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Chapter 1

Half Convex Function Method

1.1 Theoretical Basis

Let I be a real interval, s an interior point of I and

I≥s = {u|u ∈ I, u≥ s}, I≤s = {u|u ∈ I, u≤ s}.

The following statement is known as the Right Half Convex Function Theorem
(RHCF-Theorem).

Right Half Convex Function Theorem (Vasile Cîrtoaje, 2004). Let f be a real
function defined on an interval I and convex on I≥s, where s ∈ int(I). If

f (x) + (n− 1) f (y)≥ nf (s)

for all x , y ∈ I so that x ≤ s ≤ y and x + (n− 1)y = ns, then the inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

(1)

holds for all a1, a2, . . . , an ∈ I satisfying a1 + a2 + · · · + an = ns. In addition, the
inequality (1) holds for all a1, a2, . . . , an ∈ I satisfying a1+ a2+ · · ·+ an = ns1, where
s1 ∈ int(I), s1 > s.

Proof. Assume that
a1 ≤ a2 ≤ · · · ≤ an.

If a1 ≥ s, then the required inequality is just Jensen’s inequality for convex func-
tions. Otherwise, if a1 < s, then there exists

k ∈ {1, 2, . . . , n− 1}

so that
a1 ≤ · · · ≤ ak < s ≤ ak+1 ≤ · · · ≤ an.

1
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Since f is convex on I≥s, we may apply Jensen’s inequality to get

f (ak+1) + · · ·+ f (an)≥ (n− k) f (z),

where
z =

ak+1 + · · ·+ an

n− k
, z ∈ I.

Thus, it suffices to show that

f (a1) + · · ·+ f (ak) + (n− k) f (z)≥ nf (s). (2)

Let b1, . . . , bk be defined by

ai + (n− 1)bi = ns, i = 1, . . . , k.

We claim that
z ≥ b1 ≥ · · · ≥ bk > s,

which involves
b1, . . . , bk ∈ I≥s.

Indeed, we have
b1 ≥ · · · ≥ bk,

bk − s =
s− ak

n− 1
> 0,

and
z ≥ b1

because

(n− 1)b1 = ns− a1 = (a2 + · · ·+ ak) + ak+1 + · · ·+ an

≤ (k− 1)s+ ak+1 + · · ·+ an

= (k− 1)s+ (n− k)z ≤ (n− 1)z.

Since b1, . . . , bk ∈ I≥s, by hypothesis we have

f (a1) + (n− 1) f (b1)≥ nf (s),

· · ·

f (ak) + (n− 1) f (bk)≥ nf (s),

hence
f (a1) + · · ·+ f (ak) + (n− 1)[ f (b1) + · · ·+ f (bk)]≥ kn f (s),

f (a1) + · · ·+ f (ak)≥ kn f (s)− (n− 1)[ f (b1) + · · ·+ f (bk)].

According to this result, the inequality (2) is true if

kn f (s)− (n− 1)[ f (b1) + · · ·+ f (bk)] + (n− k) f (z)≥ nf (s),
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which is equivalent to

p f (z) + (k− p) f (s)≥ f (b1) + · · ·+ f (bk), p =
n− k
n− 1

≤ 1.

By Jensen’s inequality, we have

p f (z) + (1− p) f (s)≥ f (w), w= pz + (1− p)s ≥ s.

Thus, we only need to show that

f (w) + (k− 1) f (s)≥ f (b1) + · · ·+ f (bk).

Since the decreasingly ordered vector ~Ak = (w, s, . . . , s) majorizes the decreasingly
ordered vector ~Bk = (b1, b2, . . . , bk), this inequality follows from Karamata’s in-
equality for convex functions.

According to this result, the inequality (1) holds for all a1, a2, . . . , an ∈ I satisfying
a1 + a2 + · · · + an = ns1 if f (x1) + (n − 1) f (y1) ≥ nf (s1) for all x1, y1 ∈ I so that
x1 ≤ s1 ≤ y1 and x1 + (n− 1)y1 = ns1. Thus, we need to show that if

f (x) + (n− 1) f (y)≥ nf (s)

for all x , y ∈ I so that x ≤ s ≤ y and x + (n− 1)y = ns, then

f (x1) + (n− 1) f (y1)≥ nf (s1) (3)

for all x1, y1 ∈ I so that x1 ≤ s1 ≤ y1 and x1+(n−1)y1 = ns1. Since this is true for
x1 ≥ s (by Jensen’s inequality), consider next x1 < s. By hypothesis, we have

f (x1) + (n− 1) f (y2)≥ nf (s),

where y2 ∈ I such that

x1 + (n− 1)y2 = ns, y2 > s.

Thus, (3) is true if

nf (s)− (n− 1) f (y2) + (n− 1) f (y1)≥ nf (s1),

that is
(n− 1) f (y1) + nf (s)≥ (n− 1) f (y2) + nf (s1).

Since
(n− 1)y1 + ns = (n− 1)y2 + ns1

and the decreasingly ordered vector ~C2n−1 = (y1, . . . , y1, s, . . . , s) majorizes the vec-
tor ~D2n−1 = (y2, . . . , y2, s1, . . . , s1), this inequality follows from Karamata’s inequality
for convex functions.

Similarly, we can prove the Left Half Convex Function Theorem (LHCF-Theorem).
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Left Half Convex Function Theorem. Let f be a real function defined on an interval
I and convex on I≤s, where s ∈ int(I). If

f (x) + (n− 1) f (y)≥ nf (s)

for all x , y ∈ I so that x ≥ s ≥ y and x + (n− 1)y = ns, then the inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

(4)

holds for all a1, a2, . . . , an ∈ I satisfying a1 + a2 + · · · + an = ns. In addition, the
inequality (4) holds for all a1, a2, . . . , an ∈ I satisfying a1+ a2+ · · ·+ an = ns1, where
s1 ∈ int(I), s1 < s.

From the RHCF-Theorem and the LHCF-Theorem, we find the HCF-Theorem (Half
Convex Function Theorem).

Half Convex Function Theorem. Let f be a real function defined on an interval I
and convex on I≥s or I≤s, where s ∈ int(I). The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

if and only if
f (x) + (n− 1) f (y)≥ nf (s)

for all x , y ∈ I so that x + (n− 1)y = ns.

The following LCRCF-Theorem is also useful to prove some symmetric inequali-
ties.

Left Convex-Right Concave Function Theorem (Vasile Cîrtoaje, 2004). Let a ≤ c
be real numbers, let f be a continuous function defined on I= [a,∞), strictly convex
on [a, c] and strictly concave on [c,∞), and let

E(a1, a2, . . . , an) = f (a1) + f (a2) + · · ·+ f (an).

If a1, a2, . . . , an ∈ I so that

a1 + a2 + · · ·+ an = S = constant,

then
(a) E is minimum for a1 = a2 = · · ·= an−1 ≤ an;
(b) E is maximum for either a1 = a or a < a1 ≤ a2 = · · ·= an.
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Proof. Without loss of generality, assume that a1 ≤ a2 ≤ · · · ≤ an. Since the sum
E(a1, a2, . . . , an) is a continuous function on the compact set

Λ= {(a1, a2, . . . , an) : a1 + a2 + · · ·+ an = S, a1, a2, . . . , an ∈ I},

E attains its minimum and maximum values.

(a) For the sake of contradiction, suppose that E is minimum at (b1, b2, . . . , bn)
with

b1 ≤ b2 ≤ · · · ≤ bn, b1 < bn−1.

For bn−1 ≤ c, by Jensen’s inequality for strictly convex functions we have

f (b1) + f (bn−1)> 2 f
�

b1 + bn−1

2

�

,

while for bn−1 > c, by Karamata’s inequality for strictly concave functions we have

f (bn−1) + f (bn)> f (c) + f (bn−1 + bn − c).

The both results contradict the assumption that E is minimum at (b1, b2, . . . , bn).

(b) For the sake of contradiction, suppose that E is maximum at (b1, b2, . . . , bn)
with

a < b1 ≤ b2 ≤ · · · ≤ bn, b2 < bn.

There are three cases to consider.

Case 1: b2 ≥ c. By Jensen’s inequality for strictly concave functions, we have

f (b2) + f (bn)< 2 f
�

b2 + bn

2

�

.

Case 2: b2 < c and b1 + b2 − a ≤ c. By Karamata’s inequality for strictly convex
functions, we have

f (b1) + f (b2)< f (a) + f (b1 + b2 − a).

Case 3: b2 < c and b1 + b2 − c ≥ a. By Karamata’s inequality for strictly convex
functions, we have

f (b1) + f (b2)< f (b1 + b2 − c) + f (c).

Clearly, all these results contradict the assumption that E is maximum at (b1, b2, . . . , bn).

Note 1. Let us denote

g(u) =
f (u)− f (s)

u− s
, h(x , y) =

g(x)− g(y)
x − y

.
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In many applications, it is useful to replace the hypothesis

f (x) + (n− 1) f (y)≥ nf (s)

in the RHCF-Theorem, the LHCF-Theorem and the HCF-Theorem by the equivalent
condition

h(x , y)≥ 0 for all x , y ∈ I so that x + (n− 1)y = ns.

This equivalence is true because

f (x) + (n− 1) f (y)− nf (s) = [ f (x)− f (s)] + (n− 1)[ f (y)− f (s)]
= (x − s)g(x) + (n− 1)(y − s)g(y)

=
n− 1

n
(x − y)[g(x)− g(y)]

=
n− 1

n
(x − y)2h(x , y).

Note 2. Assume that f is differentiable on I, and let

H(x , y) =
f ′(x)− f ′(y)

x − y
.

The desired inequality of Jensen’s type in the RHCF-Theorem, the LHCF-Theorem
and the HCF-Theorem holds true by replacing the hypothesis

f (x) + (n− 1) f (y)≥ nf (s)

with the more restrictive condition

H(x , y)≥ 0 for all x , y ∈ I so that x + (n− 1)y = ns.

To prove this, we will show that the new condition H(x , y)≥ 0 implies

f (x) + (n− 1) f (y)≥ nf (s)

for all x , y ∈ I so that x + (n− 1)y = ns. Write this inequality as

f1(x)≥ nf (s),

where
f1(x) = f (x) + (n− 1) f (y) = f (x) + (n− 1) f

�ns− x
n− 1

�

.

From

f ′1(x) = f ′(x)− f ′
�ns− x

n− 1

�

= f ′(x)− f ′(y)

=
n

n− 1
(x − s)H(x , y),
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it follows that f1 is decreasing on I≤s and increasing on I≥s; therefore,

f1(x)≥ f1(s) = nf (s).

Note 3. From the proof of the RHCF-Theorem, it follows that the RHCF-Theorem,
the LHCF-Theorem and the HCF-Theorem are also valid in the case when f is de-
fined on I \ {u0}, where u0 ∈ I<s for the RHCF-Theorem, and u0 ∈ I>s for the LHCF-
Theorem.

Note 4. The desired inequalities in the RHCF-Theorem, the LHCF-Theorem and the
HCF-Theorem become equalities for

a1 = a2 = · · ·= an = s.

In addition, if there exist x , y ∈ I so that

x + (n− 1)y = ns, f (x) + (n− 1) f (y) = nf (s), x 6= y,

then the equality holds also for

a1 = x , a2 = · · ·= an = y

(or any cyclic permutation). Notice that these equality conditions are equivalent to

x + (n− 1)y = ns, h(x , y) = 0

(x < y for the RHCF-Theorem, and x > y for the LHCF-Theorem).

Note 5. The part (a) in LCRCF-Theorem is also true in the case where I = (a,∞)
and f (a+) =∞.

Note 6. Similarly, we can extend the weighted Jensen’s inequality to right and left
half convex functions establishing the WRHCF-Theorem, the WLHCF-Theorem and
the WHCF-Theorem (Vasile Cîrtoaje, 2008).

WHCF-Theorem. Let p1, p2, . . . , pn be positive real numbers so that

p1 + p2 + · · ·+ pn = 1, p =min{p1, p2, . . . , pn},

and let f be a real function defined on an interval I and convex on I≥s or I≤s, where
s ∈ int(I). The inequality

p1 f (a1) + p2 f (a2) + · · ·+ pn f (an)≥ f (p1a1 + p2a2 + · · ·+ pnan)

holds for all a1, a2, . . . , an ∈ I so that

p1a1 + p2a2 + · · ·+ pnan = s,

if and only if
p f (x) + (1− p) f (y)≥ f (s)

for all x , y ∈ I satisfying
px + (1− p)y = s.
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1.2 Applications

1.1. If a, b, c are real numbers so that a+ b+ c = 3, then

3(a4 + b4 + c4) + a2 + b2 + c2 + 6≥ 6(a3 + b3 + c3).

1.2. If a1, a2, . . . , an ≥
1− 2n
n− 2

so that a1 + a2 + · · ·+ an = n, then

a3
1 + a3

2 + · · ·+ a3
n ≥ n.

1.3. If a1, a2, . . . , an ≥
−n

n− 2
so that a1 + a2 + · · ·+ an = n, then

a3
1 + a3

2 + · · ·+ a3
n ≥ a2

1 + a2
2 + · · ·+ a2

n.

1.4. If a1, a2, . . . , an are real numbers so that a1 + a2 + · · ·+ an = n, then

(n2 − 3n+ 3)(a4
1 + a4

2 + · · ·+ a4
n − n)≥ 2(n2 − n+ 1)(a2

1 + a2
2 + · · ·+ a2

n − n).

1.5. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · · + an = n,
then

(n2 + n+ 1)(a3
1 + a3

2 + · · ·+ a3
n − n)≥ (n+ 1)(a4

1 + a4
2 + · · ·+ a4

n − n).

1.6. If a, b, c are real numbers so that a+ b+ c = 3, then

(a) a4 + b4 + c4 − 3+ 2(7+ 3
p

7)(a3 + b3 + c3 − 3)≥ 0;

(b) a4 + b4 + c4 − 3+ 2(7− 3
p

7)(a3 + b3 + c3 − 3)≥ 0.

1.7. Let a1, a2, . . . , an be nonnegative real numbers so that a1+ a2+ · · ·+ an = n. If
k is a positive integer satisfying 3≤ k ≤ n+ 1, then

ak
1 + ak

2 + · · ·+ ak
n − n

a2
1 + a2

2 + · · ·+ a2
n − n

≥ (n− 1)
�

� n
n− 1

�k−1
− 1

�

.
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1.8. Let k ≥ 3 be an integer number. If a1, a2, . . . , an are nonnegative real numbers
so that a1 + a2 + · · ·+ an = n, then

ak
1 + ak

2 + · · ·+ ak
n − n

a2
1 + a2

2 + · · ·+ a2
n − n

≤
nk−1 − 1

n− 1
.

1.9. If a1, a2, . . . , an are positive real numbers so that a1 + a2 + · · ·+ an = n, then

n2
�

1
a1
+

1
a2
+ · · ·+

1
an
− n

�

≥ 4(n− 1)(a2
1 + a2

2 + · · ·+ a2
n − n).

1.10. If a1, a2, . . . , a8 are positive real numbers so that a1 + a2 + · · ·+ a8 = 8, then

1
a2

1

+
1
a2

2

+ · · ·+
1
a2

8

≥ a2
1 + a2

2 + · · ·+ a2
8.

1.11. If a1, a2, . . . , an are positive real numbers so that
1
a1
+

1
a2
+ · · ·+

1
an
= n, then

a2
1 + a2

2 + · · ·+ a2
n − n≥ 2

�

1+
p

n− 1
n

�

(a1 + a2 + · · ·+ an − n).

1.12. If a, b, c, d, e are positive real numbers so that a2+ b2+ c2+d2+ e2 = 5, then

1
a
+

1
b
+

1
c
+

1
d
+

1
e
− 5+

4(1+
p

5)
5

(a+ b+ c + d + e− 5)≥ 0.

1.13. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
3a+ b+ c

+
1

3b+ c + a
+

1
3c + a+ b

≤
2
5

�

1
b+ c

+
1

c + a
+

1
a+ b

�

.

1.14. If a, b, c, d ≥ 3−
p

7 so that a+ b+ c + d = 4, then

1
2+ a2

+
1

2+ b2
+

1
2+ c2

+
1

2+ d2
≥

4
3

.
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1.15. If a1, a2, . . . , an ∈ [−
p

n, n− 2] so that a1 + a2 + · · ·+ an = n, then

1
n+ a2

1

+
1

n+ a2
2

+ · · ·+
1

n+ a2
n

≤
n

n+ 1
.

1.16. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

3− a
9+ a2

+
3− b
9+ b2

+
3− c
9+ c2

≥
3
5

.

1.17. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

1
1− a+ 2a2

+
1

1− b+ 2b2
+

1
1− c + 2c2

≥
3
2

.

1.18. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

1
5+ a+ a2

+
1

5+ b+ b2
+

1
5+ c + c2

≥
3
7

.

1.19. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 4, then

1
10+ a+ a2

+
1

10+ b+ b2
+

1
10+ c + c2

+
1

10+ d + d2
≤

1
3

.

1.20. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n.
If

k ≥ 1−
1
n

,

then
1

1+ ka2
1

+
1

1+ ka2
2

+ · · ·+
1

1+ ka2
n

≥
n

1+ k
.

1.21. Let a1, a2, . . . , an be real numbers so that a1 + a2 + · · ·+ an = n. If

0< k ≤
n− 1

n2 − n+ 1
,

then
1

1+ ka2
1

+
1

1+ ka2
2

+ · · ·+
1

1+ ka2
n

≤
n

1+ k
.
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1.22. Let a1, a2, . . . , an be nonnegative numbers so that a1 + a2 + · · ·+ an = n. If

k ≥
n2

4(n− 1)
,

then
a1(a1 − 1)

a2
1 + k

+
a2(a2 − 1)

a2
2 + k

+ · · ·+
an(an − 1)

a2
n + k

≥ 0.

1.23. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n,
then

a1 − 1
(n− 2a1)2

+
a2 − 1
(n− 2a2)2

+ · · ·+
an − 1
(n− 2an)2

≥ 0.

1.24. If a1, a2, . . . , an are nonnegative real numbers so that

a1 + a2 + · · ·+ an = n, a1, a2, . . . , an > −k, k ≥ 1+
n

p
n− 1

,

then
a2

1 − 1

(a1 + k)2
+

a2
2 − 1

(a2 + k)2
+ · · ·+

a2
n − 1

(an + k)2
≥ 0.

1.25. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n.

If 0< k ≤ 1+
s

2n− 1
n− 1

, then

a2
1 − 1

(a1 + k)2
+

a2
2 − 1

(a2 + k)2
+ · · ·+

a2
n − 1

(an + k)2
≤ 0.

1.26. If a1, a2, . . . , an ≥ n− 1−
p

n2 − n+ 1 so that a1 + a2 + · · ·+ an = n, then

a2
1 − 1

(a1 + 2)2
+

a2
2 − 1

(a2 + 2)2
+ · · ·+

a2
n − 1

(an + 2)2
≤ 0.

1.27. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n.

If k ≥
(n− 1)(2n− 1)

n2
, then

1
1+ ka3

1

+
1

1+ ka3
2

+ · · ·+
1

1+ ka3
n

≥
n

1+ k
.
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1.28. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n.

If 0< k ≤
n− 1

n2 − 2n+ 2
, then

1
1+ ka3

1

+
1

1+ ka3
2

+ · · ·+
1

1+ ka3
n

≤
n

1+ k
.

1.29. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n.

If k ≥
n2

n− 1
, then

√

√ a1

k− a1
+
√

√ a2

k− a2
+ · · ·+

√

√ an

k− an
≤

n
p

k− 1
.

1.30. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n,
then

n−a2
1 + n−a2

2 + · · ·+ n−a2
n ≥ 1.

1.31. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 4, then

(3a2 + 1)(3b2 + 1)(3c2 + 1)(3d2 + 1)≤ 256.

1.32. If a, b, c, d, e ≥ −1 so that a+ b+ c + d + e = 5, then

(a2 + 1)(b2 + 1)(c2 + 1)(d2 + 1)(e2 + 1)≥ (a+ 1)(b+ 1)(c + 1)(d + 1)(e+ 1).

1.33. Let a1, a2, . . . , an be positive numbers so that a1 + a2 + · · ·+ an = n. If

k ≤
2
p

n− 1
n

+ 2

√

√2
p

n− 1
n

, k ≤ 3,

then

k(
p

a1 +
p

a2 + · · ·+
p

an) +
1
p

a1
+

1
p

a2
+ · · ·+

1
p

an
≥ (k+ 1)n.

1.34. If a1, a2, . . . , an (n ≥ 3) are positive numbers so that a1 + a2 + · · ·+ an = 1,
then

�

1
p

a1
−
p

a1

��

1
p

a2
−pa2

�

· · ·
�

1
p

an
−
p

an

�

≥
�p

n−
1
p

n

�n

.
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1.35. Let a1, a2, . . . , an be positive real numbers so that a1 + a2 + · · ·+ an = n. If

k ≤
�

1+
2
p

n− 1
n

�2

,

then
�

ka1 +
1
a1

��

ka2 +
1
a2

�

· · ·
�

kan +
1
an

�

≥ (k+ 1)n.

1.36. If a, b, c, d are nonzero real numbers so that

a, b, c, d ≥
−1
2

, a+ b+ c + d = 4,

then

3
�

1
a2
+

1
b2
+

1
c2
+

1
d2

�

+
1
a
+

1
b
+

1
c
+

1
d
≥ 16.

1.37. If a1, a2, . . . , an are nonnegative real numbers so that a2
1 + a2

2 + · · ·+ a2
n = n,

then

a3
1 + a3

2 + · · ·+ a3
n − n+

s

n
n− 1

(a1 + a2 + · · ·+ an − n)≥ 0.

1.38. If a, b, c, d, e are nonnegative real numbers so that a2+ b2+ c2+ d2+ e2 = 5,
then

1
7− 2a

+
1

7− 2b
+

1
7− 2c

+
1

7− 2d
+

1
7− 2e

≤ 1.

1.39. Let 0≤ a1, a2, . . . , an < k so that a2
1 + a2

2 + · · ·+ a2
n = n. If

1< k ≤ 1+
s

n
n− 1

,

then
1

k− a1
+

1
k− a2

+ · · ·+
1

k− an
≥

n
k− 1

.

1.40. If a, b, c are nonnegative real numbers, no two of which are zero, then
√

√

1+
48a
b+ c

+

√

√

1+
48b
c + a

+

√

√

1+
48c

a+ b
≥ 15.
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1.41. If a, b, c are nonnegative real numbers, then

√

√ 3a2

7a2 + 5(b+ c)2
+

√

√ 3b2

7b2 + 5(c + a)2
+

√

√ 3c2

7c2 + 5(a+ b)2
≤ 1.

1.42. If a, b, c are nonnegative real numbers, then

√

√ a2

a2 + 2(b+ c)2
+

√

√ b2

b2 + 2(c + a)2
+

√

√ c2

c2 + 2(a+ b)2
≥ 1.

1.43. Let a, b, c be nonnegative real numbers, no two of which are zero. If

k ≥ k0, k0 =
ln 3
ln 2
− 1≈ 0.585,

then
�

2a
b+ c

�k

+
�

2b
c + a

�k

+
�

2c
a+ b

�k

≥ 3.

1.44. If a, b, c ∈ [1, 7+ 4
p

3], then

√

√ 2a
b+ c

+

√

√ 2b
c + a

+

√

√ 2c
a+ b

≥ 3.

1.45. Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If

0< k ≤ k0, k0 =
ln 2

ln3− ln2
≈ 1.71,

then
ak(b+ c) + bk(c + a) + ck(a+ b)≤ 6.

1.46. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

p
a+

p

b+
p

c − 3≥ 13

�√

√a+ b
2
+

√

√ b+ c
2
+
s

c + a
2
− 3

�

.
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1.47. Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If k > 2, then

ak + bk + ck + 3≥ 2
�

a+ b
2

�k

+ 2
�

b+ c
2

�k

+ 2
� c + a

2

�k

.

1.48. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n,
then

p

a1 +
p

a2 + · · ·+
p

an + n(k− 1)≤ k

�√

√n− a1

n− 1
+

√

√n− a2

n− 1
+ · · ·+

√

√n− an

n− 1

�

,

where
k = (

p
n− 1)(

p
n+
p

n− 1).

1.49. If a, b, c are the lengths of the sides of a triangle so that a+ b+ c = 3, then

1
a+ b− c

+
1

b+ c − a
+

1
c + a− b

− 3≥ 4(2+
p

3)
�

2
a+ b

+
2

b+ c
+

2
c + a

− 3
�

.

1.50. Let a1, a2, . . . , a5 be nonnegative numbers so that a1+ a2+ a3+ a4+ a5 ≤ 5.
If

k ≥ k0, k0 =
29+

p
761

10
≈ 5.66,

then
∑ 1

ka2
1 + a2 + a3 + a4 + a5

≥
5

k+ 4
.

1.51. Let a1, a2, . . . , a5 be nonnegative numbers so that a1+ a2+ a3+ a4+ a5 ≤ 5.
If

0< k ≤ k0, k0 =
11−

p
101

10
≈ 0.095,

then
∑ 1

ka2
1 + a2 + a3 + a4 + a5

≥
5

k+ 4
.

1.52. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an ≤ n.
If

0< k ≤
1

n+ 1
,

then
a1

ka2
1 + a2 + · · ·+ an

+
a2

a1 + ka2
2 + · · ·+ an

+ · · ·+
an

a1 + a2 + · · ·+ ka2
n

≥
n

k+ n− 1
.
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1.53. If a1, a2, a3, a4, a5 ≤
7
2

so that a1 + a2 + a3 + a4 + a5 = 5, then

a1

a2
1 − a1 + 5

+
a2

a2
2 − a2 + 5

+
a3

a2
3 − a3 + 5

+
a4

a2
4 − a4 + 5

+
a5

a2
5 − a5 + 5

≤ 1.

1.54. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an ≥ n.
If

0< k ≤
1

1+ 1
4(n−1)2

,

then

a2
1

ka2
1 + a2 + · · ·+ an

+
a2

2

a1 + ka2
2 + · · ·+ an

+ · · ·+
a2

n

a1 + a2 + · · ·+ ka2
n

≥
n

k+ n− 1
.

1.55. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an ≤ n.
If k ≥ n− 1, then

a2
1

ka2
1 + a2 + · · ·+ an

+
a2

2

a1 + ka2
2 + · · ·+ an

+ · · ·+
a2

n

a1 + a2 + · · ·+ ka2
n

≤
n

k+ n− 1
.

1.56. Let a1, a2, . . . , an ∈ [0, n] so that a1 + a2 + · · ·+ an ≥ n. If 0< k ≤
1
n

, then

a1 − 1
ka2

1 + a2 + · · ·+ an
+

a2 − 1
a1 + ka2

2 + · · ·+ an
+ · · ·+

an − 1
a1 + a2 + · · ·+ ka2

n

≥ 0.

1.57. If a, b, c are positive real numbers so that abc = 1, then
p

a2 − a+ 1+
p

b2 − b+ 1+
p

c2 − c + 1≥ a+ b+ c.

1.58. If a, b, c, d ≥
1

1+
p

6
so that abcd = 1, then

1
a+ 2

+
1

b+ 2
+

1
c + 2

+
1

d + 2
≤

4
3

.

1.59. If a, b, c are positive real numbers so that abc = 1, then

a2 + b2 + c2 − 3≥ 2(ab+ bc + ca− a− b− c).
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1.60. If a, b, c are positive real numbers so that abc = 1, then

a2 + b2 + c2 − 3≥ 18(a+ b+ c − ab− bc − ca).

1.61. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

a2
1 + a2

2 + · · ·+ a2
n − n≥ 6

p
3
�

a1 + a2 + · · ·+ an −
1
a1
−

1
a2
− · · · −

1
an

�

.

1.62. If a1, a2, . . . , an (n≥ 4) are positive real numbers so that a1a2 · · · an = 1, then

(n− 1)(a2
1 + a2

2 + · · ·+ a2
n) + n(n+ 3)≥ (2n+ 2)(a1 + a2 + · · ·+ an).

1.63. Let a1, a2, . . . , an (n≥ 3) be positive real numbers so that a1a2 · · · an = 1. If p
and q are nonnegative real numbers so that p+ q ≥ n− 1, then

1
1+ pa1 + qa2

1

+
1

1+ pa2 + qa2
2

+ · · ·+
1

1+ pan + qa2
n

≥
n

1+ p+ q
.

1.64. Let a, b, c, d be positive real numbers so that abcd = 1. If p and q are non-
negative real numbers so that p+ q = 3, then

1
1+ pa+ qa3

+
1

1+ pb+ qb3
+

1
1+ pc + qc3

+
1

1+ pd + qd3
≥ 1.

1.65. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

1
1+ a1 + · · ·+ an−1

1

+
1

1+ a2 + · · ·+ an−1
2

+ · · ·+
1

1+ an + · · ·+ an−1
n

≥ 1.

1.66. Let a1, a2, . . . , an be positive real numbers so that a1a2 · · · an = 1. If

k ≥ n2 − 1,

then
1

p

1+ ka1

+
1

p

1+ ka2

+ · · ·+
1

p

1+ kan

≥
n

p
1+ k

.



Half Convex Function Method 19

1.67. Let a1, a2, . . . , an be positive real numbers so that a1a2 · · · an = 1. If p, q ≥ 0

so that 0< p+ q ≤
1

n− 1
, then

1
1+ pa1 + qa2

1

+
1

1+ pa2 + qa2
2

+ · · ·+
1

1+ pan + qa2
n

≤
n

1+ p+ q
.

1.68. Let a1, a2, . . . , an (n≥ 3) be positive real numbers so that a1a2 · · · an = 1. If

0< k ≤
2n− 1
(n− 1)2

,

then
1

p

1+ ka1

+
1

p

1+ ka2

+ · · ·+
1

p

1+ kan

≤
n

p
1+ k

.

1.69. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then
√

√

a4
1 +

2n− 1
(n− 1)2

+

√

√

a4
2 +

2n− 1
(n− 1)2

+· · ·+
√

√

a4
n +

2n− 1
(n− 1)2

≥
1

n− 1
(a1+a2+· · ·+an)

2.

