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Chapter 1

Symmetric Rational Inequalities

1.1 Applications

1.1. If a, b are nonnegative real numbers, then

1
(1+ a)2

+
1

(1+ b)2
≥

1
1+ ab

.

1.2. Let a, b, c be positive real numbers. Prove that

(a) if abc ≤ 1, then

1
2a+ 1

+
1

2b+ 1
+

1
2c + 1

≥ 1;

(b) if abc ≥ 1, then

1
a+ 2

+
1

b+ 2
+

1
c + 2

≤ 1.

1.3. If 0≤ a, b, c ≤ 1, then

2
�

1
a+ b

+
1

b+ c
+

1
c + a

�

≥ 3
�

1
2a+ 1

+
1

2b+ 1
+

1
2c + 1

�

.

1.4. If a, b, c are nonnegative real numbers such that a+ b+ c ≤ 3, then

2
�

1
a+ b

+
1

b+ c
+

1
c + a

�

≥ 5
�

1
2a+ 3

+
1

2b+ 3
+

1
2c + 3

�

.

1
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1.5. If a, b, c are nonnegative real numbers, then

a2 − bc
3a+ b+ c

+
b2 − ca

3b+ c + a
+

c2 − ab
3c + a+ b

≥ 0.

1.6. If a, b, c are positive real numbers, then

4a2 − b2 − c2

a(b+ c)
+

4b2 − c2 − a2

b(c + a)
+

4c2 − a2 − b2

c(a+ b)
≤ 3.

1.7. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a)
1

a2 + bc
+

1
b2 + ca

+
1

c2 + ab
≥

3
ab+ bc + ca

;

(b)
1

2a2 + bc
+

1
2b2 + ca

+
1

2c2 + ab
≥

2
ab+ bc + ca

.

(c)
1

a2 + 2bc
+

1
b2 + 2ca

+
1

c2 + 2ab
>

2
ab+ bc + ca

.

1.8. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a(b+ c)
a2 + bc

+
b(c + a)
b2 + ca

+
c(a+ b)
c2 + ab

≥ 2.

1.9. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a2

b2 + c2
+

b2

c2 + a2
+

c2

a2 + b2
≥

a
b+ c

+
b

c + a
+

c
a+ b

.

1.10. Let a, b, c be positive real numbers. Prove that

1
b+ c

+
1

c + a
+

1
a+ b

≥
a

a2 + bc
+

b
b2 + ca

+
c

c2 + ab
.

1.11. Let a, b, c be positive real numbers. Prove that

1
b+ c

+
1

c + a
+

1
a+ b

≥
2a

3a2 + bc
+

2b
3b2 + ca

+
2c

3c2 + ab
.
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1.12. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a)
a

b+ c
+

b
c + a

+
c

a+ b
≥

13
6
−

2(ab+ bc + ca)
3(a2 + b2 + c2)

;

(b)
a

b+ c
+

b
c + a

+
c

a+ b
−

3
2
≥ (
p

3− 1)
�

1−
ab+ bc + ca
a2 + b2 + c2

�

.

1.13. Let a, b, c be positive real numbers. Prove that

1
a2 + 2bc

+
1

b2 + 2ca
+

1
c2 + 2ab

≤
�

a+ b+ c
ab+ bc + ca

�2

.

1.14. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a2(b+ c)
b2 + c2

+
b2(c + a)
c2 + a2

+
c2(a+ b)
a2 + b2

≥ a+ b+ c.

1.15. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a2 + b2

a+ b
+

b2 + c2

b+ c
+

c2 + a2

c + a
≤

3(a2 + b2 + c2)
a+ b+ c)

.

1.16. Let a, b, c be positive real numbers. Prove that

1
a2 + ab+ b2

+
1

b2 + bc + c2
+

1
c2 + ca+ a2

≥
9

(a+ b+ c)2
.

1.17. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a2

(2a+ b)(2a+ c)
+

b2

(2b+ c)(2b+ a)
+

c2

(2c + a)(2c + b)
≤

1
3

.

1.18. Let a, b, c be positive real numbers. Prove that

(a)
∑ a
(2a+ b)(2a+ c)

≤
1

a+ b+ c
;

(b)
∑ a3

(2a2 + b2)(2a2 + c2)
≤

1
a+ b+ c

.
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1.19. If a, b, c are positive real numbers, then

∑ 1
(a+ 2b)(a+ 2c)

≥
1

(a+ b+ c)2
+

2
3(ab+ bc + ca)

.

1.20. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a)
1

(a− b)2
+

1
(b− c)2

+
1

(c − a)2
≥

4
ab+ bc + ca

;

(b)
1

a2 − ab+ b2
+

1
b2 − bc + c2

+
1

c2 − ca+ a2
≥

3
ab+ bc + ca

;

(c)
1

a2 + b2
+

1
b2 + c2

+
1

c2 + a2
≥

5
2(ab+ bc + ca)

.

1.21. If a, b, c are positive real numbers, then

(a2 + b2)(a2 + c2)
(a+ b)(a+ c)

+
(b2 + c2)(b2 + a2)
(b+ c)(b+ a)

+
(c2 + a2)(c2 + b2)
(c + a)(c + b)

≥ a2 + b2 + c2.

1.22. Let a, b, c be positive real numbers such that a+ b+ c = 3. Prove that

1
a2 + b+ c

+
1

b2 + c + a
+

1
c2 + a+ b

≤ 1.

1.23. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

a2 − bc
a2 + 3

+
b2 − ca
b2 + 3

+
c2 − ab
c2 + 3

≥ 0.

1.24. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

1− bc
5+ 2a

+
1− ca
5+ 2b

+
1− ab
5+ 2c

≥ 0.

1.25. Let a, b, c be positive real numbers such that a+ b+ c = 3. Prove that

1
a2 + b2 + 2

+
1

b2 + c2 + 2
+

1
c2 + a2 + 2

≤
3
4

.
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1.26. Let a, b, c be positive real numbers such that a+ b+ c = 3. Prove that

1
4a2 + b2 + c2

+
1

4b2 + c2 + a2
+

1
4c2 + a2 + b2

≤
1
2

.

1.27. Let a, b, c be nonnegative real numbers such that a+ b+ c = 2. Prove that

bc
a2 + 1

+
ca

b2 + 1
+

ab
c2 + 1

≤ 1.

1.28. Let a, b, c be nonnegative real numbers such that a+ b+ c = 1. Prove that

bc
a+ 1

+
ca

b+ 1
+

ab
c + 1

≤
1
4

.

1.29. Let a, b, c be positive real numbers such that a+ b+ c = 1. Prove that

1
a(2a2 + 1)

+
1

b(2b2 + 1)
+

1
c(2c2 + 1)

≤
3

11abc
.

1.30. Let a, b, c be positive real numbers such that a+ b+ c = 3. Prove that

1
a3 + b+ c

+
1

b3 + c + a
+

1
c3 + a+ b

≤ 1.

1.31. Let a, b, c be positive real numbers such that a+ b+ c = 3. Prove that

a2

1+ b3 + c3
+

b2

1+ c3 + a3
+

c2

1+ a3 + b3
≥ 1.

1.32. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

1
6− ab

+
1

6− bc
+

1
6− ca

≤
3
5

.

1.33. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

1
2a2 + 7

+
1

2b2 + 7
+

1
2c2 + 7

≤
1
3

.
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1.34. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

1
2a2 + 3

+
1

2b2 + 3
+

1
2c2 + 3

≥
3
5

.

1.35. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

1
a+ b

+
1

b+ c
+

1
c + a

≥
a+ b+ c

6
+

3
a+ b+ c

.

1.36. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

1
a2 + 1

+
1

b2 + 1
+

1
c2 + 1

≥
3
2

.

1.37. Let a, b, c be positive real numbers such that ab+ bc + ca = 3. Prove that

a2

a2 + b+ c
+

b2

b2 + c + a
+

c2

c2 + a+ b
≥ 1.

1.38. Let a, b, c be positive real numbers such that ab+ bc + ca = 3. Prove that

bc + 4
a2 + 4

+
ca+ 4
b2 + 4

+
ab+ 4
c2 + 4

≤ 3≤
bc + 2
a2 + 2

+
ca+ 2
b2 + 2

+
ab+ 2
c2 + 2

.

1.39. Let a, b, c be nonnegative real numbers such that ab+ bc + ca = 3. If

k ≥ 2+
p

3,

then
1

a+ k
+

1
b+ k

+
1

c + k
≤

3
1+ k

.

1.40. Let a, b, c be nonnegative real numbers such that a2+ b2+ c2 = 3. Prove that

a(b+ c)
1+ bc

+
b(c + a)
1+ ca

+
c(a+ b)
1+ ab

≤ 3.
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1.41. Let a, b, c be positive real numbers such that a2 + b2 + c2 = 3. Prove that

a2 + b2

a+ b
+

b2 + c2

b+ c
+

c2 + a2

c + a
≥ 3.

1.42. Let a, b, c be positive real numbers such that a2 + b2 + c2 = 3. Prove that

ab
a+ b

+
bc

b+ c
+

ca
c + a

+ 2≤
7
6
(a+ b+ c).

1.43. Let a, b, c be positive real numbers such that a2 + b2 + c2 = 3. Prove that

(a)
1

3− ab
+

1
3− bc

+
1

3− ca
≤

3
2

;

(b)
1

5− 2ab
+

1
5− 2bc

+
1

5− 2ca
≤ 1;

(c)
1

p
6− ab

+
1

p
6− bc

+
1

p
6− ca

≤
3

p
6− 1

.

1.44. Let a, b, c be positive real numbers such that a2 + b2 + c2 = 3. Prove that

1
1+ a5

+
1

1+ b5
+

1
1+ c5

≥
3
2

.

1.45. Let a, b, c be positive real numbers such that abc = 1. Prove that

1
a2 + a+ 1

+
1

b2 + b+ 1
+

1
c2 + c + 1

≥ 1.

1.46. Let a, b, c be positive real numbers such that abc = 1. Prove that

1
a2 − a+ 1

+
1

b2 − b+ 1
+

1
c2 − c + 1

≤ 3.

1.47. Let a, b, c be positive real numbers such that abc = 1. Prove that

3+ a
(1+ a)2

+
3+ b
(1+ b)2

+
3+ c
(1+ c)2

≥ 3.
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1.48. Let a, b, c be positive real numbers such that abc = 1. Prove that

7− 6a
2+ a2

+
7− 6b
2+ b2

+
7− 6c
2+ c2

≥ 1.

1.49. Let a, b, c be positive real numbers such that abc = 1. Prove that

a6

1+ 2a5
+

b6

1+ 2b5
+

c6

1+ 2c5
≥ 1.

1.50. Let a, b, c be positive real numbers such that abc = 1. Prove that

a
a2 + 5

+
b

b2 + 5
+

c
c2 + 5

≤
1
2

.

1.51. Let a, b, c be positive real numbers such that abc = 1. Prove that

1
(1+ a)2

+
1

(1+ b)2
+

1
(1+ c)2

+
2

(1+ a)(1+ b)(1+ c)
≥ 1.

1.52. Let a, b, c be nonnegative real numbers such that

1
a+ b

+
1

b+ c
+

1
c + a

=
3
2

.

Prove that
3

a+ b+ c
≥

2
ab+ bc + ca

+
1

a2 + b2 + c2
.

1.53. Let a, b, c be nonnegative real numbers such that

7(a2 + b2 + c2) = 11(ab+ bc + ca).

Prove that
51
28
≤

a
b+ c

+
b

c + a
+

c
a+ b

≤ 2.

1.54. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1
a2 + b2

+
1

b2 + c2
+

1
c2 + a2

≥
10

(a+ b+ c)2
.
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1.55. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1
a2 − ab+ b2

+
1

b2 − bc + c2
+

1
c2 − ca+ a2

≥
3

max{ab, bc, ca}
.

1.56. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a(2a+ b+ c)
b2 + c2

+
b(2b+ c + a)

c2 + a2
+

c(2c + a+ b)
a2 + b2

≥ 6.

1.57. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a2(b+ c)2

b2 + c2
+

b2(c + a)2

c2 + a2
+

c2(a+ b)2

a2 + b2
≥ 2(ab+ bc + ca).

1.58. If a, b, c are positive real numbers, then

3
∑ a

b2 − bc + c2
+ 5

�

a
bc
+

b
ca
+

c
ab

�

≥ 8
�

1
a
+

1
b
+

1
c

�

.

1.59. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a) 2abc
�

1
a+ b

+
1

b+ c
+

1
c + a

�

+ a2 + b2 + c2 ≥ 2(ab+ bc + ca);

(b)
a2

a+ b
+

b2

b+ c
+

c2

c + a
≤

3(a2 + b2 + c2)
2(a+ b+ c)

.

1.60. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a)
a2 − bc
b2 + c2

+
b2 − ca
c2 + a2

+
c2 − ab
a2 + b2

+
3(ab+ bc + ca)

a2 + b2 + c2
≥ 3;

(b)
a2

b2 + c2
+

b2

c2 + a2
+

c2

a2 + b2
+

ab+ bc + ca
a2 + b2 + c2

≥
5
2

;

(c)
a2 + bc
b2 + c2

+
b2 + ca
c2 + a2

+
c2 + ab
a2 + b2

≥
ab+ bc + ca
a2 + b2 + c2

+ 2.

1.61. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a2

b2 + c2
+

b2

c2 + a2
+

c2

a2 + b2
≥

(a+ b+ c)2

2(ab+ bc + ca)
.
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1.62. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

2ab
(a+ b)2

+
2bc
(b+ c)2

+
2ca
(c + a)2

+
a2 + b2 + c2

ab+ bc + ca
≥

5
2

.

1.63. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

ab
(a+ b)2

+
bc

(b+ c)2
+

ca
(c + a)2

+
1
4
≥

ab+ bc + ca
a2 + b2 + c2

.

1.64. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

3ab
(a+ b)2

+
3bc
(b+ c)2

+
3ca
(c + a)2

≤
ab+ bc + ca
a2 + b2 + c2

+
5
4

.

1.65. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a)
a3 + abc

b+ c
+

b3 + abc
c + a

+
c3 + abc

a+ b
≥ a2 + b2 + c2;

(b)
a3 + 2abc

b+ c
+

b3 + 2abc
c + a

+
c3 + 2abc

a+ b
≥

1
2
(a+ b+ c)2;

(c)
a3 + 3abc

b+ c
+

b3 + 3abc
c + a

+
c3 + 3abc

a+ b
≥ 2(ab+ bc + ca).

1.66. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a3 + 3abc
(b+ c)2

+
b3 + 3abc
(c + a)2

+
c3 + 3abc
(a+ b)2

≥ a+ b+ c.

1.67. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a)
a3 + 3abc
(b+ c)3

+
b3 + 3abc
(c + a)3

+
c3 + 3abc
(a+ b)3

≥
3
2

;

(b)
3a3 + 13abc
(b+ c)3

+
3b3 + 13abc
(c + a)3

+
3c3 + 13abc
(a+ b)3

≥ 6.
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1.68. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a)
a3

b+ c
+

b3

c + a
+

c3

a+ b
+ ab+ bc + ca ≥

3
2
(a2 + b2 + c2);

(b)
2a2 + bc

b+ c
+

2b2 + ca
c + a

+
2c2 + ab

a+ b
≥

9(a2 + b2 + c2)
2(a+ b+ c)

.

1.69. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a(b+ c)
b2 + bc + c2

+
b(c + a)

c2 + ca+ a2
+

c(a+ b)
a2 + ab+ b2

≥ 2.

1.70. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a(b+ c)
b2 + bc + c2

+
b(c + a)

c2 + ca+ a2
+

c(a+ b)
a2 + ab+ b2

≥ 2+ 4
∏

�

a− b
a+ b

�2

.

1.71. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

ab− bc + ca
b2 + c2

+
bc − ca+ ab

c2 + a2
+

ca− ab+ bc
a2 + b2

≥
3
2

.

1.72. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > −2,
then

∑ ab+ (k− 1)bc + ca
b2 + kbc + c2

≥
3(k+ 1)

k+ 2
.

1.73. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > −2,
then

∑ 3bc − a(b+ c)
b2 + kbc + c2

≤
3

k+ 2
.

1.74. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

ab+ 1
a2 + b2

+
bc + 1
b2 + c2

+
ca+ 1
c2 + a2

≥
4
3

.
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1.75. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

5ab+ 1
(a+ b)2

+
5bc + 1
(b+ c)2

+
5ca+ 1
(c + a)2

≥ 2.

1.76. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a2 − bc
2b2 − 3bc + 2c2

+
b2 − ca

2c2 − 3ca+ 2a2
+

c2 − ab
2a2 − 3ab+ 2b2

≥ 0.

1.77. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

2a2 − bc
b2 − bc + c2

+
2b2 − ca

c2 − ca+ a2
+

2c2 − ab
a2 − ab+ b2

≥ 3.

1.78. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a2

2b2 − bc + 2c2
+

b2

2c2 − ca+ 2a2
+

c2

2a2 − ab+ 2b2
≥ 1.

1.79. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1
4b2 − bc + 4c2

+
1

4c2 − ca+ 4a2
+

1
4a2 − ab+ 4b2

≥
9

7(a2 + b2 + c2)
.

1.80. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

2a2 + bc
b2 + c2

+
2b2 + ca
c2 + a2

+
2c2 + ab
a2 + b2

≥
9
2

.

1.81. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

2a2 + 3bc
b2 + bc + c2

+
2b2 + 3ca

c2 + ca+ a2
+

2c2 + 3ab
a2 + ab+ b2

≥ 5.

1.82. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

2a2 + 5bc
(b+ c)2

+
2b2 + 5ca
(c + a)2

+
2c2 + 5ab
(a+ b)2

≥
21
4

.
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1.83. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > −2,
then

∑ 2a2 + (2k+ 1)bc
b2 + kbc + c2

≥
3(2k+ 3)

k+ 2
.

1.84. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > −2,
then

∑ 3bc − 2a2

b2 + kbc + c2
≤

3
k+ 2

.

1.85. If a, b, c are nonnegative real numbers, no two of which are zero, then

a2 + 16bc
b2 + c2

+
b2 + 16ca

c2 + a2
+

c2 + 16ab
a2 + b2

≥ 10.

1.86. If a, b, c are nonnegative real numbers, no two of which are zero, then

a2 + 128bc
b2 + c2

+
b2 + 128ca

c2 + a2
+

c2 + 128ab
a2 + b2

≥ 46.

1.87. If a, b, c are nonnegative real numbers, no two of which are zero, then

a2 + 64bc
(b+ c)2

+
b2 + 64ca
(c + a)2

+
c2 + 64ab
(a+ b)2

≥ 18.

1.88. Let a, b, c be nonnegative real numbers, no two of which are zero. If k ≥ −1,
then

∑ a2(b+ c) + kabc
b2 + kbc + c2

≥ a+ b+ c.

1.89. Let a, b, c be nonnegative real numbers, no two of which are zero. If k ≥
−3
2

,

then
∑ a3 + (k+ 1)abc

b2 + kbc + c2
≥ a+ b+ c.

1.90. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > 0,
then

2ak − bk − ck

b2 − bc + c2
+

2bk − ck − ak

c2 − ca+ a2
+

2ck − ak − bk

a2 − ab+ b2
≥ 0.
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1.91. If a, b, c are the lengths of the sides of a triangle, then

(a)
b+ c − a

b2 − bc + c2
+

c + a− b
c2 − ca+ a2

+
a+ b− c

a2 − ab+ b2
≥

2(a+ b+ c)
a2 + b2 + c2

;

(b)
2bc − a2

b2 − bc + c2
+

2ca− b2

c2 − ca+ a2
+

2ab− c2

a2 − ab+ b2
≥ 0.

1.92. If a, b, c are nonnegative real numbers, then

(a)
a2

5a2 + (b+ c)2
+

b2

5b2 + (c + a)2
+

c2

5c2 + (a+ b)2
≤

1
3

;

(b)
a3

13a3 + (b+ c)3
+

b3

13b3 + (c + a)3
+

c3

13c3 + (a+ b)3
≤

1
7

.

1.93. If a, b, c are nonnegative real numbers, then

b2 + c2 − a2

2a2 + (b+ c)2
+

c2 + a2 − b2

2b2 + (c + a)2
+

a2 + b2 − c2

2c2 + (a+ b)2
≥

1
2

.

1.94. Let a, b, c be positive real numbers. If k > 0, then

3a2 − 2bc
ka2 + (b− c)2

+
3b2 − 2ca

kb2 + (c − a)2
+

3c2 − 2ab
kc2 + (a− b)2

≤
3
k

.

1.95. Let a, b, c be nonnegative real numbers, no two of which are zero. If k ≥
3+
p

7, then

(a)
a

a2 + kbc
+

b
b2 + kca

+
c

c2 + kab
≥

9
(1+ k)(a+ b+ c)

;

(b)
1

ka2 + bc
+

1
kb2 + ca

+
1

kc2 + ab
≥

9
(k+ 1)(ab+ bc + ca)

.

1.96. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1
2a2 + bc

+
1

2b2 + ca
+

1
2c2 + ab

≥
6

a2 + b2 + c2 + ab+ bc + ca
.
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1.97. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1
22a2 + 5bc

+
1

22b2 + 5ca
+

1
22c2 + 5ab

≥
1

(a+ b+ c)2
.

1.98. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1
2a2 + bc

+
1

2b2 + ca
+

1
2c2 + ab

≥
8

(a+ b+ c)2
.

1.99. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1
a2 + bc

+
1

b2 + ca
+

1
c2 + ab

≥
12

(a+ b+ c)2
.

1.100. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

(a)
1

a2 + 2bc
+

1
b2 + 2ca

+
1

c2 + 2ab
≥

1
a2 + b2 + c2

+
2

ab+ bc + ca
;

(b)
a(b+ c)
a2 + 2bc

+
b(c + a)
b2 + 2ca

+
c(a+ b)
c2 + 2ab

≥ 1+
ab+ bc + ca
a2 + b2 + c2

.

1.101. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

(a)
a

a2 + 2bc
+

b
b2 + 2ca

+
c

c2 + 2ab
≤

a+ b+ c
ab+ bc + ca

;

(b)
a(b+ c)
a2 + 2bc

+
b(c + a)
b2 + 2ca

+
c(a+ b)
c2 + 2ab

≤ 1+
a2 + b2 + c2

ab+ bc + ca
.

1.102. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

(a)
a

2a2 + bc
+

b
2b2 + ca

+
c

2c2 + ab
≥

a+ b+ c
a2 + b2 + c2

;

(b)
b+ c

2a2 + bc
+

c + a
2b2 + ca

+
a+ b

2c2 + ab
≥

6
a+ b+ c

.



16 Vasile Cîrtoaje

1.103. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

a(b+ c)
a2 + bc

+
b(c + a)
b2 + ca

+
c(a+ b)
c2 + ab

≥
(a+ b+ c)2

a2 + b2 + c2
.

1.104. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > 0,
then

b2 + c2 +
p

3bc
a2 + kbc

+
c2 + a2 +

p
3ca

b2 + kca
+

a2 + b2 +
p

3ab
c2 + kab

≥
3(2+

p
3)

1+ k
.

1.105. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

1
a2 + b2

+
1

b2 + c2
+

1
c2 + a2

+
8

a2 + b2 + c2
≥

6
ab+ bc + ca

.

1.106. If a, b, c are the lengths of the sides of a triangle, then

a(b+ c)
a2 + 2bc

+
b(c + a)
b2 + 2ca

+
c(a+ b)
c2 + 2ab

≤ 2.

1.107. If a, b, c are real numbers, then

a2 − bc
2a2 + b2 + c2

+
b2 − ca

2b2 + c2 + a2
+

c2 − ab
2c2 + a2 + b2

≥ 0.

1.108. If a, b, c are nonnegative real numbers, then

3a2 − bc
2a2 + b2 + c2

+
3b2 − ca

2b2 + c2 + a2
+

3c2 − ab
2c2 + a2 + b2

≤
3
2

.

1.109. If a, b, c are nonnegative real numbers, then

(b+ c)2

4a2 + b2 + c2
+

(c + a)2

4b2 + c2 + a2
+

(a+ b)2

4c2 + a2 + b2
≥ 2.

1.110. If a, b, c are positive real numbers, then

(a)
∑ 1

11a2 + 2b2 + 2c2
≤

3
5(ab+ bc + ca)

;

(b)
∑ 1

4a2 + b2 + c2
≤

1
2(a2 + b2 + c2)

+
1

ab+ bc + ca
.
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1.111. If a, b, c are nonnegative real numbers such that ab+ bc + ca = 3, then
p

a
b+ c

+
p

b
c + a

+
p

c
a+ b

≥
3
2

.

1.112. If a, b, c are nonnegative real numbers such that ab+ bc + ca ≥ 3, then

1
2+ a

+
1

2+ b
+

1
2+ c

≥
1

1+ b+ c
+

1
1+ c + a

+
1

1+ a+ b
.

1.113. If a, b, c are the lengths of the sides of a triangle, then

(a)
a2 − bc

3a2 + b2 + c2
+

b2 − ca
3b2 + c2 + a2

+
c2 − ab

3c2 + a2 + b2
≤ 0;

(b)
a4 − b2c2

3a4 + b4 + c4
+

b4 − c2a2

3b4 + c4 + a4
+

c4 − a2 b2

3c4 + a4 + b4
≤ 0.

1.114. If a, b, c are the lengths of the sides of a triangle, then

bc
4a2 + b2 + c2

+
ca

4b2 + c2 + a2
+

ab
4c2 + a2 + b2

≥
1
2

.

1.115. If a, b, c are the lengths of the sides of a triangle, then

1
b2 + c2

+
1

c2 + a2
+

1
a2 + b2

≤
9

2(ab+ bc + ca)
.

1.116. If a, b, c are the lengths of the sides of a triangle, then

(a)

�

�

�

�

a+ b
a− b

+
b+ c
b− c

+
c + a
c − a

�

�

�

�

> 5;

(b)

�

�

�

�

a2 + b2

a2 − b2
+

b2 + c2

b2 − c2
+

c2 + a2

c2 − a2

�

�

�

�

≥ 3.

1.117. If a, b, c are the lengths of the sides of a triangle, then

b+ c
a
+

c + a
b
+

a+ b
c
+ 3≥ 6

�

a
b+ c

+
b

c + a
+

c
a+ b

�

.
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1.118. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

∑ 3a(b+ c)− 2bc
(b+ c)(2a+ b+ c)

≥
3
2

.

1.119. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

∑ a(b+ c)− 2bc
(b+ c)(3a+ b+ c)

≥ 0.

1.120. Let a, b, c be positive real numbers such that a2 + b2 + c2 ≥ 3. Prove that

a5 − a2

a5 + b2 + c2
+

b5 − b2

b5 + c2 + a2
+

c5 − c2

c5 + a2 + b2
≥ 0.

1.121. Let a, b, c be positive real numbers such that a2 + b2 + c2 = a3 + b3 + c3.
Prove that

a2

b+ c
+

b2

c + a
+

c2

a+ b
≥

3
2

.

1.122. If a, b, c ∈ [0,1], then

a
bc + 2

+
b

ca+ 2
+

c
ab+ 2

≤ 1.

1.123. Let a, b, c be positive real numbers such that a+ b+ c = 2. Prove that

5(1− ab− bc − ca)
�

1
1− ab

+
1

1− bc
+

1
1− ca

�

+ 9≥ 0.

1.124. Let a, b, c be nonnegative real numbers such that a+ b+ c = 2. Prove that

2− a2

2− bc
+

2− b2

2− ca
+

2− c2

2− ab
≤ 3.

1.125. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

3+ 5a2

3− bc
+

3+ 5b2

3− ca
+

3+ 5c2

3− ab
≥ 12.
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1.126. Let a, b, c be nonnegative real numbers such that a+ b+ c = 2. If

−1
7
≤ m≤

7
8

,

then
a2 +m
3− 2bc

+
b2 +m
3− 2ca

+
c2 +m

3− 2ab
≥

3(4+ 9m)
19

.

1.127. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

47− 7a2

1+ bc
+

47− 7b2

1+ ca
+

47− 7c2

1+ ab
≥ 60.

1.128. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

26− 7a2

1+ bc
+

26− 7b2

1+ ca
+

26− 7c2

1+ ab
≤

57
2

.

1.129. If a, b, c are nonnegative real numbers, then

∑ 5a(b+ c)− 6bc
a2 + b2 + c2 + bc

≤ 3.

1.130. Let a, b, c be nonnegative real numbers, no two of which are zero, and let

x =
a2 + b2 + c2

ab+ bc + ca
.

Prove that

(a)
a

b+ c
+

b
c + a

+
c

a+ b
+

1
2
≥ x +

1
x

;

(b) 6
�

a
b+ c

+
b

c + a
+

c
a+ b

�

≥ 5x +
4
x

;

(c)
a

b+ c
+

b
c + a

+
c

a+ b
−

3
2
≥

1
3

�

x −
1
x

�

.

1.131. If a, b, c are real numbers, then

1
a2 + 7(b2 + c2)

+
1

b2 + 7(c2 + a2)
+

1
c2 + 7(a2 + b2)

≤
9

5(a+ b+ c)2
.
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1.132. If a, b, c are real numbers, then

bc
3a2 + b2 + c2

+
ca

3b2 + c2 + a2
+

ab
3c2 + a2 + b2

≤
3
5

.

1.133. If a, b, c are real numbers such that a+ b+ c = 3, then

1
8+ 5(b2 + c2)

+
1

8+ 5(c2 + a2)
+

1
8+ 5(a2 + b2)

≤
1
6

.

1.134. If a, b, c are real numbers, then

(a+ b)(a+ c)
a2 + 4(b2 + c2)

+
(b+ c)(b+ a)
b2 + 4(c2 + a2)

+
(c + a)(c + b)
c2 + 4(a2 + b2)

≤
4
3

.

1.135. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

∑ 1
(b+ c)(7a+ b+ c)

≤
1

2(ab+ bc + ca)
.

1.136. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

∑ 1
b2 + c2 + 4a(b+ c)

≤
9

10(ab+ bc + ca)
.

1.137. Let a, b, c be nonnegative real numbers, no two of which are zero. If a +
b+ c = 3, then

1
3− ab

+
1

3− bc
+

1
3− ca

≤
9

2(ab+ bc + ca)
.

1.138. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

bc
a2 + a+ 6

+
ca

b2 + b+ 6
+

ab
c2 + c + 6

≤
3
8

.

1.139. If a, b, c are nonnegative real numbers such that ab+ bc + ca = 3, then

1
8a2 − 2bc + 21

+
1

8b2 − 2ca+ 21
+

1
8c2 − 2ab+ 21

≥
1
9

.
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1.140. Let a, b, c be real numbers, no two of which are zero. Prove that

(a)
a2 + bc
b2 + c2

+
b2 + ca
c2 + a2

+
c2 + ab
a2 + b2

≥
(a+ b+ c)2

a2 + b2 + c2
;

(b)
a2 + 3bc
b2 + c2

+
b2 + 3ca
c2 + a2

+
c2 + 3ab
a2 + b2

≥
6(ab+ bc + ca)

a2 + b2 + c2
.

1.141. Let a, b, c be real numbers, no two of which are zero. If ab + bc + ca ≥ 0,
then

a(b+ c)
b2 + c2

+
b(c + a)
c2 + a2

+
c(a+ b)
a2 + b2

≥
3
10

.

1.142. If a, b, c are positive real numbers such that abc > 1, then

1
a+ b+ c − 3

+
1

abc − 1
≥

4
ab+ bc + ca− 3

.

1.143. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

∑ (4b2 − ac)(4c2 − ab)
b+ c

≤
27
2

abc.

1.144. Let a, b, c be nonnegative real numbers, no two of which are zero, such that

a+ b+ c = 3.

Prove that
a

3a+ bc
+

b
3b+ ca

+
c

3c + ab
≥

2
3

.

1.145. Let a, b, c be positive real numbers such that

(a+ b+ c)
�

1
a
+

1
b
+

1
c

�

= 10.

Prove that
19
12
≤

a
b+ c

+
b

c + a
+

c
a+ b

≤
5
3

.
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1.146. Let a, b, c be nonnegative real numbers, no two of which are zero, such that
a+ b+ c = 3. Prove that

9
10
<

a
2a+ bc

+
b

2b+ ca
+

c
2c + ab

≤ 1.

1.147. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

a3

2a2 + bc
+

b3

2b2 + ca
+

c3

2c2 + ab
≤

a3 + b3 + c3

a2 + b2 + c2
.

1.148. If a, b, c are positive real numbers, then

a3

4a2 + bc
+

b3

4b2 + ca
+

c3

4c2 + ab
≥

a+ b+ c
5

.

1.149. If a, b, c are positive real numbers, then

1
(2+ a)2

+
1

(2+ b)2
+

1
(2+ c)2

≥
3

6+ ab+ bc + ca
.

1.150. If a, b, c are positive real numbers, then

1
1+ 3a

+
1

1+ 3b
+

1
1+ 3c

≥
3

3+ abc
.

1.151. Let a, b, c be real numbers, no two of which are zero. If 1< k ≤ 3, then
�

k+
2ab

a2 + b2

��

k+
2bc

b2 + c2

��

k+
2ca

c2 + a2

�

≥ (k− 1)(k2 − 1).

1.152. If a, b, c are non-zero and distinct real numbers, then

1
a2
+

1
b2
+

1
c2
+ 3

�

1
(a− b)2

+
1

(b− c)2
+

1
(c − a)2

�

≥ 4
�

1
ab
+

1
bc
+

1
ca

�

.
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1.153. Let a, b, c be positive real numbers, and let

A=
a
b
+

b
a
+ k, B =

b
c
+

c
b
+ k, C =

c
a
+

a
b
+ k,

where −2< k ≤ 4. Prove that

1
A
+

1
B
+

1
C
≤

1
k+ 2

+
4

A+ B + C − k− 2
.

1.154. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
b2 + bc + c2

+
1

c2 + ca+ a2
+

1
a2 + ab+ b2

≥
1

2a2 + bc
+

1
2b2 + ca

+
1

2c2 + ab
.

1.155. If a, b, c are nonnegative real numbers such that a+ b+ c ≤ 3, then

(a)
1

2a+ 1
+

1
2b+ 1

+
1

2c + 1
≥

1
a+ 2

+
1

b+ 2
+

1
c + 2

;

(b)
1

2ab+ 1
+

1
2bc + 1

+
1

2ca+ 1
≥

1
a2 + 2

+
1

b2 + 2
+

1
c2 + 2

.

1.156. If a, b, c are nonnegative real numbers such that a+ b+ c = 4, then

1
ab+ 2

+
1

bc + 2
+

1
ca+ 2

≥
1

a2 + 2
+

1
b2 + 2

+
1

c2 + 2
.

1.157. If a, b, c are nonnegative real numbers, no two of which are zero, then

(a)
ab+ bc + ca
a2 + b2 + c2

+
(a− b)2(b− c)2(c − a)2

(a2 + b2)(b2 + c2)(c2 + a2)
≤ 1;

(b)
ab+ bc + ca
a2 + b2 + c2

+
(a− b)2(b− c)2(c − a)2

(a2 − ab+ b2)(b2 − bc + c2)(c2 − ca+ a2)
≤ 1.

1.158. If a, b, c are nonnegative real numbers, no two of which are zero, then

a2 + b2 + c2

ab+ bc + ca
≥ 1+

9(a− b)2(b− c)2(c − a)2

(a+ b)2(b+ c)2(c + a)2
.
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1.159. If a, b, c are nonnegative real numbers, no two of which are zero, then

a2 + b2 + c2

ab+ bc + ca
≥ 1+ (1+

p
2)2

(a− b)2(b− c)2(c − a)2

(a2 + b2)(b2 + c2)(c2 + a2)
.

1.160. If a, b, c are nonnegative real numbers, no two of which are zero, then

2
a+ b

+
2

b+ c
+

2
c + a

≥
5

3a+ b+ c
+

5
3b+ c + a

+
5

3c + a+ b
.

1.161. If a, b, c are real numbers, no two of which are zero, then

(a)
8a2 + 3bc

b2 + bc + c2
+

8b2 + 3ca
c2 + ca+ a2

+
8c2 + 3ab

a2 + ab+ b2
≥ 11;

(b)
8a2 − 5bc

b2 − bc + c2
+

8b2 − 5ca
c2 − ca+ a2

+
8c2 − 5ab

a2 − ab+ b2
≥ 9.

1.162. If a, b, c are real numbers, no two of which are zero, then

4a2 + bc
4b2 + 7bc + 4c2

+
4b2 + ca

4c2 + 7ca+ 4a2
+

4c2 + ab
4a2 + 7ab+ 4b2

≥ 1.

1.163. If a, b, c are real numbers, no two of which are equal, then

1
(a− b)2

+
1

(b− c)2
+

1
(c − a)2

≥
27

4(a2 + b2 + c2 − ab− bc − ca)
.

1.164. If a, b, c are real numbers, no two of which are zero, then

1
a2 − ab+ b2

+
1

b2 − bc + c2
+

1
c2 − ca+ a2

≥
14

3(a2 + b2 + c2)
.

1.165. If a, b, c are real numbers, then

a2 + bc
2a2 + b2 + c2

+
b2 + ca

a2 + 2b2 + c2
+

c2 + ab
a2 + b2 + 2c2

≥
1
6

.
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1.166. If a, b, c are real numbers, then

2b2 + 2c2 + 3bc
(a+ 3b+ 3c)2

+
2c2 + 2a2 + 3ca
(b+ 3c + 3a)2

+
2a2 + 2b2 + 3ab
(c + 3a+ 3b)2

≥
3
7

.

1.167. If a, b, c are nonnegative real numbers, then

6b2 + 6c2 + 13bc
(a+ 2b+ 2c)2

+
6c2 + 6a2 + 13ca
(b+ 2c + 2a)2

+
6a2 + 6b2 + 13ab
(c + 2a+ 2b)2

≤ 3.

1.168. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

3a2 + 8bc
9+ b2 + c2

+
3b2 + 8ca
9+ c2 + a2

+
3c2 + 8ab
9+ a2 + b2

≤ 3.

1.169. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

5a2 + 6bc
9+ b2 + c2

+
5b2 + 6ca
9+ c2 + a2

+
5c2 + 6ab
9+ a2 + b2

≥ 3.

1.170. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

1
a2 + bc + 12

+
1

b2 + ca+ 12
+

1
c2 + ab+ 12

≤
3

14
.

1.171. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
a2 + b2

+
1

b2 + c2
+

1
c2 + a2

≥
45

8(a2 + b2 + c2) + 2(ab+ bc + ca)
.

1.172. If a, b, c are real numbers, no two of which are zero, then

a2 − 7bc
b2 + c2

+
b2 − 7ca
a2 + b2

+
c2 − 7ab
a2 + b2

+
9(ab+ bc + ca)

a2 + b2 + c2
≥ 0.

1.173. If a, b, c are nonnegative real numbers, no two of which are zero, then

a2 − 4bc
b2 + c2

+
b2 − 4ca
c2 + a2

+
c2 − 4ab
a2 + b2

+
9(ab+ bc + ca)

a2 + b2 + c2
≥

9
2

.



26 Vasile Cîrtoaje

1.174. If a, b, c are real numbers such that abc 6= 0, then

(b+ c)2

a2
+
(c + a)2

b2
+
(a+ b)2

c2
≥ 2+

10(a+ b+ c)2

3(a2 + b2 + c2)
.

1.175. Let a, b, c be real numbers, no two of which are zero. If ab + bc + ca ≥ 0,
then

(a)
a

b+ c
+

b
c + a

+
c

a+ b
≥

3
2

;

(b) i f ab ≤ 0, then

a
b+ c

+
b

c + a
+

c
a+ b

≥ 2.

1.176. If a, b, c are nonnegative real numbers, then

a
7a+ b+ c

+
b

7b+ c + a
+

c
7c + a+ b

≥
ab+ bc + ca
(a+ b+ c)2

.

1.177. If a, b, c are positive real numbers such that abc = 1, then

a+ b+ c
30

+
1

a+ 1
+

1
b+ 1

+
1

c + 1
≥

8
5

.

1.178. Let f be a real function defined on an interval I, and let x , y, s ∈ I such that
x +my = (1+m)s, where m> 0. Prove that the inequality

f (x) +mf (y)≥ (1+m) f (s)

holds if and only if
h(x , y)≥ 0,

where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (s)
u− s

.

1.179. Let a, b, c ≤ 8 be real numbers such that a+ b+ c = 3. Prove that

13a− 1
a2 + 23

+
13b− 1
b2 + 23

+
13c − 1
c2 + 23

≤
3
2

.



Symmetric Rational Inequalities 27

1.180. Let a, b, c 6=
3
4

be nonnegative real numbers such that a+ b+ c = 3. Prove

that
1− a
(4a− 3)2

+
1− b
(4b− 3)2

+
1− c
(4c − 3)2

≥ 0.

1.181. If a, b, c are the lengths of the sides of a triangle, then

a2

4a2 + 5bc
+

b2

4b2 + 5ca
+

c2

4c2 + 5ab
≥

1
3

.

1.182. If a, b, c are the lengths of the sides of a triangle, then

1
7a2 + b2 + c2

+
1

7b2 + c2 + a2
+

1
7c2 + a2 + b2

≥
3

(a+ b+ c)2
.

1.183. Let a, b, c be the lengths of the sides of a triangle. If k > −2, then

∑ a(b+ c) + (k+ 1)bc
b2 + kbc + c2

≤
3(k+ 3)

k+ 2
.

1.184. Let a, b, c be the lengths of the sides of a triangle. If k > −2, then

∑ 2a2 + (4k+ 9)bc
b2 + kbc + c2

≤
3(4k+ 11)

k+ 2
.

1.185. If a, b, c are nnonnegative numbers such that abc = 1, then

1
(a+ 1)2

+
1

(b+ 1)2
+

1
(c + 1)2

+
1

2(a+ b+ c − 1)
≥ 1.

1.186. If a, b, c are positive real numbers such that

a ≤ b ≤ c, a2 bc ≥ 1,

then
1

1+ a3
+

1
1+ b3

+
1

1+ c3
≥

3
1+ abc

.
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1.187. If a, b, c are positive real numbers such that

a ≤ b ≤ c, a2c ≥ 1,

then
1

1+ a3
+

1
1+ b3

+
1

1+ c3
≥

3
1+ abc

.

1.188. If a, b, c are positive real numbers such that

a ≤ b ≤ c, 2a+ c ≥ 3,

then
1

3+ a2
+

1
3+ b2

+
1

3+ c2
≥

3

3+
�

a+b+c
3

�2 .

1.189. If a, b, c are positive real numbers such that

a ≤ b ≤ c, 9a+ 8b ≥ 17,

then
1

3+ a2
+

1
3+ b2

+
1

3+ c2
≥

3

3+
�

a+b+c
3

�2 .

1.190. Let a, b, c, d be positive real numbers such that abcd = 1. Prove that

∑ 1
1+ ab+ bc + ca

≤ 1.

1.191. Let a, b, c, d be positive real numbers such that abcd = 1. Prove that

1
(1+ a)2

+
1

(1+ b)2
+

1
(1+ c)2

+
1

(1+ d)2
≥ 1.

1.192. Let a, b, c, d 6=
1
3

be positive real numbers such that abcd = 1. Prove that

1
(3a− 1)2

+
1

(3b− 1)2
+

1
(3c − 1)2

+
1

(3d − 1)2
≥ 1.
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1.193. Let a, b, c, d be positive real numbers such that abcd = 1. Prove that

1
1+ a+ a2 + a3

+
1

1+ b+ b2 + b3
+

1
1+ c + c2 + c3

+
1

1+ d + d2 + d3
≥ 1.

1.194. Let a, b, c, d be positive real numbers such that abcd = 1. Prove that

1
1+ a+ 2a2

+
1

1+ b+ 2b2
+

1
1+ c + 2c2

+
1

1+ d + 2d2
≥ 1.

1.195. Let a, b, c, d be positive real numbers such that abcd = 1. Prove that

1
a
+

1
b
+

1
c
+

1
d
+

9
a+ b+ c + d

≥
25
4

.

1.196. If a, b, c, d are real numbers such that a+ b+ c + d = 0, then

(a− 1)2

3a2 + 1
+
(b− 1)2

3b2 + 1
+
(c − 1)2

3c2 + 1
+
(d − 1)2

3d2 + 1
≤ 4.

1.197. If a, b, c, d ≥ −5 such that a+ b+ c + d = 4, then

1− a
(1+ a)2

+
1− b
(1+ b)2

+
1− c
(1+ c)2

+
1− d
(1+ d)2

≥ 0.

1.198. Let a1, a2, . . . , an be positive real numbers such that a1 + a2 + · · ·+ an = n.
Prove that

∑ 1
(n+ 1)a2

1 + a2
2 + · · ·+ a2

n

≤
1
2

.

1.199. Let a1, a2, . . . , an be real numbers such that a1+a2+ · · ·+an = 0. Prove that

(a1 + 1)2

a2
1 + n− 1

+
(a2 + 1)2

a2
2 + n− 1

+ · · ·+
(an + 1)2

a2
n + n− 1

≥
n

n− 1
.

1.200. Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an = 1. Prove
that

(a)
1

1+ (n− 1)a1
+

1
1+ (n− 1)a2

+ · · ·+
1

1+ (n− 1)an
≥ 1;

(b)
1

a1 + n− 1
+

1
a2 + n− 1

+ · · ·+
1

an + n− 1
≤ 1.
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1.201. Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an = 1. Prove
that

1
1− a1 + na2

1

+
1

1− a2 + na2
2

+ · · ·+
1

1− an + na2
n

≥ 1.

1.202. Let a1, a2, . . . , an be positive real numbers such that

a1, a2, . . . , an ≥
k(n− k− 1)
kn− k− 1

, k > 1

and
a1a2 · · · an = 1.

Prove that
1

a1 + k
+

1
a2 + k

+ · · ·+
1

an + k
≤

n
1+ k

.

1.203. If a1, a2, . . . , an ≥ 0, then

1
1+ na1

+
1

1+ na2
+ · · ·+

1
1+ nan

≥
n

n+ a1a2 · · · an
.
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1.2 Solutions

P 1.1. If a, b are nonnegative real numbers, then

1
(1+ a)2

+
1

(1+ b)2
≥

1
1+ ab

.

First Solution. Use the Cauchy-Schwarz inequality as follows:

1
(1+ a)2

+
1

(1+ b)2
−

1
1+ ab

≥
(b+ a)2

b2(1+ a)2 + a2(1+ b)2
−

1
1+ ab

=
ab[a2 + b2 − 2(a+ b) + 2]

(1+ ab)[b2(1+ a)2 + a2(1+ b)2]

=
ab[(a− 1)2 + (b− 1)2]

(1+ ab)[b2(1+ a)2 + a2(1+ b)2]
≥ 0.

The equality holds for a = b = 1.

Second Solution. By the Cauchy-Schwarz inequality, we have

(a+ b)
�

a+
1
b

�

≥ (a+ 1)2, (a+ b)
�

1
a
+ b

�

≥ (1+ b)2,

hence
1

(1+ a)2
+

1
(1+ b)2

≥
1

(a+ b)(a+ 1/b)
+

1
(a+ b)(1/a+ b)

=
1

1+ ab
.

Third Solution. The desired inequality follows from the identity

1
(1+ a)2

+
1

(1+ b)2
−

1
1+ ab

=
ab(a− b)2 + (1− ab)2

(1+ a)2(1+ b)2(1+ ab)
.

Remark. Replacing a by a/x and b by and b/x , where x is a positive number, we
get the inequality

1
(x + a)2

+
1

(x + b)2
≥

1
x2 + ab

,

which is valid for any x , a, b ≥ 0.

P 1.2. Let a, b, c be positive real numbers. Prove that

(a) if abc ≤ 1, then

1
2a+ 1

+
1

2b+ 1
+

1
2c + 1

≥ 1;

(b) if abc ≥ 1, then

1
a+ 2

+
1

b+ 2
+

1
c + 2

≤ 1.
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Solution. (a) Use the substitution

a =
kx2

yz
, b =

k y2

zx
, c =

kz2

x y
,

where x , y, z > 0 and 0< k ≤ 1. Applying the Cauchy-Schwarz inequality, we have

∑ 1
a+ 2

=
∑ yz

2kx2 + yz
≥
∑ yz

2x2 + yz
≥

�∑

yz
�2

∑

yz(2x2 + yz)
= 1.

The equality holds for a = b = c = 1.
(b) The desired inequality follows from the inequality in (a) by replacing a, b, c

with 1/a, 1/b, 1/c, respectively. The equality holds for a = b = c = 1.

P 1.3. If 0≤ a, b, c ≤ 1, then

2
�

1
a+ b

+
1

b+ c
+

1
c + a

�

≥ 3
�

1
2a+ 1

+
1

2b+ 1
+

1
2c + 1

�

.

Solution. Write the inequality as E(a, b, c) ≥ 0, assume that 0 ≤ a ≤ b ≤ c ≤ 1
and show that

E(a, b, c)≥ E(a, b, 1)≥ E(a, 1, 1)≥ 0.

The inequality E(a, b, c)≥ E(a, b, 1) is equivalent to

2
�

1
b+ c

−
1

b+ 1

�

+ 2
�

1
c + a

−
1

1+ a

�

− 3
�

1
2c + 1

−
1
3

�

≥ 0,

(1− c)
�

1
(b+ c)(b+ 1)

+
1

(c + a)(1+ a)
−

1
2c + 1

�

≥ 0.

We have

1
(b+ c)(b+ 1)

+
1

(c + a)(1+ a)
−

1
2c + 1

≥
1

(1+ c)(1+ 1)
+

1
(c + 1)(1+ 1)

−
1

2c + 1

=
c

(c + 1)(2c + 1)
> 0.

The inequality E(a, b, 1)≥ E(a, 1, 1) is equivalent to

2
�

1
a+ b

−
1

a+ 1

�

+ 2
�

1
1+ b

−
1
2

�

− 3
�

1
2b+ 1

−
1
3

�

,

(1− b)
�

2
(a+ b)(a+ 1)

+
1

1+ b
−

2
2b+ 1

�

≥ 0.
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We have

2
(a+ b)(a+ 1)

+
1

1+ b
−

2
2b+ 1

≥
2

(1+ b)(1+ 1)
+

1
1+ b

−
2

2b+ 1

=
2b

(1+ b)(2b+ 1)
> 0.

Finally,

E(a, 1, 1) =
2a(1− a)

(a+ 1)(2a+ 1)
≥ 0.

The equality holds for a = b = c = 1, and also for a = 0 and b = c = 1 (or any
cyclic permutation).

P 1.4. If a, b, c are nonnegative real numbers such that a+ b+ c ≤ 3, then

2
�

1
a+ b

+
1

b+ c
+

1
c + a

�

≥ 5
�

1
2a+ 3

+
1

2b+ 3
+

1
2c + 3

�

.

Solution. It suffices to prove the homogeneous inequality

∑

�

2
b+ c

−
5

3a+ b+ c

�

≥ 0.

We use the SOS (sum-of-squares) method. Without loss of generality, assume that

a ≥ b ≥ c.

Write the inequality as follows:

∑ 2a− b− c
(b+ c)(3a+ b+ c)

≥ 0,

∑ a− b
(b+ c)(3a+ b+ c)

+
∑ a− c
(b+ c)(3a+ b+ c)

≥ 0,

∑ a− b
(b+ c)(3a+ b+ c)

+
∑ b− a
(c + a)(3b+ c + a)

≥ 0,

∑

(a− b)
�

1
(b+ c)(3a+ b+ c)

−
1

(c + a)(3b+ c + a)

�

≥ 0,

∑

(a− b)2(a+ b− c)(a+ b)(3c + a+ b)≥ 0.

Consider the nontrivial case a > b+ c. Since a+ b− c > 0, it suffices to show that

(a− c)2(a+ c − b)(a+ c)(3b+ c + a)≥ (b− c)2(a− b− c)(b+ c)(3a+ b+ c).



34 Vasile Cîrtoaje

This inequality is true since

(a− c)2 ≥ (b− c)2, a+ c − b ≥ a− b− c

and
(a+ c)(3b+ c + a)≥ (b+ c)(3a+ b+ c).

The last inequality is equivalent to

(a− b)(a+ b− c)≥ 0.

The equality holds for a = b = c = 1, and also for a = b = 3/2 and c = 0 (or any
cyclic permutation).

P 1.5. If a, b, c are nonnegative real numbers, then

a2 − bc
3a+ b+ c

+
b2 − ca

3b+ c + a
+

c2 − ab
3c + a+ b

≥ 0.

Solution. We use the SOS method. Without loss of generality, assume that

a ≥ b ≥ c.

We have

2
∑ a2 − bc

3a+ b+ c
=
∑ (a− b)(a+ c) + (a− c)(a+ b)

3a+ b+ c

=
∑ (a− b)(a+ c)

3a+ b+ c
+
∑ (b− a)(b+ c)

3b+ c + a

=
∑ (a− b)2(a+ b− c)
(3a+ b+ c)(3b+ c + a)

Since a+ b− c ≥ 0, it suffices to show that

(b− c)2(b+ c − a)(3a+ b+ c) + (c − a)2(c + a− b)(3b+ c + a)≥ 0;

that is,

(a− c)2(c + a− b)(3b+ c + a)≥ (b− c)2(a− b− c)(3a+ b+ c).

For the nontrivial case a > b + c, we can get this inequality by multiplying the
obvious inequalities

c + a− b ≥ a− b− c,

b2(a− c)2 ≥ a2(b− c)2,

a(3b+ c + a)≥ b(3a+ b+ c),

a ≥ b.

The equality holds for a = b = c, and also for a = b and c = 0 (or any cyclic
permutation).
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P 1.6. If a, b, c are positive real numbers, then

4a2 − b2 − c2

a(b+ c)
+

4b2 − c2 − a2

b(c + a)
+

4c2 − a2 − b2

c(a+ b)
≤ 3.

(Vasile Cîrtoaje, 2006)

Solution. We use the SOS method. Write the inequality as follows:

∑

�

1−
4a2 − b2 − c2

a(b+ c)

�

≥ 0,

∑ b2 + c2 − 4a2 + a(b+ c)
a(b+ c)

≥ 0,

∑ (b2 − a2) + a(b− a) + (c2 − a2) + a(c − a)
a(b+ c)

≥ 0,

∑ (b− a)(2a+ b) + (c − a)(2a+ c)
a(b+ c)

≥ 0,

∑ (b− a)(2a+ b)
a(b+ c)

+
∑ (a− b)(2b+ a)

b(c + a)
≥ 0,

∑

c(a+ b)(a− b)2(bc + ca− ab)≥ 0.

Without loss of generality, assume that

a ≥ b ≥ c.

Since ca+ ab− bc > 0, it suffices to show that

b(c + a)(c − a)2(ab+ bc − ca) + c(a+ b)(a− b)2(bc + ca− ab)≥ 0,

that is,

b(c + a)(a− c)2(ab+ bc − ca)≥ c(a+ b)(a− b)2(ab− bc − ca).

For the nontrivial case ab− bc − ca > 0, this inequality follows by multiplying the
inequalities

ab+ bc − ca > ab− bc − ca,

(a− c)2 ≥ (a− b)2,

b(c + a)≥ c(a+ b).

The equality holds for a = b = c
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P 1.7. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a)
1

a2 + bc
+

1
b2 + ca

+
1

c2 + ab
≥

3
ab+ bc + ca

;

(b)
1

2a2 + bc
+

1
2b2 + ca

+
1

2c2 + ab
≥

2
ab+ bc + ca

.

(c)
1

a2 + 2bc
+

1
b2 + 2ca

+
1

c2 + 2ab
>

2
ab+ bc + ca

.

(Vasile Cîrtoaje, 2005)

Solution. (a) Since
ab+ bc + ca

a2 + bc
= 1+

a(b+ c − a)
a2 + bc

,

we can write the inequality as

a(b+ c − a)
a2 + bc

+
b(c + a− b)

b2 + ca
+

c(a+ b− c)
c2 + ab

≥ 0.

Without loss of generality, assume that

a =min{a, b, c}.

Since b+ c − a > 0, it suffices to show that

b(c + a− b)
b2 + ca

+
c(a+ b− c)

c2 + ab
≥ 0.

This is equivalent to each of the following inequalities

(b2 + c2)a2 − (b+ c)(b2 − 3bc + c2)a+ bc(b− c)2 ≥ 0,

(b− c)2a2 − (b+ c)(b− c)2a+ bc(b− c)2 + abc(2a+ b+ c)≥ 0,

(b− c)2(a− b)(a− c) + abc(2a+ b+ c)≥ 0.

The last inequality is obviously true. The equality holds for a = 0 and b = c (or
any cyclic permutation thereof).

(b) Using the identities

2a2 + bc = a(2a− b− c) + ab+ bc + ca,

2b2 + ca = b(2b− c − a) + ab+ bc + ca,

2c2 + ab = c(2c − a− b) + ab+ bc + ca,

we can write the inequality as

1
1+ x

+
1

1+ y
+

1
1+ z

≥ 2,
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where

x =
a(2a− b− c)
ab+ bc + ca

, y =
b(2b− c − a)
ab+ bc + ca

, z =
c(2c − a− b)
ab+ bc + ca

.

Without loss of generality, assume that a =min{a, b, c}. Since

x ≤ 0,
1

1+ x
≥ 1,

it suffices to show that
1

1+ y
+

1
1+ z

≥ 1.

This is equivalent to
1≥ yz,

(ab+ bc + ca)2 ≥ bc(2b− c − a)(2c − a− b),

a2(b2 + bc + c2) + 3abc(b+ c) + 2bc(b− c)2 ≥ 0.

The last inequality is obviously true. The equality holds for a = 0 and b = c (or
any cyclic permutation thereof).

(c) According to the identities

a2 + 2bc = (a− b)(a− c) + ab+ bc + ca,

b2 + 2ca = (b− c)(b− a) + ab+ bc + ca,

c2 + 2ab = (c − a)(c − b) + ab+ bc + ca,

we can write the inequality as

1
1+ x

+
1

1+ y
+

1
1+ z

> 2,

where

x =
(a− b)(a− c)
ab+ bc + ca

, y =
(b− c)(b− a)
ab+ bc + ca

, z =
(c − a)(c − b)
ab+ bc + ca

.

Since
x y + yz + zx = 0

and

x yz =
−(a− b)2(b− c)2(c − a)2

(ab+ bc + ca)3
≤ 0,

we have
1

1+ x
+

1
1+ y

+
1

1+ z
− 2=

1− 2x yz
(1+ x)(1+ y)(1+ z)

> 0.
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P 1.8. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a(b+ c)
a2 + bc

+
b(c + a)
b2 + ca

+
c(a+ b)
c2 + ab

≥ 2.

(Pham Kim Hung, 2006)

Solution. Without loss of generality, assume that a ≥ b ≥ c and write the inequality
as

b(c + a)
b2 + ca

≥
(a− b)(a− c)

a2 + bc
+
(a− c)(b− c)

c2 + ab
.

Since
(a− b)(a− c)

a2 + bc
≤
(a− b)a
a2 + bc

≤
a− b

a
and

(a− c)(b− c)
c2 + ab

≤
a(b− c)
c2 + ab

≤
b− c

b
,

it suffices to show that
b(c + a)
b2 + ca

≥
a− b

a
+

b− c
b

.

This inequality is equivalent to

b2(a− b)2 − 2abc(a− b) + a2c2 + ab2c ≥ 0,

(ab− b2 − ac)2 + ab2c ≥ 0.

The equality holds for for a = b and c = 0 (or any cyclic permutation).

P 1.9. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a2

b2 + c2
+

b2

c2 + a2
+

c2

a2 + b2
≥

a
b+ c

+
b

c + a
+

c
a+ b

.

(Vasile Cîrtoaje, 2002)

Solution. Use the SOS method. We have
∑

�

a2

b2 + c2
−

a
b+ c

�

=
∑ ab(a− b) + ac(a− c)

(b2 + c2)(b+ c)

=
∑ ab(a− b)
(b2 + c2)(b+ c)

+
∑ ba(b− a)
(c2 + a2)(c + a)

= (a2 + b2 + c2 + ab+ bc + ca)
∑ ab(a− b)2

(b2 + c2)(c2 + a2)(b+ c)(c + a)
≥ 0.

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic
permutation).
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P 1.10. Let a, b, c be positive real numbers. Prove that

1
b+ c

+
1

c + a
+

1
a+ b

≥
a

a2 + bc
+

b
b2 + ca

+
c

c2 + ab
.

First Solution. Without loss of generality, assume that a =min{a, b, c}. Since

∑ 1
b+ c

−
∑ a

a2 + bc
=
∑

�

1
b+ c

−
a

a2 + bc

�

=
∑ (a− b)(a− c)
(b+ c)(a2 + bc)

and (a− b)(a− c)≥ 0, it suffices to show that

(b− c)(b− a)
(c + a)(b2 + ca)

+
(c − a)(c − b)
(a+ b)(c2 + ab)

≥ 0.

This inequality is equivalent to

(b− c)[(b2 − a2)(c2 + ab) + (a2 − c2)(b2 + ca)]≥ 0,

a(b− c)2(b2 + c2 − a2 + ab+ bc + ca)≥ 0.

The last inequality is clearly true. The equality holds for a = b = c.

Second Solution. Since
∑ 1

b+ c
=
∑

�

b
(b+ c)2

+
c

(b+ c)2

�

=
∑

a
�

1
(a+ b)2

+
1

(a+ c)2

�

,

we can write the inequality as

∑

a
�

1
(a+ b)2

+
1

(a+ c)2
−

1
a2 + bc

�

≥ 0.

This is true since, according to Remark from P 1.1, we have

1
(a+ b)2

+
1

(a+ c)2
−

1
a2 + bc

≥ 0.

P 1.11. Let a, b, c be positive real numbers. Prove that

1
b+ c

+
1

c + a
+

1
a+ b

≥
2a

3a2 + bc
+

2b
3b2 + ca

+
2c

3c2 + ab
.

(Vasile Cîrtoaje, 2005)
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Solution. Since
∑ 1

b+ c
−
∑ 2a

3a2 + bc
=
∑

�

1
b+ c

−
2a

3a2 + bc

�

=
∑ (a− b)(a− c) + a(2a− b− c)

(b+ c)(3a2 + bc)
,

it suffices to show that
∑ (a− b)(a− c)
(b+ c)(3a2 + bc)

≥ 0

and
∑ a(2a− b− c)
(b+ c)(3a2 + bc)

≥ 0.

In order to prove the first inequality, assume that a =min{a, b, c}. Since

(a− b)(a− c)≥ 0,

it is enough to show that

(b− c)(b− a)
(c + a)(3b2 + ca)

+
(c − a)(c − b)
(a+ b)(3c2 + ab)

≥ 0.

This is equivalent to the obvious inequality

a(b− c)2(b2 + c2 − a2 + 3ab+ bc + 3ca)≥ 0.

The second inequality can be proved by the SOS method. We have
∑ a(2a− b− c)
(b+ c)(3a2 + bc)

=
∑ a(a− b) + a(a− c)

(b+ c)(3a2 + bc)

=
∑ a(a− b)
(b+ c)(3a2 + bc)

+
∑ b(b− a)
(c + a)(3b2 + ca)

=
∑

(a− b)
�

a
(b+ c)(3a2 + bc)

−
b

(c + a)(3b2 + ca)

�

=
∑ c(a− b)2[(a− b)2 + c(a+ b)]
(b+ c)(c + a)(3a2 + bc)(3b2 + ca)

≥ 0.

The equality holds for a = b = c.

P 1.12. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a)
a

b+ c
+

b
c + a

+
c

a+ b
≥

13
6
−

2(ab+ bc + ca)
3(a2 + b2 + c2)

;

(b)
a

b+ c
+

b
c + a

+
c

a+ b
−

3
2
≥ (
p

3− 1)
�

1−
ab+ bc + ca
a2 + b2 + c2

�

.

(Vasile Cîrtoaje, 2006)
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Solution. (a) We use the SOS method. Rewrite the inequality as

a
b+ c

+
b

c + a
+

c
a+ b

−
3
2
≥

2
3

�

1−
ab+ bc + ca
a2 + b2 + c2

�

.

Since

∑

�

a
b+ c

−
1
2

�

=
∑ (a− b) + (a− c)

2(b+ c)

=
∑ a− b

2(b+ c)
+
∑ b− a

2(c + a)

=
∑ a− b

2

�

1
b+ c

−
1

c + a

�

=
∑ (a− b)2

2(b+ c)(c + a)

and
2
3

�

1−
ab+ bc + ca
a2 + b2 + c2

�

=
∑ (a− b)2

3(a2 + b2 + c2)
,

the inequality can be restated as

∑

(a− b)2
�

1
2(b+ c)(c + a)

−
1

3(a2 + b2 + c2)

�

≥ 0.

This is true since

3(a2 + b2 + c2)− 2(b+ c)(c + a) = (a+ b− c)2 + 2(a− b)2 ≥ 0.

The equality holds for a = b = c.

(b) Let
p = a+ b+ c, q = ab+ bc + ca, r = abc.

We have
∑ a

b+ c
=
∑

� a
b+ c

+ 1
�

− 3= p
∑ 1

b+ c
− 3

=
p(p2 + q)

pq− r
− 3.

According to P 3.57-(a) in Volume 1, for fixed p and q, the product r is minimum
when a = 0 or b = c. Therefore, it suffices to prove the inequality for a = 0 and
for b = c = 1.

Case 1: a = 0. The original inequality can be written as

b
c
+

c
b
−

3
2
≥ (
p

3− 1)
�

1−
bc

b2 + c2

�

.
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It suffices to show that
b
c
+

c
b
−

3
2
≥ 1−

bc
b2 + c2

.

Denoting

t =
b2 + c2

bc
, t ≥ 2,

this inequality becomes

t −
3
2
≥ 1−

1
t

,

(t − 2)(2t − 1)≥ 0.

Case 2: b = c = 1. The original inequality becomes as follows:

a
2
+

2
a+ 1

−
3
2
≥ (
p

3− 1)
�

1−
2a+ 1
a2 + 2

�

,

(a− 1)2

2(a+ 1)
≥
(
p

3− 1)(a− 1)2

a2 + 2
,

(a− 1)2(a−
p

3+ 1)2 ≥ 0.

The equality holds for a = b = c, and for
a

p
3− 1

= b = c (or any cyclic permuta-

tion).

P 1.13. Let a, b, c be positive real numbers. Prove that

1
a2 + 2bc

+
1

b2 + 2ca
+

1
c2 + 2ab

≤
�

a+ b+ c
ab+ bc + ca

�2

.

(Vasile Cîrtoaje, 2006)

First Solution. Assume that a ≥ b ≥ c and write the inequality as

(a+ b+ c)2

ab+ bc + ca
− 3≥

∑

�

ab+ bc + ca
a2 + 2bc

− 1
�

,

(a− b)2 + (b− c)2 + (a− b)(b− c)
ab+ bc + ca

+
∑ (a− b)(a− c)

a2 + 2bc
≥ 0.

Since
(a− b)(a− c)≥ 0, (c − a)(c − b)≥ 0,

it suffices to show that

(a− b)2 + (b− c)2 + (a− b)(b− c)−
(ab+ bc + ca)(a− b)(b− c)

b2 + 2ca
≥ 0.
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This inequality is equivalent to

(a− b)2 + (b− c)2 −
(a− b)2(b− c)2

b2 + 2ca
≥ 0,

(b− c)2 +
c(a− b)2(2a+ 2b− c)

b2 + 2ca
≥ 0.

Clearly, the last inequality is true. The equality holds for a = b = c.
Second Solution. Assume that a ≥ b ≥ c and write the desired inequality as

(a+ b+ c)2

ab+ bc + ca
− 3≥

∑

�

ab+ bc + ca
a2 + 2bc

− 1
�

,

1
ab+ bc + ca

∑

(a− b)(a− c) +
∑ (a− b)(a− c)

a2 + 2bc
≥ 0,

∑

�

1+
ab+ bc + ca

a2 + 2bc

�

(a− b)(a− c)≥ 0.

Since (c − a)(c − b)≥ 0 and a− b ≥ 0, it suffices to prove that
�

1+
ab+ bc + ca

a2 + 2bc

�

(a− c) +
�

1+
ab+ bc + ca

b2 + 2ca

�

(c − b)≥ 0.

Write this inequality as

a− b+ (ab+ bc + ca)
�

a− c
a2 + 2bc

+
c − b

b2 + 2ca

�

≥ 0,

(a− b)
�

1+
(ab+ bc + ca)(3ac + 3bc − ab− 2c2

(a2 + 2bc)(b2 + 2ca)

�

≥ 0.

Since a− b ≥ 0 and 2ac + 3bc − 2c2 > 0, it is enough to show that

1+
(ab+ bc + ca)(ac − ab)
(a2 + 2bc)(b2 + 2ca)

≥ 0.

We have

1+
(ab+ bc + ca)(ac − ab)
(a2 + 2bc)(b2 + 2ca)

≥ 1+
(ab+ bc + ca)(ac − ab)

a2(b2 + ca)

=
(a+ b)c2 + (a2 − b2)c

a(b2 + ca)
> 0.

P 1.14. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a2(b+ c)
b2 + c2

+
b2(c + a)
c2 + a2

+
c2(a+ b)
a2 + b2

≥ a+ b+ c.

(Darij Grinberg, 2004)
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First Solution. Use the SOS method. We have

∑ a2(b+ c)
b2 + c2

−
∑

a =
∑

�

a2(b+ c)
b2 + c2

− a
�

=
∑ ab(a− b) + ac(a− c)

b2 + c2

=
∑ ab(a− b)

b2 + c2
+
∑ ba(b− a)

c2 + a2

=
∑ ab(a+ b)(a− b)2

(b2 + c2)(c2 + a2)
≥ 0.

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic
permutation).

Second Solution. By virtue of the Cauchy-Schwarz inequality, we have

∑ a2(b+ c)
b2 + c2

≥

�∑

a2(b+ c)
�2

∑

a2(b+ c)(b2 + c2)
.

Then, it suffices to show that
�∑

a2(b+ c)
�2
≥
�∑

a
��∑

a2(b+ c)(b2 + c2)
�

.

Let p = a+ b+ c and q = ab+ bc + ca. Since
�∑

a2(b+ c)
�2
= (pq− 3abc)2

= p2q2 − 6abcpq+ 9a2 b2c2

and
∑

a2(b+ c)(b2 + c2) =
∑

(b+ c)[(a2 b2 + b2c2 + c2a2)− b2c2]

= 2p(a2 b2 + b2c2 + c2a2)−
∑

b2c2(p− a)

= p(a2 b2 + b2c2 + c2a2) + abcq = p(q2 − 2abcp) + abcq,

the inequality can be written as

p2q2 − 6abcpq+ 9a2 b2c2 ≥ p2(q2 − 2abcp) + abcpq,

abc(2p3 + 9abc − 7pq)≥ 0.

Using Schur’s inequality
p3 + 9abc − 4pq ≥ 0,

we have
2p3 + 9abc − 7pq ≥ p(p2 − 3q)≥ 0.
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P 1.15. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a2 + b2

a+ b
+

b2 + c2

b+ c
+

c2 + a2

c + a
≤

3(a2 + b2 + c2)
a+ b+ c)

.

Solution. Use the SOS method.

First Solution. Multiplying by 2(a+ b+ c), the inequality successively becomes:
∑

�

1+
a

b+ c

�

(b2 + c2)≤ 3(a2 + b2 + c2),

∑ a
b+ c

(b2 + c2)≤
∑

a2,

∑

a
�

a−
b2 + c2

b+ c

�

≥ 0,

∑ ab(a− b)− ac(c − a)
b+ c

≥ 0,

∑ ab(a− b)
b+ c

−
∑ ba(a− b)

c + a
≥ 0,

∑ ab(a− b)2

(b+ c)(c + a)
≥ 0.

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic
permutation).

Second Solution. Subtracting a+ b+ c from the both sides, the desired inequality
becomes as follows:

3(a2 + b2 + c2)
a+ b+ c

− (a+ b+ c)≥
∑

�

a2 + b2

a+ b
−

a+ b
2

�

,

∑ (a− b)2

a+ b+ c
≥
∑ (a− b)2

2(a+ b)
,

∑ (a+ b− c)(a− b)2

a+ b
≥ 0.

Without loss of generality, assume that a ≥ b ≥ c. Since a+ b− c ≥ 0, it suffices to
prove that

(a+ c − b)(a− c)2

a+ c
≥
(a− b− c)(b− c)2

b+ c
.

This inequality is true because

a+ c − b ≥ a− b− c, a− c ≥ b− c,
a− c
a+ c

≥
b− c
b+ c

.

The last inequality reduces to c(a− b)≥ 0.
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Third Solution. Write the inequality as follows:

∑

�

3(a2 + b2)
2(a+ b+ c)

−
a2 + b2

a+ b

�

≥ 0,

∑ (a2 + b2)(a+ b− 2c)
a+ b

≥ 0,

∑ (a2 + b2)(a− c)
a+ b

+
∑ (a2 + b2)(b− c)

a+ b
≥ 0,

∑ (a2 + b2)(a− c)
a+ b

+
∑ (b2 + c2)(c − a)

b+ c
≥ 0,

∑ (a− c)2(ab+ bc + ca− b2)
(a+ b)(b+ c)

≥ 0.

It suffices to prove that

∑ (a− c)2(ab+ bc − ca− b2)
(a+ b)(b+ c)

≥ 0.

Since
ab+ bc − ca− b2 = (a− b)(b− c),

this inequality is equivalent to

(a− b)(b− c)(c − a)
∑ c − a
(a+ b)(b+ c)

≥ 0,

which is true because
∑ c − a
(a+ b)(b+ c)

= 0.

P 1.16. Let a, b, c be positive real numbers. Prove that

1
a2 + ab+ b2

+
1

b2 + bc + c2
+

1
c2 + ca+ a2

≥
9

(a+ b+ c)2
.

(Vasile Cîrtoaje, 2000)

First Solution. Due to homogeneity, we may assume that

a+ b+ c = 1.

Let q = ab+ bc + ca. Since

b2 + bc + c2 = (a+ b+ c)2 − a(a+ b+ c)− (ab+ bc + ca) = 1− a− q,
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we can write the inequality as

∑ 1
1− a− q

≥ 9,

9q3 − 6q2 − 3q+ 1+ 9abc ≥ 0.

From Schur’s inequality

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca),

we get
1+ 9abc − 4q ≥ 0.

Therefore,

9q3 − 6q2 − 3q+ 1+ 9abc = (1+ 9abc − 4q) + q(3q− 1)2 ≥ 0.

The equality holds for a = b = c.

Second Solution. Multiplying by a2+ b2+ c2+ ab+ bc + ca, the inequality can be
written as

(a+ b+ c)
∑ a

b2 + bc + c2
+

9(ab+ bc + ca)
(a+ b+ c)2

≥ 6.

By the Cauchy-Schwarz inequality, we have

∑ a
b2 + bc + c2

≥
(a+ b+ c)2

∑

a(b2 + bc + c2)
=

a+ b+ c
ab+ bc + ca

.

Then, it suffices to show that

(a+ b+ c)2

ab+ bc + ca
+

9(ab+ bc + ca)
(a+ b+ c)2

≥ 6.

This follows immediately from the AM-GM inequality.

P 1.17. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a2

(2a+ b)(2a+ c)
+

b2

(2b+ c)(2b+ a)
+

c2

(2c + a)(2c + b)
≤

1
3

.

(Tigran Sloyan, 2005)
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First Solution. The inequality is equivalent to each of the inequalities

∑

�

a2

(2a+ b)(2a+ c)
−

a
3(a+ b+ c)

�

≤ 0,

∑ a(a− b)(a− c)
(2a+ b)(2a+ c)

≥ 0.

Due to symmetry, we may consider

a ≥ b ≥ c.

Since c(c − a)(c − b)≥ 0, it suffices to prove that

a(a− b)(a− c)
(2a+ b)(2a+ c)

+
b(b− c)(b− a)
(2b+ c)(2b+ a)

≥ 0.

This is equivalent to the obvious inequality

(a− b)2[(a+ b)(2ab− c2) + c(a2 + b2 + 5ab)]≥ 0.

The equality holds for a = b = c, and also for a = b and c = 0 (or any cyclic
permutation).

Second Solution (by Vo Quoc Ba Can). Apply the Cauchy-Schwarz inequality in the
following manner

9a2

(2a+ b)(2a+ c)
=

(2a+ a)2

2a(a+ b+ c) + (2a2 + bc)
≤

2a
a+ b+ c

+
a2

2a2 + bc
.

Then,
∑ 9a2

(2a+ b)(2a+ c)
≤ 2+

∑ a2

2a2 + bc
≤ 3.

For the nontrivial case a, b, c > 0, the right inequality is equivalent to
∑ 1

2+ bc/a2
≤ 1,

which follows immediately from P 1.2-(b).
Remark. From the inequality in P 1.17 and Hölder’s inequality

�

∑ a2

(2a+ b)(2a+ c)

�

�∑Æ

a(2a+ b)(2a+ c)
�2
≥ (a+ b+ c)3,

we get the following result:

• If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then
Æ

a(2a+ b)(2a+ c) +
Æ

b(2b+ c)(2b+ a) +
Æ

c(2c + a)(2c + bc)≥ 9,

with equality for a = b = c = 1, and for (a, b, c) =
�

0,
3
2

,
3
2

�

(or any cyclic permutation).
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P 1.18. Let a, b, c be positive real numbers. Prove that

(a)
∑ a
(2a+ b)(2a+ c)

≤
1

a+ b+ c
;

(b)
∑ a3

(2a2 + b2)(2a2 + c2)
≤

1
a+ b+ c

.

(Vasile Cîrtoaje, 2005)

Solution. (a) Write the inequality as
∑

�

1
3
−

a(a+ b+ c)
(2a+ b)(2a+ c)

�

≥ 0,

∑ (a− b)(a− c)
(2a+ b)(2a+ c)

≥ 0.

Assume that
a ≥ b ≥ c.

Since (a− b)(a− c)≥ 0, it suffices to prove that

(b− c)(b− a)
(2b+ c)(2b+ a)

+
(a− c)(b− c)
(2c + a)(2c + b)

≥ 0.

In addition, since b− c ≥ 0 and a− c ≥ a− b ≥ 0, it is enough to show that

1
(2c + a)(2c + b)

≥
1

(2b+ c)(2b+ a)
.

This is equivalent to the obvious inequality

(b− c)(a+ 4b+ 4c)≥ 0.

The equality holds for a = b = c.

(b) We obtain the desired inequality by summing the inequalities

a3

(2a2 + b2)(2a2 + c2)
≤

a
(a+ b+ c)2

,

b3

(2b2 + c2)(2b2 + a2)
≤

b
(a+ b+ c)2

,

c3

(2c2 + a2)(2c2 + b2)
≤

c
(a+ b+ c)2

,

which are consequences of the Cauchy-Schwarz inequality. For example, from

(a2 + a2 + b2)(c2 + a2 + a2)≥ (ac + a2 + ba)2,

the first inequality follows. The equality holds for a = b = c.



50 Vasile Cîrtoaje

P 1.19. If a, b, c are positive real numbers, then

∑ 1
(a+ 2b)(a+ 2c)

≥
1

(a+ b+ c)2
+

2
3(ab+ bc + ca)

.

Solution. Write the inequality as follows:

∑

�

1
(a+ 2b)(a+ 2c)

−
1

(a+ b+ c)2

�

≥
2

3(ab+ bc + ca)
−

2
(a+ b+ c)2

,

∑ (b− c)2

(a+ 2b)(a+ 2c)
≥
∑ (b− c)2

3(ab+ bc + ca)
,

(a− b)(b− c)(c − a)
∑ b− c
(a+ 2b)(a+ 2c)

≥ 0.

Since

∑ b− c
(a+ 2b)(a+ 2c)

=
∑

�

b− c
(a+ 2b)(a+ 2c)

−
b− c

3(ab+ bc + ca)

�

=
(a− b)(b− c)(c − a)

3(ab+ bc + ca)

∑ 1
(a+ 2b)(a+ 2c)

,

the desired inequality is equivalent to the obvious inequality

(a− b)2(b− c)2(c − a)2
∑ 1
(a+ 2b)(a+ 2c)

≥ 0.

The equality holds for a = b, or b = c, or c = a.

P 1.20. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a)
1

(a− b)2
+

1
(b− c)2

+
1

(c − a)2
≥

4
ab+ bc + ca

;

(b)
1

a2 − ab+ b2
+

1
b2 − bc + c2

+
1

c2 − ca+ a2
≥

3
ab+ bc + ca

;

(c)
1

a2 + b2
+

1
b2 + c2

+
1

c2 + a2
≥

5
2(ab+ bc + ca)

.
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Solution. Let

Ek(a, b, c) =
ab+ bc + ca
a2 − kab+ b2

+
ab+ bc + ca
b2 − kbc + c2

+
ab+ bc + ca
c2 − kca+ a2

,

where k ∈ [0, 2]. We will prove that

Ek(a, b, c)≥ αk,

where

αk =











5− 2k
2− k

, 0≤ k ≤ 1

2+ k, 1≤ k ≤ 2
.

Assume that a ≤ b ≤ c and show that

Ek(a, b, c)≥ Ek(0, b, c)≥ αk.

The left inequality is true because

Ek(a, b, c)− Ek(0, b, c)
a

=

=
b2 + (1+ k)bc − ac
b(a2 − kab+ b2)

+
b+ c

b2 − kbc + c2
+

c2 + (1+ k)bc − ab
c(c2 − kca+ a2)

>
bc − ac

b(a2 − kab+ b2)
+

b+ c
b2 − kbc + c2

+
bc − ab

c(c2 − kca+ a2)
> 0.

In order to prove the right inequality, Ek(0, b, c)≥ αk, where

Ek(0, b, c) =
bc

b2 − kbc + c2
+

b
c
+

c
b

,

we well use the AM-GM inequality. Thus, for k ∈ [1, 2], we have

Ek(0, b, c) =
bc

b2 − kbc + c2
+

b2 − kbc + c2

bc
+ k ≥ 2+ k.

Also, for k ∈ [0,1], we have

Ek(0, b, c) =
bc

b2 − kbc + c2
+

b2 − kbc + c2

(2− k)2 bc

+
�

1−
1

(2− k)2

��

b
c
+

c
b

�

+
k

(2− k)2

≥
2

2− k
+ 2

�

1−
1

(2− k)2

�

+
k

(2− k)2
=

5− 2k
2− k

.

For k ∈ [1,2], the equality holds when a = 0 and
b
c
+

c
b
= 1 + k (or any cyclic

permutation). For k ∈ [0, 1], the equality holds when a = 0 and b = c (or any
cyclic permutation).
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P 1.21. If a, b, c are positive real numbers, then

(a2 + b2)(a2 + c2)
(a+ b)(a+ c)

+
(b2 + c2)(b2 + a2)
(b+ c)(b+ a)

+
(c2 + a2)(c2 + b2)
(c + a)(c + b)

≥ a2 + b2 + c2.

(Vasile Cîrtoaje, 2011)

Solution. Using the identity

(a2 + b2)(a2 + c2) = b2c2 + a2(a2 + b2 + c2),

we can write the inequality as follows:

∑ b2c2

(a+ b)(a+ c)
≥ (a2 + b2 + c2)

�

1−
∑ a2

(a+ b)(a+ c)

�

,

∑

b2c2(b+ c)≥ 2abc(a2 + b2 + c2),
∑

a3(b2 + c2)≥ 2
∑

a3 bc,
∑

a3(b− c)2 ≥ 0.

The equality holds for a = b = c.

P 1.22. Let a, b, c be positive real numbers such that a+ b+ c = 3. Prove that

1
a2 + b+ c

+
1

b2 + c + a
+

1
c2 + a+ b

≤ 1.

First Solution. By virtue of the Cauchy-Schwarz inequality, we have

(a2 + b+ c)(1+ b+ c)≥ (a+ b+ c)2.

Therefore,

∑ 1
a2 + b+ c

≤
∑ 1+ b+ c
(a+ b+ c)2

=
3+ 2(a+ b+ c)
(a+ b+ c)2

= 1.

The equality occurs for a = b = c = 1.

Second Solution. Rewrite the inequality as

1
a2 − a+ 3

+
1

b2 − b+ 3
+

1
c2 − c + 3

≤ 1.

We see that the equality holds for a = b = c = 1. Thus, if there exists a real number
k such that

1
a2 − a+ 3

≤ k+
�

1
3
− k

�

a
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for all a ∈ [0, 3], then
∑ 1

a2 − a+ 3
≤
∑

�

k+
�

1
3
− k

�

a
�

= 3k+
�

1
3
− k

�

∑

a = 1.

We have

k+
�

1
3
− k

�

a−
1

a2 − a+ 3
=
(a− 1) f (a)

3(a2 − a+ 3)
,

where
f (a) = (1− 3k)a2 + 3ka+ 3(1− 3k).

From f (1) = 0, we get k = 4/9. Thus, setting k = 4/9, we get

k+
�

1
3
− k

�

a−
1

a2 − a+ 3
=
(a− 1)2(3− a)
9(a2 − a+ 3)

≥ 0.

P 1.23. Let a, b, c be real numbers such that a+ b+ c = 3. Prove that

a2 − bc
a2 + 3

+
b2 − ca
b2 + 3

+
c2 − ab
c2 + 3

≥ 0.

(Vasile Cîrtoaje, 2005)

Solution. Apply the SOS method. We have

2
∑ a2 − bc

a2 + 3
=
∑ (a− b)(a+ c) + (a− c)(a+ b)

a2 + 3

=
∑ (a− b)(a+ c)

a2 + 3
+
∑ (b− a)(b+ c)

b2 + 3

=
∑

(a− b)
�

a+ c
a2 + 3

−
b+ c
b2 + 3

�

= (3− ab− bc − ca)
∑ (a− b)2

(a2 + 3)(b2 + 3)
≥ 0.

Thus, it suffices to show that

3− ab− bc − ca ≥ 0.

This follows immediately from the known inequality

(a+ b+ c)2 ≥ 3(ab+ bc + ca),

which is equivalent to

(a− b)2 + (b− c)2 + (c − a)2 ≥ 0.

The equality holds for a = b = c = 1.
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P 1.24. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

1− bc
5+ 2a

+
1− ca
5+ 2b

+
1− ab
5+ 2c

≥ 0.

Solution. We apply the SOS method. Since

9(1− bc) = (a+ b+ c)2 − 9bc,

we can write the inequality as

∑ a2 + b2 + c2 + 2a(b+ c)− 7bc
5+ 2a

≥ 0.

From
(a− b)(a+ kb+mc) + (a− c)(a+ kc +mb) =

= 2a2 − k(b2 + c2) + (k+m− 1)a(b+ c)− 2mbc,

choosing k = −2 and m= 7, we get

(a− b)(a− 2b+ 7c) + (a− c)(a− 2c + 7b) = 2[a2 + b2 + c2 + 2a(b+ c)− 7bc].

Therefore, the desired inequality becomes as follows:

∑ (a− b)(a− 2b+ 7c)
5+ 2a

+
∑ (a− c)(a− 2c + 7b)

5+ 2a
≥ 0,

∑ (a− b)(a− 2b+ 7c)
5+ 2a

+
∑ (b− a)(b− 2a+ 7c)

5+ 2b
≥ 0,

∑

(a− b)(5+ 2c)[(5+ 2b)(a− 2b+ 7c)− (5+ 2a)(b− 2a+ 7c)]≥ 0,
∑

(a− b)2(5+ 2c)(15+ 4a+ 4b− 14c)≥ 0,
∑

(a− b)2(5+ 2c)(a+ b− c)≥ 0.

Without loss of generality, assume that a ≥ b ≥ c. Clearly, it suffices to show that

(a− c)2(5+ 2b)(a+ c − b)≥ (b− c)2(5+ 2a)(a− b− c).

Since a− c ≥ b− c ≥ 0 and a+ c − b ≥ a− b− c, we only need to show that

(a− c)(5+ 2b)≥ (b− c)(5+ 2a).

Indeed,
(a− c)(5+ 2b)− (b− c)(5+ 2a) = (a− b)(5+ 2c)≥ 0.

The equality holds for a = b = c = 1, and for a = b = 3/2 and c = 0 (or any cyclic
permutation).
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P 1.25. Let a, b, c be positive real numbers such that a+ b+ c = 3. Prove that

1
a2 + b2 + 2

+
1

b2 + c2 + 2
+

1
c2 + a2 + 2

≤
3
4

.

(Vasile Cîrtoaje, 2006)

Solution. Since
2

a2 + b2 + 2
= 1−

a2 + b2

a2 + b2 + 2
,

we may write the inequality as

a2 + b2

a2 + b2 + 2
+

b2 + c2

b2 + c2 + 2
+

c2 + a2

c2 + a2 + 2
≥

3
2

.

By the Cauchy-Schwarz inequality, we have

∑ a2 + b2

a2 + b2 + 2
≥

�∑p
a2 + b2

�2

∑

(a2 + b2 + 2)

=
2
∑

a2 + 2
∑p

(a2 + b2)(a2 + c2)
2
∑

a2 + 6

≥
2
∑

a2 + 2
∑

(a2 + bc)
2
∑

a2 + 6

=
3
∑

a2 + 9

2
∑

a2 + 6
=

3
2

.

The equality holds for a = b = c = 1.

P 1.26. Let a, b, c be positive real numbers such that a+ b+ c = 3. Prove that

1
4a2 + b2 + c2

+
1

4b2 + c2 + a2
+

1
4c2 + a2 + b2

≤
1
2

.

(Vasile Cîrtoaje, 2007)

Solution. According to the Cauchy-Schwarz inequality, we have

9
4a2 + b2 + c2

=
(a+ b+ c)2

2a2 + (a2 + b2) + (a2 + c2)

≤
1
2
+

b2

a2 + b2
+

c2

a2 + c2
.
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Therefore,

∑ 9
4a2 + b2 + c2

≤
3
2
+
∑

�

b2

a2 + b2
+

c2

a2 + c2

�

=
3
2
+
∑

�

b2

a2 + b2
+

a2

b2 + a2

�

=
3
2
+ 3=

9
2

.

The equality holds for a = b = c = 1.

P 1.27. Let a, b, c be nonnegative real numbers such that a+ b+ c = 2. Prove that

bc
a2 + 1

+
ca

b2 + 1
+

ab
c2 + 1

≤ 1.

(Pham Kim Hung, 2005)

Solution. Let

p = a+ b+ c = 2, q = ab+ bc + ca, q ≤ p2/3= 4/3.

If a = 0, then the inequality reduces to 4ab ≤ (a + b)2. Otherwise, for a, b, c > 0,
write the inequality as

∑ 1
a(a2 + 1)

≤
1

abc
,

∑

�

1
a
−

a
a2 + 1

�

≤
1

abc
,

∑ a
a2 + 1

≥
1
a
+

1
b
+

1
c
−

1
abc

,

∑ a
a2 + 1

≥
q− 1
abc

,

Using the inequality
2

a2 + 1
≥ 2− a,

which is equivalent to
a(a− 1)2 ≥ 0,

we get
∑ a

a2 + 1
≥
∑ a(2− a)

2
=
∑ a(b+ c)

2
= q.

Therefore, it suffices to prove that

1+ abcq ≥ q.



Symmetric Rational Inequalities 57

By Schur’s inequality of degree four, we have

abc ≥
(p2 − q)(4q− p2)

6p
=
(4− q)(q− 1)

3
.

Thus,

1+ abcq− q ≥ 1+
q(4− q)(q− 1)

3
− q =

(3− q)(q− 1)2

3
≥ 0.

The equality holds if a = 0 and b = c = 1 (or any cyclic permutation).

P 1.28. Let a, b, c be nonnegative real numbers such that a+ b+ c = 1. Prove that

bc
a+ 1

+
ca

b+ 1
+

ab
c + 1

≤
1
4

.

(Vasile Cîrtoaje, 2009)

First Solution. We have
∑ bc

a+ 1
=
∑ bc
(a+ b) + (c + a)

≤
1
4

∑

bc
�

1
a+ b

+
1

c + a

�

=
1
4

∑ bc
a+ b

+
1
4

∑ bc
c + a

=
1
4

∑ bc
a+ b

+
1
4

∑ ca
a+ b

=
1
4

∑ bc + ca
a+ b

=
1
4

∑

c =
1
4

.

The equality holds for a = b = c = 1/3, and for a = 0 and b = c = 1/2 (or any
cyclic permutation).

Second Solution. It is easy to check that the inequality is true if one of a, b, c is
zero. Otherwise, write the inequality as

1
a(a+ 1)

+
1

b(b+ 1)
+

1
c(c + 1)

≤
1

4abc
.

Since
1

a(a+ 1)
=

1
a
−

1
a+ 1

,

we may write the required inequality as

1
a+ 1

+
1

b+ 1
+

1
c + 1

≥
1
a
+

1
b
+

1
c
−

1
4abc

.
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In virtue of the Cauchy-Schwarz inequality, we have

1
a+ 1

+
1

b+ 1
+

1
c + 1

≥
9

(a+ 1) + (b+ 1) + (c + 1)
=

9
4

.

Therefore, it suffices to prove that

9
4
≥

1
a
+

1
b
+

1
c
−

1
4abc

.

This is equivalent to Schur’s inequality

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca).

P 1.29. Let a, b, c be positive real numbers such that a+ b+ c = 1. Prove that

1
a(2a2 + 1)

+
1

b(2b2 + 1)
+

1
c(2c2 + 1)

≤
3

11abc
.

(Vasile Cîrtoaje, 2009)

Solution. Since
1

a(2a2 + 1)
=

1
a
−

2a
2a2 + 1

,

we can write the inequality as

∑ 2a
2a2 + 1

≥
1
a
+

1
b
+

1
c
−

3
11abc

.

By the Cauchy-Schwarz inequality, we have

∑ a
2a2 + 1

≥
(
∑

a)2
∑

a(2a2 + 1)
=

1
2(a3 + b3 + c3) + 1

.

Therefore, it suffices to show that

2
2(a3 + b3 + c3) + 1

≥
11q− 3
11abc

,

where

q = ab+ bc + ca, q ≤
1
3
(a+ b+ c)2 =

1
3

.

Since

a3 + b3 + c3 = 3abc + (a+ b+ c)3 − 3(a+ b+ c)(ab+ bc + ca) = 3abc + 1− 3q,
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we need to prove that

22abc ≥ (11q− 3)(6abc + 3− 6q),

or, equivalently,
2(20− 33q)abc ≥ 3(11q− 3)(1− 2q).

From Schur’s inequality

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca),

we get
9abc ≥ 4q− 1.

Thus,
2(20− 33q)abc − 3(11q− 3)(1− 2q)≥

≥
2(20− 33q)(4q− 1)

9
− 3(11q− 3)(1− 2q)

=
330q2 − 233q+ 41

9
=
(1− 3q)(41− 110q)

9
≥ 0.

This completes the proof. The equality holds for a = b = c = 1/3.

P 1.30. Let a, b, c be positive real numbers such that a+ b+ c = 3. Prove that

1
a3 + b+ c

+
1

b3 + c + a
+

1
c3 + a+ b

≤ 1.

(Vasile Cîrtoaje, 2009)

Solution. Write the inequality in the form

1
a3 − a+ 3

+
1

b3 − b+ 3
+

1
c3 − c + 3

≤ 1.

Assume that a ≥ b ≥ c. There are two cases to consider.

Case 1: 2≥ a ≥ b ≥ c. The desired inequality follows by adding the inequalities

1
a3 − a+ 3

≤
5− 2a

9
,

1
b3 − b+ 3

≤
5− 2b

9
,

1
c3 − c + 3

≤
5− 2c

9
.

These inequalities are true since

1
a3 − a+ 3

−
5− 2a

9
=
(a− 1)2(a− 2)(2a+ 3)

9(a3 − a+ 3)
≤ 0.
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Case 2: a > 2. From a+ b+ c = 3, we get b+ c < 1. Since

∑ 1
a3 − a+ 3

<
1

a3 − a+ 3
+

1
3− b

+
1

3− c
<

1
9
+

1
3− b

+
1

3− c
,

it suffices to prove that
1

3− b
+

1
3− c

≤
8
9

.

We have
1

3− b
+

1
3− c

−
8
9
=
−3− 15(1− b− c)− 8bc

9(3− b)(3− c)
< 0.

The equality holds for a = b = c = 1.

P 1.31. Let a, b, c be positive real numbers such that a+ b+ c = 3. Prove that

a2

1+ b3 + c3
+

b2

1+ c3 + a3
+

c2

1+ a3 + b3
≥ 1.

Solution. Using the Cauchy-Schwarz inequality, we have

∑ a2

1+ b3 + c3
≥

�∑

a2
�2

∑

a2(1+ b3 + c3)
,

and it remains to show that

(a2 + b2 + c2)2 ≥ (a2 + b2 + c2) +
∑

a2 b2(a+ b).

Let
p = a+ b+ c, q = ab+ bc + ca, q ≤ 3.

Since a2 + b2 + c2 = 9− 2q and
∑

a2 b2(a+ b) =
∑

a2 b2(3− c) = 3
∑

a2 b2 − qabc = 3q2 − (q+ 18)abc,

the desired inequality can be written as

(9− 2q)2 ≥ (9− 2q) + 3q2 − (q+ 18)abc,

q2 − 34q+ 72+ (q+ 18)abc ≥ 0.

This inequality is clearly true for q ≤ 2. Consider further that 2< q ≤ 3. By Schur’s
inequality of degree four, we get

abc ≥
(p2 − q)(4q− p2)

6p
=
(9− q)(4q− 9)

18
.
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Therefore

q2 − 34q+ 72+ (q+ 18)abc ≥ q2 − 34q+ 72+
(q+ 18)(9− q)(4q− 9)

18

=
(3− q)(4q2 + 21q− 54)

18
≥ 0.

The equality holds for a = b = c = 1.

P 1.32. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

1
6− ab

+
1

6− bc
+

1
6− ca

≤
3
5

.

Solution. Rewrite the inequality as

108− 48(ab+ bc + ca) + 13abc(a+ b+ c)− 3a2 b2c2 ≥ 0,

4[9− 4(ab+ bc + ca) + 3abc] + abc(1− abc)≥ 0.

By the AM-GM inequality,

1=
�

a+ b+ c
3

�3

≥ abc.

Consequently, it suffices to show that

9− 4(ab+ bc + ca) + 3abc ≥ 0.

We see that the homogeneous form of this inequality is just Schur’s inequality of
third degree

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca).

The equality holds for a = b = c = 1, as well as for a = 0 and b = c = 3/2 (or any
cyclic permutation).

P 1.33. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

1
2a2 + 7

+
1

2b2 + 7
+

1
2c2 + 7

≤
1
3

.

(Vasile Cîrtoaje, 2005)
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Solution. Use the mixing variables method. Assume that a = max{a, b, c} and
prove that

E(a, b, c)≤ E(a, s, s)≤
1
3

,

where

s =
b+ c

2
, 0≤ s ≤ 1,

E(a, b, c) =
1

2a2 + 7
+

1
2b2 + 7

+
1

2c2 + 7
.

We have

E(a, s, s)− E(a, b, c) =
�

1
2s2 + 7

−
1

2b2 + 7

�

+
�

1
2s2 + 7

−
1

2c2 + 7

�

=
1

2s2 + 7

�

(b− c)(b+ s)
2b2 + 7

+
(c − b)(c + s)

2c2 + 7

�

=
(b− c)2(7− 4s2 − 2bc)
(2s2 + 7)(2b2 + 7)(2c2 + 7)

.

Since bc ≤ s2 ≤ 1, it follows that

7− 4s2 − 2bc = 1+ 4(1− s2) + 2(1− bc)> 0,

hence E(a, s, s)≥ E(a, b, c). Also,

1
3
− E(a, s, s) =

1
3
− E(3− 2s, s, s) =

4(s− 1)2(2s− 1)2

3(2a2 + 7)(2s2 + 7)
≥ 0.

The equality holds for a = b = c = 1, as well as for a = 2 and b = c = 1/2 (or any
cyclic permutation).

P 1.34. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

1
2a2 + 3

+
1

2b2 + 3
+

1
2c2 + 3

≥
3
5

.

(Vasile Cîrtoaje, 2005)

First Solution (by Nguyen Van Quy). Write the inequality as

∑

�

1
3
−

1
2a2 + 3

�

≤
2
5

,

∑ a2

2a2 + 5
≤

3
5

.
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Using the Cauchy-Schwarz inequality gives

25
3(2a2 + 3)

=
25

6a2 + (a+ b+ c)2

=
(2+ 2+ 1)2

2(2a2 + bc) + 2a(a+ b+ c) + a2 + b2 + c2

≤
22

2(2a2 + bc)
+

22

2a(a+ b+ c)
+

1
a2 + b2 + c2

,

hence

∑ 25a2

3(2a2 + 3)
≤
∑ 2a2

2a2 + bc
+
∑ 2a

a+ b+ c
+
∑ a2

a2 + b2 + c2

=
∑ 2a2

2a2 + bc
+ 3.

Therefore, it suffices to show that

∑ a2

2a2 + bc
≤ 1.

For the nontrivial case a, b, c > 0, this is equivalent to

∑ 1
2+ bc/a2

≤ 1,

which follows immediately from P 1.2-(b). The equality holds for a = b = c = 1,
as well as for a = 0 and b = c = 3/2 (or any cyclic permutation).

Second Solution. First, we can check that the desired inequality becomes an equal-
ity for a = b = c = 1, and for a = 0 and b = c = 3/2. Consider then the inequality
f (x)≥ 0, where

f (x) =
1

2x2 + 3
− A− Bx , f ′(x) =

−4x
(2x2 + 3)2

− B.

The conditions f (1) = 0 and f ′(1) = 0 involve A= 9/25 and B = −4/25. Also, the
conditions f (3/2) = 0 and f ′(3/2) = 0 involve A= 22/75 and B = −8/75. Using
these values of A and B, we obtain the identities

1
2x2 + 3

−
9− 4x

25
=

2(x − 1)2(4x − 1)
25(2x2 + 3)

,

1
2x2 + 3

−
22− 8x

75
=
(2x − 3)2(4x + 1)

75(2x2 + 3)
,

and the inequalities
1

2x2 + 3
≥

9− 4x
25

, x ≥
1
4

,
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1
2x2 + 3

≥
22− 8x

75
, x ≥ 0.

Without loss of generality, assume that a ≥ b ≥ c.

Case 1: a ≥ b ≥ c ≥
1
4

. By summing the inequalities

1
2a2 + 3

≥
9− 4a

25
,

1
2b2 + 3

≥
9− 4b

25
,

1
2c2 + 3

≥
9− 4c

25
,

we get
1

2a2 + 3
+

1
2b2 + 3

+
1

2c2 + 3
≥

27− 4(a+ b+ c)
25

=
3
5

.

Case 2: a ≥ b ≥
1
4
≥ c. We have

∑ 1
2a2 + 3

≥
22− 8a

75
+

22− 8b
75

+
1

2c2 + 3

=
44− 8(a+ b)

75
+

1
2c2 + 3

=
20+ 8c

75
+

1
2c2 + 3

.

Therefore, it suffices to show that

20+ 8c
75

+
1

2c2 + 3
≥

3
5

,

which is equivalent to the obvious inequality

c(8c2 − 25c + 12)≥ 0.

Case 3: a ≥
1
4
≥ b ≥ c. We have

∑ 1
2a2 + 3

>
1

2b2 + 3
+

1
2c2 + 3

≥
2

1/8+ 3
>

3
5

.

P 1.35. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

1
a+ b

+
1

b+ c
+

1
c + a

≥
a+ b+ c

6
+

3
a+ b+ c

.

(Vasile Cîrtoaje, 2007)
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First Solution. Denoting

x = a+ b+ c, x ≥ 3,

we have

1
a+ b

+
1

b+ c
+

1
c + a

=
(a+ b+ c)2 + ab+ bc + ca

(a+ b+ c)(ab+ bc + ca)− abc
=

x2 + 3
3x − abc

.

Then, the inequality becomes

x2 + 3
3x − abc

≥
x
6
+

3
x

,

3(x3 + 9abc − 12x) + abc(x2 − 9)≥ 0.

This inequality is true since

x2 − 9≥ 0, x3 + 9abc − 12x ≥ 0.

The last inequality is just Schur’s inequality of degree three

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca).

The equality holds for a = b = c = 1, and for a = 0 and b = c =
p

3 (or any cyclic
permutation).

Second Solution. We apply the SOS method. Write the inequality as follows:

1
a+ b

+
1

b+ c
+

1
c + a

≥
a+ b+ c

2(ab+ bc + ca)
+

3
a+ b+ c

,

2(a+ b+ c)
�

1
a+ b

+
1

b+ c
+

1
c + a

�

≥
(a+ b+ c)2

ab+ bc + ca
+ 6,

[(a+ b) + (b+ c) + (c + a)]
�

1
a+ b

+
1

b+ c
+

1
c + a

�

− 9≥
(a+ b+ c)2

ab+ bc + ca
− 3,

∑ (b− c)2

(a+ b)(c + a)
≥

1
2(ab+ bc + ca)

∑

(b− c)2,

∑ ab+ bc + ca− a2

(a+ b)(c + a)
(b− c)2 ≥ 0,

∑ 3− a2

3+ a2
(b− c)2 ≥ 0,

Without loss of generality, assume that a ≥ b ≥ c. Since 3− c2 ≥ 0, it suffices to
show that

3− a2

3+ a2
(b− c)2 +

3− b2

3+ b2
(c − a)2 ≥ 0.
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Having in view that

3− b2 = ab+ bc + ca− b2 ≥ b(a− b)≥ 0, (c − a)2 ≥ (b− c)2,

it is enough to prove that
3− a2

3+ a2
+

3− b2

3+ b2
≥ 0.

This is true since

3− a2

3+ a2
+

3− b2

3+ b2
=

2(9− a2 b2)
(3+ a2)(3+ b2)

=
2c(a+ b)(3+ ab)
(3+ a2)(3+ b2)

≥ 0.

P 1.36. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

1
a2 + 1

+
1

b2 + 1
+

1
c2 + 1

≥
3
2

.

(Vasile Cîrtoaje, 2005)

First Solution. After expanding, the inequality can be restated as

a2 + b2 + c2 + 3≥ a2 b2 + b2c2 + c2a2 + 3a2 b2c2.

From

(a+ b+ c)(ab+ bc + ca)− 9abc = a(b− c)2 + b(c − a)2 + c(a− b)2 ≥ 0,

we get
a+ b+ c ≥ 3abc.

So, it suffices to show that

a2 + b2 + c2 + 3≥ a2 b2 + b2c2 + c2a2 + abc(a+ b+ c).

This is equivalent to the homogeneous inequalities

(ab+bc+ca)(a2+b2+c2)+(ab+bc+ca)2 ≥ 3(a2 b2+b2c2+c2a2)+3abc(a+b+c),

ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2)≥ 2(a2 b2 + b2c2 + c2a2),

ab(a− b)2 + bc(b− c)2 + ca(c − a)2 ≥ 0.

The equality holds for a = b = c = 1, and for a = 0 and b = c =
p

3 (or any cyclic
permutation).

Second Solution. Without loss of generality, assume that

a =min{a, b, c}, bc ≥ 1.
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From

(a+ b+ c)(ab+ bc + ca)− 9abc = a(b− c)2 + b(c − a)2 + c(a− b)2 ≥ 0,

we get
a+ b+ c ≥ 3abc.

The desired inequality follows by summing the inequalities

1
b2 + 1

+
1

c2 + 1
≥

2
bc + 1

,

1
a2 + 1

+
2

bc + 1
≥

3
2

.

We have

1
b2 + 1

+
1

c2 + 1
−

2
bc + 1

=
b(c − b)

(b2 + 1)(bc + 1)
+

c(b− c)
(c2 + 1)(bc + 1)

=
(b− c)2(bc − 1)

(b2 + 1)(c2 + 1)(bc + 1)
≥ 0

and

1
a2 + 1

+
2

bc + 1
−

3
2
=

a2 − bc + 3− 3a2 bc
2(a2 + 1)(bc + 1)

=
a(a+ b+ c − 3abc)
2(a2 + 1)(bc + 1)

≥ 0.

Third Solution. Since

1
a2 + 1

= 1−
a2

a2 + 1
,

1
b2 + 1

= 1−
b2

b2 + 1
,

1
c2 + 1

= 1−
c2

c2 + 1
,

we can rewrite the inequality as

a2

a2 + 1
+

b2

b2 + 1
+

c2

c2 + 1
≤

3
2

,

or, in the homogeneous form,

∑ a2

3a2 + ab+ bc + ca
≤

1
2

.

According to the Cauchy-Schwarz inequality, we have

4a2

3a2 + ab+ bc + ca
=

(a+ a)2

a(a+ b+ c) + (2a2 + bc)
≤

a
a+ b+ c

+
a2

2a2 + bc
,

hence
∑ 4a2

3a2 + ab+ bc + ca
≤ 1+

∑ a2

2a2 + bc
.
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It suffices to show that
∑ a2

2a2 + bc
≤ 1.

For the nontrivial case a, b, c > 0, this is equivalent to

∑ 1
2+ bc/a2

≤ 1,

which follows immediately from P 1.2-(b).
Remark. We can write the inequality in P 1.36 in the homogeneous form

1

1+
3a2

ab+ bc + ca

+
1

1+
3b2

ab+ bc + ca

+
1

1+
3c2

ab+ bc + ca

≥
3
2

.

Substituting a, b, c by
1
x

,
1
y

,
1
z

, respectively, we get

x

x +
3yz

x + y + z

+
y

y +
3zx

x + y + z

+
z

z +
3x y

x + y + z

≥
3
2

.

So, we find the following result.

• If x , y, z are positive real numbers such that x + y + z = 3, then

x
x + yz

+
y

y + zx
+

z
z + x y

≥
3
2

.

P 1.37. Let a, b, c be positive real numbers such that ab+ bc + ca = 3. Prove that

a2

a2 + b+ c
+

b2

b2 + c + a
+

c2

c2 + a+ b
≥ 1.

(Vasile Cîrtoaje, 2005)

Solution. We apply the Cauchy-Schwarz inequality in the following way

∑ a2

a2 + b+ c
≥

�

a3/2 + b3/2 + c3/2
�2

∑

a(a2 + b+ c)
=

∑

a3 + 2
∑

(ab)3/2
∑

a3 + 6
.

Then, we still have to show that

(ab)3/2 + (bc)3/2 + (ca)3/2 ≥ 3.
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By the AM-GM inequality, we have

(ab)3/2 =
(ab)3/2 + (ab)3/2 + 1

2
−

1
2
≥

3ab
2
−

1
2

,

hence

(ab)3/2 + (bc)3/2 + (ca)3/2 ≥
3
2
(ab+ bc + ca)−

3
2
= 3.

