ¢ = 1; that is, f(a) > 0, where

f(a) =(3k+2)In(a +2)—(3k+1)In3 —klna—In(a®+2).

From
,()_3k+2_k_ 2a  2(a—1)(ka*—2a+ 2k)
fa Ca+2 a az+2 ala+2)(az+2)
_ V3(a—1)a— V2’
ala+2)(a2+2)

it follows that f is decreasing on (0, 1] and increasing on [1, c0); therefore, f (a) >
f (1) = 0. This completes the proof. The equality holds fora =b =c = 1.
O
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P 2.90. Ifa,b,c €[0,4] and ab + bc + ca =4, then

Va+b++vVb+c+vcta<3++5.
(Vasile Cirtoaje, 2019)

Solution. Assume thata > b >c, 1 < a <4, and write the inequality as follows

b+c+\/(a+b)+(a+c)+2\/(a+b)(a+c)S3+\/§,

b+c+\/2a+b+c+2\/a2+433+\/§,

From 4 —a(b +c) = bc > 0, we get

b—l—csi
a

Thus, it suffices to show that

2
—+\J2a+f+2\/a2+4§3+«/§,
Jva a

which is equivalent to

2 a+V@Ta
E-FTS?)-F@,
a—3va+2<+v5a—vVa%+4,
_ _ (a—1)(4—a)

(Va-DWa-2) s e aTa

This is true if

1<(x/5+1)(«/5+2)
> satvaia

that can be written in the obvious form
(a+2—va2+4)+(B—+v5)v/a>0.

The equality occurs for a =4, b =1 and ¢ = 0 (or any permutation).

P 2.91. Let

\|a2+b2+c2 a+b+
F(a,b,c) = a 3 - 3 C,
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where a, b, ¢ are positive real numbers such that

a*bc>1, a<b<c.
Then,
111
F(a,b,c)ZF(—,—,—).
a b c

(Vasile Cirtoaje and Vasile Mircea Popa, 2020)

Solution. Write the inequality as E(a, b,c) > 0, where

1 1 1 1 1 1
— 2 2 2) — — - R — — —_ —
E(a,b,c)=+/3(a2+ b2 +c2)—(a+b+c) \Jg(a2+b2+c2)+a+b+c’

and show that
E(a,b,c) > E(a,x,x) >0,

where
x=vVbc>a, a*x>1, x>1.

Write the inequality E(a, b, c) = E(a, x, x) it in the form
A—C>B-D,

where

3(b—c)?

A=/3(a® + b2 + 2) — /3(a® + 2x2) =
Vel b )= e ) = e

3(b—c)?
T 32+ b2+c2)+3x

2
5

B:(a+b+c)—(a+2x)=(\/3—ﬁ)

1 1 1 1 2

_ 3. (b—c)?
B teta) 8@ E)
3 (b—c)? 3 (b—c)?

Xt 3(E+h+L)+2 X2 /3(x2+ 2+ b2 +3x
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Thus, we need to show that

YN I S

V302 +b2+c2)+3x X% /3(x2+4c2+ b2) +3x

This inequality is true if

2
3(\/3+ \/E) > 1/3(x2 + b2 +¢2) + 3x,
that is equivalent to

1/§(b+c+vbc)2\/bc+b2+cz,

which is true.
Write now the inequality E(a, x, x) > 0 in the form

1 2 1 2
V3(a®+2x2)—(a+2x) =\ 3(—+—)————.
a? x2 a x

Since both sides of the inequality are nonnegative and a®x > 1, it suffices to prove

the homogeneous inequality

\/3(a2+2x2)—(a+2x)2(azx)z/g[ 3(1 +3)—1—— .

az x2

Due to homogeneity, we may set x = 1. Thus, we need to show thata < x =1

yields
V3@ +2)—a—2>a®[/3(1+2a%)—1—2a],
which is equivalent to
2(a—1)2 S 2(a—1)?

V3@+2)+a+2 /30 +2a)+1+2a
V3(1+2a2) +1+2a>a?[/3(a2 +2) +a+2].

For t = a'/?, t € (0,1], the inequality becomes

V3(1+2t6) +1+2t3 > 4/3(t8 +2t2) + t* + 2t,

which is true because

1+2t°— (3 +2t2) = (1—tH(1—-t*>)* >0,

It is true if

14283 —(t*+20) =1 —-t)(Q—-t)*>0.

The equality occurs fora=b=c > 1.

Remark. The inequality is true in the particular case a,b,c > 1, which implies

a*bc > 1.

O
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A a@2+b2+c2 a+b+
F(a,b,c) = a 3 - 3 C,

where a, b, ¢ are positive real numbers such that

P 2.92. Let

a*(b+c)>2, a<b<c.

Then,
F(a,b,c) > F(l, 1,1)
a b

c

(Vasile Cirtoaje, 2020)

Solution. The proof follows the same way as the proof of the preceding P 2.91.
Write the inequality as E(a, b,c) = 0, where

b 1 1 1 1 (1 1 1
E(a’b’c):«/az_i_bz_i_cz_u_ _+_+_+_(_+_+_),
J3 @ b2 2 J3

and show that
E(a,b,c) > E(a,x,x) >0,

where
b+c
>b,
2
Write the inequality E(a, b, c) = E(a, x, x) it in the form

a’x>1, x>1.

X =

A+B>C,

where

A= Va2 + b2+ c2— a2+ 2x?

_(b—c)z‘ 1
2 Vaz+ b2 +c2+ Va2 + 2x2
>(b—c)2 1

2 VAPt i+ vbErax?
Ry
B_L(LFE_E)_ (b—c)

V3\b ¢ x) 3be(b+c)’

I 1 2

“C\ae"mta \ate
_ (b—c)?(b*+4bc+c?) ' 1

b2c2(b + ¢ )? 1,1_ 1. /1.2
(b+c) VE+E+i+/E+3
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- (b—c)?(b%+4bc + c?) 1
> bzcz(b+c)2 \/%'Fclz'i‘\/%'i‘z

Thus, we need to show that

1 1 N 1 >b2+4bc+c2 1
2 V2b2+c2+V/b2+2x2  V/3bc(b+c)  b2cA(b+c)? \/%4_%4_\/%4_2

Since
b?+4bc + c* = 4bc + (b* +¢?),

it suffices to show that
1 > 4bc ‘ 1
V3be(b+c) ~ b2A(b+c) [Z T [17

and

1 1 - b? + ¢2 1
- 2,2 2
2 V2bh2+c2++/b2+2x2 b2c%(b+c) \/§+Clz+\/#+ 2

Write the first inequality as

(b+c)|:\J b22+ L +\j%+%)24\/§.

Since

2( 4 ) 44/3
> + =——,
vV3\b+c b+c

the inequality is proved.
The second inequality reduces to

be(b +c)* > 2(b% + ¢2).
It is true if the following homogeneous inequality is true:

b2(b +C)T/3

be(b +c)* > 2(b2+c2)[ 5

Due to homogeneity, we may set b = 1, hence ¢ > 1, when the inequality becomes

2/3
c(c+1)222(c2+1)(c+1) )
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It is true if
Ale+1) = 2(c*+1)°,

that is
¢’ +2c®+6c°—2ct+c2—6c2—2>0,
(c’+c2—2)+2c*(c?—1)+6c%(c*—1)>0.

To complete the proof, we need to show that E(a, x,x) > 0 for a®?x > 1, x > a.
This inequality was proved at the preceding P 2.91.
The equality occurs fora=b =c > 1.

Remark. Since a*bc > 1 yields a®(b +c) = 2, the inequality in P 2.91 follows from
the inequality in P 2.92.
O

P 2.93. Let

A a2+b2+c2 a+b+
F(a,b,c) = a 3 < g 3 C,

where a, b, ¢ are positive real numbers such that
a*(b*+c?)>2, a<b<ec.

Then,
F(a,b,c)ZF(1 11) 1)

DR
a C

(Vasile Cirtoaje, 2020)

Solution. The proof follows the same way as the proof of the preceding P 2.92.
Write the inequality as E(a, b,c) = 0, where

a+b+c 1 1 1 1 /1 1 1
E(a,b,c)=va2+b2+c2———— —+—+—+—(—+—+—),
(a ) ¢ V3 a2 b2 ¢2 J/3\a b c

and show that
E(a,b,c) > E(a,x,x) >0,
where
b2 +¢2
2
Write the inequality E(a, b, c) > E(a, x, x) it in the form

X = >b, a’x>1, x>1.

A+B>C,
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where
2x —b—c (b—c)?

V3 :\/§(2x+b+c)’
B—L(1+1—%)— (b—c)*(b? +c%+4bc)
b ¢ x) 2V3b2c2x2(3+21+2)°

1 1 1 1 2
C=Q—+—+—— +

a? b> 2 @ x2
_(bZ_CZ)Z 1
~ 2b2¢2x2 T, 1 1 1, 2
Y A
_ A )
- 2,242 1 1 1 1 2
2b%c2x - (f+g+)+(g+2)

< V3(b% —c?)? . 1

202402 3 1 2 °
2b2c2x 24i42
Thus, we need to show that
1 N b% +c? +4bc - 3(b +c)? 1
- 3 1 2 "
2x+b+c 2p%2x?(5+;+3) 0 2% F4i+3

Since
b%x > a’x > 1,

it suffices to prove the homogeneous inequality

1 N b% +c? +4bc o 3(b +c)? 1
(b2x)P/2(2x +b+c)  2b2c2x2(2+1+2) 7 2b2%c2x2 241427

3 1 2 1 1 2 3 2 2
2l =+ -+ |=-3|+—-+—|=-———— =0,
b ¢ x b ¢ «x C

it is enough to show that

Since

1 N b% +c? +4bc - 2(b + ¢)?
(b2x)?/3(2x +b+c) = 2b2c2x2(2+1+2) ~ 2b2%c2x?

O =] =

S| =
+
+
=N

that is

5

1 1 1
> .
(b2x)2/3(2x +b+c) ~ b2> 141y

=N

c(b+c+ 2_bc) > b13[2x°3 + (b +c)x??].
X

Since x < c, it suffices to show that

2b
c(b +c+ —C) > b3 [2ex? + (b + c)x*?],
c
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that is
c(3b+¢) > (b +3c)(bx?)'5.

Due to homogeneity, we may set c =1, when 0 < b < 1 and
\ ’ b2+1
X = .
2

b3+ b
3b+1>(b+3) ; ,

Thus, we need to show that

which is true if
2(3b+1)° > b(b2+1)(b+3)>.

Since
(b+3)2=0b>+39b>+27b+27 <37b+27 <32(b+1),

it suffices to sow that
(3b+1)>16(b%2+1)(b+1),

which is equivalent to
1—7b+11b*+11b°—16b* >0,
(1—b)(1—6b+5b>+16b%) >0.
This is true because
1—6b+5b*+16b% = (1—4b)*+ b(2—11b+16b%) > 0.

To complete the proof, we need to show that E(a, x,x) > 0 for a®?x > 1, x > a.
This inequality was proved at P 2.91.
The equality occurs fora=b=c > 1.

Remark. Since a®(b+c) > 1yields a*(b?+c?) > 2, the inequality in P 2.92 follows
from the inequality in P 2.93.

]
P 2.94. Let 3
F(Cl, b, C) = \/3 abc— T 1 1
atste
where a, b, ¢ are positive real numbers such that
a*b’c’ > 1, a>b>c.
Then,
111
F(a,b,c) > F(—, —,—).
ab c

(Vasile Cirtoaje and Vasile Mircea Popa, 2019)
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Solution. By the AM-GM inequality, both sides of the inequality are nonnegative.

Denote
x = v/ bc.
We have
a>1, x<a, a*x’>1
From
> —1 > —1
X = a27 — ql/?2’
it follows that 1
a=—
x2
Write the inequality as E(a, b,c) = 0, where
3 1 3
E(a, b,c = v abc— — + )
(@b)=vabe T Ty T av bt

and prove that
E(a,b,c) > E(a,x,x) > 0.

1
We will show that the left inequality is true for a > 1 and a > —,- Write the

inequality as follows
1 1 > 1 1
at+b+c +3+c a+2Vbec g+~

J

1 1
= - 5
+2 a+2vbc a+b+c

2
(F-%) By
(1+L)(%+%+%) ~ (a+2vbo)a+b+c)

After dividing by (v'b — 4+/c)?, we need to show that

(a+2x)(a+b+c)2x2(l+z)(l+ b+c).

a x/)\a x2

Write this inequality as
A(b+c)+B =0,
where 9
1 2 2
A=a+2x————, B=a2+2ax—x———x.
a x az a
Clearly, A> 0 for x > 1. Also,A> 0 for x < 1, because

3
2_2:(1 x)(1+x)20.
X x2

1
A> —+2x—x
X2

)
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Since A > 0 and b + ¢ > 2+ bc, it suffices to replace b + ¢ in (*) with 2x. So, we
need to show that

(a+2x)(a+2x)2x2(%+%)(14—%) ,

X a X

which is equivalent to

1 2
a+2x=2x|{—+-—,
a x

X
a+2x=—+2.
a
For x > 1, we have

X 1 1 1
a+2x———-2=a—2+(2——|x=2a—-2+|2——|=a——=0,
a a a a

and for x < 1, we have

0.

1 1—xW1+x—x2+x3+x*
a+2x—£—22—+2x—x3—2:( X)L +x—x"+x X)Z
a x2 X2

Write the right inequality E(a, x, x) > 0, as follows

m_ 3ax S 1 3

2a+x  Jax2 a+2x

4/7x2

Since a > 1, it suffices to prove the homogeneous inequality

2a+x ax?2 a+2x

Setting x = 1 and substituting
a=d°, d=>1,
the inequality becomes
9
4= 2;9d+ 1= d4(%_ diz) ’
d?(d®—1)%(2d® +1) - (d®—1)*(d®+2) .

2d9+1 o d®+2
Thus, we need to show that

d*(2d® +1)(d° +2) > (d> +2)(2d° + 1) ,

that is
2(d2 +1)(d*—1)+d3*(d®—1)—4d’(d*—1)=>0,
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(d>*—1)A>0,
where
A=2(d2+ 1) +d3d®+d*+d?>+1)—4d>(d*+1)
=2d7(d>—1)+d’(d*—1)—3d*(d*—1)—2(d*—1)
>2d(d°—1)+(d®*—1)—3d*(d*—1)—2(d®>*—-1)=(d —1)B,
where

B=2d(d*+d®+d*+d+1)+(d+1)—-3d3(d+1)—2(d*+d+1)

=2d°—d*—d®*+d—1=(d-1)(2d*+d*+1)>0.
The equality holds fora=b =c > 1.

Remark. The inequality is true in the particular case a,b,c > 1, which implies
a*b’c” > 1.
OJ

P 2.95. Let 4
F(a,b,c,d) = vabed —

1 1 1 12
atsteta

where a, b, c,d are positive real numbers. If ab > 1 and cd > 1, then then

1111
F :b: 3d =>F IENERENE R
(a,b,¢,d) (a b ¢ d)
(Vasile Cirtoaje, 2019)

Solution. Write the inequality as E(a, b,c,d) > 0, where

‘ 4 1 4
E(a,b,c,d) = v abcd — — + )
lylilyl Vabed a+b+c+d

assume that

and show that

E(a,b,c,d) > E(a,b, Ved, Vcd) = E(Vab, Vab, Vcd, Vcd) > 0.

Since
ved cd
1-——>1——2>0
ab ab
and

vVed—12>=0,
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the left inequality E(a,b,c,d) > E(a,b,vcd, vcd) follows from Lemma below,
point (a). The inequality E(a, b, v'cd, vcd) > E(Vab, vab, vcd, v cd) follows also
from Lemma below by replacing ¢ and d with v/cd. We only need to show that

wmm)(l_@)u(m_l)zo,

cd

which is equivalent to the obvious inequality

(\/5—1)(\]7—1’“)20.
cd

The inequality E(v/ab, vab, Vcd, vcd) > 0, is true if the inequality E(a, b, c,d) > 0
holds fora = b = x* and c =d = y?, where x > 1, y > 1. We need to show that

S 1 4
et XY 2x2+2y?2’

Xy —

that is
(x*y*=1)(x—y)*=0.

This completes the proof. The equality holds fora = b = ¢ = d > 1, and for
ab=cd=1.

Lemma. Let

4 1 4
E(a,b,c,d) = v abed — — + ,
(@b.e.d)=Vabed = T T T g Y e b d

a

where a, b, c,d are positive real numbers such that ab > 1 and cd > 1.