1.70. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

an−1
1 + an−1

2 + · · ·+ an−1
n + n(n− 2)≥ (n− 1)

�

1
a1
+

1
a2
+ · · ·+

1
an

�

.

1.71. Let a1, a2, . . . , an be positive real numbers so that a1a2 · · · an = 1. If k ≥ n,
then

ak
1 + ak

2 + · · ·+ ak
n + kn≥ (k+ 1)

�

1
a1
+

1
a2
+ · · ·+

1
an

�

.

1.72. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then
�

1−
1
n

�a1

+
�

1−
1
n

�a2

+ · · ·+
�

1−
1
n

�an

≤ n− 1.

1.73. If a, b, c are positive real numbers so that abc = 1, then

1

1+
p

1+ 3a
+

1

1+
p

1+ 3b
+

1

1+
p

1+ 3c
≤ 1.
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1.74. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

1

1+
p

1+ 4n(n− 1)a1

+
1

1+
p

1+ 4n(n− 1)a2

+ · · ·+
1

1+
p

1+ 4n(n− 1)an

≥
1
2

.

1.75. If a, b, c are positive real numbers so that abc = 1, then

a6

1+ 2a5
+

b6

1+ 2b5
+

c6

1+ 2c5
≥ 1.

1.76. If a, b, c are positive real numbers so that abc = 1, then
p

25a2 + 144+
p

25b2 + 144+
p

25c2 + 144≤ 5(a+ b+ c) + 24.

1.77. If a, b, c are positive real numbers so that abc = 1, then
p

16a2 + 9+
p

16b2 + 9+
p

16c2 + 9≥ 4(a+ b+ c) + 3.

1.78. If ABC is a triangle, then

sin A
�

2sin
A
2
− 1

�

+ sin B
�

2sin
B
2
− 1

�

+ sin C
�

2sin
C
2
− 1

�

≥ 0.

1.79. If ABC is an acute or right triangle, then

sin 2A
�

1− 2 sin
A
2

�

+ sin 2B
�

1− 2sin
B
2

�

+ sin 2C
�

1− 2sin
C
2

�

≥ 0.

1.80. If a, b, c, d are real numbers so that a+ b+ c + d = 4, then

a
a2 − a+ 4

+
b

b2 − b+ 4
+

c
c2 − c + 4

+
d

d2 − d + 4
≤ 1.

1.81. Let a, b, c be nonnegative real numbers so that a+ b+ c = 2. If

k0 ≤ k ≤ 3, k0 =
ln 2

ln3− ln2
≈ 1.71,

then
ak(b+ c) + bk(c + a) + ck(a+ b)≤ 2.
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1.82. If a1, a2, . . . , an are positive real numbers so that a1 + a2 + · · ·+ an = n, then

(n+ 1)2
�

1
a1
+

1
a2
+ · · ·+

1
an

�

≥ 4(n+ 2)(a2
1 + a2

2 + · · ·+ a2
n) + n(n2 − 3n− 6).

1.83. If a, b, c, d, e are positive real numbers such that a+ b+ c + d + e = 5, then

27(
1
a
+

1
b
+

1
c
+

1
d
+

1
e
)≥ 4(a3 + b3 + c3 + d3 + e3) + 115.

1.84. If a, b, c are nonnegative real numbers so that a+ b+ c = 12, then

(a2 + 10)(b2 + 10)(c2 + 10)≥ 13310.

1.85. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n,
then

(a2
1 + 1)(a2

2 + 1) · · · (a2
n + 1)≥

(n2 − 2n+ 2)n

(n− 1)2n−2
.

1.86. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(a2 + 2)(b2 + 2)(c2 + 2)≤ 44.

1.87. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(a2 + 1)(b2 + 1)(c2 + 1)≤
169
16

.

1.88. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(2a2 + 1)(2b2 + 1)(2c2 + 1)≤
121

4
.

1.89. If a, b, c are nonnegative real numbers so that a+ b+ c ≥ k0, where

k0 =
3
8

Æ

66+ 10
p

105≈ 4.867,

then
3
Æ

(a2 + 1)(b2 + 1)(c2 + 1)≤
�

a+ b+ c
3

�2

+ 1.
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1.90. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 4, then

(a2 + 3)(b2 + 3)(c2 + 3)(d2 + 3)≤ 513.

1.91. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 4, then

(a2 + 2)(b2 + 2)(c2 + 2)(d2 + 2)≤ 144.

1.92. If a, b, c, d are nonnegative real numbers such that

a+ b+ c + d = 4,

then
a

3a3 + 2
+

b
3b3 + 2

+
c

3c3 + 2
+

d
3d3 + 2

≤
4
5

.

1.93. If a1, a2, ..., an are nonnegative real numbers such that a1+ a2+ · · ·+ an = 1,
then

a3
1 + a3

2 + · · ·+ a3
n ≤

1
8
+ a4

1 + a4
2 + · · ·+ a4

n.
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1.3 Solutions

P 1.1. If a, b, c are real numbers so that a+ b+ c = 3, then

3(a4 + b4 + c4) + a2 + b2 + c2 + 6≥ 6(a3 + b3 + c3).

(Vasile C., 2006)

Solution. Write the inequality as

f (a) + f (b) + f (c)≥ 3 f (s), s =
a+ b+ c

3
= 1,

where
f (u) = 3u4 − 6u3 + u2, u ∈ R.

From
f ′′(u) = 2(18u2 − 18u+ 1),

it follows that f ′′(u) > 0 for u ≥ 1, hence f is convex on [s,∞). By the RHCF-
Theorem, it suffices to show that f (x) + 2 f (y) ≥ 3 f (1) for all real x , y so that
x + 2y = 3. Let

E = f (x) + 2 f (y)− 3 f (1).

We have

E = [ f (x)− f (1)] + 2[ f (y)− f (1)]

= (3x4 − 6x3 + x2 + 2) + 2(3y4 − 6y3 + y2 + 2)

= (x − 1)(3x3 − 3x2 − 2x − 2) + 2(y − 1)(3y3 − 3y2 − 2y − 2)

= (x − 1)[(3x3 − 3x2 − 2x − 2)− (3y3 − 3y2 − 2y − 2)]

= (x − 1)[3(x3 − y3)− 3(x2 − y2)− 2(x − y)]

= (x − 1)(x − y)[3(x2 + x y + y2)− 3(x + y)− 2]

=
(x − 1)2[27(x2 + x y + y2)− 9(x + y)(x + 2y)− 2(x + 2y)2]

6

=
(x − 1)2(4x − y)2

6
≥ 0.

The equality holds for a = b = c = 1, and also for a =
1
3

and b = c =
4
3

(or any

cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• If a1, a2, . . . , an are real numbers so that a1 + a2 + · · ·+ an = n, then

(a2
1 − a1)

2 + (a2
2 − a2)

2 + · · ·+ (a2
n − an)

2 ≥
n− 1

n2 − 3n+ 3
(a2

1 + a2
2 + · · ·+ a2

n − n),
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with equality for a1 = a2 = · · ·= an = 1, and also for

a1 =
1

n2 − 3n+ 3
, a2 = a3 = · · ·= an = 1+

n− 2
n2 − 3n+ 3

(or any cyclic permutation).

P 1.2. If a1, a2, . . . , an ≥
1− 2n
n− 2

so that a1 + a2 + · · ·+ an = n, then

a3
1 + a3

2 + · · ·+ a3
n ≥ n.

(Vasile C., 2000)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) = u3, u≥

1− 2n
n− 2

.

From f ′′(u) = 6u, it follows that f is convex on [s,∞). By the RHCF-Theorem and

Note 1, it suffices to show that h(x , y)≥ 0 for all x , y ≥
1− 2n
n− 2

so that x+(n−1)y =
n. We have

g(u) =
f (u)− f (1)

u− 1
= u2 + u+ 1,

h(x , y) =
g(x)− g(y)

x − y
= x + y + 1=

(n− 2)x + 2n− 1
n− 1

≥ 0.

From x + (n− 1)y = n and h(x , y) = 0, we get

x =
1− 2n
n− 2

, y =
n+ 1
n− 2

.

Therefore, according to Note 4, the equality holds for a1 = a2 = · · · = an = 1, and
also for

a1 =
1− 2n
n− 2

, a2 = a3 = · · ·= an =
n+ 1
n− 2

(or any cyclic permutation).

P 1.3. If a1, a2, . . . , an ≥
−n

n− 2
so that a1 + a2 + · · ·+ an = n, then

a3
1 + a3

2 + · · ·+ a3
n ≥ a2

1 + a2
2 + · · ·+ a2

n.
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Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) = u3 − u2, u≥

−n
n− 2

.

From f ′′(u) = 6u−2, it follows that f is convex on [s,∞). According to the RHCF-

Theorem and Note 1, it suffices to show that h(x , y) ≥ 0 for x , y ≥
−n

n− 2
so that

x + (n− 1)y = n. We have

g(u) =
f (u)− f (1)

u− 1
= u2,

h(x , y) =
g(x)− g(y)

x − y
= x + y =

(n− 2)x + n
n− 1

≥ 0.

From x + (n− 1)y = n and h(x , y) = 0, we get

x =
−n

n− 2
, y =

n
n− 2

.

Therefore, in accordance with Note 4, the equality holds for a1 = a2 = · · ·= an = 1,
and also for

a1 =
−n

n− 2
, a2 = a3 = · · ·= an =

n
n− 2

(or any cyclic permutation).

P 1.4. If a1, a2, . . . , an are real numbers so that a1 + a2 + · · ·+ an = n, then

(n2 − 3n+ 3)(a4
1 + a4

2 + · · ·+ a4
n − n)≥ 2(n2 − n+ 1)(a2

1 + a2
2 + · · ·+ a2

n − n).

(Vasile C., 2009)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) = (n2 − 3n+ 3)u4 − 2(n2 − n+ 1)u2, u ∈ I= R.

For u≥ s = 1, we have

1
4

f ′′(u) = 3(n2 − 3n+ 3)u2 − (n2 − n+ 1)

≥ 3(n2 − 3n+ 3)− (n2 − n+ 1) = 2(n− 2)2 ≥ 0;
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therefore, f is convex on I≥s. By the RHCF-Theorem and Note 1, it suffices to show
that h(x , y)≥ 0 for x , y ∈ R so that x + (n− 1)y = n, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

We have

g(u) = (n2 − 3n+ 3)(u3 + u2 + u+ 1)− 2(n2 − n+ 1)(u+ 1)

and

h(x , y) = (n2 − 3n+ 3)(x2 + x y + y2 + x + y + 1)− 2(n2 − n+ 1)

= [(n2 − 3n+ 3)y − n2 + n+ 1]2 ≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 = −1+
2

n2 − 3n+ 3
, a2 = a3 = · · ·= an = 1+

2n− 4
n2 − 3n+ 3

(or any cyclic permutation).

P 1.5. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n,
then

(n2 + n+ 1)(a3
1 + a3

2 + · · ·+ a3
n − n)≥ (n+ 1)(a4

1 + a4
2 + · · ·+ a4

n − n).

(Vasile C., 2009)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) = (n2 + n+ 1)u3 − (n+ 1)u4, u ∈ I= [0, n].

The function f is convex on I≤s because

f ′′(u) = 6u[n2 + n+ 1− 2(n+ 1)u]≥ 6u[n2 + n+ 1− 2(n+ 1)]

= 6(n2 − n− 1)u≥ 0.

By the LHCF-Theorem and Note 1, it suffices to show that h(x , y) ≥ 0 for x , y ≥ 0
so that x + (n− 1)y = n, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.
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We have

g(u) = (n2 + n+ 1)(u2 + u+ 1)− (n+ 1)(u3 + u2 + u+ 1)

= −(n+ 1)u3 + n2(u2 + u+ 1)

and

h(x , y) = −(n+ 1)(x2 + x y + y2) + n2(x + y + 1)

= −(n+ 1)(x2 + x y + y2) + n(x + y)[x + (n− 1)y] + [x + (n− 1)y]2

= (n2 + n− 3)x y + 2n(n− 2)y2 ≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 = n, a2 = a3 = · · ·= an = 0

(or any cyclic permutation).

P 1.6. Let a, b, c be real numbers so that a+ b+ c = 3. If

−14− 6
p

7≤ k ≤ −14+ 6
p

7,

then
a4 + b4 + c4 − 3≥ k(a3 + b3 + c3 − 3).

(Vasile C., 2009)

Solution. Write the desired inequalities as

f (a) + f (b) + f (c)≥ 3 f (s), s =
a+ b+ c

3
= 1,

where
f (u) = u4 − ku3, u ∈ R.

From
f ′′(u) = 6u(2u2 − k),

it follows that f ′′(u) > 0 for u ≥ 1, hence f is convex on [s,∞). By the RHCF-
Theorem, it suffices to show that f (x) + 2 f (y) ≥ 3 f (1) for all real x , y so that
x + 2y = 3. Using Note 1, we only need to show that h(x , y)≥ 0, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

We have

g(u) = u3 + u2 + u+ 1− k(u2 + u+ 1) + u+ 1= u3 + (1− k)(u2 + u+ 1),
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h(x , y) = x2 + x y + y2 + (1− k)(x + y + 1) = 3y2 − (10− k)y + 13− 4k

= 3
�

y −
10− k

6

�2

+
(6
p

7+ 14+ k)(6
p

7− 14− k)
12

≥ 0.

The equality holds for a = b = c = 1. If k = −14− 6
p

7, then the equality holds
also for

a = −5− 2
p

7, b = c = 4+
p

7

(or any cyclic permutation). If k = −14+ 6
p

7, then the equality holds also for

a = −5+ 2
p

7, b = c = 4−
p

7

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be real numbers so that a1 + a2 + · · ·+ an = n. If k1 ≤ k ≤ k2,
where

k1 =
−2(n2 − n+ 1)− 2

p

3(n2 − n+ 1)(n2 − 3n+ 3)
(n− 2)2

,

k2 =
−2(n2 − n+ 1) + 2

p

3(n2 − n+ 1)(n2 − 3n+ 3)
(n− 2)2

,

then
a4

1 + a4
2 + · · ·+ a4

n − n≥ k(a3
1 + a3

2 + · · ·+ a3
n − n).

The equality holds for a1 = a2 = · · · = an = 1. If k ∈ {k1, k2}, then the equality
holds also for

a1 =
−2(n2 − 3n+ 1) + (n− 1)(n− 2)k

2(n2 − 3n+ 3)
,

a2 = a3 = · · ·= an =
2(n2 − n− 1)− (n− 2)k

2(n2 − 3n+ 3)

(or any cyclic permutation).

P 1.7. Let a1, a2, . . . , an be nonnegative real numbers so that a1+ a2+ · · ·+ an = n. If
k is a positive integer satisfying 3≤ k ≤ n+ 1, then

ak
1 + ak

2 + · · ·+ ak
n − n

a2
1 + a2

2 + · · ·+ a2
n − n

≥ (n− 1)
�

� n
n− 1

�k−1
− 1

�

.

(Vasile C., 2012)
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Solution. Denote

m= (n− 1)
�

� n
n− 1

�k−1
− 1

�

=
� n

n− 1

�k−2
+
� n

n− 1

�k−3
+ · · ·+ 1,

and write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) = uk −mu2, u ∈ [0, n].

We will show that f is convex on [1, n]. Since

f ′′(u) = k(k− 1)uk−2 − 2m≥ k(k− 1)− 2m,

we need to show that

k(k− 1)
2

≥
� n

n− 1

�k−2
+
� n

n− 1

�k−3
+ · · ·+ 1.

Since n≥ k− 1, this inequality is true if

k(k− 1)
2

≥
�

k− 1
k− 2

�k−2

+
�

k− 1
k− 2

�k−3

+ · · ·+ 1.

By Bernoulli’s inequality, we have

�

k− 1
k− 2

� j

=
1

�

1− 1
k−1

� j ≤
1

1− j
k−1

=
k− 1

k− j − 1
, j = 0, 1, . . . , k− 2.

Therefore, it suffices to show that

k(k− 1)
2

≥ (k− 1)
�

1+
1
2
+ · · ·+

1
k− 1

�

.

This is true if
k
2
≥ 1+

1
2
+ · · ·+

1
k− 1

,

which can be easily proved by induction. According to the RHCF-Theorem and Note
1, we only need to show that h(x , y) ≥ 0 for x , y ≥ 0 so that x + (n − 1)y = n,
where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

We have

g(u) =
(uk − 1)−m(u2 − 1)

u− 1
= (uk−1 + uk−2 + · · ·+ 1)−m(u+ 1),
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h(x , y) =

�

x k−1 − yk−1

x − y
+

x k−2 − yk−1

x − y
+ · · ·+ 1

�

−m

=
k−2
∑

j=1

�

x j+1 − y j+1

x − y
−
� n

n− 1

� j
�

.

It suffices to show that f j(y)≥ 0 for y ∈
h

0,
n

n− 1

i

and j = 1,2, . . . , k− 2, where

f j(y) = x j + x j−1 y + · · ·+ x y j−1 + y j −
� n

n− 1

� j
, x = n− (n− 1)y.

For j = 1, we have

f1(y) = x + y −
n

n− 1
=
(n− 2)x

n− 1
≥ 0.

For j ≥ 2, from x ′ = −(n− 1) and n− 1≥ k− 2≥ j, we get

f ′j (y) = −(n− 1)[ j x j−1 + ( j − 1)x j−2 y + · · ·+ y j−1] + x j−1 + 2x j−2 y + · · ·+ j y j−1

≤ − j[ j x j−1 + ( j − 1)x j−2 y + · · ·+ y j−1] + x j−1 + 2x j−2 y + · · ·+ j y j−1

= −( j · j − 1)x j−1 − [ j · ( j − 1)− 2]x j−2 y − · · · − ( j · 2− j + 1)x y j−2 ≤ 0.

As a consequence, f j is decreasing, hence it is minimum for y =
n

n− 1
(when

x = 0):
f j(y)≥ f j

� n
n− 1

�

= 0.

From x + (n− 1)y = n and h(x , y) = 0, we get

x = 0, y =
n

n− 1
.

Therefore, the equality holds for

a1 = 0, a2 = a3 = · · ·= an =
n

n− 1

(or any cyclic permutation).

Remark. For k = 3 and k = 4, we get the following statements (Vasile C. , 2002):

• If a1, a2, . . . , an are nonnegative real numbers so that a1+ a2+ · · ·+ an = n, then

(n− 1)(a3
1 + a3

2 + · · ·+ a3
n − n)≥ (2n− 1)(a2

1 + a2
2 + · · ·+ a2

n − n),

which is equivalent to

3
n− 2

∑

1≤i< j<k≤n

aia jak + n2 ≥
3n− 1
n− 1

∑

1≤i< j≤n

aia j,
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with equality for a1 = a2 = · · ·= an = 1, and also for

a1 = 0, a2 = a3 = · · ·= an =
n

n− 1

(or any cyclic permutation).

• If a1, a2, . . . , an (n≥ 3) are nonnegative real numbers so that

a1 + a2 + · · ·+ an = n,

then

(n− 1)2(a4
1 + a4

2 + · · ·+ a4
n − n)≥ (3n2 − 3n+ 1)(a2

1 + a2
2 + · · ·+ a2

n − n),

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 = 0, a2 = a3 = · · ·= an =
n

n− 1

(or any cyclic permutation).

P 1.8. Let k ≥ 3 be an integer number. If a1, a2, . . . , an are nonnegative real numbers
so that a1 + a2 + · · ·+ an = n, then

ak
1 + ak

2 + · · ·+ ak
n − n

a2
1 + a2

2 + · · ·+ a2
n − n

≤
nk−1 − 1

n− 1
.

(Vasile C., 2012)

Solution. Denote

m=
nk−1 − 1

n− 1
= nk−2 + nk−3 + · · ·+ 1,

and write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) = mu2 − uk, u ∈ [0, n].

We will show that f is convex on [0, 1]. Since

f ′′(u) = 2m− k(k− 1)uk−2 ≥ 2m− k(k− 1),

we need to show that

nk−2 + nk−3 + · · ·+ 1≥
k(k− 1)

2
.
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This is true if

2k−2 + 2k−3 + · · ·+ 1≥
k(k− 1)

2
,

which is equivalent to

2k−1 − 1≥
k(k− 1)

2
,

2k ≥ k2 − k+ 2.

Since

2k = (1+ 1)k ≥ 1+
�

k
1

�

+
�

k
2

�

+
�

k
3

�

= 1+ k+
k(k− 1)

2
+

k(k− 1)(k− 2)
6

,

it suffices to show that

1+ k+
k(k− 1)

2
+

k(k− 1)(k− 2)
6

≥ k2 − k+ 2,

which reduces to
(k− 1)(k− 2)(k− 3)≥ 0.

According to the LHCF-Theorem and Note 1, we only need to show that h(x , y)≥ 0
for x , y ≥ 0 so that x + (n− 1)y = n, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

We have

g(u) =
m(u2 − 1)− (uk − 1)

u− 1
= m(u+ 1)− (uk−1 + uk−2 + · · ·+ 1)

and

h(x , y) = m−
x k−1 − yk−1

x − y
−

x k−2 − yk−1

x − y
− · · · − 1

=

�

nk−2 −
x k−1 − yk−1

x − y

�

+

�

nk−3 −
x k−2 − yk−2

x − y

�

+ · · ·+
�

n−
x2 − y2

x − y

�

.

It suffices to show that

n j ≥
x j+1 − y j+1

x − y
, j = 1, 2, . . . , k− 2.

We will show that

n j ≥ (x + y) j ≥
x j+1 − y j+1

x − y
.
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The left inequality is true since

n− (x + y) = x + (n− 1)y − (x + y) = (n− 2)y ≥ 0.

The right inequality is also true since

(x + y) j = x j +
�

j
1

�

x j−1 y + · · ·+
�

j
j − 1

�

x y j−1 + y j

and
x j+1 − y j+1

x − y
= x j + x j−1 y + · · ·+ x y j−1 + y j.

The equality holds for a1 = n and a2 = a3 = · · · = an = 0 (or any cyclic permuta-
tion).

Remark. For k = 3 and k = 4, we get the following statements (Vasile C. , 2002):

• If a1, a2, . . . , an are nonnegative real numbers so that a1+ a2+ · · ·+ an = n, then

a3
1 + a3

2 + · · ·+ a3
n − n≤ (n+ 1)(a2

1 + a2
2 + · · ·+ a2

n − n),

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 = n, a2 = a3 = · · ·= an = 0

(or any cyclic permutation).

• If a1, a2, . . . , an are nonnegative real numbers so that a1+ a2+ · · ·+ an = n, then

a4
1 + a4

2 + · · ·+ a4
n − n≤ (n2 + n+ 1)(a2

1 + a2
2 + · · ·+ a2

n − n),

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 = n, a2 = a3 = · · ·= an = 0

(or any cyclic permutation).

P 1.9. If a1, a2, . . . , an are positive real numbers so that a1 + a2 + · · ·+ an = n, then

n2
�

1
a1
+

1
a2
+ · · ·+

1
an
− n

�

≥ 4(n− 1)(a2
1 + a2

2 + · · ·+ a2
n − n).

(Vasile C., 2004)
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Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
n2

u
− 4(n− 1)u2, u ∈ I= (0, n).

For u ∈ (0, 1], we have

f ′′(u) =
2n2

u3
− 8(n− 1)≥ 2n2 − 8(n− 1) = 2(n− 2)2 ≥ 0.

Thus, f is convex on I≤s. By the LHCF-Theorem and Note 1, it suffices to show that
h(x , y)≥ 0 for x , y > 0 so that x + (n− 1)y = n, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

We have

g(u) =
−n2

u
− 4(n− 1)(u+ 1)

and

h(x , y) =
n2

x y
− 4(n− 1) =

[x + (n− 1)y]2

x y
− 4(n− 1=

[x − (n− 1)y]2

x y
.

In accordance with Note 4, the equality holds for a1 = a2 = · · · = an = 1, and also
for

a1 =
n
2

, a2 = a3 = · · ·= an =
n

2n− 2
(or any cyclic permutation).

P 1.10. If a1, a2, . . . , a8 are positive real numbers so that a1 + a2 + · · ·+ a8 = 8, then

1
a2

1

+
1
a2

2

+ · · ·+
1
a2

8

≥ a2
1 + a2

2 + · · ·+ a2
8.

(Vasile C., 2007)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (a8)≥ 8 f (s), s =
a1 + a2 + · · ·+ a8

8
= 1,

where
f (u) =

1
u2
− u2, u ∈ (0,8).
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For u ∈ (0, 1], we have

f ′′(u) =
6
u4
− 2≥ 6− 2> 0.

Thus, f is convex on (0, s]. By the LHCF-Theorem and Note 1, it suffices to show
that h(x , y)≥ 0 for x , y > 0 so that x + 7y = 8, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

We have

g(u) = −u− 1−
1
u
−

1
u2

and

h(x , y) = −1+
1

x y
+

x + y
x2 y2

.

From 8= x + 7y ≥ 2
p

7x y , we get x y ≤ 16/7. Therefore,

h(x , y)≥ −1+
1

x y
+

7(x + y)
16x y

=
112y2 − 170y + 72

16x y

>
112y2 − 176y + 72

16x y
=

14y2 − 22y + 9
2x y

> 0.

The equality holds for a1 = a2 = · · ·= a8 = 1.

Remark. In the same manner, we can prove the following generalization:

• If a1, a2, . . . , an (n≥ 4) are positive real numbers so that a1 + a2 + · · ·+ an = n,
then

1
a2

1

+
1
a2

2

+ · · ·+
1
a2

n

+ 8− n≥
8
n

�

a2
1 + a2

2 + · · ·+ a2
n

�

.

P 1.11. If a1, a2, . . . , an are positive real numbers so that
1
a1
+

1
a2
+ · · ·+

1
an
= n, then

a2
1 + a2

2 + · · ·+ a2
n − n≥ 2

�

1+
p

n− 1
n

�

(a1 + a2 + · · ·+ an − n).

(Vasile C., 2006)

Solution. Replacing each ai by 1/ai, we need to prove that

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,
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where

f (u) =
1
u2
−

2k
u

, k = 1+
p

n− 1
n

, u ∈ (0, n).

For u ∈ (0, 1], we have

f ′′(u) =
6− 4ku

u4
≥

6− 4k
u4

=
2(
p

n− 1− 1)2

nu4
≥ 0.

Thus, f is convex on (0, s]. By the LHCF-Theorem and Note 1, it suffices to show
that h(x , y)≥ 0 for x , y > 0 so that x + (n− 1)y = n, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

We have

g(u) =
−1
u2
+

2k− 1
u

and

h(x , y) =
1

x y

�

1
x
+

1
y
+ 1− 2k

�

.

We only need to show that
1
x
+

1
y
≥ 2k− 1.

Indeed, using the Cauchy-Schwarz inequality, we get

1
x
+

1
y
≥
(1+

p
n− 1)2

x + (n− 1)y
=
(1+

p
n− 1)2

n
= 2k− 1,

with equality for x =
p

n− 1y . From x + (n− 1)y = n and h(x , y) = 0, we get

x =
n

1+
p

n− 1
, y =

n

n− 1+
p

n− 1
.

In accordance with Note 4, the original equality holds for a1 = a2 = · · · = an = 1,
and also for

a1 =
1+
p

n− 1
n

, a2 = a3 = · · ·= an =
n− 1+

p
n− 1

n

(or any cyclic permutation).

P 1.12. If a, b, c, d, e are positive real numbers so that a2+ b2+ c2+d2+ e2 = 5, then

1
a
+

1
b
+

1
c
+

1
d
+

1
e
− 5+

4(1+
p

5)
5

(a+ b+ c + d + e− 5)≥ 0.

(Vasile C., 2006)
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Solution. Replacing a, b, c, d, e by
p

a,
p

b,
p

c,
p

d,
p

e, respectively, we need to
prove that

f (a) + f (b) + f (c) + f (d) + f (e)≥ 5 f (s), s =
a+ b+ c + d + e

5
= 1,

where

f (u) =
1
p

u
+ k
p

u, k =
4(1+

p
5)

5
≈ 2.59, u ∈ (0,5).

For u ∈ (0, 1], we have

f ′′(u) =
3− ku
4u2
p

u
> 0;

therefore, f is convex on (0, s]. By the LHCF-Theorem and Note 1, it suffices to
show that h(x , y)≥ 0 for x , y > 0 so that x + 4y = 5. We have

g(u) =
f (u)− f (1)

u− 1
=

k
p

u− 1
u+
p

u

and

h(x , y) =
g(x)− g(y)

x − y
=

p
x +py + 1− k

p
x y

p
x y(
p

x +py)(
p

x + 1)(py + 1)
.

Thus, we only need to show that

p
x +
p

y + 1− k
p

x y ≥ 0,

which is true if
2 4px y + 1− k

p
x y ≥ 0.

Let
t = 4px y .

From
5= x + 4y ≥ 4

p
x y = 4t2,

we get

t ≤
p

5
2

.

Thus,

2 4px y + 1− k
p

x y = 2t + 1− kt2

=
�

1−
2
p

5
t
��

1+ 2
�

1+
1
p

5

�

t
�

≥ 0.

The equality holds for a = b = c = d = e = 1.
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P 1.13. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
3a+ b+ c

+
1

3b+ c + a
+

1
3c + a+ b

≤
2
5

�

1
b+ c

+
1

c + a
+

1
a+ b

�

.

(Vasile C., 2006)

Solution. Due to homogeneity, we may assume that a+ b+ c = 3. So, we need to
show that

f (a) + f (b) + f (c)≥ 3 f (s), s =
a+ b+ c

3
= 1,

where
f (u) =

2
3− u

−
5

2u+ 3
, u ∈ [0, 3).