The equality holds for a = b = c = 1.

P 1.38. Let a, b, c be positive real numbers such that ab+ bc + ca = 3. Prove that

bc + 4
a2 + 4

+
ca+ 4
b2 + 4

+
ab+ 4
c2 + 4

≤ 3≤
bc + 2
a2 + 2

+
ca+ 2
b2 + 2

+
ab+ 2
c2 + 2

.

(Vasile Cîrtoaje, 2007)

Solution. More general, using the SOS method, we will show that

(k− 3)
�

bc + k
a2 + k

+
ca+ k
b2 + k

+
ab+ k
c2 + k

− 3
�

≤ 0

for k > 0. This inequality is equivalent to

(k− 3)
∑ a2 − bc

a2 + k
≥ 0.

Since

2
∑ a2 − bc

a2 + k
=
∑ (a− b)(a+ c) + (a− c)(a+ b)

a2 + k

=
∑ (a− b)(a+ c)

a2 + k
+
∑ (b− a)(b+ c)

b2 + k

= (k− ab− bc − ca)
∑ (a− b)2

(a2 + k)(b2 + k)

= (k− 3)
∑ (a− b)2

(a2 + k)(b2 + k)
,

we have

2(k− 3)
∑ a2 − bc

a2 + k
= (k− 3)2

∑ (a− b)2

(a2 + k)(b2 + k)
≥ 0.

The equality in both inequalities holds for a = b = c = 1.
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P 1.39. Let a, b, c be nonnegative real numbers such that ab+ bc + ca = 3. If

k ≥ 2+
p

3,

then
1

a+ k
+

1
b+ k

+
1

c + k
≤

3
1+ k

.

(Vasile Cîrtoaje, 2007)

Solution. Let us denote
p = a+ b+ c, p ≥ 3.

By expanding, the inequality becomes

k(k− 2)p+ 3abc ≥ 3(k− 1)2.

Since this inequality is true for p ≥ 3(k− 1)2/(k2 − 2k), consider further that

p ≤
3(k− 1)2

k(k− 2)
.

From Schur’s inequality

(a+ b+ c)3 + 9abc ≥ 4(ab+ bc + ca)(a+ b+ c),

we get
9abc ≥ 12p− p3.

Therefore, it suffices to prove that

3k(k− 2)p+ 12p− p3 ≥ 9(k− 1)2,

or, equivalently,
(p− 3)[(3(k− 1)2 − p2 − 3p]≥ 0.

Thus, it remains to prove that

3(k− 1)2 − p2 − 3p ≥ 0.

Since p ≤ 3(k− 1)2/(k2 − 2k) and k ≥ 2+
p

3, we have

3(k− 1)2 − p2 − 3p ≥ 3(k− 1)2 −
9(k− 1)4

k2(k− 2)2
−

9(k− 1)2

k(k− 2)

=
3(k− 1)2(k2 − 3)(k2 − 4k+ 1)

k2(k− 2)2
≥ 0.

The equality holds for a = b = c = 1. In the case k = 2+
p

3, the equality holds
also for a = 0 and b = c =

p
3 (or any cyclic permutation).
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P 1.40. Let a, b, c be nonnegative real numbers such that a2+ b2+ c2 = 3. Prove that

a(b+ c)
1+ bc

+
b(c + a)
1+ ca

+
c(a+ b)
1+ ab

≤ 3.

(Vasile Cîrtoaje, 2010)

Solution. Write the inequality in the homogeneous forms

∑ a(b+ c)
a2 + b2 + c2 + 3bc

≤ 1,

∑

�

a(b+ c)
a2 + b2 + c2 + 3bc

−
a

a+ b+ c

�

≤ 0,

∑ a(a− b)(a− c)
a2 + b2 + c2 + 3bc

≥ 0.

Without loss of generality, assume that a ≥ b ≥ c. Then, it suffices to prove that

a(a− b)(a− c)
a2 + b2 + c2 + 3bc

+
b(b− c)(b− a)

a2 + b2 + c2 + 3ca
≥ 0,

which is true if
a(a− c)

a2 + b2 + c2 + 3bc
≥

b(b− c)
a2 + b2 + c2 + 3ca

.

Since
a(a− c)≥ b(b− c)

and
1

a2 + b2 + c2 + 3bc
≥

1
a2 + b2 + c2 + 3ca

,

the conclusion follows. The equality holds for a = b = c = 1, and for a = b =
p

3/2
and c = 0 (or any cyclic permutation).

P 1.41. Let a, b, c be positive real numbers such that a2 + b2 + c2 = 3. Prove that

a2 + b2

a+ b
+

b2 + c2

b+ c
+

c2 + a2

c + a
≥ 3.

(Cezar Lupu, 2005)

First Solution. We apply the SOS method. Write the inequality in the homoge-
neous forms

∑

�

b2 + c2

b+ c
−

b+ c
2

�

≥
Æ

3(a2 + b2 + c2)− a− b− c,



72 Vasile Cîrtoaje

∑ (b− c)2

2(b+ c)
≥

∑

(b− c)2
p

3(a2 + b2 + c2) + a+ b+ c
.

Since
Æ

3(a2 + b2 + c2) + a+ b+ c ≥ 2(a+ b+ c)> 2(b+ c),

the conclusion follows. The equality holds for a = b = c = 1.

Second Solution. By virtue of the Cauchy-Schwarz inequality, we have

∑ a2 + b2

a+ b
≥

�∑p
a2 + b2

�2

∑

(a+ b)
=

2
∑

a2 + 2
∑p

(a2 + b2)(a2 + c2)
2
∑

a

≥
2
∑

a2 + 2
∑

(a2 + bc)
2
∑

a
=

3
∑

a2 +
�∑

a
�2

2
∑

a

=
9+

�∑

a
�2

2
∑

a
= 3+

�∑

a− 3
�2

2
∑

a
≥ 3.

P 1.42. Let a, b, c be positive real numbers such that a2 + b2 + c2 = 3. Prove that

ab
a+ b

+
bc

b+ c
+

ca
c + a

+ 2≤
7
6
(a+ b+ c).

(Vasile Cîrtoaje, 2011)

Solution. We apply the SOS method. Write the inequality as

3
∑

�

b+ c −
4bc
b+ c

�

≥ 8(3− a− b− c).

Since

b+ c −
4bc
b+ c

=
(b− c)2

b+ c
and

3− a− b− c =
9− (a+ b+ c)2

3+ a+ b+ c
=

3(a2 + b2 + c2)− (a+ b+ c)2

3+ a+ b+ c

=
1

3+ a+ b+ c

∑

(b− c)2,

we can write the inequality as

Sa(b− c)2 + Sb(c − a)2 + Sc(a− b)2 ≥ 0,

where
Sa =

3
b+ c

−
8

3+ a+ b+ c
.
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Without loss of generality, assume that a ≥ b ≥ c, which involves Sa ≥ Sb ≥ Sc. If

Sb + Sc ≥ 0,

then
Sa ≥ Sb ≥ 0,

hence

Sa(b− c)2 + Sb(c − a)2 + Sc(a− b)2 ≥ Sb(c − a)2 + Sc(a− b)2

≥ (Sb + Sc)(a− b)2 ≥ 0.

By the Cauchy-Schwarz inequality, we have

Sb + Sc = 3
�

1
a+ c

+
1

a+ b

�

−
16

3+ a+ b+ c

≥
12

(a+ c) + (a+ b)
−

16
3+ a+ b+ c

=
4(9− 5a− b− c)

(2a+ b+ c)(3+ a+ b+ c)
.

Therefore,we only need to show that

9≥ 5a+ b+ c.

This follows immediately from the Cauchy-Schwarz inequality

(25+ 1+ 1)(a2 + b2 + c2)≥ (5a+ b+ c)2.

Thus, the proof is completed. The equality holds for a = b = c = 1, and also for
a = 5/3 and b = c = 1/3 (or any cyclic permutation).

P 1.43. Let a, b, c be positive real numbers such that a2 + b2 + c2 = 3. Prove that

(a)
1

3− ab
+

1
3− bc

+
1

3− ca
≤

3
2

;

(b)
1

5− 2ab
+

1
5− 2bc

+
1

5− 2ca
≤ 1;

(c)
1

p
6− ab

+
1

p
6− bc

+
1

p
6− ca

≤
3

p
6− 1

.

(Vasile Cîrtoaje, 2005)
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Solution. (a) Since

3
3− ab

= 1+
ab

3− ab
= 1+

2ab
a2 + b2 + 2c2 + (a− b)2

≤ 1+
2ab

a2 + b2 + 2c2
≤ 1+

(a+ b)2

2(a2 + b2 + 2c2)
,

it suffices to prove that

(a+ b)2

a2 + b2 + 2c2
+

(b+ c)2

b2 + c2 + 2a2
+

(c + a)2

c2 + a2 + 2b2
≤ 3.

By the Cauchy-Schwarz inequality, we have

(a+ b)2

a2 + b2 + 2c2
=

(a+ b)2

(a2 + c2) + (b2 + c2)
≤

a2

a2 + c2
+

b2

b2 + c2
.

Thus,

∑ (a+ b)2

a2 + b2 + 2c2
≤
∑ a2

a2 + c2
+
∑ b2

b2 + c2
=
∑ a2

a2 + c2
+
∑ c2

c2 + a2
= 3.

The equality holds for a = b = c = 1.

(b) Write the inequality in the homogeneous form

∑ a2 + b2 + c2

5(a2 + b2 + c2)− 6bc
≤ 1.

Since
2(a2 + b2 + c2)

5(a2 + b2 + c2)− 6bc
= 1−

3a2 + 3(b− c)2

5(a2 + b2 + c2)− 6bc
,

the inequality is equivalent to

∑ a2 + (b− c)2

5(a2 + b2 + c2)− 6bc
≥

1
3

.

Assume that
a ≥ b ≥ c.

By the Cauchy-Schwarz inequality, we have

∑ a2

5(a2 + b2 + c2)− 6bc
≥

�∑

a
�2

∑

[5(a2 + b2 + c2)− 6bc]
=

∑

a2 + 2
∑

ab

15
∑

a2 − 6
∑

ab
.

∑ (b− c)2

5(a2 + b2 + c2)− 6bc
≥
[(b− c) + (a− c) + (a− b)]2
∑

[5(a2 + b2 + c2)− 6bc]
=

4(a− c)2

15
∑

a2 − 6
∑

ab
.
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Therefore, it suffices to show that

∑

a2 + 2
∑

ab+ 4(a− c)2

15
∑

a2 − 6
∑

ab
≥

1
3

,

which is equivalent to
∑

ab+ (a− c)2 ≥
∑

a2,

(a− b)(b− c)≥ 0.

(c) According to P 1.32, the following inequality holds

1
6− a2 b2

+
1

6− b2c2
+

1
6− c2a2

≤
3
5

.

Since
2
p

6
6− a2 b2

=
1

p
6− ab

+
1

p
6+ ab

,

this inequality becomes

∑ 1
p

6− ab
+
∑ 1
p

6+ ab
≤

6
p

6
5

.

Thus, it suffices to show that

∑ 1
p

6+ ab
≥

3
p

6+ 1
.

Since ab+ bc + ca ≤ a2 + b2 + c2 = 3, by the Cauchy-Schwarz inequality, we have

∑ 1
p

6+ ab
≥

9
∑

(
p

6+ ab)
=

9

3
p

6+ ab+ bc + ca
≥

3
p

6+ 1
.

The equality holds for a = b = c = 1.

P 1.44. Let a, b, c be positive real numbers such that a2 + b2 + c2 = 3. Prove that

1
1+ a5

+
1

1+ b5
+

1
1+ c5

≥
3
2

.

(Vasile Cîrtoaje, 2007)
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Solution. Let a =min{a, b, c}. There are two cases to consider.

Case 1: a ≥
1
2

. The desired inequality follows by summing the inequalities

8
1+ a5

≥ 9− 5a2,
8

1+ b5
≥ 9− 5b2,

8
1+ c5

≥ 9− 5c2.

To obtain these inequalities, we consider the inequality

8
1+ x5

≥ p+ qx2,

where the real coefficients p and q will be determined such that (x −1)2 is a factor
of the polynomial

P(x) = 8− (1+ x5)(p+ qx2).

It is easy to check that P(1) = 0 involves p+ q = 4, hence

P(x) = 4(2− x2 − x7)− p(1− x2 + x5 − x7) = (1− x)Q(x),

where

Q(x) = 4(2+ 2x + x2 + x3 + x4 + x5 + x6)− p(1+ x + x5 + x6).

In addition, Q(1) = 0 involves p = 9, hence

P(x) = (1− x)2(5x5 + 10x4 + 6x3 + 2x2 − 2x − 1)

= (1− x)2[x5 + (2x − 1)(2x4 + 6x3 + 6x2 + 4x + 1)].

Clearly, we have P(x)≥ 0 for x ≥
1
2

.

Case 2: a ≤
1
2

. Write the desired inequality as

1
1+ a5

−
1
2
≥

b5c5 − 1
(1+ b5)(1+ c5)

.

Since
1

1+ a5
−

1
2
≥

32
33
−

1
2
=

31
66

and
(1+ b5)(1+ c5)≥ (1+

p

b5c5 )2,

it suffices to show that

31(1+
p

b5c5 )2 ≥ 66(b5c5 − 1).

For the nontrivial case bc > 1, this inequality is equivalent to

31(1+
p

b5c5 )≥ 66(
p

b5c5 − 1),
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bc ≤ (97/35)2/5.

Indeed, from
3= a2 + b2 + c2 > b2 + c2 ≥ 2bc,

we get
bc < 3/2< (97/35)2/5.

This completes the proof. The equality holds for a = b = c = 1.

P 1.45. Let a, b, c be positive real numbers such that abc = 1. Prove that

1
a2 + a+ 1

+
1

b2 + b+ 1
+

1
c2 + c + 1

≥ 1.

First Solution. Using the substitution

a =
yz
x2

, b =
zx
y2

, c =
x y
z2

,

where x , y, z are positive real numbers, the inequality becomes

∑ x4

x4 + x2 yz + y2z2
≥ 1.

By the Cauchy-Schwarz inequality, we have

∑ x4

x4 + x2 yz + y2z2
≥

�∑

x2
�2

∑

(x4 + x2 yz + y2z2)
=

∑

x4 + 2
∑

y2z2

∑

x4 + x yz
∑

x +
∑

y2z2
.

Therefore, it suffices to show that
∑

y2z2 ≥ x yz
∑

x ,

which is equivalent to
∑

x2(y − z)2 ≥ 0. The equality holds for a = b = c = 1.

Second Solution. Using the substitution

a =
y
x

, b =
z
y

, c =
x
z

,

where x , y, z > 0, we need to prove that

x2

x2 + x y + y2
+

y2

y2 + yz + z2
+

z2

z2 + zx + z2
≥ 1.
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Since
x2(x2 + y2 + z2 + x y + yz + zx)

x2 + x y + y2
= x2 +

x2z(x + y + z)
x2 + x y + y2

,

multiplying by x2 + y2 + z2 + x y + yz + zx , the inequality can be written as

∑ x2z
x2 + x y + y2

≥
x y + yz + zx

x + y + z
.

By the Cauchy-Schwarz inequality, we have

∑ x2z
x2 + x y + y2

≥

�∑

xz
�2

∑

z(x2 + x y + y2)
=

x y + yz + zx
x + y + z

.

Remark. The inequality in P 1.45 is a particular case of the following more general
inequality (Vasile Cîrtoaje, 2009).

• Let a1, a2, . . . , an (n ≥ 3) be positive real numbers such that a1a2 · · · an = 1. If
p, q ≥ 0 such that p+ q = n− 1, then

i=n
∑

i=1

1
1+ pai + qa2

i

≥ 1.

P 1.46. Let a, b, c be positive real numbers such that abc = 1. Prove that

1
a2 − a+ 1

+
1

b2 − b+ 1
+

1
c2 − c + 1

≤ 3.

First Solution. Since

1
a2 − a+ 1

+
1

a2 + a+ 1
=

2(a2 + 1)
a4 + a2 + 1

= 2−
2a4

a4 + a2 + 1
,

we can rewrite the inequality as

∑ 1
a2 + a+ 1

+ 2
∑ a4

a4 + a2 + 1
≥ 3.

Thus, it suffices to show that

∑ 1
a2 + a+ 1

≥ 1

and
∑ a4

a4 + a2 + 1
≥ 1.
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The first inequality is just the inequality in P 1.45, while the second follows from
the first by substituting a, b, c with a−2, b−2, c−2, respectively. The equality holds
for a = b = c = 1.

Second Solution. Write the inequality as
∑

�

4
3
−

1
a2 − a+ 1

�

≥ 1,

∑ (2a− 1)2

a2 − a+ 1
≥ 3.

Let p = a+ b+ c and q = ab+ bc+ ca. By the Cauchy-Schwarz inequality, we have

∑ (2a− 1)2

a2 − a+ 1
≥

�

2
∑

a− 3
�2

∑

(a2 − a+ 1)
=

(2p− 3)2

p2 − 2q− p+ 3
.

Thus, it suffices to show that

(2p− 3)2 ≥ 3(p2 − 2q− p+ 3),

which is equivalent to
p2 + 6q− 9p ≥ 0.

From the known inequality

(ab+ bc + ca)2 ≥ 3abc(a+ b+ c),

we get q2 ≥ 3p. Using this inequality and the AM-GM inequality, we find

p2 + 6q = p2 + 3q+ 3q ≥ 3 3
p

9p2q2 ≥ 3 3
Æ

9p2(3p) = 9p.

P 1.47. Let a, b, c be positive real numbers such that abc = 1. Prove that

3+ a
(1+ a)2

+
3+ b
(1+ b)2

+
3+ c
(1+ c)2

≥ 3.

Solution. Using the inequality in P 1.1, we have
∑ 3+ a
(1+ a)2

=
∑ 2
(1+ a)2

+
∑ 1

1+ a

=
∑

�

1
(1+ a)2

+
1

(1+ b)2

�

+
∑ 1

1+ c

≥
∑ 1

1+ ab
+
∑ ab

1+ ab
= 3.

The equality holds for a = b = c = 1.
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P 1.48. Let a, b, c be positive real numbers such that abc = 1. Prove that

7− 6a
2+ a2

+
7− 6b
2+ b2

+
7− 6c
2+ c2

≥ 1.

(Vasile Cîrtoaje, 2008)

Solution. Write the inequality as
�

7− 6a
2+ a2

+ 1
�

+
�

7− 6b
2+ b2

+ 1
�

+
�

7− 6c
2+ c2

+ 1
�

≥ 4,

(3− a)2

2+ a2
+
(3− b)2

2+ b2
+
(3− c)2

2+ c2
≥ 4.

Substituting a, b, c by 1/a, 1/b, 1/c, respectively, we need to prove that abc = 1
involves

(3a− 1)2

2a2 + 1
+
(3b− 1)2

2b2 + 1
+
(3c − 1)2

2c2 + 1
≥ 4.

By the Cauchy-Schwarz inequality, we have

∑ (3a− 1)2

2a2 + 1
≥

�

3
∑

a− 3
�2

∑

(2a2 + 1)
=

9
∑

a2 + 18
∑

ab− 18
∑

a+ 9

2
∑

a2 + 3
.

Thus, it suffices to prove that

9
∑

a2 + 18
∑

ab− 18
∑

a+ 9≥ 4
�

2
∑

a2 + 3
�

,

which is equivalent to
f (a) + f (b) + f (c)≥ 3,

where

f (x) = x2 + 18
�

1
x
− x

�

.

We use the mixing variables technique. Without loss of generality, assume that

a =max{a, b, c}, a ≥ 1, bc ≤ 1.

Since

f (b) + f (c)− 2 f (
p

bc) = (b− c)2 + 18(
p

b−
p

c)2
�

1
bc
− 1

�

≥ 0,

it suffices to show that
f (a) + 2 f (

p

bc)≥ 3,

which is equivalent to

f (x2) + 2 f
�

1
x

�

≥ 3, x =
p

a,
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x6 − 18x4 + 36x3 − 3x2 − 36x + 20≥ 0,

(x − 1)2(x − 2)2(x + 1)(x + 5)≥ 0.

The equality holds for a = b = c = 1, and also for a = 1/4 and b = c = 2 (or any
cyclic permutation).

P 1.49. Let a, b, c be positive real numbers such that abc = 1. Prove that

a6

1+ 2a5
+

b6

1+ 2b5
+

c6

1+ 2c5
≥ 1.

(Vasile Cîrtoaje, 2008)

Solution. Using the substitutions

a = 3

√

√ x2

yz
, b =

3

√

√ y2

zx
, c = 3

√

√ z2

x y
,

the inequality becomes
∑ x4

y2z2 + 2x3 3
p

x yz
≥ 1.

By the Cauchy-Schwarz inequality, we have

∑ x4

y2z2 + 2x3 3
p

x yz
≥

(
∑

x2)2
∑

(y2z2 + 2x3 3
p

x yz)
=

(
∑

x2)2
∑

x2 y2 + 2 3
p

x yz
∑

x3
.

Therefore, we only need to show that

�∑

x2
�2
≥
∑

x2 y2 + 2 3px yz
∑

x3.

Since, by the AM-GM inequality,

x + y + z ≥ 3 3px yz,

it suffices to prove that

3(
∑

x2)2 ≥ 3
∑

x2 y2 + 2(
∑

x)(
∑

x3);

that is,
∑

x4 + 3
∑

x2 y2 ≥ 2
∑

x y(x2 + y2),
∑

(x − y)4 ≥ 0.

The equality holds for a = b = c = 1.
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P 1.50. Let a, b, c be positive real numbers such that abc = 1. Prove that

a
a2 + 5

+
b

b2 + 5
+

c
c2 + 5

≤
1
2

.

(Vasile Cîrtoaje, 2008)

Solution. Let

F(a, b, c) =
a

a2 + 5
+

b
b2 + 5

+
c

c2 + 5
.

Without loss of generality, assume that a =min{a, b, c}.

Case 1: a ≤ 1/5. We have

F(a, b, c)<
a
5
+

b

2
p

5b2
+

c

2
p

5c2
≤

1
25
+

1
p

5
<

1
2

.

Case 2: a > 1/5. Use the mixing variables method. We will show that

F(a, b, c)≤ F(a, x , x)≤
1
2

,

where
x =

p

bc, a = 1/x2, x <
p

5.

The left inequality, F(a, b, c)≤ F(a, x , x), is equivalent to

(
p

b−
p

c)2[10x(b+ c) + 10x2 − 25− x4]≥ 0.

This is true since

10x(b+ c) + 10x2 − 25− x4 ≥ 20x2 + 10x2 − 25x2 − x4 = x2(5− x2)> 0.

The right inequality, F(a, x , x)≤
1
2

, is equivalent to

(x − 1)2(5x4 − 10x3 − 2x2 + 6x + 5)≥ 0.

It is also true since

5x4 − 10x3 − 2x2 + 6x + 5= 5(x − 1)4 + 2x(5x2 − 16x + 13)

and
5x2 + 13≥ 2

p

65x2 > 16x .

The equality holds for a = b = c = 1.
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P 1.51. Let a, b, c be positive real numbers such that abc = 1. Prove that

1
(1+ a)2

+
1

(1+ b)2
+

1
(1+ c)2

+
2

(1+ a)(1+ b)(1+ c)
≥ 1.

(Pham Van Thuan, 2006)

First Solution. There are two of a, b, c either greater than or equal to 1, or less
than or equal to 1. Let b and c be these numbers; that is, (1− b)(1− c)≥ 0. Since

1
(1+ b)2

+
1

(1+ c)2
≥

1
1+ bc

(see P 1.1), it suffices to show that

1
(1+ a)2

+
1

1+ bc
+

2
(1+ a)(1+ b)(1+ c)

≥ 1.

This inequality is equivalent to

b2c2

(1+ bc)2
+

1
1+ bc

+
2bc

(1+ bc)(1+ b)(1+ c)
≥ 1,

which can be written in the obvious form

bc(1− b)(1− c)
(1+ bc)(1+ b)(1+ c)

≥ 0.

The equality holds for a = b = c = 1.

Second Solution. Setting

a = yz/x2, b = zx/y2, c = x y/z2,

where x , y, z > 0, the inequality becomes

∑ x4

(x2 + yz)2
+

2x2 y2z2

(x2 + yz)(y2 + zx)(z2 + x y)
≥ 1.

By the Cauchy-Schwarz inequality, we have

∑ x4

(x2 + yz)2
≥
∑ x4

(x2 + y2)(x2 + z2)
= 1−

2x2 y2z2

(x2 + y2)(y2 + z2)(z2 + x2)
.

Then, it suffices to show that

(x2 + y2)(y2 + z2)(z2 + x2)≥ (x2 + yz)(y2 + zx)(z2 + x y).

This inequality follows by multiplying the inequalities

(x2 + y2)(x2 + z2)≥ (x2 + yz)2,
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(y2 + z2)(y2 + x2)≥ (y2 + zx)2,

(z2 + x2)(z2 + y2)≥ (z2 + x y)2.

Third Solution. We make the substitution

1
1+ a

=
1+ x

2
,

1
1+ b

=
1+ y

2
,

1
1+ c

=
1+ z

2
,

which is equivalent to

a =
1− x
1+ x

, b =
1− y
1+ y

, c =
1− z
1+ z

,

where
−1< x , y, z < 1, x + y + z + x yz = 0.

The desired inequality becomes

(1+ x)2 + (1+ y)2 + (1+ z)2 + (1+ x)(1+ y)(1+ z)≥ 4,

x2 + y2 + z2 + (x + y + z)2 + 4(x + y + z)≥ 0.

By virtue of the AM-GM inequality, we have

x2 + y2 + z2 + (x + y + z)2 + 4(x + y + z) = x2 + y2 + z2 + x2 y2z2 − 4x yz

≥ 4 4
p

x4 y4z4 − 4x yz = 4|x yz| − 4x yz ≥ 0.

P 1.52. Let a, b, c be nonnegative real numbers such that

1
a+ b

+
1

b+ c
+

1
c + a

=
3
2

.

Prove that
3

a+ b+ c
≥

2
ab+ bc + ca

+
1

a2 + b2 + c2
.

Solution. Write the inequality in the homogeneous form

2
a+ b+ c

�

1
a+ b

+
1

b+ c
+

1
c + a

�

≥
2

ab+ bc + ca
+

1
a2 + b2 + c2

.

Due to homogeneity, we may assume that

a+ b+ c = 1, 0≤ a, b, c < 1.
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Denote q = ab+ bc+ ca. From the known inequality (a+ b+ c)2 ≥ 3(ab+ bc+ ca),
we get

1− 3q ≥ 0.

Rewrite the desired inequality as follows:

2
�

1
1− c

+
1

1− a
+

1
1− b

�

≥
2
q
+

1
1− 2q

,

2(q+ 1)
q− abc

≥
2− 3q

q(1− 2q)
,

q2(1− 4q) + (2− 3q)abc ≥ 0.

By Schur’s inequality, we have

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca),

1− 4q ≥ −9abc.

Then,

q2(1− 4q) + (2− 3q)abc ≥ −9q2abc + (2− 3q)abc
= (1− 3q)(2+ 3q)abc ≥ 0.

The equality holds for a = b = c = 1, and for a = 0 and b = c =
5
3

(or any cyclic

permutation).

P 1.53. Let a, b, c be nonnegative real numbers such that

7(a2 + b2 + c2) = 11(ab+ bc + ca).

Prove that
51
28
≤

a
b+ c

+
b

c + a
+

c
a+ b

≤ 2.

Solution. Due to homogeneity, we may assume that b+ c = 2. Let us denote

x = bc, 0≤ x ≤ 1.

By the hypothesis 7(a2 + b2 + c2) = 11(ab+ bc + ca), we get

x =
7a2 − 22a+ 28

25
.
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Notice that the condition x ≤ 1 involves

1
7
≤ a ≤ 3.

Since

a
b+ c

+
b

c + a
+

c
a+ b

=
a

b+ c
+

a(b+ c) + (b+ c)2 − 2bc
a2 + (b+ c)a+ bc

=
a
2
+

2(a+ 2− x)
a2 + 2a+ x

=
4a3 + 27a+ 11

8a2 + 7a+ 7
,

the required inequalities become

51
28
≤

4a3 + 27a+ 11
8a2 + 7a+ 7

≤ 2.

We have
4a3 + 27a+ 11

8a2 + 7a+ 7
−

51
28
=
(7a− 1)(4a− 7)2

28(8a2 + 7a+ 7)
≥ 0

and

2−
4a3 + 27a+ 11
8a2 + 7a+ 7

=
(3− a)(2a− 1)2

8a2 + 7a+ 7
≥ 0.

This completes the proof. The left inequality becomes an equality for 7a = b = c
(or any cyclic permutation), while the right inequality is an equality for

a
3
= b = c

(or any cyclic permutation).

P 1.54. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1
a2 + b2

+
1

b2 + c2
+

1
c2 + a2

≥
10

(a+ b+ c)2
.

Solution. Assume that a =min{a, b, c}, and denote

x = b+
a
2

, y = c +
a
2

.

Since
a2 + b2 ≤ x2, b2 + c2 ≤ x2 + y2, c2 + a2 ≤ y2,

(a+ b+ c)2 = (x + y)2 ≥ 4x y,

it suffices to show that
1
x2
+

1
x2 + y2

+
1
y2
≥

5
2x y

.
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We have

1
x2
+

1
x2 + y2

+
1
y2
−

5
2x y

=
�

1
x2
+

1
y2
−

2
x y

�

+
�

1
x2 + y2

−
1

2x y

�

=
(x − y)2

x2 y2
−

(x − y)2

2x y(x2 + y2)

=
(x − y)2(2x2 − x y + 2y2)

2x2 y2(x2 + y2)
≥ 0.

The equality holds for a = 0 and b = c (or any cyclic permutation).

P 1.55. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1
a2 − ab+ b2

+
1

b2 − bc + c2
+

1
c2 − ca+ a2

≥
3

max{ab, bc, ca}
.

Solution. Assume that

a =min{a, b, c}, bc =max{ab, bc, ca}.

Since

1
a2 − ab+ b2

+
1

b2 − bc + c2
+

1
c2 − ca+ a2

≥
1
b2
+

1
b2 − bc + c2

+
1
c2

,

it suffices to show that

1
b2
+

1
b2 − bc + c2

+
1
c2
≥

3
bc

.

We have
1
b2
+

1
b2 − bc + c2

+
1
c2
−

3
bc
=

(b− c)4

b2c2(b2 − bc + c2)
≥ 0.

The equality holds for a = b = c, and also a = 0 and b = c (or any cyclic permuta-
tion).

P 1.56. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a(2a+ b+ c)
b2 + c2

+
b(2b+ c + a)

c2 + a2
+

c(2c + a+ b)
a2 + b2

≥ 6.
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Solution. By the Cauchy-Schwarz inequality, we have

∑ a(2a+ b+ c)
b2 + c2

≥

�∑

a(2a+ b+ c)
�2

∑

a(2a+ b+ c)(b2 + c2)
.

Thus, we still need to show that

2
�∑

a2 +
∑

ab
�2
≥ 3

∑

a(2a+ b+ c)(b2 + c2),

which is equivalent to

2
∑

a4 + 2abc
∑

a+
∑

ab(a2 + b2)≥ 6
∑

a2 b2.

We can obtain this inequality by adding Schur’s inequality of degree four
∑

a4 + abc
∑

a ≥
∑

ab(a2 + b2)

and
∑

ab(a2 + b2)≥ 2
∑

a2 b2,

multiplied by 2 and 3, respectively. The equality occurs for a = b = c, and for a = 0
and b = c (or any cyclic permutation).

P 1.57. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a2(b+ c)2

b2 + c2
+

b2(c + a)2

c2 + a2
+

c2(a+ b)2

a2 + b2
≥ 2(ab+ bc + ca).

Solution. We apply the SOS method. Since

a2(b+ c)2)
b2 + c2

= a2 +
2a2 bc
b2 + c2

,

we can write the inequality as

2
�∑

a2 −
∑

ab
�

−
∑

a2
�

1−
2bc

b2 + c2

�

≥ 0,

∑

(b− c)2 −
∑ a2(b− c)2

b2 + c2
≥ 0,

∑

�

1−
a2

b2 + c2

�

(b− c)2 ≥ 0.
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Without loss of generality, assume that a ≥ b ≥ c. Since 1−
c2

a2 + b2
> 0, it suffices

to prove that

�

1−
a2

b2 + c2

�

(b− c)2 +
�

1−
b2

c2 + a2

�

(a− c)2 ≥ 0,

which is equivalent to

(a2 − b2 + c2)(a− c)2

a2 + c2
≥
(a2 − b2 − c2)(b− c)2

b2 + c2
.

This inequality follows by multiplying the inequalities

a2 − b2 + c2 ≥ a2 − b2 − c2,
(a− c)2

a2 + c2
≥
(b− c)2

b2 + c2
.

The latter inequality is true since

(a− c)2

a2 + c2
−
(b− c)2

b2 + c2
=

2bc
b2 + c2

−
2ac

a2 + c2
=

2c(a− b)(ab− c2)
(b2 + c2)(a2 + c2)

≥ 0.

The equality occurs for a = b = c, and for a = b and c = 0 (or any cyclic permuta-
tion).

P 1.58. If a, b, c are positive real numbers, then

3
∑ a

b2 − bc + c2
+ 5

�

a
bc
+

b
ca
+

c
ab

�

≥ 8
�

1
a
+

1
b
+

1
c

�

.

(Vasile Cîrtoaje, 2011)

Solution. In order to apply the SOS method, we multiply the inequality by abc
and write it as follows:

8
�∑

a2 −
∑

bc
�

− 3
∑

a2
�

1−
bc

b2 − bc + c2

�

≥ 0,

4
∑

(b− c)2 − 3
∑ a2(b− c)2

b2 − bc + c2
≥ 0,

∑ (b− c)2(4b2 − 4bc + 4c2 − 3a2)
b2 − bc + c2

≥ 0.

Without loss of generality, assume that a ≥ b ≥ c. Since

4a2 − 4ab+ 4b2 − 3c2 = (2a− b)2 + 3(b2 − c2)≥ 0,
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it suffices to prove that

(a− c)2(4a2 − 4ac + 4c2 − 3b2)
a2 − ac + c2

≥
(b− c)2(3a2 − 4b2 + 4bc − 4c2)

b2 − bc + c2
.

Notice that

4a2 − 4ac + 4c2 − 3b2 = (a− 2c)2 + 3(a2 − b2)≥ 0.

Thus, the desired inequality follows by multiplying the inequalities

4a2 − 4ac + 4c2 − 3b2 ≥ 3a2 − 4b2 + 4bc − 4c2

and
(a− c)2

a2 − ac + c2
≥

(b− c)2

b2 − bc + c2
.

The first inequality is equivalent to

(a− 2c)2 + (b− 2c)2 ≥ 0.

Also, we have

(a− c)2

a2 − ac + c2
−

(b− c)2

b2 − bc + c2
=

bc
b2 − bc + c2

−
ac

a2 − ac + c2

=
c(a− b)(ab− c2)

(b2 − bc + c2)(a2 − ac + c2)
≥ 0.

The equality occurs for a = b = c, and for 2a = b = c (or any cyclic permutation).

P 1.59. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a) 2abc
�

1
a+ b

+
1

b+ c
+

1
c + a

�

+ a2 + b2 + c2 ≥ 2(ab+ bc + ca);

(b)
a2

a+ b
+

b2

b+ c
+

c2

c + a
≤

3(a2 + b2 + c2)
2(a+ b+ c)

.

Solution. (a) First Solution. We have

2abc
∑ 1

b+ c
+
∑

a2 =
∑ a(2bc + ab+ ac)

b+ c

=
∑ ab(a+ c)

b+ c
+
∑ ac(a+ b)

b+ c

=
∑ ab(a+ c)

b+ c
+
∑ ba(b+ c)

c + a

=
∑

ab
�

a+ c
b+ c

+
b+ c
a+ c

�

≥ 2
∑

ab.
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The equality occurs for a = b = c, and for a = 0 and b = c (or any cyclic permuta-
tion).

Second Solution. Write the inequality as
∑

�

2abc
b+ c

+ a2 − ab− ac
�

≥ 0.

We have
∑

�

2abc
b+ c

+ a2 − ab− ac
�

=
∑ ab(a− b) + ac(a− c)

b+ c

=
∑ ab(a− b)

b+ c
+
∑ ba(b− a)

c + a

=
∑ ab(a− b)2

(b+ c)(c + a)
≥ 0.

(b) Since
∑ a2

a+ b
=
∑

�

a−
ab

a+ b

�

= a+ b+ c −
∑ ab

a+ b
,

we can write the desired inequality as

∑ ab
a+ b

+
3(a2 + b2 + c2)

2(a+ b+ c)
≥ a+ b+ c.

Multiplying by 2(a+ b+ c), the inequality can be written as

2
∑

�

1+
a

b+ c

�

bc + 3(a2 + b2 + c2)≥ 2(a+ b+ c)2,

or
2abc

∑ 1
b+ c

+ a2 + b2 + c2 ≥ 2(ab+ bc + ca),

which is just the inequality in (a).

P 1.60. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a)
a2 − bc
b2 + c2

+
b2 − ca
c2 + a2

+
c2 − ab
a2 + b2

+
3(ab+ bc + ca)

a2 + b2 + c2
≥ 3;

(b)
a2

b2 + c2
+

b2

c2 + a2
+

c2

a2 + b2
+

ab+ bc + ca
a2 + b2 + c2

≥
5
2

;

(c)
a2 + bc
b2 + c2

+
b2 + ca
c2 + a2

+
c2 + ab
a2 + b2

≥
ab+ bc + ca
a2 + b2 + c2

+ 2.

(Vasile Cîrtoaje, 2014)



92 Vasile Cîrtoaje

Solution. (a) Use the SOS method. Write the inequality as follows:

∑

�

2a2

b2 + c2
− 1

�

+
∑

�

1−
2bc

b2 + c2

�

− 6
�

1−
ab+ bc + ca
a2 + b2 + c2

�

≥ 0,

∑ 2a2 − b2 − c2

b2 + c2
+
∑ (b− c)2

b2 + c2
− 3

∑ (b− c)2

a2 + b2 + c2
≥ 0.

Since

∑ 2a2 − b2 − c2

b2 + c2
=
∑ a2 − b2

b2 + c2
+
∑ a2 − c2

b2 + c2
=
∑ a2 − b2

b2 + c2
+
∑ b2 − a2

c2 + a2

=
∑ (a2 − b2)2

(b2 + c2)(c2 + a2)
=
∑ (b2 − c2)2

(a2 + b2)(a2 + c2)
,

we can write the inequality as
∑

(b− c)2Sa ≥ 0,

where

Sa =
(b+ c)2

(a2 + b2)(a2 + c2)
+

1
b2 + c2

−
3

a2 + b2 + c2
.

It suffices to show that Sa, Sb, Sc ≥ 0 for all nonnegative real numbers a, b, c, no
two of which are zero. Denoting x2 = b2 + c2, we have

Sa =
x2 + 2bc

a4 + a2 x2 + b2c2
+

1
x2
−

3
a2 + x2

,

and the inequality Sa ≥ 0 becomes

(a2 − 2x2)b2c2 + 2x2(a2 + x2)bc + (a2 + x2)(a2 − x2)2 ≥ 0.

Clearly, this is true if
−2x2 b2c2 + 2x4 bc ≥ 0.

Indeed,

−2x2 b2c2 + 2x4 bc = 2x2 bc(x2 − bc) = 2bc(b2 + c2)(b2 + c2 − bc)≥ 0.

The equality occurs for a = b = c, and for a = 0 and b = c (or any cyclic permuta-
tion).

(b) First Solution. We get the desired inequality by summing the inequality
in (a) and the inequality

bc
b2 + c2

+
ca

c2 + a2
+

ab
a2 + b2

+
1
2
≥

2(ab+ bc + ca)
a2 + b2 + c2

.
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This inequality is equivalent to

∑

�

2bc
b2 + c2

+ 1
�

≥
4(ab+ bc + ca)

a2 + b2 + c2
+ 2,

∑ (b+ c)2

b2 + c2
≥

2(a+ b+ c)2

a2 + b2 + c2
.

By the Cauchy-Schwarz inequality, we have

∑ (b+ c)2

b2 + c2
≥

�∑

(b+ c)
�2

∑

(b2 + c2)
=

2(a+ b+ c)2

a2 + b2 + c2
.

The equality occurs for a = b = c, and for a = 0 and b = c (or any cyclic permuta-
tion).

Second Solution. Let

p = a+ b+ c, q = ab+ bc + ca, r = abc.

By the Cauchy-Schwarz inequality, we have

∑ a2

b2 + c2
≥

�∑

a2
�2

∑

a2(b2 + c2)
=
(p2 − 2q)2

2(q2 − 2pr)
.

Therefore, it suffices to show that

(p2 − 2q)2

q2 − 2pr
+

2q
p2 − 2q

≥ 5. (*)

Consider the following cases: p2 ≥ 4q and 3q ≤ p2 < 4q.

Case 1: p2 ≥ 4q. The inequality (*) is true if

(p2 − 2q)2

q2
+

2q
p2 − 2q

≥ 5,

which is equivalent to the obvious inequality

(p2 − 4q)
�

(p2 − q)2 − 2q2
�

≥ 0.

Case 2: 3q ≤ p2 < 4q. Using Schur’s inequality of degree four

6pr ≥ (p2 − q)(4q− p2),

the inequality (*) is true if

3(p2 − 2q)2

3q2 − (p2 − q)(4q− p2)
+

2q
p2 − 2q

≥ 5,
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which is equivalent to the obvious inequality

(p2 − 3q)(p2 − 4q)(2p2 − 5q)≤ 0.

Third Solution (by Nguyen Van Quy). Write the inequality (*) from the preceding
solution as follows:

(a2 + b2 + c2)2

a2 b2 + b2c2 + c2a2
+

2(ab+ bc + ca)
a2 + b2 + c2

≥ 5,

(a2 + b2 + c2)2

a2 b2 + b2c2 + c2a2
− 3≥ 2−

2(ab+ bc + ca)
a2 + b2 + c2

,

a4 + b4 + c4 − a2 b2 − b2c2 − c2a2

a2 b2 + b2c2 + c2a2
≥

2(a2 + b2 + c2 − ab− bc − ca)
a2 + b2 + c2

.

Since

2(a2 b2 + b2c2 + c2a2)≤
∑

ab(a2 + b2)≤ (ab+ bc + ca)(a2 + b2 + c2),

it suffices to prove that

a4 + b4 + c4 − a2 b2 − b2c2 − c2a2

ab+ bc + ca
≥ a2 + b2 + c2 − ab− bc − ca,

which is just Schur’s inequality of degree four

a4 + b4 + c4 + abc(a+ b+ c)≥ ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2).

(c) We get the desired inequality by summing the inequality in (a) and the
inequality

2bc
b2 + c2

+
2ca

c2 + a2
+

2ab
a2 + b2

+ 1≥
4(ab+ bc + ca)

a2 + b2 + c2
,

which was proved at the first solution of (b). The equality occurs for a = b = c,
and for a = 0 and b = c (or any cyclic permutation).

P 1.61. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a2

b2 + c2
+

b2

c2 + a2
+

c2

a2 + b2
≥

(a+ b+ c)2

2(ab+ bc + ca)
.

Solution. Applying the Cauchy-Schwarz inequality, we get

∑ a2

b2 + c2
≥

�∑

a2
�2

∑

a2(b2 + c2)
=

(a2 + b2 + c2)2

2(a2 b2 + b2c2 + c2a2)
.
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Therefore, it suffices to show that

(a2 + b2 + c2)2

2(a2 b2 + b2c2 + c2a2)
≥

(a+ b+ c)2

2(ab+ bc + ca)
,

which is equivalent to

(a2 + b2 + c2)2

a2 b2 + b2c2 + c2a2
− 3≥

(a+ b+ c)2

ab+ bc + ca
− 3,

a4 + b4 + c4 − a2 b2 − b2c2 − c2a2

a2 b2 + b2c2 + c2a2
≥

a2 + b2 + c2 − ab− bc − ca
ab+ bc + ca

.

Since a2 b2 + b2c2 + c2a2 ≤ (ab+ bc + ca)2, it suffices to show that

a4 + b4 + c4 − a2 b2 − b2c2 − c2a2 ≥ (a2 + b2 + c2 − ab− bc − ca)(ab+ bc + ca),

which is just Schur’s inequality of degree four

a4 + b4 + c4 + abc(a+ b+ c)≥ ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2).

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic
permutation).

P 1.62. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

2ab
(a+ b)2

+
2bc
(b+ c)2

+
2ca
(c + a)2

+
a2 + b2 + c2

ab+ bc + ca
≥

5
2

.

(Vasile Cîrtoaje, 2006)

First Solution. We use the SOS method. Write the inequality as follows:

a2 + b2 + c2

ab+ bc + ca
− 1≥

∑

�

1
2
−

2bc
(b+ c)2

�

,

∑ (b− c)2

ab+ bc + ca
≥
∑ (b− c)2

(b+ c)2
,

(b− c)2Sa + (c − a)2Sb + (a− b)2Sc ≥ 0,

where

Sa = 1−
ab+ bc + ca
(b+ c)2

, Sb = 1−
ab+ bc + ca
(c + a)2

, Sc = 1−
ab+ bc + ca
(a+ b)2

.

Without loss of generality, assume that a ≥ b ≥ c. We have Sc > 0 and

Sb ≥ 1−
(c + a)(c + b)
(c + a)2

=
a− b
c + a

≥ 0.
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If b2Sa + a2Sb ≥ 0, then

∑

(b− c)2Sa ≥ (b− c)2Sa + (c − a)2Sb ≥ (b− c)2Sa +
a2

b2
(b− c)2Sb

=
(b− c)2(b2Sa + a2Sb)

b2
≥ 0.

We have

b2Sa + a2Sb = a2 + b2 − (ab+ bc + ca)

�

�

b
b+ c

�2

+
� a

c + a

�2
�

≥ a2 + b2 − (b+ c)(c + a))

�

�

b
b+ c

�2

+
� a

c + a

�2
�

= a2
�

1−
b+ c
c + a

�

+ b2
�

1−
c + a
b+ c

�

=
(a− b)2(ab+ bc + ca)

(b+ c)(c + a)
≥ 0.

The equality occurs for a = b = c, and for a = b and c = 0 (or any cyclic permuta-
tion).

Second Solution. Multiplying by ab+ bc + ca, the inequality becomes

∑ 2a2 b2

(a+ b)2
+ 2abc

∑ 1
a+ b

+ a2 + b2 + c2 ≥
5
2
(ab+ bc + ca),

2abc
∑ 1

a+ b
+ a2 + b2 + c2 − 2(ab+ bc + ca)−

∑ 1
2

ab
�

1−
∑ 4ab
(a+ b)2

�

≥ 0.

According to the second solution of P 1.59-(a), we can write the inequality as fol-
lows:

∑ ab(a− b)2

(b+ c)(c + a)
−
∑ ab(a− b)2

2(a+ b)2
≥ 0,

(b− c)2Sa + (c − a)2Sb + (a− b)2Sc ≥ 0,

where

Sa =
bc

b+ c
[2(b+ c)2 − (a+ b)(a+ c)].

Without loss of generality, assume that a ≥ b ≥ c. We have Sc > 0 and

Sb =
ac

a+ c
[2(a+ c)2 − (a+ b)(b+ c)]≥

ac
a+ c

[2(a+ c)2 − (2a)(a+ c)]

=
2ac2(a+ c)

a+ c
≥ 0.

If Sa + Sb ≥ 0, then
∑

(b− c)2Sa ≥ (b− c)2Sa + (a− c)2Sb ≥ (b− c)2(Sa + Sb)≥ 0.
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The inequality Sa + Sb ≥ 0 is equivalent to

ac
a+ c

[2(a+ c)2 − (a+ b)(b+ c)]≥
bc

b+ c
[(a+ b)(a+ c)− 2(b+ c)2].

Since
ac

a+ c
≥

bc
b+ c

,

it suffices to show that

2(a+ c)2 − (a+ b)(b+ c)≥ (a+ b)(a+ c)− 2(b+ c)2.

This is true since is equivalent to

(a− b)2 + 2c(a+ b) + 4c2 ≥ 0.

P 1.63. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

ab
(a+ b)2

+
bc

(b+ c)2
+

ca
(c + a)2

+
1
4
≥

ab+ bc + ca
a2 + b2 + c2

.

(Vasile Cîrtoaje, 2011)

First Solution. We use the SOS method. Write the inequality as follows:

1−
ab+ bc + ca
a2 + b2 + c2

≥
∑

�

1
4
−

bc
(b+ c)2

�

,

2
∑ (b− c)2

a2 + b2 + c2
≥
∑ (b− c)2

(b+ c)2
,

∑

(b− c)2
�

2−
a2 + b2 + c2

(b+ c)2

�

≥ 0.

Since

2−
a2 + b2 + c2

(b+ c)2
= 1+

2bc − a2

(b+ c)2
≥ 1−

� a
b+ c

�2
,

it suffices to show that

(b− c)2Sa + (c − a)2Sb + (a− b)2Sc ≥ 0,

where

Sa = 1−
� a

b+ c

�2
, Sb = 1−

�

b
c + a

�2

, Sc = 1−
� c

a+ b

�2
.
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Without loss of generality, assume that a ≥ b ≥ c. Since Sb ≥ 0 and Sc > 0, if
b2Sa + a2Sb ≥ 0, then

∑

(b− c)2Sa ≥ (b− c)2Sa + (c − a)2Sb ≥ (b− c)2Sa +
a2

b2
(b− c)2Sb

=
(b− c)2(b2Sa + a2Sb)

b2
≥ 0.

We have

b2Sa + a2Sb = a2 + b2 −
�

ab
b+ c

�2

−
�

ab
c + a

�2

= a2

�

1−
�

b
b+ c

�2
�

+ b2
�

1−
� a

c + a

�2�

≥ 0.

The equality occurs for a = b = c, and for a = b and c = 0 (or any cyclic permuta-
tion).

Second Solution. Since (a+ b)2 ≤ 2(a2 + b2), it suffices to prove that

∑ ab
2(a2 + b2)

+
1
4
≥

ab+ bc + ca
a2 + b2 + c2

,

which is equivalent to

∑ 2ab
a2 + b2

+ 1≥
4(ab+ bc + ca)

a2 + b2 + c2
,

∑ (a+ b)2

a2 + b2
≥ 2+

4(ab+ bc + ca)
a2 + b2 + c2

,

∑ (a+ b)2

a2 + b2
≥

2(a+ b+ c)2

a2 + b2 + c2
.

The last inequality follows immediately by the Cauchy-Schwarz inequality

∑ (a+ b)2

a2 + b2
≥
[
∑

(a+ b)]2
∑

(a2 + b2)
.

Remark. The following generalization of the inequalities in P 1.62 and P 1.63
holds:

• Let a, b, c be nonnegative real numbers, no two of which are zero. If 0 ≤ k ≤ 2,
then

∑ 4ab
(a+ b)2

+ k
a2 + b2 + c2

ab+ bc + ca
≥ 3k− 1+ 2(2− k)

ab+ bc + ca
a2 + b2 + c2

.

with equality for a = b = c, and for a = 0 and b = c (or any cyclic permutation).
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P 1.64. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

3ab
(a+ b)2

+
3bc
(b+ c)2

+
3ca
(c + a)2

≤
ab+ bc + ca
a2 + b2 + c2

+
5
4

.

(Vasile Cîrtoaje, 2011)

Solution. We use the SOS method. Write the inequality as follows:

3
∑

�

1
4
−

bc
(b+ c)2

�

≥ 1−
ab+ bc + ca
a2 + b2 + c2

,

3
∑ (b− c)2

(b+ c)2
≥ 2

∑ (b− c)2

a2 + b2 + c2
,

(b− c)2Sa + (c − a)2Sb + (a− b)2Sc ≥ 0,

where

Sa =
3(a2 + b2 + c2)
(b+ c)2

− 2, Sb =
3(a2 + b2 + c2)
(c + a)2

− 2, Sc =
3(a2 + b2 + c2)
(a+ b)2

− 2.

Without loss of generality, assume that a ≥ b ≥ c. Since Sa > 0 and

Sb =
a2 + 3b2 + c2 − 4ac

(c + a)2
=
(a− 2c)2 + 3(b2 − c2)

(c + a)2
≥ 0,

if Sb + Sc ≥ 0, then
∑

(b− c)2Sa ≥ (c − a)2Sb + (a− b)2Sc ≥ (a− b)2(Sb + Sc)≥ 0.

Using the Cauchy-Schwarz Inequality, we have

Sb + Sc = 3(a2 + b2 + c2)
�

1
(c + a)2

+
1

(a+ b)2

�

− 4

≥
12(a2 + b2 + c2)
(c + a)2 + (a+ b)2

− 4=
4(a− b− c)2 + 4(b− c)2

(c + a)2 + (a+ b)2
≥ 0.

The equality occurs for a = b = c, and for
a
2
= b = c (or any cyclic permutation).

P 1.65. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a)
a3 + abc

b+ c
+

b3 + abc
c + a

+
c3 + abc

a+ b
≥ a2 + b2 + c2;

(b)
a3 + 2abc

b+ c
+

b3 + 2abc
c + a

+
c3 + 2abc

a+ b
≥

1
2
(a+ b+ c)2;

(c)
a3 + 3abc

b+ c
+

b3 + 3abc
c + a

+
c3 + 3abc

a+ b
≥ 2(ab+ bc + ca).
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Solution. (a) First Solution. Write the inequality as

∑

�

a3 + abc
b+ c

− a2
�

≥ 0,

∑ a(a− b)(a− c)
b+ c

≥ 0.

Assume that a ≥ b ≥ c. Since (c − a)(c − b)≥ 0 and

a(a− b)(a− c)
b+ c

+
b(b− c)(b− a)

b+ c
=
(a− b)2(a2 + b2 + c2 + ab)

(b+ c)(c + a)
≥ 0,

the conclusion follows. The equality occurs for a = b = c, and for a = b and c = 0
(or any cyclic permutation).

(b) Taking into account the inequality in (a), it suffices to show that

abc
b+ c

+
abc
c + a

+
abc

a+ b
+ a2 + b2 + c2 ≥

1
2
(a+ b+ c)2,

which is just the inequality (a) from P 1.59. The equality occurs for a = b = c, and
for a = b and c = 0 (or any cyclic permutation).

(c) The desired inequality follows by adding the inequality in (a) and the in-
equality (a) from P 1.59. The equality occurs for a = b = c, and for a = b and
c = 0 (or any cyclic permutation).

P 1.66. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a3 + 3abc
(b+ c)2

+
b3 + 3abc
(c + a)2

+
c3 + 3abc
(a+ b)2

≥ a+ b+ c.

(Vasile Cîrtoaje, 2005)

Solution. We use the SOS method. We have
∑ a3 + 3abc

(b+ c)2
−
∑

a =
∑

�

a3 + 3abc
(b+ c)2

− a
�

=
∑ a3 − a(b2 − bc + c2)

(b+ c)2

=
∑ a3(b+ c)− a(b3 + c3)

(b+ c)3
=
∑ ab(a2 − b2) + ac(a2 − c2)

(b+ c)3

=
∑ ab(a2 − b2)

(b+ c)3
+
∑ ba(b2 − a2)

(c + a)3
=
∑ ab(a2 − b2)[(c + a)3 − (b+ c)3]

(b+ c)3(c + a)3

=
∑ ab(a+ b)(a− b)2[(c + a)2 + (c + a)(b+ c) + (b+ c)2]

(b+ c)3(c + a)3
≥ 0.

The equality occurs for a = b = c, and for a = 0 and b = c (or any cyclic permuta-
tion).
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P 1.67. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a)
a3 + 3abc
(b+ c)3

+
b3 + 3abc
(c + a)3

+
c3 + 3abc
(a+ b)3

≥
3
2

;

(b)
3a3 + 13abc
(b+ c)3

+
3b3 + 13abc
(c + a)3

+
3c3 + 13abc
(a+ b)3

≥ 6.

(Vasile Cîrtoaje and Ji Chen, 2005)

Solution. (a) First Solution. Use the SOS method. We have

∑ a3 + 3abc
(b+ c)3

=
∑ a(b+ c)2 + a(a2 + bc − b2 − c2)

(b+ c)3

=
∑ a

b+ c
+
∑ a3 − a(b2 − bc + c2)

(b+ c)3

≥
3
2
+
∑ a3(b+ c)− a(b3 + c3)

(b+ c)4

=
3
2
+
∑ ab(a2 − b2) + ac(a2 − c2)

(b+ c)4

=
3
2
+
∑ ab(a2 − b2)

(b+ c)4
+
∑ ba(b2 − a2)

(c + a)4

=
3
2
+
∑ ab(a+ b)(a− b)[(c + a)4 − (b+ c)4]

(b+ c)4(c + a)4
≥ 0.

The equality occurs for a = b = c.

Second Solution. Assume that a ≥ b ≥ c. Since

a3 + 3abc
b+ c

≥
b3 + 3abc

c + a
≥

c3 + 3abc
a+ b

and
1

(b+ c)2
≥

1
(c + a)2

≥
1

(a+ b)2
,

by Chebyshev’s inequality, we get

∑ a3 + 3abc
(b+ c)3

≥
1
3

�

∑ a3 + 3abc
b+ c

�

∑ 1
(b+ c)2

.

Thus, it suffices to show that

�

∑ a3 + 3abc
b+ c

�

∑ 1
(b+ c)2

≥
9
2

.
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We can obtain this inequality by multiplying the known inequality (Iran-1996)
∑ 1
(b+ c)2

≥
9

4(ab+ bc + ca)

and the inequality (c) from P 1.65.

(b) We have
∑ 3a3 + 13abc

(b+ c)3
=
∑ 3a(b+ c)2 + 4abc + 3a(a2 + bc − b2 − c2)

(b+ c)3

=
∑ 3a

b+ c
+ 4abc

∑ 1
(b+ c)3

+ 3
∑ a3 − a(b2 − bc + c2)

(b+ c)3
.

Since
∑ 1
(b+ c)3

≥
3

(a+ b)(b+ c)(c + a)
(by the AM-GM inequality) and

∑ a3 − a(b2 − bc + c2)
(b+ c)3

=
∑ a3(b+ c)− a(b3 + c3)

(b+ c)4

=
∑ ab(a2 − b2) + ac(a2 − c2)

(b+ c)4
=
∑ ab(a2 − b2)

(b+ c)4
+
∑ ba(b2 − a2)

(c + a)4

=
∑ ab(a+ b)(a− b)[(c + a)4 − (b+ c)4]

(b+ c)4(c + a)4
≥ 0,

it suffices to prove that
∑ 3a

b+ c
+

12abc
(a+ b)(b+ c)(c + a)

≥ 6.

This inequality is equivalent to the third degree Schur’s inequality

a3 + b3 + c3 + 3abc ≥
∑

ab(a+ b).

The equality occurs for a = b = c, and for a = 0 and b = c (or any cyclic permuta-
tion).

P 1.68. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(a)
a3

b+ c
+

b3

c + a
+

c3

a+ b
+ ab+ bc + ca ≥

3
2
(a2 + b2 + c2);

(b)
2a2 + bc

b+ c
+

2b2 + ca
c + a

+
2c2 + ab

a+ b
≥

9(a2 + b2 + c2)
2(a+ b+ c)

.

(Vasile Cîrtoaje, 2006)
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Solution. (a) We apply the SOS method. Write the inequality as

∑

�

2a3

b+ c
− a2

�

≥
∑

(a− b)2.

Since
∑

�

2a3

b+ c
− a2

�

=
∑ a2(a− b) + a2(a− c)

b+ c

=
∑ a2(a− b)

b+ c
+
∑ b2(b− a)

c + a
=
∑ (a− b)2(a2 + b2 + ab+ bc + ca)

(b+ c)(c + a)
,

we can write the inequality as

(b− c)2Sa + (c − a)2Sb + (a− b)2Sc ≥ 0,

where

Sa = (b+ c)(b2 + c2 − a2), Sb = (c + a)(c2 + a2 − b2), Sc = (a+ b)(a2 + b2 − c2).

Without loss of generality, assume that a ≥ b ≥ c. Since Sb ≥ 0, Sc ≥ 0 and

Sa + Sb = (a+ b)(a− b)2 + c2(a+ b+ 2c)≥ 0,

we have
∑

(b− c)2Sa ≥ (b− c)2Sa + (a− c)2Sb ≥ (b− c)2(Sa + Sb)≥ 0.

The equality occurs for a = b = c, and for a = b and c = 0 (or any cyclic permuta-
tion).

(b) Multiplying by a+ b+ c, the inequality can be written as

∑
�

1+
a

b+ c

�

(2a2 + bc)≥
9
2
(a2 + b2 + c2),

∑ 2a3 + abc
b+ c

+ ab+ bc + ca ≥
5
2
(a2 + b2 + c2).

This inequality follows using the inequality in (a) and the first inequality from P
1.59. The equality occurs for a = b = c, and for a = b and c = 0 (or any cyclic
permutation).

P 1.69. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a(b+ c)
b2 + bc + c2

+
b(c + a)

c2 + ca+ a2
+

c(a+ b)
a2 + ab+ b2

≥ 2.
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First Solution. Apply the SOS method. We have

(a+ b+ c)
�

∑ a(b+ c)
b2 + bc + c2

− 2
�

=
∑

�

a(b+ c)(a+ b+ c)
b2 + bc + c2

− 2a
�

=
∑ a(ab+ ac − b2 − c2)

b2 + bc + c2
=
∑ ab(a− b)− ca(c − a)

b2 + bc + c2

=
∑ ab(a− b)

b2 + bc + c2
−
∑ ab(a− b)

c2 + ca+ a2

= (a+ b+ c)
∑ ab(a− b)2

(b2 + bc + c2)(c2 + ca+ a2)
≥ 0.

The equality occurs for a = b = c, and for a = 0 and b = c (or any cyclic permuta-
tion).

Second Solution. By the AM-GM inequality, we have

4(b2 + bc + c2)(ab+ bc + ca)≤ (b2 + bc + c2 + ab+ bc + ca)2

= (b+ c)2(a+ b+ c)2.

Thus,
∑ a(b+ c)

b2 + bc + c2
=
∑ a(b+ c)(ab+ bc + ca)
(b2 + bc + c2)(ab+ bc + ca)

≥
∑ 4a(ab+ bc + ca)
(b+ c)(a+ b+ c)2

=
4(ab+ bc + ca)
(a+ b+ c)2

∑ a
b+ c

,

and it suffices to show that

∑ a
b+ c

≥
(a+ b+ c)2

2(ab+ bc + ca)
.

This follows immediately from the Cauchy-Schwarz inequality

∑ a
b+ c

≥
(a+ b+ c)2
∑

a(b+ c)
.

Third Solution. By the Cauchy-Schwarz inequality, we have

∑ a(b+ c)
b2 + bc + c2

≥
(a+ b+ c)2

∑ a(b2 + bc + c2)
b+ c

.

Thus, it is enough to show that

(a+ b+ c)2 ≥ 2
∑ a(b2 + bc + c2)

b+ c
.
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Since
a(b2 + bc + c2)

b+ c
= a

�

b+ c −
bc

b+ c

�

= ab+ ca−
abc
b+ c

,

∑ a(b2 + bc + c2)
b+ c

= 2(ab+ bc + ca)− abc
�

1
b+ c

+
1

c + a
+

1
a+ b

�

,

this inequality is equivalent to

2abc
�

1
b+ c

+
1

c + a
+

1
a+ b

�

+ a2 + b2 + c2 ≥ 2(ab+ bc + ca),

which is just the inequality (a) from P 1.59.

Fourth Solution. By direct calculation, we can write the inequality as
∑

ab(a4 + b4)≥
∑

a2 b2(a2 + b2),

which is equivalent to the obvious inequality
∑

ab(a− b)(a3 − b3)≥ 0.

P 1.70. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a(b+ c)
b2 + bc + c2

+
b(c + a)

c2 + ca+ a2
+

c(a+ b)
a2 + ab+ b2

≥ 2+ 4
∏

�

a− b
a+ b

�2

.

(Vasile Cîrtoaje, 2011)

Solution. For b = c = 1, the inequality reduces to a(a − 1)2 ≥ 0. Assume further
that

a > b > c.

As we have shown in the first solution of the preceding P 1.69,

∑ a(b+ c)
b2 + bc + c2

− 2=
∑ bc(b− c)2

(a2 + ab+ b2)(a2 + ac + c2)
.

Therefore, it remains to show that

∑ bc(b− c)2

(a2 + ab+ b2)(a2 + ac + c2)
≥ 4

∏

�

a− b
a+ b

�2

.

Since
(a2 + ab+ b2)(a2 + ac + c2)≤ (a+ b)2(a+ c)2,
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it suffices to show that
∑ bc(b− c)2

(a+ b)2(a+ c)2
≥ 4

∏

�

a− b
a+ b

�2

,

which is equivalent to
∑ bc(b+ c)2

(a− b)2(a− c)2
≥ 4.

We have
∑ bc(b+ c)2

(a− b)2(a− c)2
≥

ab(a+ b)2

(a− c)2(b− c)2

≥
ab(a+ b)2

a2 b2
=
(a+ b)2

ab
≥ 4.

The equality occurs for a = b = c, and for a = b and c = 0 (or any cyclic permuta-
tion).

P 1.71. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

ab− bc + ca
b2 + c2

+
bc − ca+ ab

c2 + a2
+

ca− ab+ bc
a2 + b2

≥
3
2

.

Solution. Use the SOS method. We have
∑

�

ab− bc + ca
b2 + c2

−
1
2

�

=
∑ (b+ c)(2a− b− c)

2(b2 + c2)

=
∑ (b+ c)(a− b)

2(b2 + c2)
+
∑ (b+ c)(a− c)

2(b2 + c2)

=
∑ (b+ c)(a− b)

2(b2 + c2)
+
∑ (c + a)(b− a)

2(c2 + a2)

=
∑ (a− b)2(ab+ bc + ca− c2)

2(b2 + c2)(c2 + a2)
.

Since
ab+ bc + ca− c2 = (b− c)(c − a) + 2ab ≥ (b− c)(c − a),

it suffices to show that
∑

(a2 + b2)(a− b)2(b− c)(c − a)≥ 0.

This inequality is equivalent to

(a− b)(b− c)(c − a)
∑

(a− b)(a2 + b2)≥ 0,

(a− b)2(b− c)2(c − a)2 ≥ 0.

The equality occurs for a = b = c, and for a = 0 and b = c (or any cyclic permuta-
tion).
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P 1.72. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > −2,
then

∑ ab+ (k− 1)bc + ca
b2 + kbc + c2

≥
3(k+ 1)

k+ 2
.

(Vasile Cîrtoaje, 2005)

First Solution. Apply the SOS method. Write the inequality as

∑

�

ab+ (k− 1)bc + ca
b2 + kbc + c2

−
k+ 1
k+ 2

�

≥ 0,

∑ A
b2 + kbc + c2

≥ 0,

where
A= (b+ c)(2a− b− c) + k(ab+ ac − b2 − c2).

Since

A=(b+ c)[(a− b) + (a− c)] + k[b(a− b) + c(a− c)]
= (a− b)[(k+ 1)b+ c] + (a− c)[(k+ 1)c + b],

the inequality is equivalent to

∑ (a− b)[(k+ 1)b+ c]
b2 + kbc + c2

+
∑ (a− c)[(k+ 1)c + b]

b2 + kbc + c2
≥ 0,

∑ (a− b)[(k+ 1)b+ c]
b2 + kbc + c2

+
∑ (b− a)[(k+ 1)a+ c]

c2 + kca+ a2
≥ 0,

∑

(b− c)2RaSa ≥ 0,

where
Ra = b2 + kbc + c2, Sa = a(b+ c − a) + (k+ 1)bc.

Without loss of generality, assume that

a ≥ b ≥ c.

Case 1: k ≥ −1. Since Sa ≥ a(b+ c − a), it suffices to show that
∑

a(b+ c − a)(b− c)2Ra ≥ 0.

We have
∑

a(b+ c − a)(b− c)2Ra ≥ a(b+ c − a)(b− c)2Ra + b(c + a− b)(c − a)2Rb

≥ (b− c)2[a(b+ c − a)Ra + b(c + a− b)Rb].

Thus, it is enough to prove that

a(b+ c − a)Ra + b(c + a− b)Rb ≥ 0.
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Since b+ c − a ≥ −(c + a− b), we have

a(b+ c − a)Ra + b(c + a− b)Rb ≥ (c + a− b)(bRb − aRa)

= (c + a− b)(a− b)(ab− c2)≥ 0.

Case 2: −2< k ≤ 1. Since

Sa = (a− b)(c − a) + (k+ 2)bc ≥ (a− b)(c − a),

we have
∑

(b− c)2RaSa ≥ (a− b)(b− c)(c − a)
∑

(b− c)Ra.

From
∑

(b− c)Ra =
∑

(b− c)[b2 + bc + c2 − (1− k)bc]

=
∑

(b3 − c3)− (1− k)
∑

bc(b− c)

= (1− k)(a− b)(b− c)(c − a),

we get

(a− b)(b− c)(c − a)
∑

(b− c)Ra = (1− k)(a− b)2(b− c)2(c − a)2 ≥ 0.

This completes the proof. The equality occurs for a = b = c, and also for a = b and
c = 0 (or any cyclic permutation).

Second Solution. Use the highest coefficient method (see P 3.76 in Volume 1). Let

p = a+ b+ c, q = ab+ bc + ca.

Write the inequality in the form f6(a, b, c)≥ 0, where

f6(a, b, c) =(k+ 2)
∑

[a(b+ c) + (k− 1)bc](a2 + kab+ b2)(a2 + kac + c2)

− 3(k+ 1)
∏

(b2 + kbc + c2).

Since
a(b+ c) + (k− 1)bc = (k− 2)bc + q,

(a2 + kab+ b2)(a2 + kac + c2) = (p2 − 2q+ kab− c2)(p2 − 2q+ kac − b2),

f6(a, b, c) has the same highest coefficient A as

(k+ 2)(k− 2)P2(a, b, c)− 3(k+ 1)P4(a, b, c),

where

P2(a, b, c) =
∑

bc(kab− c2)(kac − b2), P4(a, b, c) =
∏

(b2 + kbc + c2).
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According to Remark 2 from the proof of P 2.75 in Volume 1,

A= (k+ 2)(k− 2)P2(1, 1,1)− 3(k+ 1)(k− 1)3 = −9(k− 1)2.

Since A ≤ 0, according to P 3.76-(a) in Volume 1, it suffices to prove the original
inequality for b = c = 1, and for a = 0.

For b = c = 1, the inequality becomes as follows:

2a+ k− 1
k+ 2

+
2(ka+ 1)

a2 + ka+ 1
≥

3(k+ 1)
k+ 2

,

a− k− 2
k+ 2

+
ka+ 1

a2 + ka+ 1
≥ 0,

a(a− 1)2

(k+ 2)(a2 + ka+ 1)
≥ 0.

For a = 0, the inequality becomes:

(k− 1)bc
b2 + c2 + kbc

+
b
c
+

c
b
≥

3(k+ 1)
k+ 2

,

k− 1
x + k

+ x ≥
3(k+ 1)

k+ 2
, x =

b
c
+

c
b

, x ≥ 2,

(x − 2)[(k+ 2)x + k2 + k+ 1]
(k+ 2)(x + k)

≥ 0,

(b− c)2[(k+ 2)(b2 + c2) + (k2 + k+ 1)bc]≥ 0.

Remark. For k = 1 and k = 0, from P 1.72, we get the inequalities in P 1.69 and
P 1.71, respectively. Besides, for k = 2, we get the well-known inequality (Iran
1996):

1
(a+ b)2

+
1

(b+ c)2
+

1
(c + a)2

≥
9

4(ab+ bc + ca)
.

P 1.73. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > −2,
then

∑ 3bc − a(b+ c)
b2 + kbc + c2

≤
3

k+ 2
.

(Vasile Cîrtoaje, 2011)

Solution. Write the inequality in P 1.72 as

∑

�

1−
ab+ (k− 1)bc + ca

b2 + kbc + c2

�

≤
3

k+ 2
,

∑ b2 + c2 + bc − a(b+ c)
b2 + kbc + c2

≤
3

k+ 2
.
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Since b2 + c2 ≥ 2bc, we get

∑ 3bc − a(b+ c)
b2 + kbc + c2

≤
3

k+ 2
,

which is just the desired inequality. The equality occurs for a = b = c.

P 1.74. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

ab+ 1
a2 + b2

+
bc + 1
b2 + c2

+
ca+ 1
c2 + a2

≥
4
3

.

Solution. Write the inequality in the homogeneous form E(a, b, c)≥ 4, where

E(a, b, c) =
4ab+ bc + ca

a2 + b2
+

4bc + ca+ ab
b2 + c2

+
4ca+ ab+ bc

c2 + a2
.

Without loss of generality, assume that a =min{a, b, c}. We will show that

E(a, b, c)≥ E(0, b, c)≥ 4.

We have

E(a, b, c)− E(0, b, c)
a

=
4b2 + c(b− a)

b(a2 + b2)
+

b+ c
b2 + c2

+
4c2 + b(c − a)

c(c2 + a2)
> 0,

E(0, b, c)− 4=
b
c
+

4bc
b2 + c2

+
c
b
− 4=

(b− c)4

bc(b2 + c2)
≥ 0.

The equality holds for a = 0 and b = c =
p

3 (or any cyclic permutation).

P 1.75. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

5ab+ 1
(a+ b)2

+
5bc + 1
(b+ c)2

+
5ca+ 1
(c + a)2

≥ 2.

Solution. Write the inequality as E(a, b, c)≥ 6, where

E(a, b, c) =
16ab+ bc + ca
(a+ b)2

+
16bc + ca+ ab
(b+ c)2

+
16ca+ ab+ bc
(c + a)2

.

Without loss of generality, assume that

a ≤ b ≤ c.
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Case 1: 16b2 ≥ c(a+ b). We will show that

E(a, b, c)≥ E(0, b, c)≥ 6.

Indeed,

E(a, b, c)− E(0, b, c)
a

=
16b2 − c(a+ b)

b(a+ b)2
+

1
b+ c

+
16c2 − b(a+ c)

c(c + a)2
> 0,

E(0, b, c)− 6=
b
c
+

16bc
(b+ c)2

+
c
b
− 6=

(b− c)4

bc(b+ c)2
≥ 0.

Case 2: 16b2 < c(a+ b). We have

E(a, b, c)− 6>
16ab+ bc + ca
(a+ b)2

− 6>
16ab+ 16b2

(a+ b)2
− 6=

2(5b− 3a)
a+ b

> 0.

The equality holds for a = 0 and b = c =
p

3 (or any cyclic permutation).

P 1.76. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a2 − bc
2b2 − 3bc + 2c2

+
b2 − ca

2c2 − 3ca+ 2a2
+

c2 − ab
2a2 − 3ab+ 2b2

≥ 0.

(Vasile Cîrtoaje, 2005)

Solution. The hint is applying the Cauchy-Schwarz inequality after we made the
numerators of the fractions to be nonnegative and as small as possible. Thus, we
write the inequality as

∑

�

a2 − bc
2b2 − 3bc + 2c2

+ 1
�

≥ 3,

∑ a2 + 2(b− c)2

2b2 − 3bc + 2c2
≥ 3.

Without loss of generality, assume that

a ≥ b ≥ c.

Using the Cauchy-Schwarz inequality gives

∑ a2

2b2 − 3bc + 2c2
≥

�∑

a2
�2

∑

a2(2b2 − 3bc + 2c2)
=

∑

a4 + 2
∑

a2 b2

4
∑

a2 b2 − 3abc
∑

a

and
∑ (b− c)2

2b2 − 3bc + 2c2
≥
[a(b− c) + b(a− c) + c(a− b)]2

∑

a2(2b2 − 3bc + 2c2)
=

4b2(a− c)2

4
∑

a2 b2 − 3abc
∑

a
.
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Therefore, it suffices to show that
∑

a4 + 2
∑

a2 b2 + 8b2(a− c)2

4
∑

a2 b2 − 3abc
∑

a
≥ 3.

By Schur’s inequality of degree four, we have
∑

a4 + abc
∑

a ≥
∑

ab(a2 + b2)≥ 2
∑

a2 b2.

Thus,it is enough to prove that

4
∑

a2 b2 − abc
∑

a+ 8b2(a− c)2

4
∑

a2 b2 − 3abc
∑

a
≥ 3,

which is equivalent to

abc
∑

a+ b2(a− c)2 ≥
∑

a2 b2,

ac(a− b)(b− c)≥ 0.

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic
permutation).

P 1.77. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

2a2 − bc
b2 − bc + c2

+
2b2 − ca

c2 − ca+ a2
+

2c2 − ab
a2 − ab+ b2

≥ 3.

(Vasile Cîrtoaje, 2005)

Solution. Write the inequality such that the numerators of the fractions are non-
negative and as small as possible:

∑

�

2a2 − bc
b2 − bc + c2

+ 1
�

≥ 6,

∑ 2a2 + (b− c)2

b2 − bc + c2
≥ 6.

Applying the Cauchy-Schwarz inequality, we get

∑ 2a2 + (b− c)2

b2 − bc + c2
≥

4
�

2
∑

a2 −
∑

ab
�2

∑

[2a2 + (b− c)2](b2 − bc + c2)
.

Thus, we still have to prove that

2
�

2
∑

a2 −
∑

ab
�2
≥ 3

∑

[2a2 + (b− c)2](b2 − bc + c2).
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This inequality is equivalent to

2
∑

a4 + 2abc
∑

a+
∑

ab(a2 + b2)≥ 6
∑

a2 b2.

We can obtain it by summing up Schur’s inequality of degree four
∑

a4 + abc
∑

a ≥
∑

ab(a2 + b2)

and
∑

ab(a2 + b2)≥ 2
∑

a2 b2,

multiplied by 2 and 3, respectively. The equality holds for a = b = c, and for a = 0
and b = c (or any cyclic permutation).

P 1.78. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a2

2b2 − bc + 2c2
+

b2

2c2 − ca+ 2a2
+

c2

2a2 − ab+ 2b2
≥ 1.

(Vasile Cîrtoaje, 2005)

Solution. By the Cauchy-Schwarz inequality, we have

∑ a2

2b2 − bc + 2c2
≥

�∑

a2
�2

∑

a2(2b2 − bc + 2c2)
.

Therefore, it suffices to show that
�∑

a2
�2
≥
∑

a2(2b2 − bc + 2c2),

which is equivalent to
∑

a4 + abc
∑

a ≥ 2
∑

a2 b2.

This inequality follows by adding Schur’s inequality of degree four
∑

a4 + abc
∑

a ≥
∑

ab(a2 + b2)

and
∑

ab(a2 + b2)≥ 2
∑

a2 b2.

The equality holds for a = b = c, and for a = 0 and b = c (or any cyclic permuta-
tion).
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P 1.79. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1
4b2 − bc + 4c2

+
1

4c2 − ca+ 4a2
+

1
4a2 − ab+ 4b2

≥
9

7(a2 + b2 + c2)
.

(Vasile Cîrtoaje, 2005)

Solution. Use the SOS method. Without loss of generality, assume that

a ≥ b ≥ c.

Write the inequality as

∑

�

7(a2 + b2 + c2)
4b2 − bc + 4c2

− 3
�

≥ 0,

∑ 7a2 − 5b2 − 5c2 + 3bc
4b2 − bc + 4c2

≥ 0,

∑ 5(2a2 − b2 − c2)− 3(a2 − bc)
4b2 − bc + 4c2

≥ 0.

Since
2a2 − b2 − c2 = (a− b)(a+ b) + (a− c)(a+ c),

and
2(a2 − bc) = (a− b)(a+ c) + (a− c)(a+ b)

we have

10(2a2 − b2 − c2)− 6(a2 − bc) =
= (a− b)[10(a+ b)− 3(a+ c)] + (a− c)[10(a+ c)− 3(a+ b)]
= (a− b)(7a+ 10b− 3c) + (a− c)(7a+ 10c − 3b).

Thus, we can write the desired inequality as follows:

∑ (a− b)(7a+ 10b− 3c)
4b2 − bc + 4c2

+
∑ (a− c)(7a+ 10c − 3b)

4b2 − bc + 4c2
≥ 0,

∑ (a− b)(7a+ 10b− 3c)
4b2 − bc + 4c2

+
∑ (b− a)(7b+ 10a− 3c)

4c2 − ca+ 4a2
≥ 0,

∑ (a− b)2(28a2 + 28b2 − 9c2 + 68ab− 19bc − 19ca)
(4b2 − bc + 4c2)(4c2 − ca+ 4a2)

,

∑ (a− b)2[(b− c)(28b+ 9c) + a(28a+ 68b− 19c)]
(4b2 − bc + 4c2)(4c2 − ca+ 4a2)

,

∑

(a− b)2RcSc ≥ 0,
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where

Ra = 4b2 − bc + 4c2, Rb = 4c2 − ca+ 4a2, Rc = 4a2 − ab+ 4b2,

Sa = (c − a)(28c + 9a) + b(28b+ 68c − 19a),

Sb = (a− b)(28a+ 9b) + c(28c + 68a− 19b),

Sc = (b− c)(28b+ 9c) + a(28a+ 68b− 19c).

Since Sb ≥ 0, Sc > 0 and Rc ≥ Rb ≥ Ra > 0, we have
∑

(b− c)2RaSa ≥ (b− c)2RaSa + (a− c)2RbSb

≥ (b− c)2RaSa + (b− c)2RaSb

= (b− c)2Ra(Sa + Sb).

Thus, we only need to show that Sa + Sb ≥ 0. Indeed,

Sa + Sb = 19(a− b)2 + 49(a− b)c + 56c2 ≥ 0.

The equality holds for a = b = c, and for a = b and c = 0 (or any cyclic permuta-
tion).

P 1.80. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

2a2 + bc
b2 + c2

+
2b2 + ca
c2 + a2

+
2c2 + ab
a2 + b2

≥
9
2

.

(Vasile Cîrtoaje, 2005)

First Solution. We apply the SOS method. Since

∑

�

2(2a2 + bc)
b2 + c2

− 3
�

= 2
∑ 2a2 − b2 − c2

b2 + c2
−
∑ (b− c)2

b2 + c2

and

∑ 2a2 − b2 − c2

b2 + c2
=
∑ a2 − b2

b2 + c2
+
∑ a2 − c2

b2 + c2
=
∑ a2 − b2

b2 + c2
+
∑ b2 − a2

c2 + a2

=
∑

(a2 − b2)
�

1
b2 + c2

−
1

c2 + a2

�

=
∑ (a2 − b2)2

(b2 + c2)(c2 + a2)

≥
∑ (a− b)2(a2 + b2)
(b2 + c2)(c2 + a2)

,
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we can write the inequality as

2
∑ (b− c)2(b2 + c2)
(c2 + a2)(a2 + b2)

≥
∑ (b− c)2

b2 + c2
,

or
(b− c)2Sa + (c − a)2Sb + (a− b)2Sc ≥ 0,

where
Sa = 2(b2 + c2)2 − (c2 + a2)(a2 + b2).

Without loss of generality, assume that a ≥ b ≥ c, which involves Sa ≤ Sb ≤ Sc. If

Sa + Sb ≥ 0,

then
Sc ≥ Sb ≥ 0,

hence

(b− c)2Sa + (c − a)2Sb + (a− b)2Sc ≥ (b− c)2Sa + (a− c)2Sb

≥ (b− c)2(Sa + Sb)≥ 0.

We have
Sa + Sb = (a

2 − b2)2 + 2c2(a2 + b2 + 2c2)≥ 0.

The equality holds for a = b = c, and for a = b and c = 0 (or any cyclic permuta-
tion).

Second Solution. Since

bc ≥
2b2c2

b2 + c2
,

we have

∑ 2a2 + bc
b2 + c2

≥
∑ 2a2 + 2b2c2

b2+c2

b2 + c2
= 2(a2 b2 + b2c2 + c2a2)

∑ 1
(b2 + c2)2

.

Therefore, it suffices to show that

∑ 1
(b2 + c2)2

≥
9

4(a2 b2 + b2c2 + c2a2)
,

which is just the known Iran-1996 inequality (see Remark from P 1.72).

Third Solution. We get the desired inequality by summing the inequality in P
1.60-(a), namely

2a2 − 2bc
b2 + c2

+
2b2 − 2ca

c2 + a2
+

2c2 − 2ab
a2 + b2

+
6(ab+ bc + ca)

a2 + b2 + c2
≥ 6,
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and the inequality

3bc
b2 + c2

+
3ca

c2 + a2
+

3ab
a2 + b2

+
3
2
≥

6(ab+ bc + ca)
a2 + b2 + c2

.

This inequality is equivalent to

∑

�

2bc
b2 + c2

+ 1
�

≥
4(ab+ bc + ca)

a2 + b2 + c2
+ 2,

∑ (b+ c)2

b2 + c2
≥

2(a+ b+ c)2

a2 + b2 + c2
.

By the Cauchy-Schwarz inequality, we have

∑ (b+ c)2

b2 + c2
≥

�∑

(b+ c)
�2

∑

(b2 + c2)
=

2(a+ b+ c)2

a2 + b2 + c2
.

P 1.81. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

2a2 + 3bc
b2 + bc + c2

+
2b2 + 3ca

c2 + ca+ a2
+

2c2 + 3ab
a2 + ab+ b2

≥ 5.

(Vasile Cîrtoaje, 2005)

Solution. We apply the SOS method. Write the inequality as

∑

�

3(2a2 + 3bc)
b2 + bc + c2

− 5
�

≥ 0,

or
∑ 6a2 + 4bc − 5b2 − 5c2

b2 + bc + c2
≥ 0.

Since
2a2 − b2 − c2 = (a− b)(a+ b) + (a− c)(a+ c)

and
2(a2 − bc) = (a− b)(a+ c) + (a− c)(a+ b),

we have
6a2 + 4bc − 5b2 − 5c2 = 5(2a2 − b2 − c2)− 4(a2 − bc)

= (a− b)[5(a+ b)− 2(a+ c)] + (a− c)[5(a+ c)− 2(a+ b)]

= (a− b)(3a+ 5b− 2c) + (a− c)(3a+ 5c − 2b).

Thus, we can write the desired inequality as follows:

∑ (a− b)(3a+ 5b− 2c)
b2 + bc + c2

+
∑ (a− c)(3a+ 5c − 2b)

b2 + bc + c2
≥ 0,
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∑ (a− b)(3a+ 5b− 2c)
b2 + bc + c2

+
∑ (b− a)(3b+ 5a− 2c)

c2 + ca+ a2
≥ 0,

∑ (a− b)2(3a2 + 3b2 − 4c2 + 8ab+ bc + ca)
(b2 + bc + c2)(c2 + ca+ a2)

≥ 0,

(b− c)2Sa + (c − a)2Sb + (a− b)2Sc ≥ 0,

where
Sa = (b

2 + bc + c2)(−4a2 + 3b2 + 3c2 + ab+ 8bc + ca),

Sb = (c
2 + ca+ a2)(−4b2 + 3c2 + 3a2 + bc + 8ca+ ab),

Sc = (a
2 + ab+ b2)(−4c2 + 3a2 + 3b2 + ca+ 8ab+ bc).

Assume that a ≥ b ≥ c. Since Sc > 0,

Sb = (c
2 + ca+ a2)[(a− b)(3a+ 4b) + c(8a+ b+ 3c)]≥ 0,

Sa + Sb ≥ (b2 + bc + c2)(b− a)(3b+ 4a) + (c2 + ca+ a2)(a− b)(3a+ 4b)

= (a− b)2[3(a+ b)(a+ b+ c) + ab− c2]≥ 0,

we have

(b− c)2Sa + (c − a)2Sb + (a− b)2Sc ≥ (b− c)2Sa + (a− c)2Sb

≥ (b− c)2(Sa + Sb)≥ 0.

The equality holds for a = b = c, and for a = 0 and b = c (or any cyclic permuta-
tion).

P 1.82. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

2a2 + 5bc
(b+ c)2

+
2b2 + 5ca
(c + a)2

+
2c2 + 5ab
(a+ b)2

≥
21
4

.

(Vasile Cîrtoaje, 2005)

Solution. Use the SOS method.Write the inequality as follows:

∑

�

2a2 + 5bc
(b+ c)2

−
7
4

�

≥ 0,

∑ 4(a2 − b2) + 4(a2 − c2)− 3(b− c)2

(b+ c)2
≥ 0,

4
∑ b2 − c2

(c + a)2
+ 4

∑ c2 − b2

(a+ b)2
− 3

∑ (b− c)2

(b+ c)2
≥ 0,
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4
∑ (b− c)2(b+ c)(2a+ b+ c)

(c + a)2(a+ b)2
− 3

∑ (b− c)2

(b+ c)2
≥ 0.

Substituting b + c = x , c + a = y and a + b = z, we can rewrite the inequality in
the form

(y − z)2Sx + (z − x)2Sy + (x − y)2Sz ≥ 0,

where

Sx = 4x3(y + z)− 3y2z2, Sy = 4y3(z + x)− 3z2 x2, Sz = 4z3(x + y)− 3x2 y2.

Without loss of generality, assume that

0< x ≤ y ≤ z, z ≤ x + y,

which involves Sx ≤ Sy ≤ Sz. If

Sx + Sy ≥ 0,

then
Sz ≥ Sy ≥ 0,

hence

(y − z)2Sx + (z − x)2Sy + (x − y)2Sz ≥ (y − z)2Sx + (z − x)2Sy

≥ (y − z)2(Sx + Sy)≥ 0.

We have

Sx + Sy = 4x y(x2 + y2) + 4(x3 + y3)z − 3(x2 + y2)z2

≥ 4x y(x2 + y2) + 4(x3 + y3)z − 3(x2 + y2)(x + y)z

= 4x y(x2 + y2) + (x2 − 4x y + y2)(x + y)z.

For the nontrivial case x2 − 4x y + y2 < 0, we get

Sx + Sy ≥ 4x y(x2 + y2) + (x2 − 4x y + y2)(x + y)2

≥ 2x y(x + y)2 + (x2 − 4x y + y2)(x + y)2

= (x − y)2(x + y)2.

The equality holds for a = b = c, and for a = 0 and b = c (or any cyclic permuta-
tion).

P 1.83. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > −2,
then

∑ 2a2 + (2k+ 1)bc
b2 + kbc + c2

≥
3(2k+ 3)

k+ 2
.

(Vasile Cîrtoaje, 2005)
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First Solution. There are two cases to consider.

Case 1: −2< k ≤ −1/2. Write the inequality as

∑

�

2a2 + (2k+ 1)bc
b2 + kbc + c2

−
2k+ 1
k+ 2

�

≥
6

k+ 2
,

∑ 2(k+ 2)a2 − (2k+ 1)(b− c)2

b2 + kbc + c2
≥ 6.

Since 2(k + 2)a2 − (2k + 1)(b − c)2 ≥ 0 for −2 < k ≤ −1/2, we can apply the
Cauchy-Schwarz inequality. Thus, it suffices to show that

�

2(k+ 2)
∑

a2 − (2k+ 1)
∑

(b− c)2
�2

∑

[2(k+ 2)a2 − (2k+ 1)(b− c)2](b2 + kbc + c2)
≥ 6,

which is equivalent to each of the following inequalities

2[(1− k)
∑

a2 + (2k+ 1)
∑

ab]2
∑

[2(k+ 2)a2 − (2k+ 1)(b− c)2](b2 + kbc + c2)
≥ 3,

2(k+ 2)
∑

a4 + 2(k+ 2)abc
∑

a− (2k+ 1)
∑

ab(a2 + b2)≥ 6
∑

a2 b2,

2(k+ 2)
�∑

a4 + abc
∑

a−
∑

ab(a2 + b2)
�

+ 3
∑

ab(a− b)2 ≥ 0.

The last inequality is true since, by Schur’s inequality of degree four, we have
∑

a4 + abc
∑

a−
∑

ab(a2 + b2)≥ 0.

Case 2: k ≥ −9/5. Use the SOS method. Without loss of generality, assume that
a ≥ b ≥ c. Write the inequality as

∑

�

2a2 + (2k+ 1)bc
b2 + kbc + c2

−
2k+ 3
k+ 2

�

≥ 0,

∑ 2(k+ 2)a2 − (2k+ 3)(b2 + c2) + 2(k+ 1)bc
b2 + kbc + c2

≥ 0,

∑ (2k+ 3)(2a2 − b2 − c2)− 2(k+ 1)(a2 − bc)
b2 + kbc + c2

≥ 0.

Since
2a2 − b2 − c2 = (a− b)(a+ b) + (a− c)(a+ c)

and
2(a2 − bc) = (a− b)(a+ c) + (a− c)(a+ b),

we have
(2k+ 3)(2a2 − b2 − c2)− 2(k+ 1)(a2 − bc) =

= (a− b)[(2k+3)(a+ b)− (k+1)(a+ c)]+(a− c)[(2k+3)(a+ c)− (k+1)(a+ b)]
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= (a− b)[(k+2)a+(2k+3)b− (k+1)c]+(a− c)[(k+2)a+(2k+3)c− (k+1)b)].

Thus, we can write the desired inequality as

∑ (a− b)[(k+ 2)a+ (2k+ 3)b− (k+ 1)c]
b2 + kbc + c2

+

+
∑ (a− c)[(k+ 2)a+ (2k+ 3)c − (k+ 1)b]

b2 + kbc + c2
≥ 0,

or
∑ (a− b)[(k+ 2)a+ (2k+ 3)b− (k+ 1)c]

b2 + kbc + c2
+

+
∑ (b− a)[(k+ 2)b+ (2k+ 3)a− (k+ 1)c]

c2 + kca+ a2
≥ 0,

or
(b− c)2RaSa + (c − a)2RbSb + (a− b)2RcSc ≥ 0,

where

Ra = b2 + kbc + c2, Rb = c2 + kca+ a2, Rc = a2 + kab+ b2,

Sa = (k+ 2)(b2 + c2)− (k+ 1)2a2 + (3k+ 5)bc + (k2 + k− 1)a(b+ c)

= −(a− b)[(k+ 1)2a+ (k+ 2)b] + c[(k2 + k− 1)a+ (3k+ 5)b+ (k+ 2)c],

Sb = (k+ 2)(c2 + a2)− (k+ 1)2 b2 + (3k+ 5)ca+ (k2 + k− 1)b(c + a)

= (a− b)[(k+ 2)a+ (k+ 1)2 b] + c[(3k+ 5)a+ (k2 + k− 1)b+ (k+ 2)c],

Sc = (k+ 2)(a2 + b2)− (k+ 1)2c2 + (3k+ 5)ab+ (k2 + k− 1)c(a+ b)

= (k+ 2)(a2 + b2) + (3k+ 5)ab+ c[(k2 + k− 1)(a+ b)− (k+ 1)2c]

≥ (5k+ 9)ab+ c[(k2 + k− 1)(a+ b)− (k+ 1)2c].

We have Sb ≥ 0, since for the nontrivial case

(3k+ 5)a+ (k2 + k− 1)b+ (k+ 2)c < 0,

we get

Sb ≥ (a− b)[(k+ 2)a+ (k+ 1)2 b] + b[(3k+ 5)a+ (k2 + k− 1)b+ (k+ 2)c]

= (k+ 2)(a2 − b2) + (k+ 2)2ab+ (k+ 2)bc > 0.

Also, we have Sc ≥ 0 for k ≥ −9/5, since

(5k+ 9)ab+ c[(k2 + k− 1)(a+ b)− (k+ 1)2c]≥
≥ (5k+ 9)ac + c[(k2 + k− 1)(a+ b)− (k+ 1)2c]

= (k+ 2)(k+ 4)ac + (k2 + k− 1)bc − (k+ 1)2c2

≥ (2k2 + 7k+ 7)bc − (k+ 1)2c2

≥ (k+ 2)(k+ 3)c2 ≥ 0.
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Therefore, it suffices to show that RaSa + RbSb ≥ 0. From

bRb − aRa = (a− b)(ab− c2)≥ 0,

we get

RaSa + RbSb ≥ Ra

�

Sa +
a
b

Sb

�

.

Thus, it suffices to show that
Sa +

a
b

Sb ≥ 0.

We have

bSa + aSb = (k+ 2)(a+ b)(a− b)2 + c f (a, b, c)

≥ 2(k+ 2)b(a− b)2 + c f (a, b, c),

hence
Sa +

a
b

Sb ≥ 2(k+ 2)(a− b)2 +
c
b

f (a, b, c),

where

f (a, b, c) = b[(k2 + k− 1)a+ (3k+ 5)b] + a[(3k+ 5)a+ (k2 + k− 1)b]

+(k+ 2)c(a+ b) = (3k+ 5)(a2 + b2) + 2(k2 + k− 1)ab+ (k+ 2)c(a+ b).

For the nontrivial case f (a, b, c)< 0, we have

Sa +
a
b

Sb ≥ 2(k+ 2)(a− b)2 + f (a, b, c)

≥ 2(k+ 2)(a− b)2 + (3k+ 5)(a2 + b2) + 2(k2 + k− 1)ab

= (5k+ 9)(a2 + b2) + 2(k2 − k− 5)ab ≥ 2(k+ 2)2ab ≥ 0.

The proof is completed. The equality holds for a = b = c, and for a = b and c = 0
(or any cyclic permutation).

Second Solution. We use the highest coefficient method (see P 3.76 in Volume 1).
Let

p = a+ b+ c, q = ab+ bc + ca.

Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) = (k+ 2)
∑

[2a2 + (2k+ 1)bc](a2 + kab+ b2)(a2 + kac + c2)

−3(2k+ 3)
∏

(b2 + kbc + c2).

Since

(a2 + kab+ b2)(a2 + kac + c2) = (p2 − 2q+ kab− c2)(p2 − 2q+ kac − b2),
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f6(a, b, c) has the same highest coefficient A as

(k+ 2)P2(a, b, c)− 3(2k+ 3)P4(a, b, c),

where
P2(a, b, c) =

∑

[2a2 + (2k+ 1)bc](kab− c2)(kac − b2),

P4(a, b, c) =
∏

(b2 + kbc + c2).

According to Remark 2 from the proof of P 2.75 in Volume 1, we have

A= (k+ 2)P2(1,1, 1)− 3(2k+ 3)(k− 1)3 = 9(2k+ 3)(k− 1)2.

On the other hand,

f6(a, 1, 1) = 2(k+ 2)a(a2 + ka+ 1)(a− 1)2(a+ k+ 2)≥ 0,

f6(0, b, c)
(b− c)2

= 2(k+ 2)(b2 + c2)2 + 2(k+ 2)2 bc(b2 + c2) + (4k2 + 6k− 1)b2c2.

For −2 < k ≤ −3/2, we have A ≤ 0. According to P 3.76-(a) in Volume 1, it
suffices to show that f6(a, 1, 1) ≥ 0 and f6(0, b, c) ≥ 0 for all a, b, c ≥ 0. The first
condition is clearly satisfied. The second condition is satisfied for all k > −2 since

2(k+ 2)(b2 + c2)2 + (4k2 + 6k− 1)b2c2 ≥ [8(k+ 2) + 4k2 + 6k− 1]b2c2

= (4k2 + 14k+ 15)b2c2 ≥ 0.

For k > −3/2, when A > 0, we will apply the highest coefficient cancellation
method. Consider two cases: p2 ≤ 4q and p2 > 4q.

Case 1: p2 ≤ 4q. Since
f6(1, 1,1) = f6(0,1, 1) = 0,

define the homogeneous function

P(a, b, c) = abc + B(a+ b+ c)3 + C(a+ b+ c)(ab+ bc + ca)

such that P(1, 1,1) = P(0,1, 1) = 0; that is,

P(a, b, c) = abc +
1
9
(a+ b+ c)3 −

4
9
(a+ b+ c)(ab+ bc + ca).

We will prove the sharper inequality g6(a, b, c)≥ 0, where

g6(a, b, c) = f6(a, b, c)− 9(2k+ 3)(k− 1)2P2(a, b, c).

Clearly, g6(a, b, c) has the highest coefficient A= 0. Then, according to Remark 1
from the proof of P 3.76 in Volume 1, it suffices to prove that g6(a, 1, 1) ≥ 0 for
0≤ a ≤ 4. We have

P(a, 1, 1) =
a(a− 1)2

9
,
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hence

g6(a, 1, 1) = f6(a, 1, 1)− 9(2k+ 3)(k− 1)2P2(a, 1, 1) =
a(a− 1)2 g(a)

9
,

where

g(a) = 18(k+ 2)(a2 + ka+ 1)(a+ k+ 2)− (2k+ 3)(k− 1)2a(a− 1)2.

Since a2 + ka+ 1≥ (k+ 2)a, it suffices to show that

18(k+ 2)2(a+ k+ 2)≥ (2k+ 3)(k− 1)2(a− 1)2.

Also, since (a− 1)2 ≤ 2a+ 1, it is enough to prove that h(a)≥ 0, where

h(a) = 18(k+ 2)2(a+ k+ 2)− (2k+ 3)(k− 1)2(2a+ 1).

Since h(a) is a linear function, the inequality h(a) ≥ 0 is true if h(0) ≥ 0 and
h(4)≥ 0. Setting x = 2k+ 3, x > 0, we get

h(0) = 18(k+ 2)3 − (2k+ 3)(k− 1)2 =
1
4
(8x3 + 37x2 + 2x + 9)> 0.

Also,

1
9

h(4) = 2(k+ 2)2(k+ 6)− (2k+ 3)(k− 1)2 = 3(7k2 + 20k+ 15)> 0.

Case 2: p2 > 4q. We will prove the sharper inequality g6(a, b, c)≥ 0, where

g6(a, b, c) = f6(a, b, c)− 9(2k+ 3)(k− 1)2a2 b2c2.

We see that g6(a, b, c) has the highest coefficient A = 0. According to Remark 1
from the proof of P 3.76 in Volume 1, it suffices to prove that g6(a, 1, 1) ≥ 0 for
a > 4 and g6(0, b, c)≥ 0 for all b, c ≥ 0. We have

g6(a, 1, 1) = f6(a, 1, 1)− 9(2k+ 3)(k− 1)2a2

= a[2(k+ 2)(a2 + ka+ 1)(a− 1)2(a+ k+ 2)− 9(2k+ 3)(k− 1)2a].

Since
a2 + ka+ 1> (k+ 2)a, (a− 1)2 > 9,

it suffices to show that

2(k+ 2)2(a+ k+ 2)≥ (2k+ 3)(k− 1)2.

Indeed,

2(k+ 2)2(a+ k+ 2)− (2k+ 3)(k− 1)2 > 2(k+ 2)2(k+ 6)− (2k+ 3)(k− 1)2

= 3(7k2 + 20k+ 15)> 0.

Also,
g6(0, b, c) = f6(0, b, c)≥ 0.
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P 1.84. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > −2,
then

∑ 3bc − 2a2

b2 + kbc + c2
≤

3
k+ 2

.

(Vasile Cîrtoaje, 2011)

First Solution. Write the inequality as

∑

�

2a2 − 3bc
b2 + kbc + c2

+
3

k+ 2

�

≥
6

k+ 2
,

∑ 2(k+ 2)a2 + 3(b− c)2

b2 + kbc + c2
≥ 6.

Applying the Cauchy-Schwarz inequality, it suffices to show that

�

2(k+ 2)
∑

a2 + 3
∑

(b− c)2
�2

∑

[2(k+ 2)a2 + 3(b− c)2](b2 + kbc + c2)
≥ 6,

which is equivalent to each of the following inequalities

2
�

(k+ 5)
∑

a2 − 3
∑

ab
�2

∑

[2(k+ 2)a2 + 3(b− c)2](b2 + kbc + c2)
≥ 3,

2(k+ 8)
∑

a4 + 2(2k+ 19)
∑

a2 b2 ≥ 6(k+ 2)abc
∑

a+ 21
∑

ab(a2 + b2),

2(k+ 2) f (a, b, c) + 3g(a, b, c)≥ 0,

where
f (a, b, c) =

∑

a4 + 2
∑

a2 b2 − 3abc
∑

a,

g(a, b, c) = 4
∑

a4 + 10
∑

a2 b2 − 7
∑

ab(a2 + b2).

We need to show that f (a, b, c)≥ 0 and g(a, b, c)≥ 0. Indeed,

f (a, b, c) =
�∑

a2
�2
− 3abc

∑

a ≥
�∑

ab
�2
− 3abc

∑

a ≥ 0

and

g(a, b, c) =
∑

[2(a4 + b4) + 10a2 b2 − 7ab(a2 + b2)]

=
∑

(a− b)2(2a2 − 3ab+ 2b2)≥ 0.

The equality occurs for a = b = c.

Second Solution. Write the inequality in P 1.83 as

∑

�

2−
2a2 + (2k+ 1)bc

b2 + kbc + c2

�

≤
3

k+ 2
,
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∑ 2(b2 + c2)− bc − 2a2

b2 + kbc + c2
≤

3
k+ 2

.

Since b2 + c2 ≥ 2bc, we get
∑ 3bc − 2a2

b2 + kbc + c2
≤

3
k+ 2

,

which is just the desired inequality.

P 1.85. If a, b, c are nonnegative real numbers, no two of which are zero, then

a2 + 16bc
b2 + c2

+
b2 + 16ca

c2 + a2
+

c2 + 16ab
a2 + b2

≥ 10.

(Vasile Cîrtoaje, 2005)

Solution. Assume that a ≤ b ≤ c and denote

E(a, b, c) =
a2 + 16bc

b2 + c2
+

b2 + 16ca
c2 + a2

+
c2 + 16ab

a2 + b2
.

Consider two cases.

Case 1: 16b3 ≥ ac2. We will show that

E(a, b, c)≥ E(0, b, c)≥ 10.

We have

E(a, b, c)− E(0, b, c) =
a2

b2 + c2
+

a(16c3 − ab2)
c2(c2 + a2)

+
a(16b3 − ac2)

b2(a2 + b2)
≥ 0.

Also,

E(0, b, c)− 10=
16bc

b2 + c2
+

b2

c2
+

c2

b2
− 10

=
(b− c)4(b2 + c2 + 4bc)

b2c2(b2 + c2)
≥ 0.

Case 2: 16b3 ≤ ac2. It suffices to show that

c2 + 16ab
a2 + b2

≥ 10.

Indeed,

c2 + 16ab
a2 + b2

− 10≥

16b3

a
+ 16ab

a2 + b2
− 10

=
16b

a
− 10≥ 16− 10> 0.

This completes the proof. The equality holds for a = 0 and b = c (or any cyclic
permutation).
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P 1.86. If a, b, c are nonnegative real numbers, no two of which are zero, then

a2 + 128bc
b2 + c2

+
b2 + 128ca

c2 + a2
+

c2 + 128ab
a2 + b2

≥ 46.

(Vasile Cîrtoaje, 2005)

Solution. Let
a ≤ b ≤ c,

E(a, b, c) =
a2 + 128bc

b2 + c2
+

b2 + 128ca
c2 + a2

+
c2 + 128ab

a2 + b2
.

Consider two cases.

Case 1: 128b3 ≥ ac2. We will show that

E(a, b, c)≥ E(0, b, c)≥ 46.

We have

E(a, b, c)− E(0, b, c) =
a2

b2 + c2
+

a(128c3 − ab2)
c2(c2 + a2)

+
a(128b3 − ac2)

b2(a2 + b2)
≥ 0.

Also,

E(0, b, c)− 46=
128bc
b2 + c2

+
b2

c2
+

c2

b2
− 46

=
(b2 + c2 − 4bc)2(b2 + c2 + 8bc)

b2c2(b2 + c2)
≥ 0.

Case 2: 128b3 ≤ ac2. It suffices to show that

c2 + 128ab
a2 + b2

≥ 46.

Indeed,

c2 + 128ab
a2 + b2

− 46≥

128b3

a
+ 128ab

a2 + b2
− 46

=
128b

a
− 46≥ 128− 46> 0.

This completes the proof. The equality holds for a = 0 and
b
c
+

c
b
= 4 (or any cyclic

permutation).
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P 1.87. If a, b, c are nonnegative real numbers, no two of which are zero, then

a2 + 64bc
(b+ c)2

+
b2 + 64ca
(c + a)2

+
c2 + 64ab
(a+ b)2

≥ 18.

(Vasile Cîrtoaje, 2005)

Solution. Let
a ≤ b ≤ c,

E(a, b, c) =
a2 + 64bc
(b+ c)2

+
b2 + 64ca
(c + a)2

+
c2 + 64ab
(a+ b)2

.

Consider two cases.

Case 1: 64b3 ≥ c2(a+ 2b). We will show that

E(a, b, c)≥ E(0, b, c)≥ 18.

We have

E(a, b, c)− E(0, b, c) =
a2

(b+ c)2
+

a[64c3 − b2(a+ 2c)]
c2(c + a)2

+
a[64b3 − c2(a+ 2b)]

b2(a+ b)2

≥ 0.

Also,

E(0, b, c)− 18=
64bc
(b+ c)2

+
b2

c2
+

c2

b2
− 18

=
(b− c)4(b2 + c2 + 6bc)

b2c2(b+ c)2
≥ 0.

Case 2: 64b3 ≤ c2(a+ 2b). It suffices to show that

c2 + 64ab
(a+ b)2

≥ 18.

Indeed,

c2 + 64ab
(a+ b)2

− 18≥

64b3

a+ 2b
+ 64ab

(a+ b)2
− 18

=
64b

a+ 2b
− 18≥

64
3
− 18> 0.

This completes the proof. The equality holds for a = 0 and b = c (or any cyclic
permutation).
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P 1.88. Let a, b, c be nonnegative real numbers, no two of which are zero. If k ≥ −1,
then

∑ a2(b+ c) + kabc
b2 + kbc + c2

≥ a+ b+ c.

Solution. We apply the SOS method. Write the inequality as follows:

∑

�

a2(b+ c) + kabc
b2 + kbc + c2

− a
�

≥ 0,

∑ a(ab+ ac − b2 − c2)
b2 + kbc + c2

≥ 0,

∑ ab(a− b)
b2 + kbc + c2

+
∑ ac(a− c)

b2 + kbc + c2
≥ 0,

∑ ab(a− b)
b2 + kbc + c2

+
∑ ba(b− a)

c2 + kca+ a2
≥ 0,

∑

ab(a2 + kab+ b2)(a+ b+ kc)(a− b)2 ≥ 0.

Without loss of generality, assume that

a ≥ b ≥ c.

Since a+ b+ kc ≥ a+ b− c > 0, it suffices to show that

b(b2 + kbc + c2)(b+ c + ka)(b− c)2 + a(c2 + kca+ a2)(c + a+ kb)(c − a)2 ≥ 0.