(@ If

(a+b)(1—g)+2(\/§—1)z 0,
then
E(a,b,c,d) > E(a,b, Vcd, Vcd).
) If
(c+d)(1—g)+2(\/£—1)20,
then

E(a,b,c,d) = E(Vab,Vab,c,d).
Proof. (a) Write the inequality E(a, b, c,d) > E(a, b, vcd, v/cd) as follows:
1 1 1 1
>

a+b+c+d L4+i+i+37 a+b+2ved iH3+=
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1 1 1 1
_ > — ,
ctits atptity a+b+2v/ed at+b+c+d
(Ve —Vdy S (Ve —Vd)
cd(%+%+%_d)(§+%+%+5)‘(a+b+2m)(a+b+c+d)’

After dividing by (+/c — v/d)?, we need to show that

cd+2\/_)(a+b c+d)’ )

(a+b+2\/a)(a+b+c+d)2(

ab cd
that is
A(c+d)+B >0,
where
+b 2 1 1
A=a+b+ved— 22— = =(a+b (1——)+2(vc ——)20,
ab  ved PO Jed
Be(atp)| T leq 2V oval.
a2b? ab
Since

Alc+d)+B>2Avcd +b,

we need to show that 24+/cd + b > 0. This is equivalent to (*) if the sum ¢ +d is
replaced by 2+/cd:

(a+b+2\/ﬁ)(a+b+2ﬂ)z(

+ Cd+2\/—)(a+b 2@),

cd
that is ,
(a+b+2\/cd)2z(a+bbcd+2\/cd) ,
a+b+2v d> b cd+2\/

(a+b)(1—§) 2(Ved—1)>0.

The last inequality is true by hypothesis.
(b) Due to symmetry, this follows from (a).

Remark. The inequality is true in the particular case a, b,c,d = 1, which implies
ab>1andcd > 1.
O
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P 2.96. Let a, b, c, d be positive real numbers such that a? + b*+ c2+d? = 1. Prove
that
Vi—a+V1—b+vVi—c+vV1—d>va+Vb+vc+Vd.
(Vasile Cirtoaje, 2007)

First Solution. We can obtain the desired inequality by summing the inequalities

Vi—a++vV1—b> e+ /4,
Vi—c++vV1—-d> va+Vb.
Since
Vi—a++vV1-b>2{/(1—a)(1-b)
and

2 2
\/E+\/Es2\JC;d32\JC ;d ,

the former inequality holds if

(1—a)(1—b)2cz+d2.

Indeed,
21—a)(1-b)—c*—d*=2(1—a)(1—-b)+a*+b*—1=(a+b—1)*>0.

Similarly, we can prove the second inequality. The equality holds for

a=b=c=d=—-.
2

Second Solution. We can obtain the desired inequality by summing the inequalities

— L o4 e L a2
Vi—a ﬁzzﬁ(l 4a®), V1—b ﬁzzﬁ(l 4b?),

— LR i g age
V1 ﬁzzﬁ(l 4c?), V1—d \/Ezzﬁ(l 4d2).

To prove the first inequality, we write it as

1—2a 1
et /a > 2‘/5(1—2a)(1+2a).

1
Case1: 0<a < 5 We need to show that

2V2> (1+2a)(V1—a+ va).
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Since v1—a+ va < v/2[(1 —a)+a] = V2, we have
2V2—(1+2a)(V1—a+ va) > v2(1—2a) > 0.

1
Case 2: > < a < 1. We need to show that

2vV2<(1+2a)(V1—a+ va).

Since 1+ 2a > 2+4/2a, it suffices to prove that

1<4y/a(l—a)+a.

Indeed,

v1—a (1—2a) <0
Vi—a++a ~

l1—a—ya(l—a)=v1i—a(Vi—a—va)=

P 2.97. Let a, b, c, d be positive real numbers. Prove that
A+2>+vB+4,

where

A=(a+b+c+d)(l+l+l+l)—16,
a b ¢ d

B:(a2+b2+c2+d2)(%+%+%+%)—16.
(Vasile Cirtoaje, 2004)
Solution. By squaring, the inequality becomes
A*+4A>B.
Let us denote
2 2 ZZ

f(x,y,Z):i'i‘X'i‘E—g’ F(X,y,Z):X—+y—+——3,
Yy V4 X y2 22 x2

where x, y,z > 0. By the AM-GM inequality, it follows that
f(x,y,2) = 0.
We can check that

A= f(a,b,c)+f(b,d,c)+ f(c,d,a)+ f(d,b,a)
= f(a,c,b)+ f(b,c,d)+ f(c,a,d)+ f(d,a,b)
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and
B=F(a,b,c)+F(b,d,c)+F(c,d,a)+F(d,b,a).
Since
F(X,y,Z) = [f(XJ}’:Z)+3]2_2[f(x:Z;J’)+3]_3
= f2(x,y,2) +6f(x,y,2) —2f (x,2,¥),
we get
B=f%(a,b,c)+ f3(b,d,c)+ f*(c,d,a)+ f2(d, b,a) + 4A,
4A—B =—f*(a,b,c)— f%(b,d,c)— f*(c,d,a)— f*(d, b, a).
Therefore,

A’ +4A—B=[f(a,b,c)+ f(b,d,c)+ f(c,d,a)+ f(d, b,a)]?
—f%(a,b,c)—f*(b,d,c)— f?(c,d,a)— f*(d, b,a) > 0.

The equality holds fora =b =c =d.

O
P 2.98. Let a;,a,,...,a, be nonnegative real numbers such that a; +a,+---+a, = 1.
Prove that
V3a,+1++/3a,+1+--++/3a,+1>n+1.
First Solution. Without loss of generality, assume that a; = max{a,,a,,...,a,}.

Write the inequality as follows:

(V3 F1-2)+ (3 71— D4+ (3 F1-1) 20,

a;—1 a, a,
+ +oi b ————— >0,
Vv3a;+1+2  4/3a,+1+1 Vv3a,+1+1

a2+"'+an

a a,
Vv3a,+1+1 Vv3a,+1+1 4/3a;+1+2

1 1 1 1
a — +-ta - >0.
2(\/3a2+1+1 1/ssa1+1+2) "(,/Ban+1+1 w/3al+1+2)

The last inequality is clearly true. The equality holds fora; =l anda, =---=aq, =
0 (or any cyclic permutation).

Second Solution. We use the induction method. For n = 1, the inequality is an
equality. We claim that

Vv3a,+1++/3a,+1>+/3(a; +a,)+1+1.
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By squaring, this inequality becomes

V(Ba, +1)(a, +1) > /3(a; +a,) +1,

which is equivalent to a;a, > 0. Thus, to prove the original inequality, it suffices
to show that

v3(a,+a,)+1+4/3a,+1+---++/3a,_,+1=>n.

Using the substitution b; = a; + a, and b, = a,,...,b,_; = a,_;, this inequality

turns into
V/3by+1+4/3b,+1+---+4/3b,_, +1=n

for b; + by +---+ b,_; = 1. Clearly, this is true by the induction hypothesis.

P 2.99. Let a,,a,,...,a, be positive real numbers such that a,a,---a, = 1. Prove
that

1 1 1

+ ot >1
V1i+(2—1a;, +/1+(n2—1)a, V1+(n2—1)a,

First Solution. For the sake of contradiction, assume that
1 1 1

\/1+(n2—1)a1+ \/1+(n2—1)a2+m+ V1+(n2—1)aq,

It suffices to show that a,a,---a, > 1. Let

<1.

1
xX; = O0<x;<1, i=12,---,n.

1+ (2—1Da,

2
i

(n2—1)x?

Since a; = for all i, we need to show that

X +xy+--+x,<1

implies
(1=x)(1—=x2)--(1=x3)>(n*—1)"x>x2--x2.

n

Using the AM-GM inequality gives

l_[(l —x3)> H[(le)z—xﬂ = l_[(x2 o x)(2x + x4+ x,)
> (n?— 1)”1_[( R VESRREE SEREVE R --xn) =(n*—1)"x3x2 -+ x2.
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The equality holds fora; =a, =---=a, =1.
Second Solution. We will show that
1 1

mz 14 (n—1)xk

+1
forx >0and k = n2_ By squaring, the inequality becomes
n

(n—1Dx* 1 42xT>n+1.

Applying the AM-GM inequality, we get

(n—1)x% 1 4+ 2K > (n+1) "V x(=D@k=D) . x20-D) = 4 1,

Using this result, it suffices to show that

1 1
+ oo —————>1.
1+(n—1)a11‘ 1+(n—1)a’2‘ 1+(n—1)ak

Since a¥ak---a* =1, this inequality follows immediately from P 1.200-(a).

P 2.100. Let a,,a,,...,a, be positive real numbers such that a;a,---a, = 1. Prove
that

n

Sl

=1 1+\/1+4n(n—1)a

[\.DI»—l

First Solution. Write the inequality as follows:

>2n(n—1),

Z": V1+4n(n—1)a;—1

a:

1

Z”:\IE 4n(T:11 )>2n(n 1)+Z—

i=1

By squaring, the inequality becomes

PRl | R S oy

1<i<j<n i i j j 1<icj<n di9j

The Cauchy-Schwarz inequality gives

1 4n(n—1)|| 1 4n(n—1) 1 4n(n—1)
S+——|| 5+ > —+ :
a; a; a; a; a;a; V/a:a;
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Thus, it suffices to show that

Z 1 >n(n—l)
Jag o 2

1<i<j<n

which follows immediately from the AM-GM inequality. The equality holds for
a,=a,=---=a,=1.
Second Solution. For the sake of contradiction, assume that

n

1
<
; 1+ 4/1+4n(n—1)q,

N |~

It suffices to show that a,a, - --a, > 1. Using the substitution

X; 1 )
- = ) l:1)25“'5n5
2n 1+ 4/1+4n(n—1)q;

which yields
a; = n— X O0<x;<n, i=1,2 n
l_(n—l)x?, i ) — 41,4 s Ity

we need to show that
X+ X+t x, <n

implies
()= )~ (n—x,) > (n— 1)"xx2 - x2.

By the AM-GM inequality, we have

X1+X2+"'+Xn)n<1

xle"'an(
n

and

n—1 xx ...x
n—x; >0, +x,+4+x)—x;>(n—1) \ %, i=1,2,---,n.
i

Therefore, we get

(n—x)(n—x,) -~ (n—,) > (n—1)"x; 5+ x, > (n—1)"x2x2 - 2.

P 2.101. If a;,a,,...,qa, are positive real numbers such that a,a,---a, =1, then

2 24 ... 2
ajy+a;+ +an

a1+a2+---+an2n—1+\] "
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Solution. Let us denote

a+a,+--+a, . 221Si<j£n a;a;
a= 5 = )
n nn—1)

where a > 1 and b > 1 (by the AM-GM inequality). We need to show that

n2a2—n(n—1)b2

n

na—n+12> \J
By squaring, this inequality becomes
(n—1D[n(a—1)*+b*—1]>0,

which is clearly true. The equality holds for a; =a, =---=a, = 1.

P 2.102. If a;,a,,...,a, are positive real numbers such that a,a,---a, =1, then

(n—1)(a?+aZ+---+a2)+n—y/n(n—1)>a, +a,+---+a,.
\/ 1 2 n 1 2 n
(Vasile Cirtoaje, 2006)

Solution. We use the induction method. For n = 2, the inequality is equivalent to
the obvious inequality

1
a1+_22.
a;

Assume now that the inequality holds for n — 1 numbers, n > 3, and prove that it
holds also for n numbers. Let a; = min{a,,a,,...,a,}, and denote

Lo tateta,

» Y= n_’Vl a,ds---d,,
n—1

f(ay,a,,...,a,)= \/(n— )(a+ai+---+a2)+n—y/n(n—1)—(a,+a,+---+a,).
By the AM-GM inequality, we have x > y. We will show that

f(apaz;-u:an)Zf(apy,'“;J’)ZO- (*)

Write the left inequality as

\/af+a§+---+ag—\/af+(n—1)y22Vn—l(x—y).

To prove this inequality, we use the induction hypothesis, written in the homoge-
neous form

V-G +&++a)+[n—1-/(n—1)(n—2)]y = (n—1)x,
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which is equivalent to
a2+---+a’>(n—1)A%,
where
n—1

A=kx—(k—1)y, k= .
n—2

So, we need to prove that

\/af+(n—1)A2—\/af+(n—1)y2 >vn—1(x—y).
Write this inequality as
A% — y? xX—y

>
Vai+(—1a+Jai+(n-1y> vn-1

Since x > y and
A —y? =k(x — y)lkx — (k—2)y] =k(x — y)(A+y),
we need to show that
k(A+y) S 1 '
VE+m—1A2+ /a3 +(m—1)y2 Vn-1

In addition, since a; < y, it suffices to show that
k(A+y) S 1
VY H (=D& +yry  Vn-T

From
kKA—y =k*x—(k*—k+1)y>k’y —(k*—k+1)y =(k—1)y >0,
it follows that
¥+ (n—1)A% < k*A% + (n—1)* = (n— 1)k?A%.
Therefore, it is enough to prove that

k(A+y) S 1
Vn—1kA+yny +Jn—1

which is equivalent to

(kVn— —\/ﬁ)yZO.

This is true since

n—1 1
kvn—1—+/n= —Vn= > 0.
vn—2 n—1++/n(n—2)
The proof is completed. The equality holds for a; =a, =---=aqa, =1.
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P 2.103. Let a;,a,,...,a, be positive real numbers such that a,a,---a, > 1. If k > 1,

then
k

al
S
ak+a,+---+a,

(Vasile Cirtoaje, 2006)

First Solution. Let us denote r = Ja;a,---a, and b; = a;/r fori = 1,2,--- ,n.
Note that r > 1 and b, b, ---b,, = 1. The desired inequality becomes
bk

1

Yo
by +(by+---+Db,)/rk1

and we see that it suffices to prove it for r = 1; that is, for a;a,---a, = 1. On this
hypothesis, we will show that there exists a positive number p, 1 < p < k, such
that

k p
a; a;

> .
a*+a,+--+a, d+a+--+a,
Clearly, by adding this inequality and the analogous inequalities for a,,...,a,, we
get the desired inequality. Write the claimed inequality as

ab+-+al = (ay - a,) Plag+ -+ ay).

Based on the AM-GM inequality
a,+---+a,\"!
az e an S (;) s
n—1
it suffices to show that
@+ -+ @\ DE=p)+
a+-+a>(n—-1 (;) .
2 n ( ) n—1
Choosing
(n—1Dk+1
p=—"_
n

1<p<k,

the inequality becomes
ay+---+a,\?
PR (Rl )

n—1

which is just Jensen’s inequality applied to the convex function f(x) = x?. The
equality holds for a; = a, =---=aqa, = 1.

Second Solution. By the Cauchy-Schwarz inequality, we have

k41 2
kL k =
Z aj > (Z % ) . att+ 221§i<j£n(aiaj) ’
ak+a, |

+"'+Cln a Zal(a§+a2+"‘+an) Zallﬁ—l-i-zzlsiqﬁlaiaj
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Thus, it suffices to show that

k+1
Z (aiaj)%z Z a;a;.

1<i<j<n 1<i<j<n

Jensen’s inequality applied to the convex function f(x) = x'T yields

k+1

Z (a.a )% > n(n—1) (221§i<j§n aiaj)T
iaj) > = .

1<i<j<n 2 n(n—1)

On the other hand, by the AM-GM inequality, we get

2
— Z a;a; = (a;a, - -an)% >1.
n(n—1) 1<i<j<n
Therefore,
k1 k1
221£i<j£n a;a; \ * _ 2215i<j3n a;a; \ * 221Si<j£n a;a; S 221Si<j£n a;a;
n(n—1) B n(n—1) n(n—-1) — n(nh-1)
hence Z
. _ 2 . a:d;
Z (al-aj)le > nn=1) ZZasigan b Z aa;.
1<i<j<n 2 n(n—1) 1<i<j<n

P 2.104. Let a;,a,,...,qa, be positive real numbers such that a;a,---a, > 1. If

<k<1,
n—2

then
k

a4
E P <1
a;t+a,+---+a,

(Vasile Cirtoaje, 2006)

Solution. Let us denote r = J/a;a,---a, and b; = q;/r fori =1,2,--- ,n. Clearly,
r>1and b;b,---b, = 1. The desired inequality becomes
bk

> : <1,
bY+ (by+ -+ b ri-k

and we see that it suffices to prove it for r = 1; that is, for a,a,---a, = 1. On this
hypothesis, we will show that there exists a real number p such that

k p
a; a,

< .
a*+ay+--+a, d+a+-+a,
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By adding this inequality and the analogous inequalities for a,, ..., a,, we get the
desired inequality. Write the claimed inequality as

ay+o+a, > (@ ++ a7,

—k
ay+-+a, = (a)+--+ab)(ay a7

This inequality is homogeneous when 1 = p + (n— 1)(p — k); that is, for

(n—Dk+1 -1
p= ,

<p<l
n n—2 P
Rewrite the homogeneous inequality as
1—
a2+---+an2(a§+---+a§)(a2---an)ﬁ. ™)

To prove it, we use the weighted AM-GM inequality

m 1
ma, +as+---+a, > (m+n—2)a;"?*(az---a,)™ =2, m=0,
which can be rewritten as

_m-1_ 1
ma, +as+---+a,>(m+n—2)a;*"*(ay---a,) 2.

Choosing m such that (Ll S p,i.e.
m+n—2
1+(n—2
me =2
1-p
we get
1+(n—2)p n—1 1p

)

T a,+as+---+a, > Eag(a2a3---an)n— :
Adding this inequality and the analogous inequalities for as,--- ,a, yields the in-
equality (*). Thus, the proof is completed. The equality holds for a; = a, =--- =
a,=1.