For u ∈ [1,3), we have

f ′′(u) =
4

(3− u)3
−

40
(2u+ 3)3

=
36[2u3 + 3u2 + 9(u− 1)(3− u)]

(3− u)3(2u+ 3)3
> 0;

therefore, f is convex on [s, 3). By the RHCF-Theorem and Note 1, it suffices to
show that h(x , y)≥ 0 for x , y ≥ 0 so that x + 2y = 3, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

We have
g(u) =

1
3− u

+
2

2u+ 3
and

h(x , y) =
1

(3− x)(3− y)
−

4
(2x + 3)(2y + 3)

=
9(2x + 2y − 3)

(3− x)(3− y)(2x + 3)(2y + 3)

=
9x

(3− x)(3− y)(2x + 3)(2y + 3)
≥ 0.

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic
permutation).

P 1.14. If a, b, c, d ≥ 3−
p

7 so that a+ b+ c + d = 4, then

1
2+ a2

+
1

2+ b2
+

1
2+ c2

+
1

2+ d2
≥

4
3

.

(Vasile C., 2008)
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Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d)≥ 4 f (s), s =
a+ b+ c + d

4
= 1,

where
f (u) =

1
2+ u2

, u≥ 3−
p

7.

For u≥ s = 1, f (u) is convex because

f ′′(u) =
3(3u2 − 2)
(2+ u2)3

> 0.

By the RHCF-Theorem and Note 1, it suffices to show that h(x , y) ≥ 0 for x , y ≥
3−
p

7 so that x + 3y = 4. We have

g(u) =
f (u)− f (1)

u− 1
=
−1− u

3(2+ u2)

and

h(x , y) =
g(x)− g(y)

x − y
=

x y + x + y − 2
3(2+ x2)(2+ y2)

,

where

x y + x + y − 2=
−x2 + 6x − 2

3
=
(3+

p
7− x)(x − 3+

p
7)

3

=
(−1+

p
7+ 3y)(x − 3+

p
7)

3
≥ 0.

In accordance with Note 4, the equality holds for a = b = c = d = 1, and also for

a = 3−
p

7, b = c = d =
1+
p

7
3

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• If a1, a2, . . . , an ≥ n− 1−
p

n2 − 3n+ 3 so that a1 + a2 + · · ·+ an = n, then

1
2+ a2

1

+
1

2+ a2
2

+ · · ·+
1

2+ a2
n

≥
n
3

,

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 = n− 1−
p

n2 − 3n+ 3, a2 = a3 = · · ·= an =
1+
p

n2 − 3n+ 3
n− 1

(or any cyclic permutation).



40 Vasile Cîrtoaje

P 1.15. If a1, a2, . . . , an ∈ [−
p

n, n− 2] so that a1 + a2 + · · ·+ an = n, then

1
n+ a2

1

+
1

n+ a2
2

+ · · ·+
1

n+ a2
n

≤
n

n+ 1
.

(Vasile C., 2008)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) =

−1
n+ u2

, n≥ 3, u ∈ [−
p

n, n− 2].

For u ∈ [−
p

n, 1], we have

f ′′(u) =
2(n− u2)
(n+ u2)3

≥ 0,

hence f is convex on [−
p

n, s]. By the LHCF-Theorem and Note 1, it suffices to
show that h(x , y)≥ 0 for x , y ∈ [−

p
n, n− 2] so that x + (n− 1)y = n. We have

g(u) =
f (u)− f (1)

u− 1
=

u+ 1
(n+ 1)(n+ u2)

and

h(x , y) =
g(x)− g(y)

x − y
=

n− x − y − x y
(n+ 1)(n+ x2)(n+ y2)

=
(n− x)(n− 2− x)

(n2 − 1)(n+ x2)(n+ y2)
≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 = n− 2, a2 = a3 = · · ·= an =
2

n− 1

(or any cyclic permutation).

P 1.16. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

3− a
9+ a2

+
3− b
9+ b2

+
3− c
9+ c2

≥
3
5

.

(Vasile C., 2013)
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Solution. Write the inequality as

f (a) + f (b) + f (c)≥ 3 f (s), s =
a+ b+ c

3
= 1,

where
f (u) =

3− u
9+ u2

, u ∈ [0,3].

For u ∈ [1,3], we have

1
2

f ′′(u) =
u2(9− u) + 27(u− 1)

(9+ u2)3
> 0.

Thus, f is convex on [s, 3]. By the RHCF-Theorem and Note 1, it suffices to show
that h(x , y)≥ 0 for x , y ≥ 0 so that x + 2y = 3, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

We have

g(u) =
−(6+ u)
5(9+ u2)

and

h(x , y) =
x y + 6x + 6y − 9
5(9+ x2)(9+ y2)

=
x(9− x)

10(9+ x2)(9+ y2)
≥ 0.

The equality holds for a = b = c = 1, and also for a = 0 and b = c =
3
2

(or any

cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• If a1, a2, . . . , an are nonnegative real numbers so that a1+ a2+ · · ·+ an = n, then

n− a1

n2 + (n2 − 3n+ 1)a2
1

+
n− a2

n2 + (n2 − 3n+ 1)a2
2

+ · · ·+
n− an

n2 + (n2 − 3n+ 1)a2
n

≥
n

2n− 1
,

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 = 0, a2 = a3 = · · ·= an =
n

n− 1

(or any cyclic permutation).

P 1.17. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

1
1− a+ 2a2

+
1

1− b+ 2b2
+

1
1− c + 2c2

≥
3
2

.

(Vasile C., 2012)
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Solution. Write the inequality as

f (a) + f (b) + f (c)≥ 3 f (s), s =
a+ b+ c

3
= 1,

where
f (u) =

1
1− u+ 2u2

, u ∈ [0, 3].

For u ∈ [1,3], we have

1
2

f ′′(u) =
12u2 − 6u− 1
(1− u+ 2u2)3

> 0.

Thus, f is convex on [s, 3]. By the RHCF-Theorem and Note 1, it suffices to show
that h(x , y)≥ 0 for x , y ≥ 0 so that x + 2y = 3, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

We have

g(u) =
−(1+ 2u)

2(1− u+ 2u2)
and

h(x , y) =
4x y + 2x + 2y − 3

2(1− x + 2x2)(1− y + 2y2)
=

x(1+ 4y)
2(1− x + 2x2)(1− y + 2y2)

≥ 0.

The equality holds for a = b = c = 1, and also for a = 0 and b = c =
3
2

(or any

cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n. If

k ≥ k1, k1 =
3n− 2+

p
5n2 − 8n+ 4
2n

,

then
1

1− a1 + ka2
1

+
1

1− a2 + ka2
2

+ · · ·+
1

1− an + ka2
n

≥
n
k

,

with equality for a1 = a2 = · · ·= an = 1. If k = k1, then the equality holds also for

a1 = 0, a2 = a3 = · · ·= an =
n

n− 1

(or any cyclic permutation).
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P 1.18. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

1
5+ a+ a2

+
1

5+ b+ b2
+

1
5+ c + c2

≥
3
7

.

(Vasile C., 2008)

Solution. Write the inequality as

f (a) + f (b) + f (c)≥ 3 f (s), s =
a+ b+ c

3
= 1,

where
f (u) =

1
5+ u+ u2

, u ∈ [0,3].

For u≥ 1, from

f ′′(u) =
2(3u2 + 3u− 4)
(5+ u+ u2)3

> 0,

it follows that f is convex on [s,3]. By the RHCF-Theorem and Note 1, it suffices
to show that h(x , y)≥ 0 for x , y ≥ 0 so that x + 2y = 3. We have

g(u) =
f (u)− f (1)

u− 1
=

−2− u
7(5+ u+ u2)

and

h(x , y) =
g(x)− g(y)

x − y
=

x y + 2(x + y)− 3
7(5+ x + x2)(5+ y + y2)

=
x(5− x)

14(5+ x + x2)(5+ y + y2)
≥ 0.

According to Note 4, the equality holds for a = b = c = 1, and also for a = 0 and

b = c =
3
2

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n. If

0< k ≤ k1, k1 =
2(2n− 1)

n− 1
,

then
1

k+ a1 + a2
1

+
1

k+ a2 + a2
2

+ · · ·+
1

k+ an + a2
n

≥
n

k+ 2
,

with equality for a1 = a2 = · · ·= an = 1. If k = k1, then the equality holds also for

a1 = 0, a2 = a3 = · · ·= an =
n

n− 1

(or any cyclic permutation).
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P 1.19. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 4, then

1
10+ a+ a2

+
1

10+ b+ b2
+

1
10+ c + c2

+
1

10+ d + d2
≤

1
3

.

(Vasile C., 2008)

Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d)≥ 4 f (s), s =
a+ b+ c + d

4
= 1,

where
f (u) =

−1
10+ u+ u2

, u ∈ [0, 4].

For u ∈ [0,1], we have

f ′′(u) =
6(3− u− u2)
(10+ u+ u2)3

> 0.

Thus, f is convex on [0,s]. By the LHCF-Theorem and Note 1, it suffices to show
that h(x , y)≥ 0 for x , y ≥ 0 so that x + 3y = 4. We have

g(u) =
f (u)− f (1)

u− 1
=

2+ u
12(10+ u+ u2)

and

h(x , y) =
g(x)− g(y)

x − y
=

8− 2(x + y)− x y
12(10+ x + x2)(10+ y + y2)

=
3y2

12(10+ x + x2)(10+ y + y2)
≥ 0.

The equality holds for a = b = c = d = 1, and also for a = 4 and b = c = d = 0
(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an (n≥ 4) be nonnegative real numbers so that

a1 + a2 + · · ·+ an = n.

If k ≥ 2n+ 2, then

1
k+ a1 + a2

1

+
1

k+ a2 + a2
2

+ · · ·+
1

k+ an + a2
n

≤
n

k+ 2
,

with equality for a1 = a2 = · · · = an = 1. If k = 2n+ 2, then the equality holds also
for

a1 = n, a2 = a3 = · · ·= an = 0

(or any cyclic permutation).
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P 1.20. Let a1, a2, . . . , an be nonnegative real numbers so that a1+ a2+ · · ·+ an = n.
If

k ≥ 1−
1
n

,

then
1

1+ ka2
1

+
1

1+ ka2
2

+ · · ·+
1

1+ ka2
n

≥
n

1+ k
.

(Vasile C., 2005)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) =

1
1+ ku2

, u ∈ [0, n].

For u ∈ [1, n], we have

f ′′(u) =
2k(3ku2 − 1)
(1+ ku2)3

≥
2k(3k− 1)
(1+ ku2)3

> 0.

Thus, f is convex on [s, n]. By the RHCF-Theorem and Note 1, it suffices to show
that h(x , y)≥ 0 for x , y ≥ 0 so that x + (n− 1)y = n. We have

g(u) =
f (u)− f (1)

u− 1
=

−k(u+ 1)
(1+ k)(1+ ku2)

and

h(x , y) =
g(x)− g(y)

x − y
=

k2(x + y + x y)− k
(1+ k)(1+ kx2)(1+ k y2)

.

We need to show that
k(x + y + x y)− 1≥ 0.

Indeed, we have

k(x + y + x y)− 1≥
�

1−
1
n

�

(x + y + x y)− 1=
x(2n− 2− x)

n
≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k = 1 −
1
n

, then the equality

holds also for
a1 = 0, a2 = a3 = · · ·= an =

n
n− 1

(or any cyclic permutation).
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P 1.21. Let a1, a2, . . . , an be real numbers so that a1 + a2 + · · ·+ an = n. If

0< k ≤
n− 1

n2 − n+ 1
,

then
1

1+ ka2
1

+
1

1+ ka2
2

+ · · ·+
1

1+ ka2
n

≤
n

1+ k
.

(Vasile C., 2005)

Solution. Replacing all negative numbers ai by −ai, we need to show the same
inequality for

a1, a2, . . . , an ≥ 0, a1 + a2 + · · ·+ an ≥ n.

Since the left side of the desired inequality is decreasing with respect to each ai, is
sufficient to consider that a1 + a2 + · · ·+ an = n. Write this inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
−1

1+ ku2
, u ∈ [0, n].

For u ∈ [0,1], we have

f ′′(u) =
2k(1− 3ku2)
(1+ ku2)3

≥ 0,

since

1− 3ku2 ≥ 1− 3k ≥ 1−
3(n− 1)

n2 − n+ 1
=
(n− 2)2

n2 − n+ 1
≥ 0.

Thus, f is convex on [0, s]. By the LHCF-Theorem and Note 1, it suffices to show
that h(x , y)≥ 0 for x , y ≥ 0 so that x + (n− 1)y = n. We have

g(u) =
f (u)− f (1)

u− 1
=

k(u+ 1)
(1+ k)(1+ ku2)

and

h(x , y) =
g(x)− g(y)

x − y
=

k− k2(x + y + x y)
(1+ k)(1+ kx2)(1+ k y2)

.

It suffices to show that
1− k(x + y + x y)≥ 0.

Indeed, we have

1− k(x + y + x y)≥ 1−
n− 1

n2 − n+ 1
(x + y + x y) =

(x − n+ 1)2

n2 − n+ 1
≥ 0.
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The equality holds for a1 = a2 = · · ·= an = 1. If k =
n− 1

n2 − n+ 1
, then the equality

holds also for
a1 = n− 1, a2 = a3 = · · ·= an =

1
n− 1

(or any cyclic permutation).

P 1.22. Let a1, a2, . . . , an be nonnegative numbers so that a1 + a2 + · · ·+ an = n. If

k ≥
n2

4(n− 1)
, then

a1(a1 − 1)
a2

1 + k
+

a2(a2 − 1)
a2

2 + k
+ · · ·+

an(an − 1)
a2

n + k
≥ 0.

(Vasile C., 2012)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
u(u− 1)
u2 + k

, u ∈ [0, n].

From

f ′(u) =
u2 + 2ku− k
(u2 + k)2

, f ′′(u) =
2(k2 − u3) + 6ku(1− u)

(u2 + k)3
,

it follows that f is convex on [0,1]. By the LHCF-Theorem and Note 1, it suffices
to show that h(x , y)≥ 0 for x , y ≥ 0 so that x + (n− 1)y = n, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

We have
g(u) =

u
u2 + k

and

h(x , y) =
k− x y

(x2 + k)(y2 + k)
≥

n2 − 4(n− 1)x y
4(n− 1)(x2 + k)(y2 + k)

=
[x + (n− 1)y]2 − 4(n− 1)x y

4(n− 1)(x2 + k)(y2 + k)
=

[x − (n− 1)y]2

4(n− 1)(x2 + k)(y2 + k)
≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 = n/2, a2 = a3 = · · ·= an = n/(2n− 2)

(or any cyclic permutation).
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P 1.23. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n,
then

a1 − 1
(n− 2a1)2

+
a2 − 1
(n− 2a2)2

+ · · ·+
an − 1
(n− 2an)2

≥ 0.

(Vasile C., 2012)

Solution. For n= 2, the inequality is an identity. Consider further n≥ 3 and write
the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
u− 1
(n− 2u)2

, u ∈ I= [0, n] \ {n/2}.

From

f ′(u) =
2u+ n− 4
(n− 2u)3

, f ′′(u) =
8(u+ n− 3)
(n− 2u)4

,

it follows that f is convex on I≤s. By the LHCF-Theorem, Note 1 and Note 3, it
suffices to show that h(x , y)≥ 0 for x , y ∈ I so that x + (n− 1)y = n. We have

g(u) =
f (u)− f (1)

u− 1
=

1
(n− 2u)2

and

h(x , y) =
g(x)− g(y)

x − y
=

4(n− x − y)
(n− 2x)2(n− 2y)2

=
4(n− 2)y

(n− 2x)2(n− 2y)2
≥ 0.

In accordance with Note 4, the equality holds for a1 = a2 = · · · = an = 1, and
also for

a1 = n, a2 = a3 = · · ·= an = 0

(or any cyclic permutation).

P 1.24. If a1, a2, . . . , an are nonnegative real numbers so that

a1 + a2 + · · ·+ an = n, a1, a2, . . . , an > −k, k ≥ 1+
n

p
n− 1

,

then
a2

1 − 1

(a1 + k)2
+

a2
2 − 1

(a2 + k)2
+ · · ·+

a2
n − 1

(an + k)2
≥ 0.

(Vasile C., 2008)
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Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
u2 − 1
(u+ k)2

, u> −k.

For u ∈ (−k, 1], we have

f ′′(u) =
2(k2 − 3− 2ku)
(u+ k)4

≥
2(k2 − 2k− 3)
(u+ k)4

=
2(k+ 1)(k− 3)
(u+ k)4

≥ 0.

Thus, f is convex on (−k, s]. By the LHCF-Theorem and Note 1, it suffices to show
that h(x , y)≥ 0 for x , y > −k so that x + (n− 1)y = n. We have

g(u) =
f (u)− f (1)

u− 1
=

u+ 1
(u+ k)2

and

h(x , y) =
g(x)− g(y)

x − y
=
(k− 1)2 − (1+ x)(1+ y)
(x + k)2(y + k)2

.

Since

(k− 1)2 ≥
n2

n− 1
,

we need to show that
n2 ≥ (n− 1)(1+ x)(1+ y).

Indeed,

n2 − (n− 1)(1+ x)(1+ y) = n2 − (1+ x)(2n− 1− x) = (x − n+ 1)2 ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k = 1 +
n

p
n− 1

, then the

equality holds also for

a1 = n− 1, a2 = a3 = · · ·= an =
1

n− 1

(or any cyclic permutation).

P 1.25. Let a1, a2, . . . , an be nonnegative real numbers so that a1+ a2+ · · ·+ an = n.

If 0< k ≤ 1+
s

2n− 1
n− 1

, then

a2
1 − 1

(a1 + k)2
+

a2
2 − 1

(a2 + k)2
+ · · ·+

a2
n − 1

(an + k)2
≤ 0.

(Vasile C., 2008)
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Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
1− u2

(u+ k)2
, u ∈ [0, n].

For u≥ 1, we have

f ′′(u) =
2(2ku− k2 + 3)
(u+ k)4

≥
2(2k− k2 + 3)
(u+ k)4

=
2(1+ k)(3− k)
(u+ k)4

> 0.

Thus, f is convex on [s, n]. By the RHCF-Theorem and Note 1, it suffices to show
that h(x , y)≥ 0 for x , y ≥ 0 so that x + (n− 1)y = n. We have

g(u) =
f (u)− f (1)

u− 1
=
−u− 1
(u+ k)2

and

h(x , y) =
g(x)− g(y)

x − y
=

2k− k2 + x + y + x y
(x + k)2(y + k)2

≥
2k− k2 + x + y
(x + k)2(y + k)2

.

Since

x + y ≥
x + (n− 1)y

n− 1
=

n
n− 1

,

we get

2k− k2 + x + y ≥ 2k− k2 +
n

n− 1
= −(k− 1)2 +

2n− 1
n− 1

≥ 0,

hence h(x , y)≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k = 1 +
s

2n− 1
n− 1

, then the

equality holds also for

a1 = 0, a2 = a3 = · · ·= an =
n

n− 1

(or any cyclic permutation).

P 1.26. If a1, a2, . . . , an ≥ n− 1−
p

n2 − n+ 1 so that a1 + a2 + · · ·+ an = n, then

a2
1 − 1

(a1 + 2)2
+

a2
2 − 1

(a2 + 2)2
+ · · ·+

a2
n − 1

(an + 2)2
≤ 0.

(Vasile C., 2008)
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Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
1− u2

(u+ 2)2
, u≥ n− 1−

p

n2 − n+ 1.

For u≥ 1, we have

f ′′(u) =
2(4u− 1)
(u+ 2)4

> 0.

Thus, f (u) is convex for u ≥ s. By the RHCF-Theorem and Note 1, it suffices to
show that h(x , y)≥ 0 for

n− 1−
p

n2 − n+ 1≤ x ≤ 1≤ y, x + (n− 1)y = n.

Since

g(u) =
f (u)− f (1)

u− 1
=
−u− 1
(u+ 2)2

,

h(x , y) =
g(x)− g(y)

x − y
=

x + y + x y
(x + 2)2(y + 2)2

=
−x2 + 2(n− 1)x + n
(n− 1)(x + 2)2(y + 2)2

,

we need to show that

n− 1−
p

n2 − n+ 1≤ x ≤ n− 1+
p

n2 − n+ 1.

This is true because

n− 1−
p

n2 − n+ 1≤ x ≤ 1< n− 1+
p

n2 − n+ 1.

The equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 = n− 1−
p

n2 − n+ 1, a2 = a3 = · · ·= an =
1+
p

n2 − n+ 1
n− 1

(or any cyclic permutation).

P 1.27. Let a1, a2, . . . , an be nonnegative real numbers so that a1+ a2+ · · ·+ an = n.

If k ≥
(n− 1)(2n− 1)

n2
, then

1
1+ ka3

1

+
1

1+ ka3
2

+ · · ·+
1

1+ ka3
n

≥
n

1+ k
.

(Vasile C., 2008)
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Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) =

1
1+ ku3

, u ∈ [0, n].

For u ∈ [1, n], we have

f ′′(u) =
6ku(2ku3 − 1)
(1+ ku3)3

≥
6ku(2k− 1)
(1+ ku3)3

> 0.

Thus, f is convex on [s, n]. By the RHCF-Theorem and Note 1, it suffices to show
that h(x , y)≥ 0 for x , y ≥ 0 so that x + (n− 1)y = n, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

We have

g(u) =
−k(u2 + u+ 1)
(1+ k)(1+ ku3)

and
h(x , y)

k2
=

x2 y2 + x y(x + y − 1) + (x + y)2 − (x + y + 1)/k
(1+ k)(1+ kx3)(1+ k y3)

.

Since

x + y ≥
x + (n− 1)y

n− 1
=

n
n− 1

> 1,

it suffices to show that

(x + y)2 ≥
x + y + 1

k
.

From x + y ≥
n

n− 1
, we get

k(x + y)≥
2n− 1

n
,

hence

k(x + y)2 − x − y = (x + y)[k(x + y)− 1]≥
n

n− 1

�

2n− 1
n
− 1

�

= 1.

The equality holds for a1 = a2 = · · · = an = 1. If k =
(n− 1)(2n− 1)

n2
, then the

equality holds also for

a1 = 0, a2 = a3 = · · ·= an =
n

n− 1

(or any cyclic permutation).
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P 1.28. Let a1, a2, . . . , an be nonnegative real numbers so that a1+ a2+ · · ·+ an = n.

If 0< k ≤
n− 1

n2 − 2n+ 2
, then

1
1+ ka3

1

+
1

1+ ka3
2

+ · · ·+
1

1+ ka3
n

≤
n

1+ k
.

(Vasile C., 2008)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) =

−1
1+ ku3

, u ∈ [0, n].

For u ∈ [0,1], we have

f ′′(u) =
6ku(1− 2ku3)
(1+ ku3)3

≥
6ku(1− 2k)
(1+ ku3)3

≥ 0.

Thus, f is convex on [0, s]. By the LHCF-Theorem and Note 1, it suffices to show
that h(x , y)≥ 0 for x , y ≥ 0 so that x + (n− 1)y = n, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

We have

g(u) =
k(u2 + u+ 1)
(1+ k)(1+ ku3)

and
h(x , y)

k2
=
(x + y + 1)/k− x2 y2 − x y(x + y − 1)− (x + y)2

(1+ k)(1+ kx3)(1+ k y3)
.

It suffices to show that

(n2 − 2n+ 2)(x + y + 1)
n− 1

− x2 y2 − x y(x + y − 1)− (x + y)2 ≥ 0,

which is equivalent to

[2+ ny − (n− 1)y2][1− (n− 1)y]2 ≥ 0.

This is true because

2+ ny − (n− 1)y2 = 2+ y[n− (n− 1)y] = 2+ x y > 0.

The equality holds for a1 = a2 = · · · = an = 1. If k =
n− 1

n2 − 2n+ 2
, then the

equality holds also for

a1 = n− 1, a2 = a3 = · · ·= an =
1

n− 1
(or any cyclic permutation).
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P 1.29. Let a1, a2, . . . , an be nonnegative real numbers so that a1+ a2+ · · ·+ an = n.

If k ≥
n2

n− 1
, then

√

√ a1

k− a1
+
√

√ a2

k− a2
+ · · ·+

√

√ an

k− an
≤

n
p

k− 1
.

(Vasile C., 2008)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) = −
s

u
k− u

, u ∈ [0, n].

For u ∈ [0,1], we have

f ′′(u) =
k(k− 4u)

4u3/2(k− u)5/2
≥

k(k− 4)
4u3/2(k− u)5/2

≥ 0.

Thus, f is convex on [0, s]. By the LHCF-Theorem, it suffices to prove that

f (x) + (n− 1) f (y)≥ nf (1)

for x ≥ 1≥ y ≥ 0 so that x + (n− 1)y = n. We write the inequality as
√

√(k− 1)x
k− x

+ (n− 1)

√

√(k− 1)y
k− y

≤ n,

√

√

1+
(n− 1)k(1− y)
(n− 1)y + k− n

≤ 1+ (n− 1)

�

1−
√

√(k− 1)y
k− y

�

.

Let

z =

√

√(k− 1)y
k− y

, z ≤ 1,

which yields

y =
kz2

z2 + k− 1
,

1− y =
(k− 1)(1− z2)

z2 + k− 1
, (n− 1)y + k− n=

(k− 1)(nz2 + k− n)
z2 + k− 1

.

Since

k(1− y)
(n− 1)y + k− n

=
k(1− z2)

k− n(1− z2)
=

1− z2

1− n(1− z2)/k

≤
1− z2

1− (1− z2)(n− 1)/n
=

n(1− z2)
(n− 1)z2 + 1

,
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it suffices to show that
√

√

1+
n(n− 1)(1− z2)
(n− 1)z2 + 1

≤ 1+ (n− 1)(1− z).

By squaring, we get the obvious inequality

(z − 1)2[(n− 1)z − 1]2 ≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k =
n2

n− 1
, then the equality

holds also for

a1 =
n(n− 1)2

n2 − 2n+ 2
, a2 = a3 = · · ·= an =

n
(n− 1)(n2 − 2n+ 2)

(or any cyclic permutation).

P 1.30. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n,
then

n−a2
1 + n−a2

2 + · · ·+ n−a2
n ≥ 1.

(Vasile C., 2006)

Solution. Let k = ln n. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) = n−u2

, u ∈ [0, n].

For u≥ 1, we have

f ′′(u) = 2kn−u2
(2ku2 − 1)≥ 2kn−u2

(2k− 1)≥ 2kn−u2
(2 ln 2− 1)> 0;

therefore, f is convex on [s, n]. By the RHCF-Theorem, it suffices to show that

f (x) + (n− 1) f (y)≥ nf (1)

for 0 ≤ x ≤ 1 ≤ y and x + (n− 1)y = n. The desired inequality is equivalent to
g(x)≥ 0, where

g(x) = n−x2
+ (n− 1)n−y2

− 1, y =
n− x
n− 1

, 0≤ x ≤ 1.

Since y ′ = −1/(n− 1), we get

g ′(x) = −2xkn−x2
− 2(n− 1)k y y ′n−y2

= 2k(yn−y2
− xn−x2

).
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The derivative g ′(x) has the same sign as g1(x), where

g1(x) = ln(yn−y2
)− ln(xn−x2

) = ln y − ln x + k(x2 − y2),

g ′1(x) =
y ′

y
−

1
x
+ 2k(x − y y ′) = n

�

−1
x(n− x)

+
2k(1+ nx − 2x)
(n− 1)2

�

.

For 0< x ≤ 1, g ′1(x) has the same sign as

h(x) =
−(n− 1)2

2k
+ x(n− x)(1+ nx − 2x).

Since

h′(x) = n+ 2(n2 − 2n− 1)x − 3(n− 2)x2

≥ nx + 2(n2 − 2n− 1)x − 3(n− 2)x
= 2(n− 1)(n− 2)x ≥ 0,

h is strictly increasing on [0, 1]. From

h(0) =
−(n− 1)2

2k
< 0, h(1) = (n− 1)2

�

1−
1

2k

�

> 0,

it follows that there is x1 ∈ (0, 1) so that h(x1) = 0, h(x) < 0 for x ∈ [0, x1) and
h(x) > 0 for x ∈ (x1, 1]. Therefore, g1 is strictly decreasing on (0, x1] and strictly
increasing on [x1, 1]. Since g1(0+) =∞ and g1(1) = 0, there is x2 ∈ (0, x1) so that
g1(x2) = 0, g1(x)> 0 for x ∈ (0, x2) and g1(x)< 0 for x ∈ (x2, 1). Consequently, g
is strictly increasing on [0, x2] and strictly decreasing on [x2, 1]. Because g(0)> 0
and g(1) = 0, it follows that g(x)≥ 0 for x ∈ [0, 1]. The proof is completed.

The equality holds for a1 = a2 = · · ·= an = 1.

P 1.31. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 4, then

(3a2 + 1)(3b2 + 1)(3c2 + 1)(3d2 + 1)≤ 256.

(Vasile C., 2006)

Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d)≥ 4 f (s), s =
a+ b+ c + d

4
= 1,

where
f (u) = − ln(3u2 + 1), u ∈ [0, 4].
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For u ∈ [1,4], we have

f ′′(u) =
6(3u2 − 1)
(3u2 + 1)2

> 0.

Therefore, f is convex on [s, 4]. By the RHCF-Theorem, we only need to show that

f (x) + 3 f (y)≥ 4 f (1)

for 0 ≤ x ≤ 1 ≤ y so that x + 3y = 4; that is, to show that g(x)≥ 0 for x ∈ [0,1],
where

g(x) = f (x) + 3 f (y)− 4 f (1), y =
4− x

3
.

Since y ′(x) = −1/3, we have

g ′(x) = f ′(x) + 3y ′ f ′(y) =
−6x

3x2 + 1
+

6y
3y2 + 1

=
6(x − y)(3x y − 1)
(3x2 + 1)(3y2 + 1)

=
8(1− x)(x2 − 4x + 1)
(3x2 + 1)(3y2 + 1)

≥ 0.

Since g is increasing on [0,2 −
p

3] and decreasing on [2 −
p

3,1], it suffices to
show that g(0) ≥ 0 and g(1) ≥ 0. The inequality g(0) ≥ 0 is true if the original
inequality holds for a = 0 and b = c = d = 4/3. This reduces to 193 ≤ 27 · 256,
which is true because 27 · 256− 193 = 53> 0. The inequality g(1)≥ 0 is also true
because g(1) = 0.