Since
c + a+ kb ≥ c + a− b ≥ 0, c2 + kca+ a2 ≥ b2 + kbc + c2,

it is enough to prove that

b(b+ c + ka)(b− c)2 + a(c + a+ kb)(c − a)2 ≥ 0.

We have
b(b+ c + ka)(b− c)2 + a(c + a+ kb)(c − a)2 ≥

≥ [b(b+ c + ka) + a(c + a+ kb)](b− c)2

= [a2 + b2 + 2kab+ c(a+ b)](b− c)2

≥ [(a− b)2 + c(a+ b)](b− c)2 ≥ 0.

The equality holds for a = b = c, and for a = b and c = 0 (or any cyclic permuta-
tion).
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P 1.89. Let a, b, c be nonnegative real numbers, no two of which are zero. If k ≥
−3
2

,

then
∑ a3 + (k+ 1)abc

b2 + kbc + c2
≥ a+ b+ c.

(Vasile Cîrtoaje, 2009)

Solution. Use the SOS method. Write the inequality as follows:
∑

�

a3 + (k+ 1)abc
b2 + kbc + c2

− a
�

≥ 0,
∑ a3 − a(b2 − bc + c2)

b2 + kbc + c2
≥ 0,

∑ (b+ c)a3 − a(b3 + c3)
(b+ c)(b2 + kbc + c2)

≥ 0,
∑ ab(a2 − b2) + ac(a2 − c2)

(b+ c)(b2 + kbc + c2)
≥ 0,

∑ ab(a2 − b2)
(b+ c)(b2 + kbc + c2)

+
∑ ba(b2 − a2)
(c + a)(c2 + kca+ a2)

≥ 0,
∑

(a2 − b2)2ab(a2 + kab+ b2)[a2 + b2 + ab+ (k+ 1)c(a+ b+ c)]≥ 0,
∑

(b2 − c2)2 bc(b2 + kbc + c2)Sa ≥ 0,

where
Sa = b2 + c2 + bc + (k+ 1)a(a+ b+ c).

Without loss of generality, assume that

a ≥ b ≥ c.

Since Sc > 0, it suffices to show that

(b2 − c2)2 b(b2 + kbc + c2)Sa + (c
2 − a2)2a(c2 + kca+ a2)Sb ≥ 0.

Since
(c2 − a2)2 ≥ (b2 − c2)2, a ≥ b,

c2 + kca+ a2 − (b2 + kbc + c2) = (a− b)(a+ b+ kc)≥ 0,

Sb = a2 + c2 + ac + (k+ 1)b(a+ b+ c)≥ a2 + c2 + ac −
1
2

b(a+ b+ c)

=
(a− b)(2a+ b) + c(2a+ 2c − b)

2
≥ 0,

it is enough to show that Sa + Sb ≥ 0. Indeed,

Sa + Sb = a2 + b2 + 2c2 + c(a+ b) + (k+ 1)(a+ b)(a+ b+ c)

≥ a2 + b2 + 2c2 + c(a+ b)−
1
2
(a+ b)(a+ b+ c)

=
(a− b)2 + c(a+ b+ 4c)

2
≥ 0.

This completes the proof. The equality holds for a = b = c, and also for a = b and
c = 0 (or any cyclic permutation).
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P 1.90. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > 0,
then

2ak − bk − ck

b2 − bc + c2
+

2bk − ck − ak

c2 − ca+ a2
+

2ck − ak − bk

a2 − ab+ b2
≥ 0.

(Vasile Cîrtoaje, 2004)

Solution. Let
X = bk − ck, Y = ck − ak, Z = ak − bk,

A= b2 − bc + c2, B = c2 − ca+ a2, C = a2 − ab+ b2.

Without loss of generality, assume that a ≥ b ≥ c. This involves

A≤ B, A≤ C , X ≥ 0, Z ≥ 0.

Since

∑ 2ak − bk − ck

b2 − bc + c2
=

X + 2Z
A

+
X − Z

B
−

2X + Z
C

= X
�

1
A
+

1
B
−

2
C

�

+ Z
�

2
A
−

1
B
−

1
C

�

,

it suffices to prove that
1
A
+

1
B
−

2
C
≥ 0.

Write this inequality as
1
A
−

1
C
≥

1
C
−

1
B

,

that is,

(a− c)(a+ c − b)(a2 − ac + c2)≥ (b− c)(a− b− c)(b2 − bc + c2).

For the nontrivial case a > b+ c, this inequality follows from

a− c ≥ b− c,

a+ c − b ≥ a− b− c,

a2 − ac + c2 > b2 − bc + c2.

This completes the proof. The equality holds for a = b = c, and for a = b and c = 0
(or any cyclic permutation).
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P 1.91. If a, b, c are the lengths of the sides of a triangle, then

(a)
b+ c − a

b2 − bc + c2
+

c + a− b
c2 − ca+ a2

+
a+ b− c

a2 − ab+ b2
≥

2(a+ b+ c)
a2 + b2 + c2

;

(b)
2bc − a2

b2 − bc + c2
+

2ca− b2

c2 − ca+ a2
+

2ab− c2

a2 − ab+ b2
≥ 0.

(Vasile Cîrtoaje, 2009)

Solution. (a) By the Cauchy-Schwarz inequality, we get

∑ b+ c − a
b2 − bc + c2

≥

�∑

(b+ c − a)
�2

∑

(b+ c − a)(b2 − bc + c2)

=

�∑

a
�2

2
∑

a3 −
∑

a2(b+ c) + 3abc
.

On the other hand, from

(b+ c − a)(c + a− b)(a+ b− c)≥ 0,

we get
2abc ≤

∑

a2(b+ c)−
∑

a3,

hence

2
∑

a3 −
∑

a2(b+ c) + 3abc ≤
∑

a3 +
∑

a2(b+ c)
2

=

�∑

a
� �∑

a2
�

2
.

Therefore,
∑ b+ c − a

b2 − bc + c2
≥

2
∑

a
∑

a2
.

The equality holds for a degenerate triangle with a = b+ c (or any cyclic permuta-
tion).

(b) Since
2bc − a2

b2 − bc + c2
=
(b− c)2 + (b+ c)2 − a2

b2 − bc + c2
− 2,

we can write the inequality as

∑ (b− c)2

b2 − bc + c2
+ (a+ b+ c)

∑ b+ c − a
b2 − bc + c2

≥ 6.

Using the inequality in (a), it suffices to prove that

∑ (b− c)2

b2 − bc + c2
+

2(a+ b+ c)2

a2 + b2 + c2
≥ 6.
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Write this inequality as

∑ (b− c)2

b2 − bc + c2
≥
∑ 2(b− c)2

a2 + b2 + c2
,

∑ (b− c)2(a− b+ c)(a+ b− c)
b2 − bc + c2

≥ 0.

Clearly, the last inequality is true. The equality holds for degenerate triangles with
either a/2 = b = c (or any cyclic permutation), or a = 0 and b = c (or any cyclic
permutation).

Remark. The following generalization of the inequality in (b) holds (Vasile Cîrtoaje,
2009):

• Let a, b, c be the lengths of the sides of a triangle. If k ≥ −1, then

∑ 2(k+ 2)bc − a2

b2 + kbc + c2
≥ 0.

with equality for a = 0 and b = c (or any cyclic permutation).

P 1.92. If a, b, c are nonnegative real numbers, then

(a)
a2

5a2 + (b+ c)2
+

b2

5b2 + (c + a)2
+

c2

5c2 + (a+ b)2
≤

1
3

;

(b)
a3

13a3 + (b+ c)3
+

b3

13b3 + (c + a)3
+

c3

13c3 + (a+ b)3
≤

1
7

.

(Vo Quoc Ba Can and Vasile Cîrtoaje, 2009)

Solution. (a) Apply the Cauchy-Schwarz inequality in the following manner

9
5a2 + (b+ c)2

=
(1+ 2)2

(a2 + b2 + c2) + 2(2a2 + bc)
≤

1
a2 + b2 + c2

+
2

2a2 + bc
.

Then,

∑ 9a2

5a2 + (b+ c)2
≤
∑ a2

a2 + b2 + c2
+
∑ 2a2

2a2 + bc
= 1+ 2

∑ a2

2a2 + bc
,

and it remains to show that
∑ a2

2a2 + bc
≤ 1.

For the nontrivial case a, b, c > 0, this is equivalent to

∑ 1
2+ bc/a2

≤ 1,
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which follows immediately from P 1.2-(b). The equality holds for a = b = c, and
for a = 0 and b = c (or any cyclic permutation).

(b) By the Cauchy-Schwarz inequality, we have

49
13a3 + (b+ c)3

=
(1+ 6)2

(a3 + b3 + c3) + 12a3 + 3bc(b+ c))

≤
1

a3 + b3 + c3
+

36
12a3 + 3bc(b+ c)

,

hence

∑ 49a3

13a3 + (b+ c)3
≤
∑ a3

a3 + b3 + c3
+
∑ 36a3

12a3 + 3bc(b+ c)

= 1+
∑ 12a3

4a3 + bc(b+ c)
.

Thus, it suffices to show that

∑ 2a3

4a3 + bc(b+ c)
≤ 1.

For the nontrivial case a, b, c > 0, this is equivalent to

∑ 1
2+ bc(b+ c)/(2a3)

≤ 1.

Since
∏

bc(b+ c)/(2a3)≥
∏

bc
p

bc/a3 = 1,

the inequality follows immediately from P 1.2-(b). The equality holds for a = b = c,
and for a = 0 and b = c (or any cyclic permutation).

P 1.93. If a, b, c are nonnegative real numbers, then

b2 + c2 − a2

2a2 + (b+ c)2
+

c2 + a2 − b2

2b2 + (c + a)2
+

a2 + b2 − c2

2c2 + (a+ b)2
≥

1
2

.

(Vasile Cîrtoaje, 2011)

Solution. We apply the SOS method. Write the inequality as follows:

∑

�

b2 + c2 − a2

2a2 + (b+ c)2
−

1
6

�

≥ 0,

∑ 5(b2 + c2 − 2a2) + 2(a2 − bc)
2a2 + (b+ c)2

≥ 0,
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∑ 5(b2 − a2) + 5(c2 − a2) + (a− b)(a+ c) + (a− c)(a+ b)
2a2 + (b+ c)2

≥ 0,

∑ (b− a)[5(b+ a)− (a+ c)]
2a2 + (b+ c)2

+
∑ (c − a)[5(c + a)− (a+ b)]

2a2 + (b+ c)2
≥ 0,

∑ (b− a)[5(b+ a)− (a+ c)]
2a2 + (b+ c)2

+
∑ (a− b)[5(a+ b)− (b+ c)]

2b2 + (c + a)2
≥ 0,

∑

(a− b)2[2c2 + (a+ b)2][2(a2 + b2) + c2 + 3ab− 3c(a+ b)]≥ 0,
∑

(b− c)2RaSa ≥ 0,

where

Ra = 2a2 + (b+ c)2, Sa = a2 + 2(b2 + c2) + 3bc − 3a(b+ c).

Without loss of generality, assume that a ≥ b ≥ c. We have

Sb = b2 + 2(c2 + a2) + 3ca− 3b(c + a) = (a− b)(2a− b) + 2c2 + 3c(a− b)≥ 0,

Sc = c2+2(a2+ b2)+3ab−3c(a+ b)≥ 7ab−3c(a+ b)≥ 3a(b− c)+3b(a− c)≥ 0,

Sa + Sb = 3(a− b)2 + 4c2 ≥ 0.

Since
∑

(b− c)2RaSa ≥ (b− c)2RaSa + (c − a)2RbSb

= (b− c)2Ra(Sa + Sb) + [(c − a)2Rb − (b− c)2Ra]Sb,

it suffices to prove that
(a− c)2Rb ≥ (b− c)2Ra.

We can get this by multiplying the inequalities

b2(a− c)2 ≥ a2(b− c)2

and
a2Rb ≥ b2Ra.

The equality holds for a = b = c, and for a = b and c = 0 (or any cyclic permuta-
tion).

P 1.94. Let a, b, c be positive real numbers. If k > 0, then

3a2 − 2bc
ka2 + (b− c)2

+
3b2 − 2ca

kb2 + (c − a)2
+

3c2 − 2ab
kc2 + (a− b)2

≤
3
k

.

(Vasile Cîrtoaje, 2011)
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Solution. Use the SOS method. Write the inequality as follows:

∑

�

1
k
−

3a2 − 2bc
ka2 + (b− c)2

�

≥ 0,

∑ b2 + c2 − 2a2 + 2(k− 1)(bc − a2)
ka2 + (b− c)2

≥ 0;

∑ (b2 − a2) + (c2 − a2) + (k− 1)[(a+ b)(c − a) + (a+ c)(b− a)]
ka2 + (b− c)2

≥ 0;

∑ (b− a)[b+ a+ (k− 1)(a+ c)]
ka2 + (b− c)2

+
∑ (c − a)[c + a+ (k− 1)(a+ b)]

ka2 + (b− c)2
≥ 0;

∑ (b− a)[b+ a+ (k− 1)(a+ c)]
ka2 + (b− c)2

+
∑ (a− b)[a+ b+ (k− 1)(b+ c)]

kb2 + (c − a)2
≥ 0;

∑

(a− b)2[kc2 + (a− b)2][(k− 1)c2 + 2c(a+ b) + (k2 − 1)(ab+ bc + ca)]≥ 0.

For k ≥ 1, the inequality is clearly true. Consider further that 0< k < 1. Since

(k− 1)c2 + 2c(a+ b) + (k2 − 1)(ab+ bc + ca)>

> −c2 + 2c(a+ b)− (ab+ bc + ca) = (b− c)(c − a),

it suffices to prove that

(a− b)(b− c)(c − a)
∑

(a− b)[kc2 + (a− b)2]≥ 0.

Since
∑

(a− b)[kc2 + (a− b)2] = k
∑

(a− b)c2 +
∑

(a− b)3

= (3− k)(a− b)(b− c)(c − a),

we have
(a− b)(b− c)(c − a)

∑

(a− b)[kc2 + (a− b)2] =

= (3− k)(a− b)2(b− c)2(c − a)2 ≥ 0.

This completes the proof. The equality holds for a = b = c.

P 1.95. Let a, b, c be nonnegative real numbers, no two of which are zero. If k ≥
3+
p

7, then

(a)
a

a2 + kbc
+

b
b2 + kca

+
c

c2 + kab
≥

9
(1+ k)(a+ b+ c)

;

(b)
1

ka2 + bc
+

1
kb2 + ca

+
1

kc2 + ab
≥

9
(k+ 1)(ab+ bc + ca)

.

(Vasile Cîrtoaje, 2005)
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Solution. (a) Assume that a =max{a, b, c}. Setting

t =
b+ c

2
, t ≤ a,

by the Cauchy-Schwarz inequality, we get

b
b2 + kca

+
c

c2 + kab
≥

(b+ c)2

b(b2 + kca) + c(c2 + kab)
=

4t2

8t3 − 6bct + 2kabc

=
2t2

4t3 + (ka− 3t)bc
≥

2t2

4t3 + (ka− 3t)t2
=

2
t + ka

.

On the other hand,
a

a2 + kbc
≥

a
a2 + kt2

.

Therefore, it suffices to prove that

a
a2 + kt2

+
2

t + ka
≥

9
(k+ 1)(a+ 2t)

,

which is equivalent to

(a− t)2[(k2 − 6k+ 2)a+ k(4k− 5)t]≥ 0.

This inequality is true, since k2−6k+2≥ 0 and 4k−5> 0. The equality holds for
a = b = c.

(b) For a = 0, the inequality becomes

1
b2
+

1
c2
≥

k(8− k)
(k+ 1)bc

.

We have

1
b2
+

1
c2
−

k(8− k)
(k+ 1)bc

≥
2
bc
−

k(8− k)
(k+ 1)bc

=
k2 − 6k+ 2
(k+ 1)bc

≥ 0.

For a, b, c > 0, the desired inequality follows from the inequality in (a) by substi-
tuting a, b, c with 1/a, 1/b, 1/c, respectively. The equality holds for a = b = c. In
the case k = 3 +

p
7, the equality also holds for a = 0 and b = c (or any cyclic

permutation).

P 1.96. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1
2a2 + bc

+
1

2b2 + ca
+

1
2c2 + ab

≥
6

a2 + b2 + c2 + ab+ bc + ca
.

(Vasile Cîrtoaje, 2005)
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Solution. Applying the Cauchy-Schwarz inequality, we have

∑ 1
2a2 + bc

≥

�∑

(b+ c)
�2

∑

(b+ c)2(2a2 + bc)
=

4(a+ b+ c)2
∑

(b+ c)2(2a2 + bc)
.

Thus, it suffices to show that

2(a+ b+ c)2(a2 + b2 + c2 + ab+ bc + ca)≥ 3
∑

(b+ c)2(2a2 + bc),

which is equivalent to

2
∑

a4 + 3
∑

ab(a2 + b2) + 2abc
∑

a ≥ 10
∑

a2 b2.

This follows by adding Schur’s inequality

2
∑

a4 + 2abc
∑

a ≥ 2
∑

ab(a2 + b2)

to the inequality
5
∑

ab(a2 + b2)≥ 10
∑

a2 b2.

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic
permutation).

P 1.97. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1
22a2 + 5bc

+
1

22b2 + 5ca
+

1
22c2 + 5ab

≥
1

(a+ b+ c)2
.

(Vasile Cîrtoaje, 2005)

Solution. Applying the Cauchy-Schwarz inequality, we have

∑ 1
22a2 + 5bc

≥

�∑

(b+ c)
�2

∑

(b+ c)2(22a2 + 5bc)
=

4(a+ b+ c)2
∑

(b+ c)2(22a2 + 5bc)
.

Thus, it suffices to show that

4(a+ b+ c)4 ≥
∑

(b+ c)2(22a2 + 5bc),

which is equivalent to

4
∑

a4 + 11
∑

ab(a2 + b2) + 4abc
∑

a ≥ 30
∑

a2 b2.

This follows by adding Schur’s inequality

4
∑

a4 + 4abc
∑

a ≥ 4
∑

ab(a2 + b2)

to the inequality
15
∑

ab(a2 + b2)≥ 30
∑

a2 b2.

The equality holds for a = b = c.
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P 1.98. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1
2a2 + bc

+
1

2b2 + ca
+

1
2c2 + ab

≥
8

(a+ b+ c)2
.

(Vasile Cîrtoaje, 2005)

First Solution. Applying the Cauchy-Schwarz inequality, we have

∑ 1
2a2 + bc

≥

�∑

(b+ c)
�2

∑

(b+ c)2(2a2 + bc)
=

4(a+ b+ c)2
∑

(b+ c)2(2a2 + bc)
.

Thus, it suffices to show that

(a+ b+ c)4 ≥ 2
∑

(b+ c)2(2a2 + bc),

which is equivalent to
∑

a4 + 2
∑

ab(a2 + b2) + 4abc
∑

a ≥ 6
∑

a2 b2.

We will prove the sharper inequality
∑

a4 + 2
∑

ab(a2 + b2) + abc
∑

a ≥ 6
∑

a2 b2.

This follows by adding Schur’s inequality
∑

a4 + abc
∑

a ≥
∑

ab(a2 + b2)

to the inequality
3
∑

ab(a2 + b2)≥ 6
∑

a2 b2.

The equality holds for a = 0 and b = c (or any cyclic permutation).

Second Solution. Without loss of generality, we may assume that a ≥ b ≥ c. Since
the equality holds for c = 0 and a = b, when

1
2a2 + bc

=
1

2b2 + ca
=

1
4c2 + 2ab

,

write the inequality as

1
2a2 + bc

+
1

2b2 + ca
+

1
4c2 + 2ab

+
1

4c2 + 2ab
≥

8
(a+ b+ c)2

,

then apply the Cauchy-Schwarz inequality. Thus, it suffices to prove that

16
(2a2 + bc) + (2b2 + ca) + (4c2 + 2ab) + (4c2 + 2ab)

≥
8

(a+ b+ c)2
,

which is equivalent to the obvious inequality

c(a+ b− 2c)≥ 0.
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P 1.99. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

1
a2 + bc

+
1

b2 + ca
+

1
c2 + ab

≥
12

(a+ b+ c)2
.

(Vasile Cîrtoaje, 2005)

Solution. Write the inequality such that the numerators of the fractions are non-
negative and as small as possible:

∑

�

1
a2 + bc

−
1

(a+ b+ c)2

�

≥
9

(a+ b+ c)2
,

∑ (a+ b+ c)2 − a2 − bc
a2 + bc

≥ 9.

Assuming that a+ b+ c = 1, the inequality becomes

∑ 1− a2 − bc
a2 + bc

≥ 9.

By the Cauchy-Schwarz inequality, we have

∑ 1− a2 − bc
a2 + bc

≥

�∑

(1− a2 − bc)
�2

∑

(1− a2 − bc)(a2 + bc)
.

Then, it suffices to prove that

�

3−
∑

a2 −
∑

bc
�2
≥ 9

∑

(a2 + bc)− 9
∑

(a2 + bc)2,

which is equivalent to

(1− 4q)(4− 7q) + 36abc ≥ 0, q = ab+ bc + ca.

For q ≤ 1/4, this inequality is clearly true. Consider further that q > 1/4. By
Schur’s inequality of degree three

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca),

we get 1+ 9abc ≥ 4q, and hence 36abc ≥ 16q− 4. Thus,

(1− 4q)(4− 7q) + 36abc ≥ (1− 4q)(4− 7q) + 16q− 4= 7q(4q− 1)> 0.

The equality holds for a = 0 and b = c (or any cyclic permutation).
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P 1.100. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

(a)
1

a2 + 2bc
+

1
b2 + 2ca

+
1

c2 + 2ab
≥

1
a2 + b2 + c2

+
2

ab+ bc + ca
;

(b)
a(b+ c)
a2 + 2bc

+
b(c + a)
b2 + 2ca

+
c(a+ b)
c2 + 2ab

≥ 1+
ab+ bc + ca
a2 + b2 + c2

.

(Darij Grinberg and Vasile Cîrtoaje, 2005)

Solution. (a) Write the inequality as
∑

(b2 + 2ca)(c2 + 2ab)
(a2 + 2bc)(b2 + 2ca)(c2 + 2ab)

≥
ab+ bc + ca+ 2a2 + 2b2 + 2c2

(a2 + b2 + c2)(ab+ bc + ca)
.

Since
∑

(b2 + 2ca)(c2 + 2ab) = (ab+ bc + ca)(ab+ bc + ca+ 2a2 + 2b2 + 2c2),

it suffices to show that

(a2 + b2 + c2)(ab+ bc + ca)2 ≥ (a2 + 2bc)(b2 + 2ca)(c2 + 2ab),

which is just the inequality (a) in P 2.16 in Volume 1. The equality holds for a = b,
or b = c, or c = a.

(b) Write the inequality in (a) as

∑ ab+ bc + ca
a2 + 2bc

≥ 2+
ab+ bc + ca
a2 + b2 + c2

,

or
∑ a(b+ c)

a2 + 2bc
+
∑ bc

a2 + 2bc
≥ 2+

ab+ bc + ca
a2 + b2 + c2

.

The desired inequality follows by adding this inequality to

1≥
∑ bc

a2 + 2bc
.

The last inequality is equivalent to

∑ a2

a2 + 2bc
≥ 1,

which follows by applying the AM-GM inequality as follows:

∑ a2

a2 + 2bc
≥
∑ a2

a2 + b2 + c2
= 1.

The equality holds for a = b = c.
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P 1.101. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

(a)
a

a2 + 2bc
+

b
b2 + 2ca

+
c

c2 + 2ab
≤

a+ b+ c
ab+ bc + ca

;

(b)
a(b+ c)
a2 + 2bc

+
b(c + a)
b2 + 2ca

+
c(a+ b)
c2 + 2ab

≤ 1+
a2 + b2 + c2

ab+ bc + ca
.

(Vasile Cîrtoaje, 2008)

Solution. (a) Use the SOS method. Write the inequality as
∑

a
�

1−
ab+ bc + ca

a2 + 2bc

�

≥ 0,

∑ a(a− b)(a− c)
a2 + 2bc

≥ 0.

Assume that a ≥ b ≥ c. Since (c − a)(c − b)≥ 0, it suffices to show that

a(a− b)(a− c)
a2 + 2bc

+
b(b− a)(b− c)

b2 + 2ca
≥ 0.

This inequality is equivalent to

c(a− b)2[2a(a− c) + 2b(b− c) + 3ab]≥ 0,

which is clearly true. The equality holds for a = b = c, and for a = b and c = 0 (or
any cyclic permutation).

(b) Since
a(b+ c)
a2 + 2bc

=
a(a+ b+ c)

a2 + 2bc
−

a2

a2 + 2bc
,

we can write the inequality as

(a+ b+ c)
∑ a

a2 + 2bc
≤ 1+

a2 + b2 + c2

ab+ bc + ca
+
∑ a2

a2 + 2bc
.

According to the inequality in (a), it suffices to show that

(a+ b+ c)2

ab+ bc + ca
≤ 1+

a2 + b2 + c2

ab+ bc + ca
+
∑ a2

a2 + 2bc
,

which is equivalent to
∑ a2

a2 + 2bc
≥ 1.

Indeed,
∑ a2

a2 + 2bc
≥
∑ a2

a2 + b2 + c2
= 1.

The equality holds for a = b = c.
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P 1.102. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

(a)
a

2a2 + bc
+

b
2b2 + ca

+
c

2c2 + ab
≥

a+ b+ c
a2 + b2 + c2

;

(b)
b+ c

2a2 + bc
+

c + a
2b2 + ca

+
a+ b

2c2 + ab
≥

6
a+ b+ c

.

(Vasile Cîrtoaje, 2008)

Solution. Assume that
a ≥ b ≥ c.

(a) Multiplying by a+ b+ c, we can write the inequality as follows:
∑ a(a+ b+ c)

2a2 + bc
≥
(a+ b+ c)2

a2 + b2 + c2
,

3−
(a+ b+ c)2

a2 + b2 + c2
≥
∑

�

1−
a(a+ b+ c)

2a2 + bc

�

,

2
∑

(a− b)(a− c)≥ (a2 + b2 + c2)
∑ (a− b)(a− c)

2a2 + bc
,

∑ 3a2 − (b− c)2

2a2 + bc
(a− b)(a− c)≥ 0,

3 f (a, b, c) + (a− b)(b− c)(c − a)g(a, b, c)≥ 0,

where

f (a, b, c) =
∑ a2(a− b)(a− c)

2a2 + bc
, g(a, b, c) =

∑ b− c
2a2 + bc

.

It suffices to show that f (a, b, c)≥ 0 and g(a, b, c)≤ 0. We have

f (a, b, c)≥
a2(a− b)(a− c)

2a2 + bc
+

b2(b− a)(b− c)
2b2 + ca

≥
a2(a− b)(b− c)

2a2 + bc
+

b2(b− a)(b− c)
2b2 + ca

=
a2c(a− b)2(b− c)(a2 + ab+ b2)

(2a2 + bc)(2b2 + ca)
≥ 0.

Also,

g(a, b, c) =
b− c

2a2 + bc
−
(a− b) + (b− c)

2b2 + ca
+

a− b
2c2 + ab

= (a− b)
�

1
2c2 + ab

−
1

2b2 + ca

�

+ (b− c)
�

1
2a2 + bc

−
1

2b2 + ca

�

=
(a− b)(b− c)

2b2 + ca

�

2b+ 2c − a
2c2 + ab

−
2b+ 2a− c

2a2 + bc

�

=

=
2(a− b)(b− c)(c − a)(a2 + b2 + c2 − ab− bc − ca)

(2a2 + bc)(2b2 + ca)(2c2 + ab)
≤ 0.
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The equality holds for a = b = c, and for a = b and c = 0 (or any cyclic permuta-
tion).

(b) We apply the SOS method. Write the inequality as follows:
∑

�

(b+ c)(a+ b+ c)
2a2 + bc

− 2
�

≥ 0,

∑ (b2 + ab− 2a2) + (c2 + ca− 2a2)
2a2 + bc

≥ 0,

∑ (b− a)(b+ 2a) + (c − a)(c + 2a)
2a2 + bc

≥ 0,

∑ (b− a)(b+ 2a)
2a2 + bc

+
∑ (a− b)(a+ 2b)

2b2 + ca
≥ 0,

∑

(a− b)
�

a+ 2b
2b2 + ca

−
b+ 2a

2a2 + bc

�

≥ 0,
∑

(a− b)2(2c2 + ab)(a2 + b2 + 3ab− ac − bc)≥ 0.

It suffices to show that
∑

(a− b)2(2c2 + ab)(a2 + b2 + 2ab− ac − bc)≥ 0,

which is equivalent to
∑

(a− b)2(2c2 + ab)(a+ b)(a+ b− c)≥ 0.

This inequality is true if

(b− c)2(2a2 + bc)(b+ c)(b+ c − a) + (c − a)2(2b2 + ca)(c + a)(c + a− b)≥ 0;

that is,

(a− c)2(2b2 + ca)(a+ c)(a+ c − b)≥ (b− c)2(2a2 + bc)(b+ c)(a− b− c).

Since
a+ c ≥ b+ c, a+ c − b ≥ a− b− c,

it is enough to prove that

(a− c)2(2b2 + ca)≥ (b− c)2(2a2 + bc).

We can obtain this inequality by multiplying the inequalities

b2(a− c)2 ≥ a2(b− c)2

and
a2(2b2 + ca)≥ b2(2a2 + bc).

The equality holds for a = b = c, and for a = b and c = 0 (or any cyclic permuta-
tion).
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P 1.103. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

a(b+ c)
a2 + bc

+
b(c + a)
b2 + ca

+
c(a+ b)
c2 + ab

≥
(a+ b+ c)2

a2 + b2 + c2
.

(Pham Huu Duc, 2006)

Solution. Assume that a ≥ b ≥ c and write the inequality as follows:

3−
(a+ b+ c)2

a2 + b2 + c2
≥
∑

�

1−
ab+ ac
a2 + bc

�

,

2
∑

(a− b)(a− c)≥ (a2 + b2 + c2)
∑ (a− b)(a− c)

a2 + bc
,

∑ (a− b)(a− c)(a+ b− c)(a− b+ c)
a2 + bc

≥ 0.

It suffices to show that

(b− c)(b− a)(b+ c − a)(b− c + a)
b2 + ca

+
(c − a)(c − b)(c + a− b)(c − a+ b)

c2 + ab
≥ 0,

which is equivalent to the obvious inequality

(b− c)2(c − a+ b)2(a2 + bc)
(b2 + ca)(c2 + ab)

≥ 0.

The equality holds for a = b = c, and for a = b and c = 0 (or any cyclic permuta-
tion).

P 1.104. Let a, b, c be nonnegative real numbers, no two of which are zero. If k > 0,
then

b2 + c2 +
p

3bc
a2 + kbc

+
c2 + a2 +

p
3ca

b2 + kca
+

a2 + b2 +
p

3ab
c2 + kab

≥
3(2+

p
3)

1+ k
.

(Vasile Cîrtoaje, 2013)

Solution. We use the highest coefficient method. Write the inequality in the form
f6(a, b, c)≥ 0, where

f6(a, b, c) = (1+ k)
∑

(b2 + c2 +
p

3bc)(b2 + kca)(c2 + kab)

−3(2+
p

3 )(a2 + kbc)(b2 + kca)(c2 + kab).

Clearly, f6(a, b, c) has the same highest coefficient A as

(1+ k)P2(a, b, c)− 3(2+
p

3 )P3(a, b, c),
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where
P2(a, b, c) =

∑

(
p

3bc − a2)(b2 + kca)(c2 + kab),

P3(a, b, c) = (a2 + kbc)(b2 + kca)(c2 + kab).

According to Remark 2 from the proof of P 2.75 in Volume 1, we have

A= (1+ k)P2(1, 1,1)− 3(2+
p

3 )P3(1,1, 1)

= 3(
p

3− 1)(1+ k)3 − 3(2+
p

3 )(1+ k)3 = −9(1+ k)3.

Since A ≤ 0, according to P 3.76-(a) in Volume 1, it suffices to prove the original
inequality for b = c = 1 and for a = 0.

In the first case (b = c = 1), the inequality is equivalent to

2+
p

3
a2 + k

+
2(a2 +

p
3a+ 1)

ka+ 1
≥

3(2+
p

3)
1+ k

,

2(a2 +
p

3a+ 1)
ka+ 1

≥
(2+

p
3)(3a2 + 2k− 1)

(k+ 1)(a2 + k)
,

(a− 1)2
�

(k+ 1)a2 −
�

1+
p

3
2

�

(k− 2)a+

�

k−
1+
p

3
2

�2�

≥ 0.

For the nontrivial case k > 2, we have

(k+ 1)a2 +

�

k−
1+
p

3
2

�2

≥ 2
p

k+ 1

�

k−
1+
p

3
2

�

a

≥ 2
p

3

�

k−
1+
p

3
2

�

a ≥
�

1+
p

3
2

�

(k− 2)a.

In the second case (a = 0), the original inequality can be written as

1
k

�

b
c
+

c
b
+
p

3
�

+
�

b2

c2
+

c2

b2

�

≥
3(2+

p
3)

1+ k
.

It suffices to show that

1
k
(2+

p
3) + 2≥

3(2+
p

3)
1+ k

,

which is equivalent to
�

k−
1+
p

3
2

�2

≥ 0.

The equality holds for a = b = c. If k =
1+
p

3
2

, then the equality holds also for

a = 0 and b = c (or any cyclic permutation).
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P 1.105. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

1
a2 + b2

+
1

b2 + c2
+

1
c2 + a2

+
8

a2 + b2 + c2
≥

6
ab+ bc + ca

.

(Vasile Cîrtoaje, 2013)

Solution. Multiplying by a2 + b2 + c2, the inequality becomes

a2

b2 + c2
+

b2

c2 + a2
+

c2

a2 + b2
+ 11≥

6(a2 + b2 + c2)
ab+ bc + ca

.

Since
�

a2

b2 + c2
+

b2

c2 + a2
+

c2

a2 + b2

�

(a2 b2 + b2c2 + c2a2) =

= a4 + b4 + c4 + a2 b2c2
�

1
a2 + b2

+
1

b2 + c2
+

1
c2 + a2

�

≥ a4 + b4 + c4,

it suffices to show that

a4 + b4 + c4

a2 b2 + b2c2 + c2a2
+ 11≥

6(a2 + b2 + c2)
ab+ bc + ca

,

which is equivalent to

(a2 + b2 + c2)2

a2 b2 + b2c2 + c2a2
+ 9≥

6(a2 + b2 + c2)
ab+ bc + ca

.

Clearly, it is enough to prove that

�

a2 + b2 + c2

ab+ bc + ca

�2

+ 9≥
6(a2 + b2 + c2)
ab+ bc + ca

,

which is
�

a2 + b2 + c2

ab+ bc + ca
− 3

�2

≥ 0.

The equality holds for a = 0 and
b
c
+

c
b
= 3 (or any cyclic permutation).

P 1.106. If a, b, c are the lengths of the sides of a triangle, then

a(b+ c)
a2 + 2bc

+
b(c + a)
b2 + 2ca

+
c(a+ b)
c2 + 2ab

≤ 2.

(Vo Quoc Ba Can and Vasile Cîrtoaje, 2010)
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Solution. Write the inequality as
∑

�

1−
ab+ ac
a2 + 2bc

�

≥ 1,

∑ a2 + 2bc − ab− ac
a2 + 2bc

≥ 1.

Since

a2 + 2bc − ab− ac = bc − (a− c)(b− a)≥ |a− c||b− a| − (a− c)(b− a)≥ 0,

by the Cauchy-Schwarz inequality, we have

∑ a2 + 2bc − ab− ac
a2 + 2bc

≥

�∑

(a2 + 2bc − ab− ac)
�2

∑

(a2 + 2bc)(a2 + 2bc − ab− ac)
.

Thus, it suffices to prove that

(a2 + b2 + c2)2 ≥
∑

(a2 + 2bc)(a2 + 2bc − ab− ac),

which reduces to the obvious inequality

ab(a− b)2 + bc(b− c)2 + ca(c − a)2 ≥ 0.

The equality holds for an equilateral triangle, and for a degenerate triangle with
a = 0 and b = c (or any cyclic permutation).

P 1.107. If a, b, c are real numbers, then

a2 − bc
2a2 + b2 + c2

+
b2 − ca

2b2 + c2 + a2
+

c2 − ab
2c2 + a2 + b2

≥ 0.

(Nguyen Anh Tuan, 2005)

First Solution. Rewrite the inequality as

∑

�

1
2
−

a2 − bc
2a2 + b2 + c2

�

≤
3
2

,

∑ (b+ c)2

2a2 + b2 + c2
≤ 3.

If two of a, b, c are zero, then the inequality is trivial. Otherwise, applying the
Cauchy-Schwarz inequality, we get

∑ (b+ c)2

2a2 + b2 + c2
=
∑ (b+ c)2

(a2 + b2) + (a2 + c2)
≤
∑

�

b2

a2 + b2
+

c2

a2 + c2

�

=
∑ b2

a2 + b2
+
∑ a2

b2 + a2
= 3.
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The equality holds for a = b = c.

Second Solution. Use the SOS method. We have

2
∑ a2 − bc

2a2 + b2 + c2
=
∑ (a− b)(a+ c) + (a− c)(a+ b)

2a2 + b2 + c2

=
∑ (a− b)(a+ c)

2a2 + b2 + c2
+
∑ (b− a)(b+ c)

2b2 + c2 + a2

=
∑

(a− b)
�

a+ c
2a2 + b2 + c2

−
b+ c

2b2 + c2 + a2

�

= (a2 + b2 + c2 − ab− bc − ca)
∑ (a− b)2

(2a2 + b2 + c2)(2b2 + c2 + a2)
≥ 0.

P 1.108. If a, b, c are nonnegative real numbers, then

3a2 − bc
2a2 + b2 + c2

+
3b2 − ca

2b2 + c2 + a2
+

3c2 − ab
2c2 + a2 + b2

≤
3
2

.

(Vasile Cîrtoaje, 2008)

First Solution. Write the inequality as

∑

�

3
2
−

3a2 − bc
2a2 + b2 + c2

�

≥ 3,

∑ 8bc + 3(b− c)2

2a2 + b2 + c2
≥ 6.

By the Cauchy-Schwarz inequality, we have

8bc + 3(b− c)2 ≥
[4bc + (b− c)2]2

2bc +
1
3
(b− c)2

=
2(b+ c)4

b2 + c2 + 4bc
.

Therefore, it suffices to prove that

∑ (b+ c)4

(2a2 + b2 + c2)(b2 + c2 + 4bc)
≥ 2.

Using again the Cauchy-Schwarz inequality, we get

∑ (b+ c)4

(2a2 + b2 + c2)(b2 + c2 + 4bc)
≥

�∑

(b+ c)2
�2

∑

(2a2 + b2 + c2)(b2 + c2 + 4bc)
= 2.

The equality holds for a = b = c, for a = 0 and b = c (or any cyclic permutation),
and for b = c = 0 (or any cyclic permutation).
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Second Solution. Use the SOS method. Write the inequality as

∑

�

1
2
−

3a2 − bc
2a2 + b2 + c2

�

≥ 0,

∑ (b+ c + 2a)(b+ c − 2a)
2a2 + b2 + c2

≥ 0,

∑ (b+ c + 2a)(b− a) + (b+ c + 2a)(c − a)
2a2 + b2 + c2

≥ 0,

∑ (b+ c + 2a)(b− a)
2a2 + b2 + c2

+
∑ (c + a+ 2b)(a− b)

2b2 + c2 + a2
≥ 0,

∑

(a− b)
�

c + a+ 2b
2b2 + c2 + a2

−
b+ c + 2a

2a2 + b2 + c2

�

≥ 0,

∑

(3ab+ bc + ca− c2)(2c2 + a2 + b2)(a− b)2 ≥ 0.

Clearly, it suffices to show that
∑

c(a+ b− c)(2c2 + a2 + b2)(a− b)2 ≥ 0.

Assume that a ≥ b ≥ c. It is enough to prove that

a(b+ c − a)(2a2 + b2 + c2)(b− c)2 + b(c + a− b)(2b2 + c2 + a2)(c − a)2 ≥ 0;

that is,

b(c + a− b)(2b2 + c2 + a2)(a− c)2 ≥ a(a− b− c)(2a2 + b2 + c2)(b− c)2.

Since c + a− b ≥ a− b− c, it suffices to prove that

b(2b2 + c2 + a2)(a− c)2 ≥ a(2a2 + b2 + c2)(b− c)2.

We can obtain this inequality by multiplying the inequalities

b2(a− c)2 ≥ a2(b− c)2

and
a(2b2 + c2 + a2)≥ b(2a2 + b2 + c2).

The last inequality is equivalent to

(a− b)[(a− b)2 + ab+ c2]≥ 0.
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P 1.109. If a, b, c are nonnegative real numbers, then

(b+ c)2

4a2 + b2 + c2
+

(c + a)2

4b2 + c2 + a2
+

(a+ b)2

4c2 + a2 + b2
≥ 2.

(Vasile Cîrtoaje, 2005)

Solution. By the Cauchy-Schwarz inequality, we have

∑ (b+ c)2

4a2 + b2 + c2
≥

�∑

(b+ c)2
�2

∑

(b+ c)2(4a2 + b2 + c2)

= 2ḑot

∑

a4 + 3
∑

a2 b2 + 4abc
∑

a+ 2
∑

ab(a2 + b2)
∑

a4 + 5
∑

a2 b2 + 4abc
∑

a+
∑

ab(a2 + b2)
≥ 2

because
∑

ab(a2 + b2)≥ 2
∑

a2 b2.

The equality holds for a = b = c, and for b = c = 0 (or any cyclic permutation).

P 1.110. If a, b, c are positive real numbers, then

(a)
∑ 1

11a2 + 2b2 + 2c2
≤

3
5(ab+ bc + ca)

;

(b)
∑ 1

4a2 + b2 + c2
≤

1
2(a2 + b2 + c2)

+
1

ab+ bc + ca
.

(Vasile Cîrtoaje, 2008)

Solution. We will prove that

∑ k+ 2
ka2 + b2 + c2

≤
11− 2k

a2 + b2 + c2
+

2(k− 1)
ab+ bc + ca

for any k > 1. Due to homogeneity, we may assume that a2 + b2 + c2 = 3. On this
hypothesis, we need to show that

∑ k+ 2
(k− 1)a2 + 3

≤
11− 2k

3
+

2(k− 1)
ab+ bc + ca

.

Using the substitution m= 3/(k− 1), m> 0, the inequality can be written as

m(m+ 1)
∑ 1

a2 +m
≤ 3m− 2+

6
ab+ bc + ca

.
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By the Cauchy-Schwarz inequality, we have

(a2 +m)[m+ (m+ 1− a)2]≥ [a
p

m+
p

m(m+ 1− a)]2 = m(m+ 1)2,

and hence
m(m+ 1)

a2 +m
≤

a2 − 1
m+ 1

+m+ 2− 2a,

m(m+ 1)
∑ 1

a2 +m
≤ 3(m+ 2)− 2

∑

a.

Thus, it suffices to show that

3(m+ 2)− 2
∑

a ≤ 3m− 2+
6

ab+ bc + ca
;

that is,
(4− a− b− c)(ab+ bc + ca)≤ 3.

Let p = a+ b+ c. Since

2(ab+ bc + ca) = (a+ b+ c)2 − (a2 + b2 + c2) = p2 − 3,

we get

6− 2(4− a− b− c)(ab+ bc + ca) = 6− (4− p)(p2 − 3)

= (p− 3)2(p+ 2)≥ 0.

This completes the proof. The equality holds for a = b = c.

P 1.111. If a, b, c are nonnegative real numbers such that ab+ bc + ca = 3, then
p

a
b+ c

+
p

b
c + a

+
p

c
a+ b

≥
3
2

.

(Vasile Cîrtoaje, 2006)

Solution. By the Cauchy-Schwarz inequality, we have

∑

p
a

b+ c
≥

�∑

a3/4
�2

∑

a(b+ c)
=

1
6

�∑

a3/4
�2

.

Thus, it suffices to show that

a3/4 + b3/4 + c3/4 ≥ 3,

which follows immediately from Remark 1 from the proof of the inequality in P
3.33 in Volume 1. The equality occurs for a = b = c = 1.
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Remark. Analogously, according to Remark 2 from the proof of P 3.33 in Volume
1, we can prove that

ak

b+ c
+

bk

c + a
+

ck

a+ b
≥

3
2

for all k ≥ 3−
4 ln2
ln 3

≈ 0.476. For k = 3−
4 ln 2
ln3

, the equality occurs for a = b =

c = 1, and also for a = 0 and b = c =
p

3 (or any cyclic permutation).

P 1.112. If a, b, c are nonnegative real numbers such that ab+ bc + ca ≥ 3, then

1
2+ a

+
1

2+ b
+

1
2+ c

≥
1

1+ b+ c
+

1
1+ c + a

+
1

1+ a+ b
.

(Vasile Cîrtoaje, 2014)

Solution. Consider c =min{a, b, c}, and denote

E(a, b, c) =
1

2+ a
+

1
2+ b

+
1

2+ c
−

1
1+ b+ c

−
1

1+ c + a
−

1
1+ a+ b

.

If c ≥ 1, the desired inequality E(a, b, c) ≥ 0 follows by summing the obvious
inequalities

1
2+ a

≥
1

1+ c + a
,

1
2+ b

≥
1

1+ a+ b
,

1
2+ c

≥
1

1+ b+ c
.

Consider further that c < 1. From

E(a, b, c) = −
1− c

(2+ a)(1+ c + a)
−

1
1+ a+ b

+
1

2+ b
+

1
2+ c

−
1

1+ b+ c

and

E(a, b, c) = −
1− c

(2+ b)(1+ b+ c)
−

1
1+ a+ b

+
1

2+ a
+

1
2+ c

−
1

1+ c + a
,

it follows that E(a, b, c) is increasing in a and b. Based on this result, it suffices to
prove the desired inequality only for

ab+ bc + ca = 3.

Applying the AM-GM inequality, we get

3= ab+ bc + ca ≥ 3(abc)2/3, abc ≤ 1,
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a+ b+ c ≥ 3
3
p

abc ≥ 3.

We will show that

1
2+ a

+
1

2+ b
+

1
2+ c

≥ 1≥
1

1+ b+ c
+

1
1+ c + a

+
1

1+ a+ b
.

By direct calculation, we can show that the left inequality is equivalent to abc ≤ 1,
while the right inequality is equivalent to a + b + c ≥ 2 + abc. Clearly, these are
true and the proof is completed. The equality occurs for a = b = c = 1.

P 1.113. If a, b, c are the lengths of the sides of a triangle, then

(a)
a2 − bc

3a2 + b2 + c2
+

b2 − ca
3b2 + c2 + a2

+
c2 − ab

3c2 + a2 + b2
≤ 0;

(b)
a4 − b2c2

3a4 + b4 + c4
+

b4 − c2a2

3b4 + c4 + a4
+

c4 − a2 b2

3c4 + a4 + b4
≤ 0.

(Nguyen Anh Tuan and Vasile Cîrtoaje, 2006)

Solution. (a) Apply the SOS method. We have

2
∑ a2 − bc

3a2 + b2 + c2
=
∑ (a− b)(a+ c) + (a− c)(a+ b)

3a2 + b2 + c2

=
∑ (a− b)(a+ c)

3a2 + b2 + c2
+
∑ (b− a)(b+ c)

3b2 + c2 + a2

=
∑

(a− b)
�

a+ c
3a2 + b2 + c2

−
b+ c

3b2 + c2 + a2

�

= (a2 + b2 + c2 − 2ab− 2bc − 2ca)
∑ (a− b)2

(3a2 + b2 + c2)(3b2 + c2 + a2)
.

Since

a2 + b2 + c2 − 2ab− 2bc − 2ca = a(a− b− c) + b(b− c − a) + c(c − a− b)≤ 0,

the conclusion follows. The equality holds for an equilateral triangle, and for a
degenerate triangle with a = 0 and b = c (or any cyclic permutation).

(b) Using the same way as above, we get

2
∑ a4 − b2c2

3a4 + b4 + c4
= A

∑ (a2 − b2)2

(3a4 + b4 + c4)(3b4 + c4 + a4)
,
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where

A= a4 + b4 + c4 − 2a2 b2 − 2b2c2 − 2c2a2

= −(a+ b+ c)(a+ b− c)(b+ c − a)(c + a− b)≤ 0.

The equality holds for an equilateral triangle, and for a degenerate triangle with
a = b+ c (or any cyclic permutation).

P 1.114. If a, b, c are the lengths of the sides of a triangle, then

bc
4a2 + b2 + c2

+
ca

4b2 + c2 + a2
+

ab
4c2 + a2 + b2

≥
1
2

.

(Vasile Cîrtoaje and Vo Quoc Ba Can, 2010)

Solution. We apply the SOS method. Write the inequality as

∑

�

2bc
4a2 + b2 + c2

−
∑ b2c2

a2 b2 + b2c2 + c2a2

�

≥ 0,

∑ bc(2a2 − bc)(b− c)2

4a2 + b2 + c2
≥ 0.

Without loss of generality, assume that a ≥ b ≥ c. Then, it suffices to prove that

c(2b2 − ca)(c − a)2

4b2 + c2 + a2
+

b(2c2 − ab)(a− b)2

4c2 + a2 + b2
≥ 0.

Since
2b2 − ca ≥ c(b+ c)− ca = c(b+ c − a)≥ 0

and

(2b2 − ca) + (2c2 − ab) = 2(b2 + c2)− a(b+ c)≥ (b+ c)2 − a(b+ c)
= (b+ c)(b+ c − a)≥ 0,

it is enough to show that

c(a− c)2

4b2 + c2 + a2
≥

b(a− b)2

4c2 + a2 + b2
.

This follows by multiplying the inequalities

c2(a− c)2 ≥ b2(a− b)2

and
b

4b2 + c2 + a2
≥

c
4c2 + a2 + b2

.
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These inequalities are true, since

c(a− c)− b(a− b) = (b− c)(b+ c − a)≥ 0,

b(4c2 + a2 + b2)− c(4b2 + c2 + a2) = (b− c)[(b− c)2 + a2 − bc]≥ 0.

The equality occurs for an equilateral triangle, and for a degenerate triangle with
a = b and c = 0 (or any cyclic permutation).

P 1.115. If a, b, c are the lengths of the sides of a triangle, then

1
b2 + c2

+
1

c2 + a2
+

1
a2 + b2

≤
9

2(ab+ bc + ca)
.

(Vo Quoc Ba Can, 2008)

Solution. Apply the SOS method. Write the inequality as

∑

�

3
2
−

ab+ bc + ca
b2 + c2

�

≥ 0,

∑ 3(b2 + c2)− 2(ab+ bc + ca)
b2 + c2

≥ 0,

∑ 3b(b− a) + 3c(c − a) + c(a− b) + b(a− c)
b2 + c2

≥ 0,

∑ (a− b)(c − 3b) + (a− c)(b− 3c)
b2 + c2

≥ 0,

∑ (a− b)(c − 3b)
b2 + c2

+
∑ (b− a)(c − 3a)

c2 + a2
≥ 0,

∑

(a2 + b2)(a− b)2(ca+ cb+ 3c2 − 3ab)≥ 0.

Without loss of generality, assume that a ≥ b ≥ c. Since

ab+ ac + 3a2 − 3bc > 0,

it suffices to prove that

(a2+ b2)(a− b)2(ca+ cb+3c2−3ab)+ (a2+ c2)(a− c)2(ab+ bc+3b2−3ac)≥ 0,

or, equivalently,

(a2 + c2)(a− c)2(ab+ bc + 3b2 − 3ac)≥ (a2 + b2)(a− b)2(3ab− 3c2 − ca− cb).
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Since

ab+ bc + 3b2 − 3ac = a
�

bc + 3b2

a
+ b− 3c

�

≥ a
�

bc + 3b2

b+ c
+ b− 3c

�

=
a(b− c)(4b+ 3c)

b+ c
≥ 0

and

(ab+ bc + 3b2 − 3ac)− (3ab− 3c2 − ca− cb) = 3(b2 + c2) + 2bc − 2a(b+ c)

≥ 3(b2 + c2) + 2bc − 2(b+ c)2

= (b− c)2 ≥ 0,

it suffices to show that

(a2 + c2)(a− c)2 ≥ (a2 + b2)(a− b)2.

This is equivalent to (b− c)A≥ 0, where

A= 2a3 − 2a2(b+ c) + 2a(b2 + bc + c2)− (b+ c)(b2 + c2)

= 2a
�

a−
b+ c

2

�2

+
a(3b2 + 2bc + 3c2)

2
− (b+ c)(b2 + c2)

≥
b(3b2 + 2bc + 3c2)

2
− (b+ c)(b2 + c2)

=
(b− c)(b2 + bc + 2c2)

2
≥ 0.

The equality occurs for an equilateral triangle, and for a degenerate triangle with
a/2= b = c (or any cyclic permutation).

P 1.116. If a, b, c are the lengths of the sides of a triangle, then

(a)

�

�

�

�

a+ b
a− b

+
b+ c
b− c

+
c + a
c − a

�

�

�

�

> 5;

(b)

�

�

�

�

a2 + b2

a2 − b2
+

b2 + c2

b2 − c2
+

c2 + a2

c2 − a2

�

�

�

�

≥ 3.

(Vasile Cîrtoaje, 2003)
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Solution. Since the inequalities are symmetric, we consider

a > b > c.

(a) Let x = a− c and y = b− c. From a > b > c and a ≤ b+ c, it follows

x > y > 0, c ≥ x − y.

We have

a+ b
a− b

+
b+ c
b− c

+
c + a
c − a

=
2c + x + y

x − y
+

2c + y
y
−

2c + x
x

= 2c
�

1
x − y

+
1
y
−

1
x

�

+
x + y
x − y

>
2c
y
+

x + y
x − y

≥
2(x − y)

y
+

x + y
x − y

= 2
�

x − y
y
+

y
x − y

�

+ 1≥ 5.

(b) We will show that

a2 + b2

a2 − b2
+

b2 + c2

b2 − c2
+

c2 + a2

c2 − a2
≥ 3;

that is,
b2

a2 − b2
+

c2

b2 − c2
≥

a2

a2 − c2
.

Since
a2

a2 − c2
≤
(b+ c)2

a2 − c2
,

it suffices to prove that

b2

a2 − b2
+

c2

b2 − c2
≥
(b+ c)2

a2 − c2
.

This is equivalent to each of the following inequalities:

b2
�

1
a2 − b2

−
1

a2 − c2

�

+ c2
�

1
b2 − c2

−
1

a2 − c2

�

≥
2bc

a2 − c2
,

b2(b2 − c2)
a2 − b2

+
c2(a2 − b2)

b2 − c2
≥ 2bc,

[b(b2 − c2)− c(a2 − b2)]2 ≥ 0.

This completes the proof. If a > b > c, then the equality holds for a degenerate
triangle with a = b+ c and b/c = x1, where x1 ≈ 1.5321 is the positive root of the
equation x3 − 3x − 1= 0.
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P 1.117. If a, b, c are the lengths of the sides of a triangle, then

b+ c
a
+

c + a
b
+

a+ b
c
+ 3≥ 6

�

a
b+ c

+
b

c + a
+

c
a+ b

�

.

Solution. We apply the SOS method. Write the inequality as
∑ b+ c

a
− 6≥ 3

�

∑ 2a
b+ c

− 3
�

.

Since
∑ b+ c

a
− 6=

∑

�

b
c
+

c
b

�

− 6=
∑ (b− c)2

bc
and

∑ 2a
b+ c

− 3=
∑ 2a− b− c

b+ c
=
∑ a− b

b+ c
+
∑ a− c

b+ c

=
∑ a− b

b+ c
+
∑ b− a

c + a
=
∑ (a− b)2

(b+ c)(c + a)

=
∑ (b− c)2

(c + a)(a+ b)
,

we can rewrite the inequality as
∑

a(b+ c)(b− c)2Sa ≥ 0,

where
Sa = a(a+ b+ c)− 2bc.

Without loss of generality, assume that a ≥ b ≥ c. Since Sa > 0,

Sb = b(a+ b+ c)− 2ca = (b− c)(a+ b+ c) + c(b+ c − a)≥ 0

and
∑

a(b+ c)(b− c)2Sa ≥ b(c + a)(c − a)2Sb + c(a+ b)(a− b)2Sc

≥ (a− b)2[b(c + a)Sb + c(a+ b)Sc],

it suffices to prove that

b(c + a)Sb + c(a+ b)Sc ≥ 0.

This is equivalent to each of the following inequalities

(a+ b+ c)[a(b2 + c2) + bc(b+ c)]≥ 2abc(2a+ b+ c),

a(a+ b+ c)(b− c)2 + (a+ b+ c)[2abc + bc(b+ c)]≥ 2abc(2a+ b+ c),

a(a+ b+ c)(b− c)2 + bc(2a+ b+ c)(b+ c − a)≥ 0.

Since the last inequality is true, the proof is completed. The equality occurs for an
equilateral triangle, and for a degenerate triangle with a/2 = b = c (or any cyclic
permutation).
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P 1.118. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

∑ 3a(b+ c)− 2bc
(b+ c)(2a+ b+ c)

≥
3
2

.

(Vasile Cîrtoaje, 2009)

Solution. Use the SOS method. Write the inequality as follows:

∑

�

3a(b+ c)− 2bc
(b+ c)(2a+ b+ c)

−
1
2

�

≥ 0,

∑ 4a(b+ c)− 6bc − b2 − c2

(b+ c)(2a+ b+ c)
≥ 0,

∑ b(a− b) + c(a− c) + 3b(a− c) + 3c(a− b)
(b+ c)(2a+ b+ c)

≥ 0,

∑ (a− b)(b+ 3c) + (a− c)(c + 3b)
(b+ c)(2a+ b+ c)

≥ 0,

∑ (a− b)(b+ 3c)
(b+ c)(2a+ b+ c)

+
∑ (b− a)(a+ 3c)
(c + a)(2b+ c + a)

≥ 0,

∑

(a− b)
�

b+ 3c
(b+ c)(2a+ b+ c)

−
a+ 3c

(c + a)(2b+ c + a)

�

≥ 0,

(a− b)(b− c)(c − a)
∑

(a2 − b2)(a+ b+ 2c)≥ 0.

Since
∑

(a2 − b2)(a+ b+ 2c) = (a− b)(b− c)(c − a),

the conclusion follows. The equality holds for a = b, or b = c, or c = a.

P 1.119. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

∑ a(b+ c)− 2bc
(b+ c)(3a+ b+ c)

≥ 0.

(Vasile Cîrtoaje, 2009)

Solution. We apply the SOS method. Since

∑ a(b+ c)− 2bc
(b+ c)(3a+ b+ c)

=
∑ b(a− c) + c(a− b)
(b+ c)(3a+ b+ c)

=
∑ c(b− a)
(c + a)(3b+ c + a)

+
∑ c(a− b)
(b+ c)(3a+ b+ c)
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=
∑ c(a+ b− c)(a− b)2

(b+ c)(c + a)(3a+ b+ c)(3b+ c + a)
,

the inequality is equivalent to
∑

c(a+ b)(3c + a+ b)(a+ b− c)(a− b)2 ≥ 0.

Without loss of generality, assume that a ≥ b ≥ c. Since a+ b− c ≥ 0, it suffices to
show that

b(c + a)(3b+ c + a)(c + a− b)(a− c)2 ≥ a(b+ c)(3a+ b+ c)(a− b− c)(b− c)2.

This is true since
c + a− b ≥ a− b− c,

b2(a− c)2 ≥ a2(b− c)2,

c + a ≥ b+ c,

a(3b+ c + a)≥ b(3a+ b+ c).

The equality holds for a = b = c, and for a = b and c = 0 (or any cyclic permuta-
tion).

P 1.120. Let a, b, c be positive real numbers such that a2 + b2 + c2 ≥ 3. Prove that

a5 − a2

a5 + b2 + c2
+

b5 − b2

b5 + c2 + a2
+

c5 − c2

c5 + a2 + b2
≥ 0.

(Vasile Cîrtoaje, 2005)

Solution. The inequality is equivalent to

1
a5 + b2 + c2

+
1

b5 + c2 + a2
+

1
c5 + a2 + b2

≤
3

a2 + b2 + c2
.

Setting a = t x , b = t y and c = tz, where

x , y, z > 0, x2 + y2 + z2 = 3,

the condition a2 + b2 + c2 ≥ 3 implies t ≥ 1, and the inequality becomes

1
t3 x5 + y2 + z2

+
1

t3 y5 + z2 + x2
+

1
t3z5 + x2 + y2

≤ 1.

We see that it suffices to prove this inequality for t = 1, when it becomes

1
x5 − x2 + 3

+
1

y5 − y2 + 3
+

1
z5 − z2 + 3

≤ 1.
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Without loss of generality, assume that x ≥ y ≥ z. There are two cases to consider.

Case 1: z ≤ y ≤ x ≤
p

2. The desired inequality follows by adding the inequalities

1
x5 − x2 + 3

≤
3− x2

6
,

1
y5 − y2 + 3

≤
3− y2

6
,

1
z5 − z2 + 3

≤
3− z2

6
.

We have

1
x5 − x2 + 3

−
3− x2

6
=
(x − 1)2(x5 + 2x4 − 3x2 − 6x − 3)

6(x5 − x2 + 3)
≤ 0

since

x5 + 2x4 − 3x2 − 6x − 3= x2
�

x3 + 2x2 − 3−
6
x
−

3
x2

�

≤ x2
�

2
p

2+ 4− 3− 3
p

2−
3
2

�

= −x2(
p

2+
1
2
)< 0.

Case 2: x >
p

2. From x2 + y2 + z2 = 3, it follows that y2 + z2 < 1. Since

1
x5 − x2 + 3

<
1

(2
p

2− 1)x2 + 3
<

1

2(2
p

2− 1) + 3
<

1
6

and
1

y5 − y2 + 3
+

1
z5 − z2 + 3

<
1

3− y2
+

1
3− z2

,

it suffices to prove that
1

3− y2
+

1
3− z2

≤
5
6

.

Indeed, we have

1
3− y2

+
1

3− z2
−

5
6
=

9(y2 + z2 − 1)− 5y2z2

6(3− y2)(3− z2)
< 0,

which completes the proof. The equality occurs for a = b = c = 1.

Remark. Since abc ≥ 1 involves a2+ b2+ c2 ≥ 3
3pa2 b2c2 ≥ 3, the inequality is also

true under the condition abc ≥ 1. A proof of this inequality (which is a problem
from IMO-2005 - proposed by Hojoo Lee) is the following:

∑ a5 − a2

a5 + b2 + c2
≥
∑ a5 − a2

a5 + a3(b2 + c2)
=

1
a2 + b2 + c2

∑

�

a2 −
1
a

�

,

∑

�

a2 −
1
a

�

≥
∑

(a2 − bc) =
1
2

∑

(a− b)2 ≥ 0.
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P 1.121. Let a, b, c be positive real numbers such that a2 + b2 + c2 = a3 + b3 + c3.
Prove that

a2

b+ c
+

b2

c + a
+

c2

a+ b
≥

3
2

.

(Pham Huu Duc, 2008)

First Solution. By the Cauchy-Schwarz inequality, we have

∑ a2

b+ c
≥

�∑

a3
�2

∑

a4(b+ c)
=

�∑

a3
� �∑

a2
�

�∑

a3
� �∑

ab
�

− abc
∑

a2
.

Therefore, it is enough to show that

2
�∑

a3
��∑

a2
�

+ 3abc
∑

a2 ≥ 3
�∑

a3
��∑

ab
�

.

Write this inequality as follows:

3
�∑

a3
��∑

a2 −
∑

ab
�

−
�∑

a3 − 3abc
��∑

a2
�

≥ 0,

3
�∑

a3
��∑

a2 −
∑

ab
�

−
�∑

a
��∑

a2 −
∑

ab
��∑

a2
�

≥ 0,
�∑

a2 −
∑

ab
��

3
∑

a3 −
�∑

a
��∑

a2
��

≥ 0.

The last inequality is true since

2
�∑

a2 −
∑

ab
�

=
∑

(a− b)2 ≥ 0

and

3
∑

a3 −
�∑

a
��∑

a2
�

=
∑

(a3 + b3)−
∑

ab(a+ b)

=
∑

(a+ b)(a− b)2 ≥ 0.

The equality occurs for a = b = c = 1.

Second Solution. Write the inequality in the homogeneous form A≥ B, where

A= 2
∑ a2

b+ c
−
∑

a, B =
3(a3 + b3 + c3)

a2 + b2 + c2
−
∑

a.

Since

A=
∑ a(a− b) + a(a− c)

b+ c
=
∑ a(a− b)

b+ c
+
∑ b(b− a)

c + a

= (a+ b+ c)
∑ (a− b)2

(b+ c)(c + a)
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and

B =

∑

(a3 + b3)−
∑

ab(a+ b)
a2 + b2 + c2

=

∑

(a+ b)(a− b)2

a2 + b2 + c2
,

we can write the inequality as

∑

�

a+ b+ c
(b+ c)(c + a)

−
a+ b

a2 + b2 + c2

�

(a− b)2 ≥ 0,

(a3 + b3 + c3 − 2abc)
∑ (a− b)2

(b+ c)(c + a)
≥ 0.

Since a3 + b3 + c3 ≥ 3abc, the conclusion follows.

P 1.122. If a, b, c ∈ [0, 1], then

a
bc + 2

+
b

ca+ 2
+

c
ab+ 2

≤ 1.

(Vasile Cîrtoaje, 2010)

Solution. (a) First Solution. It suffices to show that

a
abc + 2

+
b

abc + 2
+

c
abc + 2

≤ 1,

which is equivalent to
abc + 2≥ a+ b+ c.

We have

abc + 2− a− b− c = (1− b)(1− c) + (1− a)(1− bc)≥ 0.

The equality holds for a = b = c = 1, and for a = 0 and b = c = 1 (or any cyclic
permutation).

Second Solution. Assume that a =max{a, b, c}. It suffices to show that

a
bc + 2

+
b

bc + 2
+

c
bc + 2

≤ 1.

that is,
a+ b+ c)≤ 2+ bc.

We have
2+ bc − a− b− c) = 1− a+ (1− b)(1− c)≥ 0.
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P 1.123. Let a, b, c be positive real numbers such that a+ b+ c = 2. Prove that

5(1− ab− bc − ca)
�

1
1− ab

+
1

1− bc
+

1
1− ca

�

+ 9≥ 0.

(Vasile Cîrtoaje, 2011)

Solution. Write the inequality as

24−
5a(b+ c)

1− bc
−

5b(c + a)
1− ca

−
5c(a+ b)

1− ab
≥ 0.

Since

4(1− bc)≥ 4− (b+ c)2 = (a+ b+ c)2 − (b+ c)2 = a(a+ 2b+ 2c),

it suffices to show that

6− 5
�

b+ c
a+ 2b+ 2c

−
c + a

b+ 2c + 2a
−

a+ b
c + 2a+ 2b

�

≥ 0,

which is equivalent to
∑

5
�

1−
b+ c

a+ 2b+ 2c

�

≥ 9,

5(a+ b+ c)
∑ 1

a+ 2b+ 2c
≥ 9,

�∑

(a+ 2b+ 2c)
�

�

∑ 1
a+ 2b+ 2c

�

≥ 9.

The last inequality follows immediately from the AM-HM inequality. The equality
holds for a = b = c = 2/3.

P 1.124. Let a, b, c be nonnegative real numbers such that a+ b+ c = 2. Prove that

2− a2

2− bc
+

2− b2

2− ca
+

2− c2

2− ab
≤ 3.

(Vasile Cîrtoaje, 2011)

First Solution. Write the inequality as follows:

∑

�

1−
2− a2

2− bc

�

≥ 0,

∑ a2 − bc
2− bc

≥ 0,
∑

(a2 − bc)(2− ca)(2− ab)≥ 0,



166 Vasile Cîrtoaje

∑

(a2 − bc)[4− 2a(b+ c) + a2 bc]≥ 0,

4
∑

(a2 − bc)− 2
∑

a(b+ c)(a2 − bc) + abc
∑

a(a2 − bc)≥ 0.

By virtue of the AM-GM inequality,
∑

a(a2 − bc) = a3 + b3 + c3 − 3abc ≥ 0.

Then, it suffices to prove that

2
∑

(a2 − bc)≥
∑

a(b+ c)(a2 − bc).

Indeed, we have
∑

a(b+ c)(a2 − bc) =
∑

a3(b+ c)− abc
∑

(b+ c)

=
∑

a(b3 + c3)− abc
∑

(b+ c) =
∑

a(b+ c)(b− c)2

≤
∑

�

a+ (b+ c)
2

�2

(b− c)2 =
∑

(b− c)2 = 2
∑

(a2 − bc).

The equality holds for a = b = c = 2/3, and for a = 0 and b = c = 1 (or any cyclic
permutation).

Second Solution. We apply the SOS method. Write the inequality as follows:

∑ a2 − bc
2− bc

≥ 0,

∑ (a− b)(a+ c) + (a− c)(a+ b)
2− bc

≥ 0,

∑ (a− b)(a+ c)
2− bc

+
∑ (b− a)(b+ c)

2− ca
≥ 0,

∑ (a− b)2[2− c(a+ b)− c2]
(2− bc)(2− ca)

≥ 0,

∑

(a− b)2(2− ab)(1− c)≥ 0.

Assuming that a ≥ b ≥ c, it suffices to prove that

(b− c)2(2− bc)(1− a) + (c − a)2(2− ca)(1− b)≥ 0.

Since
2(1− b) = a− b+ c ≥ 0, (c − a)2 ≥ (b− c)2,

it suffices to show that

(2− bc)(1− a) + (2− ca)(1− b)≥ 0.
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We have

(2− bc)(1− a) + (2− ca)(1− b) = 4− 2(a+ b)− c(a+ b) + 2abc

≥ 4− (a+ b)(2+ c)≥ 4−
�

(a+ b) + (2+ c)
2

�2

= 0.

P 1.125. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

3+ 5a2

3− bc
+

3+ 5b2

3− ca
+

3+ 5c2

3− ab
≥ 12.

(Vasile Cîrtoaje, 2010)

Solution. Use the SOS method. Write the inequality as follows:

∑

�

3+ 5a2

3− bc
− 4

�

≥ 0,

∑ 5a2 + 4bc − 9
3− bc

≥ 0,

∑ 5a2 + 4bc − (a+ b+ c)2

3− bc
≥ 0,

∑ 4a2 − b2 − c2 − 2ab+ 2bc − 2ca
3− bc

≥ 0,

∑ 2a2 − b2 − c2 + 2(a− b)(a− c)
3− bc

≥ 0,

∑ (a− b)(a+ b) + (a− c)(a+ c) + 2(a− b)(a− c)
3− bc

≥ 0,

∑ [(a− b)(a+ b) + (a− b)(a− c)] + [(a− c)(a+ c) + (a− c)(a− b)]
3− bc

≥ 0,

∑ (a− b)(2a+ b− c) + (a− c)(2a+ c − b)
3− bc

≥ 0,

∑ (a− b)(2a+ b− c)
3− bc

+
∑ (b− a)(2b+ a− c)

3− ca
≥ 0,

∑ (a− b)2[3− 2c(a+ b) + c2]
(3− bc)(3− ca)

≥ 0,

∑ (a− b)2(c − 1)2

(3− bc)(3− ca)
≥ 0.

The equality holds for a = b = c = 1.
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P 1.126. Let a, b, c be nonnegative real numbers such that a+ b+ c = 2. If

−1
7
≤ m≤

7
8

,

then
a2 +m
3− 2bc

+
b2 +m
3− 2ca

+
c2 +m

3− 2ab
≥

3(4+ 9m)
19

.

(Vasile Cîrtoaje, 2010)

Solution. We apply the SOS method. Write the inequality as

∑

�

a2 +m
3− 2bc

−
4+ 9m

19

�

≥ 0,

∑ 19a2 + 2(4+ 9m)bc − 12− 8m
3− 2bc

≥ 0.

Since
19a2 + 2(4+ 9m)bc − 12− 8m=

= 19a2 + 2(4+ 9m)bc − (3+ 2m)(a+ b+ c)2

= (16− 2m)a2 − (3+ 2m)(b2 + c2 + 2ab+ 2ac) + 2(1+ 7m)bc

= (3+2m)(2a2− b2− c2)+2(5−3m)(a2+ bc−ab−ac)+(4−10m)(ab+ac−2bc)

= (3+ 2m)(a2 − b2) + (5− 3m)(a− b)(a− c) + (4− 10m)c(a− b)

+(3+ 2m)(a2 − c2) + (5− 3m)(a− c)(a− b) + (4− 10m)b(a− c)

= (a− b)B + (a− c)C ,

where
B = (8−m)a+ (3+ 2m)b− (1+ 7m)c,

C = (8−m)a+ (3+ 2m)c − (1+ 7m)b,

the inequality can be written as

B1 + C1 ≥ 0,

where

B1 =
∑ (a− b)[(8−m)a+ (3+ 2m)b− (1+ 7m)c]

3− 2bc
,

C1 =
∑ (b− a)[(8−m)b+ (3+ 2m)a− (1+ 7m)c]

3− 2ca
.

We have

B1 + C1 =
∑ (a− b)2Sc

(3− 2bc)(3− 2ca)
,
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where

Sc =3(5− 3m)− 2(8−m)c(a+ b) + 2(1+ 7m)c2

=6(2m+ 3)c2 − 4(8−m)c + 3(5− 3m)

=6(2m+ 3)
�

c −
8−m

3(2m+ 3)

�2

+
(1+ 7m)(7− 8m)

3(2m+ 3)
.

Since Sc ≥ 0 for −1/7 ≤ m ≤ 7/8, the proof is completed. The equality holds for
a = b = c = 2/3. If m= −1/7, then the equality holds also for a = 0 and b = c = 1
(or any cyclic permutation). If m= 7/8, then the equality holds also for a = 1 and
b = c = 1/2 (or any cyclic permutation).

Remark. The following more general statement holds:

• Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. If

0< k ≤ 3, m1 ≤ m≤ m2,

where

m1 =















−∞, 0< k ≤
3
2

(3− k)(4− k)
2(3− 2k)

,
3
2
< k ≤ 3

,

m2 =
36− 4k− k2 + 4(9− k)

p

3(3− k)
72+ k

,

then
a2 +mbc
9− kbc

+
b2 +mca
9− kca

+
c2 +mab
9− kab

≥
3(1+m)

9− k
,

with equality for a = b = c = 1. If 3/2< k ≤ 3 and m= m1, then the equality holds
also for

a = 0, b = c =
3
2

.

If m= m2, then the equality holds also for

a =
3k− 6+ 2

p

3(3− k)
k

, b = c =
3−

p

3(3− k)
k

.

The inequalities in P 1.124, P 1.125 and P 1.126 are particular cases of this
result (for k = 2 and m= m1 = −1, for k = 3 and m= m2 = 1/5, and for k = 8/3,
respectively).
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P 1.127. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

47− 7a2

1+ bc
+

47− 7b2

1+ ca
+

47− 7c2

1+ ab
≥ 60.

(Vasile Cîrtoaje, 2011)

Solution. We apply the SOS method. Write the inequality as follows:

∑

�

47− 7a2

1+ bc
− 20

�

≥ 0,

∑ 27− 7a2 − 20bc
1+ bc

≥ 0,

∑ 3(a+ b+ c)2 − 7a2 − 20bc
1+ bc

≥ 0,

∑ −3(2a2 − b2 − c2) + 2(a− b)(a− c) + 8(ab− 2bc + ca)
1+ bc

≥ 0,

∑ −3(a− b)(a+ b) + (a− b)(a− c) + 8c(a− b)
1+ bc

+

+
∑ −3(a− c)(a+ c) + (a− c)(a− b) + 8b(a− c)

1+ bc
≥ 0,

∑ (a− b)(−2a− 3b+ 7c)
1+ bc

+
∑ (a− c)(−2a− 3c + 7b)

1+ bc
≥ 0,

∑ (a− b)(−2a− 3b+ 7c)
1+ bc

+
∑ (b− a)(−2b− 3a+ 7c)

1+ ca
≥ 0,

∑ (a− b)2[1− 2c(a+ b) + 7c2]
(1+ bc)(1+ ca)

≥ 0,

∑ (a− b)2(3c − 1)2

(1+ bc)(1+ ca)
≥ 0,

The equality holds for a = b = c = 1, and for a = 7/3 and b = c = 1/3 (or any
cyclic permutation).

Remark. The following more general statement holds:

• Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. If

k > 0, m≥ m1,

where

m1 =















36+ 4k− k2 + 4(9+ k)
p

3(3+ k)
72− k

, k 6= 72

238
5

, k = 72
,
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then
a2 +mbc
9+ kbc

+
b2 +mca
9+ kca

+
c2 +mab
9+ kab

≤
3(1+m)

9+ k
,

with equality for a = b = c = 1. If m= m1, then the equality holds also for

a =
3k+ 6− 2

p

3(3+ k)
k

, b = c =

p

3(3+ k)− 3
k

.

The inequality in P 1.127 is a particular case of this result (for k = 9 and m =
m1 = 47/7).

P 1.128. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

26− 7a2

1+ bc
+

26− 7b2

1+ ca
+

26− 7c2

1+ ab
≤

57
2

.

(Vasile Cîrtoaje, 2011)

Solution. Use the SOS method. Write the inequality as follows:

∑

�

19
2
−

26− 7a2

1+ bc

�

≥ 0,

∑ 14a2 + 19bc − 33
1+ bc

≥ 0,

∑ 42a2 + 57bc − 11(a+ b+ c)2

1+ bc
≥ 0,

∑ 11(2a2 − b2 − c2) + 9(a− b)(a− c)− 13(ab− 2bc + ca)
1+ bc

≥ 0,

∑ 22(a− b)(a+ b) + 9(a− b)(a− c)− 26c(a− b)
1+ bc

+

+
∑ 22(a− c)(a+ c) + 9(a− c)(a− b)− 26b(a− c)

1+ bc
≥ 0,

∑ (a− b)(31a+ 22b− 35c)
1+ bc

+
∑ (a− c)(31a+ 22c − 35b)

1+ bc
≥ 0,

∑ (a− b)(31a+ 22b− 35c)
1+ bc

+
∑ (b− a)(31b+ 22a− 35c)

1+ ca
≥ 0,

∑ (a− b)2[9+ 31c(a+ b)− 35c2]
(1+ bc)(1+ ca)

≥ 0,

∑

(a− b)2(1+ ab)(1+ 11c)(3− 2c)≥ 0.
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Assume that a ≥ b ≥ c. Since 3− 2c > 0, it suffices to show that

(b− c)2(1+ bc)(1+ 11a)(3− 2a) + (c − a)2(1+ ab)(1+ 11b)(3− 2b)≥ 0;

that is,

(a− c)2(1+ ab)(1+ 11b)(3− 2b)≥ (b− c)2(1+ bc)(1+ 11a)(2a− 3).

Since 3− 2b = a− b+ c ≥ 0, we get this inequality by multiplying the inequalities

3− 2b ≥ 2a− 3,

a(1+ ab)≥ b(1+ bc),

a(1+ 11b)≥ b(1+ 11a),

b2(a− c)2 ≥ a2(b− c)2.

The equality holds for a = b = c = 1, and for a = b = 3/2 and c = 0 (or any cyclic
permutation).

Remark. The following more general statement holds:

• Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. If

k > 0, m≤ m2, m2 =
(3+ k)(4+ k)

2(3+ 2k)
,

then
a2 +mbc
9+ kbc

+
b2 +mca
9+ kca

+
c2 +mab
9+ kab

≥
3(1+m)

9+ k
,

with equality for a = b = c = 1. When m= m2, the equality holds also for a = 0 and
b = c = 3/2 (or any cyclic permutation).

The inequalities in P 1.128 is a particular cases of this result (for k = 9 and
m= m2 = 26/7).

P 1.129. If a, b, c are nonnegative real numbers, then

∑ 5a(b+ c)− 6bc
a2 + b2 + c2 + bc

≤ 3.

(Vasile Cîrtoaje, 2010)
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First Solution. Apply the SOS method. If two of a, b, c are zero, then the inequality
is trivial. Consider further that

a2 + b2 + c2 = 1, a ≥ b ≥ c, b > 0,

and write the inequality as follows:

∑

�

1−
5a(b+ c)− 6bc
a2 + b2 + c2 + bc

�

≥ 0,

∑ a2 + b2 + c2 − 5a(b+ c) + 7bc
a2 + b2 + c2 + bc

≥ 0,

∑ (7b+ 2c − a)(c − a)− (7c + 2b− a)(a− b)
1+ bc

≥ 0,

∑ (7c + 2a− b)(a− b)
1+ ca

−
∑ (7c + 2b− a)(a− b)

1+ bc
≥ 0,

∑

(a− b)2(1+ ab)(3+ ac + bc − 7c2)≥ 0.

Since
3+ ac + bc − 7c2 = 3a2 + 3b2 + ac + bc − 4c2 > 0,

it suffices to prove that

(1+ bc)(3+ ab+ ac − 7a2)(b− c)2 + (1+ ac)(3+ ab+ bc − 7b2)(a− c)2 ≥ 0.

Since
3+ ab+ ac − 7b2 = 3(a2 − b2) + 3c2 + b(a− b) + bc ≥ 0

and 1+ ac ≥ 1+ bc, it is enough to show that

(3+ ab+ ac − 7a2)(b− c)2 + (3+ ab+ bc − 7b2)(a− c)2 ≥ 0.

From b(a− c)≥ a(b− c)≥ 0, we get b2(a− c)2 ≥ a2(b− c)2, hence

b(a− c)2 ≥ a(b− c)2.

Thus, it suffices to show that

b(3+ ab+ ac − 7a2) + a(3+ ab+ bc − 7b2)≥ 0.

This is true if
b(3+ ab− 7a2) + a(3+ ab− 7b2)≥ 0.

Indeed,

b(3+ ab− 7a2) + a(3+ ab− 7b2) = 3(a+ b)(1− 2ab)≥ 0,

since
1− 2ab = (a− b)2 + c2 ≥ 0.
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The equality holds for a = b = c, and for a = b and c = 0 (or any cyclic permuta-
tion).

Second Solution. Without loss of generality, assume that a2 + b2 + c2 = 1 and
a ≤ b ≤ c. Setting

p = a+ b+ c, q = ab+ bc + ca, r = abc,

the inequality becomes
∑ 5q− 11bc

1+ bc
≤ 3,

3
∏

(1+ bc) +
∑

(11bc − 5q)(1+ ca)(1+ ab)≥ 0,

3(1+ q+ pr + r2) + 11(q+ 2pr + 3r2)− 5q(3+ 2q+ pr)≥ 0,

36r2 + 5(5− q)pr + 3− q− 10q2 ≥ 0.

According to P 3.57-(a) in Volume 1, for fixed p and q, the product r = abc is
minimum when b = c or a = 0. Therefore, since 5− q ≥ 4 > 0, it suffices to prove
the original homogeneous inequality for a = 0, and for b = c = 1. For a = 0, the
original inequality becomes

−6bc
b2 + c2 + bc

+
10bc

b2 + c2
≤ 3,

(b− c)2(3b2 + 5bc + 3b2)≥ 0,

while for b = c = 1, the original inequality becomes

10a− 6
a2 + 3

+ 2
5− a

a2 + a+ 2
≤ 3,

which is equivalent to
a(3a+ 1)(a− 1)2 ≥ 0.

Remark. Similarly, we can prove the following generalization:

• Let a, b, c be nonnegative real numbers. If k > 0, then

∑ (2k+ 3)a(b+ c) + (k+ 2)(k− 3)bc
a2 + b2 + c2 + kbc

≤ 3k,

with equality for a = b = c, and for a = 0 and b = c (or any cyclic permutation).
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P 1.130. Let a, b, c be nonnegative real numbers, no two of which are zero, and let

x =
a2 + b2 + c2

ab+ bc + ca
.

Prove that

(a)
a

b+ c
+

b
c + a

+
c

a+ b
+

1
2
≥ x +

1
x

;

(b) 6
�

a
b+ c

+
b

c + a
+

c
a+ b

�

≥ 5x +
4
x

;

(c)
a

b+ c
+

b
c + a

+
c

a+ b
−

3
2
≥

1
3

�

x −
1
x

�

.

(Vasile Cîrtoaje, 2011)

Solution. We will prove the more general inequality

2a
b+ c

+
2b

c + a
+

2c
a+ b

+ 1− 3k ≥ (2− k)x +
2(1− k)

x
,

where

0≤ k ≤ k0, k0 =
21+ 6

p
6

25
≈ 1.428.

For k = 0, k = 1/3 and k = 4/3, we get the inequalities in (a), (b) and (c),
respectively. Let p = a+ b+ c and q = ab+ bc+ ca. Since x = (p2−2q)/q, we can
write the inequality as follows:

a
b+ c

+
b

c + a
+

c
a+ b

≥ f (p, q),

∑
� a

b+ c
+ 1

�

≥ 3+ f (p, q),

p(p2 + q)
pq− abc

≥ 3+ f (p, q).

According to P 3.57-(a) in Volume 1, for fixed p and q, the product abc is minimum
when b = c or a = 0. Therefore, it suffices to prove the inequality for a = 0, and for
b = c = 1. For a = 0, using the substitution y = b/c + c/b, the desired inequality
becomes

2y + 1− 3k ≥ (2− k)y +
2(1− k)

y
,

(y − 2)[k(y − 1) + 1]
y

≥ 0.
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Since y ≥ 2, this inequality is clearly true. For b = c = 1, the desired inequality
becomes

a+
4

a+ 1
+ 1− 3k ≥

(2− k)(a2 + 2)
2a+ 1

+
2(1− k)(2a+ 1)

a2 + 2
,

which is equivalent to

a(a− 1)2[ka2 + 3(1− k)a+ 6− 4k]≥ 0.

For 0≤ k ≤ 1, this is obvious, and for 1< k ≤ (21+ 6
p

6)/25, we have

ka2 + 3(1− k)a+ 6− 4k ≥ [2
Æ

k(6− 4k) + 3(1− k)]a ≥ 0.

The equality holds for a = b = c, and for a = 0 and b = c (or any cyclic permuta-
tion). If k = k0, then the equality holds also for (2+

p
6)a = 2b = 2c (or any cyclic

permutation).

P 1.131. If a, b, c are real numbers, then

1
a2 + 7(b2 + c2)

+
1

b2 + 7(c2 + a2)
+

1
c2 + 7(a2 + b2)

≤
9

5(a+ b+ c)2
.

(Vasile Cîrtoaje, 2008)

Solution. We use the highest coefficient method. Let

p = a+ b+ c, q = ab+ bc + ca.

Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) = 9
∏

(a2 + 7b2 + 7c2)− 5p2
∑

(b2 + 7c2 + 7a2)(c2 + 7a2 + 7b2).

Since
∏

(a2 + 7b2 + 7c2) =
∏

[7(p2 − 2q)− 6a2],

f6(a, b, c) has the highest coefficient

A= 9(−6)3 < 0.

According to P 2.75 in Volume 1, it suffices to prove the original inequality for
b = c = 1, when the inequality reduces to

1
a2 + 14

+
2

7a2 + 8
≤

9
5(a+ 2)2

,

(a− 1)2(a− 4)2 ≥ 0.

Thus, the proof is completed. The equality holds for a = b = c, and for a/4= b = c
(or any cyclic permutation).
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P 1.132. If a, b, c are real numbers, then

bc
3a2 + b2 + c2

+
ca

3b2 + c2 + a2
+

ab
3c2 + a2 + b2

≤
3
5

.

(Vasile Cîrtoaje and Pham Kim Hung, 2005)

Solution. Use the highest coefficient method. Write the inequality as f6(a, b, c)≥ 0,
where

f6(a, b, c) = 3
∏

(3a2 + b2 + c2)− 5
∑

bc(3b2 + c2 + a2)(3c2 + a2 + b2).

Let
p = a+ b+ c, q = ab+ bc + ca.

From

f6(a, b, c) = 3
∏

(2a2 + p2 − 2q)− 5
∑

bc(2b2 + p2 − 2q)(2c2 + p2 − 2q),

it follows that f6(a, b, c) has the same highest coefficient A as

24a2 b2c2 − 20
∑

b3c3;

that is,
A= 24− 60< 0.

According to P 2.75 in Volume 1, it suffices to prove the original inequality for
b = c = 1, when the inequality is equivalent to

1
3a2 + 2

+
2a

a2 + 4
≤

3
5

,

(a− 1)2(3a− 2)2 ≥ 0.

Thus, the proof is completed. The equality holds for a = b = c, and for 3a/2= b =
c (or any cyclic permutation).

Remark. The inequality in P 1.132 is a particular case (k = 3) of the following
more general result (Vasile Cîrtoaje, 2008):

• Let a, b, c be real numbers. If k > 1, then

∑ k(k− 3)a2 + 2(k− 1)bc
ka2 + b2 + c2

≤
3(k+ 1)(k− 2)

k+ 2
,

with equality for a = b = c, and for ka/2= b = c (or any cyclic permutation).
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P 1.133. If a, b, c are real numbers such that a+ b+ c = 3, then

1
8+ 5(b2 + c2)

+
1

8+ 5(c2 + a2)
+

1
8+ 5(a2 + b2)

≤
1
6

.

(Vasile Cîrtoaje, 2006)

Solution. Use the highest coefficient method. Denote

p = a+ b+ c, q = ab+ bc + ca,

and write the inequality in the homogeneous form

1
8p2 + 45(b2 + c2)

+
1

8p2 + 45(c2 + a2)
+

1
8p2 + 45(a2 + b2)

≤
1

6p2
,

which is equivalent to f6(a, b, c)≥ 0, where

f6(a, b, c) =
∏

(53p2 − 90q− 45a2)

− 6p2
∑

(53p2 − 90q− 45b2)(53p2 − 90q− 45c2).

Clearly, f6(a, b, c) has the highest coefficient

A= (−45)3 < 0.

According to P 2.75 in Volume 1, it suffices to prove the homogeneous inequality
for b = c = 1; that is,

1
8(a+ 2)2 + 90

+
2

8(a+ 2)2 + 45(1+ a2)
≤

1
6(a+ 2)2

.

Using the substitution
a+ 2= 3x ,

the inequality becomes as follows:

1
72x2 + 90

+
2

72x2 + 45+ 45(3x − 2)2)
≤

1
54x2

,

1
8x2 + 10

+
2

53x2 − 60x + 25
≤

1
6x2

,

x4 − 12x3 + 46x2 − 60x + 25≥ 0,

(x − 1)2(x − 5)2 ≥ 0,

(a− 1)2(a− 13)2 ≥ 0.

The equality holds for a = b = c = 1, and for a = 13/5 and b = c = 1/5 (or any
cyclic permutation).
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P 1.134. If a, b, c are real numbers, then

(a+ b)(a+ c)
a2 + 4(b2 + c2)

+
(b+ c)(b+ a)
b2 + 4(c2 + a2)

+
(c + a)(c + b)
c2 + 4(a2 + b2)

≤
4
3

.

(Vasile Cîrtoaje, 2008)

Solution. Use the highest coefficient method. Let

p = a+ b+ c, q = ab+ bc + ca.

Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) = 4
∏

(a2 + 4b2 + 4c2)

−3
∑

(a+ b)(a+ c)(b2 + 4c2 + 4a2)(c2 + 4a2 + 4b2)

= 4
∏

(4p2 − 8q− 3a2)− 3
∑

(a2 + q)(4p2 − 8q− 3b2)(4p2 − 8q− 3c2).

Thus, f6(a, b, c) has the highest coefficient

A= 4(−3)3 − 34 < 0.

By P 2.75 in Volume 1, it suffices to prove the original inequality for b = c = 1,
when the inequality is equivalent to

(a+ 1)2

a2 + 8
+

4(a+ 1)
4a2 + 5

≤
4
3

,

(a− 1)2(2a− 7)2 ≥ 0.

The equality holds for a = b = c, and for 2a/7= b = c (or any cyclic permutation).

P 1.135. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

∑ 1
(b+ c)(7a+ b+ c)

≤
1

2(ab+ bc + ca)
.

(Vasile Cîrtoaje, 2009)

First Solution. Write the inequality as

∑

�

1−
4(ab+ bc + ca)
(b+ c)(7a+ b+ c)

�

≥ 1,

∑ (b− c)2 + 3a(b+ c)
(b+ c)(7a+ b+ c)

≥ 1.
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By the Cauchy-Schwarz inequality, we have

∑ (b− c)2 + 3a(b+ c)
(b+ c)(7a+ b+ c)

≥
4(a+ b+ c)4

∑

[(b− c)2 + 3a(b+ c)](b+ c)(7a+ b+ c)
.

Therefore, it suffices to show that

4(a+ b+ c)4 ≥
∑

(b2 + c2 − 2bc + 3ca+ 3ab)(b+ c)(7a+ b+ c).

Write this inequality as
∑

a4 + abc
∑

a+ 3
∑

ab(a2 + b2)− 8
∑

a2 b2 ≥ 0,

∑

a4 + abc
∑

a−
∑

ab(a2 + b2) + 4
∑

ab(a− b)2 ≥ 0.

Since
∑

a4 + abc
∑

a−
∑

ab(a2 + b2)≥ 0

(Schur’s inequality of degree four), the conclusion follows. The equality holds for
a = b = c, and also for a = 0 and b = c (or any cyclic permutation).

Second Solution. Use the highest coefficient method. We need to prove that f6(a, b, c)≥
0, where

f6(a, b, c) =
∏

(b+ c)(7a+ b+ c)

−2(ab+ bc + ca)
∑

(a+ b)(a+ c)(7b+ c + a)(7c + a+ b).

Let p = a+ b+ c. Clearly, f6(a, b, c) has the same highest coefficient A as f (a, b, c),
where

f (a, b, c) =
∏

(b+ c)(7a+ b+ c) =
∏

(p− a)(p+ 6a);

that is,
A= (−6)3 < 0.

Thus, by P 3.76-(a) in Volume 1, it suffices to prove the original inequality for
b = c = 1, and for a = 0.

For b = c = 1, the inequality reduces to

1
2(7a+ 2)

+
2

(a+ 1)(a+ 8)
≤

1
2(2a+ 1)

,

a(a− 1)2 ≥ 0.

For a = 0, the inequality can be written as

1
(b+ c)2

+
1

c(7b+ c)
+

1
b(7c + b)

≤
1

2bc
,

1
(b+ c)2

+
b2 + c2 + 14bc

bc[7(b2 + c2) + 50bc]
≤

1
2bc

,
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1
x + 2

+
x + 14

7x + 50
≤

1
2

,

where

x =
b
c
+

c
b

, x ≥ 2.

This reduces to the obvious inequality

(x − 2)(5x + 28)≥ 0.

P 1.136. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

∑ 1
b2 + c2 + 4a(b+ c)

≤
9

10(ab+ bc + ca)
.

(Vasile Cîrtoaje, 2009)

Solution. Use the highest coefficient method. Let

p = a+ b+ c, q = ab+ bc + ca.

We need to prove that f6(a, b, c)≥ 0, where

f6(a, b, c) = 9
∏

[b2 + c2 + 4a(b+ c)]

−10(ab+ bc + ca)
∑

[a2 + b2 + 4c(a+ b)][a2 + c2 + 4b(a+ c)]

= 9
∏

(p2 + 2q− a2 − 4bc)− 10q
∑

(p2 + 2q− c2 − 4ab)(p2 + 2q− b2 − 4ca).

Clearly, f6(a, b, c) has the same highest coefficient A as P3(a, b, c), where

P3(a, b, c) = −9
∏

(a2 + 4bc).

According to Remark 2 from the proof of P 2.75 in Volume 1,

A= P3(1,1, 1) = −9 · 125< 0.

Thus, by P 3.76-(a) in Volume 1, it suffices to prove the original inequality for
b = c = 1, and for a = 0.

For b = c = 1, the inequality reduces to

1
2(4a+ 1)

+
2

a2 + 4a+ 5
≤

9
10(2a+ 1)

,

a(a− 1)2 ≥ 0.
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For a = 0, the inequality becomes

1
b2 + c2

+
1

b2 + 4bc
+

1
c2 + 4bc

≤
9

10bc
,

1
b2 + c2

+
b2 + c2 + 8bc

4bc(b2 + c2) + 17b2c2
≤

9
10bc

.

1
x
+

x + 8
4x + 17

≤
9

10
,

(x − 2)(26x + 85)≥ 0,

where

x =
b
c
+

c
b

, x ≥ 2.

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic
permutation).

P 1.137. Let a, b, c be nonnegative real numbers, no two of which are zero. If a+ b+
c = 3, then

1
3− ab

+
1

3− bc
+

1
3− ca

≤
9

2(ab+ bc + ca)
.

(Vasile Cîrtoaje, 2011)

First Solution. We apply the SOS method. Write the inequality as

∑

�

3
2
−

ab+ bc + ca
3− bc

�

≥ 0.

∑ 9− 2a(b+ c)− 5bc
3− bc

≥ 0,

∑ a2 + b2 + c2 − 3bc
3− bc

≥ 0.

Since

2(a2 + b2 + c2 − 3bc) = 2(a2 − bc) + 2(b2 + c2 − ab− ac) + 2(ab+ ac − 2bc)

= (a− b)(a+ c) + (a− c)(a+ b)− 2b(a− b)− 2c(a− c) + 2c(a− b) + 2b(a− c)

= (a− b)(a− 2b+ 3c) + (a− c)(a− 2c + 3b),

the required inequality is equivalent to

∑ (a− b)(a− 2b+ 3c) + (a− c)(a− 2c + 3b)
3− bc

≥ 0,
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∑ (a− b)(a− 2b+ 3c)
3− bc

+
∑ (b− a)(b− 2a+ 3c)

3− ca
≥ 0,

∑ (a− b)2[9− c(a+ b+ 3c)]
(3− bc)(3− ca)

≥ 0,

∑

(a− b)2(3− ab)(3+ c)(3− 2c)≥ 0.

Without loss of generality, assume that a ≥ b ≥ c. It suffices to prove that

(b− c)2(3− bc)(3+ a)(3− 2a) + (c − a)2(3− ca)(3+ b)(3− 2b)≥ 0,

which is equivalent to

(a− c)2(3− ac)(3+ b)(3− 2b)≥ (b− c)2(3− bc)(a+ 3)(2a− 3).

Since 3 − 2b = a − b + c ≥ 0, we can obtain this inequality by multiplying the
inequalities

b2(a− c)2 ≥ a2(b− c)2,

a(3− ac)≥ b(3− bc),

a(3+ b)(3− 2b)≥ b(a+ 3)(2a− 3)≥ 0.

We have

a(3− ac)− b(3− bc) = (a− b)[3− c(a+ b)] = (a− b)(3− 3c + c2)
≥ (a− b)(3− 3c)≥ 0.

Also, since a+ b ≤ a+ b+ c = 3, we have

a(3+ b)(3− 2b)− b(a+ 3)(2a− 3) = 9(a+ b)− 6ab− 2ab(a+ b)

≥ 9(a+ b)− 12ab ≥ 3(a+ b)2 − 12ab = 3(a− b)2 ≥ 0.

The equality holds for a = b = c = 1, and for a = 0 and b = c = 3/2 (or any cyclic
permutation).

Second Solution. Write the inequality in the homogeneous form

1
p2 − 3ab

+
1

p2 − 3bc
+

1
p2 − 3ca

≤
3
2q

,

where
p = a+ b+ c, q = ab+ bc + ca.

We need to prove that f6(a, b, c)≥ 0, where

f6(a, b, c) = 3
∏

(p2 − 3bc)− 2q
∑

(p2 − 3ca)(p2 − 3ab).

Clearly, f6(a, b, c) has the highest coefficient

A= 3(−3)3 < 0.
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Thus, by P 3.76-(a) in Volume 1, it suffices to prove the homogeneous inequality
for b = c = 1, and for a = 0.

For b = c = 1, the homogeneous inequality reduces to

2
(a+ 2)2 − 3a

+
1

(a+ 2)2 − 3
≤

3
2(2a+ 1)

,

a2 + 3a+ 2
(a2 + a+ 4)(a2 + 4a+ 1)

≤
3

2(2a+ 1)
,

a(a+ 3)(a− 1)2 ≥ 0.

For a = 0, the homogeneous inequality can be written as

2
(b+ c)2

+
1

(b+ c)2 − 3bc
≤

3
2bc

,

(b− c)2(b2 + c2 + bc)
2bc(b+ c)2(b2 + c2 − bc)

≥ 0.

P 1.138. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

bc
a2 + a+ 6

+
ca

b2 + b+ 6
+

ab
c2 + c + 6

≤
3
8

.

(Vasile Cîrtoaje, 2009)

Solution. Write the inequality in the homogeneous form

bc
3a2 + ap+ 2p2

+
ca

3b2 + bp+ 2p2
+

ab
3c2 + cp+ 2p2

≤
1
8

, p = a+ b+ c.

We need to prove that f6(a, b, c)≥ 0, where

f6(a, b, c) =
∏

(3a2 + ap+ 2p2)− 8
∑

bc(3b2 + bp+ 2p2)(3c2 + cp+ 2p2).

Clearly, f6(a, b, c) has the same highest coefficient as

27a2 b2c2 − 72
∑

b3c3;

that is,
A= 27− 216< 0.

By P 3.76-(a) in Volume 1, it suffices to prove the homogeneous inequality for
b = c = 1, and for a = 0.
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For b = c = 1, the homogeneous inequality reduces to

1
2(3a2 + 5a+ 4)

+
2a

2a2 + 9a+ 13
≤

1
8

,

6a4 − 11a3 + 4a2 + a ≥ 0,

a(6a+ 1)(a− 1)2 ≥ 0.

For a = 0, the homogeneous inequality can be written as

bc
2(b+ c)2

≤
1
8

,

(b− c)2 ≥ 0.

The equality holds for a = b = c = 1, and for a = 0 and b = c = 3/2 (or any cyclic
permutation).

P 1.139. If a, b, c are nonnegative real numbers such that ab+ bc + ca = 3, then

1
8a2 − 2bc + 21

+
1

8b2 − 2ca+ 21
+

1
8c2 − 2ab+ 21

≥
1
9

.

(Michael Rozenberg, 2013)

Solution. Write the inequality in the homogeneous form

1
8a2 − 2bc + 7q

+
1

8b2 − 2ca+ 7q
+

1
8c2 − 2ab+ 7q

≥
1
3q

, q = ab+ bc + ca.

We need to prove that f6(a, b, c)≥ 0, where

f6(a, b, c) = 3q
∑

(8b2 − 2ca+ 7q)(8c2 − 2ab+ 7q)−
∏

(8a2 − 2bc + 7q).

Clearly, f6(a, b, c) has the same highest coefficient as P2(a, b, c), where

P2(a, b, c) = −
∏

(8a2 − 2bc).

According to Remark 2 from the proof of P 2.75 in Volume 1, we have

A= P2(1,1, 1) = −63 < 0.

By P 3.76-(a) in Volume 1, it suffices to prove the homogeneous inequality for
b = c = 1, and for a = 0.

For b = c = 1, the homogeneous inequality reduces to

1
8a2 + 14a+ 5

+
2

12a+ 15
≥

1
3(2a+ 1)

,
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1
(4a+ 5)(2a+ 1)

+
2

3(4a+ 5)
≥

1
3(2a+ 1)

,

which is an identity.
For a = 0, the homogeneous inequality can be written as

1
b(8b+ 7c)

+
1

c(8c + 7b)
≥

2
15bc

,

c
8b+ 7c

+
b

8c + 7b
≥

2
15

,

(b− c)2 ≥ 0.

The equality holds when two of a, b, c are equal.

Remark. The following identity holds for ab+ bc + ca = 3:

∑ 9
8a2 − 2bc + 21

− 1=
8
∏

(a− b)2
∏

(8a2 − 2bc + 21)
.

P 1.140. Let a, b, c be real numbers, no two of which are zero. Prove that

(a)
a2 + bc
b2 + c2

+
b2 + ca
c2 + a2

+
c2 + ab
a2 + b2

≥
(a+ b+ c)2

a2 + b2 + c2
;

(b)
a2 + 3bc
b2 + c2

+
b2 + 3ca
c2 + a2

+
c2 + 3ab
a2 + b2

≥
6(ab+ bc + ca)

a2 + b2 + c2
.

(Vasile Cîrtoaje, 2014)

Solution. (a) Using the known inequality

∑ a2

b2 + c2
≥

3
2

and the Cauchy-Schwarz inequality yields

∑ a2 + bc
b2 + c2

=
∑ a2

b2 + c2
+
∑ bc

b2 + c2
≥
∑

�

1
2
+

bc
b2 + c2

�

=
∑ (b+ c)2

2(b2 + c2)
≥

�∑

(b+ c)
�2

∑

2(b2 + c2)
=
(a+ b+ c)2

a2 + b2 + c2
.

The equality holds for a = b = c.
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(b) We have

∑ a2 + 3bc
b2 + c2

=
∑ a2

b2 + c2
+
∑ 3bc

b2 + c2
≥

3
2
+
∑ 3bc

b2 + c2

= −3+ 3
∑

�

1
2
+

bc
b2 + c2

�

= −3+ 3
∑ (b+ c)2

2(b2 + c2)

≥ −3+
3
�∑

(b+ c)
�2

∑

2(b2 + c2)
= −3+

3
�∑

a
�2

∑

a2
=

6(ab+ bc + ca)
a2 + b2 + c2

.

The equality holds for a = b = c.

P 1.141. Let a, b, c be real numbers such that ab+ bc + ca ≥ 0 and no two of which
are zero. Prove that

a(b+ c)
b2 + c2

+
b(c + a)
c2 + a2

+
c(a+ b)
a2 + b2

≥
3
10

.

(Vasile Cîrtoaje, 2014)

Solution. Since the problem remains unchanged by replacing a, b, c with−a,−b,−c,
it suffices to consider the cases a, b, c ≥ 0 and a < 0, b ≥ 0, c ≥ 0.

Case 1: a, b, c ≥ 0. We have

∑ a(b+ c)
b2 + c2

≥
∑ a(b+ c)
(b+ c)2

=
∑ a

b+ c
≥

3
2
>

3
10

.

Case 2: a < 0, b ≥ 0, c ≥ 0. Replacing a by −a, we need to show that

b(c − a)
a2 + c2

+
c(b− a)
a2 + b2

−
a(b+ c)
b2 + c2

≥
3
10

,

where

a, b, c ≥ 0, a ≤
bc

b+ c
.

We show first that
b(c − a)
a2 + c2

≥
b(c − x)
x2 + c2

,

where x =
bc

b+ c
, x ≥ a. This is equivalent to

b(x − a)[(c − a)x + ac + c2]≥ 0,
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which is true because

(c − a)x + ac + c2 =
c2(a+ 2b+ c)

b+ c
≥ 0.

Similarly, we can show that

c(b− a)
a2 + b2

≥
c(b− x)
x2 + b2

.

In addition, since
a(b+ c)
b2 + c2

≤
x(b+ c)
b2 + c2

.

it suffices to prove that

b(c − x)
x2 + c2

+
c(b− x)
x2 + b2

−
x(b+ c)
b2 + c2

≥
3

10
.

Denote

p =
b

b+ c
, q =

c
b+ c

, p+ q = 1.

Since
b(c − x)
x2 + c2

=
p

1+ p2
,

c(b− x)
x2 + b2

=
q

1+ q2
,

x(b+ c)
b2 + c2

=
bc

b2 + c2
=

pq
1− 2pq

,

we need to show that

p
1+ p2

+
q

1+ q2
−

pq
1− 2pq

≥
3

10
.

This inequality is equivalent to

1+ pq
2− 2pq+ p2q2

−
pq

1− 2pq
≥

3
10

,

(pq+ 2)2(1− 4pq)≥ 0.

Since
1− 4pq = (p+ q)2 − 4pq = (p− q)2 ≥ 0,

the proof is completed. The equality holds for −2a = b = c (or any cyclic permu-
tation).

P 1.142. If a, b, c are positive real numbers such that abc > 1, then

1
a+ b+ c − 3

+
1

abc − 1
≥

4
ab+ bc + ca− 3

.

(Vasile Cîrtoaje, 2011)
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Solution (by Vo Quoc Ba Can). By the AM-GM inequality, we have

a+ b+ c ≥ 3
3
p

abc > 3,

ab+ bc + ca ≥
3
p

a2 b2c2 > 3.

Without loss of generality, assume that a = min{a, b, c}. By the Cauchy-Schwarz
inequality, we have

�

1
a+ b+ c − 3

+
1

abc − 1

��

a(a+ b+ c − 3) +
abc − 1

a

�

≥
�p

a+
1
p

a

�2

.

Therefore, it suffices to prove that

(a+ 1)2

4a
≥

a(a+ b+ c − 3) +
abc − 1

a
ab+ bc + ca− 3

.

Since

a(a+ b+ c − 3) +
abc − 1

a
= ab+ bc + ca− 3+

(a− 1)3

a
,

this inequality can be written as follows:

(a+ 1)2

4a
− 1≥

(a− 1)3

a(ab+ bc + ca− 3)
,

(a− 1)2

4a
≥

(a− 1)3

a(ab+ bc + ca− 3)
,

(a− 1)2(ab+ bc + ca+ 1− 4a)≥ 0.

This is true since
bc ≥ 3

Æ

(abc)2 > 1,

hence
ab+ bc + ca+ 1− 4a > a2 + 1+ a2 + 1− 4a = 2(a− 1)2 ≥ 0.

The equality holds for a = b = 1 and c > 1 (or any cyclic permutation).

Remark. Using this inequality, we can prove P 3.84 in Volume 1, which states that

(a+ b+ c − 3)
�

1
a
+

1
b
+

1
c
− 3

�

+ abc +
1

abc
≥ 2

for any positive real numbers a, b, c. This inequality is clearly true for abc = 1.
In addition, it remains unchanged by substituting a, b, c with 1/a, 1/b, 1/c, re-
spectively. Therefore, it suffices to consider the case abc > 1. Since a + b + c ≥
3

3pabc > 3, we can write the required inequality as E ≥ 0, where

E = ab+ bc + ca− 3abc +
(abc − 1)2

a+ b+ c − 3
.
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According to the inequality in P 1.142, we have

E ≥ ab+ bc + ca− 3abc + (abc − 1)2
�

4
ab+ bc + ca− 3

−
1

abc − 1

�

= (ab+ bc + ca− 3) +
4(abc − 1)2

ab+ bc + ca− 3
− 4(abc − 1)

≥ 2

√

√

(ab+ bc + ca− 3) ·
4(abc − 1)2

ab+ bc + ca− 3
− 4(abc − 1) = 0.

P 1.143. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

∑ (4b2 − ac)(4c2 − ab)
b+ c

≤
27
2

abc.