O

P 2.105. Leta,,a,,...,a, be nonnegative real numbers such that a;+a,+---+a, > n.
If1<k<n+1, then

a,
S
a“+a,+--+a,

(Vasile Cirtoaje, 2006)
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Solution. Using the substitutions

a1+a2+"'+an
S = ,

and

the desired inequality becomes
x x
—— ot n <1,
sk=lxl + x4+ + X, Xy + X+ -0+ skTlxk

where s > 1 and x; + x5 + -+ + x, = n. Clearly, if this inequality holds for s = 1,
then it holds for any s > 1. Therefore, we only need to consider the case s = 1,
when a; +a, +--- +a,, = n, and the desired inequality is equivalent to

a; as an

P +— +---+k—31.
a,—a+n a,—a,+n ar—a,+n

By Bernoulli’s inequality, we have
all‘—a1+n2 1+k(a;—1)—a;+n=n—k+1+(k—1)a; >0.

Consequently, it suffices to prove that

n

> % <1.
n—k+1+(k—1)q;

i=1

For k = n+1, this inequality is an equality. Otherwise, for 1 < k < n+1, we rewrite
the inequality as

n

>, ! >1,
n—k+1+(k—1)q;

i=1

which follows from the AM-HM inequality as follows:

n

1 n?
> =1
Zn—k+1+(k—1)ai Z?Zl[n—k+1+(k—1)ai]

i=1

The equality holds for a; =a, =+ =aqa, = 1.

P 2.106. Let a;,a,,...,a, be positive real numbers such that a;a,---a, > 1. If k > 1,

then
a,
-
ak+a,+---+a,

(Vasile Cirtoaje, 2006)
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1
n—1
Case 1: 1 <k <n+1. By the AM-GM inequality, we have

a,+a,+---+a,=2ny/a,a,---a, =n.

Thus, the desired inequality follows from the preceding P 2.105.

Solution. Consider two cases: 1 <k<n+landk>n—

1
Case 2: k > n———. Letr = y/a;a,---a, and b; = q;/r fori =1,2,--- ,n. Note
n_
thatr > 1 and b, b,---b, = 1. The desired inequality can be rewritten as

b,
>, <1.
rk-1b% + b, +---+b,

Obviously, it suffices to prove this inequality for r = 1; that is, for
a;a,---a, =1.
On this hypothesis, it suffices to show that there exists a real p such that

(n—1)q af

a+ay,+--+a, d+ay+--+a;

<1

Then, adding this inequality and the analogous inequalities for a,,---,a, yields
the desired inequality. Let us denote t = "/a,---a,. By the AM-GM inequality, we
have

ay+-+a,=(n—-1¢, aj+---+al>n-1).

Thus, it suffices to show that

(n—1)a, a117

<
ak+ (-1t af+(n—1)r

Since a, = 1/t", this inequality is equivalent to
(n—Dti(t"—1)—(tT™™" —-1) >0,

where
q=(Mn—-1)(k—1).
Choose p such that (n—1)n =g —np, i.e.
(n—1)(k—n—1)
b= .
n

The inequality becomes as follows:

(n—Del(t"—1)—[t""V—1] >0,
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(n—Dti(t"—1)— ("= D)2+ "B ...+ 1) >0,

("= DT =2 4+ (tI— ") - 4+ (t9—1)] > 0.
1

n—1

The last inequality is clearly true for ¢ > n* —2n; that is, for k > n—
The equality holds for a; =a, =---=a, = 1.

P 2.107. Let a;,a,,...,qa, be positive real numbers such that a;a,---a, > 1. If

—1—

<k<1,
n—2

then

a,
S
a“+a,+-+a

n

(Vasile Cirtoaje, 2006)

Solution. Let us denote r = J/a;a,---a, and b; = a;/r fori = 1,2,--- ,n. Note
that r > 1 and b, b, -+ b, = 1. The desired inequality becomes

> by >1,
b¥/ri-k + by +---+b,

and we see that it suffices to prove it for r = 1; that is, for a,a,---a, = 1. On this
hypothesis, by the Cauchy-Schwarz inequality, we have

a; Zalz Zalz
S5 (o)

toota, T Dadtatota) Yot (Sa) - Sa?

Thus, we still have to show that

2 1+k
2@z

Case 1: —1 < k < 1. Using Chebyshev’s inequality and the AM-GM inequality yields

Za% > % (Z a}_k) (Z a}*k) > (aya,--a,) " Za%*k = Za}*k.

Case 2: —1 — < k < —1. It is convenient to replace a,,a,, - ,a, by
n —_—
agn—l)/2, agn—l)/2, e a(n—l)/Z,
n

respectively. Thus, we need to show that a,a, - --a, = 1 involves

n—1 q
etz St
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where
_ (n—1)(1+k)

2 )
By the AM-GM inequality, we get

~1<qg<0.

n—1

n1
+- +a 1
I > Yoo, =32
a

Thus, it suffice to show that

Z%ZZai’

By Chebyshev’s inequality and the AM-GM inequality, we have

Sz () (Za) 2 @ a0 (Fal) = Yl

Thus, the proof is completed. The equality holds for a; =a, =---=a

P 2.108. Let a;,a,,...,a, be positive real numbers such that a,a,---a, =1. If k > 0,
then

1
-
a+ay+-+a,
(Vasile Cirtoaje, 2006)

Solution. Consider two cases: 0 <k <1 and k > 1.

Case 1: 0 < k < 1. By the Cauchy-Schwarz inequality and the AM-GM inequality,
we have

1 - alF+14- 41
k = 2
a;t+a,+---+a, (¢a_1+Ja_+---+¢a_)
a ™ +n—-1 a ™ +n—1

Za1+221<l<]<n,/ Za1+n(n—1)

hence

Z 1 - >ai*+n(n—1)
a+ay+-+a,” Day+nn—1) "

Therefore, it suffices to show that

1-k
SatsYa,

Indeed, by Chebyshev’s inequality and the AM-GM inequality, we have

Sa=ataz () (Xai) 2 @a e (Fal )= Fal
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Case 2: k > 1. Write the inequality as

p

n_]. al
Z - +—— ~—1]<0,
d+ay+-+a, d+d+---+d

where p > 0. It suffices to show that there exists a positive number p such that

p
n—1 a

- + - < 1.

aj+a,+--+a, a +a,+---+a,

Let
x = "y/a;, x>0.

By the AM-GM inequality, we have

n—1 n-—1

a,+---+a,>2(n—1)"3/ay --a,= =

2 n ( ) 2 n "*\l/a_l x
and 1 .

n— n—
Py... p> " . = =
a,+--+ap = "y(agra,)P = — ==
1
Thus, it is enough to show that
n—1 x(n=p

(n—Dk 4 n=1 + (n—1)p 4 n=1 —
X X X xP
which is equivalent to

X < 1
x=Dk+l 4 p—1 7 xw +n—1’

x(n_l)k+1 — xnp+1 — (n — 1)(X — 1) > O)
P+ [(X(n—l)k—np _ 1] —(n—1)(x—1)>=0.
Choose p such that (n—1)k—np =n—1, i.e.

o (= D=1
n

The inequality becomes as follows:

X"+l |:(x”_1 - 1:| —(n—1)(x—1)=0,

(e — 1) [P — 1)+ (P2 — 1) + -+ (P —1)] 2 0.

Since the last inequality is obvious true, the proof is completed. The equality holds

fora;=a,=---=a,=1.

O
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P 2.109. Leta,,a,,...,a, be nonnegative real numbers such that a;+a,+---+a, < n.
If0<k<1, then

1 1 1
- + z +-+ =
a;t+a,+---+a, a+a,+---+aq, a; ta,+---+ag

Solution. By the AM-HM inequality

1 n n
> _
Za’f+a2+---+an d@+ay+--+a,) Dd+(n-12q

and Jensen’s inequality

we get

Z 1 S n? > 1

a+ay+--+a, n(%Zal)k—i-(n—l)Zal -

The equality holds fora; =a, =---=a, =1.

P 2.110. Let aq,a,,...,a, be positive real numbers. If k > 1, then

ko gk k ko gk k
Za2+a3+---+an - n(a; +a;+---+a;)
a,+as+---+a, a ta,+---+a,

(Wolfgang Berndt and Vasile Cirtoaje, 2006)

Solution. Due to homogeneity, we may assume that a; + a, + ... + a, = 1. Write
the inequality as follows:

4 ko, ok k ko, ok k
1+ )a+a +---+a)<n(a;+a,+---+a);
Z( a2+a3+,_,+an (2 3 Tl) (1 2 n)

k.

n)

ko ok k
a,(a; +as+---+a’)
Z 20 C<df+al++a

a2+a3+"‘+an

N S
Za ak_l_a2+a3+ +an >0
! 1 a2+a3+"'+an - ’
Z qay(af !t —ak )+ ajag(@d -+ + aga(aF T —ak )
a2+a3+"'+an

af‘l —a;‘_l a;‘_l —af‘l
Z a;a; + > 0;
1—a; 1—a;

1<i<j<n i J

> 0;
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2.

1<i<j<n

a;a;(af" — a;.‘_l)(ai —a;)
(1—a)(1—a))

Since the last inequality is true for k > 1, the proof is completed. The equality
holds for a; = a, =---=a,.

P 2.111. Let f be a convex function on the closed interval [a, b], and let a;, a,,...,a, €
[a, b] such that
a, +a,+---+a, =pa+qb,

where p,q = 0 such that p +q = n. Prove that
fla) +flap)+---+f(a,) <pfla)+qf(b).
(Vasile Cirtoaje, 2009)

Solution. Consider the nontrivial case a < b. Since a;,a,,...,a, € [a, b], there
exist A1, A,,..., A, €[0,1] such that

ai:Aia“l‘(]._Ai)b, i:1,2,...,n.

From
_a;—b

2.
' a-—-b’

i=1,2,...,n,

we have

n

A (Zn:ai—nb)= (pa+gb)—(p+a)b _

1
i=1 a—b i=1 a—b

Since f is convex on [a, b], we get
D f@) D [Af(@+ A= 2)f (b)]
i=1 i=1

= (ZM) [f (a)— f(b)]+nf(b)

=plf(a)—f(b)]+(p+q)f(b)
=pf(a)+qf(b).
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Chapter 3

Symmetric Power-Exponential
Inequalities

3.1 Applications

3.1. If a, b are positive real numbers such that a + b = a* + b*, then

3 3
a’b® <1<a®p’.

3.2. If a, b are positive real numbers, then

aZa + be > acH—b + ba+b.

3.3. If a, b are positive real numbers, then

a®+ b? > a® + pe.

3.4. If a, b are positive real numbers, then

a% + b2 > a? + b2,

3.5. If a, b are nonnegative real numbers such that a + b = 2, then
(a) a’+b*<1+ab;

(b) a®® +b** < 1+ab.

439
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2
3.6. If a, b are nonnegative real numbers such that 3 <a+b <2, then

a®® + b** < 1+ab.

3.7. If a, b are nonnegative real numbers such that a® + b*> = 2, then

a’® + b?* <1 +ab.

1
3.8. If a, b are nonnegative real numbers such that a® + b? = 7 then

a®® + b** <1 +ab.

3.9. If a, b are positive real numbers, then

a®b® < (a®—ab + b))%,

3.10. If a,b € (0, 1], then

a®b® <1—ab +a’b>.
3.11. If a, b are positive real numbers such that a + b < 2, then
ayb b\"
- +(=)] Z2.
(b) (a)

3.12. If a, b are positive real numbers such that a + b = 2, then

3
2a°b® > a®* + b* + Z(a —b)2.

3.13. Ifa,be(0,1] ora,b €[1, 00), then

2a°b® > a* + b*.
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3.14.

3.15.

3.16.

3.17.

3.18.

3.19.

3.20.

3.21.

If a, b are positive real numbers, then

2a%b? > a® + b2.

Ifa>1>b>0,then

2a%b® > a®® + b2,

Ifa>e>b>0,then

2a%b® > a?® + b%,
If a, b are positive real numbers, then

a+b
aabb>(a2+b2) 2 .
o 2

If a, b are positive real numbers such that a® + b* =

1
2a°b® > a®* + b* + E(a —b)2

If a,b €(0,1], then

(a*+b )(i+$)<4

2, then

If a, b are positive real numbers such that a + b = 2, then

a’b®+2 > 3ab.

1
Let a, b be positive real numbers such thata+b =2. If k > >’ then

kb ka
a® bt >1.
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3.22. If a, b are positive real numbers such that a + b = 2, then
av*pV? > 1.
3.23. If a, b are positive real numbers such that a + b = 2, then
a+11,b+1 1 4
a® b’ <1——(a—Db)".
48
3.24. If a, b are positive real numbers such that a + b = 2, then
a’+b <2

3.25. Ifa,b €[0,1], then

a @+ bt +(a—b)?* < 2.
3.26. If a, b are nonnegative real numbers such that a + b < 2, then

ab @+ p* b 4 l(a —b)?<2.
16 o
3.27. If a, b are nonnegative real numbers such that a + b < 4, then
ab @+ bt <2
3.28. If a, b are nonnegative real numbers such that a + b = 2, then
a?® + b2 > a’+b* > a?b? +1.
3.29. If a, b are positive real numbers such that a + b = 2, then
a®® + b < 2.

3.30. If a, b are nonnegative real numbers such that a + b = 2, then

_ 4
a’? + b3+ (%) < 2.



Symmetric Power-Exponential Inequalities 443

3.31. If a, b are positive real numbers such that a + b = 2, then

2 2
as+bb <2.

3.32. If a, b are positive real numbers such that a + b = 2, then

ai + bt >2.

3.33. If a, b are positive real numbers such that a + b = 2, then

" + b5 < 2.

3.34. If a, b are positive real numbers such that a + b = 2, then

a2’ 4 pVI < 2,

3.35. If a, b are nonnegative real numbers such that a + b = 2, then

ab(l;ab)2 a4 p g < ab(l;ab)z.

3.36. If a, b are nonnegative real numbers such that a + b =1, then

a’? + b2 < 1.

3.37. If a, b are positive real numbers such that a + b =1, then

2a%b® > a*® + b,

3.38. If a, b are positive real numbers such that a + b =1, then

a2+ p? <y,

3.39. If a;,a,,...,a, are positive real numbers such that a,a,---a, =1, then

1\ 1\* 1\*
(1-7) +(1-7) ++(1-3) =
n n n
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3.2 Solutions

P 3.1. If a, b are positive real numbers such that a + b = a* + b*, then
a’h? <1<a®b”.
(Vasile Cirtoaje, 2008)
Solution. We will use the inequality
Inx<x-—1, x>0.
To prove this inequality, let us denote
f(x)=x—1—Inx, x>0.

From
x—1

fl) = ;
X

it follows that f (x) is decreasing on (0, 1] and increasing on [1, o). Therefore,

f(x)=f(1)=0.
Using this inequality, we have
Ina®b® =alna+blnb<ala—1)+b(b—1)=a?+b%—(a+b).

Therefore, the left inequality a®b® < 1 is true if a® + b?> < a + b. We write this
inequality in the homogeneous form

(a*+b?)® < (a+b)*(a* + b*),
which is equivalent to the obvious inequality

ab(a—b)(a®>—b3)>0.
. 1. . . .
Taking now x = — in the inequality Inx < x — 1 yields
a

alna>a—1.

Similarly,
blnb>b—-1,

hence

Ina®b” =a®lna+b3Inb > a*(a—1)+b*(b—1)=a®+ b>—(a® + b?).
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Thus, to prove the right inequality a® b?* > 1, it suffices to show that a® + b> >
a? + b?, which is equivalent to the homogeneous inequality

(a+b)(a® + b®)° > (a* + b*)(a® + b?)>.

We can write this inequality as

A—3B >0,
where
A= (a+b)(a®+b%)—(a*+ b*)(a® + b®),
B = a’b?*(a®+ b?)(a* + b —a®b*(a + b)(a® + b3).
Since
A=ab(a®—b%*)(a®>—b>), B=a*b*(a—b)(a’—b>),
we get

A—3B=ab(a—b)}(a®>—Db*)>0.

Both inequalities become equalities for a = b = 1.

P 3.2. If a, b are positive real numbers, then
aZa + be > aa+b + ba+b-
(Vasile Cirtoaje, 2010)

Solution. Assume that a > b and consider the following two cases.

Case 1: a > 1. Write the inequality as
a®P(a®? —1) > b2(h*P —1).
For b <1, we have
a®(a®?—1)>0> b2 (b2t —1).
For b > 1, the inequality is also true since
a?>a* >p?, a*P—1>p*P—-1>0.

Case 2: a < 1. Since
a® + b?® > 2a°p?,

it suffices to show that
b b b
2a°b® > a®*’ + b**°,

5 (2) =

which can be written as
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By Bernoulli’s inequality, we get

b a b a - b

The equality holds for a = b.

Conjecture 1. If a, b are positive real numbers, then

a4a + b4b > a2a+2b + b2a+2b-

Conjecture 2. If a, b, c are positive real numbers, then

a3a + b3b + c3c > aa+b+c + ba+b+c + ca+b+c-

Conjecture 3. If a, b, c,d are positive real numbers, then

a

a4a + b4b + c4c + d4d > aa+b+c+d + ba+b+c+d + ca+b-ﬁ-c+d + da+b+c+d.

P 3.3. If a, b are positive real numbers, then

a®+b® > a’+ b

(E)b+(é)a:(1+a_b)b+(1+b_a)a<1+M+1+M:2.