The equality holds for a = b = c = d = 1.

P 1.32. If a, b, c, d, e ≥ −1 so that a+ b+ c + d + e = 5, then

(a2 + 1)(b2 + 1)(c2 + 1)(d2 + 1)(e2 + 1)≥ (a+ 1)(b+ 1)(c + 1)(d + 1)(e+ 1).

(Vasile C., 2007)

Solution. Consider the nontrivial case a, b, c, d, e > −1, and write the inequality
as

f (a) + f (b) + f (c) + f (d) + f (e)≥ nf (s), s =
a+ b+ c + d + e

5
= 1,

where
f (u) = ln(u2 + 1)− ln(u+ 1), u> −1.

For u ∈ (−1,1], we have

f ′′(u) =
2(1− u2)
(u2 + 1)2

+
1

(u+ 1)2
> 0.
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Therefore, f is convex on (−1, s]. By the LHCF-Theorem and Note 2, it suffices to
show that H(x , y)≥ 0 for x , y > −1 so that x + 4y = 5, where

H(x , y) =
f ′(x)− f ′(y)

x − y
=

2(1− x y)
(x2 + 1)(y2 + 1)

+
1

(x + 1)(y + 1)
;

thus, we need to show that

2(1− x y) +
(x2 + 1)(y2 + 1)
(x + 1)(y + 1)

≥ 0.

Since
x2 + 1
x + 1

≥
x + 1

2
,

y2 + 1
y + 1

≥
y + 1

2
,

it suffices to prove that

2(1− x y) +
(x + 1)(y + 1)

4
≥ 0,

which is equivalent to
x + y + 9− 7x y ≥ 0,

28x2 − 38x + 14≥ 0,

(28x − 19)2 + 31≥ 0.

The equality holds for a = b = c = d = e = 1.

P 1.33. Let a1, a2, . . . , an be positive numbers so that a1 + a2 + · · ·+ an = n. If

k ≤
2
p

n− 1
n

+ 2

√

√2
p

n− 1
n

, k ≤ 3,

then

k(
p

a1 +
p

a2 + · · ·+
p

an) +
1
p

a1
+

1
p

a2
+ · · ·+

1
p

an
≥ (k+ 1)n.

(Vasile C., 2006)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
k
p

u
+
p

u, u ∈ (0, n).
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From

f ′′(u) =
3− ku
4u5/2

,

it follows that f is convex on (0,1]. Thus, according to the LHCF-Theorem and Note
1, it suffices to show that h(x , y)≥ 0 for x ≥ 1≥ y > 0 such that x +(n−1)y = n,
where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

We have

g(u) =
k

p
u+ 1

−
1

u+
p

u
and

(
p

x +
p

y)(
p

x + 1)(
p

y + 1)h(x , y) = −k+
p

x +py + 1
p

x y
.

So, we need to show that p
x +py + 1
p

x y
≥ k.

Since p
x +
p

y ≥ 2 4px y ,

it suffices to show that
2 4
p

x y + 1
p

x y
≥ k,

which is equivalent to
1
p

x y
+

2
4
p

x y
≥ k.

From
n= x + (n− 1)y ≥ 2

Æ

(n− 1)x y ,

we get
1
p

x y
≥

2
p

n− 1
n

,

hence
1
p

x y
+

2
4
p

x y
≥

2
p

n− 1
n

+ 2

√

√2
p

n− 1
n

≥ k.

The proof is completed. The equality holds for a1 = a2 = · · ·= an = 1.

Remark. Since

1<
2
p

n− 1
n

+ 2

√

√2
p

n− 1
n

for n ≤ 134, the following inequality holds for a1, a2, . . . , a134 > 0 such that a1 +
a2 + · · ·+ a134 = 134:

p

a1 +
p

a2 + · · ·+
p

a134 +
1
p

a1
+

1
p

a2
+ · · ·+

1
pa134

≥ 268.
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Since

2<
2
p

n− 1
n

+ 2

√

√2
p

n− 1
n

for n≤ 12, the following inequality holds for a1, a2, . . . , a12 > 0 such that a1+ a2+
· · ·+ a12 = 12:

2(
p

a1 +
p

a2 + · · ·+
p

a12) +
1
p

a1
+

1
p

a2
+ · · ·+

1
p

a12
≥ 36.

P 1.34. If a1, a2, . . . , an (n ≥ 3) are positive numbers so that a1 + a2 + · · ·+ an = 1,
then

�

1
p

a1
−
p

a1

��

1
p

a2
−pa2

�

· · ·
�

1
p

an
−
p

an

�

≥
�p

n−
1
p

n

�n

.

(Vasile C., 2006)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
=

1
n

,

where

f (u) = ln
�

1
p

u
−
p

u
�

= ln(1− u)−
1
2

ln u, u ∈ (0, 1).

From

f ′(u) =
−1

1− u
−

1
2u

, f ′′(u) =
1− 2u− u2

2u2(1− u)2
,

it follows that f ′′(u)≥ 0 for u ∈ (0,
p

2− 1]. Since

s =
1
n
≤

1
3
<
p

2− 1,

f is convex on (0, s]. Thus, we can apply the LHCF-Theorem.

First Solution. By the LHCF-Theorem, it suffices to show that

f (x) + (n− 1) f (y)≥ nf
�

1
n

�

for all x , y > 0 so that x + (n− 1)y = 1; that is, to show that

�

1
p

x
−
p

x
�

�

1
p

y
−py

�n−1

≥
�p

n−
1
p

n

�n

.
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Write this inequality as

nn/2(1− y)n−1 ≥ (n− 1)n−1 x1/2 y (n−3)/2.

By squaring, this inequality becomes as follows:

nn(1− y)2n−2 ≥ (n− 1)2n−2 x yn−3,

(2− 2y)2n−2 ≥
(2n− 2)2n−2

nn
x yn−3,

�

n ·
1
n
+ x + (n− 3)y

�2n−2

≥ [n+ 1+ (n− 3)]n+1+(n−3) ·
1
nn
· x · yn−3.

The last inequality follows from the AM-GM inequality. The proof is completed.
The equality holds for a1 = a2 = · · ·= an = 1/n.

Second Solution. By the LHCF-Theorem and Note 2, it suffices to prove that H(x , y)≥
0 for x , y > 0 so that x + (n− 1)y = 1, where

H(x , y) =
f ′(x)− f ′(y)

x − y
.

We have

H(x , y) =
1− x − y − x y

2x y(1− x)(1− y)
=

n(y + 1)− y − 3
2x(1− x)(1− y)

≥
3(y + 1)− y − 3
2x(1− x)(1− y)

=
y

x(1− x)(1− y)
> 0.

Remark 1. We may write the inequality in P 1.34 in the form

n
∏

i=1

�

1
p

ai
− 1

�

·
n
∏

i=1

(1+
p

ai )≥
�p

n−
1
p

n

�n

.

On the other hand, by the AM-GM inequality and the Cauchy-Schwarz inequality,
we have

n
∏

i=1

(1+
p

ai)≤

�

1+
1
n

n
∑

i=1

p

ai

�n

≤

 

1+

√

√

√1
n

n
∑

i=1

ai

!n

=
�

1+
1
p

n

�n

.

Thus, the following statement follows:

• If a1, a2, . . . , an (n ≥ 3) are positive real numbers so that a1 + a2 + · · ·+ an = 1,
then

�

1
p

a1
− 1

��

1
p

a2
− 1

�

· · ·
�

1
p

an
− 1

�

≥ (
p

n− 1)n,

with equality for a1 = a2 = · · ·= an = 1/n.
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Remark 2. By squaring, the inequality in P 1.34 becomes

n
∏

i=1

(1− ai)2

ai
≥
(n− 1)2n

nn
.

On the other hand, since the function f (x) = ln
1+ x
1− x

is convex on (0, 1), by

Jensen’s inequality we have

n
∏

i=1

�

1+ ai

1− ai

�

≥







1+
a1 + a2 + · · ·+ an

n

1−
a1 + a2 + · · ·+ an

n







n

=
�

n+ 1
n− 1

�n

.

Multiplying these inequalities yields the following result (Kee-Wai Lau, 2000):

• If a1, a2, . . . , an (n ≥ 3) are positive real numbers so that a1 + a2 + · · ·+ an = 1,
then

�

1
a1
− a1

��

1
a2
− a2

�

· · ·
�

1
an
− an

�

≥
�

n−
1
n

�n

,

with equality for a1 = a2 = · · ·= an = 1/n.

P 1.35. Let a1, a2, . . . , an be positive real numbers so that a1 + a2 + · · ·+ an = n. If

0< k ≤
�

1+
2
p

n− 1
n

�2

,

then
�

ka1 +
1
a1

��

ka2 +
1
a2

�

· · ·
�

kan +
1
an

�

≥ (k+ 1)n.

(Vasile C., 2006)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) = ln
�

ku+
1
u

�

, u ∈ (0, n).

We have

f ′(u) =
ku2 − 1

u(ku2 + 1)
, f ′′(u) =

1+ 4ku2 − k2u4

u2(ku2 + 1)2
.

For u ∈ (0, 1], we get f ′′(u)> 0 since

1+ 4ku2 − k2u4 > ku2(4− ku2)≥ ku2(4− k)≥ 0.
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Therefore, f is convex on (0, s]. By the LHCF-Theorem and Note 2, it suffices to
prove that H(x , y)≥ 0 for x , y > 0 so that x + (n− 1)y = n, where

H(x , y) =
f ′(x)− f ′(y)

x − y
.

Since

H(x , y) =
1+ k(x + y)2 − k2 x2 y2

x y(kx2 + 1)(k y2 + 1)
>

k[(x + y)2 − kx2 y2]
x y(kx2 + 1)(k y2 + 1)

,

it suffices to show that
x + y ≥

p

k x y.

Indeed, by the Cauchy-Schwarz inequality, we have

(x + y)[(n− 1)y + x]≥ (
p

n− 1+ 1)2 x y,

hence

x + y ≥
1
n
(
p

n− 1+ 1)2 x y =

�

1+
2
p

n− 1
n

�

x y ≥
p

k x y.

The equality holds for a1 = a2 = · · ·= an = 1.

P 1.36. If a, b, c, d are nonzero real numbers so that

a, b, c, d ≥
−1
2

, a+ b+ c + d = 4,

then

3
�

1
a2
+

1
b2
+

1
c2
+

1
d2

�

+
1
a
+

1
b
+

1
c
+

1
d
≥ 16.

Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d)≥ 4 f (s), s =
a+ b+ c + d

4
= 1,

where

f (u) =
3
u2
+

1
u

, u ∈ I=
�

−1
2

,
11
2

�

\ {0},

is convex on I≥s (because 3/u2 and 1/u are convex). By the RHCF-Theorem, Note
1 and Note 3, it suffices to prove that h(x , y)≥ 0 for x , y ∈ I so that

x + 3y = 4,

where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.
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Indeed, we have

g(u) = −
4
u
−

3
u2

,

h(x , y) =
4x y + 3x + 3y

x2 y2
=

2(1+ 2x)(6− x)
3x2 y2

≥ 0.

In accordance with Note 4, the equality holds for a = b = c = d = 1, and also
for

a =
−1
2

, b = c = d =
3
2

(or any cyclic permutation).

P 1.37. If a1, a2, . . . , an are nonnegative real numbers so that a2
1 + a2

2 + · · ·+ a2
n = n,

then

a3
1 + a3

2 + · · ·+ a3
n − n+

s

n
n− 1

(a1 + a2 + · · ·+ an − n)≥ 0.

(Vasile C., 2007)

Solution. Replacing each ai by
p

ai, we have to prove that

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s),

where
s =

a1 + a2 + · · ·+ an

n
= 1

and

f (u) = u
p

u+ k
p

u, k =
s

n
n− 1

, u ∈ [0, n].

For u≥ 1, we have

f ′′(u) =
3u− k
4u
p

u
≥

3− k
4u
p

u
> 0.

Therefore, f is convex on [s, n]. According to the RHCF-Theorem and Note 1, it
suffices to show that h(x , y)≥ 0 for x , y ≥ 0 so that x + (n− 1)y = n. Since

g(u) =
f (u)− f (1)

u− 1
= 1+

u+ k
p

u+ 1

and

h(x , y) =
g(x)− g(y)

x − y
=

p
x +py +px y − k

(
p

x +py)(
p

x + 1)(py + 1)
,

we need to show that p
x +
p

y +
p

x y ≥ k.
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Since p
x +
p

y +
p

x y ≥
p

x +
p

y ≥
p

x + y ,

it suffices to show that
x + y ≥ k2.

Indeed, we have
x + y ≥

x
n− 1

+ y =
n

n− 1
= k2.

In accordance with Note 4, the equality holds for a1 = a2 = · · · = an = 1, and
also for

a1 = 0, a2 = · · ·= an =
s

n
n− 1

(or any cyclic permutation).

P 1.38. If a, b, c, d, e are nonnegative real numbers so that a2+ b2+ c2+d2+ e2 = 5,
then

1
7− 2a

+
1

7− 2b
+

1
7− 2c

+
1

7− 2d
+

1
7− 2e

≤ 1.

(Vasile C., 2010)

Solution. Replacing a, b, c, d, e by
p

a,
p

b,
p

c,
p

d,
p

e, we have to prove that

f (a) + f (b) + f (c) + f (d) + f (e)≥ 5 f (s),

where

s =
a+ b+ c + d + e

5
= 1

and
f (u) =

1
2
p

u− 7
, u ∈ [0,5].

For u ∈ [0,1], we have

f ′′(u) =
7− 6

p
u

2u
p

u(7− 2
p

u)3
> 0.

Therefore, f is convex on [0, s]. According to the LHCF-Theorem and Note 1, it
suffices to show that h(x , y)≥ 0 for x , y ≥ 0 so that x + 4y = 5. Since

g(u) =
f (u)− f (1)

u− 1
=

−2
5(7− 2

p
u)(1+

p
u)

and

h(x , y) =
g(x)− g(y)

x − y
=

2(5− 2
p

x − 2
p

y)
(
p

x +py)(1+
p

x)(1+py)(7− 2
p

x)(7− 2
p

y)
,
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we need to show that
p

x +
p

y ≤
5
2

.

Indeed, by the Cauchy-Schwarz inequality, we have

(
p

x +
p

y)2 ≤
�

1+
1
4

�

(x + 4y) =
25
4

.

The proof is completed. The equality holds for a = b = c = d = e = 1, and also for

a = 2, b = c = d = e =
1
2

(or any cyclic permutation).

Remark In the same manner, we can prove the following generalization:

• Let a1, a2, . . . , an be nonnegative real numbers so that a2
1 + a2

2 + · · ·+ a2
n = n. If

k ≥ 1+
n

p
n− 1

, then

1
k− a1

+
1

k− a2
+ · · ·+

1
k− an

≤
n

k− 1
,

with equality for a1 = a2 = · · · = an = 1. If k = 1+
n

p
n− 1

, then the equality holds

also for

a1 =
p

n− 1, a2 = · · ·= an =
1

p
n− 1

(or any cyclic permutation).

P 1.39. Let 0≤ a1, a2, . . . , an < k so that a2
1 + a2

2 + · · ·+ a2
n = n. If

1< k ≤ 1+
s

n
n− 1

,

then
1

k− a1
+

1
k− a2

+ · · ·+
1

k− an
≥

n
k− 1

.

(Vasile C., 2010)

Solution. Replacing a1, a2, . . . , an by
p

a1,
p

a2, . . . ,
p

an, we have to prove that

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s),

where
s =

a1 + a2 + · · ·+ an

n
= 1
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and

f (u) =
1

k−
p

u
, u ∈ [0, k2).

From

f ′′(u) =
3
p

u− k
4u
p

u(k−
p

u)3
,

it follows that f is convex on [s, k2). According to the RHCF-Theorem and Note 1,
it suffices to show that h(x , y) ≥ 0 for all x , y ∈ [0, k2) so that x + (n− 1)y = n.
Since

g(u) =
f (u)− f (1)

u− 1
=

1
(k− 1)(k−

p
u)(1+

p
u)

and

h(x , y) =
g(x)− g(y)

x − y
=

p
x +py + 1− k

(k− 1)(
p

x +py)(1+
p

x)(1+py)(k−
p

x)(k−py)
,

we need to show that p
x +
p

y ≥ k− 1.

Indeed,
p

x +
p

y ≥
p

x + y ≥
s

x
n− 1

+ y =
s

n
n− 1

≥ k− 1.

The proof is completed. The equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 = 0, a2 = · · ·= an =
s

n
n− 1

(or any cyclic permutation).

P 1.40. If a, b, c are nonnegative real numbers, no two of which are zero, then

√

√

1+
48a
b+ c

+

√

√

1+
48b
c + a

+

√

√

1+
48c

a+ b
≥ 15.

(Vasile C., 2005)

Solution. Due to homogeneity, we may assume that a+ b+ c = 1. Thus, we need
to show that

f (a) + f (b) + f (c)≥ 3 f (s),

where

s =
a+ b+ c

3
=

1
3
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and

f (u) =

√

√1+ 47u
1− u

, u ∈ [0,1).

From

f ′′(u) =
48(47u− 11)

p

(1− u)5(1+ 47u)3
,

it follows that f is convex on [s, 1). By the RHCF-Theorem, it suffices to show that

f (x) + 2 f (y)≥ 3 f
�

1
3

�

for x , y ≥ 0 so that x + 2y = 1; that is,

√

√1+ 47x
1− x

+ 2

√

√49− 47x
1+ x

≥ 15.

Setting

t =

√

√49− 47x
1+ x

, 1< t ≤ 7,

the inequality turns into

√

√1175− 23t2

t2 − 1
≥ 15− 2t.

By squaring, this inequality becomes

350− 15t − 61t2 + 15t3 − t4 ≥ 0,

(5− t)2(2+ t)(7− t)≥ 0.

The original inequality is an equality for a = b = c, and also for a = 0 and b = c
(or any cyclic permutation).

P 1.41. If a, b, c are nonnegative real numbers, then

√

√ 3a2

7a2 + 5(b+ c)2
+

√

√ 3b2

7b2 + 5(c + a)2
+

√

√ 3c2

7c2 + 5(a+ b)2
≤ 1.

(Vasile C., 2008)
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Solution. Due to homogeneity, we may assume that a+ b+ c = 3. Thus, we need
to show that

f (a) + f (b) + f (c)≥ 3 f (s),

where

s =
a+ b+ c

3
= 1

and

f (u) = −
√

√ 3u2

7u2 + 5(3− u)2
=

−u
p

4u2 − 10u+ 15
, u ∈ [0,3].

From

f ′′(u) =
5(−8u2 + 41u− 30)
(4u2 − 10u+ 15)5/2

≥
5(−8u2 + 38u− 30)
(4u2 − 10u+ 15)5/2

=
10(u− 1)(15− 4u)
(4u2 − 10u+ 15)5/2

,

it follows that f is convex on [s, 3]. By the RHCF-Theorem, it suffices to prove the
original homogeneous inequality for b = c = 0 and b = c = 1. For the nontrivial
case b = c = 1, we need to show that

√

√ 3a2

7a2 + 20
+ 2

√

√ 3
5a2 + 10a+ 12

≤ 1.

By squaring two times, the inequality becomes

a(5a3 + 10a2 + 16a+ 50)≥ 3a
Æ

(7a2 + 20)(5a2 + 10a+ 12),

a2(5a6 + 20a5 − 11a4 + 38a3 − 80a2 − 40a+ 68)≥ 0,

a2(a− 1)2(5a4 + 30a3 + 44a2 + 96a+ 68)≥ 0.

The last inequality is clearly true.
The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic

permutation).

P 1.42. If a, b, c are nonnegative real numbers, then
√

√ a2

a2 + 2(b+ c)2
+

√

√ b2

b2 + 2(c + a)2
+

√

√ c2

c2 + 2(a+ b)2
≥ 1.

(Vasile C., 2008)

Solution. Due to homogeneity, we may assume that a+ b+ c = 3. Thus, we need
to show that

f (a) + f (b) + f (c)≥ 3 f (s),
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where

s =
a+ b+ c

3
= 1

and

f (u) =

√

√ 3u2

u2 + 2(3− u)2
=

u
p

u2 − 4u+ 6
, u ∈ [0,3].

From

f ′′(u) =
2(2u2 − 11u+ 12)
(u2 − 4u+ 6)5/2

≥
2(−11u+ 12)
(u2 − 4u+ 6)5/2

,

it follows that f is convex on [0, s]. By the LHCF-Theorem, it suffices to prove the
original homogeneous inequality for b = c = 0 and b = c = 1. For the nontrivial
case b = c = 1, the inequality has the form

a
p

a2 + 8
+

2
p

2a2 + 4a+ 3
≥ 1.

By squaring, the inequality becomes

a
Æ

(a2 + 8)(2a2 + 4a+ 3)≥ 3a2 + 8a− 2.

For the nontrivial case 3a2 + 8a− 2> 0, by squaring both sides we get

a6 + 2a5 + 5a4 − 8a3 − 14a2 + 16a− 2≥ 0,

(a− 1)2[a4 + 4a3 + 9a2 + 4a+ (3a2 + 8a− 2)]≥ 0.

The equality holds for a = b = c, and also for b = c = 0 (or any cyclic permutation).

P 1.43. Let a, b, c be nonnegative real numbers, no two of which are zero. If

k ≥ k0, k0 =
ln 3
ln 2
− 1≈ 0.585,

then
�

2a
b+ c

�k

+
�

2b
c + a

�k

+
�

2c
a+ b

�k

≥ 3.

(Vasile C., 2005)

Solution. For k = 1, the inequality is just the well known Nesbitt’s inequality

2a
b+ c

+
2b

c + a
+

2c
a+ b

≥ 3.
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For k ≥ 1, the inequality follows from Nesbitt’s inequality and Jensens’s inequality
applied to the convex function f (u) = uk:

�

2a
b+ c

�k

+
�

2b
c + a

�k

+
�

2c
a+ b

�k

≥ 3

�

2a
b+c +

2b
c+a +

2c
a+b

3

�k

≥ 3.

Consider now that
k0 ≤ k < 1.

Due to homogeneity, we may assume that a + b + c = 1. Thus, we need to show
that

f (a) + f (b) + f (c)≥ 3 f (s),

where

s =
a+ b+ c

3
=

1
3

and

f (u) =
�

2u
1− u

�k

, u ∈ [0, 1).

From

f ′′(u) =
4k

(1− u)4

�

2u
1− u

�k−2

(2u+ k− 1),

it follows that f is convex on [s, 1) (because u ≥ s = 1/3 involves 2u + k − 1 ≥
2/3+ k− 1= k− 1/3> 0). By the RHCF-Theorem, it suffices to prove the original
homogeneous inequality for b = c = 1 and a ∈ [0, 1]; that is, to show that h(a)≥ 3,
where

h(a) = ak + 2
�

2
a+ 1

�k

, a ∈ [0,1].

For a ∈ (0,1], the derivative

h′(a) = kak−1 − k
�

2
a+ 1

�k+1

has the same sign as

g(a) = (k− 1) ln a− (k+ 1) ln
2

a+ 1
.

From

g ′(a) =
2ka+ k− 1

a(a+ 1)
,

it follows that g ′(a0) = 0 for a0 = (1− k)/(2k) < 1, g ′(a) < 0 for a ∈ (0, a0) and
g ′(a)> 0 for a ∈ (a0, 1]. Consequently, g is strictly decreasing on (0, a0] and strictly
increasing on (a0, 1]. Since g(0+) =∞ and g(1) = 0, there exists a1 ∈ (0, a0) so
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that g(a1) = 0, g(a)> 0 for a ∈ (0, a1) and g(a)< 0 for a ∈ (a1, 1); therefore, h(a)
is strictly increasing on [0, a1] and strictly decreasing on [a1, 1]. As a result,

h(a)≥min{h(0), h(1)}.

Since h(0) = 2k+1 ≥ 3 and h(1) = 3, we get h(a)≥ 3. The proof is completed. The
equality holds for a = b = c. If k = k0, then the equality holds also for a = 0 and
b = c (or any cyclic permutation).

Remark. For k = 2/3, we can give the following solution (based on the AM-GM
inequality):

∑

�

2a
b+ c

�2/3

=
∑ 2a

3
p

2a · (b+ c) · (b+ c)

≥
∑ 6a

2a+ (b+ c) + (b+ c)
= 3.

P 1.44. If a, b, c ∈ [1, 7+ 4
p

3], then
√

√ 2a
b+ c

+

√

√ 2b
c + a

+

√

√ 2c
a+ b

≥ 3.

(Vasile C., 2007)

Solution. Denoting

s =
a+ b+ c

3
, 1≤ s ≤ 7+ 4

p
3,

we need to show that
f (a) + f (b) + f (c)≥ 3 f (s),

where

f (u) =

√

√ 2u
3s− u

, 1≤ u< 3s.

For u≥ s, we have

f ′′(u) = 3s
�

3s− u
2u

�3/2 4u− 3s
(3s− u)4

> 0.

Therefore, f (u) is convex for u ≥ s. By the RHCF-Theorem, it suffices to prove the
original inequality for b = c; that is,

s

a
b
+ 2

√

√ 2b
a+ b

≥ 3.
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Putting t =

√

√ b
a

, the condition a, b ∈ [1, 7+ 4
p

3] involves

2−
p

3≤ t ≤ 2+
p

3.

We need to show that

2

√

√ 2t2

t2 + 1
≥ 3−

1
t

.

This is true if
8t2

t2 + 1
≥
�

3−
1
t

�2

,

which is equivalent to the obvious inequality

(t − 1)2(t − 2+
p

3 )(t − 2−
p

3 )≤ 0.

The equality holds for a = b = c, and also for a = 1, and b = c = 7+ 4
p

3 (or
any cyclic permutation).

P 1.45. Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If

0< k ≤ k0, k0 =
ln 2

ln3− ln2
≈ 1.71,

then
ak(b+ c) + bk(c + a) + ck(a+ b)≤ 6.

Solution. For 0 < k ≤ 1, the inequality follows from Jensens’s inequality applied
to the convex function f (u) = −uk:

(b+ c)ak + (c + a)bk + (a+ b)ck ≤ 2(a+ b+ c)
�

(b+ c)a+ (c + a)b+ (a+ b)c
2(a+ b+ c)

�k

= 6
�

ab+ bc + ca
3

�k

≤ 6
�

a+ b+ c
3

�2k

= 6.

Consider now that
1< k ≤ k0,

and write the inequality as

f (a) + f (b) + f (c)≥ 3 f (s),

where

s =
a+ b+ c

3
= 1
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and
f (u) = uk(u− 3), u ∈ [0,3].

For u≥ 1, we have

f ′′(u) = kuk−2[(k+ 1)u− 3k+ 3]≥ kuk−2[(k+ 1)− 3k+ 3] = 2k(2− k)uk−2 > 0;

therefore, f is convex on [1, s]. By the RHCF-Theorem, it suffices to consider the
case a ≤ b = c. So, we only need to prove the homogeneous inequality

ak(b+ c) + bk(c + a) + ck(a+ b)≤ 6
�

a+ b+ c
3

�k+1

for b = c = 1 and a ∈ [0,1]; that is, to show that g(a)≥ 0 for a ≥ 0, where

g(a) = 3
�

a+ 2
3

�k+1

− ak − a− 1.

We have

g ′(a) = (k+ 1)
�

a+ 2
3

�k

− kak−1 − 1,
1
k

g ′′(a) =
k+ 1

3

�

a+ 2
3

�k−1

−
k− 1
a2−k

.

Since g ′′ is strictly increasing, g ′′(0+) = −∞ and g ′′(1) = 2k(2− k)/3 > 0, there
exists a1 ∈ (0, 1) so that g ′′(a1) = 0, g ′′(a) < 0 for a ∈ (0, a1), g ′′(a) > 0 for
a ∈ (a1, 1]. Therefore, g ′ is strictly decreasing on [0, a1] and strictly increasing on
[a1, 1]. Since

g ′(0) = (k+ 1)(2/3)k − 1≥ (k+ 1)(2/3)k0 − 1=
k+ 1

2
− 1=

k− 1
2

> 0,

g ′(1) = 0,

there exists a2 ∈ (0, a1) so that g ′(a2) = 0, g ′(a) > 0 for a ∈ [0, a2), g ′(a) < 0
for a ∈ (a2, 1]. Thus, g is strictly increasing on [0, a2] and strictly decreasing on
[a2, 1]; consequently,

g(a)≥min{g(0), g(1)}.

From

g(0) = 3(2/3)k+1 − 1≥ 3(2/3)k0+1 − 1= 1− 1= 0, g(1) = 0,

we get g(a) ≥ 0. This completes the proof. The equality holds for a = b = c = 1.
If k = k0, then the equality holds also for a = 0 and b = c = 3/2 (or any cyclic
permutation).

Remark 1. Using the Cauchy-Schwarz inequality and the inequality in P 1.45, we
get

∑ a
bk + ck

≥
(a+ b+ c)2
∑

a(bk + ck)
=

9
∑

ak(b+ c)
≥

3
2

.
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Thus, the following statement holds.

• Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If

0< k ≤ k0, k0 =
ln 2

ln3− ln2
≈ 1.71,

then
a

bk + ck
+

b
ck + ak

+
c

ak + bk
≥

3
2

,

with equality for a = b = c = 1. If k = k0, then the equality holds also for a = 0 and
b = c = 3/2 (or any cyclic permutation).

Remark 2. Also, the following statement holds:

• Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If

k ≥ k1, k1 =
ln 9− ln 8
ln3− ln 2

≈ 0.2905,

then
ak

b+ c
+

bk

c + a
+

ck

a+ b
≥

3
2

,

with equality for a = b = c = 1. If k = k1, then the equality holds also for a = 0 and
b = c = 3/2 (or any cyclic permutation).

For k1 ≤ k ≤ 2, the inequality can be proved using the Cauchy-Schwarz inequality
and the inequality in P 1.45, as follows:

∑ ak

b+ c
≥
(a+ b+ c)2
∑

a2−k(b+ c)
=

9
∑

a2−k(b+ c)
≥

3
2

.