(Vasile Cîrtoaje, 2011)

Solution. Use the SOS method. Since
∑ (4b2 − ac)(4c2 − ab)

b+ c
=
∑ bc(16bc + a2)

b+ c
− 4

∑ a(b3 + c3)
b+ c

=
∑ bc(16bc + a2)

b+ c
− 4

∑

a(b2 + c2) + 12abc

=
∑

bc
�

a2

b+ c
+

16bc
b+ c

− 4(b+ c)
�

+ 12abc

=
∑

bc
�

a2

b+ c
− 4
(b− c)2

b+ c

�

+ 12abc

we can write the inequality as follows:

∑

bc
�

a
2
−

a2

b+ c
+

4(b− c)2

b+ c

�

≥ 0,

8
∑ bc(b− c)2

b+ c
≥ abc

∑ 2a− b− c
b+ c

.

In addition, since
∑ 2a− b− c

b+ c
=
∑ (a− b) + (a− c)

b+ c
=
∑ a− b

b+ c
+
∑ b− a

c + a

=
∑ (a− b)2

(b+ c)(c + a)
=
∑ (b− c)2

(c + a)(a+ b)
,

the inequality can be restated as

8
∑ bc(b− c)2

b+ c
≥ abc

∑ (b− c)2

(c + a)(a+ b)
,
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∑ bc(b− c)2(8a2 + 8bc + 7ab+ 7ac)
(a+ b)(b+ c)(c + a)

≥ 0.

Since the last form is obvious, the proof is completed. The equality holds for a =
b = c, and also for a = 0 and b = c (or any cyclic permutation).

P 1.144. Let a, b, c be nonnegative real numbers, no two of which are zero, such that

a+ b+ c = 3.

Prove that
a

3a+ bc
+

b
3b+ ca

+
c

3c + ab
≥

2
3

.

Solution. Since

3a+ bc = a(a+ b+ c) + bc = (a+ b)(a+ c),

we can write the inequality as follows:

a(b+ c) + b(c + a) + c(a+ b)≥
2
3
(a+ b)(b+ c)(c + a),

6(ab+ bc + ca)≥ 2[(a+ b+ c)(ab+ bc + ca)− abc],

2abc ≥ 0.

The equality holds for a = 0, or b = 0, or c = 0.

P 1.145. Let a, b, c be positive real numbers such that

(a+ b+ c)
�

1
a
+

1
b
+

1
c

�

= 10.

Prove that
19
12
≤

a
b+ c

+
b

c + a
+

c
a+ b

≤
5
3

.

(Vasile Cîrtoaje, 2012)
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First Solution. Write the hypothesis

(a+ b+ c)
�

1
a
+

1
b
+

1
c

�

= 10

as
b+ c

a
+

c + a
b
+

a+ b
c
= 7

and
(a+ b)(b+ c)(c + a) = 9abc.

Using the substitution

x =
b+ c

a
, y =

c + a
b

, z =
a+ b

c
,

we need to show that x + y + z = 7 and x yz = 9 involve

19
12
≤

1
x
+

1
y
+

1
z
≤

5
3

,

or, equivalently,
19
12
≤

1
x
+

x(7− x)
9

≤
5
3

.

Clearly, x , y, z ∈ (0, 7). The left inequality is equivalent to

(x − 4)(2x − 3)2 ≤ 0,

while the right inequality is equivalent to

(x − 1)(x − 3)2 ≥ 0.

These inequalities are true if 1 ≤ x ≤ 4. To show that 1 ≤ x ≤ 4, from (y + z)2 ≥
4yz, we get

(7− x)2 ≥
36
x

,

(x − 1)(x − 4)(x − 9)≥ 0,

1≤ x ≤ 4.

Thus, the proof is completed. The left inequality is an equality for 2a = b = c (or
any cyclic permutation), and the right inequality is an equality for a/2= b = c (or
any cyclic permutation).

Second Solution. Due to homogeneity, assume that b+ c = 2; this involves bc ≤ 1.
From the hypothesis

(a+ b+ c)
�

1
a
+

1
b
+

1
c

�

= 10,
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we get

bc =
2a(a+ 2)

9a− 2
.

Since

bc − 1=
(a− 2)(2a− 1)

9a− 2
,

from the condition bc ≤ 1, we get

1
2
≤ a ≤ 2.

We have

b
c + a

+
c

a+ b
=

a(b+ c) + b2 + c2

a2 + (b+ c)a+ bc
=

2a+ 4− 2bc
a2 + 2a+ bc

=
2(7a2 + 12a− 4)

9a2(a+ 2)
=

2(7a− 2)
9a2

,

hence
a

b+ c
+

b
c + a

+
c

a+ b
=

a
2
+

2(7a− 2)
9a2

=
9a3 + 28a− 8

18a2
.

Thus, we need to show that

19
12
≤

9a3 + 28a− 8
18a2

≤
5
3

.

These inequalities are true, since the left inequality is equivalent to

(2a− 1)(3a− 4)2 ≥ 0,

and the right inequality is equivalent to

(a− 2)(3a− 2)2 ≤ 0.

Remark. Similarly, we can prove the following generalization.

• Let a, b, c be positive real numbers such that

(a+ b+ c)
�

1
a
+

1
b
+

1
c

�

= 9+
8k2

1− k2
,

where k ∈ (0, 1). Then,

k2

1+ k
≤

a
b+ c

+
b

c + a
+

c
a+ b

−
3
2
≤

k2

1− k
.
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P 1.146. Let a, b, c be nonnegative real numbers, no two of which are zero, such that
a+ b+ c = 3. Prove that

9
10
<

a
2a+ bc

+
b

2b+ ca
+

c
2c + ab

≤ 1.

(Vasile Cîrtoaje, 2012)

Solution. (a) Since
a

2a+ bc
−

1
2
=

−bc
2(2a+ bc)

,

we can write the right inequality as

∑ bc
2a+ bc

≥ 1.

According to the Cauchy-Schwarz inequality, we have

∑ bc
2a+ bc

≥

�∑

bc
�2

∑

bc(2a+ bc)
=

∑

b2c2 + 2abc
∑

a

6abc +
∑

b2c2
= 1.

The equality holds for a = b = c = 1, and also for a = 0, or b = 0, or c = 0.
(b) First Solution. For the nontrivial case a, b, c > 0, we can write the left

inequality as
∑ 1

2+
bc
a

>
9
10

.

Using the substitution

x =

√

√ bc
a

, y =
s

ca
b

, z =

√

√ab
c

,

we need to show that
∑ 1

2+ x2
>

9
10

for all positive real numbers x , y, z satisfying x y + yz+ zx = 3. By expanding, the
inequality becomes

4
∑

x2 + 48> 9x2 y2z2 + 8
∑

x2 y2.

Since
∑

x2 y2 =
�∑

x y
�2
− 2x yz

∑

x = 9− 2x yz
∑

x ,

we can write the desired inequality as

4
∑

x2 + 16x yz
∑

x > 9x2 y2z2 + 24,
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which is equivalent to

4(p2 − 12) + 16x yzp > 9x2 y2z2,

where p = x + y + z. Using Schur’s inequality

p3 + 9x yz ≥ 4p(x y + yz + zx),

which is equivalent to
p(p2 − 12)≥ −9x yz,

it suffices to prove that

−
36x yz

p
+ 16x yzp > 9x2 y2z2.

This is true if

−
36
p
+ 16p > 9x yz.

Since
x + y + z ≥

Æ

3(x y + yz + zx) = 3

and
1=

x y + yz + zx
3

≥ 3
p

x2 y2z2,

we have

−
36
p
+ 16p− 9x yz ≥ −

36
3
+ 48− 9> 0.

Second Solution. As it is shown at the first solution, it suffices to show that

∑ 1
2+ x2

>
9

10

for all positive real numbers x , y, z satisfying x y + yz + zx = 3. Rewrite this in-
equality as

∑ x2

2+ x2
<

6
5

.

Let p and q be two positive real numbers such that

p+ q =
p

3.

By the Cauchy-Schwarz inequality, we have

x2

2+ x2
=

3x2

2(x y + yz + zx) + 3x2
=

(px + qx)2

2x(x + y + z) + (x2 + 2yz)

≤
p2 x

2(x + y + z)
+

q2 x2

x2 + 2yz
.
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Therefore,

∑ x2

2+ x2
≤
∑ p2 x

2(x + y + z)
+
∑ q2 x2

x2 + 2yz
=

p2

2
+ q2

∑ x2

x2 + 2yz
.

Thus, it suffices to prove that

p2

2
+ q2

∑ x2

x2 + 2yz
<

6
5

.

We claim that
∑ x2

x2 + 2yz
< 2.

Under this assumption, we only need to show that

p2

2
+ 2q2 ≤

6
5

.

Indeed, choosing p =
4
p

3
5

and q =
p

3
5

, we have p+q =
p

3 and
p2

2
+2q2 =

6
5

. To

complete the proof, we need to prove the homogeneous inequality
∑ x2

x2 + 2yz
< 2,

which is equivalent to
∑ yz

x2 + 2yz
>

1
2

.

By the Cauchy-Schwarz inequality, we get

∑ yz
x2 + 2yz

≥

�∑

yz
�2

∑

yz(x2 + 2yz)
=

∑

y2z2 + 2x yz
∑

x

x yz
∑

x + 2
∑

y2z2
>

1
2

.

P 1.147. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove
that

a3

2a2 + bc
+

b3

2b2 + ca
+

c3

2c2 + ab
≤

a3 + b3 + c3

a2 + b2 + c2
.

(Vasile Cîrtoaje, 2011)

Solution. Use the SOS method. Write the inequality as follows:

∑

�

a3

a2 + b2 + c2
−

a3

2a2 + bc

�

≥ 0,

∑ a3(a2 + bc − b2 − c2)
2a2 + bc

≥ 0,
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∑ a3[a2(b+ c)− b3 − c3]
(b+ c)(2a2 + bc)

≥ 0,

∑ a3 b(a2 − b2) + a3c(a2 − c2)
(b+ c)(2a2 + bc)

≥ 0,

∑ a3 b(a2 − b2)
(b+ c)(2a2 + bc)

+
∑ b3a(b2 − a2)
(c + a)(2b2 + ca)

≥ 0,

∑ ab(a+ b)(a− b)2[2a2 b2 + c(a3 + a2 b+ ab2 + b3) + c2(a2 + ab+ b2)]
(b+ c)(c + a)(2a2 + bc)(2b2 + ca)

≥ 0.

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic
permutation).

P 1.148. If a, b, c are positive real numbers, then

a3

4a2 + bc
+

b3

4b2 + ca
+

c3

4c2 + ab
≥

a+ b+ c
5

.

(Vasile Cîrtoaje, 2011)

Solution. Use the SOS method. Write the inequality as follows:

∑

�

a3

4a2 + bc
−

a
5

�

≥ 0,

∑ a(a2 − bc)
4a2 + bc

≥ 0,

∑ a[(a− b)(a+ c) + (a− c)(a+ b)]
4a2 + bc

≥ 0,

∑ a(a− b)(a+ c)
4a2 + bc

+
∑ b(b− a)(b+ c)

4b2 + ca
≥ 0,

∑ c(a− b)2[(a− b)2 + bc + ca− ab]
(4a2 + bc)(4b2 + ca)

≥ 0.

Clearly, it suffices to show that

∑ c(a− b)2(bc + ca− ab)
(4a2 + bc)(4b2 + ca)

≥ 0,

which can be written as
∑

(a− b)2(bc + ca− ab)(4c3 + abc)≥ 0.

Assume that a ≥ b ≥ c. Since ca+ ab− bc > 0, it is enough to prove that

(c − a)2(ab+ bc − ca)(4b3 + abc) + (a− b)2(bc + ca− ab)(4c3 + abc)≥ 0,
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which is equivalent to

(a− c)2(ab+ bc − ca)(4b3 + abc)≥ (a− b)2(ab− bc − ca)(4c3 + abc).

This inequality is true since ab+ bc − ca > 0 and

(a− c)2 ≥ (a− b)2, 4b3 + abc ≥ 4c3 + abc, ab+ bc − ca ≥ ab− bc − ca.

The equality holds for a = b = c.

P 1.149. If a, b, c are positive real numbers, then

1
(2+ a)2

+
1

(2+ b)2
+

1
(2+ c)2

≥
3

6+ ab+ bc + ca
.

(Vasile Cîrtoaje, 2013)

Solution. By the Cauchy-Schwarz inequality, we have
∑ 1
(2+ a)2

≥
4(a+ b+ c)2

∑

(2+ a)2(b+ c)2
.

Thus, it suffices to show that

4(a+ b+ c)2(6+ ab+ bc + ca)≥ 3
∑

(2+ a)2(b+ c)2.

This inequality is equivalent to

2p2q− 3q2 + 3pr + 12q ≥ 6(pq+ 3r),

where
p = a+ b+ c, q = ab+ bc + ca, r = abc.

According to AM-GM inequality, we have

(2p2q− 3q2 + 3pr) + 12q ≥ 2
Æ

12q(2p2q− 3q2 + 3pr).

Therefore, it is enough to prove the homogeneous inequality

4q(2p2q− 3q2 + 3pr)≥ 3(pq+ 3r)2,

which can be written as

5p2q2 ≥ 12q3 + 6pqr + 27r2.

Since pq ≥ 9r, we have

3(5p2q2 − 12q3 − 6pqr − 27r2)≥ 15p2q2 − 36q3 − 2p2q2 − p2q2

= 12q2(p2 − 3q)≥ 0.

The equality holds for a = b = c = 1.
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P 1.150. If a, b, c are positive real numbers, then

1
1+ 3a

+
1

1+ 3b
+

1
1+ 3c

≥
3

3+ abc
.

(Vasile Cîrtoaje, 2013)

Solution. Set

p = a+ b+ c, q = ab+ bc + ca, r =
3
p

abc,

and write the inequality as follows:

(3+ r3)
∑

(1+ 3b)(1+ 3c)≥ 3(1+ 3a)(1+ 3b)(1+ 3c),

(3+ r3)(3+ 6p+ 9q)≥ 3(1+ 3p+ 9q+ 27r3),

r3(2p+ 3q) + 2+ 3p ≥ 26r3.

By virtue of the AM-GM inequality, we have

p ≥ 3r, q ≥ 3r2.

Therefore, it suffices to show that

r3(6r + 9r2) + 2+ 9r ≥ 26r3,

which is equivalent to the obvious inequality

(r − 1)2(9r3 + 24r2 + 13r + 2)≥ 0.

The equality holds for a = b = c = 1.

P 1.151. Let a, b, c be real numbers, no two of which are zero. If 1< k ≤ 3, then
�

k+
2ab

a2 + b2

��

k+
2bc

b2 + c2

��

k+
2ca

c2 + a2

�

≥ (k− 1)(k2 − 1).

(Vasile Cîrtoaje and Vo Quoc Ba Can, 2011)

Solution. If a, b, c have the same sign, then
�

k+
2ab

a2 + b2

��

k+
2bc

b2 + c2

��

k+
2ca

c2 + a2

�

> k3 > (k− 1)(k2 − 1).

Since the inequality remains unchanged by replacing a, b, c with −a,−b,−c, it suf-
fices to consider further that a ≤ 0 and b, c ≥ 0. Setting −a for a, we need to show
that

�

k−
2ab

a2 + b2

��

k+
2bc

b2 + c2

��

k−
2ca

c2 + a2

�

≥ (k− 1)(k2 − 1)
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for a, b, c ≥ 0. Since
�

k−
2ab

a2 + b2

��

k−
2ca

c2 + a2

�

=
�

k− 1+
(a− b)2

a2 + b2

��

k− 1+
(a− c)
c2 + a2

�

≥ (k− 1)2 + (k− 1)
�

(a− b)2

a2 + b2
+
(a− c)2

c2 + a2

�

,

it suffices to prove that
�

k− 1+
(a− b)2

a2 + b2
+
(a− c)2

c2 + a2

��

k+
2bc

b2 + c2

�

≥ k2 − 1.

According to Lemma below, we have

(a− b)2

a2 + b2
+
(a− c)2

c2 + a2
≥
(b− c)2

(b+ c)2
.

Thus, it suffices to show that
�

k− 1+
(b− c)2

(b+ c)2

��

k+
2bc

b2 + c2

�

≥ k2 − 1,

which is equivalent to the obvious inequality

(b− c)4 + 2(3− k)bc(b− c)2 ≥ 0.

The equality holds for a = b = c.

Lemma. If a, b, c ≥ 0, no two of which are zero, then

(a− b)2

a2 + b2
+
(a− c)2

a2 + c2
≥
(b− c)2

(b+ c)2
.

Proof. Consider two cases: a2 ≤ bc and a2 ≥ bc.

Case 1: a2 ≤ bc. By the Cauchy-Schwarz inequality, we have

(a− b)2

a2 + b2
+
(a− c)2)
a2 + c2

≥
[(b− a) + (a− c)]2

(a2 + b2) + (a2 + c2)
=

(b− c)2

2a2 + b2 + c2
.

Thus, it suffices to show that

1
2a2 + b2 + c2

≥
1

(b+ c)2
,

which is equivalent to a2 ≤ bc.

Case 2: a2 ≥ bc. By the Cauchy-Schwarz inequality, we have

(a− b)2

a2 + b2
+
(a− c)2

a2 + c2
≥
[c(b− a) + b(a− c)]2

c2(a2 + b2) + b2(a2 + c2)
=

a2(b− c)2

a2(b2 + c2) + 2b2c2
.
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Therefore, it suffices to prove that

a2

a2(b2 + c2) + 2b2c2
≥

1
(b+ c)2

,

which reduces to bc(a2 − bc)≥ 0.

P 1.152. If a, b, c are non-zero and distinct real numbers, then

1
a2
+

1
b2
+

1
c2
+ 3

�

1
(a− b)2

+
1

(b− c)2
+

1
(c − a)2

�

≥ 4
�

1
ab
+

1
bc
+

1
ca

�

.

Solution. Write the inequality as
�

∑ 1
a2
−
∑ 1

bc

�

+ 3
∑ 1
(b− c)2

≥ 3
∑ 1

bc
.

In virtue of the AM-GM inequality, it suffices to prove that

2

√

√

3
�

∑ 1
a2
−
∑ 1

bc

��

∑ 1
(b− c)2

�

≥ 3
∑ 1

bc
,

which is true if

4
�

∑ 1
a2
−
∑ 1

bc

��

∑ 1
(b− c)2

�

≥ 3
�

∑ 1
bc

�2

.

Since
∑ 1
(b− c)2

=
�

∑ 1
b− c

�2

=

�∑

a2 −
∑

ab
�2

(a− b)2(b− c)2(c − a)2
,

we can rewrite this inequality as

4
�∑

a2 b2 − abc
∑

a
��∑

a2 −
∑

ab
�2
≥ 3(a+ b+ c)2(a− b)2(b− c)2(c − a)2.

Using the notations

p = a+ b+ c, q = ab+ bc + ca, r = abc,

and the identity

(a− b)2(b− c)2(c − a)2 = −27r2 − 2(2p2 − 9q)pr + p2q2 − 4q3,

the inequality can be written as

4(q2 − 3pr)(p2 − 3q)2 ≥ 3p2[−27r2 − 2(2p2 − 9q)pr + p2q2 − 4q3],

which is equivalent to
(9pr + p2q− 6q2)2 ≥ 0.
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P 1.153. Let a, b, c be positive real numbers, and let

A=
a
b
+

b
a
+ k, B =

b
c
+

c
b
+ k, C =

c
a
+

a
b
+ k,

where −2< k ≤ 4. Prove that

1
A
+

1
B
+

1
C
≤

1
k+ 2

+
4

A+ B + C − k− 2
.

(Vasile Cîrtoaje, 2009)

Solution. Let us denote

x =
a
b

, y =
b
c

, z =
c
a

.

We need to show that
∑ x

x2 + kx + 1
≤

1
k+ 2

+
4

∑

x +
∑

x y + 2k− 2

for all positive real numbers x , y, z satisfying x yz = 1. Write this inequality as
follows:

∑

�

1
k+ 2

−
x

x2 + kx + 1

�

≥
2

k+ 2
−

4
∑

x +
∑

x y + 2k− 2
,

∑ (x − 1)2

x2 + kx + 1
≥

2
∑

yz(x − 1)2
∑

x +
∑

x y + 2k− 2
,

∑ (x − 1)2[−x + y + z + x(y + z)− yz − 2]
x2 + kx + 1

≥ 0.

Since

−x + y + z + x(y + z)− yz − 2= (x + 1)(y + z)− (x + yz + 2)

= (x + 1)(y + z)− (x + 1)(yz + 1) = −(x + 1)(y − 1)(z − 1),

the inequality is equivalent to

−(x − 1)(y − 1)(z − 1)
∑ x2 − 1

x2 + kx + 1
≥ 0;

that is, E ≥ 0, where

E = −(x − 1)(y − 1)(z − 1)
∑

(x2 − 1)(y2 + k y + 1)(z2 + kz + 1).

We have
∑

(x2 − 1)(y2 + k y + 1)(z2 + kz + 1) =

= k(k− 2)
�∑

x −
∑

x y
�

+
�∑

x2 y2 −
∑

x2
�
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= k(k− 2)(x − 1)(y − 1)(z − 1)− (x2 − 1)(y2 − 1)(z2 − 1)

= −(x − 1)(y − 1)(z − 1)[(x + 1)(y + 1)(z + 1)− k(k− 2)],

hence

E = (x − 1)2(y − 1)2(z − 1)2[(x + 1)(y + 1)(z + 1)− k(k− 2)].

Since

(x + 1)(y + 1)(z + 1)− k(k− 2)≥ (2
p

x)(2
p

y)(2
p

z)− k(k− 2)
= (2+ k)(4− k)≥ 0,

it follows that E ≥ 0. The equality holds for a = b, or b = c, or c = a.

P 1.154. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
b2 + bc + c2

+
1

c2 + ca+ a2
+

1
a2 + ab+ b2

≥
1

2a2 + bc
+

1
2b2 + ca

+
1

2c2 + ab
.

(Vasile Cîrtoaje, 2014)

Solution. Write the inequality as follows:

∑

�

1
b2 + bc + c2

−
1

2a2 + bc

�

≥ 0,

∑ (a2 − b2) + (a2 − c2)
(b2 + bc + c2)(2a2 + bc)

≥ 0,

∑ a2 − b2

(b2 + bc + c2)(2a2 + bc)
+
∑ b2 − a2

(c2 + ca+ a2)(2b2 + ca)
≥ 0,

(a2+b2+c2−ab−bc−ca)
∑ c(a2 − b2)(a− b)
(b2 + bc + c2)(c2 + ca+ a2)(2a2 + bc)(2b2 + ca)

≥ 0.

Clearly, the last inequality is obvious. The equality holds for a = b = c.

P 1.155. If a, b, c are nonnegative real numbers such that a+ b+ c ≤ 3, then

(a)
1

2a+ 1
+

1
2b+ 1

+
1

2c + 1
≥

1
a+ 2

+
1

b+ 2
+

1
c + 2

;

(b)
1

2ab+ 1
+

1
2bc + 1

+
1

2ca+ 1
≥

1
a2 + 2

+
1

b2 + 2
+

1
c2 + 2

.

(Vasile Cîrtoaje, 2014)
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Solution. Denote
p = a+ b+ c,

p

3q ≤ p ≤ 3,

q = ab+ bc + ca, 0≤ q ≤ 3.

(a) Use the SOS method. Write the inequality as follows
∑

�

1
2a+ 1

−
1

a+ 2

�

≥ 0,

∑ 1− a
(2a+ 1)(a+ 2)

≥ 0,

∑ (a+ b+ c)− 3a
(2a+ 1)(a+ 2)

≥ 0,

∑ (b− a) + (c − a)
(2a+ 1)(a+ 2)

≥ 0,

∑ b− a
(2a+ 1)(a+ 2)

+
∑ a− b
(2b+ 1)(b+ 2)

≥ 0,

∑

(a− b)
�

1
(2b+ 1)(b+ 2)

−
1

(2a+ 1)(a+ 2)

�

,
∑

(a− b)2(2a+ 2b+ 5)(2c + 1)(c + 2)≥ 0.

The equality holds for a = b = c = 1.

(b) Write the inequality as
∑ 1

2ab+ 1
≥
∑

�

1
a2 + 2

−
1
2

�

+
3
2

,

∑ 2
2ab+ 1

+
∑ a2

a2 + 2
≥ 3.

By the Cauchy-Schwarz inequality, we have
∑ 1

2ab+ 1
≥

9
∑

(2ab+ 1)
=

9
2q+ 3

and

∑ a2

a2 + 2
≥

�∑

a
�2

∑

(a2 + 2)
=

p2

p2 − 2q+ 6

= 1−
2(3− q)

p2 − 2q+ 6
≥ 1−

2(3− q)
q+ 6

=
3q

q+ 6
.

Therefore, it suffices to show that

18
2q+ 3

+
3q

q+ 6
≥ 3,

which is equivalent to the obvious inequality q ≤ 3. The equality holds for a = b =
c = 1.



Symmetric Rational Inequalities 205

P 1.156. If a, b, c are nonnegative real numbers such that a+ b+ c = 4, then

1
ab+ 2

+
1

bc + 2
+

1
ca+ 2

≥
1

a2 + 2
+

1
b2 + 2

+
1

c2 + 2
.

(Vasile Cîrtoaje, 2014)

First Solution (by Nguyen Van Quy). Use the SOS method. Rewrite the inequality
as follows:

∑

�

2
ab+ 2

−
1

a2 + 2
−

1
b2 + 2

�

≥ 0,

∑

�

a(a− b)
(ab+ 2)(a2 + 2)

+
b(b− a)

(ab+ 2)(b2 + 2)

�

≥ 0,

∑ (2− ab)(a− b)2(c2 + 2)
ab+ 2

≥ 0.

Without loss of generality, assume that a ≥ b ≥ c ≥ 0. Then,

bc ≤ ac ≤
a(b+ c)

2
≤
(a+ b+ c)2

8
= 2

and

∑ (2− ab)(a− b)2(c2 + 2)
ab+ 2

≥
(2− ab)(a− b)2(c2 + 2)

ab+ 2
+
(2− ac)(a− c)2(b2 + 2)

ac + 2

≥
(2− ab)(a− b)2(c2 + 2)

ab+ 2
+
(2− ac)(a− b)2(c2 + 2)

ab+ 2

=
(4− ab− ac)(a− b)2(c2 + 2)

ab+ 2

=
(a− b− c)2(a− b)2(c2 + 2)

4(ab+ 2)

The equality holds for a = b = c = 4/3, and also for a = 2 and b = c = 1 (or any
cyclic permutation).

Second Solution. Write the inequality as

∑ 1
bc + 2

≥
∑

�

1
a2 + 2

−
1
2

�

+
3
2

,

∑ 1
bc + 2

+
∑ a2

2(a2 + 2)
≥

3
2

.

Assume that a ≥ b ≥ c, and denote

s =
b+ c

2
, p = bc, 0≤ s ≤

4
3

, 0≤ p ≤ s2.
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By the Cauchy-Schwarz inequality, we have

b2

2(b2 + 2)
+

c2

2(c2 + 2)
≥

(b+ c)2

2(b2 + 2) + 2(c2 + 2) + 4
=

s2

2s2 − p+ 2
.

In addition,

1
ca+ 2

+
1

ab+ 2
=

a(b+ c) + 4
(ab+ 2)(ac + 2)

=
2as+ 4

a2p+ 4as+ 4
.

Therefore, it suffices to show that E(a, b, c)≥ 0, where

E(a, b, c) =
1

p+ 2
+

s2

2s2 − p+ 2
+

2(as+ 2)
a2p+ 4as+ 4

+
a2

2(a2 + 2)
−

3
2

.

Use the mixing variables method. We will prove that

E(a, b, c)≥ E(a, s, s)≥ 0.

We have

E(a, b, c)− E(a, s, s) =
�

1
p+ 2

−
1

s2 + 2

�

+ s2
�

1
2s2 − p+ 2

−
1

s2 + 2

�

+ 2(as+ 2)
�

1
a2p+ 4as+ 4

−
1

a2s2 + 4as+ 4

�

=
s2 − p

(p+ 2)(s2 + 2)
−

s2(s2 − p)
(s2 + 2)(2s2 − p+ 2)

+
2a2(s2 − p)

(a2p+ 4as+ 4)(as+ 2)
.

Since s2 − p ≥ 0, we need to show that

1
(p+ 2)(s2 + 2)

+
2a2

(a2p+ 4as+ 4)(as+ 2)
≥

s2

(s2 + 2)(2s2 − p+ 2)
,

which is equivalent to

2a2

(a2p+ 4as+ 4)(as+ 2)
≥

p(s2 + 1)− 2
(p+ 2)(s2 + 2)(2s2 − p+ 2)

.

Since
a2p+ 4as+ 4≤ a2s2 + 4as+ 4= (as+ 2)2

and
2s2 − p+ 2≥ s2 + 2,

it is enough to prove that

2a2

(as+ 2)3
≥

p(s2 + 1)− 2
(p+ 2)(s2 + 2)2

.
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In addition, since
as+ 2= (4− 2s)s+ 2≤ 4

and
p(s2 + 1)− 2

p+ 2
= s2 + 1−

2(s2 + 2)
p+ 2

≤ s2 + 1−
2(s2 + 2)

s2 + 2
= s2 − 1,

it suffices to show that
a2

32
≥

s2 − 1
(s2 + 2)2

,

which is equivalent to
(2− s)2(2+ s2)2 ≥ 8(s2 − 1).

Indeed, for the nontrivial case 1< s ≤
4
3

, we have

(2− s)2(2+ s2)2 − 8(s2 − 1)≥
�

2−
4
3

�2

(2+ s2)2 − 8(s2 − 1)

=
4
9
(s4 − 14s2 + 22) =

4
9

�

(7− s2)2 − 27
�

≥
4
9

�

�

7−
16
9

�2

− 27

�

=
88
729

> 0.

To end the proof, we need to show that E(a, s, s)≥ 0. We have

E(a, s, s) =
1

s2 + 2
+

s2

s2 + 2
+

2
as+ 2

+
a2

2(a2 + 2)
−

3
2

=
(s− 1)2(3s− 4)2

2(s2 + 2)(1+ 2s− s2)(2s2 − 8s+ 9)
≥ 0.

P 1.157. If a, b, c are nonnegative real numbers, no two of which are zero, then

(a)
ab+ bc + ca
a2 + b2 + c2

+
(a− b)2(b− c)2(c − a)2

(a2 + b2)(b2 + c2)(c2 + a2)
≤ 1;

(b)
ab+ bc + ca
a2 + b2 + c2

+
(a− b)2(b− c)2(c − a)2

(a2 − ab+ b2)(b2 − bc + c2)(c2 − ca+ a2)
≤ 1.

(Vasile Cîrtoaje, 2014)

Solution. (a) First Solution. Consider the nontrivial case where a, b, c are distinct
and write the inequality as follows:

(a− b)2(b− c)2(c − a)2

(a2 + b2)(b2 + c2)(c2 + a2)
≤
(a− b)2 + (b− c)2 + (c − a)2

2(a2 + b2 + c2)
,
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(a2 + b2) + (b2 + c2) + (c2 + a2)
(a2 + b2)(b2 + c2)(c2 + a2)

≤
(a− b)2 + (b− c)2 + (c − a)2

(a− b)2(b− c)2(c − a)2
,

∑ 1
(b2 + c2)(c2 + a2)

≤
∑ 1
(b− c)2(c − a)2

.

Since
a2 + b2 ≥ (a− b)2, b2 + c2 ≥ (b− c)2, c2 + a2 ≥ (c − a)2,

the conclusion follows. The equality holds for a = b = c.

Second Solution. Assume that a ≥ b ≥ c. We have

ab+ bc + ca
a2 + b2 + c2

+
(a− b)2(b− c)2(c − a)2

(a2 + b2)(b2 + c2)(c2 + a2)
≤

ab+ bc + ca
a2 + b2 + c2

+
(a− b)2(a− c)2

(a2 + b2)(a2 + c2)

≤
2ab+ c2

a2 + b2 + c2
+

(a− b)2a2

a2(a2 + b2 + c2)

=
2ab+ c2 + (a− b)2

a2 + b2 + c2
= 1.

(b) Consider the nontrivial case where a, b, c are distinct and write the inequal-
ity as follows:

(a− b)2(b− c)2(c − a)2

(a2 − ab+ b2)(b2 − bc + c2)(c2 − ca+ a2)
≤
(a− b)2 + (b− c)2 + (c − a)2

2(a2 + b2 + c2)
,

2(a2 + b2 + c2)
(a2 − ab+ b2)(b2 − bc + c2)(c2 − ca+ a2)

≤
(a− b)2 + (b− c)2 + (c − a)2

(a− b)2(b− c)2(c − a)2
,

∑ 1
(a− b)2(a− c)2

≥
2(a2 + b2 + c2)

(a2 − ab+ b2)(b2 − bc + c2)(c2 − ca+ a2)
.

Assume that a =min{a, b, c}, and use the substitution

b = a+ x , c = a+ y, x , y ≥ 0.

The inequality can be written as

1
x2 y2

+
1

x2(x − y)2
+

1
y2(x − y)2

≥ 2 f (a),

where

f (a) =
3a2 + 2(x + y)a+ x2 + y2

(a2 + xa+ x2)(a2 + ya+ y2)[a2 + (x + y)a+ x2 − x y + y2]
.

We will show that

1
x2 y2

+
1

x2(x − y)2
+

1
y2(x − y)2

≥ 2 f (0)≥ 2 f (a).
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The left inequality is equivalent to

x2 + y2 − x y
x2 y2(x − y)2

≥
x2 + y2

x2 y2(x2 − x y + y2)
.

Indeed,

x2 + y2 − x y
x2 y2(x − y)2

−
x2 + y2

x2 y2(x2 − x y + y2)
=

1
(x − y)2(x2 − x y + y2)

≥ 0.

Also, since

(a2 + xa+ x2)(a2 + ya+ y2)≥ (x2 + y2)a2 + x y(x + y)a+ x2 y2

and
a2 + (x + y)a+ x2 − x y + y2 ≥ x2 − x y + y2,

we get f (a)≤ g(a), where

g(a) =
3a2 + 2(x + y)a+ x2 + y2

[(x2 + y2)a2 + x y(x + y)a+ x2 y2](x2 − x y + y2)
.

Therefore,

f (0)− f (a)≥
x2 + y2

x2 y2(x2 − x y + y2)
− g(a)

=
(x4 − x2 y2 + y4)a2 + x y(x + y)(x − y)2a

x2 y2(x2 − x y + y2)[(x2 + y2)a2 + x y(x + y)a+ x2 y2]
≥ 0.

Thus, the proof is completed. The equality holds for a = b = c.

P 1.158. If a, b, c are nonnegative real numbers, no two of which are zero, then

a2 + b2 + c2

ab+ bc + ca
≥ 1+

9(a− b)2(b− c)2(c − a)2

(a+ b)2(b+ c)2(c + a)2
.

(Vasile Cîrtoaje, 2014)

Solution. Consider the nontrivial case where

0≤ a < b < c,

and write the inequality as follows:

(a− b)2 + (b− c)2 + (c − a)2

2(ab+ bc + ca)
≥

9(a− b)2(b− c)2(c − a)2

(a+ b)2(b+ c)2(c + a)2
,
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(a− b)2 + (b− c)2 + (c − a)2

(a− b)2(b− c)2(c − a)2
≥

18(ab+ bc + ca)
(a+ b)2(b+ c)2(c + a)2

,

∑ 1
(b− a)2(c − a)2

≥
18(ab+ bc + ca)

(a+ b)2(a+ c)2(b+ c)2
.

Since

∑ 1
(b− a)2(c − a)2

≥
1

b2c2
+

1
b2(b− c)2

+
1

c2(b− c)2
=

2(b2 + c2 − bc)
b2c2(b− c)2

and
ab+ bc + ca

(a+ b)2(a+ c)2(b+ c)2
≤

ab+ bc + ca
(ab+ bc + ca)2(b+ c)2

≤
1

bc(b+ c)2
,

it suffices to show that
b2 + c2 − bc
b2c2(b− c)2

≥
9

bc(b+ c)2
.

Write this inequality as follows:

(b+ c)2 − 3bc
bc

≥
9(b+ c)2 − 36bc

(b+ c)2
,

(b+ c)2

bc
− 12+

36bc
(b+ c)2

≥ 0,

(b+ c)4 − 12bc(b+ c)2 + 36b2c2 ≥ 0,

[(b+ c)2 − 6bc]2 ≥ 0.

Thus, the proof is completed. The equality holds for a = b = c, and also for a = 0
and b/c + c/b = 4 (or any cyclic permutation).

P 1.159. If a, b, c are nonnegative real numbers, no two of which are zero, then

a2 + b2 + c2

ab+ bc + ca
≥ 1+ (1+

p
2)2

(a− b)2(b− c)2(c − a)2

(a2 + b2)(b2 + c2)(c2 + a2)
.

(Vasile Cîrtoaje, 2014)

Solution. Consider the nontrivial case where a, b, c are distinct and denote k =
1+
p

2. Write the inequality as follows:

(a− b)2 + (b− c)2 + (c − a)2

2(ab+ bc + ca)
≥

k2(a− b)2(b− c)2(c − a)2

(a2 + b2)(b2 + c2)(c2 + a2)
,

(a− b)2 + (b− c)2 + (c − a)2

(a− b)2(b− c)2(c − a)2
≥

2k2(ab+ bc + ca)
(a2 + b2)(b2 + c2)(c2 + a2)

,
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∑ 1
(b− a)2(c − a)2

≥
2k2(ab+ bc + ca)

(a2 + b2)(b2 + c2)(c2 + a2)
.

Assume that a =min{a, b, c}, and use the substitution

b = a+ x , c = a+ y, x , y ≥ 0.

The inequality becomes

1
x2 y2

+
1

x2(x − y)2
+

1
y2(x − y)2

≥ 2k2 f (a),

where

f (a) =
3a2 + 2(x + y)a+ x y

(2a2 + 2xa+ x2)(2a2 + 2ya+ y2)[2a2 + 2(x + y)a+ x2 + y2]
.

We will show that

1
x2 y2

+
1

x2(x − y)2
+

1
y2(x − y)2

≥ 2k2 f (0)≥ 2k2 f (a).

We have

1
x2 y2

+
1

x2(x − y)2
+

1
y2(x − y)2

− 2k2 f (0) =
2(x2 + y2 − x y)

x2 y2(x − y)2
−

2k2 x y
x2 y2(x2 + y2)

=
2[x2 + y2 − (2+

p
2 )x y]2

x2 y2(x − y)2(x2 − x y + y2)
≥ 0.

Also, since

(2a2 + 2xa+ x2)(2a2 + 2ya+ y2)≥ 2(x2 + y2)a2 + 2x y(x + y)a+ x2 y2

and
2a2 + 2(x + y)a+ x2 + y2 ≥ x2 + y2,

we get f (a)≤ g(a), where

g(a) =
3a2 + 2(x + y)a+ x y

[2(x2 + y2)a2 + 2x y(x + y)a+ x2 y2](x2 + y2)
.

Therefore,

f (0)− f (a)≥
1

x y(x2 + y2)
− g(a)

=
(2x2 + 2y2 − 3x y)a2

x y(x2 + y2)[2(x2 + y2)a2 + 2x y(x + y)a+ x2 y2]
≥ 0.

Thus, the proof is completed. The equality holds for a = b = c, and also for a = 0
and b/c + c/b = 2+

p
2 (or any cyclic permutation).
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P 1.160. If a, b, c are nonnegative real numbers, no two of which are zero, then

2
a+ b

+
2

b+ c
+

2
c + a

≥
5

3a+ b+ c
+

5
3b+ c + a

+
5

3c + a+ b
.

Solution. Use the SOS method. Write the inequality as follows:

∑

�

2
b+ c

−
5

3a+ b+ c

�

≥ 0,

∑ 2a− b− c
(b+ c)(3a+ b+ c)

≥ 0,

∑ a− b
(b+ c)(3a+ b+ c)

+
∑ a− c
(b+ c)(3a+ b+ c)

≥ 0,

∑ a− b
(b+ c)(3a+ b+ c)

+
∑ b− a
(c + a)(3b+ c + a)

≥ 0,

∑ (a− b)2(a+ b− c)
(b+ c)(c + a)(3a+ b+ c)(3b+ c + a)

,

∑

(b− c)2Sa ≥ 0,

where
Sa = (b+ c − a)(b+ c)(3a+ b+ c).

Assume that a ≥ b ≥ c. Since Sc > 0, it suffices to show that

(b− c)2Sa + (a− c)2Sb ≥ 0.

Since Sb ≥ 0, we have

(b− c)2Sa + (a− c)2Sb ≥ (b− c)2Sa + (b− c)2Sb = (b− c)2(Sa + Sb).

Thus, it is enough to prove that Sa + Sb ≥ 0, which is equivalent to

(c + a− b)(c + a)(3b+ c + a)≥ (b+ c − a)(b+ c)(3a+ b+ c).

For the nontrivial case b + c − a > 0, since c + a − b ≥ b + c − a, we only need to
show that

(c + a)(3b+ c + a)≥ (b+ c)(3a+ b+ c).

Indeed,

(c + a)(3b+ c + a)− (b+ c)(3a+ b+ c) = (a− b)(a+ b− c)≥ 0.

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic
permutation).
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P 1.161. If a, b, c are real numbers, no two of which are zero, then

(a)
8a2 + 3bc

b2 + bc + c2
+

8b2 + 3ca
c2 + ca+ a2

+
8c2 + 3ab

a2 + ab+ b2
≥ 11;

(b)
8a2 − 5bc

b2 − bc + c2
+

8b2 − 5ca
c2 − ca+ a2

+
8c2 − 5ab

a2 − ab+ b2
≥ 9.

(Vasile Cîrtoaje, 2011)

Solution. Consider the more general inequality

a2 +mbc
b2 + kbc + c2

+
b2 +mca

c2 + kca+ a2
+

c2 +mab
a2 + kab+ b2

≥
3(m+ 1)

k+ 2
,

which can be written as f6(a, b, c)≥ 0, where

f6(a, b, c) = (k+ 2)
∑

(a2 +mbc)(a2 + kab+ b2)(a2 + kac + c2)

−3(m+ 1)
∏

(b2 + kbc + c2).

Let
p = a+ b+ c, q = ab+ bc + ca.

From

f6(a, b, c) = (k+ 2)
∑

(a2 +mbc)(kab− c2 + p2 − 2q)(kac − b2 + p2 − 2q)

−3(m+ 1)
∏

(kbc − a2 + p2 − 2q).

it follows that f6(a, b, c) has the same highest coefficient A as

(k+ 2)P2(a, b, c)− 3(m+ 1)P3(a, b, c),

where
P2(a, b, c) =

∑

(a2 +mbc)(kab− c2)(kac − b2),

P3(a, b, c) =
∏

(kbc − a2).

According to Remark 2 from the proof of P 2.75 in Volume 1,

A= (k+ 2)P2(1, 1,1)− 3(m+ 1)P3(1,1, 1)

= 3(k+ 2)(m+ 1)(k− 1)2 − 3(m+ 1)(k− 1)3 = 9(m+ 1)(k− 1)2.

Also, we have

f6(a, 1, 1) = (k+ 2)(a2 + ka+ 1)(a− 1)2[a2 + (k+ 2)a+ 1+ 2k− 2m].
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(a) For our particular case m = 3/8 and k = 1, we have A = 0. Therefore,
according to P 2.75 in Volume 1, it suffices to prove that f6(a, 1, 1) ≥ 0 for all real
a. Indeed,

f6(a, 1, 1) = 3(a2 + a+ 1)(a− 1)2
�

a+
3
2

�2

≥ 0.

Thus, the proof is completed. The equality holds for a = b = c, and also for
−2a/3= b = c (or any cyclic permutation).

(b) For m= −5/8 and k = −1, we have

A=
27
2

and
f6(a, 1, 1) =

1
4
(a2 − a+ 1)(a− 1)2(2a+ 1)2.

Since A > 0, we will use the highest coefficient cancellation method. Consider the
homogeneous polynomial

P(a, b, c) = abc + Bp3 + C pq,

where B and C are real constants. Since the desired inequality becomes an equality
for a = b = c = 1, and also for a = −1/2 and b = c = 1, we will determine B and
C such that P(1,1, 1) = P(−1/2,1, 1) = 0; that is,

B =
4
27

, C =
−5
9

,

when

P(a, b, c) = abc +
4p3

27
−

5pq
9

,

P(a, 1, 1) =
2

27
(a− 1)2(2a+ 1).

We will show that
f6(a, b, c)≥

27
2

P2(a, b, c).

Let us denote
g6(a, b, c) = f6(a, b, c)−

27
2

P2(a, b, c).

Since g6(a, b, c) has the highest coefficient equal to zero, it suffices to prove that
g6(a, 1, 1)≥ 0 for all real a (see P 2.75 in Volume 1). Indeed,

g6(a, 1, 1) = f6(a, 1, 1)−
27
2

P2(a, 1, 1) =
1

108
(a−1)2(2a+1)2(19a2−11a+19)≥ 0.

The equality holds for a = b = c, and also for −2a = b = c (or any cyclic permuta-
tion).
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P 1.162. If a, b, c are real numbers, no two of which are zero, then

4a2 + bc
4b2 + 7bc + 4c2

+
4b2 + ca

4c2 + 7ca+ 4a2
+

4c2 + ab
4a2 + 7ab+ 4b2

≥ 1.

(Vasile Cîrtoaje, 2011)

Solution. Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) =
∑

(4a2+ bc)(4a2+7ab+4b2)(4a2+7ac+4c2)−
∏

(4b2+7bc+4c2).

Let
p = a+ b+ c, q = ab+ bc + ca.

From

f6(a, b, c) =
∑

(4a2 + bc)(7ab− 4c2 + 4p2 − 8q)(7ac − 4b2 + 4p2 − 8q)

−
∏

(7bc − 4a2 + 4p2 − 8q),

it follows that f6(a, b, c) has the same highest coefficient A as

P2(a, b, c)− P3(a, b, c),

where
P2(a, b, c) =

∑

(4a2 + bc)(7ab− 4c2)(7ac − 4b2),

P3(a, b, c) =
∏

(7bc − 4a2).

According to Remark 2 from the proof of P 2.75 in Volume 1,

A= P2(1,1, 1)− P3(1, 1,1) = 135− 27= 108.

Since A> 0, we will apply the highest coefficient cancellation method. Consider the
homogeneous polynomial

P(a, b, c) = abc + Bp3 + C pq,

where B and C are real constants. We will show that there are two real numbers B
and C such that the following sharper inequality holds

f6(a, b, c)≥ 108P2(a, b, c).

Let us denote
g6(a, b, c) = f6(a, b, c)− 108P2(a, b, c).

Clearly, g6(a, b, c) has the highest coefficient equal to zero. Then, by P 2.75 in
Volume 1, it suffices to prove that there exist B and C such that g6(a, 1, 1) ≥ 0 for
all real a.
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We have
g6(a, 1, 1) = f6(a, 1, 1)− 108P2(a, 1, 1),

where
f6(a, 1, 1) = 4(4a2 + 7a+ 4)(a− 1)2(4a2 + 15a+ 16),

P(a, 1, 1) = a+ B(a+ 2)3 + C(a+ 2)(2a+ 1).

Let us denote g(a) = f6(a, 1, 1). Since

g(−2) = 0,

the condition
g ′(−2) = 0,

which involves C = −5/9, is necessary to have g(a) ≥ 0 in the vicinity of a = −2.
On the other hand, from g(1) = 0, we get B = 4/27. For these values of B and C ,
we get

P(a, 1, 1) =
2(a− 1)2(2a+ 1)

27
,

g6(a, 1, 1) =
4
27
(a− 1)2(a+ 2)2(416a2 + 728a+ 431)≥ 0.

The proof is completed. The equality holds for a = b = c, and for a = 0 and
b+ c = 0 (or any cyclic permutation).

P 1.163. If a, b, c are real numbers, no two of which are equal, then

1
(a− b)2

+
1

(b− c)2
+

1
(c − a)2

≥
27

4(a2 + b2 + c2 − ab− bc − ca)
.

First Solution. Write the inequality as follows:

�

(a− b)2 + (b− c)2 + (a− c)2
�

�

1
(a− b)2

+
1

(b− c)2
+

1
(a− c)2

�

≥
27
2

,

�

(a− b)2

(a− c)2
+
(b− c)2

(a− c)2
+ 1

��

(a− c)2

(a− b)2
+
(a− c)2

(b− c)2
+ 1

�

≥
27
2

,

(x2 + y2 + 1)
�

1
x2
+

1
y2
+ 1

�

≥
27
2

,

where

x =
a− b
a− c

, y =
b− c
a− c

, x + y = 1.
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We have

(x2 + y2 + 1)
�

1
x2
+

1
y2
+ 1

�

−
27
2
=
(x + 1)2(x − 2)2(2x − 1)2

2x2(1− x)2
≥ 0.

The proof is completed. The equality holds for 2a = b + c (or any cyclic permuta-
tion).

Second Solution. Assume that a > b > c. We have

1
(a− b)2

+
1

(b− c)2
≥

2
(a− b)(b− c)

≥
8

[(a− b) + (b− c)]2
=

8
(a− c)2

.

Therefore, it suffices to show that

9
(a− c)2

≥
27

4(a2 + b2 + c2 − ab− bc − ca)
,

which is equivalent to
(a− 2b+ c)2 ≥ 0.

Third Solution. Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) = 4(a2+b2+c2−ab−bc−ca)
∑

(a−b)2(a−c)2−27(a−b)2(b−c)2(c−a)2.

Clearly, f6(a, b, c) has the same highest coefficient A as

−27(a− b)2(b− c)2(c − a)2;

that is,
A= −27(−27) = 729.

Since A > 0, we will use the highest coefficient cancellation method. Define the
homogeneous polynomial

P(a, b, c) = abc + B(a+ b+ c)3 −
�

3B +
1
9

�

(a+ b+ c)(ab+ bc + ca)

which satisfies P(1, 1,1) = 0. We will show that there is a real value of B such that
the following sharper inequality holds

f6(a, b, c)≥ 729P2(a, b, c).

Let us denote
g6(a, b, c) = f6(a, b, c)− 729P2(a, b, c).

Clearly, g6(a, b, c) has the highest coefficient equal to zero. Then, by P 2.75 in
Volume 1, it suffices to prove that g6(a, 1, 1)≥ 0 for all real a. We have

f6(a, 1, 1) = 4(a− 1)6
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and
P(a, 1, 1) =

1
9
(a− 1)2[9B(a+ 2) + 2],

hence

g6(a, 1, 1) = f6(a, 1, 1)− 729P2(a, 1, 1)
= (27B + 2)(a+ 2)(a− 1)4[(2− 27B)a− 54B − 8].

Choosing B = −2/27, we get g6(a, 1, 1) = 0 for all real a.

Remark. The inequality is equivalent to

(a− 2b+ c)2(b− 2c + a)2(c − 2a+ b)2 ≥ 0.

P 1.164. If a, b, c are real numbers, no two of which are zero, then

1
a2 − ab+ b2

+
1

b2 − bc + c2
+

1
c2 − ca+ a2

≥
14

3(a2 + b2 + c2)
.

(Vasile Cîrtoaje and BJSL, 2014)

Solution. Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) =3(a2 + b2 + c2)
∑

(a2 − ab+ b2)(a2 − ac + c2)

− 14(a2 − ab+ b2)(b2 − bc + c2)(c2 − ca+ a2).

Clearly, f6(a, b, c) has the same highest coefficient A as

−14(a2 − ab+ b2)(b2 − bc + c2)(c2 − ca+ a2);

that is, according to Remark 2 from the proof of P 2.75 in Volume 1,

A= −14(−1− 1)3 = 112.

Since A > 0, we apply the highest coefficient cancellation method. Consider the
homogeneous polynomial

P(a, b, c) = abc + B(a+ b+ c)3 + C(a+ b+ c)(ab+ bc + ca).

We will show that there are two real numbers B and C such that the following
sharper inequality holds

f6(a, b, c)≥ 112P2(a, b, c).

Let us denote
g6(a, b, c) = f6(a, b, c)− 112P2(a, b, c).



Symmetric Rational Inequalities 219

Clearly, g6(a, b, c) has the highest coefficient equal to zero. By P 2.75 in Volume 1,
it suffices to prove that g6(a, 1, 1)≥ 0 for all real a. We have

g6(a, 1, 1) = f6(a, 1, 1)− 112P2(a, 1, 1),

where
f6(a, 1, 1) = (a2 − a+ 1)(3a4 − 3a3 + a2 + 8a+ 4),

P(a, 1, 1) = a+ B(a+ 2)3 + C(a+ 2)(2a+ 1).

Let us denote g(a) = g6(a, 1, 1). Since

g(−2) = 0,

the condition
g ′(−2) = 0,

which involves C = −4/7, is necessary to have g(a) ≥ 0 in the vicinity of a = −2.
In addition, setting B = 9/56, we get

P(a, 1, 1) =
1

56
(9a3 − 10a2 + 4a+ 8),

g6(a, 1, 1) =
3

28
(a6 + 4a5 + 8a4 + 16a3 + 20a2 + 16a+ 16)

=
3(a+ 2)2(a2 + 2)2

28
≥ 0.

The proof is completed. The equality holds for a = 0 and b + c = 0 (or any cyclic
permutation).

P 1.165. If a, b, c are real numbers, then

a2 + bc
2a2 + b2 + c2

+
b2 + ca

a2 + 2b2 + c2
+

c2 + ab
a2 + b2 + 2c2

≥
1
6

.

(Vasile Cîrtoaje, 2010)

Solution. Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) =6
∑

(a2 + bc)(a2 + 2b2 + c2)(a2 + b2 + 2c2)

− (2a2 + b2 + c2)(a2 + 2b2 + c2)(a2 + b2 + 2c2).

Clearly, f6(a, b, c) has the same highest coefficient A as f (a, b, c), where

f (a, b, c) = 6
∑

(a2 + bc)b2c2 − a2 b2c2 = 17a2 b2c2 + 6(a3 b3 + b3c3 + c3a3);
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that is,
A= 17+ 6 · 3= 35.

Since A > 0, we apply the highest coefficient cancellation method. Consider the
homogeneous polynomial

P(a, b, c) = abc + B(a+ b+ c)3 + C(a+ b+ c)(ab+ bc + ca)

and show that there are two real numbers B and C such that the following sharper
inequality holds

f6(a, b, c)≥ 35P2(a, b, c).

Let us denote
g6(a, b, c) = f6(a, b, c)− 35P2(a, b, c).

Clearly, g6(a, b, c) has the highest coefficient equal to zero. By P 2.75 in Volume 1,
it suffices to prove that g6(a, 1, 1)≥ 0 for all real a. We have

g6(a, 1, 1) = f6(a, 1, 1)− 35P2(a, 1, 1),

where
f6(a, 1, 1) = 4(a2 + 1)(a2 + 3)(a+ 3)2,

P(a, 1, 1) = a+ B(a+ 2)3 + C(a+ 2)(2a+ 1).

Let
g(a) = g6(a, 1, 1).

Since g(−2) = 0, we can have g(a)≥ 0 in the vicinity of a = −2 only if g ′(−2) = 0,
which involves C = 19/35. Since f6(−3, 1,1) = 0, we enforce P(−3, 1,1) = 0,
which provides B = −2/7. Thus,

P(a, 1, 1) = a−
2
7
(a+ 1)3 +

19
35
(a+ 2)(2a+ 1) =

−2(a+ 3)(5a2 − 4a+ 7)
35

and

g6(a, 1, 1) = 4(a2 + 1)(a2 + 3)(a+ 3)2 −
4
35
(a+ 3)2(5a2 − 4a+ 7)2

=
8
35
(a+ 3)2(a+ 2)2(5a2 + 7)≥ 0.

The proof is completed. The equality holds for a = 0 and b + c = 0 (or any cyclic
permutation), and also for −a/3= b = c (or any cyclic permutation).

P 1.166. If a, b, c are real numbers, then

2b2 + 2c2 + 3bc
(a+ 3b+ 3c)2

+
2c2 + 2a2 + 3ca
(b+ 3c + 3a)2

+
2a2 + 2b2 + 3ab
(c + 3a+ 3b)2

≥
3
7

.

(Vasile Cîrtoaje, 2010)
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Solution. Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) = 7
∑

(2b2+2c2+3bc)(b+3c+3a)2(c+3a+3b)2−3
∏

(a+3b+3c)2.

We have
f6(a, 1, 1) = (a− 1)2(a− 8)2(3a+ 4)2.

Let
p = a+ b+ c, q = ab+ bc + ca, r = abc.

From

f6(a, b, c) = 7
∑

(2p2 − 4q+ 3bc − 2a2)(3p− 2b)2(3p− 2c)2 − 3
∏

(3p− 2a)2,

it follows that f (a, b, c) has the same highest coefficient A as g(a, b, c), where

g(a, b, c) = 7
∑

(3bc−2a2)(−2b)2(−2c)2−3
∏

(−2a)2 = 48
�

7
∑

b3c3 − 18a2 b2c2
�

;

that is,
A= 48(21− 18) = 144.

Since the highest coefficient A is positive, we will use the highest coefficient cancel-
lation method. There are two cases to consider: p2 + q ≥ 0 and p2 + q < 0.

Case 1: p2 + q ≥ 0. Since

f6(1,1, 1) = f6(8,1, 1) = 0,

define the homogeneous function

P(a, b, c) = r + Bp3 + C pq

such that P(1,1, 1) = P(8, 1,1) = 0; that is,

P(a, b, c) = r +
1

45
p3 −

8
45

pq,

which leads to

P(a, 1, 1) =
45a+ (a+ 2)3 − 8(a+ 2)(2a+ 1)

45
=
(a− 1)2(a− 8)

45
.

We will show that the following sharper inequality holds for p2 + q ≥ 0:

f6(a, b, c)≥ 144P2(a, b, c).

Let us denote
g6(a, b, c) = f6(a, b, c)− 144P2(a, b, c).
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Since the highest coefficient of g6(a, b, c) is zero, it suffices to prove that g6(a, 1, 1)≥
0 for all real a such that (a+ 2)2 + 2a+ 1≥ 0, that is

a ∈ (−∞,−5]∪ [−1,∞)

(see Remark 3 from the proof of P 2.75 in Volume 1). We have

g6(a, 1, 1) = f6(a, 1, 1)− 144P2(a, 1, 1)

=
1

225
(a− 1)2(a− 8)2[225(3a+ 4)2 − 16(a− 1)2]

=
7

225
(a− 1)2(a− 8)2(41a+ 64)(7a+ 8)≥ 0.

Case 2: p2 + q < 0. Since

f6(1, 1,1) = f6(−4/3,1, 1) = 0,

define the homogeneous function

P(a, b, c) = r + Bp3 + C pq

such that P(1, 1,1) = P(−4/3, 1,1) = 0; that is,

P(a, b, c) = r +
1
3

p3 −
10
9

pq,

which leads to

P(a, 1, 1) =
9a+ 3(a+ 2)3 − 10(a+ 2)(2a+ 1)

9
=
(a− 1)2(3a+ 4)

9
.

We will show that the following sharper inequality holds for p2 + q < 0:

f6(a, b, c)≥ 144P2(a, b, c).

Let us denote
g6(a, b, c) = f6(a, b, c)− 144P2(a, b, c).

Since the highest coefficient of g6(a, b, c) is zero, it suffices to prove that g6(a, 1, 1)≥
0 for all real a such that (a+ 2)2 + 2a+ 1< 0, that is

a ∈ (−5,−1)

(see Remark 3 from the proof of P 2.75 in Volume 1). We have

g6(a, 1, 1) = f6(a, 1, 1)− 144P2(a, 1, 1)

=
1
9
(a− 1)2(3a+ 4)2[9(a− 8)2 − 16(a− 1)2]

=
7
9
(a− 1)2(3a+ 4)2(20+ a)(4− a)≥ 0.

The proof is completed. The equality holds for a = b = c, for a/8 = b = c (or any
cyclic permutation), and also for −3a/4= b = c (or any cyclic permutation).



Symmetric Rational Inequalities 223

P 1.167. If a, b, c are nonnegative real numbers, then

6b2 + 6c2 + 13bc
(a+ 2b+ 2c)2

+
6c2 + 6a2 + 13ca
(b+ 2c + 2a)2

+
6a2 + 6b2 + 13ab
(c + 2a+ 2b)2

≤ 3.

(Vasile Cîrtoaje, 2010)

Solution. Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) = 3
∏

(a+2b+2c)2−
∑

(6b2+6c2+13bc)(b+2c+2a)2(c+2a+2b)2.

Let
p = a+ b+ c, q = ab+ bc + ca.

From

f6(a, b, c) = 3
∏

(2p− a)2 −
∑

(6p2 − 12q+ 13bc − 6a2)(2p− b)2(2p− c)2,

it follows that f (a, b, c) has the same highest coefficient A as g(a, b, c), where

g(a, b, c) = 3
∏

(−a)2 −
∑

(13bc − 6a2)(−b)2(−c)2 = 21a2 b2c2 − 13
∑

b3c3;

that is,
A= 21− 39= −18.

Since the highest coefficient A is negative, it suffices to prove the desired inequality
for b = c = 1, and for a = 0 (see P 3.76-(a) in Volume 1).

For b = c = 1, the inequality becomes

25
(a+ 4)2

+
2(6a2 + 13a+ 6)
(2a+ 3)2

≤ 3,

2(6a2 + 13a+ 6)
(2a+ 3)2

≤
3a2 + 24a+ 23
(a+ 4)2

,

5(2a+ 3)(a− 1)2

(2a+ 3)2(a+ 4)2
≥ 0.

For a = 0, the inequality turns into

6b2 + 6c2 + 13bc
4(b+ c)2

+
6c2

(b+ 2c)2
+

6b2

(2b+ c)2
≤ 3,

6b2 + 6c2 + 13bc
4(b+ c)2

+
6[(b2 + c2)2 + 4bc(b2 + c2) + 6b2c2]

(2b2 + 2c2 + 5bc)2
≤ 3.

If bc = 0, then the inequality is an identity. For bc 6= 0, we may consider bc = 1
(due to homogeneity). Denoting

x = b2 + c2, x ≥ 2,
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the inequality becomes

6x + 13
4(x + 2)

+
6(x2 + 4x + 6)
(2x + 5)2

≤ 3,

which reduces to the obvious inequality

20x2 + 34x − 13≥ 0.

The equality holds for a = b = c, and also for a = b = 0 (or any cyclic permutation).

P 1.168. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

3a2 + 8bc
9+ b2 + c2

+
3b2 + 8ca
9+ c2 + a2

+
3c2 + 8ab
9+ a2 + b2

≤ 3.

(Vasile Cîrtoaje, 2010)

Solution. Let
p = a+ b+ c, q = ab+ bc + ca.

Write the inequality in the homogeneous form

3a2 + 8bc
p2 + b2 + c2

+
3b2 + 8ca

p2 + c2 + a2
+

3c2 + 8ab
p2 + a2 + b2

≤ 3,

which is equivalent to f6(a, b, c)≥ 0, where

f6(a, b, c) = 3
∏

(p2 + b2 + c2)−
∑

(3a2 + 8bc)(p2 + c2 + a2)(p2 + a2 + b2).

From

f6(a, b, c) = 3
∏

(2p2 − 2q− a2)−
∑

(3a2 + 8bc)(2p2 − 2q− b2)(2p2 − 2q− c2),

it follows that f (a, b, c) has the same highest coefficient A as g(a, b, c), where

g(a, b, c) = 3
∏

(−a)2 −
∑

(3a2 + 8bc)(−b2)(−c2) = −12a2 b2c2 − 8
∑

b3c3;

that is,
A= −12− 24= −36.

Since the highest coefficient A is negative, it suffices to prove the homogeneous
inequality for b = c = 1 and for a = 0 (see P 3.76-(a) in Volume 1).

For b = c = 1, we need to show that

3a2 + 8
(a+ 2)2 + 2

+
2(3+ 8a)

(a+ 2)2 + a2 + 1
≤ 3,
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which is equivalent to

3a2 + 8
a2 + 4a+ 6

+
2(8a+ 3)

2a2 + 4a+ 5
≤ 3,

8a+ 3
2a2 + 4a+ 5

≤
6a+ 5

a2 + 4a+ 6
,

4a3 − a2 − 10a+ 7≥ 0,

(a− 1)2(4a+ 7)≥ 0.

For a = 0, we need to show that

8bc
(b+ c)2 + b2 + c2

+
3b2

(b+ c)2 + c2
+

3c2

(b+ c)2 + b2
≤ 3.

Clearly, it suffices to show that

8bc
(b+ c)2 + b2 + c2

+
3(b2 + c2)
(b+ c)2

≤ 3,

which is equivalent to
4bc

b2 + c2 + bc
≤

6bc
(b+ c)2

,

bc(b− c)2 ≥ 0.

The equality holds for a = b = c = 1, and also for a = b = 0 and c = 3 (or any
cyclic permutation).

P 1.169. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

5a2 + 6bc
9+ b2 + c2

+
5b2 + 6ca
9+ c2 + a2

+
5c2 + 6ab
9+ a2 + b2

≥ 3.

(Vasile Cîrtoaje, 2010)

Solution. We use the highest coefficient method. Let

p = a+ b+ c, q = ab+ bc + ca.

Write the inequality in the homogeneous form f6(a, b, c)≥ 0, where

f6(a, b, c) =
∑

(5a2 + 6bc)(p2 + c2 + a2)(p2 + a2 + b2)− 3
∏

(p2 + b2 + c2).

From

f6(a, b, c) =
∑

(5a2 + 6bc)(2p2 − 2q− b2)(2p2 − 2q− c2)− 3
∏

(2p2 − 2q− a2),
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it follows that f6(a, b, c) has the same highest coefficient A as

f (a, b, c) =
∑

(5a2+6bc)(−b2)(−c2)−3(−a2)(−b2)(−c2) = 18a2 b2c2+6
∑

b3c3;

therefore,
A= 18+ 18= 36.

On the other hand,

f6(a, 1, 1) = 4a(2a2 + 4a+ 5)(a+ 1)(a− 1)2 ≥ 0

and

f6(0, b, c) = 6bcBC + 5b2AB + 5c2AC − 3ABC

= −3(A− 2bc)BC + 5A(b2B + c2C),

where

A= (b+ c)2 + b2 + c2, B = (b+ c)2 + b2, C = (b+ c)2 + c2.

Substituting
(b+ c)2 = 4x , bc = y, x ≥ y,

we have
A= 2(4x − y), B = 4x + b2, C = 4x + c2,

A− 2bc = 4(2x − y),

BC = 16x2 + 4x(b2 + c2) + b2c2 = 16x2 + 4x(4x − 2y) + y2 = 32x2 − 8x y + y2,

b2B + c2C = 4x(b2 + c2) + b4 + c4 = 2(16x2 − 12x y + y2),

therefore

f6(0, b, c) = −12(2x − y)(32x2 − 8x y + y2) + 20(4x − y)(16x2 − 12x y + y2)

= 8(64x3 − 88x2 y + 25x y2 − y3) = 8(x − y)(64x2 − 24x y + y2).

Since
f6(1, 1,1) = f6(0, 1,1) = 0,

define the homogeneous function

P(a, b, c) = abc + B(a+ b+ c)3 + C(a+ b+ c)(ab+ bc + ca)

such that P(1,1, 1) = P(0,1, 1) = 0; that is,

P(a, b, c) = abc +
1
9
(a+ b+ c)3 −

4
9
(a+ b+ c)(ab+ bc + ca).

We have

P(a, 1, 1) =
a(a− 1)2

9
, P2(a, 1, 1) =

a2(a− 1)4

81
,
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P(0, b, c) =
(b+ c)(b− c)2

9
, P2(0, b, c) =

64x(x − y)2

81
.

We will prove the sharper inequality g6(a, b, c)≥ 0, where

g6(a, b, c) = f6(a, b, c)− 36P2(a, b, c).

Clearly, g6(a, b, c) has the highest coefficient A = 0. Then, according to P 3.76-
(a) in Volume 1, it suffices to prove that g6(a, 1, 1) ≥ 0 and g6(0, b, c) ≥ 0 for
a, b, c ≥ 0.

We have

g6(a, 1, 1) = f6(a, 1, 1)− 36P2(a, 1, 1) =
4a(a− 1)2h(a)

9
,

where

h(a) = 9(2a2 + 4a+ 5)(a+ 1)− a(a− 1)2

> (a− 1)2(a+ 1)− a(a− 1)2 = (a− 1)2 ≥ 0.

Also, we have

g6(0, b, c) = f6(0, b, c)− 36P2(0, b, c) =
8(x − y)g(x , y)

9
,

where

g(x , y) = 9(64x2 − 24x y + y2)− 32x(x − y)

> (64x2 − 24x y + y2)− 32x(x − y) = 32x2 + 8x y + y2 > 0.

The equality holds for a = b = c = 1, and also for a = 0 and b = c = 3/2 (or any
cyclic permutation).

P 1.170. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

1
a2 + bc + 12

+
1

b2 + ca+ 12
+

1
c2 + ab+ 12

≤
3

14
.

(Vasile Cîrtoaje, 2010)

Solution. Write the inequality in the homogeneous form

1
3(a2 + bc) + 4p2

+
1

3(b2 + ca) + 4p2
+

1
3(c2 + ab) + 4p2

≤
9

14p2
,

where
p = a+ b+ c.
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The inequality is equivalent to f6(a, b, c)≥ 0, where

f6(a, b, c) = 9
∏

(3a2 + 3bc + 4p2)− 14p2
∑

(3b2 + 3ca+ 4p2)(3c2 + 3ab+ 4p2).

Clearly, f6(a, b, c) has the same highest coefficient A as

g(a, b, c) = 243
∏

(a2 + bc).

According to Remark 2 from the proof of P 2.75 in Volume 1, we have

A= g(1, 1,1) = 243 · 8= 1944.

Since the highest coefficient A is positive, we will apply the highest coefficient can-
cellation method. We have

f6(a, 1, 1) =9[3a2 + 3+ 4(a+ 2)2][3a+ 3+ 4(a+ 2)2]2

− 14(a+ 2)2[3a+ 3+ 4(a+ 2)2]2

− 28(a+ 2)2[3a+ 3+ 4(a+ 2)2][3a2 + 3+ 4(a+ 2)2]

=9(7a2 + 16a+ 19)(4a2 + 19a+ 19)2 − 14(a+ 2)2(4a2 + 19a+ 19)2

− 28(a+ 2)2(4a2 + 19a+ 19)(7a2 + 16a+ 19)

=3(4a2 + 19a+ 19) f (a),

where

f (a) = 3(7a2 + 16a+ 19)(4a2 + 19a+ 19)− 14(a+ 2)2(6a2 + 17a+ 19)

= 17a3 − 15a2 − 21a+ 19= (a− 1)2(17a+ 19);

therefore,
f6(a, 1, 1) = 3(4a2 + 19a+ 19)(a− 1)2(17a+ 19).

Since
f6(1,1, 1) = f6(1,0, 0) = 0,

define the homogeneous function

P(a, b, c) = abc + B(a+ b+ c)3 + C(a+ b+ c)(ab+ bc + ca)

such that P(1,1, 1) = P(1, 0,0) = 0; that is,

P(a, b, c) = abc −
1
9
(a+ b+ c)(ab+ bc + ca).

We will prove the sharper inequality g6(a, b, c)≥ 0, where

g6(a, b, c) = f6(a, b, c)− 1944P2(a, b, c).

Clearly, g6(a, b, c) has the highest coefficient A= 0. Then, it suffices to prove that
g6(a, 1, 1)≥ 0 and g6(0, b, c)≥ 0 for a, b, c ≥ 0 (see P 3.76-(a) in Volume 1).
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To show that g6(a, 1, 1)≥ 0, which can be written as

f6(a, 1, 1)− 1944P2(a, 1, 1)≥ 0,

we see that

P(a, 1, 1) = a−
(a+ 2)(2a+ 1)

9
=
−2(a− 1)2

9
,

P2(a, 1, 1) =
4(a− 1)4

81
,

hence

g6(a, 1, 1) = 3(4a2 + 19a+ 19)(a− 1)2(17a+ 19)− 96(a− 1)4

= 3(a− 1)2h(a),

where
h(a) = (4a2 + 19a+ 19)(17a+ 19)− 32(a− 1)2.

We need to show that h(a)≥ 0 for a ≥ 0. Indeed, since

(4a2 + 19a+ 19)(17a+ 19)> (19a+ 19)(17a+ 17)> 32(a+ 1)2,

we get
h(a)> 32[(a+ 1)2 − (a− 1)2] = 128a ≥ 0.

To show that g6(0, b, c)≥ 0, denote

x = (b+ c)2, y = bc.

We have

f6(0, b, c) = 9ABC − 14x[BC + A(B + C)] = (9A− 14x)BC − 14xA(B + C),

where
A= 4x + 3y, B = 4x + 3b2, C = 4x + 3c2.

Since

9A− 14x = 22x + 27y, B + C = 8x + 3(x − 2y) = 11x − 6y,

BC = 16x2 + 12x(x − 2y) + 9y2 = 28x2 − 24x y + 9y2,

we get

f6(0, b, c) = (22x + 27y)(28x2 − 24x y + 9y2)− 14x(4x + 3y)(11x − 6y)

= 3y(34x2 − 66x y + 81y2).

Also,

P(0, b, c) =
−bc(b+ c)

9
, P2(0, b, c) =

x y2

81
.
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Hence

g6(0, b, c) = f6(0, b, c)− 1944P2(0, b, c) = 3y(34x2 − 74x y + 81y2)

≥ 3y(25x2 − 90x y + 81y2) = 3y(5x − 9y)2 ≥ 0.

The equality holds for a = b = c, and also for a = b = 0 (or any cyclic permutation).

P 1.171. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
a2 + b2

+
1

b2 + c2
+

1
c2 + a2

≥
45

8(a2 + b2 + c2) + 2(ab+ bc + ca)
.

(Vasile Cîrtoaje, 2014)

First Solution (by Nguyen Van Quy). Multiplying by a2+ b2+ c2, the inequality be-
comes

∑ a2

b2 + c2
+ 3≥

45(a2 + b2 + c2)
8(a2 + b2 + c2) + 2(ab+ bc + ca)

.

Applying the Cauchy-Schwarz inequality, we have

∑ a2

b2 + c2
≥

�∑

a2
�2

∑

a2(b2 + c2)
=

(a2 + b2 + c2)2

2(a2 b2 + b2c2 + c2a2)
.

Therefore, it suffices to show that

(a2 + b2 + c2)2

2(a2 b2 + b2c2 + c2a2)
+ 3≥

45(a2 + b2 + c2)
8(a2 + b2 + c2) + 2(ab+ bc + ca)

,

which is equivalent to

(a2 + b2 + c2)2

a2 b2 + b2c2 + c2a2
− 3≥

45(a2 + b2 + c2)
4(a2 + b2 + c2) + ab+ bc + ca

− 9,

a4 + b4 + c4 − a2 b2 − b2c2 − c2a2

a2 b2 + b2c2 + c2a2
≥

9(a2 + b2 + c2 − ab− bc − ca)
4(a2 + b2 + c2) + ab+ bc + ca

.

By Schur’s inequality of degree four, we have

a4 + b4 + c4 − a2 b2 − b2c2 − c2a2 ≥ (a2 + b2 + c2 − ab− bc − ca)(ab+ bc + ca).

Therefore, it suffices to show that

[4(a2 + b2 + c2) + ab+ bc + ca](ab+ bc + ca)≥ 9(a2 b2 + b2c2 + c2a2).

Since
(ab+ bc + ca)2 ≥ a2 b2 + b2c2 + c2a2,
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this inequality is true if

4(a2 + b2 + c2)(ab+ bc + ca)≥ 8(a2 b2 + b2c2 + c2a2),

which is equivalent to the obvious inequality

ab(a− b)2 + bc(b− c)2 + ca(c − a)2 + abc(a+ b+ c)≥ 0.

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic
permutation).

Second Solution. Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) =
�

8(a2 + b2 + c2) + 2(ab+ bc + ca)
�

∑

(a2+b2)(a2+c2)−45
∏

(b2+c2).

Clearly, f6(a, b, c) has the same highest coefficient A as

f (a, b, c) = −45
∏

(b2 + c2) = −45
∏

(p2 − 2q− a2),

where p = a+ b+ c and q = ab+ bc + ca; that is,

A= 45.

Since A> 0, we will apply the highest coefficient cancellation method. We have

f6(a, 1, 1) = 4a(2a+ 5)(a2 + 1)(a− 1)2,

f6(0, b, c) = (b− c)2[8(b4 + c4) + 18bc(b2 + c2) + 15b2c2].

Since
f6(1, 1,1) = f6(0, 1,1) = 0,

define the homogeneous function

P(a, b, c) = abc + B(a+ b+ c)3 + C(a+ b+ c)(ab+ bc + ca)

such that P(1,1, 1) = P(0,1, 1) = 0; that is,

P(a, b, c) = abc +
1
9
(a+ b+ c)3 −

4
9
(a+ b+ c)(ab+ bc + ca).

We will show that the following sharper inequality holds

f6(a, b, c)≥ 45P2(a, b, c).

Let us denote
g6(a, b, c) = f6(a, b, c)− 45P2(a, b, c).

Clearly, g6(a, b, c) has the highest coefficient equal to zero. By P 3.76-(a) in Volume
1, it suffices to prove that g6(a, 1, 1) ≥ 0 and g6(0, b, c) ≥ 0 for all a, b, c ≥ 0. We
have

P(a, 1, 1) =
a(a− 1)2

9
,



232 Vasile Cîrtoaje

hence

g6(a, 1, 1) = f6(a, 1, 1)−45P2(a, 1, 1) =
a(a− 1)2(67a3 + 190a2 + 67a+ 180)

9
≥ 0.

Also, we have

P(0, b, c) =
(b+ c)(b− c)2

9
,

hence

g6(0, b, c) = f6(0, b, c)− 45P2(0, b, c)

=
(b− c)2[67(b4 + c4) + 162bc(b2 + c2) + 145b2c2]

9
≥ 0.

P 1.172. If a, b, c are real numbers, no two of which are zero, then

a2 − 7bc
b2 + c2

+
b2 − 7ca
a2 + b2

+
c2 − 7ab
a2 + b2

+
9(ab+ bc + ca)

a2 + b2 + c2
≥ 0.

(Vasile Cîrtoaje, 2014)

Solution. Let
p = a+ b+ c, q = ab+ bc + ca, r = abc.

Write the inequality as f8(a, b, c)≥ 0, where

f8(a, b, c) =(a2 + b2 + c2)
∑

(a2 − 7bc)(a2 + b2)(a2 + c2)

+ 9(ab+ bc + ca)
∏

(b2 + c2)

is a symmetric homogeneous polynomial of degree eight. Notice that any symmet-
ric homogeneous polynomial of degree eight f8(a, b, c) can be written in the form

f8(a, b, c) = A(p, q)r2 + B(p, q)r + C(p, q),

where the highest polynomial A(p, q) has the form

A(p, q) = αp2 + βq.

Since

f8(a, b, c) =(p2 − 2q)
∑

(a2 − 7bc)(p2 − 2q− c2)(p2 − 2q− b2)

+ 9q
∏

(p2 − 2q− a2),
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f8(a, b, c) has the same highest polynomial as

g8(a, b, c) =(p2 − 2q)
∑

(a2 − 7bc)(−c2)(−b2) + 9q(−a2)(−b2)(−c2)

=(p2 − 2q)
�

3r2 − 7
∑

b3c3
�

− 9qr2;

that is,
A(p, q) = (p2 − 2q)(3− 21)− 9q = −9(p2 − 3q).

Since A(p, q) ≤ 0 for all real a, b, c, it suffices to prove the original inequality for
b = c = 1 (see Lemma below). We need to show that

a2 − 7
2
−

2(7a− 1)
a2 + 1

+
9(2a+ 1)

a2 + 2
≥ 0,

which is equivalent to

(a− 1)2(a+ 2)2(a2 − 2a+ 3)≥ 0.

The equality holds for a = b = c, and also for −a/2 = b = c (or any cyclic permu-
tation).

Lemma. Let
p = a+ b+ c, q = ab+ bc + ca, r = abc,

and let f8(a, b, c) be a symmetric homogeneous polynomial of degree eight written in
the form

f8(a, b, c) = A(p, q)r2 + B(p, q)r + C(p, q),

where A(p, q) ≤ 0 for all real a, b, c. The inequality f8(a, b, c) ≥ 0 holds for all real
numbers a, b, c if and only if f8(a, 1, 1)≥ 0 for all real a.

Proof. For fixed p and q,

h8(r) = A(p, q)r2 + B(p, q)r + C(p, q)

is a concave quadratic function of r which is minimum when r is minimum or
maximum; that is, according to P 2.53 in Volume 1, when two of a, b, c are equal.
Thus, the inequality f8(a, b, c) ≥ 0 holds for all real numbers a, b, c if and only if
f8(a, 1, 1) ≥ 0 and f8(a, 0, 0) ≥ 0 for all real a. The last condition is not necessary
because it follows from the first condition as follows:

f8(a, 0, 0) = lim
t→0

f8(a, t, t) = lim
t→0

t8 f8(a/t, 1, 1)≥ 0.

Notice that A(p, q) is called the highest polynomial of f8(a, b, c).

Remark. This Lemma can be extended for the case where the highest polynomial
A(p, q is not nonnegative for all real a, b, c.

• The inequality f8(a, b, c)≥ 0 in the preceding Lemma holds for all real numbers
a, b, c satisfying

A(p, q)≤ 0

if and only if f8(a, 1, 1)≥ 0 for all real a satisfying A(a+ 2, 2a+ 1)≤ 0.
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P 1.173. If a, b, c are nonnegative real numbers, no two of which are zero, then

a2 − 4bc
b2 + c2

+
b2 − 4ca
c2 + a2

+
c2 − 4ab
a2 + b2

+
9(ab+ bc + ca)

a2 + b2 + c2
≥

9
2

.

(Vasile Cîrtoaje, 2014)

Solution. Let
p = a+ b+ c, q = ab+ bc + ca, r = abc.

Write the inequality as f8(a, b, c)≥ 0, where

f8(a, b, c) =2(a2 + b2 + c2)
∑

(a2 − 4bc)(a2 + b2)(a2 + c2)

+ 9(2ab+ 2bc + 2ca− a2 − b2 − c2)
∏

(b2 + c2)

is a symmetric homogeneous polynomial of degree eight. Any symmetric homoge-
neous polynomial of degree eight can be written in the form

f8(a, b, c) = A(p, q)r2 + B(p, q)r + C(p, q),

where A(p, q) = αp2 + βq is called the highest polynomial of f8(a, b, c). From

f8(a, b, c) =2(p2 − 2q)
∑

(a2 − 4bc)(p2 − 2q− c2)(p2 − 2q− b2)

+ 9(4q− p2
∏

(p2 − 2q− a2),

it follows that f8(a, b, c) has the same highest polynomial as

g8(a, b, c) =2(p2 − 2q)
∑

(a2 − 4bc)b2c2 + 9(4q− p2)(−a2 b2c2)

=2(p2 − 2q)
�

3r2 − 4
∑

b3c3
�

− 9(4q− p2)r2;

that is,
A(p, q) = 2(p2 − 2q)(3− 12)− 9(4q− p2) = −9p2.

Since A(p, q) ≤ 0 for all a, b, c ≥ 0, it suffices to prove the original inequality for
b = c = 1, and for a = 0 (see Lemma below).

For b = c = 1, the original inequality becomes

a2 − 4
2
−

2(4a− 1)
a2 + 1

+
9(2a+ 1)

a2 + 2
≥

9
2

,

which is equivalent to
a(a+ 4)(a− 1)4 ≥ 0.

For a = 0, the original inequality turns into

b2

c2
+

c2

b2
+

5bc
b2 + c2

≥
9
2

.
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Substituting

x =
b
c
+

c
b

, x ≥ 2,

the inequality becomes

(x2 − 2) +
5
x
≥

9
2

,

(x − 2)(2x2 + 4x − 5)≥ 0.

Thus, the proof is completed. The equality holds for a = b = c, and also for a = 0
and b = c (or any cyclic permutation).

Lemma. Let
p = a+ b+ c, q = ab+ bc + ca, r = abc,

and let f8(a, b, c) be a symmetric homogeneous polynomial of degree eight written in
the form

f8(a, b, c) = A(p, q)r2 + B(p, q)r + C(p, q),

where A(p, q) ≤ 0 for all a, b, c ≥ 0. The inequality f8(a, b, c) ≥ 0 holds for all
a, b, c ≥ 0 if and only if the inequalities f8(a, 1, 1)≥ 0 and f8(0, b, c)≥ 0 hold for all
a, b, c ≥ 0.

Proof. For fixed p and q,

h8(r) = A(p, q)r2 + B(p, q)r + C(p, q)

is a concave quadratic function of r. Therefore, h8(r) is minimum when r is mini-
mum or maximum; that is, according to P 3.57 in Volume 1, when b = c or a = 0.
Thus, the conclusion follows. Notice that A(p, q) is called the highest polynomial of
f8(a, b, c).

Remark. This Lemma can be extended for the case where the highest polynomial
A(p, q is not nonnegative for all a, b, c ≥ 0.

• The inequality f8(a, b, c) ≥ 0 in the preceding Lemma holds for all a, b, c ≥ 0
satisfying A(p, q) ≤ 0 if and only if the inequalities f8(a, 1, 1) ≥ 0 and f8(0, b, c) ≥ 0
hold for all a, b, c ≥ 0 satisfying A(a+ 2, 2a+ 1)≤ 0 and A(b+ c, bc)≤ 0.

P 1.174. If a, b, c are real numbers such that abc 6= 0, then

(b+ c)2

a2
+
(c + a)2

b2
+
(a+ b)2

c2
≥ 2+

10(a+ b+ c)2

3(a2 + b2 + c2)
.

(Vasile Cîrtoaje and Michael Rozenberg, 2014)
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Solution. Let
p = a+ b+ c, q = ab+ bc + ca, r = abc.

By the Cauchy-Schwarz inequality, we have

∑ (b+ c)2

a2
≥

�∑

(b+ c)2
�2

∑

a2(b+ c)2
=

2
�∑

a2 +
∑

ab
�2

∑

a2 b2 + abc
∑

a
=

2(p2 − q)2

q2 − pr
.

Therefore, it suffices to show that

2(p2 − q)2

q2 − pr
≥ 2+

10p2

3(p2 − 2q)
,

which is equivalent to
3(p2 − q)2

q2 − pr
≥

8p2 − 6q
p2 − 2q

.

Using Schur’s inequality
p3 + 9r ≥ 4pq,

we get

q2 − pr ≤ q2 − p ·
4pq− p3

9
=

p4 − 4p2q+ 9q2

9
.

Thus, it suffices to prove that

27(p2 − q)2

p4 − 4p2q+ 9q2
≥

8p2 − 6q
p2 − 2q

,

which is equivalent to the obvious inequality

p2(p2 − 3q)(19p2 − 13q)≥ 0.

The equality holds for a = b = c.

P 1.175. Let a, b, c be real numbers such that ab+ bc + ca ≥ 0 and no two of which
are zero. Prove that

(a)
a

b+ c
+

b
c + a

+
c

a+ b
≥

3
2

;

(b) i f ab ≤ 0, then

a
b+ c

+
b

c + a
+

c
a+ b

≥ 2.

(Vasile Cîrtoaje, 2014)
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Solution. Let as show first that b + c 6= 0, c + a 6= 0 and a + b 6= 0. Indeed, if
b + c = 0, then ab + bc + ca ≥ 0 yields bc ≥ 0, hence b = c = 0, which is not
possible (because, by hypothesis, at most one of a, b, c can be zero).

(a) Use the SOS method. Write the inequality as follows:

∑
� a

b+ c
+ 1

�

≥
9
2

,

�∑

(b+ c)
�

�

∑ 1
b+ c

�

≥ 9,

∑

�

a+ b
a+ c

+
a+ c
a+ b

− 2
�

≥ 0,

∑ (b− c)2

(a+ b)(a+ c)
≥ 0,

∑ (b− c)2

a2 + (ab+ bc + ca)
≥ 0.

Clearly, the last inequality is true. The equality holds for a = b = c 6= 0.

(b) From ab + bc + ca ≥ 0, it follows that if one of a, b, c is zero, then the
others are the same sign. In this case, the desired inequality is trivial. Consider
further that abc 6= 0. Since the problem remains unchanged by replacing a, b, c
with −a,−b,−c, it suffices to consider

a < 0< b ≤ c.

First Solution. We will show that

F(a, b, c)> F(0, b, c)≥ 2,

where

F(a, b, c) =
a

b+ c
+

b
c + a

+
c

a+ b
.

The right inequality is true because

F(0, b, c) =
b
c
+

c
b
≥ 2.

Since

F(a, b, c)− F(0, b, c) = a
�

1
b+ c

−
b

c(c + a)
−

c
b(a+ b)

�

,

the left inequality is true if

b
c(c + a)

+
c

b(a+ b)
>

1
b+ c

.
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From ab+ bc + ca ≥ 0, we get

c + a ≥
−ca

b
> 0, a+ b ≥

−ab
c
> 0,

hence
b

c(c + a)
>

b
c2

,
c

b(a+ b)
>

c
b2

.

Therefore, it suffices to prove that

b
c2
+

c
b2
≥

1
b+ c

.

Indeed, by virtue of the AM-GM inequality, we have

b
c2
+

c
b2
−

1
b+ c

≥
2
p

bc
−

1

2
p

bc
> 0.

This completes the proof. The equality holds for a = 0 and b = c, or b = 0 and
a = c.

Second Solution. From b+ c > 0 and

(b+ c)(a+ b) = b2 + (ab+ bc + ca)> 0,

(b+ c)(c + a) = c2 + (ab+ bc + ca)> 0,

it follows that
a+ b > 0, c + a > 0.

By virtue of the Cauchy-Schwarz inequality and AM-GM inequality, we have

a
b+ c

+
b

c + a
+

c
a+ b

≥
a

b+ c
+

(b+ c)2

b(c + a) + c(a+ b)

=
a

b+ c
+

(b+ c)2

2bc + a(b+ c)

>
a

2a+ b+ c
+

(b+ c)2

(b+ c)2

2
+ a(b+ c)

>
4a

2a+ b+ c
+

2(b+ c)
2a+ b+ c

= 2.

P 1.176. If a, b, c are nonnegative real numbers, then

a
7a+ b+ c

+
b

7b+ c + a
+

c
7c + a+ b

≥
ab+ bc + ca
(a+ b+ c)2

.

(Vasile Cîrtoaje, 2014)
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First Solution. Use the SOS method. Write the inequality as follows:

∑

�

2a
7a+ b+ c

−
a(b+ c)
(a+ b+ c)2

�

≥ 0,

∑ a[(a− b) + (a− c)](a− b− c)
7a+ b+ c

≥ 0,

∑ a(a− b)(a− b− c)
7a+ b+ c

+
∑ a(a− c)(a− b− c)

7a+ b+ c
≥ 0,

∑ a(a− b)(a− b− c)
7a+ b+ c

+
∑ b(b− a)(b− c − a)

7b+ c + a
≥ 0,

∑

(a− b)
�

a(a− b− c)
7a+ b+ c

−
b(b− c − a)
7b+ c + a

�

≥ 0,

∑

(a− b)2(a2 + b2 − c2 + 14ab)(a+ b+ 7c)≥ 0.

Since
a2 + b2 − c2 + 14ab ≥ (a+ b)2 − c2 = (a+ b+ c)(a+ b− c),

it suffices to show that
∑

(a− b)2(a+ b− c)(a+ b+ 7c)≥ 0.

Assume that a ≥ b ≥ c. It is enough to show that

(a− c)2(a− b+ c)(a+ 7b+ c) + (b− c)2(−a+ b+ c)(7a+ b+ c)≥ 0.

For the nontrivial case b > 0, we have

(a− c)2 ≥
a2

b2
(b− c)2 ≥

a
b
(b− c)2.

Thus, it suffices to prove that

a(a− b+ c)(a+ 7b+ c) + b(−a+ b+ c)(7a+ b+ c)≥ 0.

Since
a(a+ 7b+ c)≥ b(7a+ b+ c),

we have
a(a− b+ c)(a+ 7b+ c) + b(−a+ b+ c)(7a+ b+ c)≥

≥ b(a− b+ c)(7a+ b+ c) + b(−a+ b+ c)(7a+ b+ c)

= 2bc(7a+ b+ c)≥ 0.

This completes the proof. The equality holds for a = b = c, and also for a = 0 and
b = c (or any cyclic permutation).
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Second Solution. Assume that

a ≤ b ≤ c, a+ b+ c = 3,

and use the substitution

x =
2a+ 1

3
, y =

2b+ 1
3

, z =
2c + 1

3
.

We have b+ c ≥ 2 and

1
3
≤ x ≤ y ≤ z, x + y + z = 3, x ≤ 1, y + z ≥ 2.

The inequality can be written as follows:

a
2a+ 1

+
b

2b+ 1
+

c
2c + 1

≥
9− a2 − b2 − c2

6
,

a2 + b2 + c2

3
≥

1
2a+ 1

+
1

2b+ 1
+

1
2c + 1

,

(2a+ 1)2 + (2b+ 1)2 + (2c + 1)2 − 15
12

≥
1

2a+ 1
+

1
2b+ 1

+
1

2c + 1
,

9(x2 + y2 + z2)≥ 4
�

1
x
+

1
y
+

1
z

�

+ 15.

We will use the mixing variables method. More precisely, we will show that

E(x , y, z)≥ E(x , t, t)≥ 0,

where
t = (y + z)/2= (3− x)/2,

E(x , y, z) = 9(x2 + y2 + z2)− 4
�

1
x
+

1
y
+

1
z

�

− 15.

We have

E(x , y, z)− E(x , t, t) = 9(y2 + z2 − 2t2)− 4
�

1
y
+

1
z
−

2
t

�

=
(y − z)2[9yz(y + z)− 8]

2yz(y + z)
≥ 0

since
9yz = (2b+ 1)(2c + 1)≥ 2(b+ c) + 1≥ 5, y + z ≥ 2.

Also,

E(x , t, t) = 9x2 + 2t2 − 15−
4
x
−

8
t
=
(x − 1)2(3x − 1)(8− 3x)

2x(3− x)
≥ 0.
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Third Solution. Write the inequality as f5(a, b, c) ≥ 0, where f5(a, b, c) is a sym-
metric homogeneous inequality of degree five. According to P 3.68-(a) in Volume
1, it suffices to prove the inequality for a = 0 and for b = c = 1, when the inequality
is equivalent to

(b− c)2(b2 + c2 + 11bc)≥ 0

and
a(a− 1)2(a+ 14)≥ 0,

respectively.

P 1.177. If a, b, c are positive real numbers such that abc = 1, then

a+ b+ c
30

+
1

a+ 1
+

1
b+ 1

+
1

c + 1
≥

8
5

.

(Vasile Cîrtoaje, 2018)

Solution. Assume that a ≥ b ≥ c, which involves ab ≥ 1. Since a+ b ≥ 2
p

ab and

1
a+ 1

+
1

b+ 1
−

2
p

ab+ 1
=
(
p

a−
p

b)2(
p

ab− 1)

(a+ 1)(b+ 1)(
p

ab+ 1)
≥ 0,

it suffices to show that

2
p

ab+ c
30

+
2

p
ab+ 1

+
1

c + 1
≥

8
5

.

Substituting
p

ab = 1/t, which implies c = t2, the inequality becomes

t3 + 2
30t

+
2t

t + 1
+

1
t2 + 1

≥
8
5

,

t6 + t5 + 13t4 − 45t3 + 44t2 − 16t + 2≥ 0,

(t − 1)2[t4 + 3t3 + 2(3t − 1)2]≥ 0.

The equality holds for a = b = c = 1.
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P 1.178. Let f be a real function defined on an interval I, and let x , y, s ∈ I such that
x +my = (1+m)s, where m> 0. Prove that the inequality

f (x) +mf (y)≥ (1+m) f (s)

holds if and only if
h(x , y)≥ 0,

where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (s)
u− s

.

(Vasile Cîrtoaje, 2006)

Solution. From

f (x) +mf (y)− (1+m) f (s) = [ f (x)− f (s)] +m[ f (y)− f (s)]
= (x − s)g(x) +m(y − s)g(y)

=
m

1+m
(x − y)[g(x)− g(y)]

=
m

1+m
(x − y)2h(x , y),

the conclusion follows.

Remark. From the proof above, it follows that P 1.178 is also valid for the case
where f is defined on I \ {u0} and x , y, s 6= u0.

P 1.179. Let a, b, c ≤ 8 be real numbers such that a+ b+ c = 3. Prove that

13a− 1
a2 + 23

+
13b− 1
b2 + 23

+
13c − 1
c2 + 23

≤
3
2

.

(Vasile Cîrtoaje, 2008)

Solution. Write the inequality as

f (a) + f (b) + f (c)≥
−3
2

,

where

f (u) =
1− 13u
u2 + 23

.

Assume that a ≤ b ≤ c, and denote

s =
b+ c

2
.
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We have

s =
3− a

2
, 1≤ s ≤ 8.

We claim that
f (b) + f (c)≥ 2 f (s).

To show this, according to P 1.178, it suffices to show that

h(b, c)≥ 0,

where

h(b, c) =
g(b)− g(c)

b− c
, g(u) =

f (u)− f (s)
u− s

.

We have

g(u) =
(13s− 1)u− s− 299
(s2 + 23)(u2 + 23)

,

h(b, c) =
(1− 13s)bc + (s+ 299)(b+ c) + 23(13s− 1)

(s2 + 23)(b2 + 23)(c2 + 23)
.

Since 1− 13s < 0 and bc ≤ s2, we get

h(b, c)≥
(1− 13s)s2 + (s+ 299)(2s) + 23(13s− 1)

(s2 + 23)(b2 + 23)(c2 + 23)

=
−13s3 + 3s2 + 897s− 23
(s2 + 23)(b2 + 23)(c2 + 23)

>
−13s3 + 3s2 + 897s− 712
(s2 + 23)(b2 + 23)(c2 + 23)

=
(8− s)(13s2 + 101s− 89)
(s2 + 23)(b2 + 23)(c2 + 23)

≥ 0.

Therefore,

f (a) + f (b) + f (c) +
3
2
≥ f (a) + 2 f (s) +

3
2
= f (a) + 2 f

�

3− a
2

�

+
3
2

=
1− 13a
a2 + 23

+
4(13a− 37)

a2 − 6a+ 101
+

3
2

=
3(a− 1)2(a+ 11)2

2(a2 + 23)(a2 − 6a+ 101)
≥ 0.

The equality holds for a = b = c = 1, and also for a = −11 and b = c = 7 (or any
cyclic permutation).
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P 1.180. Let a, b, c 6=
3
4

be nonnegative real numbers such that a+ b+ c = 3. Prove

that
1− a
(4a− 3)2

+
1− b
(4b− 3)2

+
1− c
(4c − 3)2

≥ 0.

(Vasile Cîrtoaje, 2006)

Solution. Write the inequality as

f (a) + f (b) + f (c)≥ 0,

where

f (u) =
1− u
(4u− 3)2

.

Assume that a ≤ b ≤ c, and denote

s =
b+ c

2
.

We have

s =
3− a

2
, 1≤ s ≤

3
2

.

We claim that
f (b) + f (c)≥ 2 f (s).

According to Remark from P 1.178, it suffices to show that

h(b, c)≥ 0,

where

h(b, c) =
g(b)− g(c)

b− c
, g(u) =

f (u)− f (s)
u− s

.

We have

g(u) =
16(s− 1)u− 16s+ 15
(4s− 3)2(4u− 3)2

,

1
8

h(b, c) =
−32(s− 1)bc + 64s2 − 90s+ 27
(4s− 3)2(4b− 3)2(4c − 3)2

.

Since s− 1≥ 0 and bc ≤ s2, we get

1
8

h(b, c)≥
−32(s− 1)s2 + 64s2 − 90s+ 27
(4s− 3)2(4b− 3)2(4c − 3)2

=
−32s3 + 96s2 − 90s+ 27
(4s− 3)2(4b− 3)2(4c − 3)2

=
(3− 2s)(3− 4s)2

(4s− 3)2(4b− 3)2(4c − 3)2
≥ 0.
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Therefore,

f (a) + f (b) + f (c)≥ f (a) + 2 f (s) = f (a) + 2 f
�

3− a
2

�

=
1− a
(4a− 3)2

+
a− 1
(3− 2a)2

=
12a(a− 1)2

(4a− 3)2(3− 2a)2
≥ 0.

The equality holds for a = b = c = 1, and also for a = 0 and b = c = 3/2 (or any
cyclic permutation).

P 1.181. If a, b, c are the lengths of the sides of a triangle, then

a2

4a2 + 5bc
+

b2

4b2 + 5ca
+

c2

4c2 + 5ab
≥

1
3

.

(Vasile Cîrtoaje, 2009)

Solution. Use the highest coefficient method. Write the inequality as f6(a, b, c) ≥
0, where

f6(a, b, c) = 3
∑

a2(4b2 + 5ca)(4c2 + 5ab)−
∏

(4a2 + 5bc)

= −45a2 b2c2 − 25abc
∑

a3 + 40
∑

a3 b3.

Since f6(a, b, c) has the highest coefficient

A= −45− 75+ 120= 0,

according to P 3.76-(b) in Volume 1, it suffices to prove the original inequality for
b = c = 1 and 0≤ a ≤ 2, and for a = b+ c.

Case 1: b = c = 1, 0≤ a ≤ 2. The original inequality becomes

a2

4a2 + 5
+

2
5a+ 4

≥
1
3

,

(2− a)(a− 1)2 ≥ 0.

Case 2: a = b+ c. Using the Cauchy-Schwarz inequality

b2

4b2 + 5ca
+

c2

4c2 + 5ab
≥

(b+ c)2

4(b2 + c2) + 5a(b+ c)
,

it suffices to show that

a2

4a2 + 5bc
+

(b+ c)2

4(b2 + c2) + 5a(b+ c)
≥

1
3

,
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which is equivalent to

1
4(b2 + c2) + 13bc

+
1

9(b2 + c2) + 10bc
≥

1
3(b2 + c2 + 2bc)

.

Using the substitution

x =
b
c
+

c
b

, x ≥ 2,

the inequality becomes

1
4x + 13

+
1

9x + 10
≥

1
3(x + 2)

,

(x − 2)(3x − 4)≥ 0.

The equality holds for an equilateral triangle, and for a degenerate triangle with
a/2= b = c (or any cyclic permutation).

P 1.182. If a, b, c are the lengths of the sides of a triangle, then

1
7a2 + b2 + c2

+
1

7b2 + c2 + a2
+

1
7c2 + a2 + b2

≥
3

(a+ b+ c)2
.

(Vo Quoc Ba Can, 2010)

Solution. Use the highest coefficient method. Denote

p = a+ b+ c, q = ab+ bc + ca,

and write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) = p2
∑

(7b2 + c2 + a2)(7c2 + a2 + b2)− 3
∏

(7a2 + b2 + c2)

= p2
∑

(6b2 + p2 − 2q)(6c2 + p2 − 2q)− 3
∏

(6a2 + p2 − 2q).

Since f6(a, b, c) has the highest coefficient

A= −3 · 63 < 0,

according to P 3.76-(b) in Volume 1, it suffices to prove the original inequality for
b = c = 1 and 0≤ a ≤ 2, and for a = b+ c.

Case 1: b = c = 1, 0≤ a ≤ 2. The original inequality reduces to

1
7a2 + 2

+
2

a2 + 8
≥

3
(a+ 2)2

,

a(8− a)(a− 1)2 ≥ 0.
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Case 2: a = b+ c. Write the inequality as

1
4(b2 + c2) + 7bc

+
1

4b2 + c2 + bc
+

1
4c2 + b2 + bc

≥
3

2(b+ c)2
.

Since

3
2(b+ c)2

−
1

4(b2 + c2) + 7bc
≤

3
2(b+ c)2

−
1

4(b2 + c2) + 8bc
=

5
4(b+ c)2

,

it suffices to show that

1
4b2 + c2 + bc

+
1

4c2 + b2 + bc
≥

5
4(b+ c)2

,

which is equivalent to

4[5(b2 + c2) + 2bc][(b2 + c2) + 2bc]≥ 5(4b2 + c2 + bc)(4c2 + b2 + bc),

4[5(b2 + c2)2 + 12bc(b2 + c2) + 4b2c2]≥ 5[4(b2 + c2)2 + 5bc(b2 + c2) + 10b2c2],

bc[23(b− c)2 + 12bc]≥ 0.

The equality holds for an equilateral triangle, and for a degenerate triangle with
a = 0 and b = c (or any cyclic permutation).

P 1.183. Let a, b, c be the lengths of the sides of a triangle. If k > −2, then

∑ a(b+ c) + (k+ 1)bc
b2 + kbc + c2

≤
3(k+ 3)

k+ 2
.

(Vasile Cîrtoaje, 2009)

Solution. Use the highest coefficient method. Let

p = a+ b+ c, q = ab+ bc + ca.

Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) = 3(k+ 3)
∏

(b2 + kbc + c2)

−(k+ 2)
∑

[a(b+ c) + (k+ 1)bc](c2 + kca+ a2)(a2 + kab+ b2).

From
f6(a, b, c) = 3(k+ 3)

∏

(p2 − 2q+ kbc − a2)

−(k+ 2)
∑

(q+ kbc)(p2 − 2q+ kca− b2)(p2 − 2q+ kab− c2),
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it follows that f6(a, b, c) has the same highest coefficient A as f (a, b, c), where

f (a, b, c) = 3(k+ 3)P3(a, b, c)− k(k+ 2)P2(a, b, c),

P3(a, b, c) =
∏

(kbc − a2), P2(a, b, c) =
∑

bc(kca− b2)(kab− c2).

According to Remark 2 from the proof of P 2.75 in Volume 1, we have

A= 3(k+ 3)P3(1, 1,1)− k(k+ 2)P2(1, 1,1)

= 3(k+ 3)(k− 1)3 − 3k(k+ 2)(k− 1)2 = −9(k− 1)2 ≤ 0.

Taking into account P 3.76-(b) in Volume 1, it suffices to prove the original inequal-
ity for b = c = 1 and 0≤ a ≤ 2, and for a = b+ c.

Case 1: b = c = 1, 0≤ a ≤ 2. The original inequality reduces to

2a+ k+ 1
k+ 2

+
2(k+ 2)a+ 2
a2 + ka+ 1

≤
3(k+ 3)

k+ 2
,

a− k− 4
k+ 2

+
(k+ 2)a+ 1
a2 + ka+ 1

≤ 0,

(2− a)(a− 1)2 ≥ 0.

Case 2: a = b+ c. Write the inequality as follows:

∑

�

a(b+ c) + (k+ 1)bc
b2 + kbc + c2

− 1
�

≤
3

k+ 2
,

∑ ab+ bc + ca− b2 − c2

b2 + kbc + c2
≤

3
k+ 2

,

3bc
b2 + kbc + c2

+
bc − c2

b2 + (k+ 2)(bc + c2)
+

bc − b2

c2 + (k+ 2)(bc + b2)
≤

3
k+ 2

.

Since
3bc

b2 + kbc + c2
≤

3
k+ 2

,

it suffices to prove that

bc − c2

b2 + (k+ 2)(bc + c2)
+

bc − b2

c2 + (k+ 2)(bc + b2)
≤ 0.

This reduces to the obvious inequality

(b− c)2(b2 + bc + c2)≥ 0.

The equality holds for an equilateral triangle, and for a degenerate triangle with
a/2= b = c (or any cyclic permutation).
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P 1.184. Let a, b, c be the lengths of the sides of a triangle. If k > −2, then

∑ 2a2 + (4k+ 9)bc
b2 + kbc + c2

≤
3(4k+ 11)

k+ 2
.

(Vasile Cîrtoaje, 2009)

Solution. Use the highest coefficient method. Let

p = a+ b+ c, q = ab+ bc + ca.

Write the inequality as f6(a, b, c)≥ 0, where

f6(a, b, c) = 3(4k+ 11)
∏

(b2 + kbc + c2)

−(k+ 2)
∑

[2a2 + (4k+ 9)bc](c2 + kca+ a2)(a2 + kab+ b2).

From
f6(a, b, c) = 3(4k+ 11)

∏

(p2 − 2q+ kbc − a2)

−(k+ 2)
∑

[2a2 + (4k+ 9)bc](p2 − 2q+ kca− b2)(p2 − 2q+ kab− c2),

it follows that f6(a, b, c) has the same highest coefficient A as f (a, b, c), where

f (a, b, c) = 3(4k+ 11)P3(a, b, c)− (k+ 2)P2(a, b, c),

P3(a, b, c) =
∏

(kbc − a2),

P2(a, b, c) =
∑

[2a2 + (4k+ 9)bc](kca− b2)(kab− c2).

According to Remark 2 from the proof of P 2.75 in Volume 1, we have

A= 3(4k+ 11)P3(1, 1,1)− (k+ 2)P2(1, 1,1)

= 3(4k+ 11)(k− 1)3 − 3(k+ 2)(4k+ 11)(k− 1)2

= −9(4k+ 11)(k− 1)2 ≤ 0.

Taking into account P 3.76-(b) in Volume 1, it suffices to prove the original inequal-
ity for b = c = 1 and 0≤ a ≤ 2, and for a = b+ c.

Case 1: b = c = 1, 0≤ a ≤ 2. The original inequality reduces to

2a2 + 4k+ 9
k+ 2

+
2(4k+ 9)a+ 4

a2 + ka+ 1
≤

3(4k+ 11)
k+ 2

,

a2 − 4k− 12
k+ 2

+
(4k+ 9)a+ 2
a2 + ka+ 1

≤ 0,

(2− a)(a− 1)2 ≥ 0,
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Case 2: a = b+ c. Write the inequality as follows:

∑

�

2a2 + (4k+ 9)bc
b2 + kbc + c2

− 4
�

≤
9

k+ 2
,

∑ 2a2 − 4b2 − 4c2 + 9bc
b2 + kbc + c2

≤
9

k+ 2
,

13bc − 2b2 − 2c2

b2 + kbc + c2
+

bc − 2b2 + c2

b2 + (k+ 2)(bc + c2)
+

bc − 2c2 + b2

c2 + (k+ 2)(bc + b2)
≤

9
k+ 2

.