(M. Laub, Israel, 1985, AMM)

Solution. Assume that a > b. We will show that if a > 1, then the inequality is

true. From
aa—b > ba—b
we get
. a’p°
aa
Therefore,
a b b a a abba b a (aa_ab)(aa_ba)
a*+b°—a’—b*>a"+ —a’—b*= >
a¢ ac

Consider further the case 0 < b <a < 1.

First Solution. Denoting

where ¢ > d and k > 1, the inequality becomes

ck—dk>c—d.

> 0.
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Since the function f(x) = x* is convex for x > 0, from the well-known inequality

f)=f(d) = f(d)(c—d),

we get
ck—dk > kd*(c—d).

Thus, it suffices to show that
kd*='>1,

which is equivalent to
bl—a+b < a

Indeed, since 0 < 1—a + b < 1, by Bernoulli’s inequality, we get

bt = [14+(b—1D]"*" <1+(1—a+b)(b—1)=a—b(a—Db)<a.
The equality holds for a = b.
Second Solution. Denoting

b ab

c=——, d=——F,
ab + be a® + b

2

SR

where ¢ +d =1 and k > 1, the inequality becomes
ck®+dk™b > 1.
By the weighted AM-GM inequality, we have
ck® +dk™P > ko kb = e,
Thus, it suffices to show that ac > bd; that is,
a'™’>p',
which is equivalent to f(a) = f(b), where

Inx

£ = 7.

It is enough to prove that f(x) is an increasing function. Since

g(x)
(1—x)*

£/(x) = g(x) = % ~1+Inx.

we need to show that g(x) > 0 for x € (0,1). Indeed, from

—1
g(x)=" — <0,
X

it follows that g(x) is strictly decreasing, hence g(x) > g(1) = 0.
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P 3.4. If a, b are positive real numbers, then

a’* 4+ b%° > b + p.

Solution. Without loss of generality, assume that a > b. We have two cases to
consider: a>land0<b<a<1.

Case 1: a > 1. From
a2(a—b) > bZ(a—b),

we get
2b1,2a
a“’b
b?b >
a2a
Therefore,
2b1,2a 2a 2b 2a 2a
a*’b a**—a*’)(a**—b
a2a+b2b_a2b_b2a2a2a+ _aZb_bZa:( )( )20
a2a aZa

because a®*® > a?? and a?* > b?.

Case 2: 0 < b < a < 1. Denoting

b b a
— d=b k=2
C a > b b >
where ¢ > d and k > 1, the inequality becomes
C2k _d2k > CZ _d2.
We will show that

2 —d%* > k(ed)(c? —d?) > 2 —d>.

The left inequality follows from Lemma below for x = (c/d)?. The right inequality
is equivalent to

k(cd)< >1,
b
(ab)** > —,

a
1—ig:—bh1a:>lnb.
l—a+b

For fixed a, let us define
1+a—>b
b)= ——Ina—1Inb.
f () 1—a+bna g

If f'(b) <0, then f(b) is strictly decreasing, and hence f(b) > f(a) = 0. Since

—2

f®O) =gy
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we need to show that g(a) > 0, where

gla)=2Ilna+ @.
From
(@) = E_Z(l—a+b) _ 2(a—b)(a—1) <0

a b ab ’

it follows that g(a) is strictly decreasing, therefore g(a) > g(1) = b > 0. This
completes the proof. The equality holds for a = b.

Lemma. Let k and x be positive real numbers. If eitherk > 1landx >1,0or0 <k <1
and 0 < x < 1, then
k=1
xk—1>kxz (x—1).

Proof. We need to show that f(x) > 0, where
flx)=xk=1 —kxk%l(x— 1).

We have

f'(x)= kxkz;gg(x), g(x)= 2x'F — (k+1Dx +k—1.

N | =

Since o
g(x)=(k+1)(x7 -1)20,

g(x) is increasing. If x > 1, then g(x) > g(1) = 0, f(x) is increasing, hence
f(x)=f(1)=0.If0<x <1, then g(x) < g(1) =0, f(x) is decreasing, hence
f(x) = f(1) =0. The equality holds for x = 1.

Remark. The following more general results are valid (Vasile Cirtoaje, 2006):

o [etO< k<e.
(@) Ifa,b >0, then
aka + bkb > akb + bka;

(b) Ifa,b €(0,1], then
24/ akapkb > gkb 4 pka,

Notice that these inequalities are known as the first and the second Vasc’s power
exponential inequalities.

Conjecture 1. If 0 < k < e and either a,b € (0,4] or 0 <a <1< b, then
2/ akabkb > kb + p*,

Conjecture 2. If0 <a <1< b, then

2+ adap3b > ¢34 p3e,
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Conjecture 3. If a, b € (0,5], then
2a°b® > a?* + b*,

Conjecture 4. If a, b € [0, 5], then

a+b
2

(£48) 5o i
O
P 3.5. If a, b are nonnegative real numbers such that a + b = 2, then
(@) a’+b?<1+ab;
(®) a®® + b** < 1+ab.
Solution. Without loss of generality, assume that a > b. Since
0<b<1, 0<a—1<1,
by Bernoulli’s inequality, we have
a®<1+bla—1)=1+b—b?
and
b®=b-b* 1t <b[1+(a—1)(b—1)]=b3(2—b).
(a) We have
a®+bp—1—ab<(1+b—-Db>)+b*(2—-b)—1—(2—-b)b=—b(b—1)*><0.
The equality holds fora=b =1, fora=2and b =0, and fora =0 and b = 2.
(b) We have
a?® +b**—1—ab<(1+b—-0b2)?+b*(2—b)>—1—(2—D)b
=b*(b—1)*(b—2)=—ab’(b—1)*<0.
The equality holds fora=b =1, fora=2and b =0, and fora =0 and b = 2.
Ll

2
P 3.6. If a, b are nonnegative real numbers such that 5 <a+b <2 then

a®® + b** <1 +ab.

(Vasile Cirtoaje, 2007)
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Solution. Assume that
a>b.

From 2vab <a+b <2, we get
ab <1.

There are two cases to consider: a+b<landa+b>1.

2
Case 1: 3 < a+ b < 1. Since 2b < 1, by Bernoulli’s inequality, we have

a®® <1+42b(a—1)=1+2ab—2b.
Therefore, it suffices to show that
(14+2ab—2b)+b** <1+ab,

which is equivalent to
ab+b* < 2b.

For 2a > 1, this inequality is true since
ab<b, ©b*<b.
For 2a < 1, by Bernoulli’s inequality, we have
b** <1+42a(b—1)=1+2ab—2a.
Therefore, it suffices to show that
(1+2ab—2b)+(1+2ab—2a)<1+ab,

which is equivalent to
1+3ab < 2(a+ b).

Indeed, we have

4+12ab—8(a+b)<4+3(a+b)*—8(a+b)
=(a+b—2)[3(a+b)—2]<0.

Case 2: 1 <a+ b < 2. For a,b <1, by Bernoulli’s inequality, we have
a?® =(a®)?<1+b(a®>—1)=1—b+db,

b* =(b?*)*<1+a(b>—1)=1—a+ab?

hence

a??+p**—1—ab<(1—-b+a®b)+(1—a+ab?>)—1—ab
=(1—ab)(1—a—b)<O.
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Consider further that a > 1 > b. By Bernoulli’s inequality, we have

a®<14+bla—1)=ab+1—b,

b* =p* 1. < b =p%. P < B1+(a—1)(b—1)]
= b*(ab+2—a—D).

Therefore, it suffices to show that
(ab+1—Db)*>+b*(ab+2—a—Db)<1+ab,

which can be written as
1+ab—(ab+1—0b)*>b%*(ab+2—a—b).

Since
1+ab—(ab+1—b)*=bB,

where
B=(2—a—b)+2ab—a*b>2ab—a?*b=ab(2—a),

it is enough to prove that
ab?(2—a)>b%*(ab+2—a—b),
which is equivalent to the obvious inequality
b*(a—1)(2—a—>b)>0.

The equality holds for a =0 or b = 0. If a + b = 2, then the equality holds also for
a=b=1.
Remark. Actually, the following extension is valid:

e If a, b are nonnegative real numbers such that

1

—<a+b<2,
2

then
a’® + b?* <1 +ab.

P 3.7. If a, b are nonnegative real numbers such that a®> + b*> = 2, then
a** +b%* < 1+ab.

(Vasile Cirtoaje, 2007)
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Solution. Without loss of generality, assume that a > 1 > b. Applying Bernoulli’s
inequality gives
a® <1+bla—1),

hence
a?® <(1+ab—Db)>.

Also, since 0 < b <1 and 2a > 2, we have
b* < b

Therefore, it suffices to show that

(14+ab—b)*+b*<1+ab,
which can be written as

b(2+2ab—a—2b—a%b)>0.

So, we need to show that

2+2ab—a—2b—a%®b >0,
which is equivalent to

4(1—a)(1—Db)+a(2—2ab)>0,

4(1—a)(1—Db)+ala—b)*>0.

Since a > 1, it suffices to show that
4(1—a)(1—b)+(a—b)*=0.
Indeed,

41—-a)1—=b)+(a—b)=—4a-1)(1-b)+[(a—1D+(1—-Db)]?
=[(a—1)—(1—=b)P=(a+b—2)*>0.

The equality holds fora=b =1, fora=+v2and b =0, and fora =0 and b = v/2.
O
; 2 g2 1
P 3.8. If a, b are nonnegative real numbers such that a® + b* = 7 then

a®® + b** <1 +ab.

(Vasile Cirtoaje, 2007)
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1
Solution. From a? + b% = 7 it follows that

ab<:,
2
1 1
b=-(a+by—-
ab=3(a+by -z,
a+b2\/a2+b2=%,
1
a+b£v2(a2+b2)=ﬁ.

Applying Bernoulli’s inequality gives
a®® <1+42b(a—1)=1—2b+ 2ab,
b* <1+42a(b—1)=1—2a+2ab.
Thus, it suffices to show that
(1—2b+2ab)+(1—2a+2ab)<1+ab,
1+3ab <2(a+b),

1+§(a+b)2—232(a+b),

(a+b—1)(a+b—§)30.
2 6

The left inequality is true since

1

a+b<—<
V2

| »

1 1
The equality holds fora =0 and b = > and for a = > and b =0.

Remark. Actually, the following extended result is valid:

e If a, b are nonnegative real numbers such that

1

—<a?+b:<2,
4

then
a®® + b** <1 +ab.

1
This inequality is a consequence of Remark from P 3.6 (since p <a’+b*<2

1
involves 2 <a+b<x<2).



456

Vasile Cirtoaje

P 3.9. If a, b are positive real numbers, then

a®b® < (a®—ab + b))%,
Solution. By the weighted AM-GM inequality, we have

a-a+b-b2(a+b)aﬁb$,

2 2N atb
(£Y"
a

Thus, it suffices to show that

a’+ bz)z

az—ab+b22(
a+b

which is equivalent to
(a+ b)(a®+ b%) = (a® + b?)?,

ab(a—Db)*>0.
The equality holds for a = b.

P 3.10. Ifa,b € (0,1], then

a’b® <1—ab + a®b>.

Solution. We claim that
XX <1—x+x?

for all x € (0,1]. If this is true, then

(Vasile Cirtoaje, 2010)

1—ab+a?b?>—a®b*>1—ab+a*b>*—(1—a+a®>)(1—-b+D?

=(a+b)(1—a)(1—b)>0.

Thus, it suffices to show that f (x) < 0 for x € (0, 1], where

f(x)=xIlnx —In(x*>—x +1).
We have
2x—1

'(X)=Inx+1———,
£ x2—x+1



Symmetric Power-Exponential Inequalities 457

(1—x)(1—2x—x%2—x%)

fe0 = x(x2—x+1)2

Let x; € (0, 1) be the positive root of the equation x*+x2+2x = 1. Then, f”(x) > 0
for x € (0,x;) and f”(x) < 0 for x € (x;,1), hence f’ is strictly increasing on (0, x; ]
and strictly decreasing on [x;,1]. Since lim,_,, f'(x) = —oco and f’(1) = 0, there
is x, € (0,x;) such that f'(x,) = 0, f'(x) < 0 for x € (0,x,) and f'(x) > O for
x € (x,,1). Therefore, f is decreasing on (0, x,] and increasing on [x,,1]. Since
lim,_,, f(x) =0 and f(1) =0, it follows that f(x) < 0 for x € (0,1]. The proof is
completed. The equality holds fora = b = 1.

]

P 3.11. If a, b are positive real numbers such that a + b < 2, then
ayb b\*
(3) + (E) <2.
(Vasile Cirtoaje, 2010)

Solution. Using the substitution a = tc and b = td, where c,d, t are positive real
numbers such that c+d =2 and t < 1, we need to show that

(g)td + (%)tc <2.

Write this inequality as

fl)=<2,
where . .
F(t)=A' + B, A:(g) , B:(%) .

Since f(t) is a convex function, we have
f(t) <max{f(0), f(1)} = max{2, f (1)}
Therefore, we only need to show that f(1) < 2; that is,
2c¢d? > ¢® +d>.
Setting c = 1+ x and d = 1 —x, where 0 < x < 1, this inequality turns into
(14+x)"Q =)™ >1+x2,
which is equivalent to f(x) = 0, where

F(X)=1+x)In(1+x)+(1—x)In(1—x)—In(1+ x?).
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We have
2x

1+ x2’
) 1 1 2(1—x?) 8x>
6 P 1S e P
1+4x 1—x (1+x2) (1—x2)(1+x2)
Since f”(x) = 0 for x € [0, 1), it follows that f’ is increasing, f'(x) = f’(0) = 0,

f (x) is increasing, hence f(x) = f(0) = 0. The proof is completed. The equality
holds for a = b.

f'(x)=In(1+x)—In(1—x)—

]

P 3.12. If a, b are positive real numbers such that a + b = 2, then
agb 2b 2a 3 2
2a°b® > a*’+b +Z(a—b).

(Vasile Cirtoaje, 2010)

Solution. According to the inequalities in P 3.5-(b) and P 3.11 (for a+ b = 2), we
have
a?* +b** <1+ab

and
2a°b? > a® + b2,

Therefore, it suffices to show that
2 2 3 2
a‘+b 21+ab+‘—1r(a—b) .

which is an identity. The equality holds fora = b = 1.

P3.13. Ifa,be(0,1] or a,b €[1, 00), then

2a%b? > a® + b>.

Solution. For a = x and b = 1, the desired inequality becomes
2x* > x%*+1, x>0.
If this inequality is true, then

4a°b® —2(a® + b?) > (a®? + 1)(b* + 1) — 2(a®* + b?) = (a®> — 1)(b®—1) > 0.
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To prove the inequality 2x* > x? + 1, we show that f(x) > 0, where

f(x)=In2+xInx —In(x*+1).

We have 5
x

‘(x)=Inx+1— ———

f)=Inx+1-—,

y x2(x + 1)+ (x — 1)

iy EE D (=)
x(x2+1)2

Since f”(x) > 0 for x > 0, f’ is strictly increasing. Since f’(1) = 0, it follows that
f’(x) < 0forx €(0,1)and f’(x) > 0for x € (1, 00). Therefore, f is decreasing on
(0,1] and increasing on [1, 00), hence f(x) = f(1) = 0 for x > 0. This completes
the proof. The equality holds for a = b = 1.

O

P 3.14. If a, b are positive real numbers, then
2a°b’ > a* + b>.
(Vasile Cirtoaje, 2014)
Solution. By Lemma below, it suffices to show that
(a*—2a® +4a®>—2a +3)(b* —2b> + 4b> — 2b + 3) > 8(a® + b?),
which is equivalent to A > 0, where
A=a*b*—2a®b3(a + b) +4a®b*(a® + b> + ab) —[2ab(a® + b®) + 8a®b?(a + b)]
+[3(a* + b*) + 4ab(a® + b?) + 16a?b?]—[6(a® + b®) + 8ab(a + b)]
+4(a*+ b*+ab)—6(a+b) +9.
We can check that
A=[a’b*—ab(a+b)+a*+b*—1]>+B,
where
B =a*b*(a+ b)*—6a%b*(a+ b) + [2(a* + b*) + 4ab(a® + b?) + 16a°b?]
—[6(a®+ b))+ 10ab(a + b)]+[6(a®+ b?) +4ab]—6(a + b) + 8.

Also, we have
B=[ab(a+b)—3ab+1]*+C,
where
C =[2(a* + b*) + 4ab(a® + b*) + 7a®*b*]—[6(a® + b*) + 12ab(a + b)]
+[6(a®+ b?*)+ 10ab]—6(a + b) + 7,
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and
C=(ab—1)*+2D,

where
D =[a*+ b* + 2ab(a® + b?) + 3a*b?]1—[3(a® + b®) + 6ab(a + b)]
+3(a+b)*—3(a+b)+3,
It suffices to show that D > 0. Indeed,
D =[(a+ b)*—2ab(a+ b)*+ a®b?]—3[(a + b)> —ab(a+ b)]

+3(a+b)*—3(a+b)+3
=[(a+b)*—ab]*—3(a+Db)[(a+b)*—ab]+3(a+b)*—3(a+b)+3

:[(a+b)2—ab—g(a+b)]2+3(a;b—1)220.

This completes the proof. The equality holds for a = b = 1.

Lemma. If x > 0, then
1
xX*=x+ Zr(x —1)%(x*+3).