For k ≥ 2, the inequality can be deduced from the Cauchy-Schwarz inequality and
Bernoulli’s inequality, as follows:

∑ ak

b+ c
≥

�∑

ak/2
�2

∑

(b+ c)
=

�∑

ak/2
�2

6
,

∑

ak/2 ≥
∑

�

1+
k
2
(a− 1)

�

= 3.
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P 1.46. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

p
a+

p

b+
p

c − 3≥ 13

�√

√a+ b
2
+

√

√ b+ c
2
+
s

c + a
2
− 3

�

.

(Vasile C., 2008)

Solution. Write the inequality as

f (a) + f (b) + f (c)≥ 3 f (s), s =
a+ b+ c

3
= 1,

where

f (u) =
p

u− 13

√

√3− u
2

, u ∈ [0, 3].

For u ∈ [1,3), we have

4 f ′′(u) = −u−3/2 +
13
4

�

3− u
2

�−3/2

≥ −1+
13
4
> 0.

Therefore, f is convex on [s, 3]. By the RHCF-Theorem, it suffices to consider only
the case a ≤ b = c. Write the original inequality in the homogeneous form

p
a+
p

b+
p

c−3

√

√a+ b+ c
3

≥ 13

�√

√a+ b
2
+

√

√ b+ c
2
+
s

c + a
2
− 3

√

√a+ b+ c
3

�

.

Due to homogeneity, we may assume that b = c = 1. Moreover, it is convenient
to use the notation

p
a = x . Thus, we need to show that g(x) ≥ 0 for x ∈ [0,1],

where

g(x) = x − 11+ 36

√

√ x2 + 2
3
− 26

√

√ x2 + 1
2

.

We have

g ′(x) = 1+ 12x

√

√ 3
x2 + 2

− 13x

√

√ 2
x2 + 1

,

g ′′(x) =
13
2

�

2
x2 + 1

�3/2
�

�

m ·
x2 + 1
x2 + 2

�3/2

− 1

�

,

where

m=
6 3p52

13
≈ 1.72.

Clearly, g ′′(x) has the same sign as h(x), where

h(x) = m ·
x2 + 1
x2 + 2

− 1.
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Since h is strictly increasing,

h(0) =
m
2
− 1< 0, h(1) =

2m
3
− 1> 0,

there is x1 ∈ (0,1) so that h(x1) = 0, h(x) < 0 for x ∈ [0, x1) and h(x) > 0 for
x ∈ (x1, 1]. Therefore, g ′ is strictly decreasing on [0, x1] and strictly increasing on
[x1, 1]. Since g ′(0) = 1 and g ′(1) = 0, there is x2 ∈ (0, x1) so that g ′(x2) = 0,
g ′(x) > 0 for x ∈ (0, x2) and g ′(x) < 0 for x ∈ (x2, 1). Thus, g(x) is strictly
increasing on [0, x2] and strictly decreasing on [x2, 1]. From

g(0) = −11+ 12
p

6− 13
p

2> 0

and g(1) = 0, it follows that g(x)≥ 0 for x ∈ [0,1]. This completes the proof. The
equality holds for a = b = c = 1.

Remark. Similarly, we can prove the following generalizations:

• Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If k ≥ k0, where

k0 =
p

6− 2
p

6−
p

2− 1
= (2+

p
2)(2+

p
3)≈ 12.74 ,

then
p

a+
p

b+
p

c − 3≥ k

�√

√a+ b
2
+

√

√ b+ c
2
+
s

c + a
2
− 3

�

,

with equality for a = b = c = 1. If k = k0, then the equality holds also for a = 0 and
b = c = 3/2 (or any cyclic permutation).

• Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n. If
k ≥ k0, where

k0 =
p

n−
p

n− 1
p

n−
p

n− 2− 1p
n−1

,

then

p

a1 +
p

a2 + · · ·+
p

an − n≥ k

�√

√n− a1

n− 1
+

√

√n− a2

n− 1
+ · · ·+

√

√n− an

n− 1
− n

�

,

with equality for a1 = a2 = · · · = an = 1. If k = k0, then the equality holds also for
a1 = 0 and a2 = a3 = · · ·= an =

n
n− 1

(or any cyclic permutation).

P 1.47. Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If k > 2, then

ak + bk + ck + 3≥ 2
�

a+ b
2

�k

+ 2
�

b+ c
2

�k

+ 2
� c + a

2

�k

.
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Solution. Write the inequality as

f (a) + f (b) + f (c)≥ 3 f (s), s =
a+ b+ c

3
= 1,

where

f (u) = uk − 2
�

3− u
2

�k

, u ∈ [0,3].

For u≥ 1, we have

f ′′(u)
k(k− 1)

= uk−2 −
1
2

�

3− u
2

�k−2

≥ 1−
1
2
> 0.

Therefore, f is convex on [s, 3]. By the RHCF-Theorem, it suffices to consider only
the case a ≤ b = c. Write the original inequality in the homogeneous form

ak + bk + ck + 3
�

a+ b+ c
3

�k

≥ 2
�

a+ b
2

�k

+ 2
�

b+ c
2

�k

+ 2
� c + a

2

�k

.

Due to homogeneity, we may assume that b = c = 1. Thus, we need to prove that

ak + 3
�

a+ 2
3

�k

≥ 4
�

a+ 1
2

�k

for a ∈ [0, 1]. Substituting

ak = t, t ∈ [0, 1],

we need to show that g(t)≥ 0, where

g(t) = t + 3

�

t1/k + 2
3

�k

− 4

�

t1/k + 1
2

�k

.

We have

g ′(t) = 1+ t1/k−1

�

t1/k + 2
3

�k−1

− 2t1/k−1

�

t1/k + 1
2

�k−1

,

kt2−1/k

k− 1
g ′′(t) =

�

t1/k + 1
2

�k−2

−
2
3

�

t1/k + 2
3

�k−2

.

Setting

m=
�

2
3

�
1

k−2

, 0< m< 1,

we see that g ′′(t) has the same sign as h(t), where

h(t) = 6

�

t1/k + 1
2

−m
t1/k + 2

3

�

= (3− 2m)t1/k + 3− 4m
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is strictly increasing. There are two cases to consider: 0< m≤ 3/4 and 3/4< m<
1.

Case 1: 0 < m ≤ 3/4. Since h(0) = 3− 4m ≥ 0, we have h(t) > 0 for t ∈ (0,1],
hence g ′ is strictly increasing on (0, 1]. From g ′(1) = 0, it follows that g ′(t)< 0 for
t ∈ (0,1), hence g is strictly decreasing on [0,1]. Since g(1) = 0, we get g(t) > 0
for t ∈ [0,1).

Case 2: 3/4< m< 1. From m> 3/4, we get

22k−3 > 3k−1.

Since h(0) = 3 − 4m < 0 and h(1) = 3(1 − m) > 0, there is t1 ∈ (0, 1) so that
h(t1) = 0, h(t)< 0 for t ∈ [0, t1) and h(t)> 0 for t ∈ (t1, 1]. Thus, g ′(t) is strictly
decreasing on (0, t1] and strictly increasing on [t1, 1]. Since g ′(0+) = +∞ and
g ′(1) = 0, there exists t2 ∈ (0, t1) so that g ′(t2) = 0, g ′(t) > 0 for t ∈ (0, t2) and
g ′(t)< 0 for t ∈ (t2, 1). Therefore, g(t) is strictly increasing on [0, t2] and strictly
decreasing on [t2, 1]. Since

g(0) =
22k−2 − 3k−1

2k3k−1
> 0

and g(1) = 0, we have g(t)≥ 0 for t ∈ [0, 1].
The equality holds for a = b = c = 1.

Remark 1. The inequality in P 1.47 is Popoviciu’s inequality

f (a) + f (b) + f (c) + 3 f
�

a+ b+ c
3

�

≥ 2 f
�

a+ b
2

�

+ 2 f
�

b+ c
2

�

+ 2 f
� c + a

2

�

applied to the convex function f (x) = x k defined on [0,∞).

Remark 2. In the same manner, we can prove the following refinements (Vasile C.,
2008):

• Let a, b, c be nonnegative real numbers so that a + b + c = 3. If k > 2 and
m≤ m0, where

m0 =
2k(3k−1 − 2k−1)

6k−1 + 3k−1 − 22k−1
> 2,

then

ak + bk + ck − 3≥ m

�

�

a+ b
2

�k

+
�

b+ c
2

�k

+
� c + a

2

�k

− 3

�

,

with equality for a = b = c = 1. If m = m0, then the equality holds also for a = 0
and b = c = 3/2 (or any cyclic permutation).

• Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n. If
k > 2 and m≤ m1, where

m1 =
1

(n−1)k−1 − 1
nk−1

1
(n−1)k +

(n−2)k
(n−1)2k−1 − 1

nk−1

> n− 1,
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then

ak
1 + ak

2 + · · ·+ ak
n − n≥ m

�

�n− a1

n− 1

�k

+
�n− a2

n− 1

�k

+ · · ·+
�n− an

n− 1

�k

− n
�

,

with equality for a1 = a2 = · · · = an = 1. If m = m1, then the equality holds also for
a1 = 0 and a2 = a3 = · · ·= an =

n
n− 1

(or any cyclic permutation).

P 1.48. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n,
then

p

a1 +
p

a2 + · · ·+
p

an + n(k− 1)≤ k

�√

√n− a1

n− 1
+

√

√n− a2

n− 1
+ · · ·+

√

√n− an

n− 1

�

,

where
k = (

p
n− 1)(

p
n+
p

n− 1).

(Vasile C., 2008)

Solution. For n = 2, the inequality is an identity. Consider further that n ≥ 3. We
will show first that

n− 1< k < 2(n− 1).

The left inequality reduces to

(
p

n− 1)(
p

n− 1− 1)> 0,

while the right inequality is equivalent to

(
p

n− 1)(
p

n−
p

n− 1+ 2)> 0.

Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) = −
p

u+ k
s

n− u
n− 1

, u ∈ [0, n].

For u≤ 1, we have

4 f ′′(u) = u−3/2 −
k

p
n− 1

(n− u)−3/2 ≥ 1−
k

p
n− 1

(n− 1)−3/2

= 1−
k

(n− 1)2
≥ 1−

k
2(n− 1)

> 0.
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Therefore, f is convex on [0, s]. By the LHCF-Theorem, it suffices to consider the
case

a1 ≥ a2 = · · ·= an.

Write the original inequality in the homogeneous form

∑

p

a1 + n(k− 1)

√

√a1 + a2 + · · ·+ an

n
≤ k

∑

√

√a2 + · · ·+ an

n− 1
.

Do to homogeneity, we need to prove this inequality for a2 = · · · = an = 1 andp
a1 = x ≥ 1; that is, to show that g(x)≤ 0 for x ≥ 1, where

g(x) = x + n− 1− k+ (k− 1)
Æ

n(x2 + n− 1)− k
Æ

(n− 1)(x2 + n− 2).

We have

g ′(x) = 1+ (k− 1)

√

√ nx2

x2 + n− 1
− k

√

√ (n− 1)x2

x2 + n− 2
,

g ′′(x) =
k(n− 2)

p
n− 1

(x2 + n− 2)3/2

�

�

m ·
x2 + n− 2
x2 + n− 1

�3/2

− 1

�

,

where

m= 3

√

√(k− 1)2n(n− 1)
k2(n− 2)2

.

Clearly, g ′′(x) has the same sign as h(x), where

h(x) =
m(x2 + n− 2)

x2 + n− 1
− 1= m

�

1−
1

x2 + n− 1

�

− 1.

We have

h(1) =
m(n− 1)

n
− 1, lim

x→∞
h(x) = m− 1.

We will show that h(1)< 0 and limx→∞ h(x)> 0; that is, to show that

1< m<
n

n− 1
.

The inequality m> 1 is equivalent to

1−
1
k
>

n− 2
p

n(n− 1)
,

which is true since

1−
1
k
> 1−

1
n− 1

=
n− 2
n− 1

>
n− 2

p

n(n− 1)
.
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The inequality m<
n

n− 1
is equivalent to

1−
1
k
<

n(n− 2)
(n− 1)2

,

which is also true because

1−
1
k
< 1−

1
2(n− 1)

=
2n− 3

2(n− 1)
≤

n(n− 2)
(n− 1)2

.

Since h is strictly increasing on [1,∞), h(1) < 0 and limx→∞ h(x) > 0, there
is x1 ∈ (1,∞) so that h(x1) = 0, h(x) < 0 for x ∈ [1, x1) and h(x) > 0 for
x ∈ (x1,∞). Therefore, g ′ is strictly decreasing on [1, x1] and strictly increasing
on [x1,∞). Since g ′(1) = 0 and limx→∞ g ′(x) = 0, it follows that g ′(x) < 0 for
x ∈ (1,∞). Thus, g(x) is strictly decreasing on [1,∞), hence g(x)≤ g(1) = 0.

The equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 = n, a2 = a3 = · · ·= an = 0

(or any cyclic permutation).

Remark. Since k > n−1 for n≥ 3, the inequality in P 1.48 is sharper than Popovi-
ciu’s inequality applied to the convex function f (x) = −

p
x , x ≥ 0:

p

a1+
p

a2+· · ·+
p

an+n(n−2)≤ (n−1)

�√

√n− a1

n− 1
+

√

√n− a2

n− 1
+ · · ·+

√

√n− an

n− 1

�

.

P 1.49. If a, b, c are the lengths of the sides of a triangle so that a+ b+ c = 3, then

1
a+ b− c

+
1

b+ c − a
+

1
c + a− b

− 3≥ 4(2+
p

3)
�

2
a+ b

+
2

b+ c
+

2
c + a

− 3
�

.

(Vasile C., 2008)

Solution. Write the inequality as

f (a) + f (b) + f (c)≥ 3 f (s), s =
a+ b+ c

3
= 1,

where

f (u) =
1

3− 2u
−

4k
3− u

, k = 2(2+
p

3)≈ 7.464, u ∈ [0,3/2).

For u≥ 1, we have

f ′′(u) =
8

(3− 2u)3
−

8k
(3− u)3

> 8

�

�

1
3− 2u

�3

−
�

2
3− u

�3
�

.



Half Convex Function Method 83

Since
1

3− 2u
≥

2
3− u

, u ∈ [1, 3/2),

it follows that f is convex on [s,3/2). By the RHCF-Theorem and Note 1, it suffices
to show that h(x , y)≥ 0 for x , y ∈ [0, 3/2) so that x + 2y = 3. We have

g(u) =
f (u)− f (1)

u− 1
=

2
3− 2u

−
2k

3− u

and

h(x , y) =
g(x)− g(y)

x − y
=

2
(3− 2x)(3− 2y)

−
k

(3− x)(3− y)

=
2

(2y − x)x
−

k
2y(x + y)

=
kx2 − 2(k− 2)x y + 4y2

2x y(x + y)(2y − x)

=
[(
p

3+ 1)x − 2y]2

2x y(x + y)(2y − x)
≥ 0.

According to Note 4, the equality holds for a = b = c = 1, and also for

a = 3(2−
p

3), b = c =
3(
p

3− 1)
2

(or anu cyclic permutation).

P 1.50. Let a1, a2, . . . , a5 be nonnegative numbers so that a1+ a2+ a3+ a4+ a5 ≤ 5.
If

k ≥ k0, k0 =
29+

p
761

10
≈ 5.66,

then
∑ 1

ka2
1 + a2 + a3 + a4 + a5

≥
5

k+ 4
.

(Vasile C., 2006)

Solution. Since each term of the left hand side of the inequality decreases by in-
creasing any number ai, it suffices to consider the case

a1 + a2 + a3 + a4 + a5 = 5,

when the desired inequality can be written as

f (a1) + f (a2) + f (a3) + f (a4) + f (a4)≥ 5 f (s),
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where
s =

a1 + a2 + a3 + a4 + a5

5
= 1

and
f (u) =

1
ku2 − u+ 5

, u ∈ [0, 5].

For u≥ 1, we have

f ′′(u) =
2[3ku(ku− 1)− 5k+ 1]

(ku2 − u+ 5)3

≥
2[3k(k− 1)− 5k+ 1]
(ku2 − u+ 5)3

=
2[k(3k− 8) + 1]
(ku2 − u+ 5)3

> 0;

therefore, f is convex on [s, 5]. By the RHCF-Theorem, it suffices to show that

1
kx2 − x + 5

+
4

k y2 − y + 5
≥

5
k+ 4

for
0≤ x ≤ 1≤ y, x + 4y = 5.

Write this inequality as follows:

1
kx2 − x + 5

−
1

k+ 4
+ 4

�

1
k y2 − y + 5

−
1

k+ 4

�

≥ 0,

(x − 1)(1− k− kx)
kx2 − x + 5

+
4(y − 1)(1− k− k y)

k y2 − y + 5
≥ 0.

Since
4(y − 1) = 1− x ,

the inequality is equivalent to

(x − 1)
�

1− k− kx
kx2 − x + 5

−
1− k− k y
k y2 − y + 5

�

≥ 0,

5(x − 1)2 g(x , y, k)
4(kx2 − x + 5)(k y2 − y + 5)

≥ 0,

where
g(x , y, k) = k2 x y + k(k− 1)(x + y)− 6k+ 1.

For fixed x and y , let h(k) = g(x , y, k). Since

h′(k) = 2kx y + (2k− 1)(x + y)− 6≥ (2k− 1)(x + y)− 6

≥ (2k− 1)
�

x +
y
4

�

− 6=
10k− 29

4
> 0,
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it suffices to show that g(x , y, k0)≥ 0. We have

g(x , y, k0) = k2
0 x y + k0(k0 − 1)(x + y)− 6k0 + 1

= −4k2
0 y2 + k0(2k0 + 3)y + 5k2

0 − 11k0 + 1.

Since
5k2

0 − 29k0 + 4= 0,

we get

g(x , y, k0) = (5− 4y)
�

k2
0 y + k2

0 −
11k0 − 1

5

�

= x
�

k2
0 y + k2

0 −
11k0 − 1

5

�

.

It suffices to show that

k2
0 −

11k0 − 1
5

≥ 0.

Indeed,

k2
0 −

11k0 − 1
5

=
k0(5k0 − 11) + 1

5
> 0.

The equality holds for a1 = a2 = a3 = a4 = a5 = 1. If k = k0, then the equality
holds also for

a1 = 0, a2 = a3 = a4 = a5 =
5
4

(or any cyclic permutation).

Remark. In the same manner, we can prove the following statement:

• Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an ≤ n. If

k ≥ k0, k0 =
n2 + n− 1+

p
n4 + 2n3 − 5n2 + 2n+ 1

2n
,

then
∑ 1

ka2
1 + a2 + · · ·+ an

≥
n

k+ n− 1
,

with equality for a1 = a2 = · · ·= an = 1. If k = k0, then the equality holds also for

a1 = 0, a2 = · · ·= an =
n

n− 1
(or any cyclic permutation).

P 1.51. Let a1, a2, . . . , a5 be nonnegative numbers so that a1+ a2+ a3+ a4+ a5 ≤ 5.
If

0< k ≤ k0, k0 =
11−

p
101

10
≈ 0.095,

then
∑ 1

ka2
1 + a2 + a3 + a4 + a5

≥
5

k+ 4
.

(Vasile C., 2006)
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Solution. As shown at the preceding P 1.50, it suffices to consider the case

a1 + a2 + a3 + a4 + a5 = 5,

when the desired inequality can be written as

f (a1) + f (a2) + f (a3) + f (a4) + f (a4)≥ 5 f (s),

where
s =

a1 + a2 + a3 + a4 + a5

5
= 1,

and
f (u) =

1
ku2 − u+ 5

, u ∈ [0, 5].

For u ∈ [0,1], we have

u(ku− 1)− (k− 1) = (1− u)(1− ku)≥ 0,

hence

f ′′(u) =
2[3ku(ku− 1)− 5k+ 1]

(ku2 − u+ 5)3

≥
2[3k(k− 1)− 5k+ 1]
(ku2 − u+ 5)3

=
2[(1− 8k) + 3k2]
(ku2 − u+ 5)3

> 0;

therefore, f is convex on [0, s]. By the LHCF-Theorem, it suffices to show that

1
kx2 − x + 5

+
4

k y2 − y + 5
≥

5
k+ 4

for
x ≥ 1≥ y ≥ 0, x + 4y = 5.

Write this inequality as follows:

1
kx2 − x + 5

−
1

k+ 4
+ 4

�

1
k y2 − y + 5

−
1

k+ 4

�

≥ 0,

(x − 1)(1− k− kx)
kx2 − x + 5

+
4(y − 1)(1− k− k y)

k y2 − y + 5
≥ 0.

Since
4(y − 1) = 1− x ,

the inequality is equivalent to

(x − 1)
�

1− k− kx
kx2 − x + 5

−
1− k− k y
k y2 − y + 5

�

≥ 0,
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5(x − 1)2 g(x , y, k)
4(kx2 − x + 5)(k y2 − y + 5)

≥ 0,

where
g(x , y, k) = k2 x y − k(1− k)(x + y)− 6k+ 1.

For fixed x and y , let h(k) = g(x , y, k). Since

h′(k) = 2kx y − (1− 2k)(x + y)− 6≤ 2kx y − 6

≤
k(x + 4y)2

8
− 6=

25k
8
− 6< 0,

it suffices to show that g(x , y, k0)≥ 0. We have

g(x , y, k0) = k2
0 x y + k0(k0 − 1)(x + y)− 6k+ 1

= −4k2
0 y2 + k0(2k0 + 3)y + 5k2

0 − 11k0 + 1.

Since
5k2

0 − 11k0 + 1= 0,

we get

g(x , y, k0) = k0 y(−4k0 y + 2k0 + 3)≥ k0 y(−4k0 + 2k0 + 3) = k0(3− 2k0)y ≥ 0.

The equality holds for a1 = a2 = a3 = a4 = a5 = 1. If k = k0, then the equality
holds also for

a1 = 5, a2 = a3 = a4 = a5 = 0

(or any cyclic permutation).

Remark. Similarly, we can prove the following statement:

• Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an ≤ n. If

0≤ k ≤ k0, k0 =
2n+ 1−

p
4n2 + 1

2n
,

then
∑ 1

ka2
1 + a2 + · · ·+ an

≥
n

k+ n− 1
,

with equality for a1 = a2 = · · ·= an = 1. If k = k0, then the equality holds also for

a1 = n, a2 = · · ·= an = 0

(or any cyclic permutation).
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P 1.52. Let a1, a2, . . . , an be nonnegative real numbers so that a1+ a2+ · · ·+ an ≤ n.
If

0< k ≤
1

n+ 1
,

then

a1

ka2
1 + a2 + · · ·+ an

+
a2

a1 + ka2
2 + · · ·+ an

+ · · ·+
an

a1 + a2 + · · ·+ ka2
n

≥
n

k+ n− 1
.

(Vasile C., 2006)

Solution. Using the notation

x1 =
a1

s
, x2 =

a2

s
, . . . , xn =

an

s
,

where
s =

a1 + a2 + · · ·+ an

n
≤ 1,

we need to show that x1 + x2 + · · ·+ xn = n involves

x1

ksx2
1 + x2 + · · ·+ xn

+ · · ·+
xn

x1 + x2 + · · ·+ ksx2
n

≥
n

k+ n− 1
.

Since s ≤ 1, it suffices to prove the inequality for s = 1; that is, to show that

a1

ka2
1 − a1 + n

+
a2

ka2
2 − a2 + n

+ · · ·+
an

ka2
n − an + n

≥
n

k+ n− 1

for
a1 + a2 + · · ·+ an = n.

Write the desired inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s),

where
s =

a1 + a2 + · · ·+ an

n
= 1

and
f (u) =

u
u2 − u+ n

, u ∈ [0, n].

We have

f ′(u) =
n− ku2

(ku2 − u+ n)2
, f ′′(u) =

f1(u)
(u2 − u+ n)3

,

where
f1(u) = k2u3 − 3knu+ n.
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For u ∈ [0,1], we have

f1(u)≥ −3knu+ n≥ −3kn+ n

≥ −
3n

n+ 1
+ n=

n(n− 2)
n+ 1

≥ 0.

Since f ′′(u) > 0, it follows that f is convex on [0, s]. By the LHCF-Theorem, we
only need to show that

x
kx2 − x + n

+
(n− 1)y

k y2 − y + n
≥

n
k+ n− 1

for all nonnegative x , y which satisfy x + (n − 1)y = n. Write this inequality as
follows:

x
kx2 − x + n

−
1

k+ n− 1
+ (n− 1)

�

y
k y2 − y + n

−
1

k+ n− 1

�

≥ 0,

(x − 1)
�

n− kx
kx2 − x + n

−
n− k y

k y2 − y + n

�

≥ 0,

(x − 1)2h(x , y)
(kx2 − x + n)(k y2 − y + n)

≥ 0,

where
h(x , y) = k2 x y − kn(x + y) + n− nk.

We need to show that h(x , y)≥ 0. Indeed,

h(x , y) = k y[n(k+ n− 2)− k(n− 1)y] + n[1− k(n+ 1)]
= k y[n(n− 2) + kx] + n[1− k(n+ 1)]≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1. If k =
1

n+ 1
, then the equality holds

also for
a1 = n, a2 = a3 = · · ·= an = 0

(or any cyclic permutation).

P 1.53. If a1, a2, a3, a4, a5 ≤
7
2

so that a1 + a2 + a3 + a4 + a5 = 5, then

a1

a2
1 − a1 + 5

+
a2

a2
2 − a2 + 5

+
a3

a2
3 − a3 + 5

+
a4

a2
4 − a4 + 5

+
a5

a2
5 − a5 + 5

≤ 1.

(Vasile C., 2006)
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Solution. Write the desired inequality as

f (a1) + f (a2) + f (a3) + f (a4) + f (a5)≥ 5 f (s),

where
s =

a1 + a2 + a3 + a4 + a5

5
= 1

and
f (u) =

−u
u2 − u+ 5

, u≤
7
2

.

For u ∈
�

1,
7
2

�

, we have

f ′′(u) =
−u3 + 15u− 5
(u2 − u+ 5)3

=
(2u+ 9)(u− 1)(7− 2u) + 43− 7u

4(u2 − u+ 5)3
> 0.

Thus, f is convex on
�

s,
7
2

�

. By the RHCF-Theorem, it suffices to show that

x
x2 − x + 5

+
4y

y2 − y + 5
≤ 1

for all nonnegative x , y ≤
7
2

which satisfy x + 4y = 5. Write this inequality as

follows:
x

x2 − x + 5
−

1
5
+ 4

�

y
y2 − y + 5

−
1
5

�

]≤ 0,

(x − 1)
�

5− x
x2 − x + 5

−
5− y

y2 − y + 5

�

≤ 0,

(x − 1)2[5(x + y)− x y]
(x2 − x + 5)(y2 − y + 5)

≥ 0,

(x − 1)2[(x + 4y)(x + y)− x y]
(x2 − x + 5)(y2 − y + 5)

≥ 0,

(x − 1)2(x + 2y)2

(x2 − x + 5)(y2 − y + 5)
≥ 0.

The equality holds for a1 = a2 = a3 = a4 = a5 = 1, and also for

a1 = −5, a2 = a3 = a4 = a5 =
5
2

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:
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• Let a1, a2, . . . , an ≤
p

3 so that a1 + a2 + · · ·+ an ≤ n. If

k =
n2 + 2n− 2− 2

p

(n− 1)(2n2 − 1)
n

,

then a1

ka2
1 − a1 + n

+
a2

ka2
2 − a2 + n

+ · · ·+
an

ka2
n − an + n

≤
n

k− 1+ n
,

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 =
n(k− n+ 2)

2k
, a2 = · · ·= an =

n(k+ n− 2)
2k(n− 1)

(or any cyclic permutation).

P 1.54. Let a1, a2, . . . , an be nonnegative real numbers so that a1+ a2+ · · ·+ an ≥ n.
If

0< k ≤
1

1+ 1
4(n−1)2

,

then

a2
1

ka2
1 + a2 + · · ·+ an

+
a2

2

a1 + ka2
2 + · · ·+ an

+ · · ·+
a2

n

a1 + a2 + · · ·+ ka2
n

≥
n

k+ n− 1
.

(Vasile C., 2006)

Solution. Using the substitution

x1 =
a1

s
, x2 =

a2

s
, . . . , xn =

an

s
,

where
s =

a1 + a2 + · · ·+ an

n
≥ 1,

we need to show that x1 + x2 + · · ·+ xn = n involves

x2
1

kx2
1 + (x2 + · · ·+ xn)/s

+ · · ·+
x2

n

(x1 + · · ·+ xn−1)/s+ kx2
n

≥
n

k+ n− 1
.

Since s ≥ 1, it suffices to prove the inequality for s = 1; that is, to show that

a2
1

ka2
1 − a1 + n

+
a2

2

ka2
2 − a2 + n

+ · · ·+
a2

n

ka2
n − an + n

≥
n

k+ n− 1

for
a1 + a2 + · · ·+ an = n.
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Write the desired inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s),

where
s =

a1 + a2 + · · ·+ an

n
= 1

and

f (u) =
u2

u2 − u+ n
, u ∈ [0, n].

We have

f ′(u) =
u(2n− u)

(ku2 − u+ n)2
, f ′′(u) =

2 f1(u)
(u2 − u+ n)3

,

where
f1(u) = ku3 − 3knu2 + n2.

For u ∈ [0,1] and n≥ 3, we have

f1(u)≥ −3knu2 + n2 ≥ −3kn+ n2 > −3n+ n2 ≥ 0.

Also, for u ∈ [0,1] and n= 2, we have

f1(u) = 4− ku2(6− u)≥ 4−
4
5

u2(6− u)

≥ 4−
4
5

u(6− u) =
4(1− u)(5− u)

5
≥ 0.