Since
9

k+ 2
−

13bc − 2b2 − 2c2

b2 + kbc + c2
=

(2k+ 13)(b− c)2

(k+ 2)(b2 + kbc + c2)
and

bc − 2b2 + c2

b2 + (k+ 2)(bc + c2)
+

bc − 2c2 + b2

c2 + (k+ 2)(bc + b2)
=

=
(b− c)2(b2 + c2 + 3bc)− 2(k+ 2)(b2 − c2)2

[b2 + (k+ 2)(bc + c2)][c2 + (k+ 2)(bc + b2]
,

we only need to show that

2k+ 13
(k+ 2)(b2 + kbc + c2)

+
2(k+ 2)(b+ c)2 − b2 − c2 − 3bc

[b2 + (k+ 2)(bc + c2)][c2 + (k+ 2)(bc + b2]
≥ 0.

Using the substitution

x =
b
c
+

c
b

, x ≥ 2,

the inequality can be written as

2k+ 13
(k+ 2)(x + k)

+
(2k+ 3)x + 4k+ 5

(k+ 2)x2 + (k+ 2)(k+ 3)x + 2k2 + 6k+ 5
≥ 0,

which is equivalent to

4(k+ 2)(k+ 4)x2 + 2(k+ 2)Bx + C ≥ 0,

where
B = 2k2 + 13k+ 22, C = 8k3 + 51k2 + 98k+ 65.

Since
B = 2(k+ 2)2 + 5(k+ 2) + 4> 0,

C = 8(k+ 2)3 + 2k2 + (k+ 1)2 > 0,

the conclusion follows. The equality holds for an equilateral triangle, and for a
degenerate triangle with a/2= b = c (or any cyclic permutation).
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P 1.185. If a, b, c are nnonnegative numbers such that abc = 1, then

1
(a+ 1)2

+
1

(b+ 1)2
+

1
(c + 1)2

+
1

2(a+ b+ c − 1)
≥ 1.

(Vasile Cîrtoaje, 2018)

Solution. Let
p = a+ b+ c, q = ab+ bc + ca.

By the Cauchy-Schwarz inequality, we have

∑ 1
(a+ 1)2

=
∑ b2c2

(1+ bc)2
≥
(
∑

bc)2
∑

(1+ bc)2

=
q2

q2 + 2q− 2p+ 3
.

Thus we only need to show that

q2

q2 + 2q− 2p+ 3
+

1
2(p− 1)

≥ 1,

which is equivalent to
(q− 2p+ 3)2 ≥ 0.

The equality occurs for a = b = c = 1.

P 1.186. If a, b, c are positive real numbers such that

a ≤ b ≤ c, a2 bc ≥ 1,

then
1

1+ a3
+

1
1+ b3

+
1

1+ c3
≥

3
1+ abc

.

(Vasile Cîrtoaje, 2008)

Solution. Since

1
1+ x2

+
1

1+ y2
−

2
1+ x y

=
(x − y)2(x y − 1)

(1+ x2)(1+ y2)(1+ x y)
,

we have
1

1+ b3
+

1
1+ c3

≥
2

1+ t3
,

where
t =

p

bc, at ≥ 1, t ≥ 1, t ≥ a.
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So, we only need to show that

1
1+ a3

+
2

1+ t3
≥

3
1+ at2

,

which is equivalent to
a(t2 − a2)

1+ a3
≥

2t2(t − a)
1+ t3

,

(t − a)2[at2(2a+ t)− a− 2t]≥ 0.

This is true since

at2(2a+ t)− a− 2t ≥ t(2a+ t)− a− 2t = (t − 1)2 + (at − 1) + a(t − 1)≥ 0.

The equality occurs for a = b = c ≥ 1.

Remark 1. The inequality is true for the weaker condition

a8/5 bc ≥ 1,

that is a4 t5 ≥ 1. Since bc ≥ 1, it suffices to show that at2(2a + t)− a − 2t ≥ 0.
This is true if the following homogeneous inequality is true:

at2

(a4 t5)1/3
(2a+ t)≥ a+ 2t,

that is
t1/3(2a+ t)≥ a1/3(a+ 2t).

Setting a = 1 and t = z3 ≥ 1, the inequality becomes as follows:

z(2+ z3)≥ 1+ 2z3,

z4 − 1≥ 2z(z2 − 1),

(z2 − 1)(z − 1)2 ≥ 0.

Remark 2. The inequality is also true for the condition

a4 b5 ≥ 1.

Indeed, if a4 b5 ≥ 1, then b ≥ 1, bc ≥ b2 ≥ 1 and

a4(bc)5/2 ≥ 1,

which is equivalent to to the condition a8/5 bc ≥ 1 from Remark 1.

Remark 3. From P 1.186, the following statement follows (V. Cirtoaje and V. Vor-
nicu):
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• If a, b, c, d are positive real numbers such that

a ≥ b ≥ c ≥ d, abcd ≥ 1,

then
1

1+ a3
+

1
1+ b3

+
1

1+ c3
≥

3
1+ abc

.

This is valid because c ≤ b ≤ a and c2 ba ≥ 1.

P 1.187. If a, b, c are positive real numbers such that

a ≤ b ≤ c, a2c ≥ 1,

then
1

1+ a3
+

1
1+ b3

+
1

1+ c3
≥

3
1+ abc

.

(Vasile Cîrtoaje, 2021)

Solution. Denote
d =
p

ac, d ≥ 1.

If d = 1, then ac = 1 and a2c ≥ 1 yield a = b = c = 1, and the required inequality
is an equality. Consider next that d > 1. For fixed a and c, write the inequality as
f (b)≥ 0, where

f (b) =
1

1+ a3
+

1
1+ b3

+
1

1+ c3
−

3
1+ abc

, b ∈ [a, c],

and calculate the derivative

1
3

f ′(b) =
d2

(1+ d2 b)2
−

b2

(1+ b3)2

=
(d b2 − 1)(b− d)[d(1+ b3) + b(d2 b+ 1)]

(1+ d2 b)2(1+ b3)2
.

If a ≤
1
p

d
, then f ′(b) ≤ 0 for b ∈ [1/

p
d, d] and f ′(b) ≥ 0 for b ∈ [a, 1/

p
d] ∪

[d, c], hence f (b) is decreasing on [1/
p

d, d] and increasing on [a, 1/
p

d]∪ [d, c].

Thus, it suffices to show that f (a)≥ 0 and f (d)≥ 0. If a ≥
1
p

d
, then f ′(b)≤ 0 for

b ∈ [a, d] and f ′(b) ≥ 0 for b ∈ [d, c], f (b) is decreasing on [a, d] and increasing
on [d, c], hence it suffices to show that f (d) ≥ 0. In conclusion, we only need to
show that f (a)≥ 0 and f (d)≥ 0. Write the inequality f (a)≥ 0 as follows:

2
1+ a3

+
1

1+ c3
≥

3
1+ a2c

,
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2a2(c − a)
1+ a3

≥
c(c2 − a2)

1+ c3
,

(c − a)2[a2c(a+ 2c)− 2a− c]≥ 0.

This is true because

a2c(a+ 2c)− 2a− c ≥ (a+ 2c)− 2a− c = c − a ≥ 0.

Write now the inequality f (d)≥ 0 as

1
1+ a3

+
1

1+ c3
≥

2
1+ (ac)3/2

.

Since
1

1+ x2
+

1
1+ y2

−
2

1+ x y
=

(x − y)2(x y − 1)
(1+ x2)(1+ y2)(1+ x y)

,

the inequality is equivalent to

�

a3/2 − c3/2
�2 �
(ac)3/2 − 1

�

≥ 0.

This is true because
(ac)3 ≥ (a2c)2 ≥ 1.

The equality occurs for a = b = c ≥ 1.

P 1.188. If a, b, c are positive real numbers such that

a ≤ b ≤ c, 2a+ c ≥ 3,

then
1

3+ a2
+

1
3+ b2

+
1

3+ c2
≥

3

3+
�

a+b+c
3

�2 .

(Vasile Cîrtoaje, 2021)

Solution. Denote

s =
a+ b+ c

3
, s ≥ 1.

For fixed a and c, write the inequality as f (b)≥ 0, where

f (b) =
1

3+ a2
+

1
3+ b2

+
1

3+ c2
−

3
3+ s2

, b ∈ [a, c],

and calculate the derivative

1
2

f ′(b) =
s

(3+ s2)2
−

b
(3+ b2)2

=
(b− s)g(b)

(3+ s2)2(3+ b2)2
,
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where
g(b) = bs(b2 + bs+ s2 + 6)− 9.

Denote
d =

a+ c
2

, d ≥ 1.

If d = 1, then a + c = 2 and 2a + c ≥ 3 yield a = b = c = 1, and the required
inequality is an equality. Consider next that d > 1. Since

s =
b+ 2d

3
,

we have

b− s =
2(b− d)

3
,

g(b) =
b(b+ 2d)

3

�

b2 +
b(b+ 2d)

3
+
(b+ 2d)2

9
+ 6

�

− 9.

Since g(b) is strictly increasing, g(0) = −9 and

g(d) = 3(d4 + 2d2 − 3)> 0,

there is an unique d1 ∈ (0, d) such that g(d1) = 0, g(b)≤ 0 for b ≤ d1 and g(b)≥ 0
for b ≥ d1. If a ≤ d1, then f ′(b) ≤ 0 for b ∈ [d1, d] and f ′(b) ≥ 0 for b ∈
[a, d1]∪[d, c], hence f (b) is decreasing on [d1, d] and increasing on [a, d1]∪[d, c].
Thus, it suffices to show that f (a) ≥ 0 and f (d) ≥ 0. If a ≥ d1, then f ′(b) ≤ 0 for
b ∈ [a, d] and f ′(b) ≥ 0 for b ∈ [d, c], f (b) is decreasing on [a, d] and increasing
on [d, c], hence it suffices to show that f (d) ≥ 0. In conclusion, we only need to
show that f (a)≥ 0 and f (d)≥ 0. Denoting

p =
2a+ c

3
,

we may write the inequality f (a)≥ 0 as follows:

2
3+ a2

+
1

3+ c2
≥

3
3+ p2

,

2(p2 − a2)
3+ a2

≥
c2 − p2

3+ c2
,

(a− c)2[(a+ c)p+ ac − 3]≥ 0,

(a− c)2(2a2 + 6ac + c2 − 9)≥ 0.

This is true because

2a2 + 6ac + c2 − 9= (2a+ c)2 − 9+ 2a(c − a)≥ 0.
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Write now the inequality f (d)≥ 0 as follows:

1
3+ a2

+
1

3+ c2
≥

2
3+ d2

,

d2 − a2

3+ a2
≥

c2 − d2

3+ c2
,

(a− c)2[(a+ c)d + ac)− 3]≥ 0,

(a− c)2(a2 + 4ac + c2 − 6)≥ 0.

This is true because

3(a2 + 4ac + c2)− 18≥ 3(a2 + 4ac + c2)− 2(2a+ c)2 = (c − a)(c + 5a)≥ 0.

The equality occurs for a = b = c ≥ 1, and also for a = b = 0 and c = 3.

P 1.189. If a, b, c are positive real numbers such that

a ≤ b ≤ c, 9a+ 8b ≥ 17,

then
1

3+ a2
+

1
3+ b2

+
1

3+ c2
≥

3

3+
�

a+b+c
3

�2 .

(Vasile Cîrtoaje, 2021)

Solution. From a ≤ b ≤ c and 9a+ 8b ≥ 17, it follows that

1≤ b ≤ c, a+ b+ c ≥ 3.

As in the preceding P 1.188, denote

s =
a+ b+ c

3
, 1≤ s ≤ c,

and, for fixed a and b, write the inequality as f (c)≥ 0, where

f (c) =
1

3+ a2
+

1
3+ b2

+
1

3+ c2
−

3
3+ s2

, c ≥ b.

We show that
f (c)≥ f (b)≥ 0.

Since

1
2

f ′(c) =
s

(3+ s2)2
−

c
(3+ c2)2

=
(c − s)[cs(c2 + cs+ s2 + 6)− 9]

(3+ s2)2(3+ c2)2
≥ 0,
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f (c) is increasing, therefore f (c)≥ f (b). Denote

p =
a+ 2b

3
,

Write now the inequality f (b)≥ 0 as follows:

1
3+ a2

+
2

3+ b2
≥

3
3+ p2

,

p2 − a2

3+ a2
≥

2(b2 − p2)
3+ b2

,

(a− b)2[(a+ b)p+ ab− 3]≥ 0 ,

(a− b)2(a2 + 6ab+ 2b2 − 9)≥ 0 .

This is true if
16(a2 + 6ab+ 2b2)≥ (7a+ 5b)2,

which is equivalent to
(b− a)(b+ 220a)≥ 0.

The equality occurs for a = b = c ≥ 1.

Remark. Actually, the inequality is valid for the weaker condition

ka+ b ≥ k+ 1, k =
3
p

2
− 1,

when the inequality

(k+ 1)2(a2 + 6ab+ 2b2)≥ 9(ka+ b)2,

reduces to the form
a(b− a)≥ 0.

The equality occurs for a = b = c ≥ 1, and also for a = 0 and b = c =
3
p

2
.

P 1.190. Let a, b, c, d be positive real numbers such that abcd = 1. Prove that

∑ 1
1+ ab+ bc + ca

≤ 1.
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Solution. From

1
a
+

1
b
+

1
c
≥

1
p

bc
+

1
p

ca
+

1
p

ab
=
p

a+
p

b+
p

c
p

abc
,

we get

ab+ bc + ca ≥
p

abc
�p

a+
p

b+
p

c
�

=
p

a+
p

b+
p

c
p

d
.

Therefore,

∑ 1
1+ ab+ bc + ca

≤
∑

p
d

p
a+
p

b+
p

c +
p

d
= 1,

which is just the required inequality. The equality occurs for a = b = c = d = 1.

P 1.191. Let a, b, c, d be positive real numbers such that abcd = 1. Prove that

1
(1+ a)2

+
1

(1+ b)2
+

1
(1+ c)2

+
1

(1+ d)2
≥ 1.

(Vasile Cîrtoaje, 1995)

First Solution. The inequality follows by summing the following inequalities (see
P 1.1):

1
(1+ a)2

+
1

(1+ b)2
≥

1
1+ ab

,

1
(1+ c)2

+
1

(1+ d)2
≥

1
1+ cd

=
ab

1+ ab
.

The equality occurs for a = b = c = d = 1.

Second Solution. Using the substitution

a =
1
x4

, b =
1
y4

, c =
1
z4

, d =
1
t4

,

where x , y, z, t are positive real numbers such that x yzt = 1, the inequality be-
comes

x6

�

x3 +
1
x

�2 +
y6

�

y3 +
1
y

�2 +
z6

�

z3 +
1
z

�2 +
t6

�

t3 +
1
t

�2 ≥ 1.

By the Cauchy-Schwarz inequality, we get

∑ x6

�

x3 +
1
x

�2 ≥

�∑

x3
�2

∑

�

x3 +
1
x

�2 =

�∑

x3
�2

∑

x6 + 2
∑

x2 +
∑

x2 y2z2
.
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Thus, it suffices to prove the homogeneous inequality

2(x3 y3 + x3z3 + x3 t3 + y3z3 + y3 t3 + z3 t3)≥ 2x yzt
∑

x2 +
∑

x2 y2z2.

We can get it by summing the inequalities

4(x3 y3 + x3z3 + x3 t3 + y3z3 + y3 t3 + z3 t3)≥ 6x yzt
∑

x2

and
2(x3 y3 + x3z3 + x3 t3 + y3z3 + y3 t3 + z3 t3)≥ 3

∑

x2 y2z2,

Write these inequalities as
∑

x3(y3 + z3 + t3 − 3yzt)≥ 0

and
∑

(x3 y3 + y3z3 + z3 x3 − 3x2 y2z2)≥ 0,

respectively. By the AM-GM inequality, we have

y3 + z3 + t3 ≥ 3yzt, x3 y3 + y3z3 + z3 x3 ≥ 3x2 y2z2.

Thus the conclusion follows.

Third Solution. Using the substitution

a =
yz
x2

, b =
zt
y2

, c =
t x
z2

, d =
x y
t2

,

where x , y, z, t are positive real numbers, the inequality becomes

x4

(x2 + yz)2
+

y4

(y2 + zt)2
+

z4

(z2 + t x)2
+

t4

(t2 + x y)2
≥ 1.

Using the Cauchy-Schwarz inequality two times, we deduce

x4

(x2 + yz)2
+

z4

(z2 + t x)2
≥

x4

(x2 + y2)(x2 + z2)
+

z4

(z2 + t2)(z2 + x2)

=
1

x2 + z2

�

x4

x2 + y2
+

z4

z2 + t2

�

≥
x2 + z2

x2 + y2 + z2 + t2
,

hence
x4

(x2 + yz)2
+

z4

(z2 + t x)2
≥

x2 + z2

x2 + y2 + z2 + t2
.

Adding this to the similar inequality

y4

(y2 + zt)2
+

t4

(t2 + x y)2
≥

y2 + t2

x2 + y2 + z2 + t2
,
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we get the required inequality.

Fourth Solution. Using the substitution

a =
x
y

, b =
y
z

, c =
z
t
, d =

t
x

,

where x , y, z, t are positive real numbers, the inequality can be written as

y2

(x + y)2
+

z2

(y + z)2
+

t2

(z + t)2
+

x2

(t + x)2
≥ 1.

By the Cauchy-Schwarz inequality and the AM-GM inequality, we get

∑ y2

(x + y)2
≥

[
∑

y(y + z)]2
∑

(x + y)2(y + z)2

=
[(x + y)2 + (y + z)2 + (z + t)2 + (t + x)2]2

4[(x + y)2 + (z + t)2][(y + z)2 + (t + x)2]
≥ 1.

Remark. The following generalization holds true (Vasile Cîrtoaje, 2005):

• Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an = 1. If k ≥
p

n−1,
then

1
(1+ ka1)2

+
1

(1+ ka2)2
+ · · ·+

1
(1+ kan)2

≥
n

(1+ k)2
.

P 1.192. Let a, b, c, d 6=
1
3

be positive real numbers such that abcd = 1. Prove that

1
(3a− 1)2

+
1

(3b− 1)2
+

1
(3c − 1)2

+
1

(3d − 1)2
≥ 1.

(Vasile Cîrtoaje, 2006)

First Solution. It suffices to show that

1
(3a− 1)2

≥
a−3

a−3 + b−3 + c−3 + d−3
.

This inequality is equivalent to

6a−2 + b−3 + c−3 + d−3 ≥ 9a−1,

which follows by the AM-GM inequality, as follows:

6a−2 + b−3 + c−3 + d−3 ≥ 9
9
p

a−12 b−3c−3d−3 = 9a−1.
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The equality occurs for a = b = c = d = 1.

Second Solution. Let a ≤ b ≤ c ≤ d. If a ≤ 2/3, then

1
(3a− 1)2

≥ 1,

and the desired inequality is clearly true. Otherwise, if 2/3 < a ≤ b ≤ c ≤ d, we
have

4a3 − (3a− 1)2 = (a− 1)2(4a− 1)≥ 0.

Using this result and the AM-GM inequality, we get

∑ 1
(3a− 1)2

≥
1
4

∑ 1
a3
≥ 4

√

√ 1
a3 b3c3d3

= 1.

Third Solution. We have

1
(3a− 1)2

−
1

(a3 + 1)2
=

a(a− 1)2(a+ 2)(a2 + 3)
(3a− 1)2(a3 + 1)2

≥ 0;

therefore,
∑ 1
(3a− 1)2

≥
∑ 1
(a3 + 1)2

.

Thus, it suffices to prove that
∑ 1
(a3 + 1)2

≥ 1,

which is an immediate consequence of the inequality in P 1.191.

P 1.193. Let a, b, c, d be positive real numbers such that abcd = 1. Prove that

1
1+ a+ a2 + a3

+
1

1+ b+ b2 + b3
+

1
1+ c + c2 + c3

+
1

1+ d + d2 + d3
≥ 1.

(Vasile Cîrtoaje, 1999)

First Solution. We get the desired inequality by summing the inequalities

1
1+ a+ a2 + a3

+
1

1+ b+ b2 + b3
≥

1
1+ (ab)3/2

,

1
1+ c + c2 + c3

+
1

1+ d + d2 + d3
≥

1
1+ (cd)3/2

.

Thus, it suffices to show that

1
1+ x2 + x4 + x6

+
1

1+ y2 + y4 + y6
≥

1
1+ x3 y3

,
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where x and y are positive real numbers. Putting p = x y and s = x2 + x y + y2,
this inequality becomes

p3(x6+ y6)+p2(p−1)(x4+ y4)−p2(p2−p+1)(x2+ y2)−p6−p4+2p3−p2+1≥ 0,

p3(x3− y3)2+ p2(p− 1)(x2− y2)2− p2(p2− p+ 1)(x − y)2+ p6− p4− p2+ 1≥ 0,

p3s2(x− y)2+p2(p−1)(s+p)2(x− y)2−p2(p2−p+1)(x− y)2+p6−p4−p2+1≥ 0,

p2(s+ 1)(ps− 1)(x − y)2 + (p2 − 1)(p4 − 1)≥ 0.

If ps−1≥ 0, then the inequality is clearly true. Consider further that ps < 1. From
ps < 1 and s ≥ 3p, we get p2 < 1/3. Write the desired inequality in the form

p2(1+ s)(1− ps)(x − y)2 ≤ (1− p2)(1− p4).

Since
p(x − y)2 = p(s− 3p)< 1− 3p2 < 1− p2,

it suffices to show that
p(1+ s)(1− ps)≤ 1− p4.

Indeed,

4p(1+ s)(1− ps)≤ [p(1+ s) + (1− ps)]2 = (1+ p)2 < 2(1+ p2)< 4(1− p4).

The equality occurs for a = b = c = d = 1.

Second Solution. Assume that a ≥ b ≥ c ≥ d, and write the inequality as

∑ 1
(1+ a)(1+ a2)

≥ 1.

Since
1

1+ a
≤

1
1+ b

≤
1

1+ c
,

1
1+ a2

≤
1

1+ b2
≤

1
1+ c2

,

by Chebyshev’s inequality, it suffices to prove that

1
3

�

1
1+ a

+
1

1+ b
+

1
1+ c

��

1
1+ a2

+
1

1+ b2
+

1
1+ c2

�

+
1

(1+ d)(1+ d2)
≥ 1.

On the other hand, from Remark 3 of P 1.186, we have

1
1+ a

+
1

1+ b
+

1
1+ c

≥
3

1+ 3pabc
=

3
3p

d
3p

d + 1

and
1

1+ a2
+

1
1+ b2

+
1

1+ c2
≥

3

1+ 3pa2 b2c2
=

3
3p

d2

3p
d2 + 1

.
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Thus, it suffices to prove that

3d

(1+ 3p
d)(1+ 3p

d2 )
+

1
(1+ d)(1+ d2)

≥ 1.

Putting x = 3p
d, this inequality becomes as follows:

3x3

(1+ x)(1+ x2)
+

1
(1+ x3)(1+ x6)

≥ 1,

3x3(1− x + x2)(1− x2 + x4) + 1≥ (1+ x3)(1+ x6),

x3(2− 3x + 2x3 − 3x5 + 2x6)≥ 0,

x3(1− x)2(2+ x + x3 + 2x4)≥ 0.

Remark. The following generalization holds true (Vasile Cîrtoaje, 2004):

• If a1, a2, . . . , an are positive real numbers such that a1a2 · · · an = 1, then

1
1+ a1 + · · ·+ an−1

1

+
1

1+ a2 + · · ·+ an−1
2

+ · · ·+
1

1+ an + · · ·+ an−1
n

≥ 1.

P 1.194. Let a, b, c, d be positive real numbers such that abcd = 1. Prove that

1
1+ a+ 2a2

+
1

1+ b+ 2b2
+

1
1+ c + 2c2

+
1

1+ d + 2d2
≥ 1.

(Vasile Cîrtoaje, 2006)

Solution. We will show that

1
1+ a+ 2a2

≥
1

1+ ak + a2k + a3k
,

where k = 5/6. Then, it suffices to show that

∑ 1
1+ ak + a2k + a3k

≥ 1,

which immediately follows from the inequality in P 1.193. Setting a = x6, x > 0,
the claimed inequality can be written as

1
1+ x6 + 2x12

≥
1

1+ x5 + x10 + x15
,

which is equivalent to
x10 + x5 + 1≥ 2x7 + x .
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We can prove it by summing the AM-GM inequalities

x5 + 4≥ 5x

and
5x10 + 4x5 + 1≥ 10x7.

This completes the proof. The equality occurs for a = b = c = d = 1.

Remark. The inequalities in P 1.191, P 1.193 and P 1.194 are particular cases of
the following more general inequality (Vasile Cîrtoaje, 2009):

• Let a1, a2, . . . , an (n ≥ 4) be positive real numbers such that a1a2 · · · an = 1. If
p, q, r are nonnegative real numbers satisfying p+ q+ r = n− 1, then

i=n
∑

i=1

1
1+ pai + qa2

i + ra3
i

≥ 1.

P 1.195. Let a, b, c, d be positive real numbers such that abcd = 1. Prove that

1
a
+

1
b
+

1
c
+

1
d
+

9
a+ b+ c + d

≥
25
4

.

Solution (by Vo Quoc Ba Can). Replacing a, b, c, d by a4, b4, c4, d4, respectively, the
inequality becomes as follows:

1
a4
+

1
b4
+

1
c4
+

1
d4
+

9
a4 + b4 + c4 + d4

≥
25

4abcd
,

1
a4
+

1
b4
+

1
c4
+

1
d4
−

4
abcd

≥
9

4abcd
−

9
a4 + b4 + c4 + d4

,

1
a4
+

1
b4
+

1
c4
+

1
d4
−

4
abcd

≥
9(a4 + b4 + c4 + d4 − 4abcd)

4abcd(a4 + b4 + c4 + d4)
.

Using the identities

a4 + b4 + c4 + d4 − 4abcd = (a2 − b2)2 + (c2 − d2)2 + 2(ab− cd)2,

1
a4
+

1
b4
+

1
c4
+

1
d4
−

4
abcd

=
(a2 − b2)2

a4 b4
+
(c2 − d2)2

c4d4
+

2(ab− cd)2

a2 b2c2d2
,

the inequality can be written as

(a2 − b2)2

a4 b4
+
(c2 − d2)2

c4d4
+

2(ab− cd)2

a2 b2c2d2
≥

9[(a2 − b2)2 + (c2 − d2)2 + 2(ab− cd)2]
4abcd(a4 + b4 + c4 + d4)

,
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(a2 − b2)2
�

4cd(a4 + b4 + c4 + d4)
a3 b3

− 9
�

+ (c2 − d2)2
�

4ab(a4 + b4 + c4 + d4)
c3d3

− 9
�

+2(ab− cd)2
�

4(a4 + b4 + c4 + d4)
abcd

− 9
�

≥ 0.

By the AM-GM inequality, we have

a4 + b4 + c4 + d4 ≥ 4abcd.

Therefore, it suffices to show that

(a2−b2)2
�

4cd(a4 + b4 + c4 + d4)
a3 b3

− 9
�

+(c2−d2)2
�

4ab(a4 + b4 + c4 + d4)
c3d3

− 9
�

≥ 0.

Without loss of generality, assume that a ≥ c ≥ d ≥ b. Since

(a2 − b2)2 ≥ (c2 − d2)2

and

4cd(a4 + b4 + c4 + d4)
a3 b3

≥
4(a4 + b4 + c4 + d4)

a3 b
≥

4(a4 + 3b4)
a3 b

> 9,

it is enough to prove that

�

4cd(a4 + b4 + c4 + d4)
a3 b3

− 9
�

+
�

4ab(a4 + b4 + c4 + d4)
c3d3

− 9
�

≥ 0,

which is equivalent to

2(a4 + b4 + c4 + d4)
�

cd
a3 b3

+
ab

c3d3

�

≥ 9.

Indeed, by the AM-GM inequality,

2(a4 + b4 + c4 + d4)
�

cd
a3 b3

+
ab

c3d3

�

≥ 8abcd
�

2
abcd

�

= 16> 9.

The equality occurs for a = b = c = d = 1.

P 1.196. If a, b, c, d are real numbers such that a+ b+ c + d = 0, then

(a− 1)2

3a2 + 1
+
(b− 1)2

3b2 + 1
+
(c − 1)2

3c2 + 1
+
(d − 1)2

3d2 + 1
≤ 4.
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Solution. Since

4−
3(a− 1)2

3a2 + 1
=
(3a+ 1)2

3a2 + 1
,

we can write the inequality as

∑ (3a+ 1)2

3a2 + 1
≥ 4.

On the other hand, since

4a2 = 3a2 + (b+ c + d)2 ≤ 3a2 + 3(b2 + c2 + d2) = 3(a2 + b2 + c2 + d2),

3a2 + 1≤
9
4
(a2 + b2 + c2 + d2) + 1=

9(a2 + b2 + c2 + d2) + 4
4

,

we have
∑ (3a+ 1)2

3a2 + 1
≥

4
∑

(3a+ 1)2

9(a2 + b2 + c2 + d2) + 4
= 4.

The equality holds for a = b = c = d = 0, and also for a = 1 and b = c = d = −1/3
(or any cyclic permutation).

Remark. The following generalization is also true.

• If a1, a2, . . . , an are real numbers such that a1 + a2 + · · ·+ an = 0, then

(a1 − 1)2

(n− 1)a2
1 + 1

+
(a2 − 1)2

(n− 1)a2
2 + 1

+ · · ·+
(an − 1)2

(n− 1)a2
n + 1

≤ n,

with equality for a1 = a2 = · · · = an = 0, and also for a1 = 1 and a2 = a3 = · · · =
an = −1/(n− 1) (or any cyclic permutation).

P 1.197. If a, b, c, d ≥ −5 such that a+ b+ c + d = 4, then

1− a
(1+ a)2

+
1− b
(1+ b)2

+
1− c
(1+ c)2

+
1− d
(1+ d)2

≥ 0.

Solution. Assume that a ≤ b ≤ c ≤ d. We show first that x ∈ R \ {−1} involves

1− x
(1+ x)2

≥
−1
8

,

and x ∈ [−5,1/3] \ {−1} involves

1− x
(1+ x)2

≥
3
8

.
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Indeed, we have
1− x
(1+ x)2

+
1
8
=
(x − 3)2

8(1+ x)2
≥ 0

and
1− x
(1+ x)2

−
3
8
=
(5+ x)(1− 3x)

8(1+ x)2
≥ 0.

Therefore, if a ≤ 1/3, then

1− a
(1+ a)2

+
1− b
(1+ b)2

+
1− c
(1+ c)2

+
1− d
(1+ d)2

≥
3
8
−

1
8
−

1
8
−

1
8
= 0.

Assume now that 1/3≤ a ≤ b ≤ c ≤ d. Since

1− a ≥ 1− b ≥ 1− c ≥ 1− d

and
1

(1+ a)2
≥

1
(1+ b)2

≥
1

(1+ c)2
≥

1
(1+ d)2

,

by Chebyshev’s inequality, we have

1− a
(1+ a)2

+
1− b
(1+ b)2

+
1− c
(1+ c)2

+
1− d
(1+ d)2

≥

≥
1
4

�∑

(1− a)
�

�

∑ 1
(1+ a)2

�

= 0.

The equality holds for a = b = c = d = 1, and also for a = −5 and b = c = d = 3
(or any cyclic permutation).

P 1.198. Let a1, a2, . . . , an be positive real numbers such that a1 + a2 + · · ·+ an = n.
Prove that

∑ 1
(n+ 1)a2

1 + a2
2 + · · ·+ a2

n

≤
1
2

.

(Vasile Cîrtoaje, 2008)

First Solution. By the Cauchy-Schwarz inequality, we have

∑ n2

(n+ 1)a2
1 + a2

2 + · · ·+ a2
n

=
∑ (a1 + a2 + · · ·+ an)2

2a2
1 + (a

2
1 + a2

2) + · · ·+ (a
2
1 + a2

n)

≤
∑

�

1
2
+

a2
2

a2
1 + a2

2

+ · · ·+
a2

n

a2
1 + a2

n

�

=
n
2
+

n(n− 1)
2

=
n2

2
,
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from which the conclusion follows. The equality holds for a1 = a2 = · · ·= an = 1.

Second Solution. Write the inequality as

∑ a2
1 + a2

2 + · · ·+ a2
n

(n+ 1)a2
1 + a2

2 + · · ·+ a2
n

≤
a2

1 + a2
2 + · · ·+ a2

n

2
.

Since
a2

1 + a2
2 + · · ·+ a2

n

(n+ 1)a2
1 + a2

2 + · · ·+ a2
n

= 1−
na2

1

(n+ 1)a2
1 + a2

2 + · · ·+ a2
n

,

we need to prove that

∑ a2
1

(n+ 1)a2
1 + a2

2 + · · ·+ a2
n

+
a2

1 + a2
2 + · · ·+ a2

n

2n
≥ 1.

By the Cauchy-Schwarz inequality, we have

∑ a2
1

(n+ 1)a2
1 + a2

2 + · · ·+ a2
n

≥
(a1 + a2 + · · ·+ an)2

∑

[(n+ 1)a2
1 + a2

2 + · · ·+ a2
n]

=
n

2(a2
1 + a2

2 + · · ·+ a2
n)

.

Then, it suffices to prove that

n
a2

1 + a2
2 + · · ·+ a2

n

+
a2

1 + a2
2 + · · ·+ a2

n

n
≥ 2,

which follows immediately from the AM-GM inequality.

P 1.199. Let a1, a2, . . . , an be real numbers such that a1 + a2 + · · · + an = 0. Prove
that

(a1 + 1)2

a2
1 + n− 1

+
(a2 + 1)2

a2
2 + n− 1

+ · · ·+
(an + 1)2

a2
n + n− 1

≥
n

n− 1
.

(Vasile Cîrtoaje, 2010)

Solution. Without loss of generality, assume that a2
n =max{a2

1, a2
2, · · · , a2

n}. Since

(an + 1)2

a2
n + n− 1

=
n

n− 1
−

(n− 1− an)2

(n− 1)(a2
n + n− 1)

,

we can write the inequality as

n−1
∑

i=1

(ai + 1)2

a2
i + n− 1

≥
(n− 1− an)2

(n− 1)(a2
n + n− 1)

.
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From the Cauchy-Schwarz inequality

�

n−1
∑

i=1

(a2
i + n− 1)

��

n−1
∑

i=1

(ai + 1)2

a2
i + n− 1

�

≥

�

n−1
∑

i=1

(ai + 1)

�2

,

we get
n−1
∑

i=1

(ai + 1)2

a2
i + n− 1

≥
(n− 1− an)2

∑n−1
i=1 a2

i + (n− 1)2
.

Thus, it suffices to show that

n−1
∑

i=1

a2
i + (n− 1)2 ≤ (n− 1)(a2

n + n− 1),

which is clearly true. The proof is completed. The equality holds for
−a1

n− 1
= a2 =

a3 = · · ·= an (or any cyclic permutation).

P 1.200. Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an = 1. Prove
that

(a)
1

1+ (n− 1)a1
+

1
1+ (n− 1)a2

+ · · ·+
1

1+ (n− 1)an
≥ 1;

(b)
1

a1 + n− 1
+

1
a2 + n− 1

+ · · ·+
1

an + n− 1
≤ 1.

(Vasile Cîrtoaje, 1991)

Solution. (a) First Solution. Let k = (n−1)/n. We can get the required inequality
by summing the inequalities

1
1+ (n− 1)ai

≥
a−k

i

a−k
1 + a−k

2 + · · ·+ a−k
n

for i = 1,2, · · · , n. The inequality is equivalent to

a−k
1 + · · ·+ a−k

i−1 + a−k
i+1 + · · ·+ a−k

n ≥ (n− 1)a1−k
i ,

which follows from the AM-GM inequality. The equality holds for a1 = a2 = · · · =
an = 1.

Second Solution. Replacing all ai by 1/ai, the inequality becomes

a1

a1 + n− 1
+

a2

a2 + n− 1
+ · · ·+

an

an + n− 1
≥ 1.
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By the Cauchy-Schwarz inequality, we have

∑ ai

ai + n− 1
≥

�∑p
a1

�2

∑

(a1 + n− 1)
.

Thus, we still have to prove that

�∑

p

a1

�2
≥
∑

a1 + n(n− 1),

which is equivalent to
∑

1≤i< j≤n

2
p

aia j ≥ n(n− 1).

Since a1a2 · · · an = 1, this inequality follows from the AM-GM inequality.

Third Solution. Use the contradiction method. Assume that

1
1+ (n− 1)a1

+
1

1+ (n− 1)a2
+ · · ·+

1
1+ (n− 1)an

< 1

and show that a1a2 · · · an > 1 (which contradicts the hypothesis a1a2 · · · an = 1).
Let

x i =
1

1+ (n− 1)ai
, 0< x i < 1, i = 1,2, · · · , n.

Since

ai =
1− x i

(n− 1)x i
, i = 1,2, · · · , n,

we need to show that
x1 + x2 + · · ·+ xn < 1

implies
(1− x1)(1− x2) · · · (1− xn)> (n− 1)n x1 x2 · · · xn.

Using the AM-GM inequality, we have

1− x i >
∑

k 6=i

xk ≥ (n− 1)

�

∏

k 6=i

xk

�1/(n−1)

.

Multiplying the inequalities

1− x i > (n− 1)

�

∏

k 6=i

xk

�1/(n−1)

, i = 1,2, · · · , n,

the conclusion follows.

(b) This inequality follows from the inequality in (a) by replacing all ai with
1/ai. The equality holds for a1 = a2 = · · ·= an = 1.
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Remark. The inequalities in P 1.200 are particular cases of the following more
general results (Vasile Cîrtoaje, 2005):

• Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an = 1. If

0< k ≤ n− 1, p ≥ n1/k − 1,

then
1

(1+ pa1)k
+

1
(1+ pa2)k

+ · · ·+
1

(1+ pan)k
≥

n
(1+ p)k

.

• Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an = 1. If

k ≥
1

n− 1
, 0< p ≤

� n
n− 1

�1/k
− 1,

then
1

(1+ pa1)k
+

1
(1+ pa2)k

+ · · ·+
1

(1+ pan)k
≤

n
(1+ p)k

.

P 1.201. Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an = 1. Prove
that

1
1− a1 + na2

1

+
1

1− a2 + na2
2

+ · · ·+
1

1− an + na2
n

≥ 1.

(Vasile Cîrtoaje, 2009)

Solution. First, we show that

1
1− x + nx2

≥
1

1+ (n− 1)x k
,

where x > 0 and k = 2+
1

n− 1
. Write the inequality as

(n− 1)x k + x ≥ nx2.

We can get this inequality using the AM-GM inequality as follows:

(n− 1)x k + x ≥ n
n
p

x (n−1)k x = nx2.

Thus, it suffices to show that

1

1+ (n− 1)ak
1

+
1

1+ (n− 1)ak
2

+ · · ·+
1

1+ (n− 1)ak
n

≥ 1,

which follows immediately from the inequality (a) in the preceding P 1.200. The
equality holds for a1 = a2 = · · ·= an = 1.
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Remark 1. Similarly, we can prove the following more general statement.

• Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an = 1. If p and q
are real numbers such that p+ q = n− 1 and n− 1≤ q ≤ (

p
n+ 1)2, then

1
1+ pa1 + qa2

1

+
1

1+ pa2 + qa2
2

+ · · ·+
1

1+ pan + qa2
n

≥ 1.

Remark 2. We can extend the inequality in Remark 1 as follows (Vasile Cîrtoaje,
2009).

• Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an = 1. If p and q
are real numbers such that p+ q = n− 1 and 0≤ q ≤ (

p
n+ 1)2, then

1
1+ pa1 + qa2

1

+
1

1+ pa2 + qa2
2

+ · · ·+
1

1+ pan + qa2
n

≥ 1.

P 1.202. Let a1, a2, . . . , an be positive real numbers such that

a1, a2, . . . , an ≥
k(n− k− 1)
kn− k− 1

, k > 1

and
a1a2 · · · an = 1.

Prove that
1

a1 + k
+

1
a2 + k

+ · · ·+
1

an + k
≤

n
1+ k

.

(Vasile Cîrtoaje, 2005)

Solution. We use the induction method. Let

En(a1, a2, . . . , an) =
1

a1 + k
+

1
a2 + k

+ · · ·+
1

an + k
−

n
1+ k

.

For n= 2, we have

E2(a1, a2) =
(1− k)(

p
a1 −

p
a2)2

(1+ k)(a1 + k)(a2 + k)
≤ 0.

Assume that the inequality is true for n − 1 numbers (n ≥ 3), and prove that
En(a1, a2, . . . , an)≥ 0 for a1a2 · · · an = 1 and a1, a2, . . . , an ≥ pn, where

pn =
k(n− k− 1)
kn− k− 1

.

Due to symmetry, we may assume that a1 ≥ 1 and a2 ≤ 1. There are two cases to
consider.
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Case 1: a1a2 ≤ k2. From a1a2 ≥ a2, pn−1 < pn and a1, a2, . . . , an ≥ pn, it follows that

a1a2, a3, · · · , an > pn−1.

Then, by the induction hypothesis, we have En−1(a1a2, a2, . . . , an) ≤ 0; thus, it suf-
fices to show that

En(a1, a2, . . . , an)≤ En−1(a1a2, a2, . . . , an).

This is equivalent to

1
a1 + k

+
1

a2 + k
−

1
a1a2 + k

−
1

1+ k
≤ 0,

which reduces to the obvious inequality

(a1 − 1)(1− a2)(a1a2 − k2)≤ 0.

Case 2: a1a2 ≥ k2. Since

1
a1 + k

+
1

a2 + k
=

a1 + a2 + 2k
a1a2 + k(a1 + a2) + k2

≤
a1 + a2 + 2k

k2 + k(a1 + a2) + k2
=

1
k

and
1

a3 + k
+ · · ·+

1
an + k

≤
n− 2
pn + k

=
kn− k− 1
k(k+ 1)

,

we have

En(a1, a2, . . . , an)≤
1
k
+

kn− k− 1
k(k+ 1)

−
n

1+ k
= 0.

Thus, the proof is completed. The equality holds for a1 = a2 = · · ·= an = 1.

Remark. For k = n− 1, we get the inequality (b) in P 1.200.

P 1.203. If a1, a2, . . . , an ≥ 0, then

1
1+ na1

+
1

1+ na2
+ · · ·+

1
1+ nan

≥
n

n+ a1a2 · · · an
.

(Vasile Cîrtoaje, 2013)

Solution. If one of a1, a2, . . . , an is zero, the inequality is obvious. Consider further
that a1, a2, . . . , an > 0 and let

r = n
p

a1a2 · · · an.
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By the Cauchy-Schwarz inequality, we have

∑ 1
1+ na1

≥

�∑p
a2a3 · · · an

�2

∑

(1+ na1)a2a3 · · · an
=

�∑p
a2a3 · · · an

�2

∑

a2a3 · · · an + n2rn
.

Therefore, it suffices to show that

(n+ rn)
�∑

p

a2a3 · · · an

�2
≥ n

∑

a2a3 · · · an + n3rn.

By the AM-GM inequality, we have

�∑

p

a2a3 · · · an

�2
≥
∑

a2a3 · · · an + n(n− 1)rn−1.

Thus, it is enough to prove that

(n+ rn)
�∑

a2a3 · · · an + n(n− 1)rn−1
�

≥ n
∑

a2a3 · · · an + n3rn,

which is equivalent to

rn
∑

a2a3 · · · an + n(n− 1)r2n−1 + n2(n− 1)rn−1 ≥ n3rn.

Also, by the AM-GM inequality,
∑

a2a3 · · · an ≥ nrn−1,

and it suffices to show the inequality

nr2n−1 + n(n− 1)r2n−1 + n2(n− 1)rn−1 ≥ n3rn,

which can be rewritten as

n2rn−1(rn − nr + n− 1)≥ 0.

Indeed, by the AM-GM inequality, we get

rn + n− 1= rn + 1+ · · ·+ 1≥ n n
p

rn · 1 · · ·1= nr.

The equality holds for a1 = a2 = · · ·= an = 1.



Chapter 2

Symmetric Nonrational Inequalities

2.1 Applications

2.1. If a, b are nonnegative real numbers such that a2 + b2 ≤ 1+
2
p

3
, then

a
2a2 + 1

+
b

2b2 + 1
≤
p

2(a2 + b2)
a2 + b2 + 1

.

2.2. If a, b, c are real numbers, then
∑

p

a2 − ab+ b2 ≤
Æ

6(a2 + b2 + c2)− 3(ab+ bc + ca).

2.3. If a, b, c are positive real numbers, then

a
p

b+ c + b
p

c + a+ c
p

a+ b ≥
2bc
p

b+ c
+

2ca
p

c + a
+

2ab
p

a+ b
.

2.4. If a, b, c are nonnegative real numbers, then

p

a2 − ab+ b2 +
p

b2 − bc + c2 +
p

c2 − ca+ a2 ≤ 3

√

√a2 + b2 + c2

2
.

2.5. If a, b, c are nonnegative real numbers, then
√

√

a2 + b2 −
2
3

ab+

√

√

b2 + c2 −
2
3

bc +

√

√

c2 + a2 −
2
3

ca ≥ 2
p

a2 + b2 + c2.

275
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2.6. If a, b, c are nonnegative real numbers, then
∑

p

a2 + ab+ b2 ≥
Æ

4(a2 + b2 + c2) + 5(ab+ bc + ca).

2.7. If a, b, c are positive real numbers, then
∑

p

a2 + ab+ b2 ≤
Æ

5(a2 + b2 + c2) + 4(ab+ bc + ca).

2.8. If a, b, c are nonnegative real numbers, then
∑

p

a2 + ab+ b2 ≤ 2
p

a2 + b2 + c2 +
p

ab+ bc + ca.

2.9. If a, b, c are nonnegative real numbers, then

p

a2 + 2bc +
p

b2 + 2ca+
p

c2 + 2ab ≤
p

a2 + b2 + c2 + 2
p

ab+ bc + ca.

2.10. If a, b, c are nonnegative real numbers, then

1
p

a2 + 2bc
+

1
p

b2 + 2ca
+

1
p

c2 + 2ab
≥

1
p

a2 + b2 + c2
+

2
p

ab+ bc + ca
.

2.11. If a, b, c are positive real numbers, then

p

2a2 + bc +
p

2b2 + ca+
p

2c2 + ab ≤ 2
p

a2 + b2 + c2 +
p

ab+ bc + ca.

2.12. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. If k =
p

3−1,
then

∑
Æ

a(a+ kb)(a+ kc)≤ 3
p

3.

2.13. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then
∑

Æ

a(2a+ b)(2a+ c)≥ 9.
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2.14. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that
Æ

b2 + c2 + a(b+ c) +
Æ

c2 + a2 + b(c + a) +
Æ

a2 + b2 + c(a+ b)≥ 6.

2.15. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

(a)
p

a(3a2 + abc) +
p

b(3b2 + abc) +
p

c(3c2 + abc)≥ 6;

(b)
p

3a2 + abc +
p

3b2 + abc +
p

3c2 + abc ≥ 3
p

3+ abc.

2.16. Let a, b, c be positive real numbers such that ab+ bc + ca = 3. Prove that

a
Æ

(a+ 2b)(a+ 2c) + b
Æ

(b+ 2c)(b+ 2a) + c
Æ

(c + 2a)(c + 2b)≥ 9.

2.17. Let a, b, c be nonnegative real numbers such that a+ b+ c = 1. Prove that
Æ

a+ (b− c)2 +
Æ

b+ (c − a)2 +
Æ

c + (a− b)2 ≥
p

3.

2.18. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
√

√a(b+ c)
a2 + bc

+

√

√ b(c + a)
b2 + ca

+

√

√ c(a+ b)
c2 + ab

≥ 2.

2.19. Let a, b, c be positive real numbers such that abc = 1. Prove that

1
3pa2 + 25a+ 1

+
1

3pb2 + 25b+ 1
+

1
3pc2 + 25c + 1

≥ 1.

2.20. If a, b, c are nonnegative real numbers, then

p

a2 + bc +
p

b2 + ca+
p

c2 + ab ≤
3
2
(a+ b+ c).

2.21. If a, b, c are nonnegative real numbers, then
p

a2 + 9bc +
p

b2 + 9ca+
p

c2 + 9ab ≥ 5
p

ab+ bc + ca.
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2.22. If a, b, c are nonnegative real numbers, then
∑

Æ

(a2 + 4bc)(b2 + 4ca)≥ 5(ab+ ac + bc).

2.23. If a, b, c are nonnegative real numbers, then
∑

Æ

(a2 + 9bc)(b2 + 9ca)≥ 7(ab+ ac + bc).

2.24. If a, b, c are nonnegative real numbers, then
∑

Æ

(a2 + b2)(b2 + c2)≤ (a+ b+ c)2.

2.25. If a, b, c are nonnegative real numbers, then
∑

Æ

(a2 + ab+ b2)(b2 + bc + c2)≥ (a+ b+ c)2.

2.26. If a, b, c are nonnegative real numbers, then
∑

Æ

(a2 + 7ab+ b2)(b2 + 7bc + c2)≥ 7(ab+ ac + bc).

2.27. If a, b, c are nonnegative real numbers, then

∑

√

√

�

a2 +
7
9

ab+ b2

��

b2 +
7
9

bc + c2

�

≤
13
12
(a+ b+ c)2.

2.28. If a, b, c are nonnegative real numbers, then

∑

√

√

�

a2 +
1
3

ab+ b2

��

b2 +
1
3

bc + c2

�

≤
61
60
(a+ b+ c)2.

2.29. If a, b, c are nonnegative real numbers, then

a
p

4b2 + bc + 4c2
+

b
p

4c2 + ca+ 4a2
+

c
p

4a2 + ab+ 4b2
≥ 1.
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2.30. If a, b, c are nonnegative real numbers, then

a
p

b2 + bc + c2
+

b
p

c2 + ca+ a2
+

c
p

a2 + ab+ b2
≥

a+ b+ c
p

ab+ bc + ca
.

2.31. If a, b, c are nonnegative real numbers, then

a
p

a2 + 2bc
+

b
p

b2 + 2ca
+

c
p

c2 + 2ab
≤

a+ b+ c
p

ab+ bc + ca
.

2.32. If a, b, c are nonnegative real numbers, then

a3 + b3 + c3 + 3abc ≥ a2
p

a2 + 3bc + b2
p

b2 + 3ca+ c2
p

c2 + 3ab.

2.33. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a
p

4a2 + 5bc
+

b
p

4b2 + 5ca
+

c
p

4c2 + 5ab
≤ 1.

2.34. Let a, b, c be nonnegative real numbers. Prove that

a
p

4a2 + 5bc + b
p

4b2 + 5ca+ c
p

4c2 + 5ab ≥ (a+ b+ c)2.

2.35. Let a, b, c be nonnegative real numbers. Prove that

a
p

a2 + 3bc + b
p

b2 + 3ca+ c
p

c2 + 3ab ≥ 2(ab+ bc + ca).

2.36. Let a, b, c be nonnegative real numbers. Prove that

a
p

a2 + 8bc + b
p

b2 + 8ca+ c
p

c2 + 8ab ≤ (a+ b+ c)2.

2.37. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a2 + 2bc
p

b2 + bc + c2
+

b2 + 2ca
p

c2 + ca+ a2
+

c2 + 2ab
p

a2 + ab+ b2
≥ 3

p

ab+ bc + ca.
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2.38. Let a, b, c be nonnegative real numbers, no two of which are zero. If k ≥ 1,
then

ak+1

2a2 + bc
+

bk+1

2b2 + ca
+

ck+1

2c2 + ab
≤

ak + bk + ck

a+ b+ c
.

2.39. If a, b, c are positive real numbers, then

(a)
a2 − bc
p

3a2 + 2bc
+

b2 − ca
p

3b2 + 2ca
+

c2 − ab
p

3c2 + 2ab
≥ 0;

(b)
a2 − bc

p

8a2 + (b+ c)2
+

b2 − ca
p

8b2 + (c + a)2
+

c2 − ab
p

8c2 + (a+ b)2
≥ 0.

2.40. Let a, b, c be positive real numbers. If 0≤ k ≤ 1+ 2
p

2, then

a2 − bc
p

ka2 + b2 + c2
+

b2 − ca
p

kb2 + c2 + a2
+

c2 − ab
p

kc2 + a2 + b2
≥ 0.

2.41. If a, b, c are nonnegative real numbers, then

(a2 − bc)
p

b+ c + (b2 − ca)
p

c + a+ (c2 − ab)
p

a+ b ≥ 0.

2.42. If a, b, c are nonnegative real numbers, then

(a2 − bc)
p

a2 + 4bc + (b2 − ca)
p

b2 + 4ca+ (c2 − ab)
p

c2 + 4ab ≥ 0.

2.43. If a, b, c are nonnegative real numbers, then
√

√ a3

a3 + (b+ c)3
+

√

√ b3

b3 + (c + a)3
+

√

√ c3

c3 + (a+ b)3
≥ 1.

2.44. If a, b, c are positive real numbers, then

√

√

(a+ b+ c)
�

1
a
+

1
b
+

1
c

�

≥ 1+

√

√

√

1+

√

√

(a2 + b2 + c2)
�

1
a2
+

1
b2
+

1
c2

�

.
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2.45. If a, b, c are positive real numbers, then

5+

√

√

2(a2 + b2 + c2)
�

1
a2
+

1
b2
+

1
c2

�

− 2 ≥ (a+ b+ c)
�

1
a
+

1
b
+

1
c

�

.

2.46. If a, b, c are real numbers, then

2(1+ abc) +
Æ

2(1+ a2)(1+ b2)(1+ c2)≥ (1+ a)(1+ b)(1+ c).

2.47. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
√

√a2 + bc
b2 + c2

+

√

√ b2 + ca
c2 + a2

+

√

√ c2 + ab
a2 + b2

≥ 2+
1
p

2
.

2.48. If a, b, c are nonnegative real numbers, then
Æ

a(2a+ b+ c) +
Æ

b(2b+ c + a) +
Æ

c(2c + a+ b)≥
Æ

12(ab+ bc + ca).

2.49. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

a
Æ

(4a+ 5b)(4a+ 5c) + b
Æ

(4b+ 5c)(4b+ 5a) + c
Æ

(4c + 5a)(4c + 5b)≥ 27.

2.50. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

a
Æ

(a+ 3b)(a+ 3c) + b
Æ

(b+ 3c)(b+ 3a) + c
Æ

(c + 3a)(c + 3b)≥ 12.

2.51. Let a, b, c be nonnegative real numbers such that a2+ b2+ c2 = 3. Prove that
p

2+ 7ab+
p

2+ 7bc +
p

2+ 7ca ≥ 3
Æ

3(ab+ bc + ca).

2.52. Let a, b, c be nonnegative real numbers such that a2+ b2+ c2 = 3. Prove that

a
2a2 + 1

+
b

2b2 + 1
+

c
2c2 + 1

≤ 1.
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2.53. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

(a)
∑p

a(b+ c)(a2 + bc)≥ 6;

(b)
∑

a(b+ c)
p

a2 + 2bc ≥ 6
p

3;

(c)
∑

a(b+ c)
p

(a+ 2b)(a+ 2c)≥ 18.

2.54. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

a
p

bc + 3+ b
p

ca+ 3+ c
p

ab+ 3≥ 6.

2.55. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

(a)
∑

(b+ c)
p

b2 + c2 + 7bc ≥ 18;

(b)
∑

(b+ c)
p

b2 + c2 + 10bc ≤ 12
p

3.

2.56. Let a, b, c be nonnegative real numbers such then a+ b+ c = 2. Prove that
p

a+ 4bc +
p

b+ 4ca+
p

c + 4ab ≥ 4
p

ab+ bc + ca.

2.57. If a, b, c are nonnegative real numbers, then
p

a2 + b2 + 7ab+
p

b2 + c2 + 7bc +
p

c2 + a2 + 7ca ≥ 5
p

ab+ bc + ca.

2.58. If a, b, c are nonnegative real numbers, then
p

a2 + b2 + 5ab+
p

b2 + c2 + 5bc +
p

c2 + a2 + 5ca ≥
Æ

21(ab+ bc + ca).

2.59. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

a
p

a2 + 5+ b
p

b2 + 5+ c
p

c2 + 5≥

√

√2
3
(a+ b+ c)2.
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2.60. Let a, b, c be nonnegative real numbers such that a2+ b2+ c2 = 1. Prove that

a
p

2+ 3bc + b
p

2+ 3ca+ c
p

2+ 3ab ≥ (a+ b+ c)2.

2.61. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

(a) a

√

√2a+ bc
3

+ b

√

√2b+ ca
3

+ c

√

√2c + ab
3

≥ 3;

(b) a

√

√a(1+ b+ c)
3

+ b

√

√ b(1+ c + a)
3

+ c

√

√ c(1+ a+ b)
3

≥ 3.

2.62. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

Æ

8(a2 + bc) + 9+
Æ

8(b2 + ca) + 9+
Æ

8(c2 + ab) + 9≥ 15.

2.63. Let a, b, c be nonnegative real numbers such that a + b + c = 3. If k ≥
9
8

,

then
p

a2 + bc + k+
p

b2 + ca+ k+
p

c2 + ab+ k ≥ 3
p

2+ k.

2.64. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

p

a3 + 2bc +
p

b3 + 2ca+
p

c3 + 2ab ≥ 3
p

3.

2.65. If a, b, c are positive real numbers, then

p
a2 + bc
b+ c

+
p

b2 + ca
c + a

+
p

c2 + ab
a+ b

≥
3
p

2
2

.

2.66. If a, b, c are nonnegative real numbers, no two of which are zero,then

p

bc + 4a(b+ c)
b+ c

+

p

ca+ 4b(c + a)
c + a

+

p

ab+ 4c(a+ b)
a+ b

≥
9
2

.
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2.67. If a, b, c are nonnegative real numbers, no two of which are zero,then

a
p

a2 + 3bc
b+ c

+
b
p

b2 + 3ca
c + a

+
c
p

c2 + 3ab
a+ b

≥ a+ b+ c.

2.68. If a, b, c are nonnegative real numbers, no two of which are zero,then

√

√ 2a(b+ c)
(2b+ c)(b+ 2c)

+

√

√ 2b(c + a)
(2c + a)(c + 2a)

+

√

√ 2c(a+ b)
(2a+ b)(a+ 2b)

≥ 2.

2.69. If a, b, c are nonnegative real numbers such that ab+ bc + ca = 3, then

√

√ bc
3a2 + 6

+
s

ca
3b2 + 6

+

√

√ ab
3c2 + 6

≤ 1≤

√

√ bc
6a2 + 3

+
s

ca
6b2 + 3

+

√

√ ab
6c2 + 3

.

2.70. Let a, b, c be nonnegative real numbers such that ab+ bc+ ca = 3. If k > 1,
than

ak(b+ c) + bk(c + a) + ck(a+ b)≥ 6.

2.71. Let a, b, c be nonnegative real numbers such that a+ b+ c = 2. If

2≤ k ≤ 3,

than
ak(b+ c) + bk(c + a) + ck(a+ b)≤ 2.

2.72. Let a, b, c be nonnegative real numbers, no two of which are zero. If m >
n≥ 0, than

bm + cm

bn + cn
(b+ c − 2a) +

cm + am

cn + an
(c + a− 2b) +

am + bm

an + bn
(a+ b− 2c)≥ 0.

2.73. Let a, b, c be positive real numbers such that abc = 1. Prove that

p

a2 − a+ 1+
p

a2 − a+ 1+
p

a2 − a+ 1≥ a+ b+ c.
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2.74. Let a, b, c be positive real numbers such that abc = 1. Prove that
p

16a2 + 9+
p

16b2 + 9+
p

16b2 + 9≥ 4(a+ b+ c) + 3.

2.75. Let a, b, c be positive real numbers such that abc = 1. Prove that
p

25a2 + 144+
p

25b2 + 144+
p

25c2 + 144≤ 5(a+ b+ c) + 24.

2.76. If a, b are positive real numbers such that ab+ bc + ca = 3, then

(a)
p

a2 + 3+
p

b2 + 3+
p

b2 + 3≥ a+ b+ c + 3;

(b)
p

a+ b+
p

b+ c +
p

c + a ≥
p

4(a+ b+ c) + 6.

2.77. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then
Æ

(5a2 + 3)(5b2 + 3) +
Æ

(5b2 + 3)(5c2 + 3) +
Æ

(5c2 + 3)(5a2 + 3)≥ 24.

2.78. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

p

a2 + 1+
p

b2 + 1+
p

c2 + 1≥

√

√4(a2 + b2 + c2) + 42
3

.

2.79. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

(a)
p

a2 + 3+
p

b2 + 3+
p

c2 + 3≥
p

2(a2 + b2 + c2) + 30;

(b)
p

3a2 + 1+
p

3b2 + 1+
p

3c2 + 1≥
p

2(a2 + b2 + c2) + 30.

2.80. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then
Æ

(32a2 + 3)(32b2 + 3) +
Æ

(32b2 + 3)(32c2 + 3) +
Æ

(32c2 + 3)(32a2 + 3)≤ 105.

2.81. If a, b, c are positive real numbers, then
�

�

�

�

b+ c
a
− 3

�

�

�

�

+
�

�

�

c + a
b
− 3

�

�

�+

�

�

�

�

a+ b
c
− 3

�

�

�

�

≥ 2.
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2.82. If a, b, c are real numbers such that abc 6= 0, then
�

�

�

�

b+ c
a

�

�

�

�

+
�

�

�

c + a
b

�

�

�+

�

�

�

�

a+ b
c

�

�

�

�

≥ 2.

2.83. Let a, b, c be nonnegative real numbers, no two of which are zero, and let

x =
2a

b+ c
, y =

2b
c + a

, z =
2c

a+ b
.

Prove that

(a)
p

x y +pyz +
p

zx ≥ x yz + 2;

(b) x + y + z +px y +pyz +
p

zx ≥ 6;

(c)
p

x +py +
p

z ≥
p

8+ x yz;

(d)
p

yz
x + 2

+
p

zx
y + 2

+
p

x y
z + 2

≥ 1.

2.84. Let a, b, c be nonnegative real numbers, no two of which are zero, and let

x =
2a

b+ c
, y =

2b
c + a

, z =
2c

a+ b
.

Prove that
p

1+ 24x +
p

1+ 24y +
p

1+ 24z ≥ 15.

2.85. If a, b, c are positive real numbers, then
√

√ 7a
a+ 3b+ 3c

+

√

√ 7b
b+ 3c + 3a

+

√

√ 7c
c + 3a+ 3b

≤ 3.

2.86. If a, b, c are positive real numbers such that a+ b+ c = 3, then

3
Æ

a2(b2 + c2) + 3
Æ

b2(c2 + a2) + 3
Æ

c2(a2 + b2)≤ 3
3p

2.

2.87. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
a+ b

+
1

b+ c
+

1
c + a

≥
1

a+ b+ c
+

2
p

ab+ bc + ca
.
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2.88. If a, b ≥ 1, then

1
p

3ab+ 1
+

1
2
≥

1
p

3a+ 1
+

1
p

3b+ 1
.

2.89. Let a, b, c be positive real numbers such that a+ b+ c = 3. If k ≥
1
p

2
, then

(abc)k(a2 + b2 + c2)≤ 3.

2.90. If a, b, c ∈ [0,4] and ab+ bc + ca = 4, then

p

a+ b+
p

b+ c +
p

c + a ≤ 3+
p

5.

2.91. Let

F(a, b, c) =

√

√a2 + b2 + c2

3
−

a+ b+ c
3

,

where a, b, c are positive real numbers such that

a4 bc ≥ 1, a ≤ b ≤ c.

Then,

F(a, b, c)≥ F
�

1
a

,
1
b

,
1
c

�

.

2.92. Let

F(a, b, c) =

√

√a2 + b2 + c2

3
−

a+ b+ c
3

,

where a, b, c are positive real numbers such that

a2(b+ c)≥ 1, a ≤ b ≤ c.

Then,

F(a, b, c)≥ F
�

1
a

,
1
b

,
1
c

�

.
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2.93. Let

F(a, b, c) =

√

√a2 + b2 + c2

3
−

a+ b+ c
3

,

where a, b, c are positive real numbers such that

a4(b2 + c2)≥ 2, a ≤ b ≤ c.

Then,

F(a, b, c)≥ F
�

1
a

,
1
b

,
1
c

�

.

2.94. Let

F(a, b, c) =
3
p

abc −
3

1
a +

1
b +

1
c

,

where a, b, c are positive real numbers such that

a4 b7c7 ≥ 1, a ≥ b ≥ c.

Then,

F(a, b, c)≥ F
�

1
a

,
1
b

,
1
c

�

.

2.95. Let

F(a, b, c, d) =
4
p

abcd −
4

1
a +

1
b +

1
c +

1
d

,

where a, b, c, d are positive real numbers. If ab ≥ 1 and cd ≥ 1, then then

F(a, b, c, d)≥ F
�

1
a

,
1
b

,
1
c

,
1
d

�

.

2.96. Let a, b, c, d be nonnegative real numbers such that a2 + b2 + c2 + d2 = 1.
Prove that

p
1− a+

p

1− b+
p

1− c +
p

1− d ≥
p

a+
p

b+
p

c +
p

d.

2.97. Let a, b, c, d be positive real numbers. Prove that

A+ 2≥
p

B + 4,

where

A= (a+ b+ c + d)
�

1
a
+

1
b
+

1
c
+

1
d

�

− 16,

B = (a2 + b2 + c2 + d2)
�

1
a2
+

1
b2
+

1
c2
+

1
d2

�

− 16.
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2.98. Let a1, a2, . . . , an be nonnegative real numbers such that a1+a2+ · · ·+an = 1.
Prove that

p

3a1 + 1+
p

3a2 + 1+ · · ·+
p

3an + 1≥ n+ 1.

2.99. Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an = 1. Prove
that

1
p

1+ (n2 − 1)a1

+
1

p

1+ (n2 − 1)a2

+ · · ·+
1

p

1+ (n2 − 1)an

≥ 1.

2.100. Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an = 1. Prove
that

n
∑

i=1

1

1+
p

1+ 4n(n− 1)ai

≥
1
2

.

2.101. If a1, a2, . . . , an are positive real numbers such that a1a2 · · · an = 1, then

a1 + a2 + · · ·+ an ≥ n− 1+

√

√a2
1 + a2

2 + · · ·+ a2
n

n
.

2.102. If a1, a2, . . . , an are positive real numbers such that a1a2 · · · an = 1, then
q

(n− 1)(a2
1 + a2

2 + · · ·+ a2
n) + n−

Æ

n(n− 1)≥ a1 + a2 + · · ·+ an.

2.103. Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an ≥ 1. If k > 1,
then

∑ ak
1

ak
1 + a2 + · · ·+ an

≥ 1.

2.104. Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an ≥ 1. If

−2
n− 2

≤ k < 1,

then
∑ ak

1

ak
1 + a2 + · · ·+ an

≤ 1.
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2.105. Let a1, a2, . . . , an be nonnegative real numbers such that a1+a2+· · ·+an ≥ n.
If 1< k ≤ n+ 1, then

∑ a1

ak
1 + a2 + · · ·+ an

≤ 1.

2.106. Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an ≥ 1. If k > 1,
then

∑ a1

ak
1 + a2 + · · ·+ an

≤ 1.

2.107. Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an ≥ 1. If

−1−
2

n− 2
≤ k < 1,

then
∑ a1

ak
1 + a2 + · · ·+ an

≥ 1.

2.108. Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an = 1. If k ≥ 0,
then

∑ 1

ak
1 + a2 + · · ·+ an

≤ 1.

2.109. Let a1, a2, . . . , an be nonnegative real numbers such that a1+a2+· · ·+an ≤ n.
If 0≤ k < 1, then

1

ak
1 + a2 + · · ·+ an

+
1

a1 + ak
2 + · · ·+ an

+ · · ·+
1

a1 + a2 + · · ·+ ak
n

≥ 1.

2.110. Let a1, a2, . . . , an be positive real numbers. If k > 1, then

∑ ak
2 + ak

3 + · · ·+ ak
n

a2 + a3 + · · ·+ an
≤

n(ak
1 + ak

2 + · · ·+ ak
n)

a1 + a2 + · · ·+ an
.

2.111. Let f be a convex function on the closed interval [a, b], and let a1, a2, . . . , an ∈
[a, b] such that

a1 + a2 + · · ·+ an = pa+ qb,

where p, q ≥ 0 such that p+ q = n. Prove that

f (a1) + f (a2) + · · ·+ f (an)≤ p f (a) + q f (b).
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2.2 Solutions

P 2.1. If a, b are nonnegative real numbers such that a2 + b2 ≤ 1+
2
p

3
, then

a
2a2 + 1

+
b

2b2 + 1
≤
p

2(a2 + b2)
a2 + b2 + 1

.

(Vasile Cîrtoaje, 2012)

Solution. With

s =
a2 + b2

2
, p = ab, 0≤ p ≤ s ≤

1
2
+

1
p

3
,

the inequality becomes as follows:

(2p+ 1)
p

2(s+ p)
4p2 + 4s+ 1

≤
2
p

s
2s+ 1

,

√

√ 2s
s+ p

− 1≥
(2p+ 1)(2s+ 1)

4p2 + 4s+ 1
− 1,

s− p

(s+ p)

�√

√ 2s
s+ p

+ 1

� ≥
2(s− p)(2p− 1)

4p2 + 4s+ 1
.

Thus, we need to show that

1

(s+ p)

�√

√ 2s
s+ p

+ 1

� ≥
2(2p− 1)

4p2 + 4s+ 1
.

Since

√

√ 2s
s+ p

≥ 1, it suffices to show that

1

(s+ p)

�√

√ 2s
s+ p

+

√

√ 2s
s+ p

� ≥
2(2p− 1)

4p2 + 4s+ 1
,

which is equivalent to

4p2 + 4s+ 1≥ 4(2p− 1)
Æ

2s(s+ p).

For the nontrivial case 2p− 1> 0, which involves 2s− 1> 0, since 2
p

2s(s+ p)≤
2s+ (s+ p), it suffices to show that

4p2 + 4s+ 1≥ 2(2p− 1)(3s+ p),
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that is
10s+ 1≥ 2p(6s− 1).

We have

10s+ 1− 2p(6s− 1)≥ 10s+ 1− 2s(6s− 1) = 1+ 12s− 12s2 ≥ 0.

The equality holds for a = b.

P 2.2. If a, b, c are real numbers, then
∑

p

a2 − ab+ b2 ≤
Æ

6(a2 + b2 + c2)− 3(ab+ bc + ca).

Solution. By squaring, the inequality becomes as follows:

2(ab+ bc + ca) + 2
∑

Æ

(a2 − ab+ b2)(a2 − ac + c2)≤ 4(a2 + b2 + c2),

∑�p

a2 − ab+ b2 −
p

a2 − ac + c2
�2
≥ 0.

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic
permutation).

P 2.3. If a, b, c are positive real numbers, then

a
p

b+ c + b
p

c + a+ c
p

a+ b ≥
2bc
p

b+ c
+

2ca
p

c + a
+

2ab
p

a+ b
.

(Lorian Saceanu, 2015)

Solution. Use the SOS method. Write the inequality as follows:

∑

a
p

b+ c −
∑ 2bc
p

b+ c
≥ 0,

∑ a(b+ c)− 2bc
p

b+ c
≥ 0,

∑ b(a− c)
p

b+ c
+
∑ c(a− b)
p

b+ c
≥ 0,

∑ c(b− a)
p

c + a
+
∑ c(a− b)
p

b+ c
≥ 0,
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∑

c(a− b)
�

1
p

b+ c
−

1
p

c + a

�

≥ 0,

∑ c(a− b)2
p

(b+ c)(c + a)
�p

b+ c +
p

c + a
� ≥ 0.

The equality holds for a = b = c.

P 2.4. If a, b, c are nonnegative real numbers, then

p

a2 − ab+ b2 +
p

b2 − bc + c2 +
p

c2 − ca+ a2 ≤ 3

√

√a2 + b2 + c2

2
.

Solution (by Nguyen Van Quy). Assume that c =min{a, b, c}. Since

b2 − bc + c2 ≤ b2

and
c2 − ca+ a2 ≤ a2,

it suffices to show that

p

a2 − ab+ b2 + b+ a ≤ 3

√

√a2 + b2 + c2

2
.

Using the Cauchy-Schwarz inequality, we have

p

a2 − ab+ b2 + a+ b ≤

√

√

�

(a2 − ab+ b2) +
(a+ b)2

k

�

(1+ k)

=

√

√(1+ k)[(1+ k)(a2 + b2) + (2− k)ab]
k

, k > 0.

Choosing k = 2, we get

p

a2 − ab+ b2 + a+ b ≤ 3

√

√a2 + b2

2
≤ 3

√

√a2 + b2 + c2

2
= 3.

The equality holds for a = b and c = 0 (or any cyclic permutation).

P 2.5. If a, b, c are nonnegative real numbers, then
√

√

a2 + b2 −
2
3

ab+

√

√

b2 + c2 −
2
3

bc +

√

√

c2 + a2 −
2
3

ca ≥ 2
p

a2 + b2 + c2.

(Vasile Cîrtoaje, 2012)
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First Solution. By squaring, the inequality becomes

2
∑

Æ

(3a2 + 3b2 − 2ab)(3a2 + 3c2 − 2ac)≥ 6(a2 + b2 + c2) + 2(ab+ bc + ca),

6(a2 + b2 + c2 − ab− bc − ca)≥
∑�p

3a2 + 3b2 − 2ab−
p

3a2 + 3c2 − 2ac
�2

,

3
∑

(b− c)2 ≥
∑ (b− c)2(3b+ 3c − 2a)2

�p
3a2 + 3b2 − 2ab+

p
3a2 + 3c2 − 2ac

�2 ,

∑

(b− c)2



1−
(3b+ 3c − 2a)2

�p
9a2 + 9b2 − 6ab+

p
9a2 + 9c2 − 6ac

�2



 .

Since
p

9a2 + 9b2 − 6ab =
Æ

(3b− a)2 + 8a2 ≥ |3b− a|,
p

9a2 + 9c2 − 6ac =
Æ

(3c − a)2 + 8a2 ≥ |3c − a|,

it suffices to show that

∑

(b− c)2
�

1−
�

|3b+ 3c − 2a|
|3b− a|+ |3c − a|

�2�

≥ 0.

This is true since

|3b+ 3c − 2a|= |(3b− a) + (3c − a)| ≤ |3b− a|+ |3c − a|.

The equality holds for a = b = c, and also for b = c = 0 (or any cyclic permutation).

Second Solution. Assume that a ≥ b ≥ c. Write the inequality as
Æ

(a+ b)2 + 2(a− b)2 +
Æ

(b+ c)2 + 2(b− c)2 +
Æ

(a+ c)2 + 2(a− c)2 ≥

≥ 2
Æ

3(a2 + b2 + c2).

By Minkowski’s inequality, it suffices to show that
Æ

[(a+ b) + (b+ c) + (a+ c)]2 + 2[(a− b) + (b− c) + (a− c)]2 ≥ 2
Æ

3(a2 + b2 + c2),

which is equivalent to
Æ

(a+ b+ c)2 + 2(a− c)2 ≥
Æ

3(a2 + b2 + c2).

By squaring, the inequality turns into

(a− b)(b− c)≥ 0.
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P 2.6. If a, b, c are nonnegative real numbers, then
∑

p

a2 + ab+ b2 ≥
Æ

4(a2 + b2 + c2) + 5(ab+ bc + ca).

(Vasile Cîrtoaje, 2009)

First Solution. By squaring, the inequality becomes
∑

Æ

(a2 + ab+ b2)(a2 + ac + c2)≥ (a+ b+ c)2.

Using the Cauchy-Schwarz inequality, we get

∑
Æ

(a2 + ab+ b2)(a2 + ac + c2) =
∑

√

√

√

�

�

a+
b
2

�2

+
3b2

4

�

�

�

a+
c
2

�2
+

3c2

4

�

≥
∑

��

a+
b
2

�

�

a+
c
2

�

+
3bc
4

�

= (a+ b+ c)2.

The equality holds for a = b = c, and also for b = c = 0 (or any cyclic permutation).

Second Solution. Assume that a ≥ b ≥ c. By Minkowski’s inequality, we get

2
∑

p

a2 + ab+ b2 =
∑

Æ

3(a+ b)2 + (a− b)2

≥
Æ

3[(a+ b) + (b+ c) + (c + a)]2 + [(a− b) + (b− c) + (a− c)]2

= 2
Æ

3(a+ b+ c)2 + (a− c)2.

Therefore, it suffices to show that

3(a+ b+ c)2 + (a− c)2 ≥ 4(a2 + b2 + c2) + 5(ab+ bc + ca),

which is equivalent to the obvious inequality

(a− b)(b− c)≥ 0.

Remark. Similarly, we can prove the following generalization.

• Let a, b, c be nonnegative real numbers. If |k| ≤ 2, then
∑

p

a2 + kab+ b2 ≥
Æ

4(a2 + b2 + c2) + (3k+ 2)(ab+ bc + ca),

with equality for a = b = c, and also for b = c = 0 (or any cyclic permutation).

For k = −2/3 and k = 1, we get the inequalities in P 2.5 and P 2.6, respectively.
For k = −1 and k = 0, we get the inequalities

∑
p

a2 − ab+ b2 ≥
Æ

4(a2 + b2 + c2)− ab− bc − ca,
∑

p

a2 + b2 ≥
Æ

4(a2 + b2 + c2) + 2(ab+ bc + ca).
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P 2.7. If a, b, c are positive real numbers, then
∑

p

a2 + ab+ b2 ≤
Æ

5(a2 + b2 + c2) + 4(ab+ bc + ca).

(Michael Rozenberg, 2008)

First Solution (by Vo Quoc Ba Can). Using the Cauchy-Schwarz inequality, we have

�∑p

b2 + bc + c2
�2
≤
�∑

(b+ c)
�

�

∑ b2 + bc + c2

b+ c

�

= 2(a+ b+ c)
�

∑ b2 + bc + c2

b+ c

�

= 2
∑

�

1+
a

b+ c

�

(b2 + bc + c2)

= 4(a2 + b2 + c2) + 2(ab+ bc + ca) +
∑ 2a(b2 + bc + c2)

b+ c

= 4(a2 + b2 + c2) + 2(ab+ bc + ca) +
∑

2a
�

b+ c −
bc

b+ c

�

= 4(a2 + b2 + c2) + 6(ab+ bc + ca)− 2abc
∑ 1

b+ c
.

Thus, it suffices to prove that

4(a2+ b2+ c2)+6(ab+ bc+ ca)−2abc
∑ 1

b+ c
≤ 5(a2+ b2+ c2)+4(ab+ bc+ ca),

which is equivalent to Schur’s inequality

2(ab+ bc + ca)≤ a2 + b2 + c2 + 2abc
∑ 1

b+ c
.

We can prove this inequality by writing it as follows:

(a+ b+ c)2 ≤ 2
∑

a
�

a+
bc

b+ c

�

,

(a+ b+ c)2 ≤ 2(ab+ bc + ca)
∑ a

b+ c
,

(a+ b+ c)2 ≤
�∑

a(b+ c)
�∑ a

b+ c
.

Clearly, the last inequality follows from the Cauchy-Schwarz inequality. The equal-
ity holds for a = b = c.

Second Solution. Use the SOS method. Let us denote

A=
p

b2 + bc + c2, B =
p

c2 + ca+ a2, C =
p

a2 + ab+ b2.

Without loss of generality, assume that a ≥ b ≥ c. By squaring, the inequality
becomes

2
∑

BC ≤ 3
∑

a2 + 3
∑

ab,
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∑

a2 −
∑

ab ≤
∑

(B − C)2,

∑

(b− c)2 ≤ 2(a+ b+ c)2
∑ (b− c)2

(B + C)2
.

Since
(B + C)2 ≤ 2(B2 + C2) = 2(2a2 + b2 + c2 + ca+ ab),

it suffices to show that
∑

(b− c)2 ≤ (a+ b+ c)2
∑ (b− c)2

2a2 + b2 + c2 + ca+ ab
,

which is equivalent to
∑

(b− c)2Sa ≥ 0,

where

Sa =
−a2 + ab+ 2bc + ca

2a2 + b2 + c2 + ca+ ab
,

Sb =
−b2 + bc + 2ca+ ab

2b2 + c2 + a2 + ab+ bc
≥ 0,

Sc =
−c2 + ca+ 2ab+ bc

2c2 + a2 + b2 + bc + ca
≥ 0.

Since
∑

(b− c)2Sa ≥ (b− c)2Sa + (a− c)2Sb ≥ (b− c)2Sa +
a2

b2
(b− c)2Sb

≥ (b− c)2Sa +
a
b
(b− c)2Sb = a(b− c)2

�

Sa

a
+

Sb

b

�

,

we only need to prove that
Sa

a
+

Sb

b
≥ 0,

which is equivalent to

−b2 + bc + 2ca+ ab
b(2b2 + c2 + a2 + ab+ bc)

≥
a2 − ab− 2bc − ca

a(2a2 + b2 + c2 + ca+ ab)
.

Consider the nontrivial case where a2 − ab− 2bc − ca ≥ 0. Since

(2a2 + b2 + c2 + ca+ ab)− (2b2 + c2 + a2 + ab+ bc) = (a− b)(a+ b+ c)≥ 0,

it suffices to show that

−b2 + bc + 2ca+ ab
b

≥
a2 − ab− 2bc − ca

a
.

Indeed,

a(−b2 + bc + 2ca+ ab)− b(a2 − ab− 2bc − ca) = 2c(a2 + ab+ b2)> 0.
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P 2.8. If a, b, c are nonnegative real numbers, then
∑

p

a2 + ab+ b2 ≤ 2
p

a2 + b2 + c2 +
p

ab+ bc + ca.

(Vasile Cîrtoaje, 2010)

First Solution (by Nguyen Van Quy). Assume that a =max{a, b, c}. Since
p

a2 + ab+ b2 +
p

c2 + ca+ a2 ≤
Æ

2[(a2 + ab+ b2) + (c2 + ca+ a2)],

it suffices to show that

2
p

A+
p

b2 + bc + c2 ≤ 2
p

X +
p

Y ,

where

A= a2 +
1
2
(b2 + c2 + ab+ ac), X = a2 + b2 + c2, Y = ab+ bc + ca.

Write the desired inequality as follows:

2(
p

A−
p

X )≤
p

Y −
p

b2 + bc + c2,

2(A− X )
p

A+
p

X
≤

Y − (b2 + bc + c2)
p

Y +
p

b2 + bc + c2
,

b(a− b) + c(a− c)
p

A+
p

X
≤

b(a− b) + c(a− c)
p

Y +
p

b2 + bc + c2
.

Since b(a− b) + c(a− c)≥ 0, we only need to show that
p

A+
p

X ≥
p

Y +
p

b2 + bc + c2.

This inequality is true because X ≥ Y and
p

A≥
p

b2 + bc + c2.

Indeed,

2(A− b2 − bc − c2) = 2a2 + (b+ c)a− (b+ c)2 = (2a− b− c)(a+ b+ c)≥ 0.

The equality holds for a = b = c, and also for b = c = 0 (or any cyclic permutation).

Second Solution. In the first solution of P 2.7, we have shown that

�∑p

b2 + bc + c2
�2
≤ 4(a2 + b2 + c2) + 6(ab+ bc + ca)− 2abc

∑ 1
b+ c

.

Thus, it suffices to prove that

4(a2+b2+c2)+6(ab+bc+ca)−2abc
∑ 1

b+ c
≤
�

2
p

a2 + b2 + c2 +
p

ab+ bc + ca
�2

,
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which is equivalent to

2abc
∑ 1

b+ c
+ 4

Æ

(a2 + b2 + c2)(ab+ bc + ca)≥ 5(ab+ bc + ca).

Since
∑ 1

b+ c
≥

9
∑

(b+ c)
=

9
2(a+ b+ c)

,

it is enough to prove that

9abc
a+ b+ c

+ 4
Æ

(a2 + b2 + c2)(ab+ bc + ca)≥ 5(ab+ bc + ca),

which can be written as

9abc
p
+ 4

Æ

q(p2 − 2q)≥ 5q,

where
p = a+ b+ c, q = ab+ bc + ca.

For p2 ≥ 4q, this inequality is true because 4
p

q(p2 − 2q)≥ 5q. Consider further

3q ≤ p2 ≤ 4q.

By Schur’s inequality of third degree, we have

9abc
p
≥ 4q− p2.

Therefore, it suffices to show that

(4q− p2) + 4
Æ

q(p2 − 2q)≥ 5q,

which is
4
Æ

q(p2 − 2q)≥ p2 + q.

Indeed,
16q(p2 − 2q)− (p2 + q)2 = (p2 − 3q)(11q− p2)≥ 0.

Third Solution. Let us denote

A=
p

b2 + bc + c2, B =
p

c2 + ca+ a2, C =
p

a2 + ab+ b2,

X =
p

a2 + b2 + c2, Y =
p

ab+ bc + ca.

By squaring, the inequality becomes

2
∑

BC ≤ 2
∑

a2 + 4X Y,

∑

(B − C)2 ≥ 2(X − Y )2,
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2(a+ b+ c)2
∑ (b− c)2

(B + C)2
≥

�∑

(b− c)2
�2

(X + Y )2
.

Since
B + C ≤ (c + a) + (a+ b) = 2a+ b+ c,

it suffices to show that

2(a+ b+ c)2
∑ (b− c)2

(2a+ b+ c)2
≥

�∑

(b− c)2
�2

(X + Y )2
.

According to the Cauchy-Schwarz inequality, we have

∑ (b− c)2

(2a+ b+ c)2
≥

�∑

(b− c)2
�2

∑

(b− c)2(2a+ b+ c)2
.

Therefore, it is enough to prove that

2(a+ b+ c)2
∑

(b− c)2(2a+ b+ c)2
≥

1
(X + Y )2

,

which is
(a+ b+ c)2(X + Y )2 ≥

1
2

∑

(b− c)2(2a+ b+ c)2.

We see that

(a+ b+ c)2(X + Y )2 ≥
�∑

a2 + 2
∑

ab
��∑

a2 +
∑

ab
�

=
�∑

a2
�2
+ 3

�∑

ab
��∑

a2
�

+ 2
�∑

ab
�2

≥
∑

a4 + 3
∑

ab(a2 + b2) + 4
∑

a2 b2

and
∑

(b− c)2(2a+ b+ c)2 =
∑

(b− c)2[4a2 + 4a(b+ c) + (b+ c)2]

= 4
∑

a2(b− c)2 + 4
∑

a(b− c)(b2 − c2) +
∑

(b2 − c2)2

≤ 8
∑

a2 b2 + 4
∑

a(b3 + c3) + 2
∑

a4.

Thus, it suffices to show that
∑

a4 + 3
∑

ab(a2 + b2) + 4
∑

a2 b2 ≥ 4
∑

a2 b2 + 2
∑

a(b3 + c3) +
∑

a4,

which is equivalent to the obvious inequality
∑

ab(a2 + b2)≥ 0.
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P 2.9. If a, b, c are nonnegative real numbers, then
p

a2 + 2bc +
p

b2 + 2ca+
p

c2 + 2ab ≤
p

a2 + b2 + c2 + 2
p

ab+ bc + ca.

(Vasile Cîrtoaje and Nguyen Van Quy, 1989)

Solution (by Nguyen Van Quy). Let

X =
p

a2 + b2 + c2, Y =
p

ab+ bc + ca.

Consider the nontrivial case when no two of a, b, c are zero and write the inequality
as

∑�

X −
p

a2 + 2bc
�

≥ 2(X − Y ),

∑ (b− c)2

X +
p

a2 + 2bc
≥
∑

(b− c)2

X + Y
.

By the Cauchy-Schwarz inequality, we have

∑ (b− c)2

X +
p

a2 + 2bc
≥

�∑

(b− c)2
�2

∑

(b− c)2
�

X +
p

a2 + 2bc
� .

Therefore, it suffices to show that
∑

(b− c)2
∑

(b− c)2
�

X +
p

a2 + 2bc
� ≥

1
X + Y

,

which is equivalent to
∑

(b− c)2
�

Y −
p

a2 + 2bc
�

≥ 0.

From
�

Y −
p

a2 + 2bc
�2
≥ 0.

we get

Y −
p

a2 + 2bc ≥
Y 2 − (a2 + 2bc)

2Y
=
(a− b)(c − a)

2Y
.

Thus,
∑

(b− c)2
�

Y −
p

a2 + 2bc
�

≥
∑ (b− c)2(a− b)(c − a)

2Y

=
(a− b)(b− c)(c − a)

2Y

∑

(b− c) = 0.

The equality holds for a = b, or b = c, or c = a.
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P 2.10. If a, b, c are nonnegative real numbers, then

1
p

a2 + 2bc
+

1
p

b2 + 2ca
+

1
p

c2 + 2ab
≥

1
p

a2 + b2 + c2
+

2
p

ab+ bc + ca
.

(Vasile Cîrtoaje, 1989)

Solution . Let
X =

p

a2 + b2 + c2, Y =
p

ab+ bc + ca.

Consider the nontrivial case when Y > 0 and write the inequality as

∑

�

1
p

a2 + 2bc
−

1
X

�

≥ 2
�

1
Y
−

1
X

�

,

∑ (b− c)2
p

a2 + 2bc
�

X +
p

a2 + 2bc
� ≥

∑

(b− c)2

Y (X + Y )
.

By the Cauchy-Schwarz inequality, we have

∑ (b− c)2
p

a2 + 2bc
�

X +
p

a2 + 2bc
� ≥

�∑

(b− c)2
�2

∑

(b− c)2
p

a2 + 2bc
�

X +
p

a2 + 2bc
� .

Therefore, it suffices to show that
∑

(b− c)2
∑

(b− c)2
p

a2 + 2bc
�

X +
p

a2 + 2bc
� ≥

1
Y (X + Y )

,

which is equivalent to
∑

(b− c)2[X Y − X
p

a2 + 2bc + (a− b)(c − a)]≥ 0.

Since
∑

(b− c)2(a− b)(c − a) = (a− b)(b− c)(c − a)
∑

(b− c) = 0,

we can write the inequality as
∑

(b− c)2X
�

Y −
p

a2 + 2bc
�

≥ 0,

∑

(b− c)2
�

Y −
p

a2 + 2bc
�

≥ 0.

We have proved this inequality at the preceding problem P 2.9. The equality holds
for a = b, or b = c, or c = a.
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P 2.11. If a, b, c are positive real numbers, then
p

2a2 + bc +
p

2b2 + ca+
p

2c2 + ab ≤ 2
p

a2 + b2 + c2 +
p

ab+ bc + ca.

Solution. We will apply Lemma below for

X = 2a2 + bc, Y = 2b2 + ca, Z = 2c2 + ab

and
A= B = a2 + b2 + c2, C = ab+ bc + ca.

We have
X + Y + Z = A+ B + C , A= B ≥ C .

Without loss of generality, assume that

a ≥ b ≥ c,

which involves
X ≥ Y ≥ Z .

By Lemma below, it suffices to show that

max{X , Y, Z} ≥ A, min{X , Y, Z} ≤ C .

Indeed, we have

max{X , Y, Z} − A= X − A= (a2 − b2) + c(b− c)≥ 0,

min{X , Y, Z} − C = Z − C = c(2c − a− b)≤ 0.

Equality holds for a = b = c.

Lemma. If X , Y, Z and A, B, C are positive real numbers such that

X + Y + Z = A+ B + C ,

max{X , Y, Z} ≥max{A, B, C}, min{X , Y, Z} ≤min{A, B, C},
then p

X +
p

Y +
p

Z ≤
p

A+
p

B +
p

C .

Proof. On the assumption that X ≥ Y ≥ Z and A≥ B ≥ C , we have

X ≥ A, Z ≤ C ,

hence
p

X +
p

Y +
p

Z −
p

A−
p

B −
p

C = (
p

X −
p

A ) + (
p

Y −
p

B ) + (
p

Z −
p

C )

≤
X − A

2
p

A
+

Y − B

2
p

B
+

Z − C

2
p

C
≤

X − A

2
p

B
+

Y − B

2
p

B
+

Z − C

2
p

C

=
C − Z

2
p

B
+

Z − C

2
p

C
= (C − Z)

�

1

2
p

B
−

1

2
p

C

�

≤ 0.

Remark. This Lemma is a particular case of Karamata’s inequality.
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P 2.12. Let a, b, c be nonnegative real numbers such that a+ b+c = 3. If k =
p

3−1,
then

∑
Æ

a(a+ kb)(a+ kc)≤ 3
p

3.

Solution. By the Cauchy-Schwarz inequality, we have

∑
Æ

a(a+ kb)(a+ kc)≤
r

�∑

a
��∑

(a+ kb)(a+ kc)
�

.

Thus, it suffices to show that
r

∑

(a+ kb)(a+ kc)≤ a+ b+ c,

which is an identity. The equality holds for a = b = c = 1, and also for a = 3 and
b = c = 0 (or any cyclic permutation).

P 2.13. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then
∑

Æ

a(2a+ b)(2a+ c)≥ 9.

Solution. Write the inequality as follows:
∑�Æ

a(2a+ b)(2a+ c)− a
Æ

3(a+ b+ c)
�

≥ 0,

∑

(a− b)(a− c)Ea ≥ 0,

where

Ea =
p

a
p

(2a+ b)(2a+ c) +
p

3a(a+ b+ c)
.

Assume that a ≥ b ≥ c. Since (c − a)(c − b)Ec ≥ 0, it suffices to show that

(a− c)Ea ≥ (b− c)Eb,

which is equivalent to

(a− b)
Æ

3ab(a+ b+ c)+(a− c)
Æ

a(2b+ c)(2b+ a)≥ (b− c)
Æ

b(2a+ b)(2a+ c).

This is true if

(a− c)
Æ

a(2b+ c)(2b+ a)≥ (b− c)
Æ

b(2a+ b)(2a+ c).

For the nontrivial case b > c, we have

a− c
b− c

≥
a
b
≥
p

a
p

b
.
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Therefore, it is enough to show that

a2(2b+ c)(2b+ a)≥ b2(2a+ b)(2a+ c).

Write this inequality as

a2(2ab+ 2bc + ca)≥ b2(2ab+ bc + 2ca).

It is true if
a(2ab+ 2bc + ca)≥ b(2ab+ bc + 2ca).

Indeed,

a(2ab+ 2bc + ca)− b(2ab+ bc + 2ca) = (a− b)(2ab+ bc + ca)≥ 0.

The equality holds for a = b = c = 1, and also for a = b = 3/2 and c = 0 (or any
cyclic permutation).

P 2.14. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that
Æ

b2 + c2 + a(b+ c) +
Æ

c2 + a2 + b(c + a) +
Æ

a2 + b2 + c(a+ b)≥ 6.

Solution. Denote

A= b2 + c2 + a(b+ c), B = c2 + a2 + b(c + a), C = a2 + b2 + c(a+ b),

and write the inequality in the homogeneous form
p

A+
p

B +
p

C ≥ 2(a+ b+ c).

Further, we use the SOS method.

First Solution. By squaring, the inequality becomes

2
∑p

BC ≥ 2
∑

a2 + 6
∑

bc,

∑

(b− c)2 ≥
∑

�p
B −
p

C
�2

,
∑

(b− c)2Sa ≥ 0,

where

Sa = 1−
(b+ c − a)2

(
p

B +
p

C)2
.

Since

Sa ≥ 1−
(b+ c − a)2

B + C
=

a(a+ 3b+ 3c)
B + C

≥ 0, Sb ≥ 0, Sc ≥ 0,
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the conclusion follows. The equality holds for a = b = c = 1, and also for a = 3
and b = c = 0 (or any cyclic permutation).

Second Solution. Write the desired inequality as follows:
∑

(
p

A− b− c)≥ 0,

∑ c(a− b) + b(a− c)
p

A+ b+ c
≥ 0,

∑ c(a− b)
p

A+ b+ c
+
∑ c(b− a)
p

B + c + a
≥ 0,

∑ c(a− b)[a− b− (
p

A−
p

B)]
(
p

A+ b+ c)(
p

B + c + a)
≥ 0.

It suffices to show that

(a− b)[a− b+ (
p

B −
p

A)]≥ 0.

Indeed,

(a− b)[a− b+ (
p

B −
p

A)] = (a− b)2
�

1+
a+ b− c
p

B +
p

A

�

≥ 0,

because, for the nontrivial case a+ b− c < 0, we have

1+
a+ b− c
p

B +
p

A
> 1+

a+ b− c
c + c

> 0.

Generalization. Let a, b, c be nonnegative real numbers. If 0< k ≤
16
9

, then

∑
Æ

(b+ c)2 + k(ab− 2bc + ca)≥ 2(a+ b+ c).

Notice that if k =
16
9

, then the equality holds for a = b = c = 1, for a = 0 and

b = c (or any cyclic permutation), and for b = c = 0 (or any cyclic permutation).

P 2.15. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

(a)
p

a(3a2 + abc) +
p

b(3b2 + abc) +
p

c(3c2 + abc)≥ 6;

(b)
p

3a2 + abc +
p

3b2 + abc +
p

3c2 + abc ≥ 3
p

3+ abc.

(Lorian Saceanu, 2015)
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Solution. (a) Write the inequality in the homogeneous form

3
∑

a
Æ

(a+ b)(a+ c)≥ 2(a+ b+ c)2.

First Solution. Use the SOS method. Write the inequality as

∑

a2 −
∑

ab ≥
3
2

∑

a
�p

a+ b−
p

a+ c
�2

,

∑

(b− c)2 ≥ 3
∑ a(b− c)2

�p
a+ b+

p
a+ c

�2 ,

∑

(b− c)2Sa ≥ 0,

where
Sa = 1−

3a
�p

a+ b+
p

a+ c
�2 .

Since
Sa ≥ 1−

3a
�p

a+
p

a
�2 > 0, Sb > 0, Sc > 0,

the inequality is true. The equality holds for a = b = c = 1.

Second Solution. By Hölder’s inequality, we have

�∑

a
Æ

(a+ b)(a+ c)
�2
≥

(
∑

a)3
∑ a
(a+ b)(a+ c)

=
27

∑ a
(a+ b)(a+ c)

.

Therefore, it suffices to show that
∑ a
(a+ b)(a+ c)

≤
3
4

.

This inequality has the homogeneous form

∑ a
(a+ b)(a+ c)

≤
9

4(a+ b+ c)
,

which is equivalent to the obvious inequality
∑

a(b− c)2 ≥ 0.

(b) By squaring, the inequality becomes

3
∑

a2 + 2
∑

Æ

(3b2 + abc)(3c2 + abc)≥ 27+ 6abc.

According to the Cauchy-Schwarz inequality, we have
Æ

(3b2 + abc)(3c2 + abc)≥ 3bc + abc.
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Therefore, it suffices to show that

3
∑

a2 + 6
∑

bc + 6abc ≥ 27+ 6abc,

which is an identity. The equality holds for a = b = c = 1, and also for a = 0, or
b = 0, or c = 0.

P 2.16. Let a, b, c be positive real numbers such that ab+ bc + ca = 3. Prove that

a
Æ

(a+ 2b)(a+ 2c) + b
Æ

(b+ 2c)(b+ 2a) + c
Æ

(c + 2a)(c + 2b)≥ 9.

First Solution. Use the SOS method. Write the inequality as follows:
∑

a
Æ

(a+ 2b)(a+ 2c)≥ 3(ab+ bc + ca),

∑

a2 −
∑

ab ≥
1
2

∑

a
�p

a+ 2b−
p

a+ 2c
�2

,

∑

(b− c)2 ≥ 4
∑ a(b− c)2

�p
a+ 2b+

p
a+ 2c

�2 ,

∑

(b− c)2Sa ≥ 0,

where
Sa = 1−

4a
�p

a+ 2b+
p

a+ 2c
�2 .

Since
Sa > 1−

4a
�p

a+
p

a
�2 = 0, Sb > 0, Sc > 0,

the inequality is true. The equality holds for a = b = c = 1.

Second Solution. We use the AM-GM inequality to get

∑

a
Æ

(a+ 2b)(a+ 2c) =
∑ 2a(a+ 2b)(a+ 2c)

2
p

(a+ 2b)(a+ 2c)
≥
∑ 2a(a+ 2b)(a+ 2c)
(a+ 2b) + (a+ 2c)

=
1

a+ b+ c

∑

a(a+ 2b)(a+ 2c).

Thus, it suffices to show that
∑

a(a+ 2b)(a+ 2c)≥ 9(a+ b+ c).

Write this inequality in the homogeneous form
∑

a(a+ 2b)(a+ 2c)≥ 3(a+ b+ c)(ab+ bc + ca),
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which is equivalent to Schur’s inequality of degree three

a3 + b3 + c3 + 3abc ≥ ab(a+ b) + bc(b+ c) + ca(c + a).

P 2.17. Let a, b, c be nonnegative real numbers such that a+ b+ c = 1. Prove that
Æ

a+ (b− c)2 +
Æ

b+ (c − a)2 +
Æ

c + (a− b)2 ≥
p

3.

(Phan Thanh Nam, 2007)

Solution. By squaring, the inequality becomes
∑

Æ

[a+ (b− c)2][b+ (c − a)2]≥ 3(ab+ bc + ca).

Applying the Cauchy-Schwarz inequality, it suffices to show that
∑

p

ab+
∑

(b− c)(a− c)≥ 3(ab+ bc + ca).

This is equivalent to the homogeneous inequality
�∑

a
��∑p

ab
�

+
∑

a2 ≥ 4(ab+ bc + ca).

Making the substitution x =
p

a, y =
p

b, z =
p

c, the inequality turns into
�∑

x2
��∑

x y
�

+
∑

x4 ≥ 4
∑

x2 y2,

which is equivalent to
∑

x4 +
∑

x y(x2 + y2) + x yz
∑

x ≥ 4
∑

x2 y2.

Since
4
∑

x2 y2 ≤ 2
∑

x y(x2 + y2),

it suffices to show that
∑

x4 + x yz
∑

x ≥
∑

x y(x2 + y2),

which is just Schur’s inequality of degree four. The equality holds for a = b = c =
1
3

,

and for a = 0 and b = c =
1
2

(or any cyclic permutation).
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P 2.18. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
√

√a(b+ c)
a2 + bc

+

√

√ b(c + a)
b2 + ca

+

√

√ c(a+ b)
c2 + ab

≥ 2.

(Vasile Cîrtoaje, 2006)

Solution. Using the AM-GM inequality gives

√

√a(b+ c)
a2 + bc

=
a(b+ c)

p

(a2 + bc)(ab+ ac)
≥

2a(b+ c)
(a2 + bc) + (ab+ ac)

=
2a(b+ c)
(a+ b)(a+ c)

.

Therefore, it suffices to show that

a(b+ c)
(a+ b)(a+ c)

+
b(c + a)

(b+ c)(b+ a)
+

c(a+ b)
(c + a)(c + b)

≥ 1,

which is equivalent to

a(b+ c)2 + b(c + a)2 + c(a+ b)2 ≥ (a+ b)(b+ c)(c + a),

4abc ≥ 0.

The equality holds for a = 0 and b = c (or any cyclic permutation).

P 2.19. Let a, b, c be positive real numbers such that abc = 1. Prove that

1
3pa2 + 25a+ 1

+
1

3pb2 + 25b+ 1
+

1
3pc2 + 25c + 1

≥ 1.

Solution. Replacing a, b, c by a3, b3, c3, respectively, we need to show that abc = 1
yields

1
3p

a6 + 25a3 + 1
+

1
3p

b6 + 25b3 + 1
+

1
3p

c6 + 25c3 + 1
≥ 1.

We first show that
1

3p
a6 + 25a3 + 1

≥
1

a2 + a+ 1
.

This is equivalent to
(a2 + a+ 1)3 ≥ a6 + 25a3 + 1,

which is true since

(a2 + a+ 1)3 − (a6 + 25a3 + 1) = 3a(a− 1)2(a2 + 4a+ 1)≥ 0.
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Therefore, it suffices to prove that

1
a2 + a+ 1

+
1

b2 + b+ 1
+

1
b2 + b+ 1

≥ 1.

Putting

a =
yz
x2

, b =
zx
y2

, c =
x y
z2

, x , y, z > 0

we need to show that
∑ x4

x4 + x2 yz + y2z2
≥ 1.

Indeed, the Cauchy-Schwarz inequality gives

∑ x4

x4 + x2 yz + y2z2
≥

�∑

x2
�2

∑

(x4 + x2 yz + y2z2)
=

∑

x4 + 2
∑

y2z2

∑

x4 + x yz
∑

x +
∑

y2z2
≥ 1.

The equality holds for a = b = c = 1.

P 2.20. If a, b, c are nonnegative real numbers, then

p

a2 + bc +
p

b2 + ca+
p

c2 + ab ≤
3
2
(a+ b+ c).

(Pham Kim Hung, 2005)

Solution. Without loss of generality, assume that a ≥ b ≥ c. Since the equality
occurs for a = b and c = 0, we use the inequalities

p

a2 + bc ≤ a+
c
2

and
p

b2 + ca+
p

c2 + ab ≤
Æ

2(b2 + ca) + 2(c2 + ab).

Thus, it suffices to prove that

Æ

2(b2 + ca) + 2(c2 + ab)≤
a+ 3b+ 2c

2
.

By squaring, this inequality becomes

a2 + b2 − 4c2 − 2ab+ 12bc − 4ca ≥ 0,

(a− b− 2c)2 + 8c(b− c)≥ 0.

The equality holds for a = b and c = 0 (or any cyclic permutation).
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P 2.21. If a, b, c are nonnegative real numbers, then
p

a2 + 9bc +
p

b2 + 9ca+
p

c2 + 9ab ≥ 5
p

ab+ bc + ca.

(Vasile Cîrtoaje, 2012)

Solution (by Nguyen Van Quy). Assume that

c =min{a, b, c}.

Since the equality occurs for a = b and c = 0, we use the inequality
p

c2 + 9ab ≥ 3
p

ab.

On the other hand, by Minkowski’s inequality, we have

p

a2 + 9bc +
p

b2 + 9ca ≥
s

(a+ b)2 + 9c
�p

a+
p

b
�2

.

Therefore, it suffices to show that
s

(a+ b)2 + 9c
�p

a+
p

b
�2
≥ 5

p

ab+ bc + ca− 3
p

ab.

By squaring, this inequality becomes

(a+ b)2 + 18c
p

ab+ 30
Æ

ab(ab+ bc + ca)≥ 34ab+ 16c(a+ b).

Since

ab(ab+ bc + ca)−
�

ab+
c(a+ b)

3

�2

=
c(a+ b)(3ab− ac − bc)

9
≥ 0,

it suffices to show that f (c)≥ 0 for 0≤ c ≤
p

ab, where

f (c) = (a+ b)2 + 18c
p

ab+ [30ab+ 10c(a+ b)]− 34ab− 16c(a+ b)

= (a+ b)2 − 4ab+ 6c(3
p

ab− a− b).

Since f (c) is a linear function, we only need to prove that f (0)≥ 0 and f (
p

ab)≥
0. We have

f (0) = (a− b)2 ≥ 0,

f (
p

ab) = (a+ b)2 + 14ab− 6(a+ b)
p

ab ≥ (a+ b)2 + 9ab− 6(a+ b)
p

ab

=
�

a+ b− 3
p

ab
�2
≥ 0.

The equality holds for a = b and c = 0 (or any cyclic permutation).
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P 2.22. If a, b, c are nonnegative real numbers, then
∑

Æ

(a2 + 4bc)(b2 + 4ca)≥ 5(ab+ ac + bc).

(Vasile Cîrtoaje, 2012)

Solution. Assume that
a ≥ b ≥ c.

First Solution (by Michael Rozenberg). Use the SOS method. For b = c = 0, the
inequality is trivial. Consider further that b > 0 and write the inequality as follows:

∑�Æ

(b2 + 4ca)(c2 + 4ab)− (bc + 2ab+ 2ac)
�

≥ 0,

∑ (b2 + 4ca)(c2 + 4ab)− (bc + 2ab+ 2ac)2
p

(b2 + 4ca)(c2 + 4ab) + bc + 2a(b+ c)
≥ 0,

∑

(b− c)2Sa ≥ 0,

where

Sa =
a(b+ c − a)

A
, A=

Æ

(b2 + 4ca)(c2 + 4ab) + bc + 2a(b+ c),

Sb =
b(c + a− b)

B
, B =

Æ

(c2 + 4ab)(a2 + 4bc) + ca+ 2b(c + a),

Sc =
c(a+ b− c)

C
, C =

Æ

(a2 + 4bc)(b2 + 4ac) + ab+ 2c(a+ b).

Since Sb ≥ 0 and Sc ≥ 0, we have

∑

(b− c)2Sa ≥ (b− c)2Sa + (a− c)2Sb ≥ (b− c)2Sa +
a2

b2
(b− c)2Sb

=
a
b
(b− c)2

�

bSa

a
+

aSb

b

�

.

Thus, it suffices to prove that

bSa

a
+

aSb

b
≥ 0,

which is equivalent to

b(b+ c − a)
A

+
a(c + a− b)

B
≥ 0.

Since

b(b+ c − a)
A

+
a(c + a− b)

B
≥

b(b− a)
A

+
a(a− b)

B
=
(a− b)(aA− bB)

AB
,
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it is enough to show that
aA− bB ≥ 0.

Indeed,

aA− bB =
p

c2 + 4ab
�

a
p

b2 + 4ca− b
p

a2 + 4bc
�

+ 2(a− b)(ab+ bc + ca)

=
4c(a3 − b3)

p
c2 + 4ab

a
p

b2 + 4ca+ b
p

a2 + 4bc
+ 2(a− b)(ab+ bc + ca)≥ 0.

The equality holds for a = b = c, and also for a = b and c = 0 (or any cyclic
permutation).

Second Solution (by Nguyen Van Quy). Write the inequality as
�
p

a2 + 4bc +
p

b2 + 4ca+
p

c2 + 4ab
�2
≥ a2 + b2 + c2 + 14(ab+ bc + ca),

p

a2 + 4bc +
p

b2 + 4ca+
p

c2 + 4ab ≥
Æ

a2 + b2 + c2 + 14(ab+ bc + ca).

For t = 2c, the inequality (b) in Lemma below becomes
p

a2 + 4bc +
p

b2 + 4ca ≥
Æ

(a+ b)2 + 8(a+ b)c.

Thus, it suffices to show that
Æ

(a+ b)2 + 8(a+ b)c +
p

c2 + 4ab ≥
Æ

a2 + b2 + c2 + 14(ab+ bc + ca).

By squaring, this inequality becomes
Æ

[(a+ b)2 + 8(a+ b)c] (c2 + 4ab)≥ 4ab+ 3(a+ b)c,

2(a+ b)c3 − 2(a+ b)2c2 + 2ab(a+ b)c + ab(a+ b)2 − 4a2 b2 ≥ 0,

2(a+ b)(a− c)(b− c)c + ab(a− b)2 ≥ 0.