Proof. We need to show that f(x) > 0 for x > 0, where

(x)=In4+xlnx—Ing(x), g(x)=x*—2x>+4x%—2x+3.
f g g

We have s )
2(2x° —3x* + —1
f'(x)=1+Inx— (2x X7+ Ax ),
g(x)
£ = x®+6x*—32x>+48x*—32x+9 _ (x—1)*h(x)
g2(x) 22(x)
where
h(x) = x%+2x° 4+ 3x* + 4x3 + 11x% — 14x + 9.
Since

h(x)>7x*>—14x+7=7(x—1)*>0,

we have f”(x) = 0, hence f’ is strictly increasing on (0, o). Since f’(1) = 0, it

follows that f'(x) < 0 for x € (0,1) and f’(x) > 0 for x € (1, 00). Therefore, f is

decreasing on (0, 1] and increasing on [1, 00), hence f(x) > f(1) = 0 for x > 0.
L]

P3.15. Ifa>12>b >0, then

2a%b® > a®® + b2,
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Solution. Taking into account the inequality 2a®b® > a? + b? from the preceding
P 3.14, it suffices to show that

a’+ b? > a®® + b*.

This inequality follows immediately from a? > a?® and b? > b?®. The equality holds
fora=b=1.
[

P 3.16. Ifa>e>b >0, then
2a°b® > a?® + b*.

Solution. It suffices to show that a®b? > a?’ and a®b® > b?*. Write the first in-
equality as

a1t > x, X =
Since a*~! > ¢!, we only need to show that
e 1> x,

which is equivalent to f(x) > 0 for x > 1, where
f(x)=x—1—Inx.

From 1
fl(x)=1-=20,
X

it follows that f is increasing on [1, o), therefore f(x) > f(1) =0.
Write the second inequality as
o™
a

xb™* <1, x=-=-<1.

Qo

Since b'™* < e!™, we only need to show that
xel™ <1,
which is equivalent to f(x) < 0 for x < 1, where

f(x)=Inx+1—x.
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Since ;
f'(x)==—-120,
X

f is increasing on (0, 1], therefore f(x) < f(1) = 0. This completes the proof. The
equality holds fora =b =e.
OJ

P 3.17. If a, b are positive real numbers, then

b (a +b2)%
> .

First Solution. Using the substitution a = bx, where x > 0, the inequality be-

comes as follows: _—
(bx)P*b > (—bzxz + bz)T
- 2 )
2.2 | 12\
(bx)xb > (M) 5
2
bx+1xx > bx+1 (xz 1)

= ()

It is true if f(x) > O for all x > 0, where

x 1. x2+1
= Inx—-=1
f) = Fqx=3ih—
We have )
1 b glx
'(x)= Inx + - = ,
£ (x+1)2 e x+1 x24+1 (x+1)2
where ,
xc—1
=lnx— .
g(x)=Inx x2+1
Since ) )
/ (X _1)
=— =20,
g'(x) x(x2+1)2

g is strictly increasing, therefore g(x) < 0 for x € (0,1), g(1) = 0, g(x) > 0
for x € (1,00). Thus, f is decreasing on (0, 1] and increasing on [1, 00), hence
f(x)= f(1) = 0. This completes the proof. The equality holds for a = b.
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Second Solution. Write the inequality in the form

2 2
alna+b1nb2a;blna ’;b .

Without loss of generality, consider a + b = 2k, k > 0, and denote

a=k+x, b=k—x, 0<x<k.

We need to show that f(x) > 0, where

F(x) = (k+x)In(k + x) + (k—x)In(k — x) — kIn(x? + k).

We have ok
X
! =lnk+x)—Inlk—x)— —
£/(x) = In(k+x) = In(k —x) = =",
1 1 2k(x? —k?)

£ =1
B 8k*x?
T (k2 —x2)(x2 + k2)2

+
+x  k—x  (x2+k2)?

Since f”(x) > 0 for x > 0, f’ is increasing, hence f’(x) > f’(0) = 0. Therefore, f

is increasing on [0, k), hence f(x) > f(0) = 0.
Remark. For a + b = 2, this inequality can be rewritten as
2a°b® > a® + b,
ayb b\*
22 (2) (4
b a
Also, for a + b = 1, the inequality becomes

2a*'b* > a* + b?,

(3 (2)"

P 3.18. If a, b are positive real numbers such that a*> + b* = 2, then

1
2a°b® > a2 + b2 + E(a —b)2

(Vasile Cirtoaje, 2010)
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Solution. According to the inequalities in P 3.7 and P 3.17, we have
a*®*+b** <1+ab

and
a®h? > 1.

Therefore, it suffices to show that
1 2
2> 1+ab+§(a—b) ,

which is an identity. The equality holds for a = b = 1.

P 3.19. Ifa,b € (0,1], then

(a2+b2)(i+i) <4.

(Vasile Cirtoaje, 2014)
Solution. For a = x and b = 1, the desired inequality becomes

2
2 > 1+x

= m, XE(O,l].

If this inequality is true, it suffices to show that

3—a®> 3—Db?
2+b2( + )<4,
@+ e 132 S

which is equivalent to
a’b?’2+a?+b>)+2—(a®+b>)—(a®*+b?)* >0,

(2+a*+b*)(1—a*)(1—-b?)>0.

1
To prove the inequality x** > 3 we show that f(x) > 0, where

—x2’
1 2 1 2
f(x)lenx+§1n(3—x )—Eln(1+x ), xe€(0,1].

We have
X

3—x2 1+x2’

f'(x)=1+Inx—
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sy 1 3+x*  1-x?
L P R Ry
:(1—x)(9+6x—x3) 1—x?

x(3—x)2 (14 x2)2

We will show that f”(x) > 0 for 0 < x < 1. This is true if

9+6x—x3_ 1+x S
x(3—x)2 (14 x2)2

Indeed,
9+ 6x —x3 1+x 9 1+x 1

- > —— = >0
x(3—x)2 (1+x2)2 9x x(1+x)>2 1+x
Since f”(x) > 0, f’ is strictly increasing on (0, 1]. Since f’(1) = 0, it follows that
f’(x) <0 for x €(0,1), f is strictly decreasing on (0,1], hence f(x) > f(1) =0.
This completes the proof. The equality holds for a = b = 1.

]

P 3.20. If a, b are positive real numbers such that a + b = 2, then
ab® +2> 3ab.
(Vasile Cirtoaje, 2010)

Solution. Setting
a=1+x, b=1—x, 0<x<1,

the inequality is equivalent to

(14+x)7(1—x)"* >1—-3x2

Consider further the nontrivial case 0 < x < —, and write the desired inequality

V3

as f(x) > 0, where
f(x)=1—x)In(1+x)+(1+x)In(1 —x)—In(1—3x?).

We have

1—x 1+x 6x
‘(X)=—In(1+x)+In(1—x)+ —
£ n(1+x)+In(1—x) 1+x 1—x 1—3x2%

-1 _2(x2+1) 3(3x%+1)
—x2 (1—x2)2  (1—3x2)2"

1 12

— X)=

S0 =1
Making the substitution

1
t=x2 0<t<-—,
3
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we get

3(3t+1) _t+3 4t(5—9t)

(3t—1)2 (t—1)2 (t—1)2(3t—1)2

Therefore, f’(x) is strictly increasing, f'(x) > f(0) = 0, f (x) is strictly increasing,

hence f(x) = f(0) = 0. This completes the proof. The equality holds fora = b = 1.
OJ

~f) =

1
P 3.21. Let a, b be positive real numbers such that a+b =2. If k > > then

aakbbbka Z 1.
(Vasile Cirtoaje, 2010)

Solution. Setting
a=1+x, b=1—x, 0<x<1,

the inequality can be written as

(1 4+ )3 n(1 + x) + (1 — )3 n(1 —x) > 0.

Consider further the nontrivial case 0 < x < 1, and write the desired inequality as
f(x) =0, where

f)=k(1—x)In(1+x)—k(1+x)In(1—x)+Inln(1 + x) —In(—In(1 — x)).

It suffices to show that f'(x) > 0. Indeed, if this is true, then f(x) is strictly
increasing, hence

fOc)> lim £ (x) = 0.

We have
ooy 2k(A+x%) o 1 1
== = e a0 T A oma—x
S 2k + 1 + 1
1—x2 (14+x)In(1+x) (A—x)In(1—x)
1 1 1
21 e T @+ 0ml+x)  d=—x)n(l—x)
_ g(x)
 (1—x2)In(1 +x)In(1 —x)’
where

gx)=In(1+x)In(1—x)+ (1 +x)In(1+x)+(1—x)In(1—x).
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It is enough to how that g(x) < 0. We have

§/(x) = = h(x),
where
h(x)=(1+x)In(1+x)+ (1 —x)In(1 —x).
Since .
h'(x)=1In - >0,

h(x) is strictly increasing, h(x) > h(0) = 0, g’(x) < 0, g(x) is strictly decreasing,
and hence g(x) < g(0) = 0. This completes the proof. The equality holds for
a=b=1.

]

P 3.22. If a, b are positive real numbers such that a + b = 2, then

a‘/abﬁz 1.

(Vasile Cirtoaje, 2010)

Solution. Assume that a > 1 > b. Taking logarithms of both sides, the inequality

becomes in succession:
Jalna+ Vbinb > 0,

valna > v/b(=Inb),
%lna+ln1na > %lnb + In(—1n b).

Substituting
a=14+x, b=1—-x, 0<x<1,

we need to show that f(x) > 0, where
flx)= % In(1+x)— % In(1—x)+1Inln(1 + x)—In(—In(1 —x)).

We have 1 1 1
'(x)= + + .
) = e T om0 T =0 —x)
As shown in the proof of the preceding P 3.21, we have f’(x) > 0. Therefore, f (x)
is strictly increasing, therefore

fOc)> lim £(x) = 0.

The equality holds for a = b = 1.
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P 3.23. If a, b are positive real numbers such that a + b = 2, then
a+11,b+1 1 4
a® b’ <1——(a—Db)".
48
(Vasile Cirtoaje, 2010)
Solution. Putting
a=1+x, b=1—x, 0<x<1,
the inequality becomes
2+x 2—x 1 4
A+x)™A1—x)"*< l—gx .
Write this inequality as f(x) < 0, where
1
f(x)=2+x)In(1+x)+ (2—x)ln(1—x)—ln(1—§x4).

We have
2x 43

+ >
1—x2 3—x4

f'(x)=In(1+x)—In(1—x)—
Fr0) = 2 2(1+x%)  4x*(x*+9)
YT I e T a—aer T Box)e

. —4x? 4x*(x*+9)  —8x*[x*+1+8(1—x?)]
T (1-x22 0 (3—x4)?2  (1—x2)2(3—x*)?

<0.

Therefore, f’(x) is decreasing, f'(x) < f’(0) = 0, f(x) is decreasing, f(x) <
f(0) =0. The equality holds fora = b = 1.
]

P 3.24. If a, b are positive real numbers such that a + b = 2, then
a?+b <2
(Vasile Cirtoaje, 2010)
Solution. Consider a > b, when we have
0<b<1<a<?2,
and write the inequality as

a*—1 bb—1
a¢ + bb

= 0.
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According to Lemma from the proof of P 3.4, we have
a®—1>a%(a—1), b*'—1>bF(b—1).
Therefore, it suffices to show that
1—-a 1-b
az(a—1)+b2(b—1)=0,

which is equivalent to

The equality holds for a = b = 1.

P 3.25. Ifa,b € [0, 1], then
a" @+ bt +(a—b)?* < 2.
(Vasile Cirtoaje, 2010)

Solution (by Vo Quoc Ba Can). Without loss of generality, assume that a > b. Us-
ing the substitution
c=a-—>b,

we need to show that
(b+c)“+b°+c?<2

for
0<b<1l—c¢, 0Lc<l1.

If c = 1, then b = 0, and the inequality is an equality. Also, for ¢ = 0, the inequality
is an equality. Consider further that

0<c<l.
We need to show that f(x) < 0, where
f)=(+c)y“+x‘+c*—2, xe€[0,1—c].

We claim that f’(x) > 0 for x > 0. On this assumption, f(x) is strictly increasing
on [0,1—c], hence

f<fA-a)=1—c)—(1—c).
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By Bernoulli’s inequality, we have
f(x)<1+c(—c)—(1—c*)=0.

Since
c[(x 4 C)1+c _ xl—c]

(x + C)l+Cx1—C

fllx) =

>

the inequality f’(x) > 0 holds for x > 0 if and only if
X +c>xT,
For any d > 0, using the weighted AM-GM inequality yields
c ¢\
te=x+d-—>(1+d ﬁ(—) -,
xX+c=x 7 ( )x 7

Choosing

we get

1+c(1—c\™ 1
xX+c= X T#e,

Thus, it suffices to show that

1+¢ (1—c)i_:c
> .
2 2

Indeed, using Bernoulli’s inequality, we get

1—c\™ 1+c¢ = 1—c 1+c 1+c
=[1-— <1-— . = .
2 2 1+c 2 2

The equality holds for a = b, fora=1 and b =0, and fora =0 and b = 1.

P 3.26. If a, b are nonnegative real numbers such that a+ b < 2, then
ab @+ p* b 4 l(a —b)*<2.
16 B

(Vasile Cirtoaje, 2010)
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Solution. Assume that a > b. Using the substitution
c=a—>,

we need to show that

_ 7 5
a‘+(a—c)+—c"<2
( ) T

for
c
0<c<2, cSaSl+§.

For ¢ = 0 and ¢ = 2 (which involves a = 2), the inequality is an equality. Therefore,
we only need to show that f(x) <0 for 0 < ¢ < 2, where

f(x):x_c+(x—c)c+%c2—2, xe[c,1+%].

3
In the case ¢ = 1, we need to show that f(x) <0 for x € [1, 5]’ indeed, we have

1 41 2 3 41
=-4x——<Z+Z—-—=—x<0.
e N T R T
Consider next that

ce(0,1)u(1,2).
The derivative
C[X1+c _ (x _ C)l—c]
x1+C(X _C)].—C

fl(x)=

has the same sign as
gl)=00+c)lnx—(1—c)In(x —c).
We have

_c(2x—1—c)
 x(x—c¢)

g'(x)

Case 1: 0 < ¢ < 1. We claim that g(x) > 0 for x € (c, 1+ %] On this assumption,

f is strictly increasing on [c, 1+ %], hence
c

Thus, we need to show that f (1 + %) < 0, which is just the inequality in Lemma
4 below.
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1+
From the expression of g’(x), it follows that g(x) is decreasing on (c, ¢ ],

+c

, 1+ %] Then, to show that g(x) > 0 for x € (c, 1+ %],
1+c
>0
g(55)>o
(1+C)1+C (1_C)l—c
> .
2 2
This inequality follows from Bernoulli’s inequality, as follows:

(1+c)1+C:(1_1—c)1+C>1_(1+c)(1—c) _ 1+4c?

. . 1
and mncreasing on

it suffices to prove that

which is equivalent to

2 2 2 2

and

2 2 2 2
Case 2: 1 < c¢ < 2. Since

(1—c)1_cz(1_ 1+c)1_C < 1_(1—c)(1+c) _ 1+c2.

2x—1—c=22c—1—c=c—1>0,

it follows that g’(x) > 0, hence g(x) is strictly increasing. For x — c, we have
g(x) » —oo. If g(1+c¢/2) <0, then g(x) < 0, hence f is decreasing. If g(1 +
c/2) > 0, then there exists x; € (c,1 + ¢/2) such that g(x;) = 0, g(x) < 0 for
x € [c,x;) and g(x) > 0 for x € (x;,1+ c/2], hence f is decreasing on [c, x; ]
and increasing on [x;,1 + c¢/2]. Therefore, it suffices to show that f(c) < 0 and
f (1 + %) < 0. These inequalities follow respectively from Lemma 1 and Lemma 4
below.

The proof is completed. The equality holds for a = b, for a = 2 and b = 0, and
fora=0and b =2.

Lemma 1. If 1 < c <2, then

with equality for ¢ = 2.
Proof. The desired inequality is equivalent to h(c) > 0, where

h(c)=clnc +ln(2—1—76c2), ce[1,2].

We have
14c

32—7c?’
Wiy = L 1403247
c  (32—7c2)2

h'(c)=1+Inc—
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Since h” is strictly decreasing, h”(1) = 79/625 and h”(2) = —52, there exists ¢, €
(1,2) such that h”(c;) = 0, h”’(c) > 0 for ¢ € [1,¢;) and h”(c) < 0 for ¢ € (¢;,2],
hence h’ is strictly increasing on [1,c;] and strictly decreasing on [c;,2]. Since
h’'(1) =11/25 and h’(2) =In2—6 < 0, there exists ¢, € (1,2) such that h’(c,) =0,
h’'(c) > 0 for ¢ € [1,¢,) and h’(c) < O for ¢ € (c,,2], hence h is strictly increasing
on [1,c,] and strictly decreasing on [c,,2]. Thus, it suffices to show that h(1) > 0
and h(2) > 0. Indeed, h(1) =In25—1In16 > 0 and h(2) = 0.

Lemma 2. If 0 < x < 2, then

with equality for x =0 and x = 2.
Proof. We need to show that f(x) < 0, where

f(x)z—xln(1+%)—ln(l—%xz), x €[0,2].