Since f ′′(u) ≥ 0 for u ∈ [0, 1], it follows that f is convex on [0, s]. By the LHCF-
Theorem, we need to show that

x2

kx2 − x + n
+
(n− 1)y2

k y2 − y + n
≥

n
k+ n− 1

for all nonnegative x , y which satisfy x + (n − 1)y = n. Write this inequality as
follows:

x2

kx2 − x + n
−

1
k+ n− 1

+ (n− 1)

�

y2

k y2 − y + n
−

1
k+ n− 1

�

≥ 0,

(x − 1)(nx − x + n)
kx2 − x + 5

+
4(y − 1)(ny − y + n)

k y2 − y + 5
≥ 0,

(x − 1)
�

nx − x + n
kx2 − x + n

−
ny − y + n
k y2 − y + n

�

≥ 0,

(x − 1)2h(x , y)
(kx2 − x + n)(k y2 − y + n)

≥ 0,

where
h(x , y) = n2 − kn(x + y)− k(n− 1)x y.
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Since
0< k ≤ k0, k0 =

1

1+ 1
4(n−1)2

,

we have

h(x , y)≥ n2 − k0n(x + y)− k0(n− 1)x y

= (n− 1)2k0 y2 − nk0 y + n2(1− k0)

= k0

�

(n− 1)y −
n

2(n− 1)

�2

≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k = k0, then the equality holds
also for

a1 =
n(2n− 3)
2(n− 1)

, a2 = a3 = · · ·= an =
n

2(n− 1)2

(or any cyclic permutation).

P 1.55. Let a1, a2, . . . , an be nonnegative real numbers so that a1+ a2+ · · ·+ an ≤ n.
If k ≥ n− 1, then

a2
1

ka2
1 + a2 + · · ·+ an

+
a2

2

a1 + ka2
2 + · · ·+ an

+ · · ·+
a2

n

a1 + a2 + · · ·+ ka2
n

≤
n

k+ n− 1
.

(Vasile C., 2006)

Solution. Using the notation

x1 =
a1

s
, x2 =

a2

s
, . . . , xn =

an

s
,

where
s =

a1 + a2 + · · ·+ an

n
≤ 1,

we need to show that x1 + x2 + · · ·+ xn = n involves

x2
1

kx2
1 + (x2 + · · ·+ xn)/s

+ · · ·+
x2

n

(x1 + · · ·+ xn−1)/s+ kx2
n

≤
n

k+ n− 1
.

Since s ≤ 1, it suffices to prove the inequality for s = 1; that is, to show that

a2
1

ka2
1 − a1 + n

+
a2

2

ka2
2 − a2 + n

+ · · ·+
a2

n

ka2
n − an + n

≤
n

k+ n− 1

for
a1 + a2 + · · ·+ an = n.
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Write the desired inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
−u2

u2 − u+ n
, u ∈ [0, n].

We have

f ′(u) =
u(u− 2n)

(ku2 − u+ n)2
, f ′′(u) =

2 f1(u)
(u2 − u+ n)3

,

where
f1(u) = −ku3 + 3knu2 − n2.

For u ∈ [1, n], we have

f1(u)≥ −knu2 + 3knu2 − n2 = 2knu2 − n2

≥ 2kn− n2 ≥ 2(n− 1)n− n2 = n(n− 2)≥ 0.

Since f ′′(u) ≥ 0 for u ∈ [1, n], it follows that f is convex on [s, n]. By the RHCF-
Theorem, it suffices to show that

x2

kx2 − x + n
+
(n− 1)y2

k y2 − y + n
≤

n
k+ n− 1

for all nonnegative x , y which satisfy x + (n− 1)y = n. As shown in the proof of
the preceding P 1.54, we only need to show that h(x , y)≥ 0, where

h(x , y) = kn(x + y) + k(n− 1)x y − n2.

Since k ≥ n− 1, we have

h(x , y)≥ n(n− 1)(x + y) + (n− 1)2 x y − n2

= −(n− 1)3 y2 + n(n− 1)y + n2(n− 2)

= [n− (n− 1)y][n(n− 2) + (n− 1)2 y]

= x[n(n− 2) + (n− 1)2 y]≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k = n− 1, then the equality holds
also for

a1 = 0, a2 = a3 = · · ·= an =
n

n− 1
(or any cyclic permutation).
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P 1.56. Let a1, a2, . . . , an ∈ [0, n] so that a1 + a2 + · · ·+ an ≥ n. If 0< k ≤
1
n

, then

a1 − 1
ka2

1 + a2 + · · ·+ an
+

a2 − 1
a1 + ka2

2 + · · ·+ an
+ · · ·+

an − 1
a1 + a2 + · · ·+ ka2

n

≥ 0.

(Vasile C., 2006)

Solution. Let
s =

a1 + a2 + · · ·+ an

n
, s ≥ 1.

Case 1: s > 1 Without loss of generality, assume that

a1 ≥ · · · ≥ a j > 1≥ a j+1 · · · ≥ an, j ∈ {1, 2, . . . , n}.

Clearly, there are b1, b2, . . . , bn so that b1 + b2 + · · ·+ bn = n and

a1 ≥ b1 ≥ 1, . . . , a j ≥ b j ≥ 1, b j+1 = a j+1, . . . , bn = an.

Write the desired inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ 0,

where

f (u) =
u− 1

ku2 − u+ ns
, u ∈ [0, n],

f ′(u)
f1(u)

(ku2 − u+ ns)2
, f1(u) = k(−u2 + 2u) + ns− 1.

For u ∈ [1, n), we have

f1(u)≥ k(−nu+ 2u) + ns− 1= −k(n− 2)u+ ns− 1

≥ −k(n− 2)n+ ns− 1≥ −(n− 2) + ns− 1= n(s− 1) + 1> 0.

Consequently, f is strictly increasing on [1, n] and

f (b1)≤ f (a1), . . . , f (b j)≤ f (a j), f (b j+1) = f (a j+1), . . . , f (bn) = f (an).

Since
f (b1) + f (b2) + · · ·+ f (bn)≤ f (a1) + f (a2) + · · ·+ f (an),

it suffices to show that f (b1) + f (b2) + · · ·+ f (bn) ≥ 0 for b1 + b2 + · · ·+ bn = n.
This inequality is proved at Case 2.

Case 2: s = 1. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,
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where

f (u) =
u− 1

ku2 − u+ n
, u ∈ [0, n],

f ′′(u) =
2g(u)

(ku2 − u+ n)3
, g(u) = k2u3 − 3k2u2 − 3k(n− 1)u+ kn+ n− 1.

We will show that f ′′(u)≥ 0 for u ∈ [0, 1]. From

g ′(u) = 3k2u(u− 2)− 3k(n− 1),

it follows that g ′(u)< 0, g is decreasing, hence

g(u)≥ g(1) = −2k2 − (2n− 3)k+ n− 1

≥
−2
n2
−

2n− 3
n

+ n− 1

=
(n− 1)3 − 1

n2
≥ 0.

Thus, f is convex on [0, s]. By the LHCF-Theorem, it suffices to show that

x − 1
kx2 − x + n

+
(n− 1)(y − 1)
k y2 − y + n

≥ 0

for all nonnegative real x , y so that x +(n−1)y = n. Since (n−1)(y −1) = 1− x ,
we have

x − 1
kx2 − x + n

+
(n− 1)(y − 1)
k y2 − y + n

= (x − 1)
�

1
kx2 − x + n

−
1

k y2 − y + n

�

=
(x − 1)(x − y)(1− kx − k y)
(kx2 − x + n)(k y2 − y + n)

=
n(x − 1)2(1− kx − k y)

(n− 1)(kx2 − x + n)(k y2 − y + n)

≥
n(x − 1)2(1− x+y

n )

(n− 1)(kx2 − x + n)(k y2 − y + n)

=
(n− 2)y(x − 1)2

(n− 1)(kx2 − x + n)(k y2 − y + n)
≥ 0.

The proof is completed. The equality holds for a1 = a2 = · · · = an = 1. If k =
1
n

,

then the equality holds also for

a1 = n, a2 = a3 = · · ·= an = 0.
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P 1.57. If a, b, c are positive real numbers so that abc = 1, then
p

a2 − a+ 1+
p

b2 − b+ 1+
p

c2 − c + 1≥ a+ b+ c.

Solution. Using the substitution

a = ex , b = e y , c = ez,

we need to show that

f (x) + f (y) + f (z)≥ 3 f (s), s =
x + y + z

3
= 0,

where
f (u) =

p

e2u − eu + 1− eu, u ∈ I= R.

We claim that f is convex on I≥s. Since

e−u f ′′(u) =
4e3u − 6e2u + 9eu − 2

4(e2u − eu + 1)3/2
− 1,

we need to show that 4x3 − 6x2 + 9x − 2> 0 and

(4x3 − 6x2 + 9x − 2)2 ≥ 16(x2 − x + 1)3,

where x = eu ≥ 1. Indeed,

4x3 − 6x2 + 9x − 2= x(x − 3)2 + (3x3 − 2)> 0

and

(4x3 − 6x2 + 9x − 2)2 − 16(x2 − x + 1)3 = 12x3(x − 1) + 9x2 + 12(x − 1)> 0.

By the RHCF-Theorem, it suffices to prove the original inequality for

b = c := t, a = 1/t2, t > 0;

that is, p
t4 − t2 + 1

t2
+ 2

p

t2 − t + 1≥
1
t2
+ 2t,

t2 − 1
p

t4 − t2 + 1+ 1
+

2(1− t)
p

t2 − t + 1+ t
≥ 0.

Since
t2 − 1

p
t4 − t2 + 1

≥
t2 − 1
t2 + 1

,

it suffices to show that

t2 − 1
t2 + 1

+
2(1− t)

p
t2 − t + 1+ t

≥ 0,
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which is equivalent to

(t − 1)
�

t + 1
t2 + 1

−
2

p
t2 − t + 1+ t

�

≥ 0,

(t − 1)
�

(t + 1)
p

t2 − t + 1− t2 + t − 2
�

≥ 0,

(t − 1)2(3t2 − 2t + 3)

(t + 1)
p

t2 − t + 1+ t2 − t + 2
≥ 0.

The equality holds for a = b = c = 1.

P 1.58. If a, b, c, d ≥
1

1+
p

6
so that abcd = 1, then

1
a+ 2

+
1

b+ 2
+

1
c + 2

+
1

d + 2
≤

4
3

.

(Vasile C., 2005)

Solution. Using the notation

a = ex , b = e y , c = ez, d = ew,

we need to show that

f (x) + f (y) + f (z) + f (w)≥ 4 f (s), s =
x + y + z +w

4
= 0,

where
f (u) =

−1
eu + 2

, u ∈ I= R.

For u≤ 0, we have

f ′′(u) =
eu(2− eu)
(eu + 2)3

> 0,

hence f is convex on I≤s. By the LHCF-Theorem, it suffices to prove the original
inequality for

b = c = d := t, a = 1/t3, t ≥
1

1+
p

6
;

that is,
t3

2t3 + 1
+

3
t + 2

≤
4
3

,

which is equivalent to the obvious inequality

(t − 1)2(5t2 + 2t − 1)≥ 0.
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According to Note 4, the equality holds for a = b = c = d = 1, and also for

a = 19+ 9
p

6, b = c = d =
1

1+
p

6

(or any cyclic permutation).

P 1.59. If a, b, c are positive real numbers so that abc = 1, then

a2 + b2 + c2 − 3≥ 2(ab+ bc + ca− a− b− c).

Solution. Using the substitution

a = ex , b = e y , c = ez,

we need to show that

f (x) + f (y) + f (z)≥ 3 f (s), s =
x + y + z

3
= 0,

where
f (u) = e2u − 1+ 2(eu − e−u), u ∈ R= R.

For u≥ 0, we have
f ′′(u) = 4e2u + 2(eu − e−u)> 0,

hence f is convex on I≥s. By the RHCF-Theorem, it suffices to prove the original
inequality for b = c := t and a = 1/t2, where t > 0; that is, to show that

4t5 − 3t4 − 4t3 + 2t2 + 1≥ 0,

which is equivalent to

(t − 1)2(4t3 + 5t2 + 2t + 1)≥ 0.

The equality holds for a = b = c = 1.

P 1.60. If a, b, c are positive real numbers so that abc = 1, then

a2 + b2 + c2 − 3≥ 18(a+ b+ c − ab− bc − ca).
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Solution. Using the substitution

a = ex , b = e y , c = ez,

we need to show that

f (x) + f (y) + f (z)≥ 3 f (s), s =
x + y + z

3
= 0,

where
f (u) = e2u − 1− 18(eu − e−u), u ∈ R.

For u≤ 0, we have
f ′′(u) = 4e2u + 18(e−u − eu)> 0,

hence f is convex on I≤s. By the LHCF-Theorem, it suffices to prove the original
inequality for b = c := t and a = 1/t2, where t > 0. Since

a2 + b2 + c2 − 3=
1
t4
+ 2t2 − 3=

(t2 − 1)2(2t2 + 1)
t4

and

a+ b+ c − ab− bc − ca =
−(t4 − 2t3 + 2t − 1)

t2
=
−(t − 1)3(t + 1)

t2
,

we get

a2+ b2+ c2−3−18(a+ b+ c−ab− bc− ca) =
(t − 1)2(2t − 1)2(t + 1)(5t + 1)

t4
≥ 0.

The equality holds for a = b = c = 1, and also for a = 4 and b = c = 1/2 (or any
cyclic permutation).

P 1.61. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

a2
1 + a2

2 + · · ·+ a2
n − n≥ 6

p
3
�

a1 + a2 + · · ·+ an −
1
a1
−

1
a2
− · · · −

1
an

�

.

Solution. Using the notation ai = ex i for i = 1,2, . . . , n, we need to show that

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where
f (u) = e2u − 1− 6

p
3 (eu − e−u), u ∈ I= R.



Half Convex Function Method 101

For u≤ 0, we have
f ′′(u) = 4e2u + 6

p
3(e−u − eu)> 0,

hence f is convex on I≤s. By the LHCF-Theorem and Note 2, it suffices to show that
H(x , y)≥ 0 for x , y ∈ R so that x + (n− 1)y = 0, where

H(x , y) =
f ′(x)− f ′(y)

x − y
.

From
f ′(u) = 2e2u − 6

p
3 (eu + e−u),

we get

H(x , y) =
2(ex − e y)

x − y

�

ex + e y − 3
p

3+ 3
p

3 e−x−y
�

.

Since (ex − e y)/(x − y)> 0, we need to prove that

ex + e y + 3
p

3 e−x−y ≥ 3
p

3.

Indeed, by the AM-GM inequality, we have

ex + e y + 3
p

3 e−x−y ≥ 3
3
Æ

ex · e y · 3
p

3 e−x−y = 3
p

3.

The proof is completed. The equality holds for a1 = a2 = · · ·= an = 1.

P 1.62. If a1, a2, . . . , an (n≥ 4) are positive real numbers so that a1a2 · · · an = 1, then

(n− 1)(a2
1 + a2

2 + · · ·+ a2
n) + n(n+ 3)≥ (2n+ 2)(a1 + a2 + · · ·+ an).

Solution. Using the substitutions ai = ex i for i = 1, 2, . . . , n, we need to show that

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where
f (u) = (n− 1)e2u − (2n+ 2)eu, u ∈ I= R.

For u≥ 0, we have

f ′′(u) = 4(n− 1)e2u − (2n+ 2)eu

= 2eu[2(n− 1)eu − n− 1]
≥ 2eu[2(n− 1)− n− 1] = 2(n− 3)eu > 0.
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Therefore, f is convex on I≥s. By the RHCF-Theorem and Note 2, it suffices to show
that H(x , y)≥ 0 for x , y ∈ R so that x + (n− 1)y = 0, where

H(x , y) =
f ′(x)− f ′(y)

x − y
.

From
f ′(u) = 2(n− 1)e2u − (2n+ 2)eu,

we get

H(x , y) =
2(ex − e y)

x − y
[(n− 1)(ex + e y)− (n+ 1)] .

Since (ex − e y)/(x − y)> 0, we need to prove that (n− 1)(ex + e y)≥ n+ 1. Using
the AM-GM inequality, we have

(n− 1)(ex + e y) = (n− 1)ex + e y + e y + · · ·+ e y

≥ n n
Æ

(n− 1)ex · e y · e y · · · e y

= n n
Æ

(n− 1)ex+(n−1)y = n
np

n− 1.

Thus, it suffices to show that

n
np

n− 1≥ n+ 1,

which is equivalent to

n− 1≥
�

1+
1
n

�n

.

This is true for n≥ 4, since

n− 1≥ 3>
�

1+
1
n

�n

.

The proof is completed. The equality holds for a1 = a2 = · · ·= an = 1.

Remark. From the proof above, the following sharper inequality follows (Gabriel
Dospinescu and Calin Popa):

• If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

a2
1 + a2

2 + · · ·+ a2
n − n≥

2n npn− 1
n− 1

(a1 + a2 + · · ·+ an − n).

P 1.63. Let a1, a2, . . . , an (n ≥ 3) be positive real numbers so that a1a2 · · · an = 1. If
p, q ≥ 0 so that p+ q ≥ n− 1, then

1
1+ pa1 + qa2

1

+
1

1+ pa2 + qa2
2

+ · · ·+
1

1+ pan + qa2
n

≥
n

1+ p+ q
.

(Vasile C., 2007)
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Solution. Using the substitutions ai = ex i for i = 1, 2, . . . , n, we need to show that

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where

f (u) =
1

1+ peu + qe2u
, u ∈ I= R.

For u≥ 0, we have

f ′′(u) =
eu[4q2e3u + 3pqe2u + (p2 − 4q)eu − p]

(1+ peu + qe2u)3

≥
e2u[4q2 + 3pq+ (p2 − 4q)− p]

(1+ peu + qe2u)3

=
e2u[(p+ 2q)(p+ q− 2) + 2q2 + p]

(1+ peu + qe2u)3
> 0,

therefore f is convex on I≥s. By the RHCF-Theorem, it suffices to prove the original
inequality for

a1 = 1/tn−1, a2 = · · ·= an = t, t > 0.

Write this inequality as

t2n−2

t2n−2 + ptn−1 + q
+

n− 1
1+ pt + qt2

≥
n

1+ p+ q
.

Applying the Cauchy-Schwarz inequality, it suffices to prove that

(tn−1 + n− 1)2

(t2n−2 + ptn−1 + q) + (n− 1)(1+ pt + qt2)
≥

n
1+ p+ q

,

which is equivalent to
pB + qC ≥ A,

where
A= (n− 1)(tn−1 − 1)2 ≥ 0,

B = (tn−1 − 1)2 + nE =
A

n− 1
+ nE, E = tn−1 + n− 2− (n− 1)t,

C = (tn−1 − 1)2 + nF =
A

n− 1
+ nF, F = 2tn−1 + n− 3− (n− 1)t2.

By the AM-GM inequality applied to n − 1 positive numbers, we have E ≥ 0 and
F ≥ 0 for n≥ 3. Since A≥ 0 and p+ q ≥ n− 1, we have

pB + qC − A≥ pB + qC −
(p+ q)A

n− 1
= n(pE + qF)≥ 0.
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The equality holds for a1 = a2 = · · ·= an = 1.

Remark 1. For p = 2k and q = k2, we get the following result:

• Let a1, a2, . . . , an (n ≥ 3) be positive real numbers so that a1a2 · · · an = 1. If
k ≥
p

n− 1, then

1
(1+ ka1)2

+
1

(1+ ka2)2
+ · · ·+

1
(1+ kan)2

≥
n

(1+ k)2
,

with equality for a1 = a2 = · · ·= an = 1.

In addition, for n= 4 and k = 1, we get the known inequality (Vasile C., 1999):

1
(1+ a)2

+
1

(1+ b)2
+

1
(1+ c)2

+
1

(1+ d)2
≥ 1,

where a, b, c, d > 0 so that abcd = 1.

Remark 2. For p+ q = n− 1 (n≥ 3), we get the beautiful inequality

1
1+ pa1 + qa2

1

+
1

1+ pa2 + qa2
2

+ · · ·+
1

1+ pan + qa2
n

≥ 1,

which is a generalization of the following inequalities:

1
1+ (n− 1)a1

+
1

1+ (n− 1)a2
+ · · ·+

1
1+ (n− 1)an

≥ 1,

1
[1+ (

p
n− 1)a1]2

+
1

[1+ (
p

n− 1)a1]2
+ · · ·+

1
[1+ (

p
n− 1)a1]2

≥ 1,

1
2+ (n− 1)(a1 + a2

1)
+

1
2+ (n− 1)(a2 + a2

2)
+ · · ·+

1
2+ (n− 1)(an + a2

n)
≥

1
2

.

P 1.64. Let a, b, c, d be positive real numbers so that abcd = 1. If p and q are
nonnegative real numbers so that p+ q = 3, then

1
1+ pa+ qa3

+
1

1+ pb+ qb3
+

1
1+ pc + qc3

+
1

1+ pd + qd3
≥ 1.

(Vasile C., 2007)
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Solution. Using the notation

a = ex , b = e y , c = ez, d = ew,

we need to show that

f (x) + f (y) + f (z) + f (w)≥ 4 f (s), s =
x + y + z +w

4
= 0,

where
f (u) =

1
1+ peu + qe3u

, u ∈ I= R.

We will show that f ′′(u)> 0 for u≥ 0, hence f is convex on I≥s. Since

f ′′(u) =
th(t)

(1+ pt + qt3)3
,

where
h(t) = 9q2 t5 + 2pqt3 − 9qt2 + p2 t − p, t = eu,

we need to show that h(t)≥ 0 for t ≥ 1. Indeed, we have

h(t)≥ 9q2 t3 + 2pqt3 − 9qt2 + p2 t − pt = t g(t),

where

g(t) = (9q2 + 2pq)t2 − 9qt + p2 − p

≥ (9q2 + 2pq)(2t − 1)− 9qt + p2 − p

= q(18q+ 4p− 9)t − 9q2 − 2pq+ p2 − p

≥ q(18q+ 4p− 9)− 9q2 − 2pq+ p2 − p

= p2 + 2pq+ 9q2 − p− 9q

= p2 + 2pq+ 9q2 −
(p+ 9q)(p+ q)

3

=
2(p− q)2 + 16q2

3
≥ 0.

By the RHCF-Theorem, it suffices to prove the original inequality for

b = c = d = t, a = 1/t3, t > 0;

that is,
t9

t9 + pt6 + q
+

3
1+ pt + qt3

≥ 1,

3
1+ pt + qt3

≥
pt6 + q

t9 + pt6 + q
,

(3− pq)t9 − p2 t7 + 2pt6 − q2 t3 − pqt + 2q ≥ 0,
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[(p+ q)2 − 3pq]t9 − 3p2 t7 + 2p(p+ q)t6 − 3q2 t3 − 3pqt + 2q(p+ q)≥ 0,

Ap2 + Bq2 ≥ C pq,

where
A= t9 − 3t7 + 2t6 = t6(t − 1)2(t + 2)≥ 0,

B = t9 − 3t3 + 2= (t3 − 1)2(t3 + 2)≥ 0,

C = t9 − 2t6 + 3t − 2.

Since A≥ 0 and B ≥ 0, it suffices to consider the case C ≥ 0. Since

Ap2 + Bq2 ≥ 2
p

ABpq,

we only need to show that 4AB ≥ C2. From

t3 − 3t + 2= (t − 1)2(t + 2)≥ 0,

we get 3t − 2≤ t3. Therefore

C ≤ t9 − 2t6 + t3 = t3(t3 − 1)2,

hence

4AB − C2 ≥ 4AB − t6(t3 − 1)4

= t6(t − 1)2(t3 − 1)2[4(t + 2)(t3 + 2)− (t2 + t + 1)2]

= t6(t − 1)2(t3 − 1)2(3t4 + 6t3 − 3t2 + 6t + 15)≥ 0.

The proof is completed. The inequality holds for a = b = c = d = 1.

Remark 1. For p = 1 and p = 2, we get the following nice inequalities:

1
1+ a+ 2a3

+
1

1+ b+ 2b3
+

1
1+ c + 2c3

+
1

1+ d + 2d3
≥ 1,

1
1+ 2a+ a3

+
1

1+ 2b+ b3
+

1
1+ 2c + c3

+
1

1+ 2d + d3
≥ 1.

Remark 2. Similarly, we can prove the following generalizations:

• Let a, b, c, d be positive real numbers so that abcd = 1. If p and q are nonnegative
real numbers so that p+ q ≥ 3, then

1
1+ pa+ qa3

+
1

1+ pb+ qb3
+

1
1+ pc + qc3

+
1

1+ pd + qd3
≥

4
1+ p+ q

.
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• Let a1, a2, . . . , an (n ≥ 4) be positive real numbers so that a1a2 · · · an = 1. If
p, q, r ≥ 0 so that p+ q+ r ≥ n− 1, then

n
∑

i=1

1
1+ pai + qa2

i + ra3
i

≥
n

1+ p+ q+ r
.

For n= 4 and p+ q+ r = 3, we get the beautiful inequality

4
∑

i=1

1
1+ pai + qa2

i + ra3
i

≥ 1.

Since

a2
i ≤

ai + a3
i

2
,

the best inequality with respect to q if for q = 0:

4
∑

i=1

1
1+ pai + ra3

i

≥ 1, p+ r = 3.

P 1.65. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

1
1+ a1 + · · ·+ an−1

1

+
1

1+ a2 + · · ·+ an−1
2

+ · · ·+
1

1+ an + · · ·+ an−1
n

≥ 1.

(Vasile C., 2007)

Solution. Using the substitutions ai = ex i for i = 1, 2, . . . , n, we need to show that

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where
f (u) =

1
1+ eu + · · ·+ e(n−1)u

, u ∈ I= R.

We will show by induction on n that f is convex on I≥s. Setting t = eu, the condition
f ′′(u)≥ 0 for u≥ 0 (t ≥ 1) is equivalent to

2A2 ≥ B(1+ C),

where
A= t + 2t2 + · · ·+ (n− 1)tn−1,

B = t + 4t2 + · · ·+ (n− 1)2 tn−1,

C = t + t2 + · · ·+ tn−1.
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For n = 2, the inequality becomes t(t − 1) ≥ 0. Assume now that the inequality is
true for n and prove it for n+ 1, n ≥ 2. So, we need to show that 2A2 ≥ B(1+ C)
involves

2(A+ ntn)2 ≥ (B + n2 tn)(1+ C + tn),

which is equivalent to

2A2 − B(1+ C) + tn[n2(tn − 1) + D]≥ 0,

where

D = 4nA− B − n2C =
n−1
∑

i=1

bi t
i, bi = 3n2 − (2n− i)2.

Since 2A2 − B(1 + C) ≥ 0 (by the induction hypothesis), it suffices to show that
D ≥ 0. Since

b1 < b2 < · · ·< bn−1, t ≤ t2 ≤ · · · ≤ tn−1,

we may apply Chebyshev’s inequality to get

D ≥
1
n
(b1 + b2 + · · ·+ bn−1)(t + t2 + · · ·+ tn−1).

Thus, it suffices to show that b1 + b2 + · · ·+ bn−1 ≥ 0. Indeed,

b1 + b2 + · · ·+ bn−1 =
n−1
∑

i=1

[3n2 − (2n− i)2] =
n(n− 1)(4n+ 1)

6
> 0.

By the RHCF-Theorem, it suffices to prove the original inequality for

a1 = 1/tn−1, a2 = · · ·= an = t, t ≥ 1,

Setting k = n− 1 (k ≥ 1), we need to show that

tk2

1+ tk + · · ·+ tk2 +
k

1+ t + · · ·+ tk
≥ 1.

For the nontrivial case t > 1, this inequality is equivalent to each of the following
inequalities:

k
1+ t + · · ·+ tk

≥
1+ tk + · · ·+ t(k−1)k

1+ tk + · · ·+ tk2 ,

k(t − 1)
tk+1 − 1

≥
tk2 − 1
tk − 1

·
tk − 1

t(k+1)k − 1
,

k(t − 1)
tk+1 − 1

≥
tk2 − 1

t(k+1)k − 1
,

k
t(k+1)k − 1
tk+1 − 1

≥
tk2 − 1
t − 1

,



Half Convex Function Method 109

k
�

1+ tk+1 + t2(k+1) + · · ·+ t(k−1)(k+1)
�

≥ 1+ t + t2 + · · ·+ t(k−1)(k+1),

k
�

1 · 1+ t · tk + · · ·+ tk−1 · t(k−1)k
�

≥
�

1+ t + · · ·+ tk−1
� �

1+ tk + · · ·+ t(k−1)k
�

.

Since 1 < t < · · · < tk−1 and 1 < tk < · · · < t(k−1)k, the last inequality follows from
Chebyshev’s inequality.

The equality holds for a1 = a2 = · · ·= an = 1.

Remark. Actually, the following generalization holds:

• Let a1, a2, . . . , an be positive numbers so that a1a2 · · · an = 1, and let k1, k2, . . . , km ≥
0 so that k1 + k2 + · · ·+ km ≥ n− 1. If m≤ n− 1, then

n
∑

i=1

1
1+ k1ai + k2a2

i + · · ·+ kmam
i

≥
n

1+ k1 + k2 + · · ·+ km
.

In addition, since

ak
i ≤
(m− k)ai + (k− 1)am

i

m− 1
, k = 2,3, . . . , m− 1

(by the AM-GM inequality applied to m− 1 positive numbers), the best inequality
with respect to k2, . . . , km−1 is for k2 = 0, . . . , km−1 = 0; that is,

n
∑

i=1

1
1+ k1ai + kmam

i

≥
n

1+ k1 + km
, k1 + km ≥ n− 1, 1≤ m≤ n− 1.

If k1 + km = n− 1, then

n
∑

i=1

1
1+ k1ai + kmam

i

≥ 1, 1≤ m≤ n− 1,

therefore
n
∑

i=1

1
1+ k1ai + kn−1an−1

i

≥ 1, k1 + kn−1 = n− 1.