Lemma. Let a,b and t be nonnegative numbers such that

t ≤ 2(a+ b).

Then,

(a)
p

(a2 + 2bt)(b2 + 2at)≥ ab+ (a+ b)t;

(b)
p

a2 + 2bt +
p

b2 + 2at ≥
p

(a+ b)2 + 4(a+ b)t.

Proof. (a) By squaring, the inequality becomes

(a− b)2 t[2(a+ b)− t]≥ 0,

which is clearly true.

(b) By squaring, this inequality turns into the inequality in (a).
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P 2.23. If a, b, c are nonnegative real numbers, then
∑

Æ

(a2 + 9bc)(b2 + 9ca)≥ 7(ab+ ac + bc).

(Vasile Cîrtoaje, 2012)

Solution (by Nguyen Van Quy). We see that the equality holds for a = b and c = 0.
Without loss of generality, assume that

c =min{a, b, c}.

For t = 4c, the inequality (a) in Lemma from the preceding P 2.22 becomes
Æ

(a2 + 8bc)(b2 + 8ca)≥ ab+ 4(a+ b)c.

Thus, we have
Æ

(a2 + 9bc)(b2 + 9ca)≥ ab+ 4(a+ b)c

and
p

c2 + 9ab
�
p

a2 + 9bc +
p

b2 + 9ca
�

≥ 3
p

ab · 2 4
Æ

(a2 + 9bc)(b2 + 9ca)

≥ 6
p

ab ·
Æ

ab+ 4(a+ b)c = 3
Æ

4a2 b2 + 16abc(a+ b)

≥ 3
Æ

4a2 b2 + 4abc(a+ b) + c2(a+ b)2 = 3(2ab+ bc + ca).

Therefore,
∑

Æ

(a2 + 9bc)(b2 + 9ca)≥ (ab+ 4bc + 4ca) + 3(2ab+ bc + ca)

= 7(ab+ bc + ca).

The equality holds for a = b and c = 0 (or any cyclic permutation).

P 2.24. If a, b, c are nonnegative real numbers, then
Æ

(a2 + b2)(b2 + c2) +
Æ

(b2 + c2)(c2 + a2) +
Æ

(c2 + a2)(a2 + b2)≤ (a+ b+ c)2.

(Vasile Cîrtoaje, 2007)

Solution. Without loss of generality, assume that

a =min{a, b, c}.

Let us denote
y =

a
2
+ b, z =

a
2
+ c.
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Since
a2 + b2 ≤ y2, b2 + c2 ≤ y2 + z2, c2 + a2 ≤ z2,

it suffices to prove that

yz + (y + z)
p

y2 + z2 ≤ (y + z)2.

This is true since

y2 + yz + z2 − (y + z)
p

y2 + z2 =
y2z2

y2 + yz + z2 + (y + z)
p

y2 + z2
≥ 0.

The equality holds for a = b = 0 (or any cyclic permutation).

P 2.25. If a, b, c are nonnegative real numbers, then

∑
Æ

(a2 + ab+ b2)(b2 + bc + c2)≥ (a+ b+ c)2.

Solution. By the Cauchy-Schwarz inequality, we have

(a2 + ab+ b2)(a2 + ac + c2) =

�

�

a+
b
2

�2

+
3b2

4

�

�

�

a+
c
2

�2
+

3c2

4

�

≥
�

a+
b
2

�

�

a+
c
2

�

+
3bc
4
= a2 +

a(b+ c)
2

+ bc.

Then,

∑
Æ

(a2 + ab+ b2)(a2 + ac + c2)≥
∑

�

a2 +
a(b+ c)

2
+ bc

�

= (a+ b+ c)2.

The equality holds for a = b = c, and also for b = c = 0 (or any cyclic permutation).

P 2.26. If a, b, c are nonnegative real numbers, then

∑
Æ

(a2 + 7ab+ b2)(b2 + 7bc + c2)≥ 7(ab+ ac + bc).

(Vasile Cîrtoaje, 2012)



Symmetric Nonrational Inequalities 317

First Solution. Without loss of generality, assume that

c =min{a, b, c}.

We see that the equality holds for a = b and c = 0. Since
Æ

(a2 + 7ac + c2)(b2 + 7bc + c2)≥ (a+ 2c)(b+ 2c)≥ ab+ 2c(a+ b),

it suffices to show that
p

a2 + 7ab+ b2
�
p

a2 + 7ac +
p

b2 + 7bc
�

≥ 6ab+ 5c(a+ b).

By Minkowski’s inequality, we have

p

a2 + 7ac +
p

b2 + 7bc ≥
s

(a+ b)2 + 7c
�p

a+
p

b
�2

≥

√

√

(a+ b)2 + 7c(a+ b) +
28abc
a+ b

.

Therefore, it suffices to show that

(a2 + 7ab+ b2)
�

(a+ b)2 + 7c(a+ b) +
28abc
a+ b

�

≥ (6ab+ 5bc + 5ca)2.

Due to homogeneity, we may assume that a+ b = 1. Let us denote d = ab, d ≤
1
4

.

Since

c ≤
2ab
a+ b

= 2d,

we need to show that f (c)≥ 0 for 0≤ c ≤ 2d ≤
1
2

, where

f (c) = (1+ 5d)(1+ 7c + 28cd)− (6d + 5c)2.

Since f (c) is concave, it suffices to show that f (0)≥ 0 and f (2d)≥ 0. Indeed,

f (0) = 1+ 5d − 36d2 = (1− 4d)(1+ 9d)≥ 0

and

f (2d) = (1+ 5d)(1+ 14d + 56d2)− 256d2 ≥ (1+ 4d)(1+ 14d + 56d2)− 256d2

= (1− 4d)(1+ 22d − 56d2)≥ d(1− 4d)(22− 56d)≥ 0.

The equality holds for a = b and c = 0 (or any cyclic permutation).

Second Solution. We will use the inequality

p

x2 + 7x y + y2 ≥ x + y +
2x y
x + y

, x , y ≥ 0,



318 Vasile Cîrtoaje

which, by squaring, reduces to

x y(x − y)2 ≥ 0.

We have

∑
Æ

(a2 + 7ab+ b2)(a2 + 7ac + c2)≥
∑

�

a+ b+
2ab
a+ b

��

a+ c +
2ac
a+ c

�

≥
∑

a2 + 3
∑

ab+
∑ 2a2 b

a+ b
+
∑ 2a2c

a+ c
+
∑ 2abc

a+ b
.

Since
∑ 2a2 b

a+ b
+
∑ 2a2c

a+ c
=
∑ 2a2 b

a+ b
+
∑ 2b2a

b+ a
= 2

∑

ab

and
∑ 2abc

a+ b
≥

18abc
∑

(a+ b)
=

9abc
a+ b+ c

,

it suffices to show that

∑

a2 +
9abc

a+ b+ c
≥ 2

∑

ab,

which is just Schur’s inequality of degree three.

P 2.27. If a, b, c are nonnegative real numbers, then

∑

√

√

�

a2 +
7
9

ab+ b2

��

b2 +
7
9

bc + c2

�

≤
13
12
(a+ b+ c)2.

(Vasile Cîrtoaje, 2012)

Solution (by Nguyen Van Quy). Without loss of generality, assume that

c =min{a, b, c}.

It is easy to see that the equality holds for a = b = 1 and c = 0. By the AM-GM
inequality, the following inequality holds for any k > 0:

12

√

√

a2 +
7
9

ab+ b2

�√

√

a2 +
7
9

ac + c2 +

√

√

b2 +
7
9

bc + c2

�

≤

≤
36
k

�

a2 +
7
9

ab+ b2
�

+ k

�√

√

a2 +
7
9

ac + c2 +

√

√

b2 +
7
9

bc + c2

�2

.
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We can use this inequality to prove the original inequality only if

36
k

�

a2 +
7
9

ab+ b2
�

= k

�√

√

a2 +
7
9

ac + c2 +

√

√

b2 +
7
9

bc + c2

�2

for a = b = 1 and c = 0. This condition if satisfied for k = 5. Therefore, it suffices
to show that

12

√

√

�

a2 +
7
9

ac + c2

��

b2 +
7
9

bc + c2

�

+
36
5

�

a2 +
7
9

ab+ b2
�

+

+5

�√

√

a2 +
7
9

ac + c2 +

√

√

b2 +
7
9

bc + c2

�2

≤ 13(a+ b+ c)2.

which is equivalent to

22

√

√

�

a2 +
7
9

ac + c2

��

b2 +
7
9

bc + c2

�

≤
4(a+ b)2 + 94ab

5
+ 3c2 +

199c(a+ b)
9

.

Since

2

√

√

�

a2 +
7
9

ac + c2

��

b2 +
7
9

bc + c2

�

≤ 2

√

√

�

a2 +
16
9

ac
��

b2 +
16
9

bc
�

= 2

√

√

a
�

b+
16
9

c
�

· b
�

a+
16
9

c
�

≤ a
�

b+
16
9

c
�

+ b
�

a+
16
9

c
�

= 2ab+
16c(a+ b)

9
,

we only need to prove that

22
�

ab+
8c(a+ b)

9

�

≤
4(a2 + b2) + 102ab

5
+ 3c2 +

199c(a+ b)
9

.

This reduces to the obvious inequality

4(a− b)2

5
+

23c(a+ b)
9

+ 3c2 ≥ 0.

Thus, the proof is completed. The equality holds for a = b and c = 0 (or any cyclic
permutation).
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P 2.28. If a, b, c are nonnegative real numbers, then

∑

√

√

�

a2 +
1
3

ab+ b2

��

b2 +
1
3

bc + c2

�

≤
61
60
(a+ b+ c)2.

(Vasile Cîrtoaje, 2012)

Solution (by Nguyen Van Quy). Without loss of generality, assume that

c =min{a, b, c}.

It is easy to see that the equality holds for c = 0 and 11(a2 + b2) = 38ab. By the
AM-GM inequality, the following inequality holds for any k > 0:

60

√

√

a2 +
1
3

ab+ b2

�√

√

a2 +
1
3

ac + c2 +

√

√

b2 +
1
3

bc + c2

�

≤

≤
36
k

�

a2 +
1
3

ab+ b2
�

+ 25k

�√

√

a2 +
1
3

ac + c2 +

√

√

b2 +
1
3

bc + c2

�2

.

We can use this inequality to prove the original inequality only if the equality

36
k

�

a2 +
1
3

ab+ b2
�

= 25k

�√

√

a2 +
1
3

ac + c2 +

√

√

b2 +
1
3

bc + c2

�2

holds for c = 0 and 11(a2 + b2) = 38ab. This necessary condition if satisfied for
k = 1. Therefore, it suffices to show that

60

√

√

�

a2 +
1
3

ab+ b2

��

b2 +
1
3

bc + c2

�

+ 36
�

a2 +
1
3

ab+ b2
�

+

+25

�√

√

a2 +
1
3

ac + c2 +

√

√

b2 +
1
3

bc + c2

�2

≤ 61(a+ b+ c)2,

which is equivalent to

10

√

√

�

a2 +
1
3

ac + c2

��

b2 +
1
3

bc + c2

�

≤ 10ab+ c2 +
31c(a+ b)

3
.

Since

2

√

√

�

a2 +
1
3

ac + c2

��

b2 +
1
3

bc + c2

�

≤ 2

√

√

�

a2 +
4
3

ac
��

b2 +
4
3

bc
�

= 2

√

√

a
�

b+
4
3

c
�

· b
�

a+
4
3

c
�

≤ a
�

b+
4
3

c
�

+ b
�

a+
4
3

c
�

= 2ab+
4c(a+ b)

3
,
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we only need to prove that

10
�

ab+
2c(a+ b)

3

�

≤ 10ab+ c2 +
31c(a+ b)

3
.

This reduces to the obvious inequality

3c2 + 11c(a+ b)≥ 0.

Thus, the proof is completed. The equality holds for 11(a2+ b2) = 38ab and c = 0
(or any cyclic permutation).

P 2.29. If a, b, c are nonnegative real numbers, then

a
p

4b2 + bc + 4c2
+

b
p

4c2 + ca+ 4a2
+

c
p

4a2 + ab+ 4b2
≥ 1.

(Pham Kim Hung, 2006)

Solution. By Hölder’s inequality, we have

�

∑ a
p

4b2 + bc + 4c2

�2

≥

�∑

a
�3

∑

a(4b2 + bc + 4c2)
=

∑

a3 + 3
∑

ab(a+ b) + 6abc

4
∑

ab(a+ b) + 3abc
.

Thus, it suffices to show that
∑

a3 + 3abc ≥
∑

ab(a+ b),

which is Schur’s inequality of degree three. The equality holds for a = b = c, and
also for a = 0 and b = c (or any cyclic permutation).

P 2.30. If a, b, c are nonnegative real numbers, then

a
p

b2 + bc + c2
+

b
p

c2 + ca+ a2
+

c
p

a2 + ab+ b2
≥

a+ b+ c
p

ab+ bc + ca
.

Solution. By Hölder’s inequality, we have

�

∑ a
p

b2 + bc + c2

�2

≥

�∑

a
�3

∑

a(b2 + bc + c2)
=

�∑

a
�2

∑

ab
,

from which the desired inequality follows. The equality holds for a = b = c, and
also for a = 0 and b = c (or any cyclic permutation).
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P 2.31. If a, b, c are nonnegative real numbers, then

a
p

a2 + 2bc
+

b
p

b2 + 2ca
+

c
p

c2 + 2ab
≤

a+ b+ c
p

ab+ bc + ca
.

(Ho Phu Thai, 2007)

Solution. Without loss of generality, assume that

a ≥ b ≥ c.

First Solution. Since c
p

c2 + 2ab
≤

c
p

ab+ bc + ca
,

it suffices to show that

a
p

a2 + 2bc
+

b
p

b2 + 2ca
≤

a+ b
p

ab+ bc + ca
,

which is equivalent to

a(
p

a2 + 2bc −
p

ab+ bc + ca)
p

a2 + 2bc
≥

b(
p

ab+ bc + ca−
p

b2 + 2ca)
p

b2 + 2ca
.

Since
p

a2 + 2bc −
p

ab+ bc + ca ≥ 0

and
a

p
a2 + 2bc

≥
b

p
b2 + 2ca

,

it suffices to show that
p

a2 + 2bc −
p

ab+ bc + ca ≥
p

ab+ bc + ca−
p

b2 + 2ca,

which is equivalent to
p

a2 + 2bc +
p

b2 + 2ca ≥ 2
p

ab+ bc + ca.

Using the AM-GM inequality, it suffices to show that

(a2 + 2bc)(b2 + 2ca)≥ (ab+ bc + ca)2,

which is equivalent to the obvious inequality

c(a− b)2(2a+ 2b− c)≥ 0.

The equality holds for a = b = c, and also for a = b and c = 0 (or any cyclic
permutation).
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Second Solution. By the Cauchy-Schwarz inequality, we have

�

∑ a
p

a2 + 2bc

�2

≤
�∑

a
�
�
∑ a

a2 + 2bc

�

.

Thus, it suffices to prove that

∑ a
a2 + 2bc

≤
a+ b+ c

ab+ bc + ca
.

This is equivalent to

∑

a
�

1
ab+ bc + ca

−
1

a2 + 2bc

�

≥ 0,

∑ a(a− b)(a− c)
a2 + 2bc

≥ 0.

We have
∑ a(a− b)(a− c)

a2 + 2bc
≥

a(a− b)(a− c)
a2 + 2bc

+
b(b− c)(b− a)

b2 + 2ca

=
c(a− b)2[2a(a− c) + 2b(b− c) + 3ab]

(a2 + 2bc)(b2 + 2ca)
≥ 0.

P 2.32. If a, b, c are nonnegative real numbers, then

a3 + b3 + c3 + 3abc ≥ a2
p

a2 + 3bc + b2
p

b2 + 3ca+ c2
p

c2 + 3ab.

(Vo Quoc Ba Can, 2008)

Solution. For a = 0, the inequality is an identity. Consider further that a, b, c > 0,
and write the inequality as follows:

∑

a2(
p

a2 + 3bc − a)≤ 3abc,

∑ 3a2 bc
p

a2 + 3bc + a
≤ 3abc,

∑ 1
p

1+ 3bc/a2 + 1
≤ 1.

Using the notation

x =
1

p

1+ 3bc/a2 + 1
, y =

1
p

1+ 3ca/b2 + 1
, z =

1
p

1+ 3ab/c2 + 1
,
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implies

bc
a2
=

1− 2x
3x2

,
ca
b2
=

1− 2y
3y2

,
ab
c2
=

1− 2z
3z2

, 0< x , y, z <
1
2

,

(1− 2x)(1− 2y)(1− 2z) = 27x2 y2z2.

We need to prove that
x + y + z ≤ 1

for 0< x , y, z <
1
2

such that (1−2x)(1−2y)(1−2z) = 27x2 y2z2. To do it, we will

use the contradiction method. Thus, assume that

x + y + z > 1, 0< x , y, z <
1
2

,

and show that
(1− 2x)(1− 2y)(1− 2z)< 27x2 y2z2.

We have

(1− 2x)(1− 2y)(1− 2z)< (x + y + z − 2x)(x + y + z − 2y)(x + y + z − 2z)

< (y + z − x)(z + x − y)(x + y − z)(x + y + z)3

≤ 3(y + z − x)(z + x − y)(x + y − z)(x + y + z)(x2 + y2 + z2)

= 3(2x2 y2 + 2y2z2 + 2z2 x2 − x4 − y4 − z4)(x2 + y2 + z2).

Therefore, it suffices to show that

(2x2 y2 + 2y2z2 + 2z2 x2 − x4 − y4 − z4)(x2 + y2 + z2)≤ 9x2 y2z2,

which is equivalent to

x6 + y6 + z5 + 3x2 y2z2 ≥
∑

y2z2(y2 + z2).

Clearly, this is just Schur’s inequality of degree three applied to x2, y2, z2. So, the
proof is completed. The equality holds for a = b = c, and also for a = 0 or b = 0
or c = 0.

P 2.33. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a
p

4a2 + 5bc
+

b
p

4b2 + 5ca
+

c
p

4c2 + 5ab
≤ 1.

(Vasile Cîrtoaje, 2004)
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First Solution (by Vo Quoc Ba Can). If one of a, b, c is zero, then the desired in-
equality is an equality. Consider next that a, b, c > 0 and denote

x =
a

p
4a2 + 5bc

, y =
b

p
4b2 + 5ca

, z =
c

p
4c2 + 5ab

, x , y, z ∈
�

0,
1
2

�

.

We have
bc
a2
=

1− 4x2

5x2
,

ca
b2
=

1− 4y2

5y2
,

ab
c2
=

1− 4z2

5z2
,

and
(1− 4x2)(1− 4y2)(1− 4z2) = 125x2 y2z2.

We use the contradiction method. For the sake of contradiction, assume that x +
y + z > 1. Using the AM-GM inequality and the Cauchy-Schwarz inequality, we
have

x2 y2z2 =
1

125

∏

(1− 4x2)<
1

125

∏

[(x + y + z)2 − 4x2]

=
1

125

∏

(3x + y + z) ·
∏

(y + z − x)

≤
� x + y + z

3

�3∏

(y + z − x)

≤
1
9
(x2 + y2 + z2)(x + y + z)

∏

(y + z − x)

=
1
9
(x2 + y2 + z2)[2(x2 y2 + y2z2 + z2 x2)− x4 − y4 − z4],

hence

9x2 y2z2 < (x2 + y2 + z2)[2(x2 y2 + y2z2 + z2 x2)− x4 − y4 − z4],

x6 + y6 + z6 + 3x2 y2z2 <
∑

x2 y2(x2 + y2).

The last inequality contradicts Schur’s inequality

x6 + y6 + z6 + 3x2 y2z2 ≥
∑

x2 y2(x2 + y2).

Thus, the proof is completed. The equality holds for a = b = c, and also for a = 0
or b = 0 or c = 0.

Second Solution. Use the mixing variables method. In the nontrivial case when

a, b, c > 0, setting x =
bc
a2

, y =
ca
b2

and z =
ab
c2

(that implies x yz = 1), the desired

inequality becomes E(x , y, z)≤ 1, where

E(x , y, z) =
1

p
4+ 5x

+
1

p

4+ 5y
+

1
p

4+ 5z
.
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Without loss of generality, we may assume that

x ≥ y ≥ z, x ≥ 1, yz ≤ 1.

We will prove that
E(x , y, z)≤ E(x ,

p
yz,
p

yz)≤ 1.

The left inequality has the form

1
p

4+ 5y
+

1
p

4+ 5z
≤

1
p

4+ 5
p

yz
.

For the nontrivial case y 6= z, consider y > z and denote

s =
y + z

2
, p =

p
yz,

q =
Æ

(4+ 5y)(4+ 5z).

We have s > p, p ≤ 1 and

q =
p

16+ 40s+ 25p2 >
p

16+ 40p+ 25p2 = 4+ 5p.

By squaring, the desired inequality becomes in succession as follows:

1
4+ 5y

+
1

4+ 5z
+

2
q
≤

4
4+ 5p

,

1
4+ 5y

+
1

4+ 5z
−

2
4+ 5p

≤
2

4+ 5p
−

2
q

,

8+ 10s
q2

−
2

4+ 5p
≤

2(q− 4− 5p)
q(4+ 5p)

,

(s− p)(5p− 4)
q2(4+ 5p)

≤
8(s− p)

q(4+ 5p)(q+ 4+ 5p)
,

5p− 4
q
≤

8
q+ 4+ 5p

,

25p2 − 16≤ (12− 5p)q.

The last inequality is true since

(12− 5p)q− 25p2 + 16> (12− 5p)(4+ 5p)− 25p2 + 16

= 2(8− 5p)(4+ 5p)> 0.

In order to prove the right inequality, namely

1
p

4+ 5x
+

2
p

4+ 5
p

yz
≤ 1,
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let us denote
Æ

4+ 5
p

yz = 3t, t ∈ (2/3, 1].

Since
x =

1
yz
=

25
(9t2 − 4)2

,

the inequality becomes

9t2 − 4

3
p

36t4 − 32t2 + 21
+

2
3t
≤ 1,

(2− 3t)
�p

36t4 − 32t2 + 21− 3t2 − 2t
�

≤ 0.

Since 2− 3t < 0, we still have to show that
p

36t4 − 32t2 + 21≥ 3t2 + 2t.

Indeed, we have

36t4 − 32t2 + 21− (3t2 + 2t)2 = 3(t − 1)2(9t2 + 14t + 7)≥ 0.

P 2.34. Let a, b, c be nonnegative real numbers. Prove that

a
p

4a2 + 5bc + b
p

4b2 + 5ca+ c
p

4c2 + 5ab ≥ (a+ b+ c)2.

(Vasile Cîrtoaje, 2004)

First Solution. Write the inequality as
∑

a
�
p

4a2 + 5bc − 2a
�

≥ 2(ab+ bc + ca)− a2 − b2 − c2,

5abc
∑ 1
p

4a2 + 5bc + 2a
≥ 2(ab+ bc + ca)− a2 − b2 − c2.

Writing Schur’s inequality

a3 + b3 + c3 + 3abc ≥
∑

ab(a2 + b2)

in the form
9abc

a+ b+ c
≥ 2(ab+ bc + ca)− a2 − b2 − c2,

it suffices to prove that

∑ 5
p

4a2 + 5bc + 2a
≥

9
a+ b+ c

.
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Let p = a+ b+ c and q = ab+ bc + ca. By the AM-GM inequality, we have

p

4a2 + 5bc =
2
p

(16a2 + 20bc)(3b+ 3c)2

12(b+ c)
≤
(16a2 + 20bc) + (3b+ 3c)2

12(b+ c)

≤
16a2 + 16bc + 10(b+ c)2

12(b+ c)
=

8a2 + 5b2 + 5c2 + 18bc
6(b+ c)

,

hence
∑ 5
p

4a2 + 5bc + 2a
≥
∑ 5

8a2 + 5b2 + 5c2 + 18bc
6(b+ c)

+ 2a

=
∑ 30(b+ c)

8a2 + 5b2 + 5c2 + 12ab+ 18bc + 12ac
=
∑ 30(b+ c)

5p2 + 2q+ 3a2 + 6bc
.

Thus, it suffices to show that
∑ 30(b+ c)

5p2 + 2q+ 3a2 + 6bc
≥

9
p

.

By the Cauchy-Schwarz inequality, we get

∑ 30(b+ c)
5p2 + 2q+ 3a2 + 6bc

≥
30
�∑

(b+ c)
�2

∑

(b+ c)(5p2 + 2q+ 3a2 + 6bc)

=
120p2

10p3 + 4pq+ 9
∑

bc(b+ c)
=

120p2

10p3 + 13pq− 27abc
.

Therefore, it is enough to show that

120p2

10p3 + 13pq− 27abc
≥

9
p

,

which is equivalent to
10p3 + 81abc ≥ 39pq.

From Schur’s inequality p3+9abc ≥ 4pq and the known inequality pq ≥ 9abc, we
have

10p3 + 81abc − 39pq = 10(p3 + 9abc − 4pq) + pq− 9abc ≥ 0.

This completes the proof. The equality holds for a = b = c, and also for a = 0 and
b = c (or any cyclic permutation).

Second Solution. By the Cauchy-Schwarz inequality, we have

�∑

a
p

4a2 + 5bc
�

�

∑ a
p

4a2 + 5bc

�

≥ (a+ b+ c)2.

From this inequality and the inequality in P 2.33, namely
∑ a
p

4a2 + 5bc
≤ 1,
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the desired inequality follows.

Remark. Using the same way as in the second solution, we can prove the following
inequalities for a, b, c > 0 satisfying abc = 1:

a
p

4a2 + 5+ b
p

4b2 + 5+ c
p

4c2 + 5≥ (a+ b+ c)2;

p

4a4 + 5+
p

4b4 + 5+
p

4c4 + 5≥ (a+ b+ c)2.

The first inequality is a consequence of the the Cauchy-Schwarz inequality

�∑

a
p

4a2 + 5
�

�

∑ a
p

4a2 + 5

�

≥ (a+ b+ c)2

and the inequality
∑ a
p

4a2 + 5
≤ 1, abc = 1,

which follows from the inequality in P 2.33 by replacing bc/a2, ca/b2, ab/c2 with
1/a2, 1/b2, 1/c2, respectively.

The second inequality is a consequence of the the Cauchy-Schwarz inequality

�∑
p

4a4 + 5
�

�

∑ a2

p
4a4 + 5

�

≥ (a+ b+ c)2

and the inequality
∑ a2

p
4a4 + 5

≤ 1, abc = 1,

which follows from the inequality in P 2.33 by replacing bc/a2, ca/b2, ab/c2 with
1/a4, 1/b4, 1/c4, respectively.

P 2.35. Let a, b, c be nonnegative real numbers. Prove that

a
p

a2 + 3bc + b
p

b2 + 3ca+ c
p

c2 + 3ab ≥ 2(ab+ bc + ca).

(Vasile Cîrtoaje, 2005)

First Solution (by Vo Quoc Ba Can). Using the AM-GM inequality yields

∑

a
p

a2 + 3bc =
∑ a(b+ c)(a2 + 3bc)

p

(b+ c)2(a2 + 3bc)

≥
∑ 2a(b+ c)(a2 + 3bc)
(b+ c)2 + (a2 + 3bc)

.
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Thus, it suffices to prove that

∑ 2a(b+ c)(a2 + 3bc)
a2 + b2 + c2 + 5bc

≥
∑

a(b+ c).

We will use the SOS method. Write the inequality as follows:

∑ a(b+ c)(a2 − b2 − c2 + bc)
a2 + b2 + c2 + 5bc

≥ 0,

∑ a3(b+ c)− a(b3 + c3)
a2 + b2 + c2 + 5bc

≥ 0,

∑ ab(a2 − b2)− ac(c2 − a2)
a2 + b2 + c2 + 5bc

≥ 0,

∑ ab(a2 − b2)
a2 + b2 + c2 + 5bc

−
∑ ba(a2 − b2)

b2 + c2 + a2 + 5ca
≥ 0,

∑ 5abc(a+ b)(a− b)2

(a2 + b2 + c2 + 5bc)(a2 + b2 + c2 + 5ac)
≥ 0.

The equality holds a = b = c, and also for a = 0 and b = c (or any cyclic permuta-
tion).

Second Solution. Write the inequality as
∑�

a
p

a2 + 3bc − a2
�

≥ 2(ab+ bc + ca)− a2 − b2 − c2.

Due to homogeneity, we may assume that a+ b+ c = 3. By the AM-GM inequality,
we have

a
p

a2 + 3bc − a2 =
3abc

p
a2 + 3bc + a

=
12abc

2
p

4(a2 + 3bc) + 4a

≥
12abc

4+ a2 + 3bc + 4a
.

Thus, it suffices to show that

12abc
∑ 1

4+ a2 + 3bc + 4a
≥ 2(ab+ bc + ca)− a2 − b2 − c2.

On the other hand, by Schur’s inequality of degree three, we have

9abc
a+ b+ c

≥ 2(ab+ bc + ca)− a2 − b2 − c2.

Therefore, it is enough to prove that

∑ 1
4+ a2 + 3bc + 4a

≥
3

4(a+ b+ c)
.
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By the Cauchy-Schwarz inequality, we have

∑ 1
4+ a2 + 3bc + 4a

≥
9

∑

(4+ a2 + 3bc + 4a)
=

9
24+

∑

a2 + 3
∑

ab

=
27

8
�∑

a
�2
+ 3

∑

a2 + 9
∑

ab

=
9
∑

a

11
�∑

a
�2
+ 3

∑

ab
≥

3
4
∑

a
.

P 2.36. Let a, b, c be nonnegative real numbers. Prove that

a
p

a2 + 8bc + b
p

b2 + 8ca+ c
p

c2 + 8ab ≤ (a+ b+ c)2.

Solution. Multiplying by a+ b+ c, the inequality becomes
∑

a
Æ

(a+ b+ c)2(a2 + 8bc)≤ (a+ b+ c)3.

Since
2
Æ

(a+ b+ c)2(a2 + 8bc)≤ (a+ b+ c)2 + (a2 + 8bc),

it suffices to show that
∑

a[(a+ b+ c)2 + (a2 + 8bc)]≤ 2(a+ b+ c)3,

which can be written as

a3 + b3 + c3 + 24abc ≤ (a+ b+ c)3.

This inequality is equivalent to

a(b− c)2 + b(c − a)2 + c(a− b)2 ≥ 0.

The equality holds for a = b = c, and also for b = c = 0 (or any cyclic permutation).

P 2.37. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a2 + 2bc
p

b2 + bc + c2
+

b2 + 2ca
p

c2 + ca+ a2
+

c2 + 2ab
p

a2 + ab+ b2
≥ 3

p

ab+ bc + ca.

(Michael Rozenberg and Marius Stanean, 2011)
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Solution. By the AM-GM inequality, we have

∑ a2 + 2bc
p

b2 + bc + c2
=
∑ 2(a2 + 2bc)

p
ab+ bc + ca

2
p

(b2 + bc + c2)(ab+ bc + ca)

≥
p

ab+ bc + ca
∑ 2(a2 + 2bc)
(b2 + bc + c2) + (ab+ bc + ca)

=
p

ab+ bc + ca
∑ 2(a2 + 2bc)
(b+ c)(a+ b+ c)

.

Thus, it suffices to show that

a2 + 2bc
b+ c

+
b2 + 2ca

c + a
+

c2 + 2ab
a+ b

≥
3
2
(a+ b+ c).

This inequality is equivalent to

a4 + b4 + c4 + abc(a+ b+ c)≥
1
2

∑

ab(a+ b)2.

We can prove this inequality by summing Schur’s inequality of fourth degree

a4 + b4 + c4 + abc(a+ b+ c)≥
∑

ab(a2 + b2)

and the obvious inequality
∑

ab(a2 + b2)≥
1
2

∑

ab(a+ b)2.

The equality holds for a = b = c.

P 2.38. Let a, b, c be nonnegative real numbers, no two of which are zero. If k ≥ 1,
then

ak+1

2a2 + bc
+

bk+1

2b2 + ca
+

ck+1

2c2 + ab
≤

ak + bk + ck

a+ b+ c
.

(Vasile Cîrtoaje and Vo Quoc Ba Can, 2011)

Solution. Write the inequality as follows:

∑

�

ak

a+ b+ c
−

ak+1

2a2 + bc

�

≥ 0,

∑ ak(a− b)(a− c)
2a2 + bc

≥ 0.

Assume that a ≥ b ≥ c. Since (c − a)(c − b)≥ 0, it suffices to show that

ak(a− b)(a− c)
2a2 + bc

+
bk(b− a)(b− c)

2b2 + ca
≥ 0.
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This is true if
ak(a− c)
2a2 + bc

−
bk(b− c)
2b2 + ca

≥ 0,

which is equivalent to

ak(a− c)(2b2 + ca)≥ bk(b− c)(2a2 + bc).

Since ak/bk ≥ a/b, it remains to show that

a(a− c)(2b2 + ca)≥ b(b− c)(2a2 + bc),

which is equivalent to the obvious inequality

(a− b)c[a2 + 3ab+ b2 − c(a+ b)]≥ 0.

The equality holds for a = b = c, and also for a = b and c = 0 (or any cyclic
permutation).

P 2.39. If a, b, c are positive real numbers, then

(a)
a2 − bc
p

3a2 + 2bc
+

b2 − ca
p

3b2 + 2ca
+

c2 − ab
p

3c2 + 2ab
≥ 0;

(b)
a2 − bc

p

8a2 + (b+ c)2
+

b2 − ca
p

8b2 + (c + a)2
+

c2 − ab
p

8c2 + (a+ b)2
≥ 0.

(Vasile Cîrtoaje, 2006)

Solution. (a) Use the SOS technique. Let

A=
p

3a2 + 2bc, B =
p

3b2 + 2ca, C =
p

3c2 + 2ab.

We have

2
∑ a2 − bc

A
=
∑ (a− b)(a+ c) + (a− c)(a+ b)

A

=
∑ (a− b)(a+ c)

A
+
∑ (b− a)(b+ c)

B

=
∑

(a− b)
�

a+ c
A
−

b+ c
B

�

=
∑ a− b

AB
·
(a+ c)2B2 − (b+ c)2A2

(a+ c)B + (b+ c)A
,

hence

2
∑ a2 − bc

A
=
∑ c(a− b)2

AB
·

2(a− b)2 + c(a+ b+ 2c)
(a+ c)B + (b+ c)A

≥ 0.
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The equality holds for a = b = c.

(b) Let

A=
Æ

8a2 + (b+ c)2, B =
Æ

8b2 + (c + a)2, C =
Æ

8c2 + (a+ b)2 b.

As we have shown before,

2
∑ a2 − bc

A
=
∑ a− b

AB
·
(a+ c)2B2 − (b+ c)2A2

(a+ c)B + (b+ c)A
,

hence

2
∑ a2 − bc

A
=
∑ (a− b)2

AB
·

C1

(a+ c)B + (b+ c)A
≥ 0,

since

C1 = [(a+ c) + (b+ c)][(a+ c)2 + (b+ c)2]− 8ac(b+ c)− 8bc(a+ c)
≥ [(a+ c) + (b+ c)](4ac + 4bc)− 8ac(b+ c)− 8bc(a+ c)

= 4c(a− b)2 ≥ 0.

The equality holds for a = b = c.

P 2.40. Let a, b, c be positive real numbers. If 0≤ k ≤ 1+ 2
p

2, then

a2 − bc
p

ka2 + b2 + c2
+

b2 − ca
p

kb2 + c2 + a2
+

c2 − ab
p

kc2 + a2 + b2
≥ 0.

Solution. Use the SOS method. Let

A=
p

ka2 + b2 + c2, B =
p

kb2 + c2 + a2, C =
p

kc2 + a2 + b2.

As we have shown at the preceding problem,

2
∑ a2 − bc

A
=
∑ a− b

AB
·
(a+ c)2B2 − (b+ c)2A2

(a+ c)B + (b+ c)A
;

therefore

2
∑ a2 − bc

A
=
∑ (a− b)2

AB
·

C1

(a+ c)B + (b+ c)A
,

where
C1 = (a

2 + b2 + c2)(a+ b+ 2c)− (k− 1)c(2ab+ bc + ca).
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It suffices to show that C1 ≥ 0. Putting a+ b = 2x , we have a2+ b2 ≥ 2x2, ab ≤ x2,
hence

C1 ≥ (a2 + b2 + c2)(a+ b+ 2c)− 2
p

2 c(2ab+ bc + ca)

≥ (2x2 + c2)(2x + 2c)− 2
p

2 c(2x2 + 2cx)

= 2(x + c)(x
p

2− c)2 ≥ 0.

The equality holds for a = b = c.

P 2.41. If a, b, c are nonnegative real numbers, then

(a2 − bc)
p

b+ c + (b2 − ca)
p

c + a+ (c2 − ab)
p

a+ b ≥ 0.

First Solution. Let us denote

x =

√

√ b+ c
2

, y =
s

c + a
2

, z =

√

√a+ b
2

,

hence
a = y2 + z2 − x2, b = z2 + x2 − y2, c = x2 + y2 − z2.

The inequality turns into

x y(x3+ y3)+ yz(y3+ z3)+ zx(z3+ x3)≥ x2 y2(x + y)+ y2z2(y+ z)+ z2 x2(z+ x),

which is equivalent to the obvious inequality

x y(x + y)(x − y)2 + yz(y + z)(y − z)2 + zx(z + x)(z − x)2 ≥ 0.

The equality holds for a = b = c, and also for b = c = 0 (or any cyclic permutation).

Second Solution. Use the SOS technique. Write the inequality as

A(a2 − bc) + B(b2 − ca) + C(c2 − ab)≥ 0,

where
A=

p

b+ c, B =
p

c + a, C =
p

a+ b.

We have

2
∑

A(a2 − bc) =
∑

A[(a− b)(a+ c) + (a− c)(a+ b)]

=
∑

A(a− b)(a+ c) +
∑

B(b− a)(b+ c)

=
∑

(a− b)[A(a+ c)− B(b+ c)]

=
∑

(a− b) ·
A2(a+ c)2 − B2(b+ c)2

A(a+ c) + B(b+ c)

=
∑ (a− b)2(a+ c)(b+ c)

A(a+ c) + B(b+ c)
≥ 0.
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P 2.42. If a, b, c are nonnegative real numbers, then

(a2 − bc)
p

a2 + 4bc + (b2 − ca)
p

b2 + 4ca+ (c2 − ab)
p

c2 + 4ab ≥ 0.

(Vasile Cîrtoaje, 2005)

Solution. If two of a, b, c are zero, then the inequality is clearly true. Otherwise,
write the inequality as

AX + BY + C Z ≥ 0,

where

A=
p

a2 + 4bc
b+ c

, B =
p

b2 + 4ca
c + a

, C =
p

c2 + 4ab
a+ b

,

X = (a2 − bc)(b+ c), Y = (b2 − bc)(b+ c), Z = (c2 − ab)(a+ b).

Without loss of generality, assume that

a ≥ b ≥ c.

We have
X ≥ 0, Z ≤ 0, X + Y + Z = 0.

In addition,
X − Y = ab(a− b) + 2(a2 − b2)c + (a− b)c2 ≥ 0

and

A2 − B2 =
a4 − b4 + 2(a3 − c3)c + (a2 − c2)c2 + 4abc(a− b)− 4(a− b)c3

(b+ c)2(c + a)2

≥
4abc(a− b)− 4(a− b)c3

(b+ c)2(c + a)2
=

4c(a− b)(ab− c2)
(b+ c)2(c + a)2

≥ 0.

Since

2(AX + BY + C Z) = (A− B)(X − Y ) + (A+ B)(X + Y ) + 2C Z
= (A− B)(X − Y )− (A+ B − 2C)Z ,

it suffices to show that
A+ B − 2C ≥ 0.

This is true if AB ≥ C2. Using the Cauchy-Schwarz inequality gives

AB ≥
ab+ 4c

p
ab

(b+ c)(c + a)
≥

ab+ 2c
p

ab+ 2c2

(b+ c)(c + a)
.

Thus, it is enough to show that

(a+ b)2(ab+ 2c
p

ab+ 2c2)≥ (b+ c)(c + a)(c2 + 4ab).
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Write this inequality as

ab(a− b)2+2c
p

ab(a+ b)
�p

a−
p

b
�2
+ c2[2(a+ b)2−5ab− c(a+ b)− c2]≥ 0.

It is true since

2(a+ b)2 − 5ab− c(a+ b)− c2 = a(2a− b− c) + b(b− c) + b2 − c2 ≥ 0.

The equality holds for a = b = c, and also for a = b and c = 0 (or any cyclic
permutation).

P 2.43. If a, b, c are nonnegative real numbers, then
√

√ a3

a3 + (b+ c)3
+

√

√ b3

b3 + (c + a)3
+

√

√ c3

c3 + (a+ b)3
≥ 1.

Solution. For a = 0, the inequality reduces to the obvious inequality
p

b3 +
p

c3 ≥
p

b3 + c3.

For a, b, c > 0, write the inequality as

∑

√

√

√

√

√

1

1+
�

b+ c
a

�3 ≥ 1.

For any x ≥ 0, we have

p

1+ x3 =
Æ

(1+ x)(1− x + x2)≤
(1+ x) + (1− x + x2)

2
= 1+

1
2

x2.

Therefore, we get

∑

√

√

√

√

√

1

1+
�

b+ c
a

�3 ≥
∑ 1

1+
1
2

�

b+ c
a

�2

≥
∑ 1

1+
b2 + c2

a2

=
∑ a2

a2 + b2 + c2
= 1.

The equality holds for a = b = c, and also for b = c = 0 (or any cyclic permutation).
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P 2.44. If a, b, c are positive real numbers, then

√

√

(a+ b+ c)
�

1
a
+

1
b
+

1
c

�

≥ 1+

√

√

√

1+

√

√

(a2 + b2 + c2)
�

1
a2
+

1
b2
+

1
c2

�

.

(Vasile Cîrtoaje, 2002)

Solution. Using the Cauchy-Schwarz inequality, we have

�∑

a
�

�

∑ 1
a

�

=

√

√�∑

a2 + 2
∑

bc
�

�

∑ 1
a2
+ 2

∑ 1
bc

�

≥

√

√�∑

a2
�

�

∑ 1
a2

�

+ 2

√

√�∑

bc
�

�

∑ 1
bc

�

=

√

√�∑

a2
�

�

∑ 1
a2

�

+ 2

√

√�∑

a
�

�

∑ 1
a

�

,

hence
�√

√�∑

a
�

�

∑ 1
a

�

− 1

�2

≥ 1+

√

√�∑

a2
�

�

∑ 1
a2

�

,

√

√�∑

a
�

�

∑ 1
a

�

− 1≥

√

√

√

1+

√

√�∑

a2
�

�

∑ 1
a2

�

.

The equality holds if and only if

�∑

a2
�

�

∑ 1
bc

�

=
�

∑ 1
a2

�

�∑

bc
�

,

which is equivalent to

(a2 − bc)(b2 − ca)(c2 − ab) = 0.

Consequently, the equality occurs for a2 = bc or b2 = ca or c2 = ab.

P 2.45. If a, b, c are positive real numbers, then

5+

√

√

2(a2 + b2 + c2)
�

1
a2
+

1
b2
+

1
c2

�

− 2 ≥ (a+ b+ c)
�

1
a
+

1
b
+

1
c

�

.

(Vasile Cîrtoaje, 2004)



Symmetric Nonrational Inequalities 339

Solution. Let us denote

x =
a
b
+

b
c
+

c
a

, y =
b
a
+

c
b
+

a
c

.

From

2(a2 + b2 + c2)
�

1
a2
+

1
b2
+

1
c2

�

− 2=

= 2
�

a2

b2
+

b2

c2
+

c2

a2

�

+ 2
�

b2

a2
+

c2

b2
+

a2

c2

�

+ 4

= 2(x2 − 2y) + 2(y2 − 2x) + 4

= (x + y − 2)2 + (x − y)2

≥ (x + y − 2)2

and

(a+ b+ c)
�

1
a
+

1
b
+

1
c

�

= x + y + 3,

we get
√

√

2(a2 + b2 + c2)
�

1
a2
+

1
b2
+

1
c2

�

− 2 ≥ x + y − 2

= (a+ b+ c)
�

1
a
+

1
b
+

1
c

�

− 5.

The equality occurs for a = b or b = c or c = a.

P 2.46. If a, b, c are real numbers, then

2(1+ abc) +
Æ

2(1+ a2)(1+ b2)(1+ c2)≥ (1+ a)(1+ b)(1+ c).

(Wolfgang Berndt, 2006)

First Solution. Denoting

p = a+ b+ c, q = ab+ bc + ca, r = abc,

the inequality becomes
Æ

2(p2 + q2 + r2 − 2pr − 2q+ 1)≥ p+ q− r − 1.

It suffices to show that

2(p2 + q2 + r2 − 2pr − 2q+ 1)≥ (p+ q− r − 1)2,
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which is equivalent to

p2 + q2 + r2 − 2pq+ 2qr − 2pr + 2p− 2q− 2r + 1≥ 0,

(p− q− r + 1)2 ≥ 0.

The equality holds for p + 1 = q + r and q ≥ 1. The last condition follows from
p+ q− r − 1≥ 0.

Second Solution. Since

2(1+ a2) = (1+ a)2 + (1− a)2

and
(1+ b2)(1+ c2) = (b+ c)2 + (bc − 1)2,

by the Cauchy-Schwarz inequality, we get
Æ

2(1+ a2)(1+ b2)(1+ c2)≥ (1+ a)(b+ c) + (1− a)(bc − 1)
= (1+ a)(1+ b)(1+ c)− 2(1+ abc).

P 2.47. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
√

√a2 + bc
b2 + c2

+

√

√ b2 + ca
c2 + a2

+

√

√ c2 + ab
a2 + b2

≥ 2+
1
p

2
.

(Vo Quoc Ba Can, 2006)

Solution. Assume that
a ≥ b ≥ c.

It suffices to show that
√

√a2 + c2

b2 + c2
+

√

√ b2 + c2

c2 + a2
+

√

√ ab
a2 + b2

≥ 2+
1
p

2
.

Let us denote

x =

√

√a2 + c2

b2 + c2
, y =

s

a
b

.

From

x2 − y2 =
(a− b)(ab− c2)

b(b2 + c2)
≥ 0,

it follows that
x ≥ y ≥ 1.
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Also, from

x +
1
x
−
�

y +
1
y

�

=
(x − y)(x y − 1)

x y
≥ 0,

we have
√

√a2 + c2

b2 + c2
+

√

√ b2 + c2

c2 + a2
≥
s

a
b
+

√

√ b
a

.

Therefore, it is enough to show that

s

a
b
+

√

√ b
a
+

√

√ ab
a2 + b2

≥ 2+
1
p

2
,

which is equivalent to

s

a
b
+

√

√ b
a
− 2≥

1
p

2
−

√

√ ab
a2 + b2

,

(
p

a−
p

b)2
p

ab
≥

(a− b)2
p

2(a2 + v2
�p

a2 + b2 +
p

2ab
� .

Since 2
p

ab ≤
p

2(a2 + b2), it suffices to show that

2≥
(
p

a+
p

b )2
p

a2 + b2 +
p

2ab
.

Indeed,

2
�p

a2 + b2 +
p

2ab
�

>
Æ

2(a2 + b2) + 2
p

ab ≥ a+ b+ 2
p

ab =
�p

a+
p

b
�2

.

The equality holds for a = b and c = 0 (or any cyclic permutation).

P 2.48. If a, b, c are nonnegative real numbers, then
Æ

a(2a+ b+ c) +
Æ

b(2b+ c + a) +
Æ

c(2c + a+ b)≥
Æ

12(ab+ bc + ca).

(Vasile Cîrtoaje, 2012)

Solution. By squaring, the inequality becomes

a2 + b2 + c2 +
∑

Æ

bc(2b+ c + a)(2c + a+ b)≥ 5(ab+ bc + ca).

Using the Cauchy-Schwarz inequality yields
∑

Æ

bc(2b+ c + a)(2c + a+ b) =
∑

Æ

(2b2 + bc + ab)(2c2 + bc + ac)
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≥
∑�

2bc + bc + a
p

bc
�

= 3(ab+ bc + ca) +
∑

a
p

bc.

Therefore, it suffices to show that

a2 + b2 + c2 +
∑

a
p

bc ≥ 2(ab+ bc + ca).

We can get this inequality by summing Schur’s inequality

a2 + b2 + c2 +
∑

a
p

bc ≥
∑

p

ab(a+ b)

and
∑

p

ab (a+ b)≥ 2(ab+ bc + ca).

The last inequality is equivalent to the obvious inequality

∑
p

ab
�p

a−
p

b
�2
≥ 0.

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic
permutation).

P 2.49. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

a
Æ

(4a+ 5b)(4a+ 5c) + b
Æ

(4b+ 5c)(4b+ 5a) + c
Æ

(4c + 5a)(4c + 5b)≥ 27.

(Vasile Cîrtoaje, 2010)

Solution. Use the SOS technique. Assume that

a ≥ b ≥ c,

consider the nontrivial case b > 0, and write the inequality in the following equiv-
alent homogeneous forms:

∑

a
Æ

(4a+ 5b)(4a+ 5c)≥ 3(a+ b+ c)2,

2
�∑

a2 −
∑

ab
�

≥
∑

a
�
p

4a+ 5b−
p

4a+ 5c
�2

,

∑

(b− c)2 ≥
∑ 25a(b− c)2

�p
4a+ 5b+

p
4a+ 5c

�2 ,

∑

(b− c)2Sa ≥ 0,

where
Sa = 1−

25a
�p

4a+ 5b+
p

4a+ 5c
�2 .
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Since

Sb = 1−
25b

�p
4b+ 5c +

p
4b+ 5a

�2 ≥ 1−
25b

�p
4b+

p
9b
�2 = 0

and

Sc = 1−
25c

�p
4c + 5a+

p
4c + 5b

�2 ≥ 1−
25c

�p
9c +

p
9c
�2 = 1−

25
36
> 0,

we have
∑

(b− c)2Sa ≥ (b− c)2Sa + (a− c)2Sb ≥ (b− c)2Sa +
a2

b2
(b− c)2Sb

=
a
b
(b− c)2

�

b
a

Sa +
a
b

Sb

�

.

Thus, it suffices to prove that

b
a

Sa +
a
b

Sb ≥ 0.

We have

Sa ≥ 1−
25a

�p
4a+ 5b+

p
4a
�2 = 1−

a
�p

4a+ 5b−
p

4a
�2

b2
,

Sb ≥ 1−
25b

�p
4b+

p
4b+ 5a

�2 = 1−
b
�p

4b+ 5a−
p

4b
�2

a2
,

hence

b
a

Sa +
a
b

Sb ≥
b
a
−

�p
4a+ 5b−

p
4a
�2

b
+

a
b
−

�p
4b+ 5a−

p
4b
�2

a

= 4

�√

√4a2

b2
+

5a
b
+

√

√4b2

a2
+

5b
a

�

− 7
�

a
b
+

b
a

�

− 10

= 4
q

4x2 + 5x − 8+ 2
p

20x + 41− 7x − 10,

where

x =
a
b
+

b
a
≥ 2.

To end the proof, we only need to show that x ≥ 2 yields

4
q

4x2 + 5x − 8+ 2
p

20x + 41≥ 7x + 10.

By squaring, this inequality becomes

15x2 − 60x − 228+ 32
p

20x + 41≥ 0.
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Indeed,

15x2−60x −228+32
p

20x + 41≥ 15x2−60x −228+32
p

81= 15(x −2)2 ≥ 0.

The equality holds for a = b = c = 1, and also for a = b =
3
2

and c = 0 (or any

cyclic permutation).

P 2.50. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

a
Æ

(a+ 3b)(a+ 3c) + b
Æ

(b+ 3c)(b+ 3a) + c
Æ

(c + 3a)(c + 3b)≥ 12.

(Vasile Cîrtoaje, 2010)

Solution. Use the SOS method. Assume that a ≥ b ≥ c (b > 0), and write the
inequality as

∑

a
Æ

(a+ 3b)(a+ 3c)≥ 4(ab+ bc + ca),

2(
∑

a2 −
∑

ab) =
∑

a
�p

a+ 3b−
p

a+ 3c
�2

,

∑

(b− c)2 ≥
∑ 9a(b− c)2

�p
a+ 3b+

p
a+ 3c

�2 ,

∑

(b− c)2Sa ≥ 0,

where

Sa = 1−
9a

�p
a+ 3b+

p
a+ 3c

�2 .

Since

Sb = 1−
9b

�p
b+ 3c +

p
b+ 3a

�2 ≥ 1−
9b

�p
b+
p

4b
�2 = 0

and

Sc = 1−
9c

�p
c + 3a+

p
c + 3b

�2 ≥ 1−
9c

�p
4c +

p
4c
�2 = 1−

9
16
> 0,

we have

∑

(b− c)2Sa ≥ (b− c)2Sa + (a− c)2Sb ≥ (b− c)2Sa +
a2

b2
(b− c)2Sb

=
a
b
(b− c)2

�

b
a

Sa +
a
b

Sb

�

.
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Thus, it suffices to prove that

b
a

Sa +
a
b

Sb ≥ 0.

We have

Sa ≥ 1−
9a

�p
a+ 3b+

p
a
�2 = 1−

a
�p

a+ 3b−
p

a
�2

b2
,

Sb ≥ 1−
9b

�p
b+
p

b+ 3a
�2 = 1−

b
�p

b+ 3a−
p

b
�2

a2
,

hence

b
a

Sa +
a
b

Sb ≥
b
a
−

�p
a+ 3b−

p
a
�2

b
+

a
b
−

�p
b+ 3a−

p
b
�2

a

= 2

�√

√a2

b2
+

3a
b
+

√

√ b2

a2
+

3b
a

�

−
�

a
b
+

b
a

�

− 6

= 2
Æ

x2 + 3x − 2+ 2
p

3x + 10− x − 6,

where

x =
a
b
+

b
a
≥ 2.

To end the proof, it remains to show that

2
Æ

x2 + 35x − 2+ 2
p

3x + 10≥ x + 6

for x ≥ 2. By squaring, this inequality becomes

3x2 − 44+ 8
p

3x + 10≥ 0.

Indeed,
3x2 − 44+ 8

p
3x + 10≥ 12− 44+ 32= 0.

The equality holds for a = b = c = 1, and also for a = b =
p

3 and c = 0 (or any
cyclic permutation).

P 2.51. Let a, b, c be nonnegative real numbers such that a2+ b2+ c2 = 3. Prove that
p

2+ 7ab+
p

2+ 7bc +
p

2+ 7ca ≥ 3
Æ

3(ab+ bc + ca).

(Vasile Cîrtoaje, 2010)
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Solution. Use the SOS method. Consider a ≥ b ≥ c. Since the inequality is trivial
for b = c = 0, we may assume that b > 0. By squaring, the desired inequality
becomes

6+ 2
∑

Æ

(2+ 7ab)(2+ 7ac)≥ 20(ab+ bc + ca),

6(a2 + b2 + c2 − ab− bc − ca)≥
∑�

p

2+ 7ab−
p

2+ 7ac
�2

,

3
∑

(b− c)2 ≥
∑ 49a2(b− c)2

�p
2+ 7ab+

p
2+ 7ac

�2 ,

∑

(b− c)2Sa ≥ 0,

where

Sa = 1−
49a2

�p
6+ 21ab+

p
6+ 21ac

�2 ,

Sb = 1−
49b2

�p
6+ 21ab+

p
6+ 21bc

�2 ,

Sc = 1−
49c2

�p
6+ 21ac +

p
6+ 21bc

�2 .

Since 6≥ 2(a2 + b2)≥ 4ab, we have

Sa ≥ 1−
49a2

�p
4ab+ 21ab+

p
6
�2 ≥ 1−

49a2

�

5
p

ab+ 2
p

ab
�2 = 1−

a
b

,

Sb ≥ 1−
49b2

�p
4ab+ 21ab+

p
6
�2 ≥ 1−

49b2

�

5
p

ab+ 2
p

ab
�2 = 1−

b
a

,

Sc ≥ 1−
49c2

�p
4ab+ 21ac +

p
4ab+ 21bc

�2 ≥ 1−
49c2

(5c + 5c)2
= 1−

49
100

> 0.

Therefore,
∑

(b− c)2Sa ≥ (b− c)2Sa + (c − a)2Sb

≥ (b− c)2
�

1−
a
b

�

+ (c − a)2
�

1−
b
a

�

=
(a− b)2(ab− c2)

ab
≥ 0.

The equality holds for a = b = c = 1, and also for a = b =
p

3 and c = 0 (or any
cyclic permutation).
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P 2.52. Let a, b, c be nonnegative real numbers such that a2+ b2+ c2 = 3. Prove that

a
2a2 + 1

+
b

2b2 + 1
+

c
2c2 + 1

≤ 1.

(Vasile Cîrtoaje, 2006)

Solution. Assume that a ≤ b ≤ c and denote

f (a, b, c) =
a

2a2 + 1
+

b
2b2 + 1

+
c

2c2 + 1
.

We will show that
f (a, b, c)≤ f (s, s, c)≤ 1,

where

s =

√

√a2 + b2

2
, s ≤ 1.

The inequality f (a, b, c)≤ f (s, s, c) follows from P 2.1. The inequality f (s, s, c)≤ 1
is equivalent to

2s
2s2 + 1

+
c

2c2 + 1
≤ 1,

where
2s2 + c2 = 3, 0≤ s ≤ 1≤ c.

Write the requested inequality as follows:

1
3
−

c
2c2 + 1

≥
2s

2s2 + 1
−

2
3

,

(c − 1)(2c − 1)
2c2 + 1

≥
2(1− s)(2s− 1)

2s2 + 1
,

(c2 − 1)(2c − 1)
(c + 1)(2c2 + 1)

≥
2(1− s2)(2s− 1)
(1+ s)(2s2 + 1)

.

Since
c2 − 1= 2(1− s2)≥ 0,

we only need to show that

2c − 1
(c + 1)(2c2 + 1)

≥
2s− 1

(s+ 1)(2s2 + 1)
,

which is equivalent to (c − s)A≥ 0, where

A= 2(s+ c)2 + 2(s+ c) + 3− 6sc − 4sc(s+ c).

Substituting

x =
s+ c

2
, y =

p
sc, x ≥ y,
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we need to show that A(x , y)≥ 0, where

A(x , y) = 8x2 + 4x + 3− 6y2 − 8x y2.

From
3= 2s2 + c2 ≥ 2

p
2sc = 2

p
2y2,

we get

y ≤
√

√ 3

2
p

2
.

We will show that
A(x , y)≥ A(y, y)≥ 0.

We have

A(x , y)− A(y, y) = 4(x − y)(2x + 2y + 1− 2y2)≥ 4(x − y)[2y(2− y) + 1]≥ 0

and
A(y, y) = 3+ 4y + 2y2 − 8y3.

From

A(y, y) = y3
�

3
y3
+

4
y2
+

2
y
− 8

�

,

it follows that it suffices to show that A(y, y)≥ 0 for y =

√

√ 3

2
p

2
. Indeed, we have

A(y, y) = 3+ 2y2 − 4(2y2 − 1)y = 3+
3
p

2
− 4

�

3
p

2
− 1

�

y

=
3
p

2+ 3− 4(3−
p

2)y
p

2
=

B
p

2[3
p

2+ 3+ 4(3−
p

2)y]
,

where

B = (3
p

2+ 3)2 − 16(3−
p

2)2 y2 = 9(
p

2+ 1)2 − 12
p

2(3−
p

2)2

= 57(3− 2
p

2)> 0.

The equality holds for a = b = c = 1.
Remark. The following more general statement is also valid.

• If a, b, c, d are nonnegative real numbers such that a2 + b2 + c2 + d2 = 4, then

a
2a2 + 1

+
b

2b2 + 1
+

c
2c2 + 1

+
d

2d2 + 1
≤

4
3

.
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P 2.53. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

(a)
∑p

a(b+ c)(a2 + bc)≥ 6;

(b)
∑

a(b+ c)
p

a2 + 2bc ≥ 6
p

3;

(c)
∑

a(b+ c)
p

(a+ 2b)(a+ 2c)≥ 18.

(Vasile Cîrtoaje, 2010)

Solution. Assume that
a ≥ b ≥ c, b > 0.

(a) Write the inequality in the homogeneous form
∑

Æ

a(b+ c)(a2 + bc)≥ 2(ab+ bc + ca).

First Solution. Write the homogeneous inequality as
∑

Æ

a(b+ c)
�p

a2 + bc −
Æ

a(b+ c)
�

≥ 0,

∑ (a− b)(a− c)
p

a(b+ c)
p

a2 + bc +
p

a(b+ c)
≥ 0.

Since (c − a)(c − b)≥ 0, it suffices to show that

(a− b)(a− c)
p

a(b+ c)
p

a2 + bc +
p

a(b+ c)
+
(b− c)(b− a)

p

b(c + a)
p

b2 + ca+
p

b(c + a)
≥ 0.

This is true if

(a− c)
p

a(b+ c)
p

a2 + bc +
p

a(b+ c)
≥

(b− c)
p

b(c + a)
p

b2 + ca+
p

b(c + a)
.

Since
Æ

a(b+ c)≥
Æ

b(c + a),

it suffices to show that

a− c
p

a2 + bc +
p

a(b+ c)
≥

b− c
p

b2 + ca+
p

b(c + a)
.

Moreover, since
p

a2 + bc ≥
Æ

a(b+ c),
p

b2 + ca ≤
Æ

b(c + a),

it is enough to show that
a− c
p

a2 + bc
≥

b− c
p

b2 + ca
.
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Indeed, we have

(a− c)2(b2+ ca)− (b− c)2(a2+ bc) = (a− b)(a2+ b2+ c2+3ab−3bc−3ca)≥ 0,

because

a2 + b2 + c2 + 3ab− 3bc − 3ca = (a2 − bc) + (b− c)2 + 3a(b− c)≥ 0.

The equality holds for a = b = c = 1, and also for a = b =
p

3 and c = 0 (or any
cyclic permutation).

Second Solution. By squaring, the homogeneous inequality becomes
∑

a(b+c)(a2+bc)+2
∑

Æ

bc(a+ b)(a+ c)(b2 + ca)(c2 + ab)≥ 4(ab+bc+ca)2.

Since
(b2 + ca)(c2 + ab)− bc(a+ b)(a+ c) = a(b+ c)(b− c)2 ≥ 0,

it suffices to show that
∑

a(b+ c)(a2 + bc) + 2
∑

bc(a+ b)(a+ c)≥ 4(ab+ bc + ca)2,

which is equivalent to
∑

bc(b− c)2 ≥ 0.

(b) Write the inequality as
∑

a(b+ c)
p

a2 + 2bc ≥ 2(ab+ bc + ca)
p

ab+ bc + ca,

∑

a(b+ c)
�p

a2 + 2bc −
p

ab+ bc + ca
�

≥ 0,

∑ a(b+ c)(a− b)(a− c)
p

a2 + 2bc +
p

ab+ bc + ca
≥ 0.

Since (c − a)(c − b)≥ 0, it suffices to show that

a(b+ c)(a− b)(a− c)
p

a2 + 2bc +
p

ab+ bc + ca
+

b(c + a)(b− c)(b− a)
p

b2 + 2ca+
p

ab+ bc + ca
≥ 0.

This is true if

a(b+ c)(a− c)
p

a2 + 2bc +
p

ab+ bc + ca
≥

b(c + a)(b− c)
p

b2 + 2ca+
p

ab+ bc + ca
.

Since
(b+ c)(a− c)≥ (c + a)(b− c),

it suffices to show that

a
p

a2 + 2bc +
p

ab+ bc + ca
≥

b
p

b2 + 2ca+
p

ab+ bc + ca
.
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Moreover, since
p

a2 + 2bc ≥
p

ab+ bc + ca,
p

b2 + 2ca ≤
p

ab+ bc + ca,

it is enough to show that

a
p

a2 + 2bc
≥

b
p

b2 + 2ca
.

Indeed, we have

a2(b2 + 2ca)− b2(a2 + 2bc) = 2c(a3 − b3)≥ 0.

The equality holds for a = b = c = 1, and also for a = b =
p

3 and c = 0 (or any
cyclic permutation).

(c) Write the inequality as follows:
∑

a(b+ c)
Æ

(a+ 2b)(a+ 2c)≥ 2(ab+ bc + ca)
Æ

3(ab+ bc + ca),

∑

a(b+ c)
�Æ

(a+ 2b)(a+ 2c)−
Æ

3(ab+ bc + ca)
�

≥ 0,

∑ a(b+ c)(a− b)(a− c)
p

(a+ 2b)(a+ 2c) +
p

3(ab+ bc + ca)
≥ 0.

Since (c − a)(c − b)≥ 0, it suffices to show that

a(b+ c)(a− c)
p

(a+ 2b)(a+ 2c) +
p

3(ab+ bc + ca)
≥

b(c + a)(b− c)
p

(b+ 2c)(b+ 2a) +
p

3(ab+ bc + ca)
.

Since
(b+ c)(a− c)≥ (c + a)(b− c),

it suffices to show that

a
p

(a+ 2b)(a+ 2c) +
p

3(ab+ bc + ca)
≥

b
p

(b+ 2c)(b+ 2a) +
p

3(ab+ bc + ca)
.

Moreover, since
Æ

(a+ 2b)(a+ 2c)≥
Æ

3(ab+ bc + ca),
Æ

(b+ 2c)(b+ 2a)≤
Æ

3(ab+ bc + ca),

it is enough to show that

a
p

(a+ 2b)(a+ 2c)
≥

b
p

(b+ 2c)(b+ 2a)
.

This is true if p
a

p

(a+ 2b)(a+ 2c)
≥

p
b

p

(b+ 2c)(b+ 2a)
.
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Indeed, we have

a(b+ 2c)(b+ 2a)− b(a+ 2b)(a+ 2c) = (a− b)(ab+ 4bc + 4ca)≥ 0.

The equality holds for a = b = c = 1, and also for a = b =
p

3 and c = 0 (or any
cyclic permutation).

P 2.54. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

a
p

bc + 3+ b
p

ca+ 3+ c
p

ab+ 3≥ 6.

(Vasile Cîrtoaje, 2010)

Solution. Use the SOS method. Denote

A=
p

ab+ 2bc + ca, B =
p

bc + 2ca+ ab, C =
p

ca+ 2ab+ bc,

and write the inequality as follows:
∑

aA≥ 2(ab+ bc + ca),

∑

a (A− b− c)≥ 0,

∑ a(ab+ ac − b2 − c2)
A+ b+ c

≥ 0,

∑ ab(a− b) + ac(a− c)
A+ b+ c

≥ 0,

∑ ab(a− b)
A+ b+ c

+
∑ ba(b− a)

B + c + a
≥ 0,

∑

ab(a− b)
�

1
A+ b+ c

−
1

B + c + a

�

≥ 0,

∑

ab(a+ b+ C)(a− b)(a− b+ B − A)≥ 0,

∑

ab(a+ b+ C)(a− b)2
�

1+
c

A+ B

�

≥ 0.

The equality holds for a = b = c = 1, and for a = 0 and b = c =
p

3 (or any cyclic
permutation).
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P 2.55. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

(a)
∑

(b+ c)
p

b2 + c2 + 7bc ≥ 18;

(b)
∑

(b+ c)
p

b2 + c2 + 10bc ≤ 12
p

3.

(Vasile Cîrtoaje, 2010)

Solution. Use the SOS technique.

(a) Write the inequality in the equivalent homogeneous forms
∑

(b+ c)
p

b2 + c2 + 7bc ≥ 2(a+ b+ c)2,

∑�

(b+ c)
p

b2 + c2 + 7bc − b2 − c2 − 4bc
�

≥ 0,

∑ (b+ c)2(b2 + c2 + 7bc)− (b2 + c2 + 4bc)2

(b+ c)
p

b2 + c2 + 7bc + b2 + c2 + 4bc
≥ 0,

∑ bc(b− c)2

(b+ c)
p

b2 + c2 + 7bc + b2 + c2 + 4bc
≥ 0.

The equality holds for a = b = c = 1, for a = 0 and b = c =
3
2

(or any cyclic

permutation), and for a = 3 and b = c = 0 (or any cyclic permutation).

(b) Write the inequality as follows:
∑

(b+ c)
Æ

3(b2 + c2 + 10bc)≤ 4(a+ b+ c)2,

∑�

2b2 + 2c2 + 8bc − (b+ c)
Æ

3(b2 + c2 + 10bc)
�

≥ 0,

∑ 4(b2 + c2 + 4bc)2 − 3(b+ c)2(b2 + c2 + 10bc)

2b2 + 2c2 + 8bc + (b+ c)
p

3(b2 + c2 + 10bc)
≥ 0,

∑ (b− c)4

2b2 + 2c2 + 8bc + (b+ c)
p

3(b2 + c2 + 10bc)
≥ 0.

The equality holds for a = b = c = 1.

P 2.56. Let a, b, c be nonnegative real numbers such then a+ b+ c = 2. Prove that

p

a+ 4bc +
p

b+ 4ca+
p

c + 4ab ≥ 4
p

ab+ bc + ca.

(Vasile Cîrtoaje, 2012)
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Solution. Without loss of generality, assume that

c =min{a, b, c}.

Using Minkowski’s inequality gives

p

a+ 4bc+
p

b+ 4ca ≥
s

�p
a+

p

b
�2
+ 4c

�p
a+

p

b
�2
=
�p

a+
p

b
�
p

1+ 4c.

Therefore, it suffices to show that
�p

a+
p

b
�
p

1+ 4c ≥ 4
p

ab+ bc + ca−
p

c + 4ab.

By squaring, this inequality becomes
�

a+ b+ 2
p

ab
�

(1+4c)+8
Æ

(ab+ bc + ca)(c + 4ab)≥ 16(ab+bc+ca)+c+4ab.

According to Lemma below, it suffices to show that
�

a+ b+ 2
p

ab
�

(1+ 4c) + 8(2ab+ bc + ca)≥ 16(ab+ bc + ca) + c + 4ab,

which is equivalent to

a+ b− c + 2
p

ab+ 8c
p

ab ≥ 4(ab+ bc + ca).

Write this inequality in the homogeneous form

(a+ b+ c)
�

a+ b− c + 2
p

ab
�

+ 16c
p

ab ≥ 8(ab+ bc + ca).

Due to homogeneity, we may assume that a+ b = 1. Let us denote

d =
p

ab, 0≤ d ≤
1
2

.

We need to show that f (c)≥ 0 for 0≤ c ≤ d, where

f (c) = (1+ c)(1− c + 2d) + 16cd − 8d2 − 8c

= (1− 2d)(1+ 4d) + 2(9d − 4)c − c2.

Since f (c) is concave, it suffices to show that f (0)≥ 0 and f (d)≥ 0. Indeed,

f (0) = (1− 2d)(1+ 4d)≥ 0,

f (d) = (3d − 1)2 ≥ 0.

Thus, the proof is completed. The equality holds for a = b = 1 and c = 0 (or any
cyclic permutation).
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Lemma (by Nguyen Van Quy). Let a, b, c be nonnegative real numbers such then

c =min{a, b, c}, a+ b+ c = 2.

Then,
Æ

(ab+ bc + ca)(c + 4ab)≥ 2ab+ bc + ca.

Proof. By squaring, the inequality becomes

c[ab+ bc + ca− c(a+ b)2]≥ 0.

We need to show that

(a+ b+ c)(ab+ bc + ca)− 2c(a+ b)2 ≥ 0.

We have

(a+ b+ c)(ab+ bc + ca)− 2c(a+ b)2 ≥ (a+ b)(b+ c)(c + a)− 2c(a+ b)2

= (a+ b)(a− c)(b− c)≥ 0.

P 2.57. If a, b, c are nonnegative real numbers, then

p

a2 + b2 + 7ab+
p

b2 + c2 + 7bc +
p

c2 + a2 + 7ca ≥ 5
p

ab+ bc + ca.

(Vasile Cîrtoaje, 2012)

Solution (by Nguyen Van Quy). Assume that

c =min{a, b, c}.

Using Minkowski’s inequality yields

p

b2 + c2 + 7bc +
p

a2 + c2 + 7ca ≥
s

(a+ b)2 + 4c2 + 7c
�p

a+
p

b
�2

.

Therefore, it suffices to show that
s

(a+ b)2 + 4c2 + 7c
�p

a+
p

b
�2
≥ 5

p

ab+ bc + ca−
p

a2 + b2 + 7ab.

By squaring, this inequality becomes

2c2 + 7c
p

ab+ 5
Æ

(a2 + b2 + 7ab)(ab+ bc + ca)≥ 15ab+ 9c(a+ b).
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Due to homogeneity, we may assume that a + b = 1, which implies c ≤
1
2

. Let us

denote x = ab. We need to show that f (x)≥ 0 for c2 ≤ x ≤
1
4

, where

f (x) = 2c2 + 7c
p

x + 5
Æ

(1+ 5x)(c + x)− 15x − 9c.

Since

f ′′(x) =
−7c

4
p

x3
−

5(5c − 1)2

4
p

[5x2 + (5c + 1)x + c]3
< 0

f (c) is concave. Thus, it suffices to show that f (c2)≥ 0 and f
�

1
4

�

≥ 0.

Write the inequality f (c2)≥ 0 as

5
Æ

(1+ 5c2)(c + c2)≥ 6c2 + 9c.

By squaring, this inequality turns into

c(89c3 + 17c2 − 56c + 25)≥ 0,

which is true since

89c3 + 17c2 − 56c + 25≥ 12c2 − 56c + 25= (1− 2c)(25− 6c)≥ 0.

Write the inequality f
�

1
4

�

≥ 0 as

8c2 − 22c + 15
�
p

4c + 1− 1
�

≥ 0.

Making the substitution t =
p

4c + 1, t ≥ 1, the inequality becomes

(t − 1)(t3 + t2 − 12t + 18)≥ 0.

It is true since

t3 + t2 − 12t + 18≥ 2t2 − 12t + 18= 2(t − 3)2 ≥ 0.

Thus, the proof is completed. The equality holds for a = b and c = 0 (or any cyclic
permutation).

P 2.58. If a, b, c are nonnegative real numbers, then
p

a2 + b2 + 5ab+
p

b2 + c2 + 5bc +
p

c2 + a2 + 5ca ≥
Æ

21(ab+ bc + ca).

(Nguyen Van Quy, 2012)
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Solution. Without loss of generality, assume that c =min{a, b, c}. Using Minkowski’s
inequality, we have

Æ

(a+ c)2 + 3ac +
Æ

(b+ c)2 + 3bc ≥
s

(a+ b+ 2c)2 + 3c
�p

a+
p

b
�2

.

Therefore, it suffices to show that
s

(a+ b+ 2c)2 + 3c
�p

a+
p

b
�2
≥
Æ

21(ab+ bc + ca)−
p

a2 + b2 + 5ab.

By squaring, this inequality becomes

2c2 + 3c
p

ab+
Æ

21(a2 + b2 + 5ab)(ab+ bc + ca)≥ 12ab+ 7c(a+ b).

Due to homogeneity, we may assume that a + b = 1. Let us denote x = ab. We

need to show that f (x)≥ 0 for c2 ≤ x ≤
1
4

, where

f (x) = 2c2 + 3c
p

x +
Æ

21(1+ 3x)(c + x)− 12x − 7c.

Since

f ′′(x) =
−3c

4
p

x3
−

p
21(3c − 1)2

4
p

[3x2 + (3c + 1)x + c]3
< 0

f (c) is concave. Thus, it suffices to show that f (c2)≥ 0 and f
�

1
4

�

≥ 0.

Write the inequality f (c2)≥ 0 as
Æ

21(1+ 3c2)(c + c2)≥ 7(c + c2).

By squaring, this inequality turns into

c(c + 1)(1− 2c)(3− c)≥ 0,

which is clearly true.

Write the inequality f
�

1
4

�

≥ 0 as

8c2 − 22c + 7
Æ

3(4c + 1)− 12≥ 0.

Using the substitution 3t2 = 4c + 1, t ≥
1
p

3
, the inequality becomes

(t − 1)2(3t2 + 6t − 4)≥ 0.

This is true since
3t2 + 6t − 4≥ 1+ 2

p
3− 4> 0.

Thus, the proof is completed. The equality holds for a = b = c.
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P 2.59. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3. Prove
that

a
p

a2 + 5+ b
p

b2 + 5+ c
p

c2 + 5≥

√

√2
3
(a+ b+ c)2.

(Vasile Cîrtoaje, 2010)

Solution. Write the inequality in the homogeneous form
∑

a
Æ

3a2 + 5(ab+ bc + ca)≥
p

2 (a+ b+ c)2.

Due to homogeneity, we may assume that

ab+ bc + ca = 1.

By squaring, the inequality becomes
∑

a4+2
∑

bc
Æ

(3b2 + 5)(3c2 + 5)≥ 12
∑

a2 b2+19abc
∑

a+3
∑

ab(a2+b2).

Applying Lemma below for x = 3b2, y = 3c2 and d = 5, we have

2
Æ

(3b2 + 5)(3c2 + 5)≥ 3(b2 + c2) + 10−
9

20
(b2 − c2)2,

hence

2bc
Æ

(3b2 + 5)(3c2 + 5)≥ 3bc(b2 + c2) + 10bc −
9

20
bc(b2 − c2)2,

2
∑

bc
Æ

(3b2 + 5)(3c2 + 5)≥ 3
∑

bc(b2+ c2)+10
�∑

bc
�2
−

9
20

∑

bc(b2− c2)2

= 10
∑

a2 b2 + 20abc
∑

a+ 3
∑

ab(a2 + b2)−
9

20

∑

bc(b2 − c2)2.

Therefore, it suffices to show that

∑

a4 + 10
∑

a2 b2 + 20abc
∑

a+ 3
∑

ab(a2 + b2)−
9

20

∑

bc(b2 − c2)2 ≥

≥ 12
∑

a2 b2 + 19abc
∑

a+ 3
∑

ab(a2 + b2),

which is equivalent to

∑

a4 − 2
∑

a2 b2 + abc
∑

a−
9
20

∑

bc(b2 − c2)2 ≥ 0.

To prove this inequality, we use the SOS method. Since

2
�∑

a4 − 2
∑

a2 b2 + abc
∑

a
�

= 2
�∑

a4 −
∑

a2 b2
�

−2
�∑

a2 b2 − abc
∑

a
�
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=
∑

(b2 − c2)2 −
∑

a2(b− c)2,

we can write the inequality as
∑

(b− c)2Sa ≥ 0,

where
Sa = (b+ c)2 − a2 −

9
10

bc(b+ c)2.

In addition, since

Sa ≥ (b+ c)2 − a2 − bc(b+ c)2 = (b+ c)2 − a2 −
bc(b+ c)2

ab+ bc + ca
,

=
a(b+ c)3 − a2(ab+ bc + ca)

ab+ bc + ca
,

it is enough to show that
∑

(b− c)2Ea ≥ 0,

where
Ea = a(b+ c)3 − a2(ab+ bc + ca).

Assume that
a ≥ b ≥ c, b > 0

Since

Eb = b(c + a)3 − b2(ab+ bc + ca)≥ b(c + a)3 − b2(c + a)(c + b)

≥ b(c + a)3 − b2(c + a)2 = b(c + a)2(c + a− b)≥ 0,

Ec = c(a+ b)3 − c2(ab+ bc + ca)≥ c(a+ b)3 − c2(a+ b)(b+ c)

≥ c(a+ b)3 − c2(a+ b)2 = c(a+ b)2(a+ b− c)≥ 0

and

Ea

a2
+

Eb

b2
=
(b+ c)3

a
+
(c + a)3

b
− 2(ab+ bc + ca)

≥
b3 + 2b2c

a
+

a3 + 2a2c
b

− 2(ab+ bc + ca)

=
(a2 − b2)2 + 2c(a+ b)(a− b)2

ab
≥ 0,

we get

∑

(b− c)2Ea ≥ (b− c)2Ea + (a− c)2Eb ≥ a2(b− c)2
�

Ea

a2
+

Eb

b2

�

≥ 0.

The equality holds for a = b = c = 1, and also for a = b =
p

3 and c = 0 (or any
cyclic permutation).
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Lemma. If x ≥ 0, y ≥ 0 and d > 0, then

2
Æ

(x + d)(y + d)≥ x + y + 2d −
1

4d
(x − y)2.

Proof. We have

2
Æ

(x + d)(y + d)− 2d =
2x y + 2d(x + y)

p

(x + d)(y + d) + d
≥

2x y + 2d(x + y)
(x+d)+(y+d)

2 + d

=
4x y + 4d(x + y)

x + y + 4d
= x + y −

(x − y)2

x + y + 4d
≥ x + y −

(x − y)2

4d
.

P 2.60. Let a, b, c be nonnegative real numbers such that a2+ b2+ c2 = 1. Prove that

a
p

2+ 3bc + b
p

2+ 3ca+ c
p

2+ 3ab ≥ (a+ b+ c)2.

(Vasile Cîrtoaje, 2010)

Solution. Write the inequality as
∑

a
p

2+ 3bc ≥ 1+ 2q,

where q = ab+ bc + ca. By squaring, the inequality becomes

1+ 3abc
∑

a+ 2
∑

bc
Æ

(2+ 3ab)(2+ 3ac)≥ 4q+ 4q2.

Applying Lemma from the preceding P 2.59 for x = 3ab, y = 3ac and d = 2, we
have

2
Æ

(2+ 3ab)(2+ 3ac)≥ 3a(b+ c) + 4−
9
8

a2(b− c)2,

hence
2bc

Æ

(2+ 3ab)(2+ 3ac)≥ 3abc(b+ c) + 4−
9
8

a2 bc(b− c)2,

2
∑

bc
Æ

(2+ 3ab)(2+ 3ac)≥ 6abc
∑

a+ 4q−
9
8

abc
∑

a(b− c)2.

Therefore, it suffices to show that

1+ 3abc
∑

a+ 6abc
∑

a+ 4q−
9
8

abc
∑

a(b− c)2 ≥ 4q+ 4q2,

which is equivalent to

1+ 9abc
∑

a− 4q2 ≥
9
8

abc
∑

a(b− c)2.
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Since

a4 + b4 + c4 = 1− 2(a2 b2 + b2c2 + c2a2) = 1− 2q2 + 4abc
∑

a,

from Schur’s inequality of fourth degree

a4 + b4 + c4 + 2abc
∑

a ≥
�∑

a2
��∑

ab
�

,

we get
1≥ 2q2 + q− 6abc

∑

a.

Thus, it is enough to prove that

�

2q2 + q− 6abc
∑

a
�

+ 9abc
∑

a− 4q2 ≥
9
8

abc
∑

a(b− c)2;

that is,
8
�

q− 2q2 + 3abc
∑

a
�

≥ 9abc
∑

a(b− c)2.

Since

q− 2q2 + 3abc
∑

a =
�∑

a2
��∑

ab
�

− 2
�∑

ab
�2
+ 3abc

∑

a

=
∑

bc(b2 + c2)− 2
∑

b2c2 =
∑

bc(b− c)2,

we need to show that
∑

bc(8− 9a2)(b− c)2 ≥ 0.

Since
8− 9a2 = 8(b2 + c2)− a2 ≥ b2 + c2 − a2,

it suffices to prove the homogeneous inequality
∑

bc(b2 + c2 − a2)(b− c)2 ≥ 0.

Assume that a ≥ b ≥ c. It is enough to show that

bc(b2 + c2 − a2)(b− c)2 + ca(c2 + a2 − b2)(c − a)2 ≥ 0.

This is true if

a(c2 + a2 − b2)(a− c)2 ≥ b(a2 − b2 − c2)(b− c)2.

For the nontrivial case a2 − b2 − c2 ≥ 0, this inequality follows from

a ≥ b, c2 + a2 − b2 ≥ a2 − b2 − c2, (a− c)2 ≥ (b− c)2.

The equality holds for a = b = c =
1
p

3
, and for a = 0 and b = c =

1
p

2
(or any

cyclic permutation).
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P 2.61. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

(a) a

√

√2a+ bc
3

+ b

√

√2b+ ca
3

+ c

√

√2c + ab
3

≥ 3;

(b) a

√

√a(1+ b+ c)
3

+ b

√

√ b(1+ c + a)
3

+ c

√

√ c(1+ a+ b)
3

≥ 3.

(Vasile Cîrtoaje, 2010)

Solution. (a) If two of a, b, c are zero, then the inequality is trivial. Otherwise, by
Hölder’s inequality, we have

�

∑

a

√

√2a+ bc
3

�2

≥

�∑

a
�3

∑ 3a
2a+ bc

=
9

∑ a
2a+ bc

.

Therefore, it suffices to show that
∑ a

2a+ bc
≤ 1.

Since
2a

2a+ bc
= 1−

bc
2a+ bc

,

we can write this inequality as

∑ bc
2a+ bc

≥ 1.

By the Cauchy-Schwarz inequality, we have

∑ bc
2a+ bc

≥

�∑

bc
�2

∑

bc(2a+ bc)
=

�∑

bc
�2

2abc
∑

a+
∑

b2c2
= 1.

The equality holds for a = b = c = 1, and for a = 0 and b = c =
3
2

(or any cyclic

permutation).

(b) Write the inequality in the homogeneous form
∑

a
Æ

a(a+ 4b+ 4c)≥ (a+ b+ c)2.

By squaring, the inequality becomes
∑

bc
Æ

bc(b+ 4c + 4a)(c + 4a+ 4b)≥ 3
∑

b2c2 + 6abc
∑

a.

Applying the Cauchy-Schwarz inequality, we have
Æ

(b+ 4c + 4a)(c + 4a+ 4b) =
Æ

(4a+ b+ c + 3c)(4a+ b+ c + 3b)
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≥ 4a+ b+ c + 3
p

bc,

hence

bc
Æ

bc(b+ 4c + 4a)(c + 4a+ 4b)≥ (4a+ b+ c)bc
p

bc + 3b2c2,
∑

bc
Æ

bc(b+ 4c + 4a)(c + 4a+ 4b)≥
∑

(4a+ b+ c)bc
p

bc + 3
∑

b2c2.

Thus, it is enough to show that
∑

(4a+ b+ c)bc
p

bc ≥ 6abc
∑

a.

Replacing a, b, c by a2, b2, c2, respectively, this inequality becomes
∑

(4a2 + b2 + c2)b3c3 ≥ 6a2 b2c2
∑

a2,

�∑

a2
��∑

b3c3
�

+ 3a2 b2c2
∑

bc ≥ 6a2 b2c2
∑

a2,
�∑

a2
��∑

a3 b3 − 3a2 b2c2
�

≥ 3a2 b2c2
�∑

a2 −
∑

ab
�

.

Use next the SOS method. Since
∑

a3 b3 − 3a2 b2c2 =
�∑

ab
��∑

a2 b2 − abc
∑

a
�

=
1
2

�∑

ab
�∑

a2(b− c)2,

and
∑

a2 −
∑

ab =
1
2

∑

(b− c)2,

we can write the inequality as
∑

(b− c)2Sa ≥ 0,

where
Sa = a2

�∑

a2
��∑

ab
�

− 3a2 b2c2.

Assume that a ≥ b ≥ c. Since Sa ≥ Sb ≥ 0 and

Sb + Sc = (b
2 + c2)

�∑

a2
��∑

ab
�

− 6a2 b2c2

≥ 2bc
�∑

a2
��∑

ab
�

− 6a2 b2c2

≥ 2bca2
�∑

ab
�

− 6a2 b2c2 = 2a2 bc(ab+ ac − 2bc)≥ 0,

we get
∑

(b− c)2Sa ≥ (c − a)2Sb + (a− b)2Sc ≥ (a− b)2(Sb + Sc)≥ 0.

The equality holds for a = b = c = 1, and also for a = 3 and b = c = 0 (or any
cyclic permutation).
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P 2.62. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then
Æ

8(a2 + bc) + 9+
Æ

8(b2 + ca) + 9+
Æ

8(c2 + ab) + 9≥ 15.

(Vasile Cîrtoaje, 2013)

Solution. Use the SOS technique. Let q = ab+ bc + ca and

A= (3a− b− c)2 + 8q, B = (3b− c − a)2 + 8q, C = (3c − a− b)2 + 8q.

Since

8(a2 + bc) + 9= 8(a2 + q) + 9− 8a(b+ c) = 8(a2 + q) + 9− 8a(3− a)

= (4a− 3)2 + 8q = (3a− b− c)2 + 8q = A,

we can rewrite the inequality as follows:
∑p

A≥ 15,

∑

[
p

A− (3a+ b+ c)]≥ 0,

∑ 2bc − ca− ab
p

A+ 3a+ b+ c
≥ 0,

∑

�

b(c − a)
p

A+ 3a+ b+ c
+

c(b− a)
p

A+ 3a+ b+ c

�

≥ 0,

∑ c(a− b)
p

B + 3b+ c + a
+
∑ c(b− a)
p

A+ 3a+ b+ c
≥ 0,

∑

c(a− b)(
p

C + 3c + a+ b)[
p

A−
p

B + 2(a− b)]≥ 0,

∑

c(a− b)2(
p

C + 3c + a+ b)
�

4(a+ b− c)
p

A+
p

B
+ 1

�

≥ 0.

Without loss of generality, assume that a ≥ b ≥ c. Since a+ b− c > 0, it suffices to
show that

b(a− c)2(
p

B + 3b+ c + a)
�

4(c + a− b)
p

A+
p

C
+ 1

�

≥

a(b− c)2(
p

A+ 3a+ b+ c)
�

4(a− b− c)
p

B +
p

C
− 1

�

.

This inequality follows from the inequalities

b2(a− c)2 ≥ a2(b− c)2,

a(
p

B + 3b+ c + a)≥ b(
p

A+ 3a+ b+ c),
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4(c + a− b)
p

A+
p

C
+ 1≥

4(a− b− c)
p

B +
p

C
− 1.

Write the second inequality as

a2B − b2A

a
p

B + b
p

A
+ (a− b)(a+ b+ c)≥ 0.

Since

a2B − b2A= (a− b)(a+ b+ c)(a2 + b2 − 6ab+ bc + ca) + 8q(a2 − b2)

≥ (a− b)(a+ b+ c)(a2 + b2 − 6ab)≥ −4ab(a− b)(a+ b+ c),

it suffices to show that
−4ab

a
p

B + b
p

A
+ 1≥ 0.

Indeed, from
p

A>
p

8q ≥ 2
p

ab and
p

B ≥
p

8q ≥ 2
p

ab, we get

a
p

B + b
p

A− 4ab > 2(a+ b)
p

ab− 4ab = 2
p

ab(a+ b− 2
p

ab)≥ 0.

The third inequality holds if

1≥
2(a− b− c)
p

B +
p

C
.

It suffices to show that
p

B ≥ a and
p

C ≥ a. We have

B − a2 = 8q− 2a(3b− c) + (3b− c)2 ≥ 8ab− 2a(3b− c) = 2a(b+ c)≥ 0

and

C − a2 = 8q− 2a(3c − b) + (3c − b)2 ≥ 8ab− 2a(3c − b) = 2a(5b− 3c)≥ 0.

The equality holds for a = b = c = 1, and also for a = 3 and b = c = 0 (or any
cyclic permutation).

P 2.63. Let a, b, c be nonnegative real numbers such that a + b + c = 3. If k ≥
9
8

,

then
p

a2 + bc + k+
p

b2 + ca+ k+
p

c2 + ab+ k ≥ 3
p

2+ k.

Solution. We will show that
∑

Æ

8(a2 + bc + k)≥
∑

Æ

(3a+ b+ c)2 + 8k− 9≥ 6
Æ

2(k+ 2).
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The right inequality is equivalent to
∑

Æ

(2a+ 3)2 + 8k− 9≥ 6
Æ

2(k+ 2),

which follows immediately from Jensen’s inequality applied to the convex function
f : [0,∞)→ R defined by

f (x) =
Æ

(2x + 3)2 + 8k− 9.

To prove the left inequality, we use the SOS method. By means of the substitutions

A1 = 8(a2 + bc + k), B1 = 8(b2 + ca+ k), C1 = 8(c2 + ab+ k),

A2 = (3a+ b+ c)2+8k−9, B2 = (3b+ c+a)2+8k−9, C2 = (3c+a+ b)2+8k−9,

we can write the inequality as follows:

A1 − A2
p

A1 +
p

A2

+
B1 − B2

p

B1 +
p

B2

+
C1 − C2

p

C1 +
p

C2

≥ 0,

2bc − ca− ab
p

A1 +
p

A2

+
2ca− ab− bc
p

B1 +
p

B2

+
2ab− bc − ca
p

C1 +
p

C2

≥ 0,

∑

�

b(c − a)
p

A1 +
p

A2

+
c(b− a)

p

A1 +
p

A2

�

≥ 0,

∑ c(a− b)
p

B1 +
p

B2

+
∑ c(b− a)

p

A1 +
p

A2

≥ 0,

∑

c(a− b)(
p

C1 +
p

C2)[(
p

A1 −
p

B1) + (
p

A2 −
p

B2)]≥ 0,

∑

c(a− b)2(
p

C1 +
p

C2)

�

2(a+ b− c)
p

A1 +
p

B1

+
2a+ 2b+ c
p

A2 +
p

B2

�

≥ 0.

Without loss of generality, assume that a ≥ b ≥ c. Clearly, the desired inequality
is true for b + c ≥ a. Consider further the case b + c < a. Since a + b − c > 0, it
suffices to show that

a(b− c)2(
p

A1 +
p

A2)

�

2(b+ c − a)
p

B1 +
p

C1

+
2b+ 2c + a
p

B2 +
p

C2

�

+

+b(a− c)2(
p

B1 +
p

B2)

�

2(c + a− b)
p

C1 +
p

A1

+
2c + 2a+ b
p

C2 +
p

AC2

�

≥ 0.

Since
b2(a− c)2 ≥ a2(b− c)2,
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it suffices to show that

b(
p

A1 +
p

A2)

�

2(b+ c − a)
p

B1 +
p

C1

+
2b+ 2c + a
p

B2 +
p

C2

�

+

+a(
p

B1 +
p

B2)

�

2(c + a− b)
p

C1 +
p

A1

+
2c + 2a+ b
p

C2 +
p

A2

�

≥ 0.

From
a2B1 − b2A1 = 8c(a3 − b3) + 8k(a2 − b2)≥ 0

and

a2B2 − b2A2 = (a− b)(a+ b+ c)(a2 + b2 + 6ab+ bc + ca) + (8k− 9)(a2 − b2)≥ 0,

we get a
p

B1 ≥ b
p

A1 and a
p

B2 ≥ b
p

A2, hence

a(
p

B1 +
p

B2)≥ b(
p

A1 +
p

A2).

Therefore, it is enough to show that

2(b+ c − a)
p

B1 +
p

C1

+
2b+ 2c + a
p

B2 +
p

C2

+
2(c + a− b)
p

C1 +
p

A1

+
2c + 2a+ b
p

C2 +
p

A2

≥ 0.

This is true if
2b

p

B1 +
p

C1

+
−2b

p

C1 +
p

A1

≥ 0

and
−2a

p

B1 +
p

C1

+
2a

p

C1 +
p

A1

+
2a

p

C2 +
p

A2

≥ 0.

The first inequality is true because A1 − B1 = 8(a − b)(a + b − c) ≥ 0. The second
inequality can be written as

1
p

C1 +
p

A1

+
1

p

C2 +
p

A2

≥
1

p

B1 +
p

C1

.

Since
1

p

C1 +
p

A1

+
1

p

C2 +
p

A2

≥
4

p

C1 +
p

A1 +
p

C2 +
p

A2

,

it suffices to show that

4
p

B1 + 3
p

C1 ≥
p

A1 +
p

A2 +
p

C2.

Taking account of
C1 − C2 = 4(2ab− bc − ca)≥ 0,

C1 − B1 = 8(b− c)(a− b− c)≥ 0,
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A2 − A1 = 4(ab− 2bc + ca)≥ 0,

we have

4
p

B1 + 3
p

C1 −
p

A1 −
p

A2 −
p

C2 ≥ 4
p

B1 + 2
p

C1 −
p

A1 −
p

A2

≥ 4
p

B1 + 2
p

B1 −
p

A2 −
p

A2

= 2(3
p

B1 −
p

A2).

In addition,

9B1 − A2 = 64k− 8a2 + 72b2 − 4ab+ 68ac

≥ 72− 8a2 + 72b2 − 4ab+ 68ac

= 8(a+ b+ c)2 − 8a2 + 72b2 − 4ab+ 68ac

= 4(20b2 + 2c2 + 3ab+ 4bc + 21ac)≥ 0.

Thus, the proof is completed. The equality holds for a = b = c = 1. If k = 9/8,
then the equality holds also for a = 3 and b = c = 0 (or any cyclic permutation).

P 2.64. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then
p

a3 + 2bc +
p

b3 + 2ca+
p

c3 + 2ab ≥ 3
p

3.

(Nguyen Van Quy, 2013)

Solution. Since
(a3 + 2bc)(a+ 2bc)≥ (a2 + 2bc)2,

it suffices to prove that
∑ a2 + 2bc
p

a+ 2bc
≥ 3
p

3.

By Hölder’s inequality, we have
�

∑ a2 + 2bc
p

a+ 2bc

�2
∑

(a2 + 2bc)(a+ 2bc)≥
�∑

(a2 + 2bc)
�3
= (a+ b+ c)6.

Therefore, it suffices to show that

(a+ b+ c)6 ≥ 27
∑

(a2 + 2bc)(a+ 2bc).

which is equivalent to

(a+ b+ c)4 ≥
∑

(a2 + 2bc)(a2 + 6bc + ca+ ab).

Indeed,

(a+ b+ c)4 −
∑

(a2 + 2bc)(a2 + 6bc + ca+ ab) = 3
∑

ab(a− b)2 ≥ 0.

The equality holds for a = b = c = 1, and also for a = 3 and b = c = 0 (or any
cyclic permutation).
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P 2.65. If a, b, c are positive real numbers, then

p
a2 + bc
b+ c

+
p

b2 + ca
c + a

+
p

c2 + ab
a+ b

≥
3
p

2
2

.

(Vasile Cîrtoaje, 2006)

Solution. According to the well-known inequality

(x + y + z)2 ≥ 3(x y + yz + zx), x , y, z ≥ 0,

it suffices to show that

∑

p

(b2 + ca)(c2 + ab)
(c + a)(a+ b)

≥
3
2

.

Replacing a, b, c by a2, b2, c2, respectively, the inequality becomes

2
∑

(b2 + c2)
Æ

(b4 + c2a2)(c4 + a2 b2)≥ 3(a2 + b2)(b2 + c2)(c2 + a2).

Multiplying the Cauchy-Schwarz inequalities

Æ

(b2 + c2)(b4 + c2a2)≥ b3 + ac2,

Æ

(c2 + b2)(c4 + a2 b2)≥ c3 + ab2,

we get

(b2 + c2)
Æ

(b4 + c2a2)(c4 + a2 b2)≥ (b3 + ac2)(c3 + ab2)

= b3c3 + a(b5 + c5) + a2 b2c2.

Therefore, it suffices to show that

2
∑

b3c3 + 2
∑

a(b5 + c5) + 6a2 b2c2 ≥ 3(a2 + b2)(b2 + c2)(c2 + a2).

This inequality is equivalent to

2
∑

b3c3 + 2
∑

bc(b4 + c4)≥ 3
∑

b2c2(b2 + c2),

∑

bc[2b2c2 + 2(b4 + c4)− 3bc(b2 + c2)]≥ 0,
∑

bc(b− c)2(2b2 + bc + 2c2)≥ 0.

The equality holds for a = b = c.
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P 2.66. If a, b, c are nonnegative real numbers, no two of which are zero,then
p

bc + 4a(b+ c)
b+ c

+

p

ca+ 4b(c + a)
c + a

+

p

ab+ 4c(a+ b)
a+ b

≥
9
2

.

(Vasile Cîrtoaje, 2006)

Solution. Let us denote

A= 4ab+ bc + 4ca, B = 4ab+ 4bc + ca, C = ab+ 4bc + 4ca.

By squaring, the inequality becomes

∑ A
(b+ c)2

+ 2
∑

p
BC

(c + a)(a+ b)
≥

81
4

.

According to the known inequality Iran-1996, namely

∑ ab+ bc + ca
(b+ c)2

≥
9
4

(see Remark from the proof of P 1.72), we have

∑ A
(b+ c)2

=
∑ ab+ bc + ca

(b+ c)2
+ 3

∑ a
b+ c

≥
9
4
+ 3

∑ a
b+ c

.

On the other hand, from Lemma below, we have

p
BC ≥ 2ab+ 4bc + 2ca+

2abc
b+ c

,

p
BC ≥

2a(b2 + c2) + 4bc(b+ c) + 6abc
b+ c

,

2
∑

p
BC

(c + a)(a+ b)
≥

4
∑

a(b2 + c2) + 8
∑

bc(b+ c) + 36abc
(a+ b)(b+ c)c + a)

,

2
∑

p
BC

(c + a)(a+ b)
≥

12
∑

bc(b+ c) + 36abc
(a+ b)(b+ c)c + a)

.

Thus, it suffices to show that

3
∑ a

b+ c
+

12
∑

bc(b+ c) + 36abc
(a+ b)(b+ c)c + a)

≥ 18.

This is equivalent to Schur’s inequality of degree three
∑

a3 + 3abc ≥
∑

bc(b+ c).

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic
permutation).
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Lemma. If a, b, c are nonnegative real numbers, no two of which are zero, then

Æ

(4ab+ 4bc + ca)(ab+ 4bc + 4ca)≥ 2ab+ 4bc + 2ca+
2abc
b+ c

,

with equality for b = c, and also for abc = 0.

Proof. We use the AM-GM inequality as follows:

Æ

(4ab+ 4bc + ca)(ab+ 4bc + 4ca)− 2ab− 4bc − 2ca =

=
abc(9a+ 4b+ 4c)

p

(4ab+ 4bc + ca)(ab+ 4bc + 4ca) + 2ab+ 4bc + 2ca

≥
2abc(9a+ 4b+ 4c)

(4ab+ 4bc + ca) + (ab+ 4bc + 4ca) + 4ab+ 8bc + 4ca

=
2abc(9a+ 4b+ 4c)
9ab+ 16bc + 9ca

.

Thus, it suffices to show that

9a+ 4b+ 4c
9ab+ 16bc + 9ca

≥
1

b+ c
.

Indeed,

(9a+ 4b+ 4c)(b+ c)− (9ab+ 16bc + 9ca) = 4(b− c)2 ≥ 0.

P 2.67. If a, b, c are nonnegative real numbers, no two of which are zero,then

a
p

a2 + 3bc
b+ c

+
b
p

b2 + 3ca
c + a

+
c
p

c2 + 3ab
a+ b

≥ a+ b+ c.

(Cezar Lupu, 2006)

Solution. Using the AM-GM inequality, we have

a
p

a2 + 3bc
b+ c

=
2a(a2 + 3bc)

2
p

(b+ c)2(a2 + 3bc)
≥

2a(a2 + 3bc)
(b+ c)2 + (a2 + 3bc)

=
2a3 + 6abc

S + 5bc
,

where S = a2 + b2 + c2. Thus, it suffices to show that

∑ 2a3 + 6abc
S + 5bc

≥ a+ b+ c.
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Write this inequality as

∑

a
�

2a2 + 6bc
S + 5bc

− 1
�

≥ 0,

or, equivalently,
AX + BY + X Z ≥ 0,

where
A=

1
S + 5bc

, B =
1

S + 5ca
, C =

1
S + 5ab

,

X = a3+ abc− a(b2+ c2), Y = b3+ abc− b(c2+ a2), Z = c3+ abc− c(a2+ b2).

Without loss of generality, assume that a ≥ b ≥ c. We have

A≥ B ≥ C ,

X = a(a2 − b2) + ac(b− c)≥ 0, Z = c(c2 − b2) + ac(b− a)≤ 0

and, according to Schur’s inequality of third degree,

X + Y + Z =
∑

a3 + 3abc −
∑

a(b2 + c2)≥ 0.

Therefore,

AX + BY + C Z ≥ BX + BY + BZ = B(X + Y + Z)≥ 0.

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic
permutation).

Remark. We can also prove the inequality AX+BY +X Z ≥ 0 by the SOS procedure.
Write this inequality as follows:

∑ a(a2 + bc − b2 − c2)
S + 5bc

≥ 0,

∑ a(a2 b+ a2c − b3 − c3)
(b+ c)(S + 5bc)

≥ 0,

∑ ab(a2 − b2) + ac(a2 − c2)
(b+ c)(S + 5bc)

≥ 0,

∑ ab(a2 − b2)
(b+ c)(S + 5bc)

+
∑ ba(b2 − a2)
(c + a)(S + 5ca)

≥ 0,

∑ ab(a+ b)(a− b)2[S + 5c(a+ b+ c)]
(b+ c)(c + a)(S + 5bc)(S + 5ca)

≥ 0.
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P 2.68. If a, b, c are nonnegative real numbers, no two of which are zero,then
√

√ 2a(b+ c)
(2b+ c)(b+ 2c)

+

√

√ 2b(c + a)
(2c + a)(c + 2a)

+

√

√ 2c(a+ b)
(2a+ b)(a+ 2b)

≥ 2.

(Vasile Cîrtoaje, 2006)

Solution. Making the substitution

x =
p

a, y =
p

b, z =
p

c,

the inequality becomes

∑

x

√

√ 2(y2 + z2)
(2y2 + z2)(y2 + 2z2)

≥ 2.

We claim that
√

√ 2(y2 + z2)
(2y2 + z2)(y2 + 2z2)

≥
y + z

y2 + yz + z2
.

Indeed, be squaring and direct calculation, this inequality reduces to

y2z2(y − z)2 ≥ 0.

Thus, it suffices to show that

∑ x(y + z)
y2 + yz + z2

≥ 2,

which is just the inequality in P 1.69. The equality holds for a = b = c, and also
for a = 0 and b = c (or any cyclic permutation).

P 2.69. If a, b, c are nonnegative real numbers such that ab+ bc + ca = 3, then
√

√ bc
3a2 + 6

+
s

ca
3b2 + 6

+

√

√ ab
3c2 + 6

≤ 1≤

√

√ bc
6a2 + 3

+
s

ca
6b2 + 3

+

√

√ ab
6c2 + 3

.

(Vasile Cîrtoaje, 2011)

Solution. By the Cauchy-Schwarz inequality, we have

�

∑

√

√ bc
3a2 + 6

�2

≤
�

∑ 1
3a2 + 6

�

�∑

bc
�

,

hence
�

∑

√

√ bc
3a2 + 6

�2

≤
∑ 1

a2 + 2
.
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Therefore, to prove the original left inequality, it suffices to show that

∑ 1
a2 + 2

≤ 1.

This inequality is equivalent to

∑ a2

a2 + 2
≥ 1.

By the Cauchy-Schwarz inequality, we get

∑ a2

a2 + 2
≥
(a+ b+ c)2
∑

(a2 + 2)
=
(a+ b+ c)2
∑

a2 + 6
= 1.

The equality occurs for a = b = c = 1.
To prove the original right inequality we apply Hölder’s inequality as follows:

�

∑

√

√ bc
6a2 + 3

�2
�∑

b2c2(6a2 + 3)
�

≥
�∑

bc
�3

.

Thus, it suffices to show that

(ab+ bc + ca)3 ≥
∑

b2c2(6a2 + ab+ bc + ca),

which is equivalent to

(ab+ bc + ca)
�

(ab+ bc + ca)2 −
∑

b2c2
�

≥ 18a2 b2c2,

2abc(ab+ bc + ca)(a+ b+ c)≥ 18a2 b2c2,

2abc
∑

a(b− c)2 ≥ 0.

The equality occurs for a = b = c = 1, and for a = 0 and bc = 3 (or any cyclic
permutation).

P 2.70. Let a, b, c be nonnegative real numbers such that ab+ bc+ ca = 3. If k > 1,
than

ak(b+ c) + bk(c + a) + ck(a+ b)≥ 6.

Solution. Let
E = ak(b+ c) + bk(c + a) + ck(a+ b).

We consider two cases.



Symmetric Nonrational Inequalities 375

Case 1: k ≥ 2. Applying Jensen’s inequality to the convex function f (x) = x k−1,
x ≥ 0, we get

E = (ab+ ac)ak−1 + (bc + ba)bk−1 + (ca+ cb)ck−1

≥ 2(ab+ bc + ca)
�

(ab+ ac)a+ (bc + ba)b+ (ca+ cb)c
2(ab+ bc + ca)

�k−1

= 6
�

a2(b+ c) + b2(c + a) + c2(a+ b)
6

�k−1

.

Thus, it suffices to show that

a2(b+ c) + b2(c + a) + c2(a+ b)≥ 6.

Write this inequality as

(ab+ bc + ca)(a+ b+ c)− 3abc ≥ 6,

a+ b+ c ≥ 2+ abc.

It is true since
a+ b+ c ≥

Æ

3(ab+ bc + ca) = 3

and

abc ≤
�

a+ b+ c
3

�3

= 1.

Case 2: 1< k < 2. We have

E = ak−1(3− bc) + bk−1(3− ca) + ck−1(3− ab)

= 3(ak−1 + bk−1 + ck−1)− ak−1 bk−1ck−1
�

(ab)2−k + (bc)2−k + (ca)2−k
�

.

Since 0< 2−k < 1, f (x) = x2−k is concave for x ≥ 0. Thus, by Jensen’s inequality,
we have

(ab)2−k + (bc)2−k + (ca)2−k ≤ 3
�

ab+ bc + ca
3

�2−k

= 3,

hence
E ≥ 3(ak−1 + bk−1 + ck−1)− 3ak−1 bk−1ck−1.

Consequently, it suffices to show that

ak−1 + bk−1 + ck−1 ≥ ak−1 bk−1ck−1 + 2.

Due to symmetry, we may assume that

a ≥ b ≥ c,
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which involves

ab ≥
1
3
(ab+ bc + ca)≥ 1.

Let
x =

p

ak−1 bk−1, x ≥ 1.

From
2≥ 3− ab = bc + ca ≥ 2c

p

ab,

we get

c ≤
1
p

ab
,

hence

ck−1 ≤
1
x

.

Write the required inequality as

ak−1 + bk−1 − 2≥
�

ak−1 bk−1 − 1
�

ck−1.

It suffices to show that

ak−1 + bk−1 − 2≥
ak−1 bk−1 − 1

x
.

Since
ak−1 + bk−1 ≥ 2

p

ak−1 bk−1 = 2x ,

we only need to prove that

2x − 2≥
x2 − 1

x
.

Indeed,

2x − 2−
x2 − 1

x
=
(x − 1)2

x
≥ 0.

The equality holds for a = b = c = 1.