We have (3x2 46 "
N X x(3x°+ 6x —
fe= ln(L+2)+(2+xX16—3x%’
npoy g(x)
F = G rae—sxy
where

g(x) =—9x> —18x* + 168x> + 552x2 + 128x — 640.
Since g(x;) = 0 for x; ~ 0,88067, g(x) < 0 for x € [0,x;) and g(x) > O for
x € (x1,2], f’ is strictly decreasing on [0, x;] and strictly increasing on [x;,2].
5
Since f’(0) =0and f'(2) =—In 2+§ > 0, there is x, € (x;,2) such that f'(x,) =0,

f’(x) <0 for x € (0,x,), and f’(x) > O for x € (x,,2]. Therefore, f is decreasing
on [0, x,] and increasing on [ x,,2]. Since f(0) = f(2) = 0, it follows that f (x) < 0
for x €[0,2].

Lemma 3. If 0 < x < 2, then
x\* 1,
(1-3) + Le <,
2 4
with equality for x =0 and x = 2.
Proof. We need to show that f(x) < 0, where

f(x)len(l—g)—ln(l—%xz), x €[0,2).

We have 5

f’(x)zln(l—f)— X

2) 4—x?’
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neon . —1 . 8x
f (x)_Z—x (4—x2)2

Since f” < 0 for x € [0,2), f' is strictly decreasing, hence f'(x) < f'(0) =0, f is
strictly decreasing, therefore f(x) < f(0) =0 for x € [0, 2).

Lemma 4. If 0 < x < 2, then

(1+§y_+(1—5)-w1«2sz

with equality for x =0 and x = 2.
Proof. By Lemma 2 and Lemma 3, we have

x\™ 3 ,
(1+—) +—x"<1
2 16

and f 1
(1—5)4_«23L
2 4

The desired inequality follows by adding up these inequalities.

. i 1
Conjecture. If a, b are nonnegative real numbers such that a + b = 7 then

20~ + pHeD < 3,

P 3.27. If a, b are nonnegative real numbers such that a + b < 4, then
a+ bt <2
(Vasile Cirtoaje, 2010)

Solution. Without loss of generality, assume that a > b. Consider first thata—b >
2. We have
a>a—b>2,

and from
4>a+b=(a—b)+2b>2+2b,

we get b < 1. Clearly, the desired inequality is true because
abt <1, pb<I.

Since the case a — b = 0 is trivial, consider further that 0 < a — b < 2 and use the
substitution
c=a-—>b.
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So, we need to show that
a‘+(a—c)<2

for c
0<c<2, cSaSZ+§.

Equivalently, we need to show that f(x) < 0 for 0 < ¢ < 2, where
f)=x“+(x—c)—2, xe[c,2+%].
The derivative

[x1+c _ (X _ C)l—c]
x1+c(x — C)l—c

, c
fix)=
has the same sign as
gx)=0+c)lnx—(1—c)In(x —c).

We have
_c(2x—1—c)

x(x—c)

g'(x)

5
Case 1: ¢ = 1. We need to show that x> —3x +1 <0 for x € [1,5]. Indeed, we
have
2(x2=3x+1)=(x—1)2x—=5)+(x—3)<0.

Case 2: 0 < ¢ < 1. We will show that g(x) > 0 for x € (c,2 + %] From

c(2x—1—¢)
x(x—c)

b

g'(x)=

1+c

. ) 1+c c
] and increasing on [ > ,2 4 5]

Then, to show that g(x) > 0 for x € (c, 1+ %], it suffices to prove that

1+c
>0,
g( 2 )
1+C 1+c 1_C 1—c
(=) (%)
2 2

This inequality follows from Bernoulli’s inequality, as follows:

it follows that g(x) is decreasing on (c,

which is equivalent to

(1+c)1+cz(1_1—c)1+c>1_(1+c)(1—c) _ 1+ c?
2 2 2 2
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and

2 2 2 2
Since g(x) > 0 involves f’(x) > 0, it follows that f(x) is strictly increasing on
[c, 2+ %], and hence

(1—6)1_62(1_ 1+c)1_c - 1_(1—c)(1+c) _ 1+c2.

f(x)sf(2+%).

So, we need to show that f (2 + %) < 0 for 0 < ¢ < 1, which follows immediately

from Lemma 3 below.

Case 3: 1 <c¢ < 2. Since
2x—1—c=22c—1—-c>0,

we have g’(x) > 0, hence g(x) is strictly increasing. Since g(x) — —oo when
x — c and

g(2+%):(1+c)1n(2+%)+(c—1)ln(2—%)

>(c—1)ln(2—%) >0,

there exists x; € (c,2+ %) such that g(x;) = 0, g(x) < 0 for x € (c,x;) and
g(x)> 0 for x € (xl,z + %) Thus, f(x) is decreasing on [c, x,] and increasing
on [xl, 2+ %] Then, it suffices to show that f(c) < 0 and f (2 + %) < 0. The first
inequality is true because

flc)=c*—2<1-2<0,

while the second inequality follows immediately from Lemma 3 below.
The proof is completed. The equality holds for a = b.

Lemma 1. If x < 4, then

xh(x) <0,
where )
h(x) = ln(2— f)— (mz—f _ —xz).
2 4 32
Proof. From
h(x)=—<0
)= Te@—n =°

it follows that h(x) is decreasing. Since h(0) = 0, we have h(x) > 0 for x < 0, and
h(x) <0 for x € [0, 4); that is, xh(x) < 0 for x < 4.
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Lemma 2. If
—2<x<2,

then
3

(Z—E)X <1 +xln2—x—.
2 9
Proof. We have

In2~0.693 < 7/9.

If x €[0,2], then
3 3

14xm2—C>1-C51-350,
9 9 9
Also, if x € [—2,0], then
3 3 )
1+xln2_x_21+7_x_x_>m
9 9 9 9
2(x +2)*+(— +1)2
_ 2(x+2) éX)(x o

So, we can write the desired inequality as f (x) > 0, where

3
f(x)=ln(1+dx—%)—x1n(2—§), d=1n2.

We have

;v 9d—3x? x (_f)
f(x)_9+9dx—x3+4—x In( 2 5 )

Since f(0) = 0, it suffices to show that f’(x) < 0 for x € [—2,0], and f’(x) = 0 for
x €[0,2]; that is, xf'(x) = 0 for x € [—2,2]. We have

f'(0) = g(x)—h(x),

where

9d — 3x? x ( x 1 2)
+-————(d ,
94+9dx—x3 4—x

h(x)zln(Z—%)—(d—%—gizxz).

According to Lemma 1,

g(x)=

xf'(x)=xg(x)—xh(x) > xg(x).
Therefore, to show that x f’(x) > 0, it suffices to prove that xg(x) > 0. We have
9d — 3x? X x 1
= —————d |+ + =4+ —x?
8(x) (9+9dx—x3 ) (4—x 4" 32" )
[dxz—Bx—9d2 64—4x—x2}
=X + ,
9+9dx —x3 32(4—x)
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hence )
x“g1(x)
32(4—x)(9+9dx — x3)’

xg(x)=
where

g,(x) =32(4 — x)(dx?* —3x — 9d?) + (64 — 4x — x*)(9 + 9d x — x?)
=x° +4x* — (64 + 41d)x> + (87 + 92d)x* + 12(24d> + 48d — 35)x
+576(1 —2d?).

Since g,(x) = 0 for x € [ay, b, ], where a, ~ —12.384 and b, =~ 2.652, we have
g,(x) =0 for x € [—2,2].

Lemma 3. If 0 < ¢ < 2, then

(2+f)_ +(2—5) <2.
2 2

Proof. According to Lemma 2, the following inequalities hold for ¢ € [0, 2]:

—c 3
(2+£) Sl—cln2+c—,
2 9

[4 3
(Z—E) < 1+cln2—c—.
2 9

Summing these inequalities, the desired inequality follows.

P 3.28. If a, b are nonnegative real numbers such that a + b = 2, then
a®® +b% >a’+ b > a’b? + 1.
(Vasile Cirtoaje, 2010)
Solution. Since a,b €[0,2] and
(1—a)(1-b)=—(1—a)*<0,
from Lemma below, we have

1> b(ab+3—c;—b)(a—1) _ b(ab+;)(a—1)

and

1> a(ab+1)(b—1)
> 2 .

b®—
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Based on these inequalities, we get
a’® +b°—a’b? —1=(a’—1)+(b*—1)+ 1 —a?b?

- b(ab + ;)(a—l) N a(ab+1)(b—1) 41— 2B

=(ab+1)(ab—1)+1—a?*b?>=0

and

a? + b2 —a® —p* =ab(a® — 1)+ b4(b*—1)
a’b(ab+1)(a—1) N b%a(ab+1)(b—1)

2 2
_ab(ab+1)(a—Db)(a"t=b*h)
— - )
Under the assumption that a > b, we only need to show that a®~* > b%~!, which is
equivalent to

|cr-

*>bT, 1>(ab)T, 1>ab, (a—b)*>0.

)

a

For both inequalities, the equality holds when a = b =1, whena =0 and b = 2,
and whena =2 and b =0.

Lemma. If x,y € [0, 2] such that (1 —x)(1—y) <0, then

o Yoy +3—x—y)x—1)

- 2 J

with equality for x =1, and also for y =0, y =1and y = 2.

x¥—1

Proof. For y =0, y =1 and y = 2, the inequality is an identity. For fixed
y€(0,1)u(1,2),

let us define
Yy +3—x—y)x—-1)
5 .

fO)=x"—1
We have

f’(x)=y[xy‘1—xy+32_x_y—(x_l)z(y_l)],

f')=y(y =12 -1).
Since x?~2 — 1 has the same sign as 1 — x, it follows that f”(x) > 0 for x € (0,2],
therefore f’ is increasing. There are two cases to consider.

Case 1: x > 1> y. We have f'(x) > f'(1) =0, f(x) is increasing, hence
fx)=f(@)=0.

Case 2: y > 1> x. We have f'(x) < f'(1) =0, f(x) is decreasing, hence
flx)=zf(1)=0.
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P 3.29. If a, b are positive real numbers such that a + b = 2, then
a® + b < 2.
(Vasile Cirtoaje, 2007)
Solution. Without loss of generality, assume that a > b. Using the substitution
a=14+x, b=1-—x, 0<x<1,
we can write the inequality as
e300 In(14x) 4 (3(1+x)In(1—x) < o
Applying Lemma below, it suffices to show that f(x) < 2, where
Flx) = SO(x5 %) | sam(xesas)

Since f(0) = 2, it suffices to show that f’(x) < 0 for x € [0,1). From

3

f/(X) = (3 —9x + %xz — 4x3) eSx—%_,_%_)ﬂ
15
- (3 +9x + ?Xz + 4x3) e 3T
it follows that f’(x) < 0 is equivalent to

orsx? o, 618X+ 15x% —8x?

e .
T 6+ 18x +15x2 + 8x3

For the nontrivial case 6 — 18x + 15x% — 8x® > 0, we rewrite this inequality as
g(x) > 0, where

g(x) = —6x —5x> —In(6—18x + 15x* — 8x%) + In(6 + 18x + 15x% + 8x?).
Since g(0) = 0, it suffices to show that g’(x) > 0 for x € [0,1). From

(6+8x2)—10x N (6 +8x2) + 10x
6+ 15x2—(18x +8x3) 6+ 15x2+ (18x + 8x3)’

1

gg’(x) =—2—5x*+
it follows that g’(x) > 0 is equivalent to
2(6 + 8x2)(6 + 15x2) —20x(18x + 8x3) > (24 5x2)[(6 + 15x2)? — (18x + 8x3)?].
Since

(6 4+ 15x%)* — (18x + 8x3)* < (6 + 15x%)* — 324x2 — 288x* < 4(9 —36x2),
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it suffices to show that
(34 4x%)(6 + 15x%) — 5x(18x + 8x3) > (2 + 5x%)(9 — 36x?).

This reduces to 6x? + 200x* > 0, which is clearly true. The equality holds for
a=b=1.
Lemma. If t > —1, then
T
Inl+t)<t——+ —.
2 3

Proof. We need to prove that f(t) > 0, where

f(t)=t—t—2+t—3—ln(1+t).
2 3
Since 3
flit)y= T

f(t) is decreasing on (—1,0] and increasing on [0, c0). Therefore,

f(t)=f(0)=0.

P 3.30. If a, b are nonnegative real numbers such that a + b = 2, then
a®® + b3 + (ﬂy <2.
2
(Vasile Cirtoaje, 2007)
Solution (by M. Miyagi and Y. Nishizawa). Using the substitution
a=1+x, b=1—x, 0<x<1,
we can write the inequality as
(14 x)P3 4 (1—x)) 4 x* < 2.

By Lemma below, we have

(1+x)7™< %(1 +x)%(2 —x?)(2 —2x + x?),

(1—x)"*" < %(1 —x)*(2—x*)(2 + 2x + x?).
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Therefore, it suffices to show that
(1+x)°02—x2)2—2x+x2)°+(1—x)°(2—x2)>(2+ 2x + x2)® + 64x* < 128,
which is equivalent to
xH(1—x?)[x®(x® —8x* +31x% —34) —2(17x°® —38x* + 16x2 +8)] < 0.
Thus, it suffices to show that
t>—8t*+31t—34<0

and
17t —38t>+16t+8>0

for all t € [0, 1]. Indeed, we have
t>—8t2+31t—34 < t>—8t*+ 31t —24=(t —1)(t>*— 7t +24) <0,

17t —38t2+ 16t +8 =17t(t —1)*> + (—4t>—t +8) > 0.

Lemma. If —1 < t <1, then
1
1+t < Z(l +t)2(2—-tH)(2—-2t + t?),

with equality for t =—1, t =0and t = 1.
Proof. It suffices to consider that

—-1<t<1.
Rewrite the inequality as
1+ 2—)(2—2t+t%) >4,
which is equivalent to f(t) > 0, where

fF()=1+6)In(1+t)+In(2—t>) +1In(2—2t + t*) —1n4.

We have ) 2 )
t t—
‘t)=1+In(1+1t)—
£ n( ) 2—t2  2—2t+t2’
f//(t) — tzg(t)
(1+6)(2—t2)2(2—2t + t2)?’
where

g(t) =t —8t>+12t*+8t>—20t2— 16t + 16.
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Case 1: 0 <t <1. From
g'(t) = 6t> —40t* + 48> + 24t* — 40t — 16
=6t>—8t—16—8t(5t>—6t>—3t +4)
= (6t>—8t—16)—8t(t —1)*(5t +4) <0,

it follows that g is strictly decreasing on [0,1]. Since g(0) = 16 and g(1) = —7,
there exists a number ¢ € (0, 1) such that g(c) =0, g(t) > 0 for 0 < t < ¢ and
g(t) < 0 forc <t < 1. Therefore, f’ is strictly increasing on [0,c] and strictly
decreasing on [c,1]. From f’(0) = 0 and f’(1) = In2—1 < 0, it follows that
there exists a number d € (0,1) such that f'(d) =0, f'(t) > 0for 0 < t < d and
f'(t) < 0ford <t <1. As a consequence, f is strictly increasing on [0,d] and
strictly decreasing on [d,1]. Since f(0) = 0 and f(1) = 0, we have f(t) > 0 for
0<t<1.

Case 2: —1 <t £0. From
g()=t*(t—=2)(t—6)+4(t+1)(2t>—7t +3)+4> 0,

it follows that f” is strictly increasing on (—1,0]. Since f’(0) = 0, we have f'(t) <0
for —1 < t <0, hence f is strictly decreasing on (—1,0]. From f(0) = 0, it follows
that f(t)>0for—1<t <0.

Conjecture. If a, b are nonnegative real numbers such that a + b = 2, then

_ 2
a’? + b3+ (%) > 2.

P 3.31. If a, b are positive real numbers such that a + b = 2, then
ai + bt <2,
(Vasile Cirtoaje, 2008)
Solution. Without loss of generality, assume that
0<a<1<b<2,

and write the inequality as

1 1
—a T <2
(@ )

By Bernoulli’s inequality, we have

(L)”‘;Hz(;_l)_ﬂ
a? o a \ a2 - as

-
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1 2/b>1 201 \_b’—2b+2
) = TR\ )T T e

Therefore, it suffices to show that

a’ b?
+ <
ad—a?2+1 b2—2b+2

which is equivalent to

a® - (2—b)?
ad—a2+1~ b2—2b+2’
a’ a’

< ,
ad—a?+1 a?2—2a+2
a*(a—1)*>0.

The equality happens fora=b =1.

2,

P 3.32. If a, b are positive real numbers such that a + b = 2, then

ai + bt >2.

Solution. Assume that a < b; that is,

0<a<l<b<2

. 3 3
There are two cases to consider: 0 < a < B and < <a<l.

3 7
Case1:0<a§g. From a + b = 2, we get ng<2. Let

f(x)=x%, 0<x<2.

Since ,
f'(x)=3x*21—1Inx) >0,

f (x) is increasing on (0, 2), hence f(b) > f (g), that is,

ow

b

7\15/7
>(2) .
5
Using Bernoulli’s inequality gives

N\ 7 2\¢7 7 16
Z =2(1+2) >Z(1+=
5 5 5 5 35

(Vasile Cirtoaje, 2008)

51
=—=>
25

b
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therefore , ,
as+ br > 2,

3 7
Case 2: < <a<l Froma+b=2,weget 1<b< < By Lemma below, we have

3 2 3
2a« >3 —15a+ 21a“—7a

and ,
2b5 >3 —15b+21b%—7b°.