For k1 = 1 and k1 = n− 2, we get the following strong inequalities:

n
∑

i=1

1
1+ ai + (n− 2)an−1

i

≥ 1,

n
∑

i=1

1
1+ (n− 2)ai + an−1

i

≥ 1.
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P 1.66. Let a1, a2, . . . , an be positive real numbers so that a1a2 · · · an = 1. If

k ≥ n2 − 1,

then
1

p

1+ ka1

+
1

p

1+ ka2

+ · · ·+
1

p

1+ kan

≥
n

p
1+ k

.

Solution. Using the substitutions ai = ex i for i = 1, 2, . . . , n, we need to show that

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where
f (u) =

1
p

1+ keu
, u ∈ I= R.

For u≥ 0, we have

f ′′(u) =
keu(keu − 2)
4(1+ keu)5/2

≥
keu(k− 2)

4(1+ keu)5/2
> 0.

Therefore, f is convex on I≥s. By the RHCF-Theorem, it suffices to prove the original
inequality for

a1 = 1/tn−1, a2 = · · ·= an = t, t ≥ 1.

Write this inequality as h(t)≥ 0, where

h(t) =

√

√ tn−1

tn−1 + k
+

n− 1
p

1+ kt
−

n
p

1+ k
.

The derivative

h′(t) =
(n− 1)kt(n−3)/2

2(tn−1 + k)3/2
−
(n− 1)k

2(kt + 1)3/2

has the same sign as

h1(t) = tn/3−1(kt + 1)− tn−1 − k.

Denoting m= n/3 (m≥ 2/3), we see that

h1(t) = ktm + tm−1 − t3m−1 − k = k(tm − 1)− tm−1(t2m − 1) = (tm − 1)h2(t),

where
h2(t) = k− tm−1 − t2m−1.

For t > 1, we have

h′2(t) = tm−2[−m+ 1− (2m− 1)tm]< tm−2[−m+ 1− (2m− 1)]

= −(3m− 2)tm−2 ≤ 0,
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hence h2(t) is strictly decreasing for t ≥ 1. Since

h2(1) = k− 2> 0, lim
t→∞

h2(t) = −∞,

there exists t1 > 1 so that h2(t1) = 0, h2(t) > 0 for t ∈ [1, t1), h2(t) < 0 for
t ∈ (t1,∞). Since h2(t), h1(t) and h′(t) has the same sign for t > 1, h(t) is strictly
increasing for t ∈ [1, t1] and strictly decreasing for t ∈ [t1,∞); this yields

h(t)≥min{h(1), h(∞)}.

From h(1) = 0 and h(∞) = 1−
n

p
1+ k

≥ 0, it follows that h(t) ≥ 0 for all t ≥ 1.

The proof is completed. The equality holds for a1 = a2 = · · ·= an = 1.

Remark. The following generalization holds (Vasile C., 2005):

• Let a1, a2, . . . , an be positive real numbers so that a1a2 · · · an = 1. If k and m are
positive numbers so that

m≤ n− 1, k ≥ n1/m − 1,

then
1

(1+ ka1)m
+

1
(1+ ka2)m

+ · · ·+
1

(1+ kan)m
≥

n
(1+ k)m

,

with equality for a1 = a2 = · · ·= an = 1.

For 0< m≤ n− 1 and k = n1/m − 1, we get the beautiful inequality

1
(1+ ka1)m

+
1

(1+ ka2)m
+ · · ·+

1
(1+ kan)m

≥ 1.

P 1.67. Let a1, a2, . . . , an be positive real numbers so that a1a2 · · · an = 1. If p, q ≥ 0

so that 0< p+ q ≤
1

n− 1
, then

1
1+ pa1 + qa2

1

+
1

1+ pa2 + qa2
2

+ · · ·+
1

1+ pan + qa2
n

≤
n

1+ p+ q
.

(Vasile C., 2007)

Solution. Using the notation ai = ex i for i = 1, 2, . . . , n, we need to show that

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where
f (u) =

−1
1+ peu + qe2u

, u ∈ I= R.
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For u≤ 0, we have

f ′′(u) =
eu[−4q2e3u − 3pqe2u + (4q− p2)eu + p]

(1+ peu + qe2u)3

=
e2u[−4q2e2u − 3pqeu + (4q− p2) + pe−u]

(1+ peu + qe2u)3

≥
e2u[−4q2 − 3pq+ (4q− p2) + p]

(1+ peu + qe2u)3

=
e2u[(p+ 4q)(1− p− q) + 2pq]

(1+ peu + qe2u)3
≥ 0,

therefore f is convex on I≤s. By the LHCF-Theorem, it suffices to prove the original
inequality for

a1 = 1/tn−1, a2 = · · ·= an = t, t > 0.

Write this inequality as

t2n−2

t2n−2 + ptn−1 + q
+

n− 1
1+ pt + qt2

≤
n

1+ p+ q
,

p2A+ q2B + pqC ≤ pD+ qE,

where
A= tn−1(tn − nt + n− 1), B = t2n − nt2 + n− 1,

C = t2n−1 + t2n − ntn+1 + (n− 1)tn−1 − nt + n− 1,

D = tn−1[(n− 1)tn + 1− ntn−1], E = (n− 1)t2n + 1− nt2n−2.

Applying the AM-GM inequality to n positive numbers yields D ≥ 0 and E ≥ 0.
Since (n− 1)(p+ q)≤ 1 involves pD+ qE ≥ (n− 1)(p+ q)(pD+ qE), it suffices to
show that

p2A+ q2B + pqC ≤ (n− 1)(p+ q)(pD+ qE).

Write this inequality as
p2A1 + q2B1 + pqC1 ≥ 0,

where
A1 = (n− 1)D− A= ntn[(n− 2)tn−1 + 1− (n− 1)tn−2],

B1 = (n− 1)E − B = nt2[(n− 2)t2n−2 + 1− (n− 1)t2n−4],

C1 = (n− 1)(D+ E)− C = nt[(n− 2)(t2n−1 + t2n−2)− 2(n− 1)t2n−3 + tn + 1].

Applying the AM-GM inequality to n− 1 nonnegative numbers yields A1 ≥ 0 and
B1 ≥ 0. So, it suffices to show that C1 ≥ 0. Indeed, we have

(n− 2)(t2n−1 + t2n−2)− 2(n− 1)t2n−3 + tn + 1= A2 + B2 + C2,

where
A2 = (n− 2)t2n−1 + t − (n− 1)t2n−3 ≥ 0,
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B2 = (n− 2)t2n−2 + tn−1 − (n− 1)t2n−3 ≥ 0,

C2 = tn − tn−1 − t + 1= (t − 1)(tn−1 − 1)≥ 0.

The inequalities A2 ≥ 0 and B2 ≥ 0 follow by applying the AM-GM inequality to
n− 1 nonnegative numbers.

The equality holds for a1 = a2 = · · ·= an = 1.

Remark 1. For p+ q =
1

n− 1
, we get the inequality

1
1+ pa1 + qa2

1

+
1

1+ pa2 + qa2
2

+ · · ·+
1

1+ pan + qa2
n

≤ n− 1,

which is a generalization of the following inequalities:

1
n− 1+ a1

+
1

n− 1+ a2
+ · · ·+

1
n− 1+ an

≤ 1,

1
2n− 2+ a1 + a2

1

+
1

2n− 2+ a2 + a2
2

+ · · ·+
1

2n− 2+ an + a2
n

≤
1
2

.

Remark 2. For

p =
4n− 3

2(n− 1)(2n− 1)
, q =

1
2(n− 1)(2n− 1)

,

we get the inequality

1
(a1 + 2n− 2)(a1 + 2n− 1)

+ · · ·+
1

(an + 2n− 2)(an + 2n− 1)
≤

1
4n− 2

,

which is equivalent to

1
a1 + 2n− 2

+ · · ·+
1

an + 2n− 2
≤

1
4n− 2

+
1

a1 + 2n− 1
+ · · ·+

1
an + 2n− 1

.

Remark 3. For p = 2k and q = k2, we get the following statement:

• Let a1, a2, . . . , an be positive real numbers so that a1a2 · · · an = 1. If

0< k ≤
s

n
n− 1

− 1,

then
1

(1+ ka1)2
+

1
(1+ ka2)2

+ · · ·+
1

(1+ kan)2
≤

n
(1+ k)2

,

with equality for a1 = a2 = · · ·= an = 1.
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P 1.68. Let a1, a2, . . . , an (n≥ 3) be positive real numbers so that a1a2 · · · an = 1. If

0< k ≤
2n− 1
(n− 1)2

,

then
1

p

1+ ka1

+
1

p

1+ ka2

+ · · ·+
1

p

1+ kan

≤
n

p
1+ k

.

Solution. Using the substitutions ai = ex i for i = 1, 2, . . . , n, we need to show that

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where
f (u) =

−1
p

1+ keu
, u ∈ I= R.

For u≤ 0, we have

f ′′(u) =
keu(2− keu)
4(1+ keu)5/2

≥
keu(2− k)

4(1+ keu)5/2
> 0.

Therefore, f is convex on I≤s. By the LHCF-Theorem, it suffices to prove the original
inequality for

a1 = 1/tn−1, a2 = · · ·= an = t. 0< t ≤ 1.

Write this inequality as h(t)≤ 0, where

h(t) =

√

√ tn−1

tn−1 + k
+

n− 1
p

1+ kt
−

n
p

1+ k
.

The derivative

h′(t) =
(n− 1)kt(n−3)/2

2(tn−1 + k)3/2
−
(n− 1)k

2(kt + 1)3/2

has the same sign as

h1(t) = tn/3−1(kt + 1)− tn−1 − k.

Denoting m= n/3, m≥ 1, we see that

h1(t) = ktm + tm−1 − t3m−1 − k = −k(1− tm) + tm−1(1− t2m) = (1− tm)h2(t),

where
h2(t) = tm−1 + t2m−1 − k

is strictly increasing for t ∈ [0, 1]. There are two possible cases: h2(0) ≥ 0 and
h2(0)< 0.
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Case 1: h2(0) ≥ 0. This case is possible only for m = 1 and k ≤ 1, when h2(t) =
t + 1− k > 0 for t ∈ (0, 1]. Also, we have h1(t) > 0 and h′(t) > 0 for t ∈ (0, 1).
Therefore, h is strictly increasing on [0, 1], hence h(t)≤ h(1) = 0.

Case 2: h2(0) < 0. This case is possible for either m = 1 (n = 3) and 1 < k ≤ 5/4,
or m> 1 (n≥ 4). Since h2(1) = 2−k > 0, there exists t1 ∈ (0, 1) so that h2(t1) = 0,
h2(t)< 0 for t ∈ (0, t1), and h2(t)> 0 for t ∈ (t1, 1). Since h′ has the same sign as
h2 on (0, 1), it follows that h is strictly decreasing on [0, t1] and strictly increasing

on [t1, 1]. Therefore, h(t)≤max{h(0), h(1)}. Since h(0) = n−1−
n

p
1+ k

≤ 0 and

h(1) = 0, we have h(t)≤ 0 for all t ∈ (0,1].
The equality holds for a1 = a2 = · · ·= an = 1.

Remark. The following generalization holds (Vasile C., 2005):

• Let a1, a2, . . . , an (n ≥ 3) be positive real numbers so that a1a2 · · · an = 1. If k
and m are positive numbers so that

m≥
1

n− 1
, k ≤

� n
n− 1

�1/m
− 1,

then
1

(1+ ka1)m
+

1
(1+ ka2)m

+ · · ·+
1

(1+ kan)m
≤

n
(1+ k)m

,

with equality for a1 = a2 = · · ·= an = 1.

For n≥ 3, m≥
1

n− 1
and k =

� n
n− 1

�1/m
− 1, we get the beautiful inequality

1
(1+ ka1)m

+
1

(1+ ka2)m
+ · · ·+

1
(1+ kan)m

≤ n− 1.

P 1.69. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

√

√

a4
1 +

2n− 1
(n− 1)2

+

√

√

a4
2 +

2n− 1
(n− 1)2

+· · ·+
√

√

a4
n +

2n− 1
(n− 1)2

≥
1

n− 1
(a1+a2+· · ·+an)

2.

(Vasile C., 2006)

Solution. According to the preceding P 1.68, the following inequality holds

∑ 1
q

1+ 2n−1
(n−1)2 a−4

1

≤ n− 1.
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On the other hand, by the Cauchy-Schwarz inequality
 

∑ 1
q

1+ 2n−1
(n−1)2 a−4

1

!

�

∑

a2
1

√

√

1+
2n− 1
(n− 1)2

a−4
1

�

≥
�∑

a1

�2
.

From these inequalities, we get

(n− 1)

�

∑

a2
1

√

√

1+
2n− 1
(n− 1)2

a−4
1

�

≥
�∑

a1

�2
,

which is the desired inequality.
The equality holds for a1 = a2 = · · ·= an = 1.

P 1.70. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

an−1
1 + an−1

2 + · · ·+ an−1
n + n(n− 2)≥ (n− 1)

�

1
a1
+

1
a2
+ · · ·+

1
an

�

.

Solution. Using the notation ai = ex i for i = 1,2, . . . , n, we need to show that

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where
f (u) = e(n−1)u − (n− 1)e−u, u ∈ I= R.

For u≥ 0, we have

f ′′(u) = (n− 1)2e(n−1)u − (n− 1)e−u = (n− 1)e−u[(n− 1)enu − 1]≥ 0;

therefore, f is convex on I≥s. By the RHCF-Theorem and Note 2, it suffices to show
that H(x , y)≥ 0 for x , y ∈ R so that x + (n− 1)y = 0, where

H(x , y) =
f ′(x)− f ′(y)

x − y
.

From
f ′(u) = (n− 1)[e(n−1)u + e−u],

we get

H(x , y) =
(n− 1)(ex − e y)

x − y

�

e(n−2)x + e(n−3)x+y + · · ·+ ex+(n−3)y + e(n−2)y − e−x−y
�

=
(n− 1)(ex − e y)

x − y

�

e(n−2)x + e(n−3)x+y + · · ·+ ex+(n−3)y)
�

.

Since (ex − e y)/(x − y)> 0, we have H(x , y)> 0.
The equality holds for a1 = a2 = · · ·= an = 1.
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P 1.71. Let a1, a2, . . . , an be positive real numbers so that a1a2 · · · an = 1. If k ≥ n,
then

ak
1 + ak

2 + · · ·+ ak
n + kn≥ (k+ 1)

�

1
a1
+

1
a2
+ · · ·+

1
an

�

.

(Vasile C., 2006)

Solution. Using the notations ai = ex i for i = 1,2, . . . , n, we need to show that

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where
f (u) = eku − (k+ 1)e−u, u ∈ I= R.

For u≥ 0, we have

f ′′(u) = k2eku − (k+ 1)e−u = e−u
�

k2e(k+1)u − k− 1
�

≥ e−u(k2 − k− 1)> 0;

therefore, f is convex on I≥s. By the RHCF-Theorem, it suffices to to prove the
original inequality for a1 ≤ 1≤ a2 = · · ·= an; that is, to show that

ak + (n− 1)bk −
k+ 1

a
−
(k+ 1)(n− 1)

b
+ kn≥ 0

for
abn−1 = 1, 0< a ≤ 1≤ b.

By the weighted AM-GM inequality, we have

ak + (kn− k− 1)≥ [1+ (kn− k− 1)]a
k

1+(kn−k−1) =
k(n− 1)

b
.

Thus, we still have to show that

(n− 1)
�

bk −
1
b

�

− (k+ 1)
�

1
a
− 1

�

≥ 0,

which is equivalent to h(b)≥ 0 for b ≥ 1, where

h(b) = (n− 1)(bk+1 − 1)− (k+ 1)(bn − b).

Since

h′(b)
k+ 1

= (n− 1)bk − nbn−1 + 1≥ (n− 1)bn − nbn−1 + 1

= nbn−1(b− 1)− (bn − 1)

= (b− 1)
�

(bn−1 − bn−2) + (bn−1 − bn−3) + · · ·+ (bn−1 − 1)
�

≥ 0,

h is increasing on [1,∞), hence h(b) ≥ h(1) = 0. The proof is completed. The
equality holds for a1 = a2 = · · ·= an = 1.
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P 1.72. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then
�

1−
1
n

�a1

+
�

1−
1
n

�a2

+ · · ·+
�

1−
1
n

�an

≤ n− 1.

(Vasile C., 2006)

Solution. Let
k =

n
n− 1

, k > 1,

and
m= ln k, 0< m≤ ln 2< 1.

Using the substitutions ai = ex i for i = 1,2, . . . , n, we need to show that

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where
f (u) = −k−eu

, u ∈ I= R.

From
f ′′(u) = meuk−eu

(1−meu),

it follows that f ′′(u)> 0 for u≤ 0, since

1−meu ≥ 1−m≥ 1− ln2> 0.

Therefore, f is convex on I≤s. By the LHCF-Theorem and Note 5, it suffices to prove
the original inequality for

a2 = · · ·= an := t, a1 = t−n+1, 0< t ≤ 1.

Write this inequality as
h(t)≤ n− 1,

where
h(t) = k−t−n+1

+ (n− 1)k−t , t ∈ (0,1].

We have

h′(t) = (n− 1)mt−nk−t−n+1
h1(t), h1(t) = 1− tnkt−n+1−t ,

h′1(t) = kt−n+1−th2(t), h2(t) = m(n− 1+ tn)− ntn−1.

Since

h′2(t) = ntn−2(mt − n+ 1)≤ ntn−2(m− n+ 1)≤ ntn−2(m− 1)< 0,

h2 is strictly decreasing on [0, 1]. From

h2(0) = (n− 1)m> 0, h2(1) = n(m− 1)< 0,
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it follows that there is t1 ∈ (0, 1) so that h2(t1) = 0, h2(t) > 0 for t ∈ [0, t1) and
h2(t) < 0 for t ∈ (t1, 1]. Therefore, h1 is strictly increasing on (0, t1] and strictly
decreasing on [t1, 1]. Since h1(0+) = −∞ and h1(1) = 0, there is t2 ∈ (0, t1) so
that h1(t2) = 0, h1(t)< 0 for t ∈ (0, t2), h1(t)> 0 for t ∈ (t2, 1). Thus, h is strictly
decreasing on (0, t2] and strictly increasing on [t2, 1]. Since h(0+) = n − 1 and
h(1) = n− 1, we have h(t)≤ n− 1 for all t ∈ (0,1]. This completes the proof. The
equality holds for a1 = a2 = · · ·= an = 1.

P 1.73. If a, b, c are positive real numbers so that abc = 1, then

1

1+
p

1+ 3a
+

1

1+
p

1+ 3b
+

1

1+
p

1+ 3c
≤ 1.

(Vasile C., 2008)

Solution. Write the inequality as

p
1+ 3a− 1

3a
+
p

1+ 3b− 1
3b

+
p

1+ 3c − 1
3c

≤ 1,

1
a
+

1
b
+

1
c
+ 3≥

√

√ 1
a2
+

3
a
+

√

√ 1
b2
+

3
b
+

√

√ 1
c2
+

3
c

.

Replacing a, b, c by 1/a, 1/b, 1/c, respectively, we need to prove that abc = 1 in-
volves

a+ b+ c + 3≥
p

a2 + 3a+
p

b2 + 3b+
p

c2 + 3c. (*)

Using the notation
a = ex , b = e y , c = ez,

we need to show that

f (x) + f (y) + f (z)≥ 3 f (s), s =
x + y + z

3
= 0,

where
f (u) = eu −

p

e2u + 3eu, u ∈ I= R.

We have

f ′′(u) = t

�

1−
4t2 + 18t + 9

4(t + 3)
p

t(t + 3)

�

, t = eu ≥ 1.

For u≥ 0, which involves t ≥ 1, from

16t(t + 3)3 − (4t2 + 18t + 9)2 = 9(4t2 + 12t − 9)> 0,
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it follows that f ′′ > 0, hence f is convex on I≥s. By the RHCF-Theorem, it suffices
to prove the inequality (*) for b = c. Thus, we need to show that

a−
p

a2 + 3a+ 2(b−
p

b2 + 3b ) + 3≥ 0

for ab2 = 1. Write this inequality as

2b3 + 3b2 + 1≥
p

3b2 + 1+ 2b2
p

b2 + 3b.

Squaring and dividing by b2, the inequality becomes

9b2 + 4b+ 3≥ 4
Æ

(b2 + 3b)(3b2 + 1).

Since

2
Æ

(b2 + 3b)(3b2 + 1)≤ (b2 + 3b) + (3b2 + 1) = 4b2 + 3b+ 1,

it suffices to show that

9b2 + 4b+ 3≥ 2(4b2 + 3b+ 1),

which is equivalent to (b− 1)2 ≥ 0. The equality holds for a = b = c = 1.

Remark. In the same manner, we can prove the following generalization:

• Let a1, a2, . . . , an be positive real numbers so that a1a2 · · · an = 1. If

0< k ≤
4n

(n− 1)2
,

then

1

1+
p

1+ ka1

+
1

1+
p

1+ ka2

+ · · ·+
1

1+
p

1+ kan

≤
n

1+
p

1+ k
.

P 1.74. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

1

1+
p

1+ 4n(n− 1)a1

+
1

1+
p

1+ 4n(n− 1)a2

+ · · ·+
1

1+
p

1+ 4n(n− 1)an

≥
1
2

.

(Vasile C., 2008)
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Solution. Denote
k = 4n(n− 1), k ≥ 8,

and write the inequality as follows:
p

1+ ka1 − 1

ka1
+

p

1+ ka2 − 1

ka2
+ · · ·+

p

1+ kan − 1

kan
≥

1
2

,

√

√

√
1
a2

1

+
k
a1
+

√

√

√
1
a2

2

+
k
a2
+ · · ·+

√

√

√
1
a2

1

+
k
a1
≥

1
a1
+

1
a2
+ · · ·+

1
an
+

k
2

.

Replacing a1, a2, . . . , an by 1/a1, 1/a2, . . . , 1/an, we need to prove that a1a2 · · · an =
1 implies

q

a2
1 + ka1 +

q

a2
2 + ka2 + · · ·+

Æ

a2
n + kan ≥ a1 + a2 + · · ·+ an +

k
2

. (*)

Using the substitutions ai = ex i for i = 1,2, . . . , n, we need to show that

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s), s =
x1 + x2 + · · ·+ xn

n
= 0,

where
f (u) =

p

e2u + keu − eu, u ∈ I= R.

We will show that f ′′(u)> 0 for u≤ 0. Indeed, denoting t = eu, t ∈ (0,1], we have

f ′′(u) = t

�

4t2 + 6kt + k2

4(t + k)
p

t(t + k)
− 1

�

> 0

because

(4t2 + 6kt + k2)2 − 16t(t + k)3 = k2(k2 − 4kt − 4t2)≥ k2(k2 − 4k− 4)> 0.

Thus, f is convex on I≤s. By the LHCF-Theorem, it suffices to prove the inequality
(*) for a2 = a3 = · · ·= an; that is, to show that

p

a2 + ka− a+ (n− 1)
�p

b2 + kb− b
�

≥ n
�p

1+ k− 1
�

,

for all positive a, b satisfying abn−1 = 1. Write this inequality as
p

kbn−1 + 1+ (n− 1)
p

kb2n−1 + b2n ≥ (n− 1)bn + 2n(n− 1)bn−1 + 1.

By Minkowski’s inequality, we have
p

kbn−1 + 1+ (n− 1)
p

kb2n−1 + b2n ≥

≥
Æ

kbn−1[1+ (n− 1)bn/2]2 + [1+ (n− 1)bn]2.
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Thus, it suffices to show that

kbn−1[1+ (n− 1)bn/2]2 + [1+ (n− 1)bn]2 ≥ [(n− 1)bn + 2n(n− 1)bn−1 + 1]2,

which is equivalent to

4n(n− 1)2 b
3n−2

2

�

2+ (n− 2)b
n
2 − nb

n−2
2

�

≥ 0.

This inequality follows immediately by the AM-GM inequality applied to n positive
numbers.

The equality holds for a1 = a2 = · · ·= an = 1.

P 1.75. If a, b, c are positive real numbers so that abc = 1, then

a6

1+ 2a5
+

b6

1+ 2b5
+

c6

1+ 2c5
≥ 1.

(Vasile C., 2008)

Solution. Using the substitution

a = ex , b = e y , c = ez,

we need to show that

f (x) + f (y) + f (z)≥ 3 f (s), s =
x + y + z

3
= 0,

where

f (u) =
e6u

1+ 2e5u
, u ∈ I= R.

For u≤ 0, which involves w= eu ∈ (0,1], we have

f ′′(u) =
2w6(2−w5)(9− 2w5)

(1+ 2w5)3
> 0.

Therefore, f is convex on I≤s. By the LHCF-Theorem, it suffices to prove the original
inequality for b = c and ab2 = 1; that is,

1
b2(b10 + 2)

+
2b6

1+ 2b5
≥ 1.

Since
1+ 2b5 ≤ 1+ b4 + b6,
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it suffices to show that

1
x(x5 + 2)

+
2x3

1+ x2 + x3
≥ 1, x =

p

b.

This inequality can be written as follows:

x3(x6 − x5 − x3 + 2x − 1) + (x − 1)2 ≥ 0,

x3(x − 1)2(x4 + x3 + x2 − 1) + (x − 1)2 ≥ 0,

(x − 1)2[x7 + x5 + (x6 − x3 + 1)]≥ 0.

The equality holds for a = b = c = 1.

P 1.76. If a, b, c are positive real numbers so that abc = 1, then
p

25a2 + 144+
p

25b2 + 144+
p

25c2 + 144≤ 5(a+ b+ c) + 24.

(Vasile C., 2008)

Solution. Using the notation

a = ex , b = e y , c = ez,

we need to show that

f (x) + f (y) + f (z)≥ 3 f (s), s =
x + y + z

3
= 0,

where
f (u) = 5eu −

p

25e2u + 144, u ∈ R.

We will show that f (u) is convex for u≤ 0. From

f ′′(u) = 5w
�

1−
5w(25w2 + 288)
(25w2 + 144)3/2

�

, w= eu ∈ (0,1],

we need to show that

(25w2 + 144)3 ≥ 25w2(25w2 + 288)2.

Setting 25w2 = 144z, we have z ∈
�

0,
25
144

�

and

(25w2 + 144)3 − 25w2(25w2 + 288)2 = 1443(z + 1)3 − 1443z(z + 2)2

= 1443(1− z − z2)> 0.
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By the LHCF-Theorem, it suffices to prove the original inequality for

a = t2, b = c = 1/t, t > 0;

that is,
5t3 + 24t + 10≥

p

25t6 + 144t2 + 2
p

25+ 144t2.

Squaring and dividing by 4t give

60t3 + 25t2 − 36t + 120≥
Æ

(25t4 + 144)(144t2 + 25).

Squaring again and dividing by 120, the inequality becomes

25t5 − 36t4 + 105t3 − 112t2 − 72t + 90≥ 0,

(t − 1)2(25t3 + 14t2 + 108t + 90)≥ 0.

The equality holds for a = b = c = 1.

P 1.77. If a, b, c are positive real numbers so that abc = 1, then

p

16a2 + 9+
p

16b2 + 9+
p

16c2 + 9≥ 4(a+ b+ c) + 3.

(Vasile C., 2008)

Solution. Using the substitution

a = ex , b = e y , c = ez,

we need to show that

f (x) + f (y) + f (z)≥ 3 f (s), s =
x + y + z

3
= 0,

where
f (u) =

p

16e2u + 9− 4eu, u ∈ R.

We will show that f (u) is convex for u≥ 0. From

f ′′(u) = 4w
�

4w(16w2 + 18)
(16w2 + 9)3/2

− 1
�

, w= eu ≥ 1,

we need to show that

16w2(16w2 + 18)2 ≥ (16w2 + 9)3.



Half Convex Function Method 125

Setting 16w2 = 9z, we have z ≥
16
9

and

16w2(16w2 + 18)2 − (16w2 + 9)3 = 729z(z + 2)2 − 729(z + 1)3

= 729(z2 + z − 1)> 0.

By the RHCF-Theorem, it suffices to prove the original inequality for

a = t2, b = c = 1/t, t > 0;

that is,
p

16t6 + 9t2 + 2
p

16+ 9t2 ≥ 4t3 + 3t + 8.

Squaring and dividing by 4t give
Æ

(16t4 + 9)(9t2 + 16)≥ 6t3 + 16t2 − 9t + 12.

Squaring again and dividing by 12t, the inequality becomes

9t5 − 16t4 + 9t3 + 12t2 − 32t + 18≥ 0,

(t − 1)2(9t3 + 2t2 + 4t + 18)≥ 0.

The equality holds for a = b = c = 1.

P 1.78. If ABC is a triangle, then

sin A
�

2sin
A
2
− 1

�

+ sin B
�

2sin
B
2
− 1

�

+ sin C
�

2sin
C
2
− 1

�

≥ 0.

(Lorian Saceanu, 2015)

Solution. Write the inequality as

f (A) + f (B) + f (C)≥ 3 f (s), s =
A+ B + C

3
=
π

3
,

where

f (u) = sin u
�

2 sin
u
2
− 1

�

= cos
u
2
− cos

3u
2
− sin u, u ∈ I= [0,π].

We will show that f is convex on I≤s. Indeed, for u ∈ [0,π/3], we have

f ′′(u) = cos
u
2

�

2+ 2sin
u
2
− 9sin2 u

2

�

≥ cos
u
2

�

2+ 2 sin
u
2
− 12 sin2 u

2

�

= 2 cos
u
2

�

1+ 3sin
u
2

��

1− 2 sin
u
2

�

≥ 0.
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By the LHCF-Theorem, it suffices to prove the original inequality for B = C , when
it transforms into

sin 2B(2cos B − 1) + 2sin B
�

2 sin
B
2
− 1

�

≥ 0,

sin B sin
B
2

�

sin
B
2
+ 1

��

2 sin
B
2
− 1

�2

≥ 0.

The equality occurs for an equilateral triangle, and for a degenerate triangle with
A= π and B = C = 0 (or any cyclic permutation).

Remark. Based on this inequality, we can prove the following statement:

• If ABC is a triangle, then

sin2A(2cos A− 1) + sin2B(2 cos B − 1) + sin2C(2 cos C − 1)≥ 0,

with equality for an equilateral triangle, for a degenerate triangle with A = 0 and
B = C = π/2 (or any cyclic permutation), and for a degenerate triangle with A= π
and B = C = 0 (or any cyclic permutation).