P 2.71. Let a, b, c be nonnegative real numbers such that a+ b+ c = 2. If

2≤ k ≤ 3,

than
ak(b+ c) + bk(c + a) + ck(a+ b)≤ 2.
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Solution. Denote by Ek(a, b, c) the left hand side of the inequality, assume that

a ≤ b ≤ c,

and show that
Ek(a, b, c)≤ Ek(0, a+ b, c)≤ 2.

The left inequality is equivalent to

ab
c
(ak−1 + bk−1)≤ (a+ b)k − ak − bk.

Clearly, it suffices to consider c = b, when the inequality becomes

2ak + bk−1(a+ b)≤ (a+ b)k.

Since 2ak ≤ ak−1(a+ b), it remains to show that

ak−1 + bk−1 ≤ (a+ b)k−1,

which is true since

ak−1 + bk−1

(a+ b)k−1
=
� a

a+ b

�k−1
+
�

b
a+ b

�k−1

≤
a

a+ b
+

b
a+ b

= 1.

Using the notation d = a + b, we can write the right inequality Ek(0, a + b, c) ≤ 2
in the form

cd(ck−1 + dk−1)≤ 2,

where c + d = 2. By the Power-Mean inequality , we have

�

ck−1 + dk−1

2

�1/(k−1)

≤
�

c2 + d2

2

�1/2

,

ck−1 + dk−1 ≤ 2
�

c2 + d2

2

�(k−1)/2

.

Thus, it suffices to show that

cd
�

c2 + d2

2

�(k−1)/2

≤ 1,

which is equivalent to
cd(2− cd)(k−1)/2 ≤ 1.

Since 2− cd ≥ 1, we have

cd(2− cd)(k−1)/2 ≤ cd(2− cd) = 1− (1− cd)2 ≤ 1.

The equality holds for a = 0 and b = c = 1 (or any cyclic permutation).
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P 2.72. Let a, b, c be nonnegative real numbers, no two of which are zero. If

m> n≥ 0,

than
bm + cm

bn + cn
(b+ c − 2a) +

cm + am

cn + an
(c + a− 2b) +

am + bm

an + bn
(a+ b− 2c)≥ 0.

(Vasile Cîrtoaje, 2006)

Solution. Write the inequality as

AX + BY + C Z ≥ 0,

where

A=
bm + cm

bn + cn
, B =

cm + am

cn + an
, C =

am + bm

an + bn
,

X = b+ c − 2a, Y = c + a− 2b, Z = a+ b− 2c, X + Y + Z = 0.

Without loss of generality, assume that

a ≤ b ≤ c,

which involves X ≥ Y ≥ Z and X ≥ 0. Since

2(AX + BY + C Z) = (2A− B − C)X + (B + C)X + 2(BY + C Z)
= (2A− B − C)X − (B + C)(Y + Z) + 2(BY + C Z)
= (2A− B − C)X + (B − C)(Y − Z),

it suffices to show that B ≥ C and 2A− B − C ≥ 0. The inequality B ≥ C can be
written as

bncn(cm−n − bm−n) + an(cm − bm)− am(cn − bn)≥ 0,

bncn(cm−n − bm−n) + an[cm − bm − am−n(cn − bn)]≥ 0.

This is true since cm−n ≥ bm−n and

cm − bm − am−n(cn − bn)≥ cm − bm − bm−n(cn − bn) = cn(cm−n − bm−n)≥ 0.

The inequality 2A− B − C ≥ 0 follows from

2A≥ bm−n + cm−n, bm−n ≥ C , cm−n ≥ B.

Indeed, we have

2A− bm−n − cm−n =
(bn − cn)(bm−n − cm−n)

bn + cn
≥ 0,

bm−n − C =
an(bm−n − am−n)

an + bn
≥ 0,

cm−n − B =
an(cm−n − am−n)

cn + an
≥ 0.

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic
permutation).
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P 2.73. Let a, b, c be positive real numbers such that abc = 1. Prove that

p

a2 − a+ 1+
p

b2 − b+ 1+
p

c2 − c + 1≥ a+ b+ c.

(Vasile Cîrtoaje, 2012)

First Solution. Among a−1, b−1 and c−1 there are two with the same sign. Let
(b− 1)(c − 1)≥ 0, that is,

t ≤
1
a

, t = b+ c − 1.

By Minkowsky’s inequality, we have

p

b2 − b+ 1+
p

c2 − c + 1=

√

√

√

�

b−
1
2

�2

+
3
4
+

√

√

√

�

c −
1
2

�2

+
3
4
≥
p

t2 + 3.

Thus, it suffices to show that
p

a2 − a+ 1+
p

t2 + 3≥ a+ b+ c,

which is equivalent to
p

a2 − a+ 1+ f (t)≥ a+ 1,

where
f (t) =

p

t2 + 3− t.

Clearly, f (t) is decreasing for t ≤ 0. Since

f (t) =
3

p
t2 + 3+ t

,

f (t) is also decreasing for t ≥ 0. Then, f (t)≥ f
�

1
a

�

, and it suffices to show that

p

a2 − a+ 1+ f
�

1
a

�

≥ a+ 1,

which is equivalent to

p

a2 − a+ 1+

√

√ 1
a2
+ 3≥ a+

1
a
+ 1.

By squaring, this inequality becomes

2

√

√

(a2 − a+ 1)
�

1
a2
+ 3

�

≥ 3a+
2
a
− 1.
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Indeed, by the Cauchy-Schwarz inequality, we have

2

√

√

(a2 − a+ 1)
�

1
a2
+ 3

�

=

√

√

[(2− a)2 + 3a2]
�

1
a2
+ 3

�

≥
2− a

a
+ 3a = 3a+

2
a
− 1.

The equality holds for a = b = c.

Second Solution. If the inequality

p

x2 − x + 1− x ≥
1
2

�

3
x2 + x + 1

− 1
�

holds for all x > 0, then it suffices to prove that

1
a2 + a+ 1

+
1

b2 + b+ 1
+

1
c2 + c + 1

≥ 1,

which is just the known inequality in P 1.45. The above inequality in x is equivalent
to

1− x
p

x2 − x + 1+ x
≥
(1− x)(2+ x)
2(x2 + x + 1)

,

(x − 1)
�

(x + 2)
p

x2 − x + 1− x2 − 2
�

≥ 0,

3x2(x − 1)2

(x + 2)
p

x2 − x + 1+ x2 + 2
≥ 0.

P 2.74. Let a, b, c be positive real numbers such that abc = 1. Prove that
p

16a2 + 9+
p

16b2 + 9+
p

16b2 + 9≥ 4(a+ b+ c) + 3.

(MEMO, 2012)

First Solution (by Vo Quoc Ba Can). Since

p

16a2 + 9− 4a =
9

p
16a2 + 9+ 4a

,

the inequality is equivalent to
∑ 1
p

16a2 + 9+ 4a
≥

1
3

.

By the AM-GM inequality, we have

2
p

16a2 + 9≤
16a2 + 9
2a+ 3

+ 2a+ 3,
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2(
p

16a2 + 9+ 4a)≤
16a2 + 9
2a+ 3

+ 10a+ 3=
18(2a2 + 2a+ 1)

2a+ 3
.

Thus, it suffices to show that

∑ 2a+ 3
2a2 + 2a+ 1

≥ 3.

If the inequality
2a+ 3

2a2 + 2a+ 1
≥

3
a8/5 + a4/5 + 1

holds for all a > 0, then it suffices to show that

∑ 1
a8/5 + a4/5 + 1

≥ 1,

which follows immediately from the inequality in P 1.45. Therefore, using the
substitution x = a1/5, x > 0, we need to show that

2x5 + 3
2x10 + 2x5 + 1

≥
3

x8 + x4 + 1
,

which is equivalent to

2x4(x5 − 3x2 + x + 1) + x4 − 4x + 3≥ 0.

This is true since, by the AM-GM inequality, we have

x5 + x + 1≥ 3
3
p

x5 · x · 1= 3x2

and
x4 + 3= x4 + 1+ 1+ 1≥ 4

4
p

x4 · 1 · 1 · 1= 4x .

The equality holds for a = b = c = 1.

Second Solution. Making the substitution

x =
p

16a2 + 9− 4a, y =
p

16b2 + 9− 4b, z =
p

16c2 + 9− 4c, x , y, z > 0,

which involves

a =
9− x2

8x
, b =

9− y2

8y
, c =

9− z2

8z
,

we need to show that

(9− x2)(9− y2)(9− z2) = 512x yz

yields
x + y + z ≥ 3.
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Use the contradiction method. Assume that

x + y + z < 3,

and show that
(9− x2)(9− y2)(9− z2)> 512x yz.

According to the AM-GM inequality, we get

3+ x = 1+ 1+ 1+ x ≥ 4 4px , 3+ y ≥ 4 4py , 3+ z ≥ 4 4pz,

hence
(3+ x)(3+ y)(3+ z)≥ 64 4px yz.

Therefore, it suffices to prove that

(3− x)(3− y)(3− z)> 8 4
p

x3 y3z3.

Since

1>
� x + y + z

3

�3

≥ x yz,

we have

(3− x)(3− y)(3− z) = 9(3− x − y − z) + 3(x y + yz + zx)− x yz

> 3(x y + yz + zx)− x yz ≥ 9(x yz)2/3 − x yz

> 8(x yz)2/3 > 8(x yz)3/4.

P 2.75. Let a, b, c be positive real numbers such that abc = 1. Prove that
p

25a2 + 144+
p

25b2 + 144+
p

25c2 + 144≤ 5(a+ b+ c) + 24.

(Vasile Cîrtoaje, 2012)

First Solution. Since
p

25a2 + 144− 5a =
144

p
25a2 + 144+ 5a

,

the inequality is equivalent to

∑ 1
p

25a2 + 144+ 5a
≤

1
6

.

If the inequality
1

p
25a2 + 144+ 5a

≤
1

6
p

5a18/13 + 4
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holds for all a > 0, then it suffices to show that

∑ 1
p

5a18/13 + 4
≤ 1,

which follows immediately from P 2.33. Using the substitution x = a1/13, x > 0,
we only need to show that

p

25x26 + 144+ 5x13 ≥ 6
p

5x18 + 4.

By squaring, the inequality becomes

10x13(
p

25x26 + 144+ 5x13 − 18x5)≥ 0.

This is true if
25x26 + 144≥ (18x5 − 5x13)2,

which is equivalent to
5x18 + 4≥ 9x10.

By the AM-GM inequality, we have

5x18 + 4= x18 + x18 + x18 + x18 + x18 + 1+ 1+ 1+ 1

≥ 9
9
p

x18 · x18 · x18 · x18 · x18 · 1 · 1 · 1 · 1= 9x10.

The equality holds for a = b = c = 1.

Second Solution. Making the substitution

8x =
p

25a2 + 144− 5a, 8y =
p

25b2 + 144− 5b, 8z =
p

25c2 + 144− 5c,

which involves

a =
9− 4x2

5x
, b =

9− 4y2

5y
, c =

9− 4z2

5z
, x , y, z ∈

�

0,
3
2

�

,

we need to show that

(9− 4x2)(9− 4y2)(9− 4z2) = 125x yz

involves
x + y + z ≤ 3.

Use the contradiction method. Assume that

x + y + z > 3,

and show that
(9− 4x2)(9− 4y2)(9− 4z2)< 125x yz.
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Since

9− 4x2 < 3(x + y + z)−
12x2

x + y + z
=

3(y + z − x)(y + z + 3x)
x + y + z

,

it suffices to prove the homogeneous inequality

27AB ≤ 125x yz(x + y + z)3,

where
A= (y + z − x)(z + x − y)(x + y − z),

B = (y + z + 3x)(z + x + 3y)(x + y + 3z).

Consider the nontrivial case A≥ 0. By the AM-GM inequality, we have

B ≤
125
27
(x + y + z)3.

Therefore, it suffices to show that

A≤ x yz,

which is a well known inequality (equivalent to Schur’s inequality of degree three).

P 2.76. If a, b are positive real numbers such that ab+ bc + ca = 3, then

(a)
p

a2 + 3+
p

b2 + 3+
p

b2 + 3≥ a+ b+ c + 3;

(b)
p

a+ b+
p

b+ c +
p

c + a ≥
p

4(a+ b+ c) + 6.

(Lee Sang Hoon, 2007)

Solution. (a) First Solution (by Pham Thanh Hung). By squaring, the inequality
becomes

∑
Æ

(b2 + 3)(c2 + 3)≥ 3(1+ a+ b+ c).

Since

(b2 + 3)(c2 + 3) = (b+ c)(b+ a)(c + a)(c + b) = (b+ c)2(a2 + 3)

≥
1
4
(b+ c)2(a+ 3)2,

we have
∑

Æ

(b2 + 3)(c2 + 3)≥
1
2

∑

(b+ c)(a+ 3) =
1
2

�

6
∑

a+ 2
∑

bc
�

= 3(a+ b+ c + 1).
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The equality holds for a = b = c = 1.

Second Solution. Use the SOS method. Write the inequality as follows:

Æ

(a+ b)(a+ c) +
Æ

(b+ c)(b+ a) +
Æ

(c + a)(c + b)≥ a+ b+ c + 3,

2
�

a+ b+ c −
Æ

3(ab+ bc + ca)
�

≥
∑�p

a+ b−
p

a+ c
�2

,

1

a+ b+ c +
p

3(ab+ bc + ca)

∑

(b− c)2 ≥
∑ (b− c)2

�p
a+ b+

p
a+ c

�2 ,

∑ Sa(b− c)2
�p

a+ b+
p

a+ c
�2 ≥ 0,

where
Sa =

�p

a+ b+
p

a+ c
�2
− a− b− c −

Æ

3(ab+ bc + ca).

The inequality is true since

Sa = 3(a+ b+ c) + 2
Æ

(a+ b)(a+ c)−
Æ

3(ab+ bc + ca)

> 2
Æ

a2 + (ab+ bc + ca)−
Æ

3(ab+ bc + ca)> 0.

Third Solution. Use the substitution

x =
p

a2 + 3− a, y =
p

b2 + 3− b, z =
p

c2 + 3− c, x , y, z > 0.

We need to show that
x + y + z ≥ 3.

We have
∑

yz =
∑�Æ

(b+ a)(b+ c)− b
��Æ

(c + a)(c + b)− c
�

=
∑

(b+ c)
Æ

(a+ b)(a+ c)−
∑

b
Æ

(c + a)(c + b)−
∑

c
Æ

(b+ a)(b+ c)+
∑

bc

=
∑

(b+c)
Æ

(a+ b)(a+ c)−
∑

c
Æ

(a+ b)(a+ c)−
∑

b
Æ

(a+ c)(a+ b)+
∑

bc

=
∑

bc = 3.

Thus, we get
x + y + z ≥

Æ

3(x y + yz + zx) = 3.

(b) By squaring, we get the inequality in (a).
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P 2.77. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then
Æ

(5a2 + 3)(5b2 + 3) +
Æ

(5b2 + 3)(5c2 + 3) +
Æ

(5c2 + 3)(5a2 + 3)≥ 24.

(Nguyen Van Quy, 2012)

Solution. Assume that

a ≥ b ≥ c, 1≤ a ≤ 3, b+ c ≤ 2.

Using the notation

A= 5a2 + 3, B = 5b2 + 3, C = 5c2 + 3,

we can write the inequality as follows:
p

A
�p

B +
p

C
�

+
p

BC ≥ 24,

Ç

A
�

B + C + 2
p

BC
�

≥ 24−
p

BC .

Consider the nontrivial case
p

BC < 24. The inequality is true if

A
�

B + C + 2
p

BC
�

≥
�

24−
p

BC
�2

,

which is equivalent to

A(A+ B + C + 48)≥
�

A+ 24−
p

BC
�2

.

Applying Lemma below for k = 5/3 and m= 4/15 yields

5
p

BC ≥ 25bc + 15+ 4(b− c)2.

Therefore, it suffices to show that

25A(A+ B + C + 48)≥ [5A+ 120− 25bc − 15− 4(b− c)2]2,

which is equivalent to

25(5a2 + 3)[5(a2 + b2 + c2) + 57]≥ [25a2 + 120− 25bc − 4(b− c)2]2.

Since

5(a2 + b2 + c2) + 57= 5a2 + 5(b+ c)2 − 10bc + 57= 2(5a2 − 15a+ 51− 5bc)

and

25a2 + 120− 25bc − 4(b− c)2 = 25a2 + 120− 4(b+ c)2 − 9bc

= 3(7a2 + 8a+ 28− 3bc),
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we need to show that

50(5a2 + 3)(5a2 − 15a+ 51− 5bc)≥ 9(7a2 + 8a+ 28− 3bc)2.

From bc ≤ (b+ c)2/4 and (a− b)(a− c)≥ 0, we get

bc ≤
(3− a)2

4
, bc ≥ a(b+ c)− a2 = 3a− 2a2.

Consider a fixed, a ≥ 1, and denote x = bc. So, we only need to prove that
f (x)≥ 0 for

3a− 2a2 ≤ x ≤
a2 − 6a+ 9

4
,

where

f (x) = 50(5a2 + 3)(5a2 − 15a+ 51− 5x)− 9(7a2 + 8a+ 28− 3x)2.

Since f is concave, it suffices to show that f (3a−2a2)≥ 0 and f
�

a2 − 6a+ 9
4

�

≥ 0.

Indeed, we have

f (3a− 2a2) = 3(743a4 − 2422a3 + 2813a2 − 1332a+ 198)

= 3(a− 1)2[(a− 1)(743a− 193) + 5]≥ 0,

f
�

a2 − 6a+ 9
4

�

=
375
16
(25a4 − 140a3 + 286a2 − 252a+ 81)

=
375
16
(a− 1)2(5a− 9)2 ≥ 0.

Thus, the proof is completed. The equality holds for a = b = c = 1, and also for
a = 9/5 and b = c = 3/5 (or any cyclic permutation).

Lemma. Let b, c ≥ 0 such that b+ c ≤ 2. If k > 0 and 0≤ m≤
k

2k+ 2
, then

Æ

(kb2 + 1)(kc2 + 1)≥ kbc + 1+m(b− c)2.

Proof. By squaring, the inequality becomes

(b− c)2[k− 2m− 2kmbc −m2(b− c)2]≥ 0.

This is true since

k− 2m− 2kmbc −m2(b− c)2 = k− 2m− 2m(k− 2m)bc −m2(b+ c)2

≥ k− 2m−
m(k− 2m)

2
(b+ c)2 −m2(b+ c)2

= k− 2m−
km
2
(b+ c)2 ≥ k− 2m− 2km≥ 0.
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P 2.78. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

p

a2 + 1+
p

b2 + 1+
p

c2 + 1≥

√

√4(a2 + b2 + c2) + 42
3

.

(Vasile Cîrtoaje, 2014)

Solution. Assume that

a ≥ b ≥ c, a ≥ 1, b+ c ≤ 2.

By squaring, the inequality becomes

p
A
�p

B +
p

C
�

+
p

BC ≥
a2 + b2 + c2 + 33

6
,

Ç

A
�

B + C + 2
p

BC
�

+
p

BC ≥
a2 + b2 + c2 + 33

6
,

where
A= a2 + 1, B = b2 + 1, C = c2 + 1.

Applying Lemma from the preceding problem P 2.77 for k = 1 and m= 1/4 gives

p
BC ≥ bc + 1+

1
4
(b− c)2.

Therefore, it suffices to show that
√

√

A
�

B + C + 2bc + 2+
1
2
(b− c)2

�

+ bc + 1+
1
4
(b− c)2 ≥

a2 + b2 + c2 + 33
6

,

which is equivalent to

6
Æ

2(a2 + 1)[3(b+ c)2 + 8− 4bc]≥ 2a2 − (b+ c)2 + 54− 4bc,

6
Æ

2(a2 + 1)(3a2 − 18a+ 35− 4bc)≥ a2 + 6a+ 45− 4bc.

From bc ≤ (b+ c)2/4 and (a− b)(a− c)≥ 0, we get

bc ≤
(3− a)2

4
, bc ≥ a(b+ c)− a2 = 3a− 2a2.

Consider a fixed, a ≥ 1, and denote x = bc. So, we only need to prove that
f (x)≥ 0 for

3a− 2a2 ≤ x ≤
a2 − 6a+ 9

4
,

where

f (x) = 72(a2 + 1)(3a2 − 18a+ 35− 4x)− (a2 + 6a+ 45− 4x)2.
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Since f is concave, it suffices to show that f (3a−2a2)≥ 0 and f
�

a2 − 6a+ 9
4

�

≥ 0.

Indeed,

f (3a− 2a2) = 9(79a4 − 228a3 + 274a2 − 180a+ 55)

= 9(a− 1)2(79a2 − 70a+ 55≥ 0,

f
�

a2 − 6a+ 9
4

�

= 144(a4 − 6a3 + 13a2 − 12a+ 4)

= 144(a− 1)2(a− 2)2 ≥ 0.

The equality holds for a = b = c = 1, and also for a = 2 and b = c = 1/2 (or any
cyclic permutation).

P 2.79. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

(a)
p

a2 + 3+
p

b2 + 3+
p

c2 + 3≥
p

2(a2 + b2 + c2) + 30;

(b)
p

3a2 + 1+
p

3b2 + 1+
p

3c2 + 1≥
p

2(a2 + b2 + c2) + 30.

(Vasile Cîrtoaje, 2014)

Solution. Assume that

a ≥ b ≥ c, a ≥ 1, b+ c ≤ 2.

(a) By squaring, the inequality becomes

p
A
�p

B +
p

C
�

+
p

BC ≥
a2 + b2 + c2 + 21

2
,

Ç

A
�

B + C + 2
p

BC
�

+
p

BC ≥
a2 + b2 + c2 + 21

2
,

where
A= a2 + 3, B = b2 + 3, C = c2 + 3.

Applying Lemma from problem P 2.77 for k = 1/3 and m= 1/9 gives

p
BC ≥ bc + 3+

1
3
(b− c)2.

Therefore, it suffices to show that
√

√

A
�

B + C + 2bc + 6+
2
3
(b− c)2

�

+ bc + 3+
1
3
(b− c)2 ≥

a2 + b2 + c2 + 21
2

,
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which is equivalent to

2
Æ

3(a2 + 3)[5(b+ c)2 + 36− 8bc]≥ 3a2 + (b+ c)2 + 45− 4bc,

Æ

3(a2 + 3)(5a2 − 30a+ 81− 8bc)≥ 2a2 − 3a+ 27− 2bc.

From bc ≤ (b+ c)2/4 and (a− b)(a− c)≥ 0, we get

bc ≤
(3− a)2

4
, bc ≥ a(b+ c)− a2 = 3a− 2a2.

Consider a fixed, a ≥ 1, and denote x = bc. So, we only need to prove that
f (x)≥ 0 for

3a− 2a2 ≤ x ≤
a2 − 6a+ 9

4
,

where

f (x) = 3(a2 + 3)(5a2 − 30a+ 81− 8x)− (2a2 − 3a+ 27− 2x)2.

Since f is concave, it suffices to show that f (3a−2a2)≥ 0 and f
�

a2 − 6a+ 9
4

�

≥ 0.

Indeed,
f (3a− 2a2) = 27a2(a− 1)2 ≥ 0,

f
�

a2 − 6a+ 9
4

�

=
27
4
(a4 − 8a3 + 22a2 − 24a+ 9)

=
27
4
(a− 1)2(a− 3)2 ≥ 0.

The equality holds for a = b = c = 1, and also for a = 3 and b = c = 0 (or any
cyclic permutation).

(b) By squaring, the inequality becomes

p
A
�p

B +
p

C
�

+
p

BC ≥
27− a2 − b2 − c2

2
,

Ç

A
�

B + C + 2
p

BC
�

+
p

BC ≥
27− a2 − b2 − c2

2
,

where
A= 3a2 + 1, B = 3b2 + 1, C = 3c2 + 1.

Applying Lemma from problem P 2.77 for k = 3 and m= 1/3 gives

p
BC ≥ 3bc + 1+

1
3
(b− c)2.
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Therefore, it suffices to show that
√

√

A
�

B + C + 6bc + 2+
2
3
(b− c)2

�

+ 3bc + 1+
1
3
(b− c)2 ≥

27− a2 − b2 − c2

2
,

which is equivalent to

2
Æ

3(3a2 + 1)[11(b+ c)2 + 12− 8bc]≥ 75− 3a2 − 5(b+ c)2 − 4bc,
Æ

3(3a2 + 1)(11a2 − 66a+ 111− 8bc)≥ 15+ 15a− 4a2 − 2bc.

From bc ≤ (b+ c)2/4 and (a− b)(a− c)≥ 0, we get

bc ≤
(3− a)2

4
, bc ≥ a(b+ c)− a2 = 3a− 2a2.

Consider a fixed, a ≥ 1, and denote x = bc. So, we only need to prove that
f (x)≥ 0 for

3a− 2a2 ≤ x ≤
a2 − 6a+ 9

4
,

where

f (x) = 3(3a2 + 1)(11a2 − 66a+ 111− 8x)− (15+ 15a− 4a2 − 2x)2.

Since f is concave, it suffices to show that f (3a−2a2)≥ 0 and f
�

a2 − 6a+ 9
4

�

≥ 0.

Indeed,
f (3a− 2a2) = 27(a− 1)2(3a− 2)2 ≥ 0,

f
�

a2 − 6a+ 9
4

�

=
27
4
(9a4 − 48a3 + 94a2 − 80a+ 25)

=
27
4
(a− 1)2(3a− 5)2 ≥ 0.

The equality holds for a = b = c = 1, and also for a = 5/3 and b = c = 2/3 (or any
cyclic permutation).

Remark. Similarly, we can prove the following generalization.

• Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. If k > 0, then

p

ka2 + 1+
p

kb2 + 1+
p

kc2 + 1≥

√

√8k(a2 + b2 + c2) + 3(9k2 + 10k+ 9)
3(k+ 1)

,

with equality for a = b = c = 1, and also for a =
3k+ 1

2k
and b = c =

3k− 1
4k

(or any

cyclic permutation).
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P 2.80. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then
Æ

(32a2 + 3)(32b2 + 3) +
Æ

(32b2 + 3)(32c2 + 3) +
Æ

(32c2 + 3)(32a2 + 3)≤ 105.

(Vasile Cîrtoaje, 2014)

Solution. Assume that

a ≤ b ≤ c, a ≤ 1, b+ c ≥ 2.

Denote
A= 32a2 + 3, B = 32b2 + 3, C = 32c2 + 3,

and write the inequality as follows:
p

A
�p

B +
p

C
�

+
p

BC ≤ 105,

p
A ·
Æ

B + C + 2
p

BC ≤ 105−
p

BC .

By Lemma below, we have
p

BC ≤ 5(b+ c)2 + 12bc + 3≤ 8(b+ c)2 + 3≤ 8(a+ b+ c)2 + 3= 75< 105.

Therefore, we can write the desired inequality as

A
�

B + C + 2
p

BC
�

≤
�

105−
p

BC
�2

,

which is equivalent to

A(A+ B + C + 210)≤ (A+ 105−
p

BC)2.

According to Lemma below, it suffices to show that

A(A+ B + C + 210)≤ [A+ 105− 5(b2 + c2)− 22bc − 3]2,

which is equivalent to

[32a2 + 105− 5(b2 + c2)− 22bc]2 ≥ (32a2 + 3)[32(a2 + b2 + c2) + 219].

Since

32(a2+ b2+ c2)+219= 32a2+32(b+ c)2−64bc+219= 64a2−192a+507−64bc

and

32a2+105−5(b2+c2)−22bc = 32a2+105−5(b+c)2−12bc = 3(9a2+10a+20−4bc),

we need to show that

9(9a2 + 10a+ 20− 4bc)2 ≥ (32a2 + 3)(64a2 − 192a+ 507− 64bc).



Symmetric Nonrational Inequalities 393

From bc ≤ (b+ c)2/4, we get

bc ≤
(3− a)2

4
.

Consider a fixed, 0 ≤ a ≤ 1, and denote x = bc. So, we only need to prove that
f (x)≥ 0 for

0≤ x ≤
a2 − 6a+ 9

4
,

where

f (x) = 9(9a2 + 10a+ 20− 4x)2 − (32a2 + 3)(64a2 − 192a+ 507− 64x).

Since

f ′(x) = 72(4x − 9a2 − 10a− 20) + 64(32a2 + 3)

≤ 72[(a2 − 6a+ 9)− 9a2 − 10a− 20) + 64(32a2 + 3)
= 8[184a(a− 1) + (44a− 75)]< 0,

f is decreasing, hence f (x) ≥ f
�

a2 − 6a+ 9
4

�

. Therefore, it suffices to show that

f
�

a2 − 6a+ 9
4

�

≥ 0. We have

f
�

a2 − 6a+ 9
4

�

=9[9a2 + 10a+ 20− (a2 − 6a+ 9)]2

− (32a2 + 3)[64a2 − 192a+ 507− 16(a2 − 6a+ 9)]

=9(8a2 + 16a+ 11)2 − (32a2 + 3)(48a2 − 96a+ 363)

=192a(a− 1)2(18− 5a)≥ 0.

Thus, the proof is completed. The equality holds for a = b = c = 1, and also for
a = 0 and b = c = 3/2 (or any cyclic permutation).

Lemma. If b, c ≥ 0 such that b+ c ≥ 2, then
Æ

(32b2 + 3)(32c2 + 3)≤ 5(b2 + c2) + 22bc + 3.

Proof. By squaring, the inequality becomes

(5b2 + 5c2 + 22bc)2 − 322 b2c2 ≥ 96(b2 + c2)− 6(5b2 + 5c2 + 22bc),

5(b− c)2(5b2 + 5c2 + 54bc)≥ 66(b− c)2.

It suffices to show that
5(5b2 + 5c2 + 10bc)≥ 100,

which is equivalent to the obvious inequality (b+ c)2 ≥ 4.



394 Vasile Cîrtoaje

P 2.81. If a, b, c are positive real numbers, then
�

�

�

�

b+ c
a
− 3

�

�

�

�

+
�

�

�

c + a
b
− 3

�

�

�+

�

�

�

�

a+ b
c
− 3

�

�

�

�

≥ 2.

(Vasile Cîrtoaje, 2012)

Solution. Without loss of generality, assume that a ≥ b ≥ c.

Case 1: a > b+ c. We have
�

�

�

�

b+ c
a
− 3

�

�

�

�

+

�

�

�

�

a+ b
c
− 3

�

�

�

�

+
�

�

�

c + a
b
− 3

�

�

�≥
�

�

�

�

b+ c
a
− 3

�

�

�

�

= 3−
b+ c

a
> 2.

Case 2: a ≤ b+ c. We have
�

�

�

�

b+ c
a
− 3

�

�

�

�

+

�

�

�

�

a+ b
c
− 3

�

�

�

�

+
�

�

�

c + a
b
− 3

�

�

�≥
�

�

�

�

b+ c
a
− 3

�

�

�

�

+
�

�

�

c + a
b
− 3

�

�

�

=
�

3−
b+ c

a

�

+
�

3−
c + a

b

�

≥ 6−
b+ b

a
−

b+ a
b
= 2+

(a− b)(2b− a)
ab

≥ 2.

Thus, the proof is completed. The equality holds for
a
2
= b = c (or any cyclic

permutation).

P 2.82. If a, b, c are real numbers such that abc 6= 0, then
�

�

�

�

b+ c
a

�

�

�

�

+
�

�

�

c + a
b

�

�

�+

�

�

�

�

a+ b
c

�

�

�

�

≥ 2.

First Solution. Let
|a|=max{|a|, |b|, |c|}.

We have
�

�

�

�

b+ c
a

�

�

�

�

+
�

�

�

c + a
b

�

�

�+

�

�

�

�

a+ b
c

�

�

�

�

≥
�

�

�

�

b+ c
a

�

�

�

�

+
�

�

�

c + a
a

�

�

�+

�

�

�

�

a+ b
a

�

�

�

�

≥
|(−b− c) + (c + a) + (a+ b)|

|a|
= 2.

The equality holds for a = 1, b = −1 and |c| ≤ 1 (or any permutation).

Second Solution. Since the inequality remains unchanged by replacing a, b, c with
−a,−b,−c, it suffices to consider two cases: a, b, c > 0, and a < 0, b, c > 0.

Case 1: a, b, c > 0. We have
�

�

�

�

b+ c
a

�

�

�

�

+
�

�

�

c + a
b

�

�

�+

�

�

�

�

a+ b
c

�

�

�

�

=
�

a
b
+

b
a

�

+
�

b
c
+

c
b

�

+
� c

a
+

a
c

�

≥ 6.
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Case 2: a < 0 and b, c > 0. Replacing a by −a, we need to show that

b+ c
a
+
|a− c|

b
+
|a− b|

c
≥ 2

for all a, b, c > 0. Without loss of generality, assume that b ≥ c. There are three
case to consider: b ≥ c ≥ a, b ≥ a ≥ c and a ≥ b ≥ c.
For b ≥ c ≥ a, we have

b+ c
a
+
|a− c|

b
+
|a− b|

c
≥

b+ c
a
≥ 2.

For b ≥ a ≥ c, we have

b+ c
a
+
|a− c|

b
+
|a− b|

c
− 2≥

b+ c
a
+

a− c
b
− 2=

(a− b)2 + c(b− a)
ab

≥ 0.

For a ≥ b ≥ c, we have

b+ c
a
+
|a− c|

b
+
|a− b|

c
− 2=

b+ c
a
+

a− c
b
+

a− b
c
− 2

=
�

a
b
+

b
a
− 2

�

+
a− b

c
+ c

�

1
a
−

1
b

�

=
(a− b)2

ab
+
(a− b)(ab− c2)

abc
≥ 0.

Third Solution. Using the substitution

x =
b+ c

a
, y =

c + a
b

, z =
a+ b

c
,

we need to show that

x + y + z + 2= x yz, x , y, z ∈ R,

involves
|x |+ |y|+ |z| ≥ 2.

If x yz ≤ 0, then
−x − y − z = 2− x yz ≥ 2,

hence
|x |+ |y|+ |z| ≥ |x + y + z|= | − x − y − z| ≥ −x − y − z ≥ 2.

If x yz > 0, then either x , y, z > 0 or only one of x , y, z is positive (for instance,
x > 0 and y, z < 0).

Case 1: x , y, z > 0. We need to show that x + y + z ≥ 2. We have

x yz = x + y + z + 2> 2
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and, by the AM-GM inequality, we get

x + y + z ≥ 3 3px yz > 3
3p

2> 2,

Case 2: x > 0 and y, z < 0. Replacing y, z by −y,−z, we need to prove that

x − y − z + 2= x yz

involves
x + y + z ≥ 2

for all x , y, z > 0. Since

x + y + z − 2= x + y + z − (x yz − x + y + z) = x(2− yz),

we need to show that yz ≤ 2. Indeed, we have

x + 2= y + z + x yz ≥ 2
p

yz + x yz,

x(1− yz) + 2(1−
p

yz )≥ 0,

(1−
p

yz ) [x(1+
p

yz ) + 2]≥ 0,

hence
yz ≤ 1< 2.

P 2.83. Let a, b, c be nonnegative real numbers, no two of which are zero, and let

x =
2a

b+ c
, y =

2b
c + a

, z =
2c

a+ b
.

Prove that

(a)
p

x y +pyz +
p

zx ≥ x yz + 2;

(b) x + y + z +px y +pyz +
p

zx ≥ 6;

(c)
p

x +py +
p

z ≥
p

8+ x yz;

(d)
p

yz
x + 2

+
p

zx
y + 2

+
p

x y
z + 2

≥ 1.
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Solution. (a) Since

p
yz =

2
p

bc(a+ b)(c + a)
(a+ b)(c + a)

≥
2
p

bc (a+
p

bc)
(a+ b)(c + a)

=
2a(b+ c)

p
bc + 2bc(b+ c)

(a+ b)(b+ c)(c + a)
≥

4abc + 2bc(b+ c)
(a+ b)(b+ c)(c + a)

,

we have

∑p
yz ≥

12abc + 2
∑

bc(b+ c)
(a+ b)(b+ c)(c + a)

=
8abc

(a+ b)(b+ c)(c + a)
+ 2= x yz + 2.

The equality holds for a = b = c, and also for a = 0 or b = 0 or c = 0.

(b) First Solution. Taking into account the inequality (a), it suffices to show
that

x + y + z + x yz ≥ 4,

which is equivalent to Schur’s inequality of degree three

a3 + b3 + c3 + 3abc ≥
∑

ab(a+ b).

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic
permutation).

Second Solution. We use the SOS technique. Write the inequality as

4
∑

(x − 1)≥
∑

�p
y −
p

z
�2

.

Since

∑

(x − 1) =
∑ (a− b) + (a− c)

b+ c
=
∑ a− b

b+ c
+
∑ b− a

c + a

=
∑ (a− b)2

(b+ c)(c + a)
=
∑ (b− c)2

(a+ b)(a+ c)

and

�p
y −
p

z
�2
=

(y − z)2
�p

y +
p

z
�2 =

2(b− c)2(a+ b+ c)2

(a+ b)(a+ c)
�p

b2 + ab+
p

c2 + ac
�2 ,

we can write the inequality as
∑

(b− c)2Sa ≥ 0,
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where

Sa = (b+ c)



2−
(a+ b+ c)2

�p
b2 + ab+

p
c2 + ac

�2



 .

By Minkowski’s inequality, we have

�p

b2 + ab+
p

c2 + ac
�2
≥ (b+ c)2 + a

�p

b+
p

c
�2

≥ (b+ c)2 + a(b+ c) = (b+ c)(a+ b+ c),

hence

Sa ≥ (b+ c)
�

2−
a+ b+ c

b+ c

�

= b+ c − a.

Thus, it suffices to show that
∑

(b− c)2(b+ c − a)≥ 0,

which is just Schur’s inequality of third degree.

Third Solution. Using the Cauchy-Schwarz inequality yields

a
b+ c

+
b

c + a
+

c
a+ b

≥
(a+ b+ c)2

a(b+ c) + b(c + a) + c(a+ b)
=

(a+ b+ c)2

2(ab+ bc + ca)
.

Also, using Hölder’s inequality, we have

�

s

a
b+ c

+

√

√ b
c + a

+
s

c
a+ b

�2

≥
(a+ b+ c)3

a2(b+ c) + b2(c + a) + c2(a+ b)
.

Thus, it suffices to prove that

(a+ b+ c)2

ab+ bc + ca
+

2(a+ b+ c)3

a2(b+ c) + b2(c + a) + c2(a+ b)
≥ 12.

Due to homogeneity, we may assume that a+ b+ c = 1. Substituting

q = ab+ bc + ca, 3q ≤ 1,

the inequality becomes
1
q
+

2
q− 3abc

≥ 12.

The fourth degree Schur’s inequality

6abcp ≥ (p2 − q)(4q− p2), p = a+ b+ c,

gives
6abc ≥ (1− q)(4q− 1).
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Therefore,

1
q
+

2
q− 3abc

− 12≥
1
q
+

4
2q− (1− q)(4q− 1)

− 12=
(1− 3q)(1− 4q)2

q(4q2 − 3q+ 1)
≥ 0.

(c) By squaring, the inequality becomes

x + y + z + 2
p

x y + 2
p

yz + 2
p

zx ≥ 8+ x yz.

Based on the inequality in (a), it suffices to show that

x + y + z + 2(x yz + 2)≥ 8+ x yz,

which is equivalent to
x + y + z + x yz ≥ 4,

a3 + b3 + c3 + 3abc ≥
∑

ab(a+ b).

The last form is just Schur’s inequality of third degree. The equality holds for a =
b = c, and also for a = 0 and b = c (or any cyclic permutation).

(d) Write the inequality as
∑

(b+ c)
p

yz ≥ 2(a+ b+ c).

First Solution. Since

p
yz =

2
p

bc(a+ b)(c + a)
(a+ b)(c + a)

≥
2
p

bc (a+
p

bc)
(a+ b)(c + a)

=
2a(b+ c)

p
bc + 2bc(b+ c)

(a+ b)(b+ c)(c + a)
≥

4abc + 2bc(b+ c)
(a+ b)(b+ c)(c + a)

,

it suffices to show that
∑

(b+ c)[2abc + bc(b+ c)]≥ (a+ b+ c)(a+ b)(b+ c)(c + a),

which is an identity. The equality holds for a = b = c, and also for a = 0 or b − 0
or c = 0.

Second Solution. Let
q = ab+ bc + ca.

Since
p

yz =

√

√ 2b
a+ b

·
2c

c + a
≥

2 · 2b
a+b ·

2c
c+a

2b
a+b +

2c
c+a

=
4bc

bc + q
,

we can write the inequality as follows:

∑ 2bc(b+ c)
bc + q

≥ a+ b+ c,
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∑

�

2bc(b+ c)
bc + q

− a
�

≥ 0,

∑ bc(b− a) + bc(c − a) + b(c2 − a2) + c(b2 − a2)
bc + q

≥ 0,

∑ c(b− a)(2b+ a) + b(c − a)(2c + a)
bc + q

≥ 0,

∑ c(b− a)(2b+ a)
bc + q

+
∑ c(a− b)(2a+ b)

ca+ q
≥ 0,

∑

c(a− b)
�

2a+ b
ca+ q

−
2b+ a
bc + q

�

≥ 0,

∑ c(a− b)[q(a− b)− c(a2 − b2)]
(ca+ q)(bc + q)

≥ 0,

abc
∑ (a− b)2

(ca+ q)(bc + q)
≥ 0.

P 2.84. Let a, b, c be nonnegative real numbers, no two of which are zero, and let

x =
2a

b+ c
, y =

2b
c + a

, z =
2c

a+ b
.

Prove that
p

1+ 24x +
p

1+ 24y +
p

1+ 24z ≥ 15.

(Vasile Cîrtoaje, 2005)

Solution (by Vo Quoc Ba Can). Assume that c = min{a, b, c}, hence z ≤ 1. By
Hölder’s inequality

�

s

a
b+ c

+

√

√ b
c + a

�2
�

a2(b+ c) + b2(c + a)
�

≥ (a+ b)3,

we get

�p
x +
p

y
�2
≥

2(a+ b)3

c(a2 + b2) + ab(a+ b)
=

2(a+ b)3

c(a+ b)2 + ab(a+ b− 2c)

≥
2(a+ b)3

c(a+ b)2 + 1
4(a+ b)2(a+ b− 2c)

=
8(a+ b)

a+ b+ 2c
=

8
1+ z

.

Using this result and Minkowski’s inequality, we have

p

1+ 24x +
p

1+ 24y ≥
q

(1+ 1)2 + 24(
p

x +
p

y)2 ≥ 2

√

√

1+
48

1+ z
.
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Therefore, it suffices to show that

2

√

√

1+
48

1+ z
+
p

1+ 24z ≥ 15.

Using the substitution
p

1+ 24z = 5t,
1
5
≤ t ≤ 1,

the inequality turns into

2

√

√ t2 + 47
25t2 + 23

≥ 3− t.

By squaring, this inequality becomes

25t4 − 150t3 + 244t2 − 138t + 19≤ 0,

which is equivalent to the obvious inequality

(t − 1)2(5t − 1)(5t − 19)≤ 0.

The equality holds for a = b = c, and also for a = b and c = 0 (or any cyclic
permutation).

P 2.85. If a, b, c are positive real numbers, then
√

√ 7a
a+ 3b+ 3c

+

√

√ 7b
b+ 3c + 3a

+

√

√ 7c
c + 3a+ 3b

≤ 3.

(Vasile Cîrtoaje, 2005)

First Solution. Using the substitution

x =

√

√ 7a
a+ 3b+ 3c

, y =

√

√ 7b
b+ 3c + 3a

, z =

√

√ 7c
c + 3a+ 3b

,

we have


















(x2 − 7)a+ 3x2 b+ 3x2c = 0

3y2a+ (y2 − 7)b+ 3y2c = 0 ,

3z2a+ 3z2 b+ (z2 − 7)c = 0

which involves
�

�

�

�

�

�

x2 − 7 3x2 3x2

3y2 y2 − 7 3y2

3z2 3z2 z2 − 7

�

�

�

�

�

�

= 0 ;
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that is,
F(x , y, z) = 0,

where
F(x , y, z) = 4x2 y2z2 + 8

∑

x2 y2 + 7
∑

x2 − 49.

We need to show that F(x , y, z) = 0 involves x + y + z ≤ 3, where x , y, z > 0. To
do this, we use the contradiction method. Assume that x+ y+z > 3 and show that
F(x , y, z) > 0. Since F(x , y, z) is strictly increasing in each of its arguments, it is
enough to prove that x + y + z = 3 involves F(x , y, z)≥ 0. We will use the mixing
variables technique. Assume that x =max{x , y, z} and denote

t =
y + z

2
, 0< t ≤ 1≤ x .

We will show that
F(x , y, z)≥ F(x , t, t)≥ 0.

We have

F(x , y, z)− F(x , t, t) = (8x2 + 7)(y2 + z2 − 2t2)− 4(x2 + 2)(t4 − y2z2)

=
1
2
(8x2 + 7)(y − z)2 − (x2 + 2)(t2 + yz)(y − z)2

≥
1
2
(8x2 + 7)(y − z)2 − 2(x2 + 2)t2(y − z)2

=
1
2
(4x2 − 1)(y − z)2 ≥ 0

and

F(x , t, t) = F
�

x ,
3− x

2
,
3− x

2

�

=
1
4
(x − 1)2(x − 2)2(x2 − 6x + 23)≥ 0.

The equality holds for a = b = c, and also for
a
8
= b = c (or any cyclic permuta-

tion).

Second Solution. Due to homogeneity, we may assume that a + b + c = 3, when
the inequality becomes

∑

√

√ 7a
9− 2a

≤ 3.

Using the substitution

x =

√

√ 7a
9− 2a

, y =

√

√ 7b
9− 2b

, z =

√

√ 7c
9− 2c

,

we need to show that if x , y, z are positive real numbers such that

∑ 1
2x2 + 7

=
1
3

,



Symmetric Nonrational Inequalities 403

then
x + y + z ≤ 3.

For the sake of contradiction, assume that x+ y+z > 3 and show that F(x , y, z)< 0,
where

F(x , y, z) =
∑ 1

2x2 + 7
−

1
3

.

Since F(x , y, z) is strictly decreasing in each of its arguments, it is enough to prove
that x + y + z = 3 involves F(x , y, z)≤ 0. This is just the inequality in P 1.33.

P 2.86. If a, b, c are positive real numbers such that a+ b+ c = 3, then
3
Æ

a2(b2 + c2) + 3
Æ

b2(c2 + a2) + 3
Æ

c2(a2 + b2)≤ 3
3p

2.

(Michael Rozenberg, 2013)

Solution. By Hölder’s inequality, we have
�∑

3
Æ

a2(b2 + c2)
�3
≤
�∑

a(b+ c)
�2
·
∑ b2 + c2

(b+ c)2
.

Therefore, it suffices to show that
∑ b2 + c2

(b+ c)2
≤

27
2(ab+ bc + ca)2

,

which is equivalent to the homogeneous inequalities
∑

�

b2 + c2

(b+ c)2
− 1

�

≤
p4

6q2
− 3,

∑ 2bc
(b+ c)2

+
p4

6q2
≥ 3,

where
p = a+ b+ c, q = ab+ bc + ca.

According to P 1.62, the following inequality holds
∑ 2bc
(b+ c)2

+
p2

q
≥

9
2

.

Thus, it is enough to show that

9
2
−

p2

q
+

p4

6q2
≥ 3,

which is equivalent to
�

p2

q
− 3

�2

≥ 0.

The equality holds for a = b = c = 1.
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P 2.87. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
a+ b

+
1

b+ c
+

1
c + a

≥
1

a+ b+ c
+

2
p

ab+ bc + ca
.

(Vasile Cîrtoaje, 2005)

Solution. Using the notation

p = a+ b+ c, q = ab+ bc + ca, r = abc,

we can write the inequality as

p2 + q
pq− r

≥
1
p
+

2
p

q
.

According to P 3.57-(a) in Volume 1, for fixed p and q, the product r = abc is
minimum when two of a, b, c are equal or one of a, b, c is zero. Therefore, it suffices
to prove the inequality for b = c = 1 and for a = 0. For a = 0, the inequality reduces
to

1
b
+

1
c
≥

2
p

bc
,

which is obvious. For b = c = 1, the inequality becomes as follows:

1
2
+

2
a+ 1

≥
1

a+ 2
+

2
p

2a+ 1
,

1
2
−

1
a+ 2

≥
2

p
2a+ 1

−
2

a+ 1
,

a
2(a+ 2)

≥
2
�

a+ 1−
p

2a+ 1
�

(a+ 1)
p

2a+ 1
,

a
2(a+ 2)

≥
2a2

(a+ 1)
p

2a+ 1
�

a+ 1+
p

2a+ 1
� .

So, we need to show that

1
2(a+ 2)

≥
2a

(a+ 1)
p

2a+ 1
�

a+ 1+
p

2a+ 1
� .

Consider two cases: 0≤ a ≤ 1 and a > 1.

Case 1: 0≤ a ≤ 1. Since
p

2a+ 1(a+ 1+
p

2a+ 1)≥
p

2a+ 1
�p

2a+ 1+
p

2a+ 1
�

= 2(2a+ 1),

it suffices to prove that

1
2(a+ 2)

≥
a

(a+ 1)(2a+ 1)
,
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which is equivalent to 1− a ≥ 0.

Case 2: a > 1. Write the desired inequality as

1
2(a+ 2)

≥
2a

(a+ 1)
�

(a+ 1)
p

2a+ 1+ 2a+ 1
� .

First, we will show that
(a+ 1)

p
2a+ 1> 3a.

Indeed, by squaring, we get the obvious inequality

a3 + a(a− 2)2 + 1> 0.

Therefore, it suffices to show that

1
2(a+ 2)

≥
2a

(a+ 1)(3a+ 2a+ 1)
,

which is equivalent to (a− 1)2 ≥ 0.
The equality holds for a = 0 and b = c (or any cyclic permutation).

P 2.88. If a, b ≥ 1, then

1
p

3ab+ 1
+

1
2
≥

1
p

3a+ 1
+

1
p

3b+ 1
.

Solution. Using the substitution

x =
2

p
3a+ 1

, y =
2

p
3b+ 1

, x , y ∈ (0, 1],

the desired inequality can be written as

x y

√

√ 3
x2 y2 − x2 − y2 + 4

≥ x + y − 1.

Consider the nontrivial case x + y − 1≥ 0, and denote

t = x + y − 1, p = x y.

We have
1≥ p ≥ t ≥ 0.

Since
x2 + y2 = (x + y)2 − 2x y = (t + 1)2 − 2p,
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we need to prove that

p

√

√ 3
p2 + 2p− t2 − 2t + 3

≥ t.

By squaring, we get the inequality

(p− t)[(3− t2)p+ t(1− t)(3+ t)]≥ 0,

which is clearly true. The equality holds for a = b = 1.

P 2.89. Let a, b, c be positive real numbers such that a+ b+ c = 3. If k ≥
1
p

2
, then

(abc)k(a2 + b2 + c2)≤ 3.

(Vasile Cîrtoaje, 2006)

Solution. Since

abc ≤
�

a+ b+ c
3

�3

= 1,

it suffices to prove the desired inequality for k = 1/
p

2. Write the inequality in the
homogeneous form

(abc)k(a2 + b2 + c2)≤ 3
�

a+ b+ c
3

�3k+2

.

According to P 3.57-(a) in Volume 1, for fixed a+b+c and ab+bc+ca, the product
abc is maximum when two of a, b, c are equal. Therefore, it suffices to prove the
homogeneous inequality for b = c = 1; that is, f (a)≥ 0, where

f (a) = (3k+ 2) ln(a+ 2)− (3k+ 1) ln3− k ln a− ln(a2 + 2).

From

f ′(a) =
3k+ 2
a+ 2

−
k
a
−

2a
a2 + 2

=
2(a− 1)(ka2 − 2a+ 2k)

a(a+ 2)(a2 + 2)

=
p

2(a− 1)(a−
p

2)2

a(a+ 2)(a2 + 2)
,

it follows that f is decreasing on (0,1] and increasing on [1,∞); therefore, f (a)≥
f (1) = 0. This completes the proof. The equality holds for a = b = c = 1.
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P 2.90. If a, b, c ∈ [0, 4] and ab+ bc + ca = 4, then

p

a+ b+
p

b+ c +
p

c + a ≤ 3+
p

5.

(Vasile Cîrtoaje, 2019)

Solution. Assume that a ≥ b ≥ c, 1≤ a ≤ 4, and write the inequality as follows

p

b+ c +
Ç

(a+ b) + (a+ c) + 2
Æ

(a+ b)(a+ c)≤ 3+
p

5,

p

b+ c +
q

2a+ b+ c + 2
p

a2 + 4≤ 3+
p

5,

From 4− a(b+ c) = bc ≥ 0, we get

b+ c ≤
4
a

.

Thus, it suffices to show that

2
p

a
+

√

√

2a+
4
a
+ 2

p

a2 + 4≤ 3+
p

5,

which is equivalent to

2
p

a
+

a+
p

a2 + 4
p

a
≤ 3+

p
5,

a− 3
p

a+ 2≤
p

5a−
p

a2 + 4,

(
p

a− 1)(
p

a− 2)≤
(a− 1)(4− a)
p

5a+
p

a2 + 4
.

This is true if

1≤
(
p

a+ 1)(
p

a+ 2)
p

5a+
p

a2 + 4
,

that can be written in the obvious form

(a+ 2−
p

a2 + 4) + (3−
p

5)
p

a ≥ 0.

The equality occurs for a = 4, b = 1 and c = 0 (or any permutation).

P 2.91. Let

F(a, b, c) =

√

√a2 + b2 + c2

3
−

a+ b+ c
3

,
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where a, b, c are positive real numbers such that

a4 bc ≥ 1, a ≤ b ≤ c.

Then,

F(a, b, c)≥ F
�

1
a

,
1
b

,
1
c

�

.

(Vasile Cîrtoaje and Vasile Mircea Popa, 2020)

Solution. Write the inequality as E(a, b, c)≥ 0, where

E(a, b, c) =
Æ

3(a2 + b2 + c2)− (a+ b+ c)−

√

√

3
�

1
a2
+

1
b2
+

1
c2

�

+
1
a
+

1
b
+

1
c

,

and show that
E(a, b, c)≥ E(a, x , x)≥ 0,

where
x =

p

bc ≥ a, a2 x ≥ 1, x ≥ 1.

Write the inequality E(a, b, c)≥ E(a, x , x) it in the form

A− C ≥ B − D,

where

A=
Æ

3(a2 + b2 + c2)−
Æ

3(a2 + 2x2) =
3(b− c)2

p

3(a2 + b2 + c2) +
p

3(a2 + 2x2)

≥
3(b− c)2

p

3(x2 + b2 + c2) + 3x
,

B = (a+ b+ c)− (a+ 2x) =
�p

b−
p

c
�2

,

C =

√

√

3
�

1
a2
+

1
b2
+

1
c2

�

−

√

√

3
�

1
a2
+

2
x2

�

=
3
x4
·

(b− c)2
q

3
�

1
a2 + 1

b2 + 1
c2

�

+
q

3
�

1
a2 + 2

x2

�

≤
3
x4
·

(b− c)2
q

3
�

1
x2 + 1

b2 + 1
c2

�

+ 3
x

=
3
x2
·

(b− c)2
p

3(x2 + c2 + b2) + 3x
,

D =
1
a
+

1
b
+

1
c
−

1
a
−

2
x
=

�p
b−
p

c
�2

x2
.
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Thus, we need to show that

3
�p

b+
p

c
�2
�

1
p

3(x2 + b2 + c2) + 3x
−

1
x2
·

1
p

3(x2 + c2 + b2) + 3x

�

≥
x2 − 1

x2
.

This inequality is true if

3
�p

b+
p

c
�2
≥
Æ

3(x2 + b2 + c2) + 3x ,

that is equivalent to
p

3
�

b+ c +
p

bc
�

≥
p

bc + b2 + c2,

which is true.
Write now the inequality E(a, x , x)≥ 0 in the form

Æ

3(a2 + 2x2)− (a+ 2x)≥

√

√

3
�

1
a2
+

2
x2

�

−
1
a
−

2
x

.

Since both sides of the inequality are nonnegative and a2 x ≥ 1, it suffices to prove
the homogeneous inequality

Æ

3(a2 + 2x2)− (a+ 2x)≥ (a2 x)2/3
�√

√

3
�

1
a2
+

2
x2

�

−
1
a
−

2
x

�

.

Due to homogeneity, we may set x = 1. Thus, we need to show that a ≤ x = 1
yields

Æ

3(a2 + 2)− a− 2≥ a1/3
�Æ

3(1+ 2a2)− 1− 2a
�

,

which is equivalent to

2(a− 1)2
p

3(a2 + 2) + a+ 2
≥ a1/3 2(a− 1)2

p

3(1+ 2a2) + 1+ 2a
.

It is true if
Æ

3(1+ 2a2) + 1+ 2a ≥ a1/3
�Æ

3(a2 + 2) + a+ 2
�

.

For t = a1/3, t ∈ (0,1], the inequality becomes
Æ

3(1+ 2t6) + 1+ 2t3 ≥
Æ

3(t8 + 2t2) + t4 + 2t,

which is true because

1+ 2t6 − (t8 + 2t2) = (1− t4)(1− t2)2 ≥ 0,

1+ 2t3 − (t4 + 2t) = (1− t2)(1− t)2 ≥ 0.

The equality occurs for a = b = c ≥ 1.

Remark. The inequality is true in the particular case a, b, c ≥ 1, which implies
a4 bc ≥ 1.
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P 2.92. Let

F(a, b, c) =

√

√a2 + b2 + c2

3
−

a+ b+ c
3

,

where a, b, c are positive real numbers such that

a2(b+ c)≥ 2, a ≤ b ≤ c.

Then,

F(a, b, c)≥ F
�

1
a

,
1
b

,
1
c

�

.

(Vasile Cîrtoaje, 2020)

Solution. The proof follows the same way as the proof of the preceding P 2.91.
Write the inequality as E(a, b, c)≥ 0, where

E(a, b, c) =
p

a2 + b2 + c2 −
a+ b+ c
p

3
−

√

√ 1
a2
+

1
b2
+

1
c2
+

1
p

3

�

1
a
+

1
b
+

1
c

�

,

and show that
E(a, b, c)≥ E(a, x , x)≥ 0,

where

x =
b+ c

2
≥ b, a2 x ≥ 1, x ≥ 1.

Write the inequality E(a, b, c)≥ E(a, x , x) it in the form

A+ B ≥ C ,

where
A=

p

a2 + b2 + c2 −
p

a2 + 2x2

=
(b− c)2

2
·

1
p

a2 + b2 + c2 +
p

a2 + 2x2

≥
(b− c)2

2
·

1
p

2b2 + c2 +
p

b2 + 2x2
,

B =
1
p

3

�

1
b
+

1
c
−

2
x

�

=
(b− c)2

p
3bc(b+ c)

,

C =

√

√ 1
a2
+

1
b2
+

1
c2
−

√

√ 1
a2
+

2
x2

=
(b− c)2(b2 + 4bc + c2)

b2c2(b+ c)2
·

1
q

1
a2 + 1

b2 + 1
c2 +

q

1
a2 + 2

x2
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≤
(b− c)2(b2 + 4bc + c2)

b2c2(b+ c)2
·

1
q

2
b2 + 1

c2 +
q

1
b2 + 2

x2

.

Thus, we need to show that

1
2
·

1
p

2b2 + c2 +
p

b2 + 2x2
+

1
p

3bc(b+ c)
≥

b2 + 4bc + c2

b2c2(b+ c)2
·

1
q

2
b2 + 1

c2 +
q

1
b2 + 2

x2

.

Since
b2 + 4bc + c2 = 4bc + (b2 + c2),

it suffices to show that

1
p

3bc(b+ c)
≥

4bc
b2c2(b+ c)2

·
1

q

2
b2 + 1

c2 +
q

1
b2 + 2

x2

and

1
2
·

1
p

2b2 + c2 +
p

b2 + 2x2
≥

b2 + c2

b2c2(b+ c)2
·

1
q

2
b2 + 1

c2 +
q

1
b2 + 2

x2

.

Write the first inequality as

(b+ c)

�√

√ 2
b2
+

1
c2
+

√

√ 1
b2
+

2
x2

�

≥ 4
p

3.

Since
√

√ 2
b2
+

1
c2
+

√

√ 1
b2
+

2
x2
≥

1
p

3

�

2
b
+

1
c

�

+
1
p

3

�

1
b
+

2
x

�

≥
1
p

3

�

2
b
+

1
c

�

+
1
p

3

�

1
c
+

2
x

�

=
2
p

3

�

1
b
+

1
c
+

2
b+ c

�

≥
2
p

3

�

4
b+ c

+
2

b+ c

�

=
4
p

3
b+ c

,

the inequality is proved.
The second inequality reduces to

bc(b+ c)2 ≥ 2(b2 + c2).

It is true if the following homogeneous inequality is true:

bc(b+ c)2 ≥ 2(b2 + c2)
�

b2(b+ c)
2

�2/3

.

Due to homogeneity, we may set b = 1, hence c ≥ 1, when the inequality becomes

c(c + 1)2 ≥ 2(c2 + 1)
�

c + 1
2

�2/3

.
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It is true if
c3(c + 1)4 ≥ 2(c2 + 1)3,

that is
c7 + 2c6 + 6c5 − 2c4 + c3 − 6c2 − 2≥ 0,

(c7 + c3 − 2) + 2c4(c2 − 1) + 6c2(c3 − 1)≥ 0.

To complete the proof, we need to show that E(a, x , x) ≥ 0 for a2 x ≥ 1, x ≥ a.
This inequality was proved at the preceding P 2.91.

The equality occurs for a = b = c ≥ 1.

Remark. Since a4 bc ≥ 1 yields a2(b+ c)≥ 2, the inequality in P 2.91 follows from
the inequality in P 2.92.

P 2.93. Let

F(a, b, c) =

√

√a2 + b2 + c2

3
−

a+ b+ c
3

,

where a, b, c are positive real numbers such that

a4(b2 + c2)≥ 2, a ≤ b ≤ c.

Then,

F(a, b, c)≥ F
�

1
a

,
1
b

,
1
c

�

.

(Vasile Cîrtoaje, 2020)

Solution. The proof follows the same way as the proof of the preceding P 2.92.
Write the inequality as E(a, b, c)≥ 0, where

E(a, b, c) =
p

a2 + b2 + c2 −
a+ b+ c
p

3
−

√

√ 1
a2
+

1
b2
+

1
c2
+

1
p

3

�

1
a
+

1
b
+

1
c

�

,

and show that
E(a, b, c)≥ E(a, x , x)≥ 0,

where

x =

√

√ b2 + c2

2
≥ b, a2 x ≥ 1, x ≥ 1.

Write the inequality E(a, b, c)≥ E(a, x , x) it in the form

A+ B ≥ C ,
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where

A=
2x − b− c
p

3
=

(b− c)2
p

3 (2x + b+ c)
,

B =
1
p

3

�

1
b
+

1
c
−

2
x

�

=
(b− c)2(b2 + c2 + 4bc)

2
p

3 b2c2 x2
�

1
b +

1
c +

2
x

� ,

C =

√

√ 1
a2
+

1
b2
+

1
c2
−

√

√ 1
a2
+

2
x2

=
(b2 − c2)2

2b2c2 x2
·

1
q

1
a2 + 1

b2 + 1
c2 +

q

1
a2 + 2

x2

≤
p

3(b2 − c2)2

2b2c2 x2
·

1
�

1
a +

1
b +

1
c

�

+
�

1
a +

2
x

�

≤
p

3(b2 − c2)2

2b2c2 x2
·

1
3
b +

1
c +

2
x

.

Thus, we need to show that

1
2x + b+ c

+
b2 + c2 + 4bc

2b2c2 x2
�

1
b +

1
c +

2
x

� ≥
3(b+ c)2

2b2c2 x2
·

1
3
b +

1
c +

2
x

.

Since
b2 x ≥ a2 x ≥ 1,

it suffices to prove the homogeneous inequality

1
(b2 x)3/2(2x + b+ c)

+
b2 + c2 + 4bc

2b2c2 x2
�

1
b +

1
c +

2
x

� ≥
3(b+ c)2

2b2c2 x2
·

1
3
b +

1
c +

2
x

.

Since

2
�

3
b
+

1
c
+

2
x

�

− 3
�

1
b
+

1
c
+

2
x

�

=
3
b
−

2
c
−

2
x
≥ 0,

it is enough to show that

1
(b2 x)2/3(2x + b+ c)

+
b2 + c2 + 4bc

2b2c2 x2
�

1
b +

1
c +

2
x

� ≥
2(b+ c)2

2b2c2 x2
·

1
1
b +

1
c +

2
x

,

that is
1

(b2 x)2/3(2x + b+ c)
≥

1
b2c2

·
1

1
b +

1
c +

2
x

,

c
�

b+ c +
2bc

x

�

≥ b1/3
�

2x5/3 + (b+ c)x2/3
�

.

Since x ≤ c, it suffices to show that

c
�

b+ c +
2bc

c

�

≥ b1/3
�

2cx2/3 + (b+ c)x2/3
�

,
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that is
c(3b+ c)≥ (b+ 3c)(bx2)1/3.

Due to homogeneity, we may set c = 1, when 0< b ≤ 1 and

x =

√

√ b2 + 1
2

.

Thus, we need to show that

3b+ 1≥ (b+ 3)
3

√

√ b3 + b
2

,

which is true if
2(3b+ 1)3 ≥ b(b2 + 1)(b+ 3)3.

Since
(b+ 3)3 = b3 + 39b2 + 27b+ 27≤ 37b+ 27≤ 32(b+ 1),

it suffices to sow that
(3b+ 1)3 ≥ 16(b2 + 1)(b+ 1),

which is equivalent to

1− 7b+ 11b2 + 11b3 − 16b4 ≥ 0,

(1− b)(1− 6b+ 5b2 + 16b3)≥ 0.

This is true because

1− 6b+ 5b2 + 16b3 = (1− 4b)2 + b(2− 11b+ 16b2)> 0.

To complete the proof, we need to show that E(a, x , x) ≥ 0 for a2 x ≥ 1, x ≥ a.
This inequality was proved at P 2.91.

The equality occurs for a = b = c ≥ 1.

Remark. Since a2(b+ c)≥ 1 yields a4(b2+ c2)≥ 2, the inequality in P 2.92 follows
from the inequality in P 2.93.

P 2.94. Let

F(a, b, c) =
3
p

abc −
3

1
a +

1
b +

1
c

,

where a, b, c are positive real numbers such that

a4 b7c7 ≥ 1, a ≥ b ≥ c.

Then,

F(a, b, c)≥ F
�

1
a

,
1
b

,
1
c

�

.

(Vasile Cîrtoaje and Vasile Mircea Popa, 2019)
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Solution. By the AM-GM inequality, both sides of the inequality are nonnegative.
Denote

x =
p

bc.

We have
a ≥ 1, x ≤ a, a2 x7 ≥ 1.

From
x ≥

1
a2/7
≥

1
a1/2

,

it follows that
a ≥

1
x2

.

Write the inequality as E(a, b, c)≥ 0, where

E(a, b, c) =
3
p

abc −
3

1
a +

1
b +

1
c

−
1

3pabc
+

3
a+ b+ c

,

and prove that
E(a, b, c)≥ E(a, x , x)≥ 0.

We will show that the left inequality is true for a ≥ 1 and a ≥
1
x2

. Write the

inequality as follows

1
a+ b+ c

−
1

1
a +

1
b +

1
c

≥
1

a+ 2
p

bc
−

1
1
a +

2p
bc

,

1
1
a +

2p
bc

−
1

1
a +

1
b +

1
c

≥
1

a+ 2
p

bc
−

1
a+ b+ c

,

�

1p
b
− 1p

c

�2

�

1
a +

2p
bc

�

�

1
a +

1
b +

1
c

�

≥
(
p

b−
p

c)2

(a+ 2
p

bc)(a+ b+ c)
.

After dividing by (
p

b−
p

c)2, we need to show that

(a+ 2x)(a+ b+ c)≥ x2
�

1
a
+

2
x

��

1
a
+

b+ c
x2

�

. (*)

Write this inequality as
A(b+ c) + B ≥ 0,

where

A= a+ 2x −
1
a
−

2
x

, B = a2 + 2ax −
x2

a2
−

2x
a

.

Clearly, A≥ 0 for x ≥ 1. Also,A≥ 0 for x ≤ 1, because

A≥
1
x2
+ 2x − x2 −

2
x
=
(1− x)3(1+ x)

x2
≥ 0 .



416 Vasile Cîrtoaje

Since A ≥ 0 and b + c ≥ 2
p

bc, it suffices to replace b + c in (*) with 2x . So, we
need to show that

(a+ 2x)(a+ 2x)≥ x2
�

1
a
+

2
x

��

1
a
+

2
x

�

,

which is equivalent to

a+ 2x ≥ x
�

1
a
+

2
x

�

,

a+ 2x ≥
x
a
+ 2.

For x ≥ 1, we have

a+ 2x −
x
a
− 2= a− 2+

�

2−
1
a

�

x ≥ a− 2+
�

2−
1
a

�

= a−
1
a
≥ 0 ,

and for x ≤ 1, we have

a+ 2x −
x
a
− 2≥

1
x2
+ 2x − x3 − 2=

(1− x)(1+ x − x2 + x3 + x4)
x2

≥ 0 .

Write the right inequality E(a, x , x)≥ 0, as follows

3
p

ax2 −
3ax

2a+ x
≥

1
3pax2

−
3

a+ 2x
.

Since a4/7 x2 ≥ 1, it suffices to prove the homogeneous inequality

3
p

ax2 −
3ax

2a+ x
≥
�

a4/7 x2
�7/9

�

1
3pax2

−
3

a+ 2x

�

.

Setting x = 1 and substituting

a = d9, d ≥ 1,

the inequality becomes

d3 −
3d9

2d9 + 1
≥ d4

�

1
d3
−

3
d9 + 2

�

,

d2(d3 − 1)2(2d3 + 1)
2d9 + 1

≥
(d3 − 1)2(d3 + 2)

d9 + 2
.

Thus, we need to show that

d2(2d3 + 1)(d9 + 2)≥ (d3 + 2)(2d9 + 1) ,

that is
2(d12 + 1)(d2 − 1) + d3(d8 − 1)− 4d5(d4 − 1)≥ 0 ,
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(d2 − 1)A≥ 0,

where
A= 2(d12 + 1) + d3(d6 + d4 + d2 + 1)− 4d5(d2 + 1)

= 2d7(d5 − 1) + d7(d2 − 1)− 3d3(d2 − 1)− 2(d3 − 1)

≥ 2d(d5 − 1) + (d2 − 1)− 3d3(d2 − 1)− 2(d3 − 1) = (d − 1)B ,

where

B = 2d(d4 + d3 + d2 + d + 1) + (d + 1)− 3d3(d + 1)− 2(d2 + d + 1)

= 2d5 − d4 − d3 + d − 1= (d − 1)(2d4 + d3 + 1)≥ 0 .

The equality holds for a = b = c ≥ 1.

Remark. The inequality is true in the particular case a, b, c ≥ 1, which implies
a4 b7c7 ≥ 1.

P 2.95. Let
F(a, b, c, d) =

4
p

abcd −
4

1
a +

1
b +

1
c +

1
d

,

where a, b, c, d are positive real numbers. If ab ≥ 1 and cd ≥ 1, then then

F(a, b, c, d)≥ F
�

1
a

,
1
b

,
1
c

,
1
d

�

.

(Vasile Cîrtoaje, 2019)

Solution. Write the inequality as E(a, b, c, d)≥ 0, where

E(a, b, c, d) =
4
p

abcd −
4

1
a +

1
b +

1
c +

1
d

−
1

4pabcd
+

4
a+ b+ c + d

,

assume that
ab ≥ cd ≥ 1,

and show that

E(a, b, c, d)≥ E(a, b,
p

cd,
p

cd)≥ E(
p

ab,
p

ab,
p

cd,
p

cd)≥ 0.

Since

1−
p

cd
ab
≥ 1−

cd
ab
≥ 0

and
p

cd − 1≥ 0,
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the left inequality E(a, b, c, d) ≥ E(a, b,
p

cd,
p

cd) follows from Lemma below,
point (a). The inequality E(a, b,

p
cd,
p

cd)≥ E(
p

ab,
p

ab,
p

cd,
p

cd) follows also
from Lemma below by replacing c and d with

p
cd. We only need to show that

(
p

cd +
p

cd)

�

1−
p

ab
cd

�

+ 2(
p

ab− 1)≥ 0,

which is equivalent to the obvious inequality

(
p

cd − 1)

�√

√ab
cd
+ 1

�

≥ 0.

The inequality E(
p

ab,
p

ab,
p

cd,
p

cd)≥ 0, is true if the inequality E(a, b, c, d)≥ 0
holds for a = b = x2 and c = d = y2, where x ≥ 1, y ≥ 1. We need to show that

x y −
4

2
x2 + 2

y2

≥
1

x y
−

4
2x2 + 2y2

,

that is
(x2 y2 − 1)(x − y)2 ≥ 0.

This completes the proof. The equality holds for a = b = c = d ≥ 1, and for
ab = cd = 1.

Lemma. Let

E(a, b, c, d) =
4
p

abcd −
4

1
a +

1
b +

1
c +

1
d

−
1

4pabcd
+

4
a+ b+ c + d

,

where a, b, c, d are positive real numbers such that ab ≥ 1 and cd ≥ 1.

(a) If

(a+ b)

�

1−
p

cd
ab

�

+ 2(
p

cd − 1)≥ 0,

then
E(a, b, c, d)≥ E(a, b,

p

cd,
p

cd).

(b) If

(c + d)

�

1−
p

ab
cd

�

+ 2(
p

ab− 1)≥ 0,

then
E(a, b, c, d)≥ E(

p

ab,
p

ab, c, d).

Proof. (a) Write the inequality E(a, b, c, d)≥ E(a, b,
p

cd,
p

cd) as follows:

1
a+ b+ c + d

−
1

1
a +

1
b +

1
c +

1
d

≥
1

a+ b+ 2
p

cd
−

1
1
a +

1
b +

2p
cd

,
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1
1
a +

1
b +

2p
cd

−
1

1
a +

1
b +

1
c +

1
d

≥
1

a+ b+ 2
p

cd
−

1
a+ b+ c + d

,

(
p

c −
p

d)2

cd
�

1
a +

1
b +

2p
cd

�

�

1
a +

1
b +

1
c +

1
d

�

≥
(
p

c −
p

d)2

(a+ b+ 2
p

cd)(a+ b+ c + d)
,

After dividing by (
p

c −
p

d)2, we need to show that

(a+ b+ 2
p

cd)(a+ b+ c + d)≥
�

a+ b
ab

cd + 2
p

cd
��

a+ b
ab

+
c + d
cd

�

, (*)

that is
A(c + d) + B ≥ 0,

where

A= a+ b+
p

cd −
a+ b
ab
−

2
p

cd
= (a+ b)

�

1−
1

ab

�

+ 2
�

p

cd −
1
p

cd

�

≥ 0,

B = (a+ b)

�

a+ b
a2 b2

cd +
2
p

cd
ab

− a− b− 2
p

cd

�

.

Since
A(c + d) + B ≥ 2A

p

cd + b,

we need to show that 2A
p

cd + b ≥ 0. This is equivalent to (*) if the sum c + d is
replaced by 2

p
cd:

(a+ b+ 2
p

cd)(a+ b+ 2
p

cd)≥
�

a+ b
ab

cd + 2
p

cd
�

�

a+ b
ab

+
2
p

cd
cd

�

,

that is

(a+ b+ 2
p

cd)2 ≥
�

a+ b
ab

cd + 2
p

cd
�2

,

a+ b+ 2
p

cd ≥
a+ b
ab

cd + 2
p

cd,

(a+ b)

�

1−
p

cd
ab

�

+ 2(
p

cd − 1)≥ 0.

The last inequality is true by hypothesis.

(b) Due to symmetry, this follows from (a).

Remark. The inequality is true in the particular case a, b, c, d ≥ 1, which implies
ab ≥ 1 and cd ≥ 1.
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P 2.96. Let a, b, c, d be positive real numbers such that a2+ b2+ c2+ d2 = 1. Prove
that p

1− a+
p

1− b+
p

1− c +
p

1− d ≥
p

a+
p

b+
p

c +
p

d.

(Vasile Cîrtoaje, 2007)

First Solution. We can obtain the desired inequality by summing the inequalities

p
1− a+

p

1− b ≥
p

c +
p

d,

p
1− c +

p

1− d ≥
p

a+
p

b.

Since p
1− a+

p

1− b ≥ 2 4
Æ

(1− a)(1− b)

and
p

c +
p

d ≤ 2

√

√ c + d
2
≤ 2

4

√

√ c2 + d2

2
,

the former inequality holds if

(1− a)(1− b)≥
c2 + d2

2
.

Indeed,

2(1− a)(1− b)− c2 − d2 = 2(1− a)(1− b) + a2 + b2 − 1= (a+ b− 1)2 ≥ 0.

Similarly, we can prove the second inequality. The equality holds for

a = b = c = d =
1
2

.

Second Solution. We can obtain the desired inequality by summing the inequalities

p
1− a−

p
a ≥

1

2
p

2
(1− 4a2),

p

1− b−
p

b ≥
1

2
p

2
(1− 4b2),

p
1− c −

p
c ≥

1

2
p

2
(1− 4c2),

p

1− d −
p

d ≥
1

2
p

2
(1− 4d2).

To prove the first inequality, we write it as

1− 2a
p

1− a+
p

a
≥

1

2
p

2
(1− 2a)(1+ 2a).

Case 1: 0< a ≤
1
2

. We need to show that

2
p

2≥ (1+ 2a)(
p

1− a+
p

a).



Symmetric Nonrational Inequalities 421

Since
p

1− a+
p

a ≤
p

2[(1− a) + a] =
p

2, we have

2
p

2− (1+ 2a)(
p

1− a+
p

a)≥
p

2(1− 2a)≥ 0.

Case 2:
1
2
≤ a < 1. We need to show that

2
p

2≤ (1+ 2a)(
p

1− a+
p

a).

Since 1+ 2a ≥ 2
p

2a, it suffices to prove that

1≤
Æ

a(1− a) + a.

Indeed,

1− a−
Æ

a(1− a) =
p

1− a (
p

1− a−
p

a) =
p

1− a (1− 2a)
p

1− a+
p

a
≤ 0.

P 2.97. Let a, b, c, d be positive real numbers. Prove that

A+ 2≥
p

B + 4,

where

A= (a+ b+ c + d)
�

1
a
+

1
b
+

1
c
+

1
d

�

− 16,

B = (a2 + b2 + c2 + d2)
�

1
a2
+

1
b2
+

1
c2
+

1
d2

�

− 16.

(Vasile Cîrtoaje, 2004)

Solution. By squaring, the inequality becomes

A2 + 4A≥ B.

Let us denote

f (x , y, z) =
x
y
+

y
z
+

z
x
− 3, F(x , y, z) =

x2

y2
+

y2

z2
+

z2

x2
− 3,

where x , y, z > 0. By the AM-GM inequality, it follows that

f (x , y, z)≥ 0.

We can check that

A= f (a, b, c) + f (b, d, c) + f (c, d, a) + f (d, b, a)
= f (a, c, b) + f (b, c, d) + f (c, a, d) + f (d, a, b)



422 Vasile Cîrtoaje

and
B = F(a, b, c) + F(b, d, c) + F(c, d, a) + F(d, b, a).

Since

F(x , y, z) = [ f (x , y, z) + 3]2 − 2[ f (x , z, y) + 3]− 3

= f 2(x , y, z) + 6 f (x , y, z)− 2 f (x , z, y),

we get
B = f 2(a, b, c) + f 2(b, d, c) + f 2(c, d, a) + f 2(d, b, a) + 4A,

4A− B = − f 2(a, b, c)− f 2(b, d, c)− f 2(c, d, a)− f 2(d, b, a).

Therefore,

A2 + 4A− B = [ f (a, b, c) + f (b, d, c) + f (c, d, a) + f (d, b, a)]2

− f 2(a, b, c)− f 2(b, d, c)− f 2(c, d, a)− f 2(d, b, a)≥ 0.

The equality holds for a = b = c = d.

P 2.98. Let a1, a2, . . . , an be nonnegative real numbers such that a1+a2+ · · ·+an = 1.
Prove that

p

3a1 + 1+
p

3a2 + 1+ · · ·+
p

3an + 1≥ n+ 1.

First Solution. Without loss of generality, assume that a1 = max{a1, a2, . . . , an}.
Write the inequality as follows:

(
p

3a1 + 1− 2) + (
p

3a2 + 1− 1) + · · ·+ (
p

3an + 1− 1)≥ 0,

a1 − 1
p

3a1 + 1+ 2
+

a2
p

3a2 + 1+ 1
+ · · ·+

an
p

3an + 1+ 1
≥ 0,

a2
p

3a2 + 1+ 1
+ · · ·+

an
p

3an + 1+ 1
≥

a2 + · · ·+ an
p

3a1 + 1+ 2
,

a2

�

1
p

3a2 + 1+ 1
−

1
p

3a1 + 1+ 2

�

+· · ·+an

�

1
p

3an + 1+ 1
−

1
p

3a1 + 1+ 2

�

≥ 0.

The last inequality is clearly true. The equality holds for a1 = 1 and a2 = · · ·= an =
0 (or any cyclic permutation).

Second Solution. We use the induction method. For n = 1, the inequality is an
equality. We claim that

p

3a1 + 1+
p

3an + 1≥
Æ

3(a1 + an) + 1+ 1.
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By squaring, this inequality becomes
Æ

(3a1 + 1)(an + 1)≥
Æ

3(a1 + an) + 1,

which is equivalent to a1an ≥ 0. Thus, to prove the original inequality, it suffices
to show that

Æ

3(a1 + an) + 1+
p

3a2 + 1+ · · ·+
p

3an−1 + 1≥ n.

Using the substitution b1 = a1 + an and b2 = a2, . . . , bn−1 = an−1, this inequality
turns into

Æ

3b1 + 1+
Æ

3b2 + 1+ · · ·+
Æ

3bn−1 + 1≥ n

for b1 + b2 + · · ·+ bn−1 = 1. Clearly, this is true by the induction hypothesis.

P 2.99. Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an = 1. Prove
that

1
p

1+ (n2 − 1)a1

+
1

p

1+ (n2 − 1)a2

+ · · ·+
1

p

1+ (n2 − 1)an

≥ 1.

First Solution. For the sake of contradiction, assume that

1
p

1+ (n2 − 1)a1

+
1

p

1+ (n2 − 1)a2

+ · · ·+
1

p

1+ (n2 − 1)an

< 1.

It suffices to show that a1a2 · · · an > 1. Let

x i =
1

p

1+ (n2 − 1)ai

, 0< x i < 1, i = 1, 2, · · · , n.

Since ai =
1− x2

i

(n2 − 1)x2
i

for all i, we need to show that

x1 + x2 + · · ·+ xn < 1

implies
(1− x2

1)(1− x2
2) · · · (1− x2

n)> (n
2 − 1)n x2

1 x2
2 · · · x

2
n.

Using the AM-GM inequality gives

∏

(1− x2
1)>

∏
h
�∑

x1

�2
− x2

1

i

=
∏

(x2 + · · ·+ xn)(2x1 + x2 + · · ·+ xn)

≥ (n2 − 1)n
∏�

n−1
p

x2 · · · xn ·
n+1
q

x2
1 x2 · · · xn

�

= (n2 − 1)n x2
1 x2

2 · · · x
2
n.
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The equality holds for a1 = a2 = · · ·= an = 1.

Second Solution. We will show that

1
p

1+ (n2 − 1)x
≥

1
1+ (n− 1)x k

for x > 0 and k =
n+ 1
2n

. By squaring, the inequality becomes

(n− 1)x2k−1 + 2x k−1 ≥ n+ 1.

Applying the AM-GM inequality, we get

(n− 1)x2k−1 + 2x k−1 ≥ (n+ 1)
n+1
p

x (n−1)(2k−1) · x2(k−1) = n+ 1.

Using this result, it suffices to show that

1

1+ (n− 1)ak
1

+
1

1+ (n− 1)ak
2

+ · · ·+
1

1+ (n− 1)ak
n

≥ 1.

Since ak
1ak

2 · · · a
k
n = 1, this inequality follows immediately from P 1.200-(a).

P 2.100. Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an = 1. Prove
that

n
∑

i=1

1

1+
p

1+ 4n(n− 1)ai

≥
1
2

.

First Solution. Write the inequality as follows:

n
∑

i=1

p

1+ 4n(n− 1)ai − 1

ai
≥ 2n(n− 1),

n
∑

i=1

√

√

√
1
a2

i

+
4n(n− 1)

ai
≥ 2n(n− 1) +

∑ 1
ai

.

By squaring, the inequality becomes

∑

1≤i< j≤n

√

√

√

�

1
a2

i

+
4n(n− 1)

ai

�

�

1
a2

j

+
4n(n− 1)

a j

�

≥ 2n2(n− 1)2 +
∑

1≤i< j≤n

1
aia j

.

The Cauchy-Schwarz inequality gives
√

√

√

�

1
a2

i

+
4n(n− 1)

ai

�

�

1
a2

j

+
4n(n− 1)

a j

�

≥
1

aia j
+

4n(n− 1)
p

aia j
.
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Thus, it suffices to show that

∑

1≤i< j≤n

1
p

aia j
≥

n(n− 1)
2

,

which follows immediately from the AM-GM inequality. The equality holds for
a1 = a2 = · · ·= an = 1.

Second Solution. For the sake of contradiction, assume that

n
∑

i=1

1

1+
p

1+ 4n(n− 1)ai

<
1
2

.

It suffices to show that a1a2 · · · an > 1. Using the substitution

x i

2n
=

1

1+
p

1+ 4n(n− 1)ai

, i = 1,2, · · · , n,

which yields

ai =
n− x i

(n− 1)x2
i

, 0< x i < n, i = 1, 2, · · · , n,

we need to show that
x1 + x2 + · · ·+ xn < n

implies
(n− x1)(n− x2) · · · (n− xn)> (n− 1)n x2

1 x2
2 · · · x

2
n.

By the AM-GM inequality, we have

x1 x2 · · · xn ≤
� x1 + x2 + · · ·+ xn

n

�n

< 1

and

n− x i > (x1 + x2 + · · ·+ xn)− x i ≥ (n− 1)
n−1

√

√ x1 x2 · · · xn

x i
, i = 1, 2, · · · , n.

Therefore, we get

(n− x1)(n− x2) · · · (n− xn)> (n− 1)n x1 x2 · · · xn > (n− 1)n x2
1 x2

2 · · · x
2
n.

P 2.101. If a1, a2, . . . , an are positive real numbers such that a1a2 · · · an = 1, then

a1 + a2 + · · ·+ an ≥ n− 1+

√

√a2
1 + a2

2 + · · ·+ a2
n

n
.
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Solution. Let us denote

a =
a1 + a2 + · · ·+ an

n
, b =

√

√

√
2
∑

1≤i< j≤n aia j

n(n− 1)
,

where a ≥ 1 and b ≥ 1 (by the AM-GM inequality). We need to show that

na− n+ 1≥

√

√n2a2 − n(n− 1)b2

n
.

By squaring, this inequality becomes

(n− 1)[n(a− 1)2 + b2 − 1]≥ 0,

which is clearly true. The equality holds for a1 = a2 = · · ·= an = 1.

P 2.102. If a1, a2, . . . , an are positive real numbers such that a1a2 · · · an = 1, then
q

(n− 1)(a2
1 + a2

2 + · · ·+ a2
n) + n−

Æ

n(n− 1)≥ a1 + a2 + · · ·+ an.

(Vasile Cîrtoaje, 2006)

Solution. We use the induction method. For n = 2, the inequality is equivalent to
the obvious inequality

a1 +
1
a1
≥ 2.

Assume now that the inequality holds for n− 1 numbers, n ≥ 3, and prove that it
holds also for n numbers. Let a1 =min{a1, a2, . . . , an}, and denote

x =
a2 + a3 + · · ·+ an

n− 1
, y = n−1

p

a2a3 · · · an ,

f (a1, a2, . . . , an) =
q

(n− 1)(a2
1 + a2

2 + · · ·+ a2
n)+n−

Æ

n(n− 1)−(a1+a2+· · ·+an).

By the AM-GM inequality, we have x ≥ y . We will show that

f (a1, a2, . . . , an)≥ f (a1, y, · · · , y)≥ 0. (*)

Write the left inequality as
q

a2
1 + a2

2 + · · ·+ a2
n −

q

a2
1 + (n− 1)y2 ≥

p
n− 1 (x − y).

To prove this inequality, we use the induction hypothesis, written in the homoge-
neous form

q

(n− 2)(a2
2 + a2

3 + · · ·+ a2
n) +

�

n− 1−
Æ

(n− 1)(n− 2)
�

y ≥ (n− 1)x ,
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which is equivalent to
a2

2 + · · ·+ a2
n ≥ (n− 1)A2,

where

A= kx − (k− 1)y, k =

√

√n− 1
n− 2

.

So, we need to prove that
q

a2
1 + (n− 1)A2 −

q

a2
1 + (n− 1)y2 ≥

p
n− 1 (x − y).

Write this inequality as

A2 − y2

Æ

a2
1 + (n− 1)A2 +

Æ

a2
1 + (n− 1)y2

≥
x − y
p

n− 1
.

Since x ≥ y and

A2 − y2 = k(x − y)[kx − (k− 2)y] = k(x − y)(A+ y),

we need to show that

k(A+ y)
Æ

a2
1 + (n− 1)A2 +

Æ

a2
1 + (n− 1)y2

≥
1

p
n− 1

.

In addition, since a1 ≤ y , it suffices to show that

k(A+ y)
p

y2 + (n− 1)A2 +pny
≥

1
p

n− 1
.

From

kA− y = k2 x − (k2 − k+ 1)y ≥ k2 y − (k2 − k+ 1)y = (k− 1)y > 0,

it follows that

y2 + (n− 1)A2 < k2A2 + (n− 1)2 = (n− 1)k2A2.

Therefore, it is enough to prove that

k(A+ y)
p

n− 1 kA+
p

n y
≥

1
p

n− 1
,

which is equivalent to
�

k
p

n− 1−
p

n
�

y ≥ 0.

This is true since

k
p

n− 1−
p

n=
n− 1
p

n− 2
−
p

n=
1

n− 1+
p

n(n− 2)
> 0.

The proof is completed. The equality holds for a1 = a2 = · · ·= an = 1.
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P 2.103. Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an ≥ 1. If k > 1,
then

∑ ak
1

ak
1 + a2 + · · ·+ an

≥ 1.

(Vasile Cîrtoaje, 2006)

First Solution. Let us denote r = n
p

a1a2 · · · an and bi = ai/r for i = 1, 2, · · · , n.
Note that r ≥ 1 and b1 b2 · · · bn = 1. The desired inequality becomes

∑ bk
1

bk
1 + (b2 + · · ·+ bn)/rk−1

≥ 1,

and we see that it suffices to prove it for r = 1; that is, for a1a2 · · · an = 1. On this
hypothesis, we will show that there exists a positive number p, 1 < p < k, such
that

ak
1

ak
1 + a2 + · · ·+ an

≥
ap

1

ap
1 + ap

2 + · · ·+ ap
n
.

Clearly, by adding this inequality and the analogous inequalities for a2, . . . , an, we
get the desired inequality. Write the claimed inequality as

ap
2 + · · ·+ ap

n ≥ (a2 · · · an)
k−p(a2 + · · ·+ an).

Based on the AM-GM inequality

a2 · · · an ≤
�a2 + · · ·+ an

n− 1

�n−1

,

it suffices to show that

ap
2 + · · ·+ ap

n ≥ (n− 1)
�a2 + · · ·+ an

n− 1

�(n−1)(k−p)+1

.

Choosing

p =
(n− 1)k+ 1

n
, 1< p < k,

the inequality becomes

ap
2 + · · ·+ ap

n ≥ (n− 1)
�a2 + · · ·+ an

n− 1

�p

,

which is just Jensen’s inequality applied to the convex function f (x) = x p. The
equality holds for a1 = a2 = · · ·= an = 1.

Second Solution. By the Cauchy-Schwarz inequality, we have

∑ ak
1

ak
1 + a2 + · · ·+ an

≥

�

∑

a
k+1

2
1

�2

∑

a1(ak
1 + a2 + · · ·+ an)

=

∑

ak+1
1 + 2

∑

1≤i< j≤n(aia j)
k+1

2

∑

ak+1
1 + 2

∑

1≤i< j≤n aia j

.
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Thus, it suffices to show that
∑

1≤i< j≤n

(aia j)
k+1

2 ≥
∑

1≤i< j≤n

aia j.

Jensen’s inequality applied to the convex function f (x) = x
k+1

2 yields

∑

1≤i< j≤n

(aia j)
k+1

2 ≥
n(n− 1)

2

�

2
∑

1≤i< j≤n aia j

n(n− 1)

�
k+1

2

.

On the other hand, by the AM-GM inequality, we get

2
n(n− 1)

∑

1≤i< j≤n

aia j ≥ (a1a2 · · · an)
2
n ≥ 1.

Therefore,

�

2
∑

1≤i< j≤n aia j

n(n− 1)

�
k+1

2

=

�

2
∑

1≤i< j≤n aia j

n(n− 1)

�
k−1

2

·
2
∑

1≤i< j≤n aia j

n(n− 1)
≥

2
∑

1≤i< j≤n aia j

n(n− 1)
.

hence
∑

1≤i< j≤n

(aia j)
k+1

2 ≥
n(n− 1)

2
·

2
∑

1≤i< j≤n aia j

n(n− 1)
=

∑

1≤i< j≤n

aia j.

P 2.104. Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an ≥ 1. If

−2
n− 2

≤ k < 1,

then
∑ ak

1

ak
1 + a2 + · · ·+ an

≤ 1.

(Vasile Cîrtoaje, 2006)

Solution. Let us denote r = n
p

a1a2 · · · an and bi = ai/r for i = 1, 2, · · · , n. Clearly,
r ≥ 1 and b1 b2 · · · bn = 1. The desired inequality becomes

∑ bk
1

bk
1 + (b2 + · · ·+ bn)r1−k

≤ 1,

and we see that it suffices to prove it for r = 1; that is, for a1a2 · · · an = 1. On this
hypothesis, we will show that there exists a real number p such that

ak
1

ak
1 + a2 + · · ·+ an

≤
ap

1

ap
1 + ap

2 + · · ·+ ap
n
.
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By adding this inequality and the analogous inequalities for a2, . . . , an, we get the
desired inequality. Write the claimed inequality as

a2 + · · ·+ an ≥ (a
p
2 + · · ·+ ap

n)a
k−p
1 ,

a2 + · · ·+ an ≥ (a
p
2 + · · ·+ ap

n)(a2 · · · an)
p−k.

This inequality is homogeneous when 1= p+ (n− 1)(p− k); that is, for

p =
(n− 1)k+ 1

n
,
−1

n− 2
≤ p < 1.

Rewrite the homogeneous inequality as

a2 + · · ·+ an ≥ (a
p
2 + · · ·+ ap

n)(a2 · · · an)
1−p
n−1 . (*)

To prove it, we use the weighted AM-GM inequality

ma2 + a3 + · · ·+ an ≥ (m+ n− 2)a
m

m+n−2
2 (a3 · · · an)

1
m+n−2 , m≥ 0,

which can be rewritten as

ma2 + a3 + · · ·+ an ≥ (m+ n− 2)a
m−1

m+n−2
2 (a2 · · · an)

1
m+n−2 .

Choosing m such that
m− 1

m+ n− 2
= p, i.e.

m=
1+ (n− 2)p

1− p
≥ 0,

we get
1+ (n− 2)p

1− p
a2 + a3 + · · ·+ an ≥

n− 1
1− p

ap
2(a2a3 · · · an)

1−p
n−1 .

Adding this inequality and the analogous inequalities for a3, · · · , an yields the in-
equality (*). Thus, the proof is completed. The equality holds for a1 = a2 = · · · =
an = 1.

P 2.105. Let a1, a2, . . . , an be nonnegative real numbers such that a1+a2+· · ·+an ≥ n.
If 1< k ≤ n+ 1, then

∑ a1

ak
1 + a2 + · · ·+ an

≤ 1.

(Vasile Cîrtoaje, 2006)
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Solution. Using the substitutions

s =
a1 + a2 + · · ·+ an

n
,

and
x1 =

a1

s
, x2 =

a2

s
, · · · , xn =

an

s
,

the desired inequality becomes

x1

sk−1 x k
1 + x2 + · · ·+ xn

+ · · ·+
xn

x1 + x2 + · · ·+ sk−1 x k
n

≤ 1,

where s ≥ 1 and x1 + x2 + · · ·+ xn = n. Clearly, if this inequality holds for s = 1,
then it holds for any s ≥ 1. Therefore, we only need to consider the case s = 1,
when a1 + a2 + · · ·+ an = n, and the desired inequality is equivalent to

a1

ak
1 − a1 + n

+
a2

ak
2 − a2 + n

+ · · ·+
an

ak
n − an + n

≤ 1.

By Bernoulli’s inequality, we have

ak
1 − a1 + n≥ 1+ k(a1 − 1)− a1 + n= n− k+ 1+ (k− 1)a1 ≥ 0.

Consequently, it suffices to prove that

n
∑

i=1

ai

n− k+ 1+ (k− 1)ai
≤ 1.

For k = n+1, this inequality is an equality. Otherwise, for 1< k < n+1, we rewrite
the inequality as

n
∑

i=1

1
n− k+ 1+ (k− 1)ai

≥ 1,

which follows from the AM-HM inequality as follows:

n
∑

i=1

1
n− k+ 1+ (k− 1)ai

≥
n2

∑n
i=1[n− k+ 1+ (k− 1)ai]

= 1.

The equality holds for a1 = a2 = · · ·= an = 1.

P 2.106. Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an ≥ 1. If k > 1,
then

∑ a1

ak
1 + a2 + · · ·+ an

≤ 1.

(Vasile Cîrtoaje, 2006)
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Solution. Consider two cases: 1< k ≤ n+ 1 and k ≥ n−
1

n− 1
.

Case 1: 1< k ≤ n+ 1. By the AM-GM inequality, we have

a1 + a2 + · · ·+ an ≥ n n
p

a1a2 · · · an ≥ n.

Thus, the desired inequality follows from the preceding P 2.105.

Case 2: k ≥ n−
1

n− 1
. Let r = n

p
a1a2 · · · an and bi = ai/r for i = 1,2, · · · , n. Note

that r ≥ 1 and b1 b2 · · · bn = 1. The desired inequality can be rewritten as

∑ b1

rk−1 bk
1 + b2 + · · ·+ bn

≤ 1.

Obviously, it suffices to prove this inequality for r = 1; that is, for

a1a2 · · · an = 1.

On this hypothesis, it suffices to show that there exists a real p such that

(n− 1)a1

ak
1 + a2 + · · ·+ an

+
ap

1

ap
1 + ap

2 + · · ·+ ap
n
≤ 1.

Then, adding this inequality and the analogous inequalities for a2, · · · , an yields
the desired inequality. Let us denote t = n−1

p
a2 · · · an. By the AM-GM inequality, we

have
a2 + · · ·+ an ≥ (n− 1)t, ap

2 + · · ·+ ap
n ≥ (n− 1)t p.

Thus, it suffices to show that

(n− 1)a1

ak
1 + (n− 1)t

+
ap

1

ap
1 + (n− 1)t p

≤ 1.

Since a1 = 1/tn−1, this inequality is equivalent to

(n− 1)tq(tn − 1)− (tq−np − 1)≥ 0,

where
q = (n− 1)(k− 1).

Choose p such that (n− 1)n= q− np, i.e.

p =
(n− 1)(k− n− 1)

n
.

The inequality becomes as follows:

(n− 1)tq(tn − 1)−
�

tn(n−1) − 1
�

≥ 0,
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(n− 1)tq(tn − 1)− (tn − 1)(tn2−2n + tn2−3n + · · ·+ 1)≥ 0,

(tn − 1)[(tq − tn2−2n) + (tq − tn2−3n) + · · ·+ (tq − 1)]≥ 0.

The last inequality is clearly true for q ≥ n2 − 2n; that is, for k ≥ n−
1

n− 1
.

The equality holds for a1 = a2 = · · ·= an = 1.

P 2.107. Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an ≥ 1. If

−1−
2

n− 2
≤ k < 1,

then
∑ a1

ak
1 + a2 + · · ·+ an

≥ 1.

(Vasile Cîrtoaje, 2006)

Solution. Let us denote r = n
p

a1a2 · · · an and bi = ai/r for i = 1, 2, · · · , n. Note
that r ≥ 1 and b1 b2 · · · bn = 1. The desired inequality becomes

∑ b1

bk
1/r1−k + b2 + · · ·+ bn

≥ 1,

and we see that it suffices to prove it for r = 1; that is, for a1a2 · · · an = 1. On this
hypothesis, by the Cauchy-Schwarz inequality, we have

∑ a1

ak
1 + a2 + · · ·+ an

≥

�∑

a1

�2

∑

a1(ak
1 + a2 + · · ·+ an)

=

�∑

a1

�2

∑

a1+k
1 +

�∑

a1

�2
−
∑

a2
1

.

Thus, we still have to show that
∑

a2
1 ≥

∑

a1+k
1 .

Case 1: −1≤ k < 1. Using Chebyshev’s inequality and the AM-GM inequality yields

∑

a2
1 ≥

1
n

�∑

a1−k
1

��∑

a1+k
1

�

≥ (a1a2 · · · an)
1−k

n

∑

a1+k
1 =

∑

a1+k
1 .

Case 2: −1−
2

n− 1
≤ k < −1. It is convenient to replace a1, a2, · · · , an by

a(n−1)/2
1 , a(n−1)/2

2 , · · · , a(n−1)/2
n ,

respectively. Thus, we need to show that a1a2 · · · an = 1 involves
∑

an−1
1 ≥

∑

aq
1,
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where

q =
(n− 1)(1+ k)

2
, −1≤ q < 0.

By the AM-GM inequality, we get

∑

an−1
1 =

∑ an−1
2 + · · ·+ an−1

n

n− 1
≥
∑

a2 · · · an =
∑ 1

a1
.

Thus, it suffice to show that
∑ 1

a1
≥
∑

aq
1.

By Chebyshev’s inequality and the AM-GM inequality, we have

∑ 1
a1
≥

1
n

�∑

a−1−q
1

��∑

aq
1

�

≥ (a1a2 · · · an)
−(1+q)/n

�∑

aq
1

�

=
∑

aq
1.

Thus, the proof is completed. The equality holds for a1 = a2 = · · ·= an = 1.

P 2.108. Let a1, a2, . . . , an be positive real numbers such that a1a2 · · · an = 1. If k ≥ 0,
then

∑ 1

ak
1 + a2 + · · ·+ an

≤ 1.

(Vasile Cîrtoaje, 2006)

Solution. Consider two cases: 0≤ k ≤ 1 and k ≥ 1.

Case 1: 0 ≤ k ≤ 1. By the Cauchy-Schwarz inequality and the AM-GM inequality,
we have

1

ak
1 + a2 + · · ·+ an

≤
a1−k

1 + 1+ · · ·+ 1
�p

a1 +
p

a2 + · · ·+
p

an

�2

=
a1−k

1 + n− 1
∑

a1 + 2
∑

1≤i< j≤n
p

aia j
≤

a1−k
1 + n− 1

∑

a1 + n(n− 1)
,

hence
∑ 1

ak
1 + a2 + · · ·+ an

≤

∑

a1−k
1 + n(n− 1)

∑

a1 + n(n− 1)
.

Therefore, it suffices to show that
∑

a1−k
1 ≤

∑

a1.

Indeed, by Chebyshev’s inequality and the AM-GM inequality, we have

∑

a1 =
∑

ak
1 ·a

1−k
1 ≥

1
n

�∑

ak
1

��∑

a1−k
1

�

≥ (a1a2 · · · an)
k/n
�∑

a1−k
1

�

=
∑

a1−k
1 .
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Case 2: k > 1. Write the inequality as

∑

�

n− 1

ak
1 + a2 + · · ·+ an

+
ap

1

ap
1 + ap

2 + · · ·+ ap
n
− 1

�

≤ 0,

where p > 0. It suffices to show that there exists a positive number p such that

n− 1

ak
1 + a2 + · · ·+ an

+
ap

1

ap
1 + ap

2 + · · ·+ ap
n
≤ 1.

Let
x = n−1

p

a1, x > 0.

By the AM-GM inequality, we have

a2 + · · ·+ an ≥ (n− 1) n−1
p

a2 · · · an =
n− 1
n−1
p

a1
=

n− 1
x

and
ap

2 + · · ·+ ap
n ≥

n−1
Æ

(a2 · · · an)p =
n− 1
n−1
Æ

ap
1

=
n− 1

x p
.

Thus, it is enough to show that

n− 1

x (n−1)k + n−1
x

+
x (n−1)p

x (n−1)p + n−1
x p

≤ 1,

which is equivalent to

x
x (n−1)k+1 + n− 1

≤
1

xnp + n− 1
,

x (n−1)k+1 − xnp+1 − (n− 1)(x − 1)≥ 0,

xnp+1
�

(x (n−1)k−np − 1
�

− (n− 1)(x − 1)≥ 0.

Choose p such that (n− 1)k− np = n− 1, i.e.

p =
(k− 1)(n− 1)

n
> 0.

The inequality becomes as follows:

xnp+1
�

(xn−1 − 1
�

− (n− 1)(x − 1)≥ 0,

(x − 1)
�

(xnp+n−1 − 1) + (xnp+n−2 − 1) + · · ·+ (xnp+1 − 1)
�

≥ 0.

Since the last inequality is obvious true, the proof is completed. The equality holds
for a1 = a2 = · · ·= an = 1.
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P 2.109. Let a1, a2, . . . , an be nonnegative real numbers such that a1+a2+· · ·+an ≤ n.
If 0≤ k < 1, then

1

ak
1 + a2 + · · ·+ an

+
1

a1 + ak
2 + · · ·+ an

+ · · ·+
1

a1 + a2 + · · ·+ ak
n

≥ 1.

Solution. By the AM-HM inequality

∑ 1

ak
1 + a2 + · · ·+ an

≥
n2

∑

(ak
1 + a2 + · · ·+ an)

=
n2

∑

ak
1 + (n− 1)

∑

a1

and Jensen’s inequality
∑

ak
1 ≤ n

�

1
n

∑

a1

�k

,

we get
∑ 1

ak
1 + a2 + · · ·+ an

≥
n2

n
�

1
n

∑

a1

�k
+ (n− 1)

∑

a1

≥ 1.

The equality holds for a1 = a2 = · · ·= an = 1.

P 2.110. Let a1, a2, . . . , an be positive real numbers. If k > 1, then

∑ ak
2 + ak

3 + · · ·+ ak
n

a2 + a3 + · · ·+ an
≤

n(ak
1 + ak

2 + · · ·+ ak
n)

a1 + a2 + · · ·+ an
.

(Wolfgang Berndt and Vasile Cîrtoaje, 2006)

Solution. Due to homogeneity, we may assume that a1 + a2 + ...+ an = 1. Write
the inequality as follows:

∑

�

1+
a1

a2 + a3 + · · ·+ an

�

(ak
2 + ak

3 + · · ·+ ak
n)≤ n(ak

1 + ak
2 + · · ·+ ak

n);

∑ a1(ak
2 + ak

3 + · · ·+ ak
n)

a2 + a3 + · · ·+ an
≤ ak

1 + ak
2 + · · ·+ ak

n;

∑

a1

�

ak−1
1 −

ak
2 + ak

3 + · · ·+ ak
n

a2 + a3 + · · ·+ an

�

≥ 0;

∑ a1a2(ak−1
1 − ak−1

2 ) + a1a3(ak−1
1 − ak−1

3 ) + · · ·+ a1an(ak−1
1 − ak−1

n )

a2 + a3 + · · ·+ an
≥ 0;

∑

1≤i< j≤n

aia j

�

ak−1
i − ak−1

j

1− ai
+

ak−1
j − ak−1

i

1− a j

�

≥ 0;
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∑

1≤i< j≤n

aia j(ak−1
i − ak−1

j )(ai − a j)

(1− ai)(1− a j)
≥ 0.

Since the last inequality is true for k > 1, the proof is completed. The equality
holds for a1 = a2 = · · ·= an.

P 2.111. Let f be a convex function on the closed interval [a, b], and let a1, a2, . . . , an ∈
[a, b] such that

a1 + a2 + · · ·+ an = pa+ qb,

where p, q ≥ 0 such that p+ q = n. Prove that

f (a1) + f (a2) + · · ·+ f (an)≤ p f (a) + q f (b).

(Vasile Cîrtoaje, 2009)

Solution. Consider the nontrivial case a < b. Since a1, a2, . . . , an ∈ [a, b], there
exist λ1,λ2, . . . ,λn ∈ [0, 1] such that

ai = λia+ (1−λi)b, i = 1, 2, . . . , n.

From

λi =
ai − b
a− b

, i = 1,2, . . . , n,

we have

n
∑

i=1

λi =
1

a− b

�

n
∑

i=1

ai − nb

�

=
(pa+ qb)− (p+ q)b

a− b
= p.

Since f is convex on [a, b], we get

n
∑

i=1

f (ai)≤
n
∑

i=1

[λi f (a) + (1−λi) f (b)]

=

�

n
∑

i=1

λi

�

[ f (a)− f (b)] + nf (b)

= p [ f (a)− f (b)] + (p+ q) f (b)
= p f (a) + q f (b).
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Chapter 3

Symmetric Power-Exponential
Inequalities

3.1 Applications

3.1. If a, b are positive real numbers such that a+ b = a4 + b4, then

aa bb ≤ 1≤ aa3
bb3

.

3.2. If a, b are positive real numbers, then

a2a + b2b ≥ aa+b + ba+b.

3.3. If a, b are positive real numbers, then

aa + bb ≥ ab + ba.

3.4. If a, b are positive real numbers, then

a2a + b2b ≥ a2b + b2a.

3.5. If a, b are nonnegative real numbers such that a+ b = 2, then

(a) ab + ba ≤ 1+ ab;

(b) a2b + b2a ≤ 1+ ab.

439
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3.6. If a, b are nonnegative real numbers such that
2
3
≤ a+ b ≤ 2, then

a2b + b2a ≤ 1+ ab.

3.7. If a, b are nonnegative real numbers such that a2 + b2 = 2, then

a2b + b2a ≤ 1+ ab.

3.8. If a, b are nonnegative real numbers such that a2 + b2 =
1
4

, then

a2b + b2a ≤ 1+ ab.