Summing these inequalities, we get
2(a% +b?) 2 6—15(a+b) +21(a> + b?) — 7(a® + b°)
=6-—15(a+b)+21(a+b)*—7(a+b)* =4.
This completes the proof. The equality holds fora =b = 1.

3
Lemma. If 5 < x <2, then

3 2 3
2x* > 3—=15x+21x*—7x",
with equality for x = 1.
Proof. First, we show that h(x) > 0, where
h(x)=3—15x +21x2% —7x3.

From
h'(x) = 3(=5 + 14x — 7x?),

2 2 2
it follows that h(x) is increasing on [1 — \/;, 1+ \/;], and decreasing on [1 + \/;, oo)

g) >0 and f(2) > 0. Indeed

Then, it suffices to show that f (

Write now the desired inequality as f(x) > 0, where

3
f(x)=In2+ =Inx—In(3—15x +21x*—7x%), =<x<2.
X

Ul w

We have

x2(7x%—14x +5)
3—15x 4+ 21x2—7x3’

%f’(X) —g(x), gx)=1—Inx+
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g1(x)
x(3—15x +21x2—7x3)2’

g'x)=
where
g,1(x) = —49x7 +245x° — 280x°> — 147x* + 471x> — 321x% + 90x — 9.
In addition,
g1(x = (x—1)%g,(x), go(x)=—49x> +147x* + 63x°> —168x* + 72x — 9,
2,(x) =11x°+3g,5(x), g5(x)=—20x"+49x* +21x% —56x2 + 24x — 3,
23(x) = (4x —1)g,(x), ga(x)=—5x"+11x>+8x*—12x +3,
() =x"+g5(x), g5(x)=—6x"+11x>+8x*—12x +3,
g5(x) = (2x —1)ge(x), ge(x) =—3x>+4x*+6x —3,
gs(x)=1+(2—x)(Bx*+2x—2).

Therefore, we get in succession gg¢(x) > 0, gs(x) > 0, g,(x) > 0, g5(x) > O,
2,(x) > 0, g,(x) =0, g'(x) = 0, g(x) is increasing. Since g(1) = 0, we have

3 3
g(x)<0Oon [E’ 1) and g(x) > 0on (1,2]. Then, f(x) is decreasing on [E’ 1] and

increasing on [1,2], hence f(x) > f(1) =0.
]

P 3.33. If a, b are positive real numbers such that a + b = 2, then
a5 < 2.
(Vasile Cirtoaje, 2010)

Solution. Assume that a > b. For a = 2 and b = 0, the inequality is obvious.
Otherwise, using the substitutiona =1+x and b =1—x, 0 < x < 1, we can write
the desired inequality as

eS(l—x)2 In(1+x) + eS(1+x)2ln(1—x) < 2.

According to Lemma below, it suffices to show that f(x) < 2, where
f(X) — eS(u—v) + e—5(u+v)’

7 5 31 ¢ 5, 17 , 9 ¢
U=x+=-x"+—x", v==-Xx"+—x"+—x".
3 30 2 12 20

If f'(x) <0, then f(x) is decreasing, hence

fl)<f(0)=2.
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Since
/() =51 —v)e*t™ — 5 +v)e W),

31 17 27
U=1+7x>+=x* v =5x+—"x3+=x>,
6 3 10

the inequality f’(x) < 0 becomes
e Uy +vY>u — v
For the nontrivial case u’ —v’ > 0, we rewrite this inequality as g(x) > 0, where
g(x)=—-10u+In(u’ +v")—In(u’ —V").
If g’(x) = 0, then g(x) is increasing, hence
g(x)= f(0)=0.

e have u’ +v" u’ —v"
/ /
x)=-—10u"+ — R
g'(x) u +v’ u —v’

where 62 o7
U =14x + ?xg, v/ =54+17x*+ ?x“.

Write the inequality g’(x) > 0 as
v —vu" > 5u/(u/ + v’)(u’ _ V/),
a,t +a,t* + azt® + a,tt +ast® + agt® + a,t’ >0,
where t =x2,0<t <1, and
a, =2, a,=3215, a;~152.1, a,~—498.2,
as; ~—168.5, as~ 356.0, a,~ 188.3.
This inequality is true if
300t* + 150t —500t* — 200¢> + 250t° > 0.
Since the last inequality is equivalent to the obvious inequality
50t%(1—t)(6+9t —t>*—5t3) >0,
the proof is completed. The equality holds for a = b = 1.
Lemma. If —1 < t <1, then

(1= PIn(l+ )< t— 24 20— Lt S5 2 s
2 3 12 30 20
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Proof. We show that

1 1 1 1
1—t)P2In(1+1t) < 1—t2(t——t2+—t3—_t4+_t5)
1=ty In(1+t)<(1—1¢) SU Tt e

5 1 1
<24 lp a3 9
2 3 12 30 20

The left inequality is equivalent to f(t) > 0, where
1, 1., 1, 1,
t)=t——=t"+-t"—=t"+ -t>—1In(1 + ¢t).
f(O)=t=5+ 30 =2t 4 = —In(1+0)
Since
/ t5
t)= ,
f(t) T+t

f(t) is decreasing on (—1,0] and increasing on [0, 1); therefore, f(t) > f(0) = 0.
The right inequality is equivalent to t®(t — 1) < 0, which is clearly true.

]

P 3.34. If a, b are positive real numbers such that a + b = 2, then

a2/t 4 pA < 2,

(Vasile Cirtoaje, 2010)

Solution. Assume that a > b. For a = 2 and b = 0, the inequality is obvious.
Otherwise, using the substitutiona =1+x and b =1—x, 0 < x < 1, we can write
the desired inequality as f (x) < 2, where

f(X) — (1 + x)ZVl—x + (1 _X)Z\/1+x — eZVI—xln(l-t-x) + 62v1+xln(1—x).

There are two cases to consider.

Case 1: 13/20 < x < 1. If f is decreasing on [13/20,1), then

s (33)=(3) (&) <) () <2

)2v1+x

Since the function (1 —x is decreasing, it suffices to show that

g(x) = (1+x)21*

is decreasing. This is true if g’(x) < 0 for x € [13/20,1), that is equivalent to
h(x) <0, where
2(1—x)

h(x) = 1+ x

—In(1 + x).
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Clearly, h is decreasing, hence

h(x)<h(13) 14 33

——In— <0.
20 33 20

Case 2: 0 < x < 13/20. By Lemma below, it suffices to show that g(x) < 2, where

g(x) _ er —2x +5x3—%x4 + e—(2x+2x +Ex3+ x )

If g’(x) <0 for x €[0,13/20], then g is decreasing, hence g(x) < g(0) = 2. Since

11.3_ 1.4

11
g'(x)=2—4x+— R — 2x3)e2 2 ax
11 .3 1X4)

11
—(2+4x+ ?x + 2x %) Grr2ct et

the inequality g’(x) < 0 is equivalent to

—ax—xd 8 —16x + 11x*—8x>

e
T 84 16x +11x2+8x3"

For the nontrivial case 8—16x +11x%—8x? > 0, rewrite this inequality as h(x) > 0,
where

11
h(x)=—4x — ng —1In(8 —16x + 11x*—8x>) +In(8 + 16x + 11x> + 8x?>).

If k" > 0, then h is increasing, hence h(x) > h(0) = 0. From

n,, (16 + 24x2) — 22x (16 + 24x2) + 22x

h/ = _4_ 5
() 2 T8 11x2— (16x+8x%) | 8+ 11x2 + (16x + 8x?)

it follows that h’(x) > 0 is equivalent to
1
(164+24x2)(8+11x2)—22x(16x +8x3%) > Z(8+11x2)[(8+11x2)2—(16x+8x3)2].

Since
(8 +11x%)* — (16x + 8x3)* < (8 + 11x?%)* — 256x2 — 256x* < 16(4 — 5x2),
it suffices to show that
(4+6x?)(8+11x*) —11x(8x +4x®) > (8 + 11x?)(4 — 5x32).

This inequality reduces to 77x* > 0. The proof is completed. The equality holds
fora=b=1.

13
Lemma. If -1 <t < 20’ then

11 1
Vi—tln(l+t)<t—t*+—3—=t*
24 4
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Proof. Consider two cases.

13
Case1l: 0<t< 20" We can prove the desired inequality by multiplying the follow-
ing inequalities

1 1 1
Vi—t<1l—=t——t*——¢3
2 8 16
1 1 1 1
In(l1+6)<t—=t*+=-t>—>t*+ =¢°,
2 3 4 5
1 1 1 1 1 1 1 11 1
(1——t——t2——t3) (t——t2+—t3——t4+—t5) <t—t*+—t2——t*
2 8 16 2 3 4 5 24 4

The first inequality is equivalent to f(t) > 0, where

1 1 1 1
t)=1 1——t——t2——t3)——l 1—1t).
0 n( 2' 78" T 16 o n(1=06)
Since
1 8+ 4t + 3t 5¢3
)= - = =0
2(1—t) 16—8t—2t2—t3 2(1—1t)(16—8t—2t2—t3)

f is increasing, hence f(t) > f(0) = 0.
The second inequality is equivalent to f(t) > 0, where

1, 1, 1, 1.
)=t—=t*+ == =t*+=t>—In(1 + t).
f(0) FU T3t =30 T3 (1+1)

Since .
1 t
)=1—t+t* -3+t ——= >0,
£ 1+t 1+t

f (t) is increasing, hence f(t) > f(0) = 0.
The third inequality is equivalent to

t*(160 — 302t + 86t + 9t + 12t*) > 0.
This is true since

160 —302t + 86t 4+ 9t + 12t* > 2(80 — 151t + 43t2) > 0.

Case 2: —1 < t < 0. Write the desired inequality as

11 1
—1/1—t1n(1+t)Z—t+t2—2—4t3+Zt4.

This is true if 1 1
vli—t> 1—§t—§l’2,
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1, 1
—In(1+¢t)>—t+ tz—gt?’ + =t

4

1 1 1 1 11 1
(1——t——t2) (—t+ t2— =3+ —t4) >—t+tP——t>+=th
2 8 3 4 24 4

The first inequality is equivalent to f(t) > 0, where

f(t)= %ln(l—t)—ln(l—%t—%tz).

Since

-1 22+t —3t?

fl(t)= + ( ) = <0,
2(1—t) 8—4t—t2 2(1—1t)(8—4t—1t2)

f is decreasing, hence f(t) > f(0) = 0.

The second inequality is equivalent to f(t) > 0, where

1, 1, 1,
t)=t——t"+-t"——t"—In(1+1t).
flO=t= 2t + 28—t =In(1+0)

Since A
1 —t

"=1—t+t>—t3—— = <0,
£ 1+t 1+t

f is decreasing, hence f(t) > f(0) = 0.
The third inequality reduces to the obvious inequality

t*(10—8t —3t%)>0.

P 3.35. If a, b are nonnegative real numbers such that a+ b = 2, then

ab(1—ab)? < gt 4 pH g < ab(1 —ab)z.

2 3
(Vasile Cirtoaje, 2010)

Solution. Assume that a > b, which yields 1 <a<2and0<b < 1.

(a) To prove the left inequality we apply Lemma 1 below. For x =a and k = b,
we have

ab+1 >1+ (1 + b)(a_1)+ w(a_l)z_ b(l + b6)(1— b)(a_l)S,
ab+12a_b+ab+b(l"'b)(a_l)z_@(a—l)‘*. *)
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Also, for x = b and k = a— 1, we have

( 1)

be>1+alb—1)+ o —2(h—1)2— (a_lg(z_a)(b—m
a a 5 ab 4
b 21—a+ab+—(a—1) +—(a—1) ,
ab?
bt >b—ab+ab*+ ( -1+ —(a— 1)%. (**)
Summing up (*) and (**) gives
ab™ + b —2>—b(a—1)*+ b(%ab)(a— 1)*— W(a —1)*
= g(a— 1)*— —b(l ha Z_ab)(a— 1)*
__ab(1+b) ab(1—ab)?

b
— 4>—a — 4:
e (a—1)"= 6(a 1) e

The equality holds fora=b =1, fora=2and b =0, and fora =0 and b = 2.

(b) To prove the right inequality we apply Lemma 2 below. For x = a and
k = b, we have

(b+1)b (b+1)b(b—1)

aM <14+ (b+1Da—1)+ (a—1)*+ < (a—1)°
+(b+1)b(b—1)(b—2)(a_1)4’
24
ab+1£1+(b+1)(a—1)+b(b+1)( 12— b(b“)( 1)+ %:D(a—l)?
Also, for x = b and k = a, we have
b““£1+(a+1)(b—1)+a(a+1)(b 1)°— “(a“)(b 1%+ %jl)(b—l)s-
Summing up these inequalities and having in view that
(b+1)(a—1)P+(a+1)(b-1P°=-2(a—-1)°<0
give
2 2
ab+1+ba+1—2§—2(a—1)2 w( —1)*— w( —1)*
2 2
Sa +b 2( 1o a +l67 +2(a—1)4
2 2
=(a—1)4—$(a—1)4
_ 2
_ Q(a—1)4= ab(1—ab) .
3 3
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The equality holds fora=b =1, fora=2and b =0, and fora =0 and b = 2.

Lemma 1. If x > 0 and 0 < k < 1, then

k(1+k) KA+ k)

6

> 141+ -1+ (x —1)2 (x—1)°,

with equality for x =1, for k =0 and for k = 1.

Proof. For k = 0 and k = 1, the inequality is an identity. For fixed k, 0 < k < 1, let
us define

k(1 +k) LKA+ -k)
2

c (x—1)3.

flx)=x"1—1—-(1+k)(x—1)— (x —1)?

We need to show that f(x) > 0. We have

mf (X)—X 1 k(X' 1)+ 5 (X 1)2,
1 " _ k=1 _ _
k(1+k)f () =x""=1+(1-k)(x-1),

1 " k=
o R =—xTal

Case 1: 0 < x < 1. Since f” <0, f” is decreasing, f"”(x) = f"(1) = 0, f’ is
increasing, f'(x) < f’(1) =0, f is decreasing, hence f(x) > f(1) =0.

Case 2: x > 1. Since f”” >0, f” is increasing, f”(x) > f”(1) =0, f’ is increasing,
f'(x)= f'(1) =0, f is increasing, hence f(x) > f(1) =0.

Lemma 2. Ifeither x > 1and0<k<1,or0<x<1and 1<k <2, then

(k+1)k

», (kt Dk(k—1)

c (x—1)°

<14+ (k+1D)(x—1)+ (x—1)
+(k + Dk(k—1)(k —2)
24

with equality for x =1, for k =0, for k =1 and for k = 2.

(x—1)%,

Proof. For k = 0, k = 1 and k = 2, the inequality is an identity. For fixed k,
ke (0,1)u(1,2), let us define

(k+ Dk o et DR(k=D)

133
2 6 (x—1)

fl)=xM1—1—(k+1)(x—1)—

~(k+ Dk(k—1)(k—2)

7 (x—1)*
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We need to show that f(x) < 0. We have

1 kK=D)L, kk=Dk=2),
mf (x)=x"—1—k(x—1) 5 (x—1) o (x—1)°
1 Vi — k=11 _ _ _ (k - 1)(k - 2) _
k(k+1)f (x)=x""1—1—(k—1)(x—1) S — (x—1)?

1

1" _ k=2 __ 1 _ _
= 1= k=2 -,

1

4) — k=3 _
k(k+1)(k—1)(k—2)f4(x)_xk 1

Case1l: x > 1, 0 < k < 1. Since f®(x) <0, f"(x)is decreasing, f"'(x) < f""(1) =
0, f” is decreasing, f”(x) < f”(1) = 0, f’ is decreasing, f'(x) < f'(1) =0, f is
decreasing, hence f(x) < f(1)=0.

Case2: 0<x <1, 1<k<2. Since f® <0, f is decreasing, f"(x) > f""(1) =
0, f” is increasing, f”(x) < f”(1) = 0, f' is decreasing, f'(x) = f'(1) =0, f is
increasing, hence f(x) < f(1) =0.

]

P 3.36. If a, b are nonnegative real numbers such that a+ b =1, then
a®® + b2 < 1.
(Vasile Cirtoaje, 2007)

Solution. Without loss of generality, assume that

0<b<-<ax<l

N | =

Applying Lemma 1 below for ¢ =2b, 0 < ¢ < 1, we get
a®® < (1—2b)?>+4ab(1—b)—2ab(1—2b)Ina,
which is equivalent to
a*® <1—4ab?>—2ab(a—b)lna.
Similarly, applying Lemma 2 below for d =2a—1, d > 0, we get
b% ! < 4a(1—a)+2a(2a—1)In(2a +b—1),
which is equivalent to

b* < 4ab®+ 2ab(a—b)Ina.
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Adding up these inequalities, the desired inequality follows. The equality holds for
a=b=1/2,fora=0and b=1,and fora=1and b =0.

Lemma 1. [f0<a < 1and c >0, then
a‘ <(1—c)*+ac(2—c)—ac(l—c)lna,

with equality for a =1, for ¢ = 0 and for ¢ = 1.