3.9. If a, b are positive real numbers, then

aa bb ≤ (a2 − ab+ b2)
a+b

2 .

3.10. If a, b ∈ (0, 1], then

aa bb ≤ 1− ab+ a2 b2.

3.11. If a, b are positive real numbers such that a+ b ≤ 2, then

�a
b

�b
+
�

b
a

�a

≤ 2.

3.12. If a, b are positive real numbers such that a+ b = 2, then

2aa bb ≥ a2b + b2a +
3
4
(a− b)2.

3.13. If a, b ∈ (0, 1] or a, b ∈ [1,∞), then

2aa bb ≥ a2 + b2.
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3.14. If a, b are positive real numbers, then

2aa bb ≥ a2 + b2.

3.15. If a ≥ 1≥ b > 0, then

2aa bb ≥ a2b + b2a.

3.16. If a ≥ e ≥ b > 0, then

2aa bb ≥ a2b + b2a.

3.17. If a, b are positive real numbers, then

aa bb ≥
�

a2 + b2

2

�

a+b
2

.

3.18. If a, b are positive real numbers such that a2 + b2 = 2, then

2aa bb ≥ a2b + b2a +
1
2
(a− b)2.

3.19. If a, b ∈ (0, 1], then

(a2 + b2)
�

1
a2a
+

1
b2b

�

≤ 4.

3.20. If a, b are positive real numbers such that a+ b = 2, then

ab ba + 2≥ 3ab.

3.21. Let a, b be positive real numbers such that a+ b = 2. If k ≥
1
2

, then

aakb
bbka
≥ 1.
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3.22. If a, b are positive real numbers such that a+ b = 2, then

a
p

a b
p

b ≥ 1.

3.23. If a, b are positive real numbers such that a+ b = 2, then

aa+1 bb+1 ≤ 1−
1

48
(a− b)4.

3.24. If a, b are positive real numbers such that a+ b = 2, then

a−a + b−b ≤ 2.

3.25. If a, b ∈ [0, 1], then

ab−a + ba−b + (a− b)2 ≤ 2.

3.26. If a, b are nonnegative real numbers such that a+ b ≤ 2, then

ab−a + ba−b +
7

16
(a− b)2 ≤ 2.

3.27. If a, b are nonnegative real numbers such that a+ b ≤ 4, then

ab−a + ba−b ≤ 2.

3.28. If a, b are nonnegative real numbers such that a+ b = 2, then

a2b + b2a ≥ ab + ba ≥ a2 b2 + 1.

3.29. If a, b are positive real numbers such that a+ b = 2, then

a3b + b3a ≤ 2.

3.30. If a, b are nonnegative real numbers such that a+ b = 2, then

a3b + b3a +
�

a− b
2

�4

≤ 2.
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3.31. If a, b are positive real numbers such that a+ b = 2, then

a
2
a + b

2
b ≤ 2.

3.32. If a, b are positive real numbers such that a+ b = 2, then

a
3
a + b

3
b ≥ 2.

3.33. If a, b are positive real numbers such that a+ b = 2, then

a5b2
+ b5a2

≤ 2.

3.34. If a, b are positive real numbers such that a+ b = 2, then

a2
p

b + b2
p

a ≤ 2.

3.35. If a, b are nonnegative real numbers such that a+ b = 2, then

ab(1− ab)2

2
≤ ab+1 + ba+1 − 2≤

ab(1− ab)2

3
.

3.36. If a, b are nonnegative real numbers such that a+ b = 1, then

a2b + b2a ≤ 1.

3.37. If a, b are positive real numbers such that a+ b = 1, then

2aa bb ≥ a2b + b2a.

3.38. If a, b are positive real numbers such that a+ b = 1, then

a−2a + b−2b ≤ 4.

3.39. If a1, a2, . . . , an are positive real numbers such that a1a2 · · · an = 1, then
�

1−
1
n

�a1

+
�

1−
1
n

�a2

+ · · ·+
�

1−
1
n

�an

≤ n− 1.
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3.2 Solutions

P 3.1. If a, b are positive real numbers such that a+ b = a4 + b4, then

aa bb ≤ 1≤ aa3
bb3

.

(Vasile Cîrtoaje, 2008)

Solution. We will use the inequality

ln x ≤ x − 1, x > 0.

To prove this inequality, let us denote

f (x) = x − 1− ln x , x > 0.

From

f ′(x) =
x − 1

x
,

it follows that f (x) is decreasing on (0,1] and increasing on [1,∞). Therefore,

f (x)≥ f (1) = 0.

Using this inequality, we have

ln aa bb = a ln a+ b ln b ≤ a(a− 1) + b(b− 1) = a2 + b2 − (a+ b).

Therefore, the left inequality aa bb ≤ 1 is true if a2 + b2 ≤ a + b. We write this
inequality in the homogeneous form

(a2 + b2)3 ≤ (a+ b)2(a4 + b4),

which is equivalent to the obvious inequality

ab(a− b)(a3 − b3)≥ 0.

Taking now x =
1
a

in the inequality ln x ≤ x − 1 yields

a ln a ≥ a− 1.

Similarly,
b ln b ≥ b− 1,

hence

ln aa3
bb3
= a3 ln a+ b3 ln b ≥ a2(a− 1) + b2(b− 1) = a3 + b3 − (a2 + b2).



446 Vasile Cîrtoaje

Thus, to prove the right inequality aa3
bb3 ≥ 1, it suffices to show that a3 + b3 ≥

a2 + b2, which is equivalent to the homogeneous inequality

(a+ b)(a3 + b3)3 ≥ (a4 + b4)(a2 + b2)3.

We can write this inequality as
A− 3B ≥ 0,

where
A= (a+ b)(a9 + b9)− (a4 + b4)(a6 + b6),

B = a2 b2(a2 + b2)(a4 + b4)− a3 b3(a+ b)(a3 + b3).

Since
A= ab(a3 − b3)(a5 − b5), B = a2 b2(a− b)(a5 − b5),

we get
A− 3B = ab(a− b)3(a5 − b5)≥ 0.

Both inequalities become equalities for a = b = 1.

P 3.2. If a, b are positive real numbers, then

a2a + b2b ≥ aa+b + ba+b.

(Vasile Cîrtoaje, 2010)

Solution. Assume that a ≥ b and consider the following two cases.

Case 1: a ≥ 1. Write the inequality as

aa+b(aa−b − 1)≥ b2b(ba−b − 1).

For b ≤ 1, we have

aa+b(aa−b − 1)≥ 0≥ b2b(ba−b − 1).

For b ≥ 1, the inequality is also true since

aa+b ≥ a2b ≥ b2b, aa−b − 1≥ ba−b − 1≥ 0.

Case 2: a ≤ 1. Since
a2a + b2b ≥ 2aa bb,

it suffices to show that
2aa bb ≥ aa+b + ba+b,

which can be written as
�a

b

�b
+
�

b
a

�a

≤ 2.
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By Bernoulli’s inequality, we get

�a
b

�b
+
�

b
a

�a

=
�

1+
a− b

b

�b

+
�

1+
b− a

a

�a

≤ 1+
b(a− b)

b
+ 1+

a(b− a)
a

= 2.

The equality holds for a = b.

Conjecture 1. If a, b are positive real numbers, then

a4a + b4b ≥ a2a+2b + b2a+2b.

Conjecture 2. If a, b, c are positive real numbers, then

a3a + b3b + c3c ≥ aa+b+c + ba+b+c + ca+b+c.

Conjecture 3. If a, b, c, d are positive real numbers, then

a4a + b4b + c4c + d4d ≥ aa+b+c+d + ba+b+c+d + ca+b+c+d + da+b+c+d .

P 3.3. If a, b are positive real numbers, then

aa + bb ≥ ab + ba.

(M. Laub, Israel, 1985, AMM)

Solution. Assume that a ≥ b. We will show that if a ≥ 1, then the inequality is
true. From

aa−b ≥ ba−b,

we get

bb ≥
ab ba

aa
.

Therefore,

aa + bb − ab − ba ≥ aa +
ab ba

aa
− ab − ba =

(aa − ab)(aa − ba)
aa

≥ 0.

Consider further the case 0< b ≤ a < 1.

First Solution. Denoting

c = ab, d = bb, k =
a
b

,

where c ≥ d and k ≥ 1, the inequality becomes

ck − dk ≥ c − d.
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Since the function f (x) = x k is convex for x ≥ 0, from the well-known inequality

f (c)− f (d)≥ f ′(d)(c − d),

we get
ck − dk ≥ kdk−1(c − d).

Thus, it suffices to show that
kdk−1 ≥ 1,

which is equivalent to
b1−a+b ≤ a.

Indeed, since 0< 1− a+ b ≤ 1, by Bernoulli’s inequality, we get

b1−a+b = [1+ (b− 1)]1−a+b ≤ 1+ (1− a+ b)(b− 1) = a− b(a− b)≤ a.

The equality holds for a = b.

Second Solution. Denoting

c =
ba

ab + ba
, d =

ab

ab + ba
, k =

a
b

,

where c + d = 1 and k ≥ 1, the inequality becomes

cka + dk−b ≥ 1.

By the weighted AM-GM inequality, we have

cka + dk−b ≥ kac · k−bd = kac−bd .

Thus, it suffices to show that ac ≥ bd; that is,

a1−b ≥ b1−a,

which is equivalent to f (a)≥ f (b), where

f (x) =
ln x

1− x
.

It is enough to prove that f (x) is an increasing function. Since

f ′(x) =
g(x)
(1− x)2

, g(x) =
1
x
− 1+ ln x .

we need to show that g(x)≥ 0 for x ∈ (0, 1). Indeed, from

g ′(x) =
x − 1

x2
< 0,

it follows that g(x) is strictly decreasing, hence g(x)> g(1) = 0.
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P 3.4. If a, b are positive real numbers, then

a2a + b2b ≥ a2b + b2a.

Solution. Without loss of generality, assume that a > b. We have two cases to
consider: a ≥ 1 and 0< b < a < 1.

Case 1: a ≥ 1. From
a2(a−b) ≥ b2(a−b),

we get

b2b ≥
a2b b2a

a2a
.

Therefore,

a2a + b2b − a2b − b2a ≥ a2a +
a2b b2a

a2a
− a2b − b2a =

(a2a − a2b)(a2a − b2a)
a2a

≥ 0

because a2a ≥ a2b and a2a ≥ b2a.

Case 2: 0< b < a < 1. Denoting

c = ab, d = bb, k =
a
b

,

where c > d and k > 1, the inequality becomes

c2k − d2k ≥ c2 − d2.

We will show that

c2k − d2k > k(cd)k−1(c2 − d2)> c2 − d2.

The left inequality follows from Lemma below for x = (c/d)2. The right inequality
is equivalent to

k(cd)k−1 > 1,

(ab)a−b >
b
a

,

1+ a− b
1− a+ b

ln a > ln b.

For fixed a, let us define

f (b) =
1+ a− b
1− a+ b

ln a− ln b.

If f ′(b)< 0, then f (b) is strictly decreasing, and hence f (b)> f (a) = 0. Since

f ′(b) =
−2

(1− a+ b)2
ln a−

1
b

,
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we need to show that g(a)> 0, where

g(a) = 2 ln a+
(1− a+ b)2

b
.

From

g ′(a) =
2
a
−

2(1− a+ b)
b

=
2(a− b)(a− 1)

ab
< 0,

it follows that g(a) is strictly decreasing, therefore g(a) > g(1) = b > 0. This
completes the proof. The equality holds for a = b.

Lemma. Let k and x be positive real numbers. If either k > 1 and x ≥ 1, or 0< k < 1
and 0< x ≤ 1, then

x k − 1≥ kx
k−1

2 (x − 1).

Proof. We need to show that f (x)≥ 0, where

f (x) = x k − 1− kx
k−1

2 (x − 1).

We have
f ′(x) =

1
2

kx
k−3

2 g(x), g(x) = 2x
k+1

2 − (k+ 1)x + k− 1.

Since
g ′(x) = (k+ 1)

�

x
k−1

2 − 1
�

≥ 0,

g(x) is increasing. If x ≥ 1, then g(x) ≥ g(1) = 0, f (x) is increasing, hence
f (x) ≥ f (1) = 0. If 0 < x ≤ 1, then g(x) ≤ g(1) = 0, f (x) is decreasing, hence
f (x)≥ f (1) = 0. The equality holds for x = 1.

Remark. The following more general results are valid (Vasile Cîrtoaje, 2006):

• Let 0< k ≤ e.
(a) If a, b > 0, then

aka + bkb ≥ akb + bka;

(b) If a, b ∈ (0,1], then

2
p

aka bkb ≥ akb + bka.

Notice that these inequalities are known as the first and the second Vasc’s power
exponential inequalities.

Conjecture 1. If 0< k ≤ e and either a, b ∈ (0, 4] or 0< a ≤ 1≤ b, then

2
p

aka bkb ≥ akb + bka.

Conjecture 2. If 0< a ≤ 1≤ b, then

2
p

a3a b3b ≥ a3b + b3a.
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Conjecture 3. If a, b ∈ (0, 5], then

2aa bb ≥ a2b + b2a.

Conjecture 4. If a, b ∈ [0, 5], then

�

a2 + b2

2

�

a+b
2

≥ a2b + b2a.

P 3.5. If a, b are nonnegative real numbers such that a+ b = 2, then

(a) ab + ba ≤ 1+ ab;

(b) a2b + b2a ≤ 1+ ab.

Solution. Without loss of generality, assume that a ≥ b. Since

0≤ b ≤ 1, 0≤ a− 1≤ 1,

by Bernoulli’s inequality, we have

ab ≤ 1+ b(a− 1) = 1+ b− b2

and
ba = b · ba−1 ≤ b[1+ (a− 1)(b− 1)] = b2(2− b).

(a) We have

ab + ba − 1− ab ≤ (1+ b− b2) + b2(2− b)− 1− (2− b)b = −b(b− 1)2 ≤ 0.

The equality holds for a = b = 1, for a = 2 and b = 0, and for a = 0 and b = 2.

(b) We have

a2b + b2a − 1− ab ≤ (1+ b− b2)2 + b4(2− b)2 − 1− (2− b)b

= b3(b− 1)2(b− 2) = −ab3(b− 1)2 ≤ 0.

The equality holds for a = b = 1, for a = 2 and b = 0, and for a = 0 and b = 2.

P 3.6. If a, b are nonnegative real numbers such that
2
3
≤ a+ b ≤ 2, then

a2b + b2a ≤ 1+ ab.

(Vasile Cîrtoaje, 2007)
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Solution. Assume that
a ≥ b.

From 2
p

ab ≤ a+ b ≤ 2, we get
ab ≤ 1.

There are two cases to consider: a+ b ≤ 1 and a+ b ≥ 1.

Case 1:
2
3
≤ a+ b ≤ 1. Since 2b ≤ 1, by Bernoulli’s inequality, we have

a2b ≤ 1+ 2b(a− 1) = 1+ 2ab− 2b.

Therefore, it suffices to show that

(1+ 2ab− 2b) + b2a ≤ 1+ ab,

which is equivalent to
ab+ b2a ≤ 2b.

For 2a ≥ 1, this inequality is true since

ab ≤ b, b2a ≤ b.

For 2a ≤ 1, by Bernoulli’s inequality, we have

b2a ≤ 1+ 2a(b− 1) = 1+ 2ab− 2a.

Therefore, it suffices to show that

(1+ 2ab− 2b) + (1+ 2ab− 2a)≤ 1+ ab,

which is equivalent to
1+ 3ab ≤ 2(a+ b).

Indeed, we have

4+ 12ab− 8(a+ b)≤ 4+ 3(a+ b)2 − 8(a+ b)
= (a+ b− 2)[3(a+ b)− 2]≤ 0.

Case 2: 1≤ a+ b ≤ 2. For a, b ≤ 1, by Bernoulli’s inequality, we have

a2b = (a2)b ≤ 1+ b(a2 − 1) = 1− b+ a2 b,

b2a = (b2)a ≤ 1+ a(b2 − 1) = 1− a+ ab2,

hence

a2b + b2a − 1− ab ≤ (1− b+ a2 b) + (1− a+ ab2)− 1− ab
= (1− ab)(1− a− b)≤ 0.
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Consider further that a ≥ 1≥ b. By Bernoulli’s inequality, we have

ab ≤ 1+ b(a− 1) = ab+ 1− b,

b2a = ba−1 · ba+1 ≤ ba+1 = b2 · ba−1 ≤ b2[1+ (a− 1)(b− 1)]

= b2(ab+ 2− a− b).

Therefore, it suffices to show that

(ab+ 1− b)2 + b2(ab+ 2− a− b)≤ 1+ ab,

which can be written as

1+ ab− (ab+ 1− b)2 ≥ b2(ab+ 2− a− b).

Since
1+ ab− (ab+ 1− b)2 = bB,

where
B = (2− a− b) + 2ab− a2 b ≥ 2ab− a2 b = ab(2− a),

it is enough to prove that

ab2(2− a)≥ b2(ab+ 2− a− b),

which is equivalent to the obvious inequality

b2(a− 1)(2− a− b)≥ 0.

The equality holds for a = 0 or b = 0. If a+ b = 2, then the equality holds also for
a = b = 1.

Remark. Actually, the following extension is valid:

• If a, b are nonnegative real numbers such that

1
2
≤ a+ b ≤ 2,

then
a2b + b2a ≤ 1+ ab.

P 3.7. If a, b are nonnegative real numbers such that a2 + b2 = 2, then

a2b + b2a ≤ 1+ ab.

(Vasile Cîrtoaje, 2007)
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Solution. Without loss of generality, assume that a ≥ 1 ≥ b. Applying Bernoulli’s
inequality gives

ab ≤ 1+ b(a− 1),

hence
a2b ≤ (1+ ab− b)2.

Also, since 0≤ b ≤ 1 and 2a ≥ 2, we have

b2a ≤ b2.

Therefore, it suffices to show that

(1+ ab− b)2 + b2 ≤ 1+ ab,

which can be written as

b(2+ 2ab− a− 2b− a2 b)≥ 0.

So, we need to show that

2+ 2ab− a− 2b− a2 b ≥ 0,

which is equivalent to

4(1− a)(1− b) + a(2− 2ab)≥ 0,

4(1− a)(1− b) + a(a− b)2 ≥ 0.

Since a ≥ 1, it suffices to show that

4(1− a)(1− b) + (a− b)2 ≥ 0.

Indeed,

4(1− a)(1− b) + (a− b)2 = −4(a− 1)(1− b) + [(a− 1) + (1− b)]2

= [(a− 1)− (1− b)]2 = (a+ b− 2)2 ≥ 0.

The equality holds for a = b = 1, for a =
p

2 and b = 0, and for a = 0 and b =
p

2.

P 3.8. If a, b are nonnegative real numbers such that a2 + b2 =
1
4

, then

a2b + b2a ≤ 1+ ab.

(Vasile Cîrtoaje, 2007)
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Solution. From a2 + b2 =
1
4

, it follows that

a, b ≤
1
2

,

ab =
1
2
(a+ b)2 −

1
8

,

a+ b ≥
p

a2 + b2 =
1
2

,

a+ b ≤
Æ

2(a2 + b2) =
1
p

2
.

Applying Bernoulli’s inequality gives

a2b ≤ 1+ 2b(a− 1) = 1− 2b+ 2ab,

b2a ≤ 1+ 2a(b− 1) = 1− 2a+ 2ab.

Thus, it suffices to show that

(1− 2b+ 2ab) + (1− 2a+ 2ab)≤ 1+ ab,

1+ 3ab ≤ 2(a+ b),

1+
3
2
(a+ b)2 −

3
8
≤ 2(a+ b),

�

a+ b−
1
2

��

a+ b−
5
6

�

≤ 0.

The left inequality is true since

a+ b ≤
1
p

2
<

5
6

.

The equality holds for a = 0 and b =
1
2

, and for a =
1
2

and b = 0.

Remark. Actually, the following extended result is valid:

• If a, b are nonnegative real numbers such that

1
4
≤ a2 + b2 ≤ 2,

then
a2b + b2a ≤ 1+ ab.

This inequality is a consequence of Remark from P 3.6 (since
1
4
≤ a2 + b2 ≤ 2

involves
1
2
≤ a+ b ≤ 2).
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P 3.9. If a, b are positive real numbers, then

aa bb ≤ (a2 − ab+ b2)
a+b

2 .

Solution. By the weighted AM-GM inequality, we have

a · a+ b · b ≥ (a+ b)a
a

a+b b
b

a+b ,

�

a2 + b2

a+ b

�a+b

≥ aa bb.

Thus, it suffices to show that

a2 − ab+ b2 ≥
�

a2 + b2

a+ b

�2

,

which is equivalent to

(a+ b)(a3 + b3)≥ (a2 + b2)2,

ab(a− b)2 ≥ 0.

The equality holds for a = b.

P 3.10. If a, b ∈ (0, 1], then

aa bb ≤ 1− ab+ a2 b2.

(Vasile Cîrtoaje, 2010)

Solution. We claim that
x x ≤ 1− x + x2

for all x ∈ (0, 1]. If this is true, then

1− ab+ a2 b2 − aa bb ≥ 1− ab+ a2 b2 − (1− a+ a2)(1− b+ b2)
= (a+ b)(1− a)(1− b)≥ 0.

Thus, it suffices to show that f (x)≤ 0 for x ∈ (0, 1], where

f (x) = x ln x − ln(x2 − x + 1).

We have

f ′(x) = ln x + 1−
2x − 1

x2 − x + 1
,
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f ′′(x) =
(1− x)(1− 2x − x2 − x4)

x(x2 − x + 1)2
.

Let x1 ∈ (0, 1) be the positive root of the equation x4+x2+2x = 1. Then, f ′′(x)> 0
for x ∈ (0, x1) and f ′′(x)< 0 for x ∈ (x1, 1), hence f ′ is strictly increasing on (0, x1]
and strictly decreasing on [x1, 1]. Since limx→0 f ′(x) = −∞ and f ′(1) = 0, there
is x2 ∈ (0, x1) such that f ′(x2) = 0, f ′(x) < 0 for x ∈ (0, x2) and f ′(x) > 0 for
x ∈ (x2, 1). Therefore, f is decreasing on (0, x2] and increasing on [x2, 1]. Since
limx→0 f (x) = 0 and f (1) = 0, it follows that f (x) ≤ 0 for x ∈ (0,1]. The proof is
completed. The equality holds for a = b = 1.

P 3.11. If a, b are positive real numbers such that a+ b ≤ 2, then

�a
b

�b
+
�

b
a

�a

≤ 2.

(Vasile Cîrtoaje, 2010)

Solution. Using the substitution a = tc and b = td, where c, d, t are positive real
numbers such that c + d = 2 and t ≤ 1, we need to show that

� c
d

�td
+
�

d
c

�tc

≤ 2.

Write this inequality as
f (t)≤ 2,

where

f (t) = At + B t , A=
� c

d

�d
, B =

�

d
c

�c

.

Since f (t) is a convex function, we have

f (t)≤max{ f (0), f (1)}=max{2, f (1)}.

Therefore, we only need to show that f (1)≤ 2; that is,

2ccdd ≥ c2 + d2.

Setting c = 1+ x and d = 1− x , where 0≤ x < 1, this inequality turns into

(1+ x)1+x(1− x)1−x ≥ 1+ x2,

which is equivalent to f (x)≥ 0, where

f (x) = (1+ x) ln(1+ x) + (1− x) ln(1− x)− ln(1+ x2).
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We have

f ′(x) = ln(1+ x)− ln(1− x)−
2x

1+ x2
,

f ′′(x) =
1

1+ x
+

1
1− x

−
2(1− x2)
(1+ x2)2

=
8x2

(1− x2)(1+ x2)2
.

Since f ′′(x) ≥ 0 for x ∈ [0,1), it follows that f ′ is increasing, f ′(x) ≥ f ′(0) = 0,
f (x) is increasing, hence f (x) ≥ f (0) = 0. The proof is completed. The equality
holds for a = b.

P 3.12. If a, b are positive real numbers such that a+ b = 2, then

2aa bb ≥ a2b + b2a +
3
4
(a− b)2.

(Vasile Cîrtoaje, 2010)

Solution. According to the inequalities in P 3.5-(b) and P 3.11 (for a+ b = 2), we
have

a2b + b2a ≤ 1+ ab

and
2aa bb ≥ a2 + b2.

Therefore, it suffices to show that

a2 + b2 ≥ 1+ ab+
3
4
(a− b)2.

which is an identity. The equality holds for a = b = 1.

P 3.13. If a, b ∈ (0, 1] or a, b ∈ [1,∞), then

2aa bb ≥ a2 + b2.

Solution. For a = x and b = 1, the desired inequality becomes

2x x ≥ x2 + 1, x > 0.

If this inequality is true, then

4aa bb − 2(a2 + b2)≥ (a2 + 1)(b2 + 1)− 2(a2 + b2) = (a2 − 1)(b2 − 1)≥ 0.
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To prove the inequality 2x x ≥ x2 + 1, we show that f (x)≥ 0, where

f (x) = ln2+ x ln x − ln(x2 + 1).

We have
f ′(x) = ln x + 1−

2x
x2 + 1

,

f ′′(x) =
x2(x + 1)2 + (x − 1)2

x(x2 + 1)2
.

Since f ′′(x) > 0 for x > 0, f ′ is strictly increasing. Since f ′(1) = 0, it follows that
f ′(x)< 0 for x ∈ (0,1) and f ′(x)> 0 for x ∈ (1,∞). Therefore, f is decreasing on
(0, 1] and increasing on [1,∞), hence f (x) ≥ f (1) = 0 for x > 0. This completes
the proof. The equality holds for a = b = 1.

P 3.14. If a, b are positive real numbers, then

2aa bb ≥ a2 + b2.

(Vasile Cîrtoaje, 2014)

Solution. By Lemma below, it suffices to show that

(a4 − 2a3 + 4a2 − 2a+ 3)(b4 − 2b3 + 4b2 − 2b+ 3)≥ 8(a2 + b2),

which is equivalent to A≥ 0, where

A=a4 b4 − 2a3 b3(a+ b) + 4a2 b2(a2 + b2 + ab)− [2ab(a3 + b3) + 8a2 b2(a+ b)]

+ [3(a4 + b4) + 4ab(a2 + b2) + 16a2 b2]− [6(a3 + b3) + 8ab(a+ b)]

+ 4(a2 + b2 + ab)− 6(a+ b) + 9.

We can check that

A= [a2 b2 − ab(a+ b) + a2 + b2 − 1]2 + B,

where

B =a2 b2(a+ b)2 − 6a2 b2(a+ b) + [2(a4 + b4) + 4ab(a2 + b2) + 16a2 b2]

− [6(a3 + b3) + 10ab(a+ b)] + [6(a2 + b2) + 4ab]− 6(a+ b) + 8.

Also, we have
B = [ab(a+ b)− 3ab+ 1]2 + C ,

where

C =[2(a4 + b4) + 4ab(a2 + b2) + 7a2 b2]− [6(a3 + b3) + 12ab(a+ b)]

+ [6(a2 + b2) + 10ab]− 6(a+ b) + 7,



460 Vasile Cîrtoaje

and
C = (ab− 1)2 + 2D,

where

D =[a4 + b4 + 2ab(a2 + b2) + 3a2 b2]− [3(a3 + b3) + 6ab(a+ b)]

+ 3(a+ b)2 − 3(a+ b) + 3,

It suffices to show that D ≥ 0. Indeed,

D =[(a+ b)4 − 2ab(a+ b)2 + a2 b2]− 3[(a+ b)3 − ab(a+ b)]

+ 3(a+ b)2 − 3(a+ b) + 3

=[(a+ b)2 − ab]2 − 3(a+ b)[(a+ b)2 − ab] + 3(a+ b)2 − 3(a+ b) + 3

=
�

(a+ b)2 − ab−
3
2
(a+ b)

�2

+ 3
�

a+ b
2
− 1

�2

≥ 0.

This completes the proof. The equality holds for a = b = 1.

Lemma. If x > 0, then

x x ≥ x +
1
4
(x − 1)2(x2 + 3).

Proof. We need to show that f (x)≥ 0 for x > 0, where

f (x) = ln 4+ x ln x − ln g(x), g(x) = x4 − 2x3 + 4x2 − 2x + 3.

We have

f ′(x) = 1+ ln x −
2(2x3 − 3x2 + 4x − 1)

g(x)
,

f ′′(x) =
x8 + 6x4 − 32x3 + 48x2 − 32x + 9

g2(x)
=
(x − 1)2h(x)

g2(x)
,

where
h(x) = x6 + 2x5 + 3x4 + 4x3 + 11x2 − 14x + 9.

Since
h(x)> 7x2 − 14x + 7= 7(x − 1)2 ≥ 0,

we have f ′′(x) ≥ 0, hence f ′ is strictly increasing on (0,∞). Since f ′(1) = 0, it
follows that f ′(x) < 0 for x ∈ (0,1) and f ′(x) > 0 for x ∈ (1,∞). Therefore, f is
decreasing on (0, 1] and increasing on [1,∞), hence f (x)≥ f (1) = 0 for x > 0.

P 3.15. If a ≥ 1≥ b > 0, then

2aa bb ≥ a2b + b2a.
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Solution. Taking into account the inequality 2aa bb ≥ a2 + b2 from the preceding
P 3.14, it suffices to show that

a2 + b2 ≥ a2b + b2a.

This inequality follows immediately from a2 ≥ a2b and b2 ≥ b2a. The equality holds
for a = b = 1.

P 3.16. If a ≥ e ≥ b > 0, then

2aa bb ≥ a2b + b2a.

Solution. It suffices to show that aa bb ≥ a2b and aa bb ≥ b2a. Write the first in-
equality as

aa−b ≥
�a

b

�b
,

ax−1 ≥ x , x =
a
b
≥ 1.

Since ax−1 ≥ ex−1, we only need to show that

ex−1 ≥ x ,

which is equivalent to f (x)≥ 0 for x ≥ 1, where

f (x) = x − 1− ln x .

From
f ′(x) = 1−

1
x
≥ 0,

it follows that f is increasing on [1,∞), therefore f (x)≥ f (1) = 0.
Write the second inequality as

�

b
a

�a

ba−b ≤ 1,

x b1−x ≤ 1, x =
b
a
≤ 1.

Since b1−x ≤ e1−x , we only need to show that

xe1−x ≤ 1,

which is equivalent to f (x)≤ 0 for x ≤ 1, where

f (x) = ln x + 1− x .



462 Vasile Cîrtoaje

Since

f ′(x) =
1
x
− 1≥ 0,

f is increasing on (0, 1], therefore f (x)≤ f (1) = 0. This completes the proof. The
equality holds for a = b = e.

P 3.17. If a, b are positive real numbers, then

aa bb ≥
�

a2 + b2

2

�

a+b
2

.

First Solution. Using the substitution a = bx , where x > 0, the inequality be-
comes as follows:

(bx)bx bb ≥
�

b2 x2 + b2

2

�

bx+b
2

,

(bx)x b ≥
�

b2 x2 + b2

2

�

x+1
2

,

bx+1 x x ≥ bx+1
�

x2 + 1
2

�

x+1
2

,

x x ≥
�

x2 + 1
2

�

x+1
2

.

It is true if f (x)≥ 0 for all x > 0, where

f (x) =
x

x + 1
ln x −

1
2

ln
x2 + 1

2
.

We have

f ′(x) =
1

(x + 1)2
ln x +

1
x + 1

−
x

x2 + 1
=

g(x)
(x + 1)2

,

where

g(x) = ln x −
x2 − 1
x2 + 1

.

Since

g ′(x) =
(x2 − 1)2

x(x2 + 1)2
≥ 0,

g is strictly increasing, therefore g(x) < 0 for x ∈ (0,1), g(1) = 0, g(x) > 0
for x ∈ (1,∞). Thus, f is decreasing on (0,1] and increasing on [1,∞), hence
f (x)≥ f (1) = 0. This completes the proof. The equality holds for a = b.
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Second Solution. Write the inequality in the form

a ln a+ b ln b ≥
a+ b

2
ln

a2 + b2

2
.

Without loss of generality, consider a+ b = 2k, k > 0, and denote

a = k+ x , b = k− x , 0≤ x < k.

We need to show that f (x)≥ 0, where

f (x) = (k+ x) ln(k+ x) + (k− x) ln(k− x)− k ln(x2 + k2).

We have

f ′(x) = ln(k+ x)− ln(k− x)−
2kx

x2 + k2
,

f ′′(x) =
1

k+ x
+

1
k− x

+
2k(x2 − k2)
(x2 + k2)2

=
8k2 x2

(k2 − x2)(x2 + k2)2
.

Since f ′′(x) ≥ 0 for x ≥ 0, f ′ is increasing, hence f ′(x) ≥ f ′(0) = 0. Therefore, f
is increasing on [0, k), hence f (x)≥ f (0) = 0.

Remark. For a+ b = 2, this inequality can be rewritten as

2aa bb ≥ a2 + b2,

2≥
�a

b

�b
+
�

b
a

�a

.

Also, for a+ b = 1, the inequality becomes

2a2a b2b ≥ a2 + b2,

2≥
�a

b

�2b
+
�

b
a

�2a

.

P 3.18. If a, b are positive real numbers such that a2 + b2 = 2, then

2aa bb ≥ a2b + b2a +
1
2
(a− b)2.

(Vasile Cîrtoaje, 2010)
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Solution. According to the inequalities in P 3.7 and P 3.17, we have

a2b + b2a ≤ 1+ ab

and
aa bb ≥ 1.

Therefore, it suffices to show that

2≥ 1+ ab+
1
2
(a− b)2,

which is an identity. The equality holds for a = b = 1.

P 3.19. If a, b ∈ (0, 1], then

(a2 + b2)
�

1
a2a
+

1
b2b

�

≤ 4.

(Vasile Cîrtoaje, 2014)

Solution. For a = x and b = 1, the desired inequality becomes

x2x ≥
1+ x2

3− x2
, x ∈ (0, 1].

If this inequality is true, it suffices to show that

(a2 + b2)
�

3− a2

1+ a2
+

3− b2

1+ b2

�

≤ 4,

which is equivalent to

a2 b2(2+ a2 + b2) + 2− (a2 + b2)− (a2 + b2)2 ≥ 0,

(2+ a2 + b2)(1− a2)(1− b2)≥ 0.

To prove the inequality x2x ≥
1+ x2

3− x2
, we show that f (x)≥ 0, where

f (x) = x ln x +
1
2

ln(3− x2)−
1
2

ln(1+ x2), x ∈ (0, 1].

We have
f ′(x) = 1+ ln x −

x
3− x2

−
x

1+ x2
,
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f ′′(x) =
1
x
−

3+ x2

(3− x2)2
−

1− x2

(1+ x2)2

=
(1− x)(9+ 6x − x3)

x(3− x)2
−

1− x2

(1+ x2)2
.

We will show that f ′′(x)> 0 for 0< x < 1. This is true if

9+ 6x − x3

x(3− x)2
−

1+ x
(1+ x2)2

> 0.

Indeed,
9+ 6x − x3

x(3− x)2
−

1+ x
(1+ x2)2

>
9

9x
−

1+ x
x(1+ x)2

=
1

1+ x
> 0.

Since f ′′(x) > 0, f ′ is strictly increasing on (0, 1]. Since f ′(1) = 0, it follows that
f ′(x) < 0 for x ∈ (0, 1), f is strictly decreasing on (0,1], hence f (x) ≥ f (1) = 0.
This completes the proof. The equality holds for a = b = 1.

P 3.20. If a, b are positive real numbers such that a+ b = 2, then

ab ba + 2≥ 3ab.

(Vasile Cîrtoaje, 2010)

Solution. Setting
a = 1+ x , b = 1− x , 0≤ x < 1,

the inequality is equivalent to

(1+ x)1−x(1− x)1+x ≥ 1− 3x2.

Consider further the nontrivial case 0 ≤ x <
1
p

3
, and write the desired inequality

as f (x)≥ 0, where

f (x) = (1− x) ln(1+ x) + (1+ x) ln(1− x)− ln(1− 3x2).

We have

f ′(x) = − ln(1+ x) + ln(1− x) +
1− x
1+ x

−
1+ x
1− x

+
6x

1− 3x2
,

1
2

f ′′(x) =
−1

1− x2
−

2(x2 + 1)
(1− x2)2

+
3(3x2 + 1)
(1− 3x2)2

.

Making the substitution

t = x2, 0≤ t <
1
3

,
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we get
1
2

f ′′(x) =
3(3t + 1)
(3t − 1)2

−
t + 3
(t − 1)2

=
4t(5− 9t)

(t − 1)2(3t − 1)2
> 0.

Therefore, f ′(x) is strictly increasing, f ′(x)≥ f ′(0) = 0, f (x) is strictly increasing,
hence f (x)≥ f (0) = 0. This completes the proof. The equality holds for a = b = 1.

P 3.21. Let a, b be positive real numbers such that a+ b = 2. If k ≥
1
2

, then

aakb
bbka
≥ 1.

(Vasile Cîrtoaje, 2010)

Solution. Setting
a = 1+ x , b = 1− x , 0≤ x < 1,

the inequality can be written as

(1+ x)k(1−x) ln(1+ x) + (1− x)k(1+x) ln(1− x)≥ 0.

Consider further the nontrivial case 0 < x < 1, and write the desired inequality as
f (x)≥ 0, where

f (x) = k(1− x) ln(1+ x)− k(1+ x) ln(1− x) + ln ln(1+ x)− ln(− ln(1− x)).

It suffices to show that f ′(x) > 0. Indeed, if this is true, then f (x) is strictly
increasing, hence

f (x)> lim
x→0

f (x) = 0.

We have

f ′(x) =
2k(1+ x2)

1− x2
− k ln(1− x2) +

1
(1+ x) ln(1+ x)

+
1

(1− x) ln(1− x)

>
2k

1− x2
+

1
(1+ x) ln(1+ x)

+
1

(1− x) ln(1− x)

≥
1

1− x2
+

1
(1+ x) ln(1+ x)

+
1

(1− x) ln(1− x)

=
g(x)

(1− x2) ln(1+ x) ln(1− x)
,

where

g(x) = ln(1+ x) ln(1− x) + (1+ x) ln(1+ x) + (1− x) ln(1− x).
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It is enough to how that g(x)< 0. We have

g ′(x) =
−x

1− x2
h(x),

where
h(x) = (1+ x) ln(1+ x) + (1− x) ln(1− x).

Since
h′(x) = ln

1+ x
1− x

> 0,

h(x) is strictly increasing, h(x) > h(0) = 0, g ′(x) < 0, g(x) is strictly decreasing,
and hence g(x) < g(0) = 0. This completes the proof. The equality holds for
a = b = 1.

P 3.22. If a, b are positive real numbers such that a+ b = 2, then

a
p

a b
p

b ≥ 1.

(Vasile Cîrtoaje, 2010)

Solution. Assume that a > 1 > b. Taking logarithms of both sides, the inequality
becomes in succession: p

a ln a+
p

b ln b ≥ 0,
p

a ln a ≥
p

b(− ln b),
1
2

ln a+ ln ln a ≥
1
2

ln b+ ln(− ln b).

Substituting
a = 1+ x , b = 1− x , 0< x < 1,

we need to show that f (x)≥ 0, where

f (x) =
1
2

ln(1+ x)−
1
2

ln(1− x) + ln ln(1+ x)− ln(− ln(1− x)).

We have
f ′(x) =

1
1− x2

+
1

(1+ x) ln(1+ x)
+

1
(1− x) ln(1− x)

.

As shown in the proof of the preceding P 3.21, we have f ′(x)> 0. Therefore, f (x)
is strictly increasing, therefore

f (x)> lim
x→0

f (x) = 0.

The equality holds for a = b = 1.
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P 3.23. If a, b are positive real numbers such that a+ b = 2, then

aa+1 bb+1 ≤ 1−
1

48
(a− b)4.

(Vasile Cîrtoaje, 2010)

Solution. Putting

a = 1+ x , b = 1− x , 0≤ x < 1,

the inequality becomes

(1+ x)2+x(1− x)2−x ≤ 1−
1
3

x4.

Write this inequality as f (x)≤ 0, where

f (x) = (2+ x) ln(1+ x) + (2− x) ln(1− x)− ln
�

1−
1
3

x4
�

.

We have

f ′(x) = ln(1+ x)− ln(1− x)−
2x

1− x2
+

4x3

3− x4
,

f ′′(x) =
2

1− x2
−

2(1+ x2)
(1− x2)2

+
4x2(x4 + 9)
(3− x4)2

=
−4x2

(1− x2)2
+

4x2(x4 + 9)
(3− x4)2

=
−8x4[x4 + 1+ 8(1− x2)]
(1− x2)2(3− x4)2

≤ 0.

Therefore, f ′(x) is decreasing, f ′(x) ≤ f ′(0) = 0, f (x) is decreasing, f (x) ≤
f (0) = 0. The equality holds for a = b = 1.

P 3.24. If a, b are positive real numbers such that a+ b = 2, then

a−a + b−b ≤ 2.

(Vasile Cîrtoaje, 2010)

Solution. Consider a ≥ b, when we have

0< b ≤ 1≤ a < 2,

and write the inequality as

aa − 1
aa

+
bb − 1

bb
≥ 0.
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According to Lemma from the proof of P 3.4, we have

aa − 1≥ a
a+1

2 (a− 1), bb − 1≥ b
b+1

2 (b− 1).

Therefore, it suffices to show that

a
1−a

2 (a− 1) + b
1−b

2 (b− 1)≥ 0,

which is equivalent to
a

1−a
2 ≥ b

1−b
2 ,

(ab)
1−b

2 ≤ 1,

ab ≤ 1,

(a− b)2 ≥ 0.

The equality holds for a = b = 1.

P 3.25. If a, b ∈ [0,1], then

ab−a + ba−b + (a− b)2 ≤ 2.

(Vasile Cîrtoaje, 2010)

Solution (by Vo Quoc Ba Can). Without loss of generality, assume that a ≥ b. Us-
ing the substitution

c = a− b,

we need to show that
(b+ c)−c + bc + c2 ≤ 2

for
0≤ b ≤ 1− c, 0≤ c ≤ 1.

If c = 1, then b = 0, and the inequality is an equality. Also, for c = 0, the inequality
is an equality. Consider further that

0< c < 1.

We need to show that f (x)≤ 0, where

f (x) = (x + c)−c + x c + c2 − 2, x ∈ [0,1− c].

We claim that f ′(x) > 0 for x > 0. On this assumption, f (x) is strictly increasing
on [0,1− c], hence

f (x)≤ f (1− c) = (1− c)c − (1− c2).



470 Vasile Cîrtoaje

By Bernoulli’s inequality, we have

f (x)≤ 1+ c(−c)− (1− c2) = 0.

Since

f ′(x) =
c[(x + c)1+c − x1−c]
(x + c)1+c x1−c

,

the inequality f ′(x)> 0 holds for x > 0 if and only if

x + c > x
1−c
1+c .

For any d > 0, using the weighted AM-GM inequality yields

x + c = x + d ·
c
d
≥ (1+ d)x

1
1+d

� c
d

�
d

1+d
.

Choosing

d =
2c

1− c
,

we get

x + c ≥
1+ c

2

�

1− c
2

�
c−1
1+c

x
1−c
1+c .

Thus, it suffices to show that

1+ c
2
≥
�

1− c
2

�
1−c
1+c

.

Indeed, using Bernoulli’s inequality, we get

�

1− c
2

�
1−c
1+c

=
�

1−
1+ c

2

�
1−c
1+c

≤ 1−
1− c
1+ c

·
1+ c

2
=

1+ c
2

.

The equality holds for a = b, for a = 1 and b = 0, and for a = 0 and b = 1.

P 3.26. If a, b are nonnegative real numbers such that a+ b ≤ 2, then

ab−a + ba−b +
7

16
(a− b)2 ≤ 2.

(Vasile Cîrtoaje, 2010)
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Solution. Assume that a ≥ b. Using the substitution

c = a− b,

we need to show that

a−c + (a− c)c +
7

16
c2 ≤ 2

for
0≤ c ≤ 2, c ≤ a ≤ 1+

c
2

.

For c = 0 and c = 2 (which involves a = 2), the inequality is an equality. Therefore,
we only need to show that f (x)≤ 0 for 0< c < 2, where

f (x) = x−c + (x − c)c +
7

16
c2 − 2, x ∈

h

c, 1+
c
2

i

.

In the case c = 1, we need to show that f (x)≤ 0 for x ∈
�

1,
3
2

�

; indeed, we have

f (x) =
1
x
+ x −

41
16
≤

2
3
+

3
2
−

41
16
=
−19
48

< 0.

Consider next that
c ∈ (0, 1)∪ (1,2).

The derivative

f ′(x) =
c[x1+c − (x − c)1−c]

x1+c(x − c)1−c

has the same sign as

g(x) = (1+ c) ln x − (1− c) ln(x − c).

We have

g ′(x) =
c(2x − 1− c)

x(x − c)
.

Case 1: 0 < c < 1. We claim that g(x) > 0 for x ∈
�

c, 1+
c
2

i

. On this assumption,

f is strictly increasing on
h

c, 1+
c
2

i

, hence

f (x)≤ f
�

1+
c
2

�

.

Thus, we need to show that f
�

1+
c
2

�

≤ 0, which is just the inequality in Lemma

4 below.
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From the expression of g ′(x), it follows that g(x) is decreasing on
�

c,
1+ c

2

�

,

and increasing on
�

1+ c
2

, 1+
c
2

�

. Then, to show that g(x) > 0 for x ∈
�

c, 1+
c
2

i

,

it suffices to prove that

g
�

1+ c
2

�

> 0,

which is equivalent to
�

1+ c
2

�1+c

>

�

1− c
2

�1−c

.

This inequality follows from Bernoulli’s inequality, as follows:
�

1+ c
2

�1+c

=
�

1−
1− c

2

�1+c

> 1−
(1+ c)(1− c)

2
=

1+ c2

2

and
�

1− c
2

�1−c

=
�

1−
1+ c

2

�1−c

< 1−
(1− c)(1+ c)

2
=

1+ c2

2
.

Case 2: 1< c < 2. Since

2x − 1− c ≥ 2c − 1− c = c − 1> 0,

it follows that g ′(x) > 0, hence g(x) is strictly increasing. For x → c, we have
g(x) → −∞. If g(1 + c/2) ≤ 0, then g(x) ≤ 0, hence f is decreasing. If g(1 +
c/2) > 0, then there exists x1 ∈ (c, 1 + c/2) such that g(x1) = 0, g(x) < 0 for
x ∈ [c, x1) and g(x) > 0 for x ∈ (x1, 1 + c/2], hence f is decreasing on [c, x1]
and increasing on [x1, 1 + c/2]. Therefore, it suffices to show that f (c) ≤ 0 and

f
�

1+
c
2

�

≤ 0. These inequalities follow respectively from Lemma 1 and Lemma 4

below.
The proof is completed. The equality holds for a = b, for a = 2 and b = 0, and

for a = 0 and b = 2.

Lemma 1. If 1≤ c ≤ 2, then

c−c +
7
16

c2 ≤ 2,

with equality for c = 2.
Proof. The desired inequality is equivalent to h(c)≥ 0, where

h(c) = c ln c + ln
�

2−
7
16

c2
�

, c ∈ [1,2].

We have
h′(c) = 1+ ln c −

14c
32− 7c2

,

h′′(c) =
1
c
−

14(32+ 7c2)
(32− 7c2)2

.
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Since h′′ is strictly decreasing, h′′(1) = 79/625 and h′′(2) = −52, there exists c1 ∈
(1, 2) such that h′′(c1) = 0, h′′(c) > 0 for c ∈ [1, c1) and h′′(c) < 0 for c ∈ (c1, 2],
hence h′ is strictly increasing on [1, c1] and strictly decreasing on [c1, 2]. Since
h′(1) = 11/25 and h′(2) = ln 2−6< 0, there exists c2 ∈ (1, 2) such that h′(c2) = 0,
h′(c) > 0 for c ∈ [1, c2) and h′(c) < 0 for c ∈ (c2, 2], hence h is strictly increasing
on [1, c2] and strictly decreasing on [c2, 2]. Thus, it suffices to show that h(1) ≥ 0
and h(2)≥ 0. Indeed, h(1) = ln 25− ln 16> 0 and h(2) = 0.

Lemma 2. If 0≤ x ≤ 2, then
�

1+
x
2

�−x
+

3
16

x2 ≤ 1,

with equality for x = 0 and x = 2.
Proof. We need to show that f (x)≤ 0, where

f (x) = −x ln
�

1+
x
2

�

− ln
�

1−
3

16
x2
�

, x ∈ [0,2].

We have

f ′(x) = − ln
�

1+
x
2

�

+
x(3x2 + 6x − 4)
(2+ x)(16− 3x2)

,

f ′′(x) =
g(x)

(2+ x)2(16− 3x2)2
,

where
g(x) = −9x5 − 18x4 + 168x3 + 552x2 + 128x − 640.

Since g(x1) = 0 for x1 ≈ 0,88067, g(x) < 0 for x ∈ [0, x1) and g(x) > 0 for
x ∈ (x1, 2], f ′ is strictly decreasing on [0, x1] and strictly increasing on [x1, 2].

Since f ′(0) = 0 and f ′(2) = − ln2+
5
2
> 0, there is x2 ∈ (x1, 2) such that f ′(x2) = 0,

f ′(x) < 0 for x ∈ (0, x2), and f ′(x) > 0 for x ∈ (x2, 2]. Therefore, f is decreasing
on [0, x2] and increasing on [x2, 2]. Since f (0) = f (2) = 0, it follows that f (x)≤ 0
for x ∈ [0, 2].

Lemma 3. If 0≤ x ≤ 2, then
�

1−
x
2

�x
+

1
4

x2 ≤ 1,

with equality for x = 0 and x = 2.
Proof. We need to show that f (x)≤ 0, where

f (x) = x ln
�

1−
x
2

�

− ln
�

1−
1
4

x2
�

, x ∈ [0,2).

We have

f ′(x) = ln
�

1−
x
2

�

−
x2

4− x2
,
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f ′′(x) =
−1

2− x
−

8x
(4− x2)2

.

Since f ′′ < 0 for x ∈ [0,2), f ′ is strictly decreasing, hence f ′(x) ≤ f ′(0) = 0, f is
strictly decreasing, therefore f (x)≤ f (0) = 0 for x ∈ [0, 2).

Lemma 4. If 0≤ x ≤ 2, then

�

1+
x
2

�−x
+
�

1−
x
2

�x
+

7
16

x2 ≤ 2,

with equality for x = 0 and x = 2.
Proof. By Lemma 2 and Lemma 3, we have

�

1+
x
2

�−x
+

3
16

x2 ≤ 1

and
�

1−
x
2

�x
+

1
4

x2 ≤ 1.

The desired inequality follows by adding up these inequalities.

Conjecture. If a, b are nonnegative real numbers such that a+ b =
1
4

, then

a2(b−a) + b2(a−b) ≤ 2.

P 3.27. If a, b are nonnegative real numbers such that a+ b ≤ 4, then

ab−a + ba−b ≤ 2.

(Vasile Cîrtoaje, 2010)

Solution. Without loss of generality, assume that a ≥ b. Consider first that a− b ≥
2. We have

a ≥ a− b ≥ 2,

and from
4≥ a+ b = (a− b) + 2b ≥ 2+ 2b,

we get b ≤ 1. Clearly, the desired inequality is true because

ab−a < 1, ba−b ≤ 1.

Since the case a − b = 0 is trivial, consider further that 0 < a − b < 2 and use the
substitution

c = a− b.
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So, we need to show that
a−c + (a− c)c ≤ 2

for
0< c < 2, c ≤ a ≤ 2+

c
2

.

Equivalently, we need to show that f (x)≤ 0 for 0< c < 2, where

f (x) = x−c + (x − c)c − 2, x ∈
h

c, 2+
c
2

i

.

The derivative

f ′(x) =
c[x1+c − (x − c)1−c]

x1+c(x − c)1−c

has the same sign as

g(x) = (1+ c) ln x − (1− c) ln(x − c).

We have

g ′(x) =
c(2x − 1− c)

x(x − c)
.

Case 1: c = 1. We need to show that x2 − 3x + 1 ≤ 0 for x ∈
�

1,
5
2

�

. Indeed, we

have
2(x2 − 3x + 1) = (x − 1)(2x − 5) + (x − 3)< 0.

Case 2: 0< c < 1. We will show that g(x)> 0 for x ∈
�

c, 2+
c
2

i

. From

g ′(x) =
c(2x − 1− c)

x(x − c)
,

it follows that g(x) is decreasing on
�

c,
1+ c

2

�

and increasing on
�

1+ c
2

,2+
c
2

�

.

Then, to show that g(x)> 0 for x ∈
�

c, 1+
c
2

i

, it suffices to prove that

g
�

1+ c
2

�

> 0,

which is equivalent to
�

1+ c
2

�1+c

>

�

1− c
2

�1−c

.

This inequality follows from Bernoulli’s inequality, as follows:

�

1+ c
2

�1+c

=
�

1−
1− c

2

�1+c

> 1−
(1+ c)(1− c)

2
=

1+ c2

2
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and
�

1− c
2

�1−c

=
�

1−
1+ c

2

�1−c

< 1−
(1− c)(1+ c)

2
=

1+ c2

2
.

Since g(x) > 0 involves f ′(x) > 0, it follows that f (x) is strictly increasing on
h

c, 2+
c
2

i

, and hence

f (x)≤ f
�

2+
c
2

�

.

So, we need to show that f
�

2+
c
2

�

≤ 0 for 0 < c < 1, which follows immediately

from Lemma 3 below.

Case 3: 1< c < 2. Since

2x − 1− c ≥ 2c − 1− c > 0,

we have g ′(x) > 0, hence g(x) is strictly increasing. Since g(x) → −∞ when
x → c and

g
�

2+
c
2

�

= (1+ c) ln
�

2+
c
2

�

+ (c − 1) ln
�

2−
c
2

�

> (c − 1) ln
�

2−
c
2

�

> 0,

there exists x1 ∈
�

c, 2+
c
2

�

such that g(x1) = 0, g(x) < 0 for x ∈ (c, x1) and

g(x) > 0 for x ∈
�

x1, 2+
c
2

�

. Thus, f (x) is decreasing on [c, x1] and increasing

on
h

x1, 2+
c
2

i

. Then, it suffices to show that f (c)≤ 0 and f
�

2+
c
2

�

≤ 0. The first

inequality is true because

f (c) = c−c − 2< 1− 2< 0,

while the second inequality follows immediately from Lemma 3 below.
The proof is completed. The equality holds for a = b.

Lemma 1. If x < 4, then
xh(x)≤ 0,

where

h(x) = ln
�

2−
x
2

�

−
�

ln 2−
x
4
−

1
32

x2
�

.

Proof. From

h′(x) =
−x2

16(4− x)
≤ 0,

it follows that h(x) is decreasing. Since h(0) = 0, we have h(x)≥ 0 for x ≤ 0, and
h(x)≤ 0 for x ∈ [0,4); that is, xh(x)≤ 0 for x < 4.
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Lemma 2. If
−2≤ x ≤ 2,

then
�

2−
x
2

�x
≤ 1+ x ln 2−

x3

9
.

Proof. We have
ln2≈ 0.693< 7/9.

If x ∈ [0, 2], then

1+ x ln 2−
x3

9
≥ 1−

x3

9
≥ 1−

8
9
> 0.

Also, if x ∈ [−2, 0], then

1+ x ln 2−
x3

9
≥ 1+

7x
9
−

x3

9
>

8+ 7x − x3

9

=
2(x + 2)2 + (−x)(x + 1)2

9
> 0.

So, we can write the desired inequality as f (x)≥ 0, where

f (x) = ln
�

1+ d x −
x3

9

�

− x ln
�

2−
x
2

�

, d = ln 2.

We have

f ′(x) =
9d − 3x2

9+ 9d x − x3
+

x
4− x

− ln
�

2−
x
2

�

.

Since f (0) = 0, it suffices to show that f ′(x)≤ 0 for x ∈ [−2, 0], and f ′(x)≥ 0 for
x ∈ [0,2]; that is, x f ′(x)≥ 0 for x ∈ [−2,2]. We have

f ′(x) = g(x)− h(x),

where

g(x) =
9d − 3x2

9+ 9d x − x3
+

x
4− x

−
�

d −
x
4
−

1
32

x2
�

,

h(x) = ln
�

2−
x
2

�

−
�

d −
x
4
−

1
32

x2
�

.

According to Lemma 1,

x f ′(x) = x g(x)− xh(x)≥ x g(x).

Therefore, to show that x f ′(x)≥ 0, it suffices to prove that x g(x)≥ 0. We have

g(x) =
�

9d − 3x2

9+ 9d x − x3
− d

�

+
�

x
4− x

+
x
4
+

1
32

x2
�

= x
�

d x2 − 3x − 9d2

9+ 9d x − x3
+

64− 4x − x2

32(4− x)

�

,
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hence

x g(x) =
x2 g1(x)

32(4− x)(9+ 9d x − x3)
,

where

g1(x) =32(4− x)(d x2 − 3x − 9d2) + (64− 4x − x2)(9+ 9d x − x3)

=x5 + 4x4 − (64+ 41d)x3 + (87+ 92d)x2 + 12(24d2 + 48d − 35)x

+ 576(1− 2d2).

Since g1(x) ≥ 0 for x ∈ [a1, b1], where a1 ≈ −12.384 and b1 =≈ 2.652, we have
g1(x)≥ 0 for x ∈ [−2,2].

Lemma 3. If 0≤ c ≤ 2, then

�

2+
c
2

�−c
+
�

2−
c
2

�c
≤ 2.

Proof. According to Lemma 2, the following inequalities hold for c ∈ [0,2]:

�

2+
c
2

�−c
≤ 1− c ln 2+

c3

9
,

�

2−
c
2

�c
≤ 1+ c ln2−

c3

9
.

Summing these inequalities, the desired inequality follows.

P 3.28. If a, b are nonnegative real numbers such that a+ b = 2, then

a2b + b2a ≥ ab + ba ≥ a2 b2 + 1.

(Vasile Cîrtoaje, 2010)

Solution. Since a, b ∈ [0,2] and

(1− a)(1− b) = −(1− a)2 ≤ 0,

from Lemma below, we have

ab − 1≥
b(ab+ 3− a− b)(a− 1)

2
=

b(ab+ 1)(a− 1)
2

and

ba − 1≥
a(ab+ 1)(b− 1)

2
.
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Based on these inequalities, we get

ab + ba − a2 b2 − 1= (ab − 1) + (ba − 1) + 1− a2 b2

≥
b(ab+ 1)(a− 1)

2
+

a(ab+ 1)(b− 1)
2

+ 1− a2 b2

= (ab+ 1)(ab− 1) + 1− a2 b2 = 0

and

a2b + b2a − ab − ba = ab(ab − 1) + ba(ba − 1)

≥
ab b(ab+ 1)(a− 1)

2
+

baa(ab+ 1)(b− 1)
2

=
ab(ab+ 1)(a− b)(ab−1 − ba−1)

4
.

Under the assumption that a ≥ b, we only need to show that ab−1 ≥ ba−1, which is
equivalent to

a
b−a

2 ≥ b
a−b

2 , 1≥ (ab)
a−b

2 , 1≥ ab, (a− b)2 ≥ 0.

For both inequalities, the equality holds when a = b = 1, when a = 0 and b = 2,
and when a = 2 and b = 0.

Lemma. If x , y ∈ [0, 2] such that (1− x)(1− y)≤ 0, then

x y − 1≥
y(x y + 3− x − y)(x − 1)

2
,

with equality for x = 1, and also for y = 0, y = 1 and y = 2.

Proof. For y = 0, y = 1 and y = 2, the inequality is an identity. For fixed

y ∈ (0,1)∪ (1, 2),

let us define

f (x) = x y − 1−
y(x y + 3− x − y)(x − 1)

2
.

We have

f ′(x) = y
�

x y−1 −
x y + 3− x − y

2
−
(x − 1)(y − 1)

2

�

,

f ′′(x) = y(y − 1)(x y−2 − 1).

Since x y−2 − 1 has the same sign as 1− x , it follows that f ′′(x) ≥ 0 for x ∈ (0,2],
therefore f ′ is increasing. There are two cases to consider.

Case 1: x ≥ 1> y . We have f ′(x)≥ f ′(1) = 0, f (x) is increasing, hence

f (x)≥ f (1) = 0.

Case 2: y > 1≥ x . We have f ′(x)≤ f ′(1) = 0, f (x) is decreasing, hence

f (x)≥ f (1) = 0.
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P 3.29. If a, b are positive real numbers such that a+ b = 2, then

a3b + b3a ≤ 2.

(Vasile Cîrtoaje, 2007)

Solution. Without loss of generality, assume that a ≥ b. Using the substitution

a = 1+ x , b = 1− x , 0≤ x < 1,

we can write the inequality as

e3(1−x) ln(1+x) + e3(1+x) ln(1−x) ≤ 2.

Applying Lemma below, it suffices to show that f (x)≤ 2, where

f (x) = e3(1−x)
�

x− x2
2 +

x3
3

�

+ e−3(1+x)
�

x+ x2
2 +

x3
3

�

.

Since f (0) = 2, it suffices to show that f ′(x)≤ 0 for x ∈ [0, 1). From

f ′(x) =
�

3− 9x +
15
2

x2 − 4x3
�

e3x− 9x2
2 +

5x3
2 −x4

−
�

3+ 9x +
15
2

x2 + 4x3
�

e−3x− 9x2
2 −

5x3
2 −x4

,

it follows that f ′(x)≤ 0 is equivalent to

e−6x−5x3
≥

6− 18x + 15x2 − 8x3

6+ 18x + 15x2 + 8x3
.

For the nontrivial case 6 − 18x + 15x2 − 8x3 > 0, we rewrite this inequality as
g(x)≥ 0, where

g(x) = −6x − 5x3 − ln(6− 18x + 15x2 − 8x3) + ln(6+ 18x + 15x2 + 8x3).

Since g(0) = 0, it suffices to show that g ′(x)≥ 0 for x ∈ [0, 1). From

1
3

g ′(x) = −2− 5x2 +
(6+ 8x2)− 10x

6+ 15x2 − (18x + 8x3)
+

(6+ 8x2) + 10x
6+ 15x2 + (18x + 8x3)

,

it follows that g ′(x)≥ 0 is equivalent to

2(6+ 8x2)(6+ 15x2)− 20x(18x + 8x3)≥ (2+ 5x2)[(6+ 15x2)2 − (18x + 8x3)2].

Since

(6+ 15x2)2 − (18x + 8x3)2 ≤ (6+ 15x2)2 − 324x2 − 288x4 ≤ 4(9− 36x2),
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it suffices to show that

(3+ 4x2)(6+ 15x2)− 5x(18x + 8x3)≥ (2+ 5x2)(9− 36x2).

This reduces to 6x2 + 200x4 ≥ 0, which is clearly true. The equality holds for
a = b = 1.

Lemma. If t > −1, then

ln(1+ t)≤ t −
t2

2
+

t3

3
.

Proof. We need to prove that f (t)≥ 0, where

f (t) = t −
t2

2
+

t3

3
− ln(1+ t).

Since

f ′(t) =
t3

t + 1
,

f (t) is decreasing on (−1, 0] and increasing on [0,∞). Therefore,

f (t)≥ f (0) = 0.

P 3.30. If a, b are nonnegative real numbers such that a+ b = 2, then

a3b + b3a +
�

a− b
2

�4

≤ 2.

(Vasile Cîrtoaje, 2007)

Solution (by M. Miyagi and Y. Nishizawa). Using the substitution

a = 1+ x , b = 1− x , 0≤ x ≤ 1,

we can write the inequality as

(1+ x)3(1−x) + (1− x)3(1+x) + x4 ≤ 2.

By Lemma below, we have

(1+ x)1−x ≤
1
4
(1+ x)2(2− x2)(2− 2x + x2),

(1− x)1+x ≤
1
4
(1− x)2(2− x2)(2+ 2x + x2).
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Therefore, it suffices to show that

(1+ x)6(2− x2)3(2− 2x + x2)3 + (1− x)6(2− x2)3(2+ 2x + x2)3 + 64x4 ≤ 128,

which is equivalent to

x4(1− x2)[x6(x6 − 8x4 + 31x2 − 34)− 2(17x6 − 38x4 + 16x2 + 8)]≤ 0.

Thus, it suffices to show that

t3 − 8t2 + 31t − 34< 0

and
17t3 − 38t2 + 16t + 8> 0

for all t ∈ [0,1]. Indeed, we have

t3 − 8t2 + 31t − 34< t3 − 8t2 + 31t − 24= (t − 1)(t2 − 7t + 24)≤ 0,

17t3 − 38t2 + 16t + 8= 17t(t − 1)2 + (−4t2 − t + 8)> 0.

Lemma. If −1≤ t ≤ 1, then

(1+ t)1−t ≤
1
4
(1+ t)2(2− t2)(2− 2t + t2),

with equality for t = −1, t = 0 and t = 1.
Proof. It suffices to consider that

−1< t ≤ 1.

Rewrite the inequality as

(1+ t)1+t(2− t2)(2− 2t + t2)≥ 4,

which is equivalent to f (t)≥ 0, where

f (t) = (1+ t) ln(1+ t) + ln(2− t2) + ln(2− 2t + t2)− ln4.

We have

f ′(t) = 1+ ln(1+ t)−
2t

2− t2
+

2(t − 1)
2− 2t + t2

,

f ′′(t) =
t2 g(t)

(1+ t)(2− t2)2(2− 2t + t2)2
,

where
g(t) = t6 − 8t5 + 12t4 + 8t3 − 20t2 − 16t + 16.
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Case 1: 0≤ t ≤ 1. From

g ′(t) = 6t5 − 40t4 + 48t3 + 24t2 − 40t − 16

= 6t5 − 8t − 16− 8t(5t3 − 6t2 − 3t + 4)

= (6t5 − 8t − 16)− 8t(t − 1)2(5t + 4)< 0,

it follows that g is strictly decreasing on [0, 1]. Since g(0) = 16 and g(1) = −7,
there exists a number c ∈ (0,1) such that g(c) = 0, g(t) > 0 for 0 < t < c and
g(t) < 0 for c < t ≤ 1. Therefore, f ′ is strictly increasing on [0, c] and strictly
decreasing on [c, 1]. From f ′(0) = 0 and f ′(1) = ln2 − 1 < 0, it follows that
there exists a number d ∈ (0,1) such that f ′(d) = 0, f ′(t) > 0 for 0 < t < d and
f ′(t) < 0 for d < t ≤ 1. As a consequence, f is strictly increasing on [0, d] and
strictly decreasing on [d, 1]. Since f (0) = 0 and f (1) = 0, we have f (t) ≥ 0 for
0≤ t ≤ 1.

Case 2: −1< t ≤ 0. From

g(t) = t4(t − 2)(t − 6) + 4(t + 1)(2t2 − 7t + 3) + 4> 0,

it follows that f ′ is strictly increasing on (−1, 0]. Since f ′(0) = 0, we have f ′(t)< 0
for −1< t < 0, hence f is strictly decreasing on (−1,0]. From f (0) = 0, it follows
that f (t)≥ 0 for −1< t ≤ 0.

Conjecture. If a, b are nonnegative real numbers such that a+ b = 2, then

a3b + b3a +
�

a− b
2

�2

≥ 2.

P 3.31. If a, b are positive real numbers such that a+ b = 2, then

a
2
a + b

2
b ≤ 2.

(Vasile Cîrtoaje, 2008)

Solution. Without loss of generality, assume that

0< a ≤ 1≤ b < 2,

and write the inequality as

1
�

1
a2

�1/a
+

1
�

1
b

�2/b
≤ 2.

By Bernoulli’s inequality, we have
�

1
a2

�1/a

≥ 1+
1
a

�

1
a2
− 1

�

=
a3 − a2 + 1

a3
,
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�

1
b

�2/b

≥ 1+
2
b

�

1
b
− 1

�

=
b2 − 2b+ 2

b2
.

Therefore, it suffices to show that

a3

a3 − a2 + 1
+

b2

b2 − 2b+ 2
≤ 2,

which is equivalent to
a3

a3 − a2 + 1
≤
(2− b)2

b2 − 2b+ 2
,

a3

a3 − a2 + 1
≤

a2

a2 − 2a+ 2
,

a2(a− 1)2 ≥ 0.

The equality happens for a = b = 1.

P 3.32. If a, b are positive real numbers such that a+ b = 2, then

a
3
a + b

3
b ≥ 2.

(Vasile Cîrtoaje, 2008)

Solution. Assume that a ≤ b; that is,

0< a ≤ 1≤ b < 2.

There are two cases to consider: 0< a ≤
3
5

and
3
5
≤ a ≤ 1.

Case 1: 0< a ≤
3
5

. From a+ b = 2, we get
7
5
≤ b < 2. Let

f (x) = x
3
x , 0< x < 2.

Since
f ′(x) = 3x

3
x −2(1− ln x)> 0,

f (x) is increasing on (0,2), hence f (b)≥ f
�

7
5

�

; that is,

b
3
b ≥

�

7
5

�15/7

.

Using Bernoulli’s inequality gives

�

7
5

�15/7

=
7
5

�

1+
2
5

�8/7

>
7
5

�

1+
16
35

�

=
51
25
> 2,
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therefore
a

3
a + b

3
b > 2.

Case 2:
3
5
≤ a ≤ 1. From a+ b = 2, we get 1≤ b ≤

7
5

. By Lemma below, we have

2a
3
a ≥ 3− 15a+ 21a2 − 7a3

and
2b

3
b ≥ 3− 15b+ 21b2 − 7b3.

Summing these inequalities, we get

2
�

a
3
a + b

3
b

�

≥ 6− 15(a+ b) + 21(a2 + b2)− 7(a3 + b3)

= 6− 15(a+ b) + 21(a+ b)2 − 7(a+ b)3 = 4.

This completes the proof. The equality holds for a = b = 1.

Lemma. If
3
5
≤ x ≤ 2, then

2x
3
x ≥ 3− 15x + 21x2 − 7x3,

with equality for x = 1.

Proof. First, we show that h(x)> 0, where

h(x) = 3− 15x + 21x2 − 7x3.

From
h′(x) = 3(−5+ 14x − 7x2),

it follows that h(x) is increasing on

�

1−
s

2
7

, 1+
s

2
7

�

, and decreasing on

�

1+
s

2
7

,∞
�

.

Then, it suffices to show that f
�

3
5

�

≥ 0 and f (2)≥ 0. Indeed

f
�

3
5

�

=
6

125
, f (2) = 1.

Write now the desired inequality as f (x)≥ 0, where

f (x) = ln 2+
3
x

ln x − ln(3− 15x + 21x2 − 7x3),
3
5
≤ x ≤ 2.

We have

x2

3
f ′(x) = g(x), g(x) = 1− ln x +

x2(7x2 − 14x + 5)
3− 15x + 21x2 − 7x3

,
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g ′(x) =
g1(x)

x(3− 15x + 21x2 − 7x3)2
,

where

g1(x) = −49x7 + 245x6 − 280x5 − 147x4 + 471x3 − 321x2 + 90x − 9.

In addition,

g1(x = (x − 1)2 g2(x), g2(x) = −49x5 + 147x4 + 63x3 − 168x2 + 72x − 9,

g2(x) = 11x5 + 3g3(x), g3(x) = −20x5 + 49x4 + 21x3 − 56x2 + 24x − 3,

g3(x) = (4x − 1)g4(x), g4(x) = −5x4 + 11x3 + 8x2 − 12x + 3,

g4(x) = x5 + g5(x), g5(x) = −6x4 + 11x3 + 8x2 − 12x + 3,

g5(x) = (2x − 1)g6(x), g6(x) = −3x3 + 4x2 + 6x − 3,

g6(x) = 1+ (2− x)(3x2 + 2x − 2).

Therefore, we get in succession g6(x) > 0, g5(x) > 0, g4(x) > 0, g3(x) > 0,
g2(x) > 0, g1(x) ≥ 0, g ′(x) ≥ 0, g(x) is increasing. Since g(1) = 0, we have

g(x)< 0 on
�

3
5

, 1
�

and g(x)> 0 on (1, 2]. Then, f (x) is decreasing on
�

3
5

,1
�

and

increasing on [1, 2], hence f (x)≥ f (1) = 0.

P 3.33. If a, b are positive real numbers such that a+ b = 2, then

a5b2
+ b5a2

≤ 2.

(Vasile Cîrtoaje, 2010)

Solution. Assume that a ≥ b. For a = 2 and b = 0, the inequality is obvious.
Otherwise, using the substitution a = 1+ x and b = 1− x , 0≤ x < 1, we can write
the desired inequality as

e5(1−x)2 ln(1+x) + e5(1+x)2 ln(1−x) ≤ 2.

According to Lemma below, it suffices to show that f (x)≤ 2, where

f (x) = e5(u−v) + e−5(u+v),

u= x +
7
3

x3 +
31
30

x5, v =
5
2

x2 +
17
12

x4 +
9

20
x6.

If f ′(x)≤ 0, then f (x) is decreasing, hence

f (x)≤ f (0) = 2.
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Since
f ′(x) = 5(u′ − v′)e5(u−v) − 5(u′ + v′)e−5(u+v),

u′ = 1+ 7x2 +
31
6

x4, v′ = 5x +
17
3

x3 +
27
10

x5,

the inequality f ′(x)≤ 0 becomes

e−10u(u′ + v′)≥ u′ − v′

For the nontrivial case u′ − v′ > 0, we rewrite this inequality as g(x)≥ 0, where

g(x) = −10u+ ln(u′ + v′)− ln(u′ − v′).

If g ′(x)≥ 0, then g(x) is increasing, hence

g(x)≥ f (0) = 0.

We have

g ′(x) = −10u′ +
u′′ + v′′

u′ + v′
−

u′′ − v′′

u′ − v′
,

where

u′′ = 14x +
62
3

x3, v′′ = 5+ 17x2 +
27
2

x4.

Write the inequality g ′(x)≥ 0 as

u′v′′ − v′u′′ ≥ 5u′(u′ + v′)(u′ − v′),

a1 t + a2 t2 + a3 t3 + a4 t4 + a5 t5 + a6 t6 + a7 t7 ≥ 0,

where t = x2, 0≤ t < 1, and

a1 = 2, a2 = 321.5, a3 ≈ 152.1, a4 ≈ −498.2,

a5 ≈ −168.5, a6 ≈ 356.0, a7 ≈ 188.3.

This inequality is true if

300t2 + 150t3 − 500t4 − 200t5 + 250t6 ≥ 0.

Since the last inequality is equivalent to the obvious inequality

50t2(1− t)(6+ 9t − t2 − 5t3)≥ 0,

the proof is completed. The equality holds for a = b = 1.

Lemma. If −1< t < 1, then

(1− t)2 ln(1+ t)≤ t −
5
2

t2 +
7
3

t3 −
17
12

t4 +
31
30

t5 −
9
20

t6.
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Proof. We show that

(1− t)2 ln(1+ t)≤ (1− t)2
�

t −
1
2

t2 +
1
3

t3 −
1
4

t4 +
1
5

t5
�

≤ t −
5
2

t2 +
7
3

t3 −
17
12

t4 +
31
30

t5 −
9

20
t6.

The left inequality is equivalent to f (t)≥ 0, where

f (t) = t −
1
2

t2 +
1
3

t3 −
1
4

t4 +
1
5

t5 − ln(1+ t).

Since

f ′(t) =
t5

1+ t
,

f (t) is decreasing on (−1, 0] and increasing on [0,1); therefore, f (t)≥ f (0) = 0.
The right inequality is equivalent to t6(t − 1)≤ 0, which is clearly true.

P 3.34. If a, b are positive real numbers such that a+ b = 2, then

a2
p

b + b2
p

a ≤ 2.

(Vasile Cîrtoaje, 2010)

Solution. Assume that a ≥ b. For a = 2 and b = 0, the inequality is obvious.
Otherwise, using the substitution a = 1+ x and b = 1− x , 0≤ x < 1, we can write
the desired inequality as f (x)≤ 2, where

f (x) = (1+ x)2
p

1−x + (1− x)2
p

1+x = e2
p

1−x ln(1+x) + e2
p

1+x ln(1−x).

There are two cases to consider.

Case 1: 13/20≤ x < 1. If f is decreasing on [13/20,1), then

f (x)≤ f
�

13
20

�

=
�

33
20

�

p
7/5

+
�

7
20

�

p
33/5

<

�

5
3

�5/4

+
�

1
4

�2

< 2.

Since the function (1− x)2
p

1+x is decreasing, it suffices to show that

g(x) = (1+ x)2
p

1−x

is decreasing. This is true if g ′(x) ≤ 0 for x ∈ [13/20,1), that is equivalent to
h(x)≤ 0, where

h(x) =
2(1− x)

1+ x
− ln(1+ x).
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Clearly, h is decreasing, hence

h(x)≤ h
�

13
20

�

=
14
33
− ln

33
20
< 0.

Case 2: 0≤ x ≤ 13/20. By Lemma below, it suffices to show that g(x)≤ 2, where

g(x) = e2x−2x2+ 11
12 x3− 1

2 x4
+ e−(2x+2x2+ 11

12 x3+ 1
2 x4).

If g ′(x)≤ 0 for x ∈ [0,13/20], then g is decreasing, hence g(x)≤ g(0) = 2. Since

g ′(x) =(2− 4x +
11
4

x2 − 2x3)e2x−2x2+ 11
12 x3− 1

2 x4

− (2+ 4x +
11
4

x2 + 2x3)e−(2x+2x2+ 11
12 x3+ 1

2 x4),

the inequality g ′(x)≤ 0 is equivalent to

e−4x− 11
6 x3
≥

8− 16x + 11x2 − 8x3

8+ 16x + 11x2 + 8x3
.

For the nontrivial case 8−16x+11x2−8x3 > 0, rewrite this inequality as h(x)≥ 0,
where

h(x) = −4x −
11
6

x3 − ln(8− 16x + 11x2 − 8x3) + ln(8+ 16x + 11x2 + 8x3).

If h′ ≥ 0, then h is increasing, hence h(x)≥ h(0) = 0. From

h′(x) = −4−
11
2

x2 +
(16+ 24x2)− 22x

8+ 11x2 − (16x + 8x3)
+

(16+ 24x2) + 22x
8+ 11x2 + (16x + 8x3)

,

it follows that h′(x)≥ 0 is equivalent to

(16+24x2)(8+11x2)−22x(16x+8x3)≥
1
4
(8+11x2)[(8+11x2)2−(16x+8x3)2].

Since

(8+ 11x2)2 − (16x + 8x3)2 ≤ (8+ 11x2)2 − 256x2 − 256x4 ≤ 16(4− 5x2),

it suffices to show that

(4+ 6x2)(8+ 11x2)− 11x(8x + 4x3)≥ (8+ 11x2)(4− 5x2).

This inequality reduces to 77x4 ≥ 0. The proof is completed. The equality holds
for a = b = 1.

Lemma. If −1< t ≤
13
20

, then

p
1− t ln(1+ t)≤ t − t2 +

11
24

t3 −
1
4

t4.
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Proof. Consider two cases.

Case 1: 0≤ t ≤
13
20

. We can prove the desired inequality by multiplying the follow-

ing inequalities
p

1− t ≤ 1−
1
2

t −
1
8

t2 −
1

16
t3,

ln(1+ t)≤ t −
1
2

t2 +
1
3

t3 −
1
4

t4 +
1
5

t5,
�

1−
1
2

t −
1
8

t2 −
1

16
t3
��

t −
1
2

t2 +
1
3

t3 −
1
4

t4 +
1
5

t5
�

≤ t − t2 +
11
24

t3 −
1
4

t4.

The first inequality is equivalent to f (t)≥ 0, where

f (t) = ln
�

1−
1
2

t −
1
8

t2 −
1
16

t3
�

−
1
2

ln(1− t).

Since

f ′(t) =
1

2(1− t)
−

8+ 4t + 3t2

16− 8t − 2t2 − t3
=

5t3

2(1− t)(16− 8t − 2t2 − t3)
≥ 0,

f is increasing, hence f (t)≥ f (0) = 0.

The second inequality is equivalent to f (t)≥ 0, where

f (t) = t −
1
2

t2 +
1
3

t3 −
1
4

t4 +
1
5

t5 − ln(1+ t).

Since

f ′(t) = 1− t + t2 − t3 + t4 −
1

1+ t
=

t5

1+ t
≥ 0,

f (t) is increasing, hence f (t)≥ f (0) = 0.

The third inequality is equivalent to

t4(160− 302t + 86t2 + 9t3 + 12t4)≥ 0.

This is true since

160− 302t + 86t2 + 9t3 + 12t4 ≥ 2(80− 151t + 43t2)> 0.

Case 2: −1< t ≤ 0. Write the desired inequality as

−
p

1− t ln(1+ t)≥ −t + t2 −
11
24

t3 +
1
4

t4.

This is true if p
1− t ≥ 1−

1
2

t −
1
8

t2,
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− ln(1+ t)≥ −t + t2 −
1
3

t3 +
1
4

t4,

�

1−
1
2

t −
1
8

t2
��

−t + t2 −
1
3

t3 +
1
4

t4
�

≥ −t + t2 −
11
24

t3 +
1
4

t4.

The first inequality is equivalent to f (t)≥ 0, where

f (t) =
1
2

ln(1− t)− ln
�

1−
1
2

t −
1
8

t2
�

.

Since

f ′(t) =
−1

2(1− t)
+

2(2+ t)
8− 4t − t2

=
−3t2

2(1− t)(8− 4t − t2)
≤ 0,

f is decreasing, hence f (t)≥ f (0) = 0.

The second inequality is equivalent to f (t)≥ 0, where

f (t) = t −
1
2

t2 +
1
3

t3 −
1
4

t4 − ln(1+ t).

Since

f ′(t) = 1− t + t2 − t3 −
1

1+ t
=
−t4

1+ t
≤ 0,

f is decreasing, hence f (t)≥ f (0) = 0.

The third inequality reduces to the obvious inequality

t4(10− 8t − 3t2)≥ 0.

P 3.35. If a, b are nonnegative real numbers such that a+ b = 2, then

ab(1− ab)2

2
≤ ab+1 + ba+1 − 2≤

ab(1− ab)2

3
.

(Vasile Cîrtoaje, 2010)

Solution. Assume that a ≥ b, which yields 1≤ a ≤ 2 and 0≤ b ≤ 1.

(a) To prove the left inequality we apply Lemma 1 below. For x = a and k = b,
we have

ab+1 ≥ 1+ (1+ b)(a− 1) +
b(1+ b)

2
(a− 1)2 −

b(1+ b)(1− b)
6

(a− 1)3,

ab+1 ≥ a− b+ ab+
b(1+ b)

2
(a− 1)2 −

b(1+ b)
6

(a− 1)4. (*)
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Also, for x = b and k = a− 1, we have

ba ≥ 1+ a(b− 1) +
a(a− 1)

2
(b− 1)2 −

a(a− 1)(2− a)
6

(b− 1)3,

ba ≥ 1− a+ ab+
a
2
(a− 1)3 +

ab
6
(a− 1)4,

ba+1 ≥ b− ab+ ab2 +
ab
2
(a− 1)3 +

ab2

6
(a− 1)4. (**)

Summing up (*) and (**) gives

ab+1 + ba+1 − 2≥ −b(a− 1)2 +
b(3− ab)

2
(a− 1)2 −

b(1+ b− ab)
6

(a− 1)4

=
b
2
(a− 1)4 −

b(1+ b− ab)
6

(a− 1)4

=
ab(1+ b)

6
(a− 1)4 ≥

ab
6
(a− 1)4 =

ab(1− ab)2

6
.

The equality holds for a = b = 1, for a = 2 and b = 0, and for a = 0 and b = 2.

(b) To prove the right inequality we apply Lemma 2 below. For x = a and
k = b, we have

ab+1 ≤ 1+ (b+ 1)(a− 1) +
(b+ 1)b

2
(a− 1)2 +

(b+ 1)b(b− 1)
6

(a− 1)3

+
(b+ 1)b(b− 1)(b− 2)

24
(a− 1)4,

ab+1 ≤ 1+(b+1)(a−1)+
b(b+ 1)

2
(a−1)2−

b(b+ 1)
6

(a−1)4+
ab(b+ 1)

24
(a−1)5.

Also, for x = b and k = a, we have

ba+1 ≤ 1+(a+1)(b−1)+
a(a+ 1)

2
(b−1)2−

a(a+ 1)
6

(b−1)4+
ab(a+ 1)

24
(b−1)5.

Summing up these inequalities and having in view that

(b+ 1)(a− 1)5 + (a+ 1)(b− 1)5 = −2(a− 1)5 ≤ 0

give

ab+1 + ba+1 − 2≤ −2(a− 1)2 +
a2 + b2 + 2

2
(a− 1)2 −

a2 + b2 + 2
6

(a− 1)4

≤
a2 + b2 − 2

2
(a− 1)2 −

a2 + b2 + 2
6

(a− 1)4

= (a− 1)4 −
a2 + b2 + 2

6
(a− 1)4

=
ab
3
(a− 1)4 =

ab(1− ab)2

3
.
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The equality holds for a = b = 1, for a = 2 and b = 0, and for a = 0 and b = 2.

Lemma 1. If x ≥ 0 and 0≤ k ≤ 1, then

x k+1 ≥ 1+ (1+ k)(x − 1) +
k(1+ k)

2
(x − 1)2 −

k(1+ k)(1− k)
6

(x − 1)3,

with equality for x = 1, for k = 0 and for k = 1.

Proof. For k = 0 and k = 1, the inequality is an identity. For fixed k, 0 < k < 1, let
us define

f (x) = x k+1 − 1− (1+ k)(x − 1)−
k(1+ k)

2
(x − 1)2 +

k(1+ k)(1− k)
6

(x − 1)3.

We need to show that f (x)≥ 0. We have

1
1+ k

f ′(x) = x k − 1− k(x − 1) +
k(1− k)

2
(x − 1)2,

1
k(1+ k)

f ′′(x) = x k−1 − 1+ (1− k)(x − 1),

1
k(1+ k)(1− k)

f ′′′(x) = −x k−2 + 1.

Case 1: 0 ≤ x ≤ 1. Since f ′′′ ≤ 0, f ′′ is decreasing, f ′′(x) ≥ f ′′(1) = 0, f ′ is
increasing, f ′(x)≤ f ′(1) = 0, f is decreasing, hence f (x)≥ f (1) = 0.

Case 2: x ≥ 1. Since f ′′′ ≥ 0, f ′′ is increasing, f ′′(x)≥ f ′′(1) = 0, f ′ is increasing,
f ′(x)≥ f ′(1) = 0, f is increasing, hence f (x)≥ f (1) = 0.

Lemma 2. If either x ≥ 1 and 0≤ k ≤ 1, or 0≤ x ≤ 1 and 1≤ k ≤ 2, then

x k+1 ≤ 1+ (k+ 1)(x − 1) +
(k+ 1)k

2
(x − 1)2 +

(k+ 1)k(k− 1)
6

(x − 1)3

+
(k+ 1)k(k− 1)(k− 2)

24
(x − 1)4,

with equality for x = 1, for k = 0, for k = 1 and for k = 2.

Proof. For k = 0, k = 1 and k = 2, the inequality is an identity. For fixed k,
k ∈ (0,1)∪ (1, 2), let us define

f (x) = x k+1 − 1− (k+ 1)(x − 1)−
(k+ 1)k

2
(x − 1)2 −

(k+ 1)k(k− 1)
6

(x − 1)3

−
(k+ 1)k(k− 1)(k− 2)

24
(x − 1)4.
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We need to show that f (x)≤ 0. We have

1
k+ 1

f ′(x) = x k − 1− k(x − 1)−
k(k− 1)

2
(x − 1)2 −

k(k− 1)(k− 2)
6

(x − 1)3,

1
k(k+ 1)

f ′′(x) = x k−1 − 1− (k− 1)(x − 1)−
(k− 1)(k− 2)

2
(x − 1)2,

1
k(k+ 1)(k− 1)

f ′′′(x) = x k−2 − 1− (k− 2)(x − 1),

1
k(k+ 1)(k− 1)(k− 2)

f (4)(x) = x k−3 − 1.

Case 1: x ≥ 1, 0< k < 1. Since f (4)(x)≤ 0, f ′′′(x) is decreasing, f ′′′(x)≤ f ′′′(1) =
0, f ′′ is decreasing, f ′′(x) ≤ f ′′(1) = 0, f ′ is decreasing, f ′(x) ≤ f ′(1) = 0, f is
decreasing, hence f (x)≤ f (1) = 0.

Case 2: 0 ≤ x ≤ 1, 1 < k < 2. Since f (4) ≤ 0, f ′′′ is decreasing, f ′′′(x) ≥ f ′′′(1) =
0, f ′′ is increasing, f ′′(x) ≤ f ′′(1) = 0, f ′ is decreasing, f ′(x) ≥ f ′(1) = 0, f is
increasing, hence f (x)≤ f (1) = 0.

P 3.36. If a, b are nonnegative real numbers such that a+ b = 1, then

a2b + b2a ≤ 1.

(Vasile Cîrtoaje, 2007)

Solution. Without loss of generality, assume that

0≤ b ≤
1
2
≤ a ≤ 1.

Applying Lemma 1 below for c = 2b, 0≤ c ≤ 1, we get

a2b ≤ (1− 2b)2 + 4ab(1− b)− 2ab(1− 2b) ln a,

which is equivalent to

a2b ≤ 1− 4ab2 − 2ab(a− b) ln a.

Similarly, applying Lemma 2 below for d = 2a− 1, d ≥ 0, we get

b2a−1 ≤ 4a(1− a) + 2a(2a− 1) ln(2a+ b− 1),

which is equivalent to

b2a ≤ 4ab2 + 2ab(a− b) ln a.
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Adding up these inequalities, the desired inequality follows. The equality holds for
a = b = 1/2, for a = 0 and b = 1, and for a = 1 and b = 0.

Lemma 1. If 0< a ≤ 1 and c ≥ 0, then

ac ≤ (1− c)2 + ac(2− c)− ac(1− c) ln a,

with equality for a = 1, for c = 0 and for c = 1.

Proof. Making the substitution

a = e−x , x ≥ 0,

we need to prove that f (x)≥ 0, where

f (x) = (1− c)2ex + c(2− c) + c(1− c)x − e(1−c)x ,

f ′(x) = (1− c)[(1− c)ex + c − e(1−c)x].

If f ′ ≥ 0 on [0,∞), then f is increasing, and hence f (x) ≥ f (0) = 0. In order to
prove that f ′ ≥ 0, we consider two cases.

Case 1: 0≤ c ≤ 1. By the weighted AM-GM inequality, we have

(1− c)ex + c ≥ e(1−c)x ,

hence f ′(x)≥ 0.

Case 2: c ≥ 1. By the weighted AM-GM inequality, we have

(c − 1)ex + e(1−c)x ≥ c,

which yields
f ′(x) = (c − 1)[(c − 1)ex + e(1−c)x − c]≥ 0.

Lemma 2. If 0≤ b ≤ 1 and d ≥ 0, then

bd ≤ 1− d2 + d(1+ d) ln(b+ d),

with equality for b = 0 and for d = 0.

Proof. Consider 0< b ≤ 1 and d > 0, and write the inequality as

(1+ d)[1− d + d ln(b+ d)]≥ bd .

Since
1− d + d ln(b+ d)> 1− d + d ln d ≥ 0,

we can rewrite the inequality in the form

ln(1+ d) + ln[1− d + d ln(b+ d)]≥ d ln b.
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Using the substitution

b = e−x − d, − ln(1+ d)≤ x < − ln d,

we need to prove that f (x)≥ 0, where

f (x) = ln(1+ d) + ln(1− d − d x) + d x − d ln(1− dex).

Since

f ′(x) =
d2(ex − 1− x)

(1− d − d x)(1− dex)
≥ 0,

f is increasing, hence

f (x)≥ f (− ln(1+ d)) = ln[1− d2 + d(1+ d) ln(1+ d)].

To complete the proof, we only need to show that −d2+d(1+d) ln(1+d)≥ 0; that
is,

(1+ d) ln(1+ d)≥ d.

This inequality follows from ex ≥ 1+ x , where x =
−d

1+ d
.

Conjecture. If a, b are nonnegative real numbers such that 1≤ a+ b ≤ 15, then

a2b + b2a ≤ aa+b + ba+b.

P 3.37. If a, b are positive real numbers such that a+ b = 1, then

2aa bb ≥ a2b + b2a.

Solution. Taking into account the inequality a2b + b2a ≤ 1 from the preceding P
3.36, it suffices to show that

2aa bb ≥ 1.

Write this inequality as
2aa bb ≥ aa+b + ba+b,

2≥
�a

b

�b
+
�

b
a

�a

.

Since a < 1 and b < 1, we apply Bernoulli’s inequality as follows:

�a
b

�b
+
�

b
a

�a

≤ 1+ b
�a

b
− 1

�

+ 1+ a
�

b
a
− 1

�

= 2.

Thus, the proof is completed. The equality holds for a = b = 1/2.
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P 3.38. If a, b are positive real numbers such that a+ b = 1, then

a−2a + b−2b ≤ 4.

Solution. Applying Lemma below, we have

a−2a ≤ 4− 2 ln2− 4(1− ln 2)a,

b−2b ≤ 4− 2 ln 2− 4(1− ln2)b.

Adding these inequalities, the desired inequality follows. The equality holds for
a = b = 1/2.

Lemma. If x ∈ (0,1], then

x−2x ≤ 4− 2 ln2− 4(1− ln 2)x ,

with equality for x = 1/2.

Proof. Write the inequality as

1
4

x−2x ≤ 1− c − (1− 2c)x , c =
1
2

ln 2≈ 0.346.

This is true if f (x)≤ 0, where

f (x) = −2 ln 2− 2x ln x − ln[1− c − (1− 2c)x].

We have
f ′(x) = −2− 2 ln x +

1− 2c
1− c − (1− 2c)x

,

f ′′(x) = −
2
x
+

(1− 2c)2

[1− c − (1− 2c)x]2
=

g(x)
x[1− c − (1− 2c)x]2

,

where
g(x) = 2(1− 2c)2 x2 − (1− 2c)(5− 6c)x + 2(1− c)2.

Since

g ′(x) = (1− 2c)[4(1− 2c)x − 5+ 6c]≤ (1− 2c)[4(1− 2c)− 5+ 6c]
= (1− 2c)(−1− 2c)< 0,

g is decreasing on (0, 1], hence g(x)≥ g(1) = −2c2+4c−1> 0, f ′′(x)> 0 for x ∈
(0, 1], f ′ is increasing. Since f ′(1/2) = 0, we have f ′(x) ≤ 0 for x ∈ (0,1/2] and
f ′(x) ≥ 0 for x ∈ [1/2,1]. Therefore, f is decreasing on (0, 1/2] and increasing
on [1/2,1], hence f (x)≥ f (1/2) = 0.

Remark. According to the inequalities in P 3.36 and P 3.38, the following inequality
holds for all positive numbers a, b such that a+ b = 1:

�

a2b + b2a
�

�

1
a2a
+

1
b2b

�

≤ 4.
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Actually, this inequality holds for all a, b ∈ (0, 1]. In this case, it is sharper than the
inequality in P 3.19.

P 3.39. If a1, a2, . . . , an are positive real numbers such that a1a2 · · · an = 1, then
�

1−
1
n

�a1

+
�

1−
1
n

�a2

+ · · ·+
�

1−
1
n

�an

≤ n− 1.

(Vasile Cîrtoaje, 2004)

Solution. We will prove the more general inequality
�

1−
1
n

�a1

+
�

1−
1
n

�a2

+ · · ·+
�

1−
1
n

�an

≤ n
�

1−
1
n

�a

, (*)

where a = n
p

a1a2 · · · an ≤ 1. Using the substitution

x i = ai ln
n

n− 1
, i = 1, 2, . . . , n,

the inequality becomes as follows:

e−x1 + e−x2 + · · ·+ e−xn ≤ ne−r , (**)

where
r = n

p

x1 x2 · · · xn ≤ ln
n

n− 1
.

To prove this inequality, we use the induction technique. For n = 1, (**) is an
equality. Consider now that (**) holds for n− 1 numbers, n ≥ 2, and show that it
also holds for n numbers. Assume that

x1 ≤ x2 ≤ · · · ≤ xn,

and denote
x = n−1

p

x1 x2 · · · xn−1.

Because

x ≤ r ≤ ln
n

n− 1
< ln

n− 1
(n− 1)− 1

,

the induction hypothesis yields

e−x1 + e−x2 + · · ·+ e−xn−1 ≤ (n− 1)e−x .

Thus, we only need to show that

e−xn + (n− 1)e−x ≤ ne−r ,
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which is equivalent to
f (x)≤ ne−r

for
0< x ≤ r ≤ ln

n
n− 1

< 1,

where
f (x) = e−rn/xn−1

+ (n− 1)e−x .

We have
xnern/xn−1

n− 1
f ′(x) = g(x), g(x) = rn − xnern/xn−1−x ,

ex−rn/xn−1
g ′(x) = h(x), h(x) = xn − nxn−1 + (n− 1)rn,

h′(x) = nxn−2(x − n+ 1).

Since h′(x)< 0, h is strictly decreasing, and from

h(0) = (n− 1)rn > 0, h(r) = nrn−1(r − 1)< 0,

it follows that there exists x1 ∈ (0, r) such that h(x1) = 0, h(x) > 0 for x ∈ (0, x1),
h(x)< 0 for x ∈ (x1, r]. Therefore, g is strictly increasing on (0, x1] and strictly de-
creasing on [x1, r]. Since g(0+) = −∞ and g(r) = 0, there exists x2 ∈ (0, x1) such
that g(x2) = 0, g(x) < 0 for x ∈ (0, x2), g(x) > 0 for x ∈ (x2, r]. Consequently, f
is strictly decreasing on (0, x2] and strictly increasing on [x2, r], hence

f (x)≤max{ f (0+), f (r)}=max{n− 1, ne−r}= ne−r .

Thus, the proof is completed. The inequality (**) is an equality for

x1 = x2 = · · ·= xn ≤ ln
n

n− 1
,

the inequality (*) for
a1 = a2 = · · ·= an ≤ 1,

and the original inequality for

a1 = a2 = · · ·= an = 1.
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Appendix A

Glosar

1. AM-GM (ARITHMETIC MEAN-GEOMETRIC MEAN) INEQUALITY

If a1, a2, . . . , an are nonnegative real numbers, then

a1 + a2 + · · ·+ an ≥ n n
p

a1a2 · · · an,

with equality if and only if a1 = a2 = · · ·= an.

2. WEIGHTED AM-GM INEQUALITY

Let p1, p2, . . . , pn be positive real numbers satisfying

p1 + p2 + · · ·+ pn = 1.

If a1, a2, . . . , an are nonnegative real numbers, then

p1a1 + p2a2 + · · ·+ pnan ≥ ap1
1 ap2

2 · · · a
pn
n ,

with equality if and only if a1 = a2 = · · ·= an.

3. AM-HM (ARITHMETIC MEAN-HARMONIC MEAN) INEQUALITY

If a1, a2, . . . , an are positive real numbers, then

(a1 + a2 + · · ·+ an)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

≥ n2,

with equality if and only if a1 = a2 = · · ·= an.
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4. POWER MEAN INEQUALITY

The power mean of order k of positive real numbers a1, a2, . . . , an, that is

Mk =











�

ak
1+ak

2+···+ak
n

n

�
1
k

, k 6= 0

n
p

a1a2 · · · an, k = 0
,

is an increasing function with respect to k ∈ R. For instant, M2 ≥ M1 ≥ M0 ≥ M−1

is equivalent to
√

√a2
1 + a2

2 + · · ·+ a2
n

n
≥

a1 + a2 + · · ·+ an

n
≥ n
p

a1a2 · · · an ≥
n

1
a1
+

1
a2
+ · · ·+

1
an

.

5. BERNOULLI’S INEQUALITY

For any real number x ≥ −1, we have
a) (1+ x)r ≥ 1+ r x for r ≥ 1 and r ≤ 0;
b) (1+ x)r ≤ 1+ r x for 0≤ r ≤ 1.

If a1, a2, . . . , an are real numbers such that either a1, a2, . . . , an ≥ 0 or

−1≤ a1, a2, . . . , an ≤ 0,

then
(1+ a1)(1+ a2) · · · (1+ an)≥ 1+ a1 + a2 + · · ·+ an.

6. SCHUR’S INEQUALITY

For any nonnegative real numbers a, b, c and any positive number k, the inequality
holds

ak(a− b)(a− c) + bk(b− c)(b− a) + ck(c − a)(c − b)≥ 0,

with equality for a = b = c, and for a = 0 and b = c (or any cyclic permutation).
For k = 1, we get the third degree Schur’s inequality, which can be rewritten as
follows

a3 + b3 + c3 + 3abc ≥ ab(a+ b) + bc(b+ c) + ca(c + a),

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca),

a2 + b2 + c2 +
9abc

a+ b+ c
≥ 2(ab+ bc + ca),

(b− c)2(b+ c − a) + (c − a)2(c + a− b) + (a− b)2(a+ b− c)≥ 0.
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For k = 2, we get the fourth degree Schur’s inequality, which holds for any real
numbers a, b, c, and can be rewritten as follows

a4 + b4 + c4 + abc(a+ b+ c)≥ ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2),

a4 + b4 + c4 − a2 b2 − b2c2 − c2a2 ≥ (ab+ bc + ca)(a2 + b2 + c2 − ab− bc − ca),

(b− c)2(b+ c − a)2 + (c − a)2(c + a− b)2 + (a− b)2(a+ b− c)2 ≥ 0,

6abcp ≥ (p2 − q)(4q− p2), p = a+ b+ c, q = ab+ bc + ca.

A generalization of the fourth degree Schur’s inequality, which holds for any
real numbers a, b, c and any real number m, is the following (Vasile Cirtoaje, 2004)

∑

(a−mb)(a−mc)(a− b)(a− c)≥ 0,

where the equality holds for a = b = c, and for a/m = b = c (or any cyclic
permutation). This inequality is equivalent to

∑

a4 +m(m+ 2)
∑

a2 b2 + (1−m2)abc
∑

a ≥ (m+ 1)
∑

ab(a2 + b2),
∑

(b− c)2(b+ c − a−ma)2 ≥ 0.

A more general result is given by the following theorem (Vasile Cirtoaje, 2008).

Theorem. Let

f4(a, b, c) =
∑

a4 +α
∑

a2 b2 + βabc
∑

a− γ
∑

ab(a2 + b2),

where α,β ,γ are real constants such that 1+α+ β = 2γ. Then,

(a) f4(a, b, c)≥ 0 for all a, b, c ∈ R if and only if

1+α≥ γ2;

(b) f4(a, b, c)≥ 0 for all a, b, c ≥ 0 if and only if

α≥ (γ− 1)max{2,γ+ 1}.

7. CAUCHY-SCHWARZ INEQUALITY

If a1, a2, . . . , an and b1, b2, . . . , bn are real numbers, then

(a2
1 + a2

2 + · · ·+ a2
n)(b

2
1 + b2

2 + · · ·+ b2
n)≥ (a1 b1 + a2 b2 + · · ·+ an bn)

2,

with equality for
a1

b1
=

a2

b2
= · · ·=

an

bn
.

Notice that the equality conditions are also valid for ai = bi = 0, where 1≤ i ≤ n.



504 Vasile Cîrtoaje

8. HÖLDER’S INEQUALITY

If x i j (i = 1,2, · · · , m; j = 1, 2, · · ·n) are nonnegative real numbers, then

m
∏

i=1

�

n
∑

j=1

x i j

�

≥

 

n
∑

j=1

m

√

√

√

m
∏

i=1

x i j

!m

.

9. CHEBYSHEV’S INEQUALITY

Let a1 ≥ a2 ≥ · · · ≥ an be real numbers.

a) If b1 ≥ b2 ≥ · · · bn, then

n
n
∑

i=1

ai bi ≥

�

n
∑

i=1

ai

��

n
∑

i=1

bi

�

;

b) If b1 ≤ b2 ≤ · · · ≤ bn, then

n
n
∑

i=1

ai bi ≤

�

n
∑

i=1

ai

��

n
∑

i=1

bi

�

.

10. CONVEX FUNCTIONS

A function f defined on a real interval I is said to be convex if

f (αx + β y)≤ α f (x) + β f (y)

for all x , y ∈ I and any α, β ≥ 0 with α+β = 1. If the inequality is reversed, then
f is said to be concave.
If f is differentiable on I, then f is (strictly) convex if and only if the derivative f ′

is (strictly) increasing. If f ′′ ≥ 0 on I, then f is convex on I.

Jensen’s inequality. Let p1, p2, . . . , pn be positive real numbers. If f is a convex
function on a real interval I, then for any a1, a2, . . . , an ∈ I, the inequality holds

p1 f (a1) + p2 f (a2) + · · ·+ pn f (an)
p1 + p2 + · · ·+ pn

≥ f
�

p1a1 + p2a2 + · · ·+ pnan

p1 + p2 + · · ·+ pn

�

.

For p1 = p2 = · · ·= pn, Jensen’s inequality becomes

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

.
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11. KARAMATA’S MAJORIZATION INEQUALITY

Let f be a convex function on a real interval I. If a decreasingly ordered sequence

A= (a1, a2, . . . , an), ai ∈ I,

majorizes a decreasingly ordered sequence

B = (b1, b2, . . . , bn), bi ∈ I,

then
f (a1) + f (a2) + · · ·+ f (an)≥ f (b1) + f (b2) + · · ·+ f (bn).

We say that a sequence A= (a1, a2, . . . , an) with a1 ≥ a2 ≥ · · · ≥ an majorizes a
sequence B = (b1, b2, . . . , bn) with b1 ≥ b2 ≥ · · · ≥ bn, and write it as

A� B,

if
a1 ≥ b1,

a1 + a2 ≥ b1 + b2,
· · · · · · · · · · · · · · · · · · · · ·

a1 + a2 + · · ·+ an−1 ≥ b1 + b2 + · · ·+ bn−1,
a1 + a2 + · · ·+ an = b1 + b2 + · · ·+ bn.

12. SYMMETRIC INEQUALITIES OF DEGREE THREE, FOUR OR FIVE

Theorem (Vasile Cirtoaje, 2010) Let fn(a, b, c) be a symmetric homogeneous
polynomial of degree n.

(a) The inequality f4(a, b, c) ≥ 0 holds for all real numbers a, b, c if and only if
f4(a, 1, 1)≥ 0 for all real a;

(b) For n ∈ {3,4, 5}, the inequality fn(a, b, c) ≥ 0 holds for all a, b, c ≥ 0 if and
only if fn(a, 1, 1)≥ 0 and fn(0, b, c)≥ 0 for all a, b, c ≥ 0.

13. SYMMETRIC HOMOGENEOUS INEQUALITIES OF DEGREE SIX

Any sixth degree symmetric homogeneous polynomial f6(a, b, c) can be written in
the form

f6(a, b, c) = Ar2 + B(p, q)r + C(p, q),

where A is called the highest coefficient of f6, and

p = a+ b+ c, q = ab+ bc + ca, r = abc.

Theorem (Vasile Cirtoaje, 2010). Let f6(a, b, c) be a sixth degree symmetric
homogeneous polynomial having the highest coefficient A≤ 0.
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(a) The inequality f6(a, b, c) ≥ 0 holds for all real numbers a, b, c if and only if
f6(a, 1, 1)≥ 0 for all real a;

(b) The inequality f6(a, b, c)≥ 0 holds for all a, b, c ≥ 0 if and only if f6(a, 1, 1)≥
0 and f6(0, b, c)≥ 0 for all a, b, c ≥ 0.

This theorem is also valid for the case where B(p, q) and C(p, q) are homoge-
neous rational functions.

For A> 0, we can use the highest coefficient cancellation method (Vasile Cirtoaje,
2010). This method consists in finding some suitable real numbers B, C and D such
that the following sharper inequality holds

f6(a, b, c)≥ A

�

r + Bp3 + C pq+ D
q2

p

�2

.

Because the function g6 defined by

g6(a, b, c) = f6(a, b, c)− A

�

r + Bp3 + C pq+ D
q2

p

�2

has the highest coefficient A1 = 0, we can prove the inequality g6(a, b, c)≥ 0 using
Theorem above.

Notice that sometimes it is useful to break the problem into two parts, p2 ≤ ξq
and p2 > ξq, where ξ is a suitable real number.

A symmetric homogeneous polynomial of degree six in three variables has the
form

f6(a, b, c) = A1

∑

a6 + A2

∑

ab(a4 + b4) + A3

∑

a2 b2(a2 + b2)

+A4

∑

a3 b3 + A5abc
∑

a3 + A6abc
∑

ab(a+ b) + 3A7a2 b2c2,

where A1, . . . , A7 are real constants. In order to write this polynomial as a function
of p, q and r, the following relations are useful:

∑

a3 = 3r + p3 − 3pq,
∑

ab(a+ b) = −3r + pq,
∑

a3 b3 = 3r2 − 3pqr + q3,
∑

a2 b2(a2 + b2) = −3r2 − 2(p3 − 2pq)r + p2q2 − 2q3,
∑

ab(a4 + b4) = −3r2 − 2(p3 − 7pq)r + p4q− 4p2q2 + 2q3,
∑

a6 = 3r2 + 6(p3 − 2pq)r + p6 − 6p4q+ 9p2q2 − 2q3,

(a− b)2(b− c)2(c − a)2 = −27r2 + 2(9pq− 2p3)r + p2q2 − 4q3.
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According to these relations, the highest coefficient A of the polynomial f6(a, b, c)
is

A= 3(A1 − A2 − A3 + A4 + A5 − A6 + A7).

The polynomials

P1(a, b, c) =
∑

(A1a2 + A2 bc)(B1a2 + B2 bc)(C1a2 + C2 bc),

P2(a, b, c) =
∑

(A1a2 + A2 bc)(B1 b2 + B2ca)(C1c2 + C2ab)

and
P3(a, b, c) = (A1a2 + A2 bc)(A1 b2 + A2ca)(A1c2 + A2ab)

has the highest coefficients

P1(1,1, 1), P2(1,1, 1), P3(1, 1,1),

respectively. The polynomial

P4(a, b, c) = (a2 +mab+ b2)(b2 +mbc + c2)(c2 +mca+ a2)

has the highest coefficient
A= (m− 1)3.

14. VASC’S POWER EXPONENTIAL INEQUALITIES

Theorem. Let 0< k ≤ e.

(a) If a, b > 0, then (Vasile Cîrtoaje, 2006)

aka + bkb ≥ akb + bka;

(b) If a, b ∈ (0,1], then (Vasile Cîrtoaje, 2010)

2
p

aka bkb ≥ akb + bka.
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