Proof. Making the substitution

a=e %, x =0,
we need to prove that f(x) > 0, where
f)=(1—=c)e +c(2—c)+c(1—c)x —eltmox,
F'(x)=1Q—=0c)[(1—c)e* +c—ell=9],

If f'>0on [0,00), then f is increasing, and hence f(x) > f(0) = 0. In order to
prove that f’ > 0, we consider two cases.

Case 1: 0 < ¢ < 1. By the weighted AM-GM inequality, we have
(1—c)e* +c¢>ell™ox,

hence f’(x) > 0.
Case 2: ¢ > 1. By the weighted AM-GM inequality, we have

(c—1)e* +eT™9* > ¢,

which yields
f'(x)=(c=D[(c—1)e* + T —c]>0.

Lemma 2. [f0< b <1andd >0, then
bi<1—d?+d(1+d)In(b+d),

with equality for b =0 and for d = 0.

Proof. Consider 0 < b <1 and d > 0, and write the inequality as

(1+d)[1—d+dIn(b+d)]> b

Since
1—-d+dIn(b+d)>1—d+dIlnd >0,

we can rewrite the inequality in the form

In(1+d)+1In[1—d +dIn(b+d)] > dInb.
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Using the substitution
b=e*—d, —In(1+d)<x<-Ind,
we need to prove that f(x) > 0, where
f(x)=In(1+d)+In(1—d—dx)+dx—dIn(1—de").
Since

d?(e¥—1—x) >0

S = i —ana=de =

f is increasing, hence
f(x)>f(=In(1+d))=In[1—d*+d(1+d)In(1+d)].

To complete the proof, we only need to show that —d*+d(1+d)In(1+d) > 0; that
is,
(1+d)In(1+d)>d.
—d

This inequality follows from e* > 1 + x, where x = Tod

Conjecture. If a, b are nonnegative real numbers such that 1 < a+ b < 15, then

aZb + b2a < aa+b + ba+b.

P 3.37. If a, b are positive real numbers such that a + b = 1, then

2a°b’ > a® + b*.

Solution. Taking into account the inequality a?® + b%* < 1 from the preceding P
3.36, it suffices to show that
2a°b® > 1.

Write this inequality as
24 bb > aa+b + ba+b

o (2) ()

Since a < 1 and b < 1, we apply Bernoulli’s inequality as follows:

(%)b+(§)as1+b(%—1)+1+a(3—1):z.

Thus, the proof is completed. The equality holds fora =b =1/2.
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P 3.38. If a, b are positive real numbers such that a + b = 1, then

a2 +p?t <y,

Solution. Applying Lemma below, we have
a2 <4—-2In2—4(1—1n2)a,

b2’ <4—2In2—4(1—1n2)b.

Adding these inequalities, the desired inequality follows. The equality holds for
a=b=1/2.

Lemma. If x € (0, 1], then

X <4—2In2—4(1—1n2)x,
with equality for x =1/2.
Proof. Write the inequality as

1 1
ZX—2XS1_C_(1_Zc)X’ C:§1n2%0.346.

This is true if f(x) < 0, where

f(x)=—2In2—2xInx—In[1—c—(1—2c)x].

We have 12
fl(x)=—2—2Inx + e a_20x
" __E (1_2C)2 _ g(x)
) = Y A e A —20xP  x[I—c—(1—20xF"°
where
g(x)=2(1—2c)*x*>—(1—2¢)(5—6¢)x +2(1—c)>
Since

g'(x)=01—-2c)[4(1—2c)x —5+6¢c] < (1—2c)[4(1—2c)—5+6¢]
=(1—2c)(—1—2c) <0,
g is decreasing on (0, 1], hence g(x) > g(1) = —2c>+4c—1> 0, f”(x) > 0for x €
(0,1], f’ is increasing. Since f’(1/2) =0, we have f’(x) < 0 for x € (0,1/2] and

f’(x) =0 for x € [1/2,1]. Therefore, f is decreasing on (0,1/2] and increasing
on[1/2,1], hence f(x)> f(1/2)=0.

Remark. According to the inequalities in P 3.36 and P 3.38, the following inequality
holds for all positive numbers a, b such thata + b = 1:

(a® + b2) (ai ; %) <4.



498 Vasile Cirtoaje

Actually, this inequality holds for all a, b € (0, 1]. In this case, it is sharper than the
inequality in P 3.19.
O

P 3.39. Ifa;,a,,...,aqa, are positive real numbers such that a,a,---a, =1, then

1\* 1\% 1)\%
(1__) +(1__) +..-+(1_-) <n-1.
n n n
(Vasile Cirtoaje, 2004)

Solution. We will prove the more general inequality

1\* 1\* 1\* 1\°
G- () (1Y)
n n n n
where a = /a;a, -~ a, < 1. Using the substitution

n .
x;=aq;ln——, i=1,2,...,n,
n—1
the inequality becomes as follows:

e te ™+ e <ne, (**)

where

r={/x;xy X, <In

To prove this inequality, we use the induction technique. For n = 1, (**) is an
equality. Consider now that (**) holds for n — 1 numbers, n > 2, and show that it
also holds for n numbers. Assume that

n—1

X]_SX2<"’<X

— — n»

and denote

Because

the induction hypothesis yields
e +e 4 e < (n—1)e”.
Thus, we only need to show that

e "+ (n—1)e™* <ne™’,
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which is equivalent to

f(x)<ne™
for
0<x<r<lIn <1,
n_
where
n n—1
fO) = +(n—1)e™.
We have
xmer" /X" .
—f() =g, gl =r"—x"en
n_

e g () =h(x), h(x)=x"—nx""'+(n—1)r",
h'(x)=nx"?(x—n+1).
Since h’(x) < 0, h is strictly decreasing, and from

h(0)=(n—1r">0, h(r)=nr"(r—1)<0,

it follows that there exists x; € (0, r) such that h(x;) =0, h(x) > 0 for x € (0, x;),
h(x) < 0 for x € (x;, r]. Therefore, g is strictly increasing on (0, x ] and strictly de-
creasing on [x,,r]. Since g(0,) = —o0 and g(r) = 0, there exists x, € (0, x;) such
that g(x,) =0, g(x) < 0 for x € (0, x,), g(x) > 0 for x € (x,,r]. Consequently, f
is strictly decreasing on (0, x, ] and strictly increasing on [x,, r ], hence

f(x) <max{f(0,),f(r)} =max{n—1,ne"} =ne .

Thus, the proof is completed. The inequality (**) is an equality for

<In ,
" n—1

X1:X2="':X

the inequality (*) for
al == az =--=a

and the original inequality for

ag=a,=---=a,=1.
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Appendix A

Glosar

1. AM-GM (ARITHMETIC MEAN-GEOMETRIC MEAN) INEQUALITY

If a;,a,,...,a, are nonnegative real numbers, then
a;+a,+---+a,2ny/a;a;,---a,,
with equality if and only if a; = a, =--- = a,,.

2. WEIGHTED AM-GM INEQUALITY

Let p1,ps,--., P, be positive real numbers satisfying

pi+pyt--tp, =1

If a;,a,,...,a, are nonnegative real numbers, then
b1 P2 |

P10y +pady+ -+ paa, 2 ay'ay’ - ap,

with equality if and only if a; = a, =---=a

ne

3. AM-HM (ARITHMETIC MEAN-HARMONIC MEAN) INEQUALITY

If a,,a,,...,a, are positive real numbers, then

1 1 1
(a1+a2+---+an)(—+—+---+—)an,
a a an

with equality if and only if a; = a, =--- =a,,.

501
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4. POWER MEAN INEQUALITY
The power mean of order k of positive real numbers a,,a,,...,qa,, that is

1
ko k k
(a1+a2+---+an

: )E, k#0
Jaja, - a, k=0

is an increasing function with respect to k € R. For instant, M, > M; > M, > M_;
is equivalent to

\Jaf+a§+...+a%>a1+a2+"‘+an n L
- > " = n 1 1 1°

5. BERNOULLI’S INEQUALITY

For any real number x > —1, we have
a) (1+x) =>21+rxforr>1andr <0;
b) (1+x) <l+rxfor0<r<1.

If a;,a,,...,a, are real numbers such that either a,,a,,...,a, >0 or
-1<a,,a,,...,a,<0,

then
(1+a)1+a)-(I+a,)=1+a;+a,+-+a,.

6. SCHUR’S INEQUALITY

For any nonnegative real numbers a, b, ¢ and any positive number k, the inequality
holds
a“(a—b)a—c)+ b (b—c)b—a)+c(c—a)(c—Db) >0,

with equality for a = b = ¢, and for a = 0 and b = ¢ (or any cyclic permutation).
For k = 1, we get the third degree Schur’s inequality, which can be rewritten as
follows
a®+b*+c®+3abc > ab(a+ b)+ be(b +¢)+calc+a),
(a+b+c)®+9abc>4(a+Db+c)ab+ bc+ca),
b
a2+b2+c2+£22(ab+bc+ca),
a+b+c

(b—c)(b+c—a)+(c—a)*(c+a—b)+(a—b)*(a+b—c)>0.



Symmetric Power-Exponential Inequalities 503

For k = 2, we get the fourth degree Schur’s inequality, which holds for any real
numbers a, b, ¢, and can be rewritten as follows

a*+b*+c*+abc(a+b+c)>ab(a®+ b))+ be(b? + )+ ca(c® + a?),
a*+ b*+c*—a*b?*—b*c*—c*a*> (ab + bc +ca)(a®? + b* + c*—ab — bc —ca),
(b—cY*(b+c—a)+(c—a)*(c+a—Db)*+(a—Db)*(a+b—c)*>0,
6abcp > (p*—q)(4q—p?), p=a+b+c, g=ab+ bc+ca.

A generalization of the fourth degree Schur’s inequality, which holds for any
real numbers a, b, ¢ and any real number m, is the following (Vasile Cirtoaje, 2004)

Z(a —mb)(a—mc)(a—b)(a—c)=>0,

where the equality holds for a = b = ¢, and for a/m = b = ¢ (or any cyclic
permutation). This inequality is equivalent to

Za4+ m(m+2)Z:a2b2 +(1 —mz)acha > (m+ 1)Z:ab(a2 + b?),

Z(b —c)*(b+c—a—ma)*=>0.
A more general result is given by the following theorem (Vasile Cirtoaje, 2008).

Theorem. Let

fala,b,c) = Za“ + aZasz + ﬁacha —yZab(aZ + b?),
where a, 3,y are real constants such that 1+ a+ 3 =2y. Then,
(@) fs4(a,b,c) =0 forall a,b,c € R if and only if

1+a>y%
(b) fi(a,b,c)=0forall a,b,c >0 if and only if

a>(y—1)max{2,y +1}.

7. CAUCHY-SCHWARZ INEQUALITY

If a;,a,,...,a, and by, b,,..., b, are real numbers, then
(@+a+---+a)(bi+b2+---+b2) > (a;by +ayby + -+ +a,b,),

with equality for
a _ as _ a

b, b, b,

Notice that the equality conditions are also valid for a; = b; =0, where 1 <i < n.
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8. HOLDER’S INEQUALITY

If x;; (i=1,2,---,m;j=1,2,---n) are nonnegative real numbers, then

[1(3)=(31)

9. CHEBYSHEV’S INEQUALITY

Let a; > a, > --- > a, be real numbers.

a)Ifb,>b,>---b,, then

Zab >(

i=1

Qa
N~
~
i N=

=
~

=

b) Ifbl S sz"'S bn, then
Zab <( al)( bi).
i=1 i= i=1

10. CONVEX FUNCTIONS

—_

A function f defined on a real interval I is said to be convex if

flax+py)<af(x)+pf(¥)

forall x, y €l and any a, 8 > 0 with a + 8 = 1. If the inequality is reversed, then
f is said to be concave.

If f is differentiable on I, then f is (strictly) convex if and only if the derivative f’
is (strictly) increasing. If f” > 0 on I, then f is convex on I.

Jensen’s inequality. Let p,,p,,..., P, be positive real numbers. If f is a convex
function on a real interval 1, then for any ay, a,, ..., a, € I, the inequality holds

Pif (@) T paf (@) ¥ puflan) (plal t Pyt +pnan)
Py+pat-tpn - P1+pyt-tpn

For p, = p, =--- = p,,, Jensen’s inequality becomes

fla)) +f(a)+---+ f(a,) =nf

(a1+a2+"'+an)
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11. KARAMATA'S MAJORIZATION INEQUALITY

Let f be a convex function on a real interval I. If a decreasingly ordered sequence
A= (aj,a,,...,qa,), a€I,

majorizes a decreasingly ordered sequence
B =(b;,by,...,b,), b;€],

then
fla) +flag) +---+ f(a,) = f(by) + f (D) +--- + f(by).

We say that a sequence A= (a,,a,,...,a,) with a; > a, > --- > a, majorizes a

sequence B = (by, by, ..., b,) with b; > b, >--- > b,,, and write it as
A> B,

if
a, = by,

a, +a, =>b; + by,
a1+a2+"'+an_12b1+b2+"'+bn_1,
Cl1+a2+"'+an:b1+b2+"'+bn.

12. SYMMETRIC INEQUALITIES OF DEGREE THREE, FOUR OR FIVE

Theorem (Vasile Cirtoaje, 2010) Let f,(a, b,c) be a symmetric homogeneous
polynomial of degree n.

(a) The inequality f,(a, b,c) = 0 holds for all real numbers a, b, c if and only if
fa(a,1,1) > 0 for all real a;

(b) For n € {3,4,5}, the inequality f,(a, b,c) = 0 holds for all a,b,c > 0 if and
only if f,(a,1,1) >0 and f,(0,b,c) = 0 for all a, b,c = 0.

13. SYMMETRIC HOMOGENEOUS INEQUALITIES OF DEGREE SIX

Any sixth degree symmetric homogeneous polynomial fi(a, b, c) can be written in
the form

fela,b,c)=Ar*+B(p,q)r + C(p,q),
where A is called the highest coefficient of f, and

p=a+b+c, qgq=ab+bc+ca, r=abc.

Theorem (Vasile Cirtoaje, 2010). Let fs(a,b,c) be a sixth degree symmetric
homogeneous polynomial having the highest coefficient A < 0.
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(a) The inequality f¢(a, b,c) = 0 holds for all real numbers a, b, ¢ if and only if
fela,1,1) > 0 for all real a;

(b) The inequality f¢(a, b,c) = 0 holds foralla, b,c = 0 if and only if f¢(a,1,1) >
0 and f¢(0,b,c) =0 forall a,b,c > 0.

This theorem is also valid for the case where B(p,q) and C(p, q) are homoge-
neous rational functions.

For A > 0, we can use the highest coefficient cancellation method (Vasile Cirtoaje,
2010). This method consists in finding some suitable real numbers B, C and D such
that the following sharper inequality holds

2 2
fe(a, b,c) ZA(r + Bp* +Cpq +Dq—) )
p

Because the function g4 defined by

2 2
gs(a,b,c) = f¢(a,b,c) —A(r +Bp®+Cpq + Dq—)
p

has the highest coefficient A; = 0, we can prove the inequality g¢(a, b,c) > 0 using
Theorem above.

Notice that sometimes it is useful to break the problem into two parts, p? < &q
and p? > &q, where £ is a suitable real number.

A symmetric homogeneous polynomial of degree six in three variables has the
form

fela,b,c) =A, Z a®+A, Z:ab(a4 +b%) +A32:a2b2(a2 + b?)

+A4Z a®b* + Asabc Z a® +Agabc Z ab(a + b) + 3A,a*b*c?,

where A,,...,A, are real constants. In order to write this polynomial as a function
of p, g and r, the following relations are useful:

ZaB =3r+p>—3pq,
Z ab(a+b)=—-3r+pq,
Z:aBb3 =3r?—3pqr +¢°,
Z a’*b?*(a® + b*) = —3r* —2(p® — 2pq)r + p*q* — 2¢>,
Z:ab(a4 + b =-3r>—2(p>—7pq)r + p*q —4p*q* + 24>,

Za6 =3r?+6(p*> —2pq)r + p® — 6p*q + 9p*q* — 2¢°,
(a—b)*(b—c)*(c—a)* =—27r*+2(9pq — 2p*)r + p*q*> — 4q°.
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According to these relations, the highest coefficient A of the polynomial fs(a, b, c)

1S

The polynomials
Py(a,b,c) = » (A1a* +A,bc)(Bya® + Bybe)(Cra® + Cy be),

Py(a,b,c) = Z:(Ala2 +A,bc)(B,b* + B,ca)(C,c* + C,ab)

and
Py(a,b,c) = (A;a® +A,bc)(A,b* +A,ca)(A c* +A,ab)

has the highest coefficients
P,(1,1,1), P,(1,1,1), Ps(1,1,1),
respectively. The polynomial
P,(a,b,c) = (a* + mab + b?)(b* + mbc + c*)(c* + mca + a?)

has the highest coefficient
A=(m—1)>.

14. VASC’S POWER EXPONENTIAL INEQUALITIES

Theorem. Let 0 < k < e.

(@) If a,b > 0, then (Vasile Cirtoaje, 2006)
aka + bkb > akb + bka;
(b) Ifa,b €(0,1], then (Vasile Cirtoaje, 2010)

2V akapkb > g*b + p*,
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