If ABC is an acute or right triangle, then this inequality follows by replacing A,
B and C with π− 2A, π− 2B and π− 2C in the inequality from P 1.78. Consider
now that

A>
π

2
> B ≥ C ≥ 0.

The inequality is true for B ≤ π/3, because

sin 2A(2cos A− 1)≥ 0, sin 2B(2 cos B − 1)≥ 0, sin 2C(2 cos C − 1)≥ 0.

Consider further that

2π
3
> A>

π

2
> B >

π

3
> C ≥ 0.

From
1− 2 cos A> 1− 2cos B,

it follows that

(− sin2A)(1− 2cos A)> (− sin2A)(1− 2cos B).

Therefore it suffices to

(− sin 2A)(1− 2 cos B) + sin 2B(2cos B − 1) + sin 2C(2cos C − 1)≥ 0,

which is equivalent to

(sin 2A+ sin 2B)(2 cos B − 1) + sin2C(2cos C − 1)≥ 0,
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2 sin C cos(A− B)(2cos B − 1) + 2 sin C cos C(2cos C − 1)≥ 0.

This inequality is true if

cos(A− B)(2cos B − 1) + cos C(2cos C − 1)≥ 0,

which can be written as

cos C(2cos C − 1)≥ cos(A− B)(1− 2 cos B).

Since
C < A− B <

2π
3
−
π

3
=
π

3
,

we have cos C > cos(A− B). Therefore, it suffices to show that

2 cos C − 1≥ 1− 2cos B,

which is equivalent to
cos B + cos C ≥ 1.

From B + C < π/2, we get cos B > cos(π/2− C) = sin C , hence

cos B + cos C > sin C + cos C =
p

1+ sin 2C ≥ 1.

P 1.79. If ABC is an acute or right triangle, then

sin 2A
�

1− 2 sin
A
2

�

+ sin 2B
�

1− 2sin
B
2

�

+ sin 2C
�

1− 2sin
C
2

�

≥ 0.

(Vasile C., 2015)

Solution. Write the inequality as

f (A) + f (B) + f (C)≥ 3 f (s), s =
A+ B + C

3
=
π

3
,

where

f (u) = sin2u
�

1− 2sin
u
2

�

= sin2u− cos
3u
2
+ cos

5u
2

, u ∈ I= [0,π/2].

We will show that f is convex on [s,π/2]. From

f ′′(u) = −4sin 2u+
9
4

cos
3u
2
−

25
4

cos
5u
2

and
cos

3u
2
− cos

5u
2
= 2 sin

u
2

sin 2u≥ 0,
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we get

f ′′(u)≥ −4sin 2u+
9
4

cos
5u
2
−

25
4

cos
5u
2

= −4
�

sin2u+ sin
π− 5u

2

�

= 8 sin
π− u

4
cos

5π− 9u
4

.

For π/3≤ u≤ π/2, we have

π

8
≤

5π− 9u
4

≤
π

2
,

hence f ′′(u)≥ 0. By the RHCF-Theorem, it suffices to prove the original inequality
for B = C , 0≤ B ≤ π/2, when it becomes

− sin4B(1− 2cos B) + 2sin 2B
�

1− 2sin
B
2

�

≥ 0,

2 sin 2B
�

cos2B(2cos B − 1) + 1− sin
B
2

�

≥ 0.

We need to show that

cos 2B(2 cos B − 1) + 1− sin
B
2
≥ 0,

which is equivalent to g(t)≥ 0, where

g(t) = (1− 8t2 + 8t4)(1− 4t2) + 1− 2t, t = sin
B
2

, 0≤ t ≤
1
p

2
.

Indeed, we have

g(t) = 2(1− t)2(1+ 3t + 2t2 − 4t3 − 4t4)≥ 0

because

1+ 3t + 2t2 − 4t3 − 4t4 ≥ 1+ 3t + 2t2 − 2t − 2t2 = 1+ t > 0.

The equality occurs for an equilateral triangle, for a degenerate triangle with
A = 0 and and B = C = π/2 (or any cyclic permutation), and for a degenerate
triangle with A= π and B = C = 0 (or any cyclic permutation).

Remark 1. Actually, the inequality holds also for an obtuse triangle ABC. To prove
this, consider that

A>
π

2
> B ≥ C ≥ 0.

The inequality is true for B ≤ π/3, because

sin2A
�

1− 2 sin
A
2

�

≥ 0, sin2B
�

1− 2sin
B
2

�

≥ 0, sin2C
�

1− 2 sin
C
2

�

≥ 0.
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Consider further that

2π
3
> A>

π

2
> B >

π

3
> C ≥ 0.

From
2 sin

A
2
− 1> 2sin

B
2
− 1,

it follows that

(− sin 2A)
�

2sin
A
2
− 1

�

> (− sin 2A)
�

2sin
B
2
− 1

�

.

Therefore it suffices to

(− sin2A)
�

2 sin
B
2
− 1

�

+ sin2B
�

1− 2 sin
B
2

�

+ sin2C
�

1− 2 sin
C
2

�

≥ 0,

which is equivalent to

(sin 2A+ sin 2B)
�

1− 2 sin
B
2

�

+ sin2C
�

1− 2sin
C
2

�

≥ 0,

2 sin C cos(A− B)
�

1− 2sin
B
2

�

+ 2 sin C cos C
�

1− 2sin
C
2

�

≥ 0.

This inequality is true if

cos(A− B)
�

1− 2sin
B
2

�

+ cos C
�

1− 2sin
C
2

�

≥ 0,

which can be written as

cos C
�

1− 2 sin
C
2

�

≥ cos(A− B)
�

2 sin
B
2
− 1

�

.

Since
C < A− B <

2π
3
−
π

3
=
π

3
,

we have cos C > cos(A− B). Therefore, it suffices to show that

1− 2 sin
C
2
≥ 2 sin

B
2
− 1,

which is equivalent to

sin
B
2
+ sin

C
2
≤ 1,

2 sin
B + C

4
cos

B − C
4
≤ 1.

This is true since

2 sin
B + C

4
< 2 sin

π

8
< 1, cos

B − C
4

< 1.
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Remark 2. Replacing A, B and C in P 1.79 byπ−2A, π−2B andπ−2C , respectively,
we get the following inequality for an acute or right triangle ABC:

sin4A(2cos A− 1) + sin4B(2 cos B − 1) + sin4C(2 cos C − 1)≥ 0,

with equality for an equilateral triangle, for a triangle with A= π/2 and B = C =
π/4 (or any cyclic permutation), and for a degenerate triangle with A= 0 and and
B = C = π/2 (or any cyclic permutation).

P 1.80. If a, b, c, d are real numbers so that a+ b+ c + d = 4, then

a
a2 − a+ 4

+
b

b2 − b+ 4
+

c
c2 − c + 4

+
d

d2 − d + 4
≤ 1.

(Sqing, 2015)

Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d)≥ 4 f (s), s =
a+ b+ c + d

4
= 1,

where
f (u) =

−u
u2 − u+ 4

, u ∈ R.

We see that

f (u)− f (2) =
(u− 2)2

3(u2 − u+ 4
≥ 0.

From

f ′′(u) =
2(−u3 + 12u− 4)
(u2 − u+ 4)3

,

it follows that f is convex on [1, 2]. Define the function

f0(u) =







f (u), u≤ 2

f (2), u> 2 .

Since f0(u)≤ f (u) for u ∈ R and f0(1) = f (1), it suffices to show that

f0(a) + f0(b) + f0(c) + f0(d)≥ 4 f0(s).

The function f0 is convex on [1,∞) because it is differentiable on [1,∞) and its
derivative

f ′0(u) =







f ′(u), u≤ 2

0, u> 2
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is continuous and increasing on [1,∞). Therefore, by the RHCF-Theorem, we only
need to show that f0(x) + 3 f0(y) ≥ 4 f0(1) for all x , y ∈ R so that x ≤ 1 ≤ y and
x + 3y = 4. There are two cases to consider: y ≤ 2 and y > 2.

Case 1: y ≤ 2. The inequality f0(x) + 3 f0(y) ≥ 4 f0(1) is equivalent to f (x) +
3 f (y) ≥ 4 f (1). According to Note 1, this is true if h(x , y) ≥ 0 for x + 3y = 4. We
have

g(u) =
f (u)− f (1)

u− 1
=

u− 4
4(u2 − u+ 4)

,

h(x , y) =
g(x)− g(y)

x − y
=

4(x + y)− x y
4(x2 − x + 4)(y2 − y + 4)

=
3(y − 2)2 + 4

4(x2 − x + 4)(y2 − y + 4)
> 0.

Case 2: y > 2. From y > 2 and x + 3y = 4, we get x < −2 and

f0(x) + 3 f0(y)− 4 f0(1) = f (x) + 3 f (2)− 4 f (1) =
−x

x2 − x + 4
> 0.

The equality holds for a = b = c = d = 1.

P 1.81. Let a, b, c be nonnegative real numbers so that a+ b+ c = 2. If

k0 ≤ k ≤ 3, k0 =
ln 2

ln3− ln2
≈ 1.71,

then
ak(b+ c) + bk(c + a) + ck(a+ b)≤ 2.

Solution. Write the inequality as

f (a) + f (b) + f (c)≤ 2,

where
f (u) = uk(2− u), u ∈ [0,∞).

From
f ′′(u) = kuk−2[2k− 2− (k+ 1)u],

it follows that f is convex on
�

0,
2k− 2
k+ 1

�

and concave on
�

2k− 2
k+ 1

,2
�

. According

to LCRCF-Theorem, the sum f (a) + f (b) + f (c) is maximum when either a = 0 or
0< a ≤ b = c.
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Case 1: a = 0. We need to show that

bc(bk−1 + ck−1)≤ 2

for b+ c = 2. Since 0< (k− 1)/2≤ 1, Bernoulli’s inequality gives

bk−1 + ck−1 = (b2)(k−1)/2 + (c2)(k−1)/2 ≤ 1+
k− 1

2
(b2 − 1) + 1+

k− 1
2
(c2 − 1)

= 3− k+
k− 1

2
(b2 + c2).

Thus, it suffices to show that

(3− k)bc +
k− 1

2
bc(b2 + c2)≤ 2.

Since

bc ≤
�

b+ c
2

�2

= 1,

we only need to show that

3− k+
k− 1

2
bc(b2 + c2)≤ 2,

which is equivalent to
bc(b2 + c2)≤ 2.

Indeed, we have

8[2− bc(b2 + c2)] = (b+ c)4 − 8bc(b2 + c2) = (b− c)4 ≥ 0.

Case 2: 0< a ≤ b = c. We only need to prove the homogeneous inequality

ak(b+ c) + bk(c + a) + ck(a+ b)≤ 2
�

a+ b+ c
2

�k+1

for b = c = 1 and 0< a ≤ 1; that is,
�

1+
a
2

�k+1
− ak − a− 1≥ 0.

Since
�

1+
a
2

�k+1
is increasing and ak is decreasing with respect to k, it suffices

consider the case k = k0; that is, to prove that g(a)≥ 0, where

g(a) =
�

1+
a
2

�k0+1
− ak0 − a− 1, 0< a ≤ 1.

We have

g ′(a) =
k0 + 1

2

�

1+
a
2

�k0

− k0ak0−1 − 1,
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1
k0

g ′′(a) =
k0 + 1

4

�

1+
a
2

�k0−1
−

k0 − 1
a2−k0

.

Since g ′′ is increasing on (0,1], g ′′(0+) = −∞ and

1
k0

g ′′(1) =
k0 + 1

4

�

3
2

�k0−1

− k0 + 1=
k0 + 1

3
− k0 + 1=

2(2− k0)
3

> 0,

there exists a1 ∈ (0,1) so that g ′′(a1) = 0, g ′′(a) < 0 for a ∈ (0, a1), g ′′(a) > 0 for
a ∈ (a1, 1]. Therefore, g ′ is strictly decreasing on [0, a1] and strictly increasing on
[a1, 1]. Since

g ′(0) =
k0 − 1

2
> 0, g ′(1) =

k0 + 1
2

�

(3/2)k0 − 2
�

= 0,

there exists a2 ∈ (0, a1) so that g ′(a2) = 0, g ′(a) > 0 for a ∈ [0, a2), g ′(a) < 0
for a ∈ (a2, 1). Thus, g is strictly increasing on [0, a2] and strictly decreasing on
[a2, 1]. Consequently,

g(a)≥min{g(0), g(1)},

and from
g(0) = 0, g(1) = (3/2)k0+1 − 3= 0,

we get g(a)≥ 0.
The equality holds for a = 0 and b = c (or any cyclic permutation). If k = k0,

then the equality holds also for a = b = c.

P 1.82. If a1, a2, . . . , an are positive real numbers so that a1 + a2 + · · ·+ an = n, then

(n+ 1)2
�

1
a1
+

1
a2
+ · · ·+

1
an

�

≥ 4(n+ 2)(a2
1 + a2

2 + · · ·+ a2
n) + n(n2 − 3n− 6).

(Vasile C., 2006)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ n(n2 − 3n− 6),

where

f (u) =
(n+ 1)2

u
− 4(n+ 2)u2, u ∈ (0,∞).

From

f ′′(u) =
2(n+ 1)2

u3
− 8(n+ 2),

it follows that f is strictly convex on (0, c] and strictly concave on [c,∞), where

c = 3

√

√ (n+ 1)2

4(n+ 2)
.
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According to LCRCF-Theorem and Note 5, it suffices to consider the case

a1 = a2 = · · ·= an−1 = x , an = n− (n− 1)x , 0< x ≤ 1,

when the inequality becomes as follows:

(n+ 1)2
�

n− 1
x
+

1
an

�

≥ 4(n+ 2)[(n− 1)x2 + a2
n) + n(n2 − 3n− 6),

n(n− 1)(2x − 1)2[(n+ 2)(n− 1)x2 − (n+ 2)(2n− 1)x + (n+ 1)2]≥ 0.

The last inequality is true since

(n− 1)x2 − (2n− 1)x +
(n+ 1)2

n+ 2
= (n− 1)

�

x −
2n− 1
2n− 2

�2

+
3(n− 2)

4(n− 1)(n+ 2)
≥ 0.

The equality holds for

a1 = a2 = · · ·= an−1 =
1
2

, an =
n+ 1

2

(or any cyclic permutation).

P 1.83. If a, b, c, d, e are positive real numbers such that a+ b+ c + d + e = 5, then

27(
1
a
+

1
b
+

1
c
+

1
d
+

1
e
)≥ 4(a3 + b3 + c3 + d3 + e3) + 115.

(Vasile Cîrtoaje)

Proof. Write the inequality as

f (a) + f (b) + f (c) + f (d) + f (e)≥ 5 f (s), s =
a+ b+ c + d + e

5
= 1,

where
f (u) =

27
u
− 4u3, 0< u< 5.

From

f ′′(u) =
6(9− 4u4)

u3
,

it follows that f is convex on (0, 1]. According to LHCF-Theorem, it suffices to
prove that

f (x) + 4 f (y)≥ 5 f (1)

for x ≥ 1≥ y > 0 and x + 4y = 5. This occurs if h(x , y)≥ 0, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.
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Since
g(u) = −

27
u
− 4(u2 + u+ 1),

h(x , y) =
A(x , y)

x y
, A(x , y) = 27− 4x y(x + y + 1),

we need show that A(x , y)≥ 0. Indeed,

1
3

A(x , y) = 9− 4y(4y − 5)(y − 2) = 9− 40y + 52y2 − 16y3

= (1− 2y)2(9− 4y)≥ 0.

The equality holds for a = b = c = d = e = 1, and for a = 3 and b = c = d = e =
1/2 (or any cyclic permutation).

Generalization. If a1, a2, ..., an are positive real numbers such that

a1 + a2 + · · ·+ an = n,

then

(n+ 1)2(2n− 1)(
1
a1
+

1
a2
+ · · ·+

1
an
− n)≥ 27(n− 1)2(a3

1 + a3
2 + · · ·+ a3

n − n),

with equality for a1 = a2 = · · ·= an = 1, and for

a1 =
2n− 1

3
, a2 = · · ·= an =

n+ 1
3(n− 1)

(or any cyclic permutation).

P 1.84. If a, b, c are nonnegative real numbers so that a+ b+ c = 12, then

(a2 + 10)(b2 + 10)(c2 + 10)≥ 13310.

(Vasile C., 2006)

Solution. Write the inequality as

f (a) + f (b) + f (c)≥ 2 ln 11+ ln110,

where
f (u) = ln(u2 + 10), u ∈ [0,12].

From

f ′′(u) =
2(10− u2)
(u2 + 10)2

,
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it follows that f is convex on [0,
p

10] and concave on [
p

10, 12]. According to
LCRCF-Theorem, the sum f (a) + f (b) + f (c) is minimum when a = b ≤ c. There-
fore, it suffices to prove that g(a)≥ 0, where

g(a) = 2 f (a) + f (c)− 2 ln 11− ln110, c = 12− 2a, a ∈ [0, 4].

Since c′(a) = −2, we have

g ′(a) = 2 f ′(a)− 2 f ′(c) = 4
� a

a2 + 10
−

c
c2 + 10

�

=
4(a− c)(10− ac)
(a2 + 10)(c2 + 10)

=
24(4− a)(5− a)(a− 1)
(a2 + 10)(c2 + 10)

.

Therefore, g ′(a) < 0 for a ∈ [0, 1) and g ′(a) > 0 for a ∈ (1,4), hence g is strictly
decreasing on [0,1] and strictly increasing on [1,4]. Thus, we have

g(a)≥ g(1) = 0.

The equality holds for a = b = 1 and c = 10 (or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be nonnegative real numbers so that a1+a2+· · ·+an = 2n(n−1).
If k = (n− 1)(2n− 1), then

(a2
1 + k)(a2

2 + k) · · · (a2
n + k)≥ k(k+ 1)n,

with equality for a1 = k and a2 = · · ·= an = 1 (or any cyclic permutation).

P 1.85. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n,
then

(a2
1 + 1)(a2

2 + 1) · · · (a2
n + 1)≥

(n2 − 2n+ 2)n

(n− 1)2n−2
.

(Vasile C., 2006)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ ln k, k =
(n2 − 2n+ 2)n

(n− 1)2n−2
,

where
f (u) = ln(u2 + 1), u ∈ [0, n].

From

f ′′(u) =
2(1− u2)
(u2 + 1)2

,
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it follows that f is strictly convex on [0, 1] and strictly concave on [1, n]. According
to LCRCF-Theorem, it suffices to consider the case a1 = a2 = · · · = an−1 ≤ an; that
is, to show that g(x)≥ 0, where

g(x) = (n− 1) f (x) + f (y)− ln k, y = n− (n− 1)x , x ∈ [0, 1].

Since y ′(x) = −(n− 1), we get

g ′(x) = (n− 1) f ′(x)− (n− 1) f ′(y) = (n− 1)[ f ′(x)− f ′(y)]

= 2(n− 1)
�

x
x2 + 1

−
y

y2 + 1

�

=
2(n− 1)(x − y)(1− x y)
(x2 + 1)(y2 + 1)

=
2n(n− 1)(x − 1)2[(n− 1)x − 1]

(x2 + 1)(y2 + 1)
.

Therefore, g ′(x) ≤ 0 for x ∈
�

0,
1

n− 1

�

and g ′(x) ≥ 0 for x ∈
�

1
n− 1

, n
�

, hence g

is decreasing on
�

0,
1

n− 1

�

and increasing on
�

1
n− 1

,1
�

. Since g
�

1
n− 1

�

= 0, the

conclusion follows.
The equality holds for a1 = a2 = · · ·= an−1 =

1
n− 1

and an = n−1 (or any cyclic

permutation).

P 1.86. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(a2 + 2)(b2 + 2)(c2 + 2)≤ 44.

(Vasile C., 2006)

Solution. Write the inequality as

f (a) + f (b) + f (c)≤ ln 44,

where
f (u) = ln(u2 + 2), u ∈ [0,3].

From

f ′′(u) =
2(2− u2)
(u2 + 2)2

,

it follows that f is strictly convex on [0,
p

2] and strictly concave on [
p

2,3]. Ac-
cording to LCRCF-Theorem, the sum f (a)+ f (b)+ f (c) is maximum for either a = 0
or 0< a ≤ b = c.

Case 1: a = 0. We need to show that b+ c = 3 involves

(b2 + 2)(c2 + 2)≤ 22,
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which is equivalent to
bc(bc − 4)≤ 0.

This is true because

bc ≤
�

b+ c
2

�2

=
9
4
< 4.

Case 2: 0< a ≤ b = c. We need to show that a+ 2b = 3 (0< a ≤ 1) involves

(a2 + 2)(b2 + 2)2 ≤ 44,

which is equivalent to g(a)≤ 0, where

g(a) = ln(a2 + 2) + 2 ln(b2 + 2)− ln44, b =
3− a

2
, a ∈ (0, 1].

Since b′(a) = −1/2, we have

g ′(a) =
2a

a2 + 2
−

2b
b2 + 2

=
2(a− b)(2− ab)
(a2 + 2)(b2 + 2)

=
3(a− 1)(a2 − 3a+ 4)

2(a2 + 2)(b2 + 2)
.

Because
a2 − 3a+ 4= (a− 2)2 + a > 0,

we have g ′(a) < 0 for a ∈ (0,1), g is strictly decreasing on [0, 1], hence it suffices
to show that g(0)≤ 0. This reduces to 16 · 22≥ 172, which is true because

16 · 22− 172 = 63> 0.

The equality holds for a = b = 0 and c = 3 (or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If k ≥
9
8

, then

(a2 + k)(b2 + k)(c2 + k)≤ k2(k+ 9),

with equality for a = b = 0 and c = 3 (or any cyclic permutation). If k = 9/8, then
the equality holds also for a = 0 and b = c = 3/2 (or any cyclic permutation).

P 1.87. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(a2 + 1)(b2 + 1)(c2 + 1)≤
169
16

.

(Vasile C., 2006)
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Solution. Write the inequality as

f (a) + f (b) + f (c)≤ ln169− ln16,

where
f (u) = ln(u2 + 1), u ∈ [0,3].

From

f ′′(u) =
2(1− u2)
(u2 + 1)2

,

it follows that f is strictly convex on [0,1] and strictly concave on [1,3]. According
to LCRCF-Theorem, it suffices to consider the cases a = 0 and 0< a ≤ b = c.

Case 1: a = 0. We need to show that b+ c = 3 involves

(b2 + 1)(c2 + 1)≤
169
16

,

which is equivalent to
(4bc + 1)(4bc − 9)≤ 0.

This is true because
4bc ≤ (b+ c)2 = 9.

Case 2: 0< a ≤ b = c. We need to show that a+ 2b = 3 (0< a ≤ 1) involves

(a2 + 1)(b2 + 1)2 ≤
169
16

,

which is equivalent to g(a)≤ 0, where

g(a) = ln(a2 + 1) + 2 ln(b2 + 1)− ln169+ ln 16, b =
3− a

2
, a ∈ (0,1].

Since b′(a) = −1/2, we have

g ′(a) =
2a

a2 + 1
−

2b
b2 + 1

=
2(a− b)(1− ab)
(a2 + 1)(b2 + 1)

=
3(a− 1)2(a− 2)
2(a2 + 1)(b2 + 1)

≤ 0,

hence g is strictly decreasing. Consequently, we have

g(a)< g(0) = 0.

The equality holds for a = 0 and b = c = 3/2 (or any cyclic permutation).
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P 1.88. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(2a2 + 1)(2b2 + 1)(2c2 + 1)≤
121

4
.

(Vasile C., 2006)

Solution. Write the inequality as

f (a) + f (b) + f (c)≤ ln 121− ln4,

where
f (u) = ln(2u2 + 1), u ∈ [0, 3].

From

f ′′(u) =
4(1− 2u2)
(2u2 + 1)2

,

it follows that f is strictly convex on [0,1/
p

2] and strictly concave on [1/
p

2,3].
By LCRCF-Theorem, it suffices to consider the cases a = 0 and 0< a ≤ b = c.

Case 1: a = 0. We need to show that b+ c = 3 involves

(2b2 + 1)(2c2 + 1)≤
121

4
,

which is equivalent to
(4bc + 5)(4bc − 9)≤ 0.

This is true because
4bc ≤ (b+ c)2 = 9.

Case 2: 0< a ≤ b = c. We need to show that a+ 2b = 3 (0< a ≤ 1) involves

(2a2 + 1)(2b2 + 1)2 ≤
121

4
,

which is equivalent to g(a)≤ 0, where

g(a) = ln(2a2 + 1) + 2 ln(2b2 + 1)− ln121+ ln 4, b =
3− a

2
, a ∈ (0, 1].

Since b′(a) = −1/2, we have

g ′(a) =
4a

2a2 + 1
−

4b
2b2 + 1

=
4(a− b)(1− 2ab)
(2a2 + 1)(2b2 + 1)

=
6(a− 1)(a2 − 3a+ 1)
(2a2 + 1)(2b2 + 1)

=
3(1− a)(3+

p
5− 2a)(2a− 3+

p
5)

2(2a2 + 1)(2b2 + 1)
,
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hence g ′
�

3−
p

5
2

�

= 0, g ′(a)< 0 for a ∈
�

0,
3−
p

5
2

�

, g ′(a)> 0 for a ∈
�

3−
p

5
2

,1

�

.

Therefore, g is strictly decreasing on

�

0,
3−
p

5
2

�

and strictly increasing on

�

3−
p

5
2

,1

�

.

Since g(0) = 0, it suffices to show that g(1)≤ 0, which reduces to 27 · 4≤ 121.
The equality holds for a = 0 and b = c = 3/2 (or any cyclic permutation).

P 1.89. If a, b, c are nonnegative real numbers so that a+ b+ c ≥ k0, where

k0 =
3
8

Æ

66+ 10
p

105≈ 4.867,

then
3
Æ

(a2 + 1)(b2 + 1)(c2 + 1)≤
�

a+ b+ c
3

�2

+ 1.

(Vasile C., 2018)

Solution. Consider first the case a+ b+ c = k0, and write the inequality as

f (a) + f (b) + f (c)≥ 3 f (s), s =
a+ b+ c

3
=

k0

3
,

where
f (u) = − ln(u2 + 1), u ∈ [0, k0].

For u ∈ [s, k0], f (u) is convex because

f ′′(u) =
6(3u2 − 1)
(3u2 + 1)2

> 0.

By the RHCF-Theorem, we only need to show that

f (x) + 2 f (y)≥ 3 f (s)

for 0≤ x ≤ s ≤ y so that x + 2y = 3s; that is, to show that g(x)≥ 0 for x ∈ [0, s],
where

g(x) = f (x) + 2 f (y)− 3 f (s), y =
k0 − x

2
.

Since y ′(x) = −1/3, we have

g ′(x) = f ′(x) + 2y ′ f ′(y) =
−2x

x2 + 1
+

2y
y2 + 1

=
2(x − y)(x y − 1)
(x2 + 1)(y2 + 1)

=
3(s− x)(x2 − k0 x + 2)

2(x2 + 1)(y2 + 1)
.
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Since g is increasing on [0, s1] and decreasing on [s1, s], where s1 =
k0 −

Æ

k2
0 − 8

2
,

it suffices to show that g(0) ≥ 0 and g(s) ≥ 0. These inequalities are true because
g(0) = 0 and g(s) = 0. The equality g(0) = 0 is equivalent to

3
Æ

(y2 + 1)2 =
�

2y
3

�2

+ 1,

where y =
k0

2
.

According to RHCF-Theorem, if the inequality

f (a) + f (b) + f (c)≥ 3 f
�

a+ b+ c
3

�

holds for a+ b+ c = k0, then it holds for a+ b+ c > k0, too.
The equality holds for a = b = c. In addition, for a + b + c = k0, the equality

occurs again for a = 0 and b = c = k0/2 (or any cyclic permutation).

P 1.90. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 4, then

(a2 + 3)(b2 + 3)(c2 + 3)(d2 + 3)≤ 513.

(Vasile C., 2006)

Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d)≤ ln 513,

where
f (u) = ln(u2 + 3), u ∈ [0,4].

From

f ′′(u) =
2(3− u2)
(u2 + 3)2

,

it follows that f is strictly convex on [0,
p

3] and strictly concave on [
p

3,4]. By
LCRCF-Theorem, it suffices to consider the cases a = 0 and 0< a ≤ b = c.

Case 1: a = 0. We need to show that b+ c + d = 4 involves

(b2 + 3)(c2 + 3)(d2 + 3)≤ 171.

Substituting b, c, d by 4b/3,4c/3,4d/3, respectively, we need to show that b+ c+
d = 3 involves

(b2 + k)(c2 + k)(d2 + k)≤ k2(k+ 9),
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where k = 27/16. According to Remark from the proof of P 1.86, this inequality
holds for all k ≥ 9/8.

Case 2: 0< a ≤ b = c = d. We need to show that a+ 3b = 4 (0< a ≤ 1) involves

(a2 + 3)(b2 + 3)3 ≤ 513,

which is equivalent to g(a)≤ 0, where

g(a) = ln(a2 + 3) + 3 ln(b2 + 3)− ln513, b =
4− a

3
, a ∈ (0,1].

Since b′(a) = −1/3, we have

g ′(a) =
2a

a2 + 3
−

2b
b2 + 3

=
2(a− b)(3− ab)
(a2 + 3)(b2 + 3)

=
8(a− 1)(a2 − 4a+ 9)

9(a2 + 3)(b2 + 3)
.

Because
a2 − 4a+ 9= (a− 2)2 + 5> 0,

we have g ′(a) > 0 for a ∈ [0, 1), g is strictly decreasing on [0, 1], hence it suffices
to show that g(0) ≤ 0. This reduces to show that the original inequality holds for
a = 0 and b = c = d = 4/3, which follows immediately from the case 1.

The equality holds for a = b = c = 0 and d = 4 (or any cyclic permutation).

P 1.91. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 4, then

(a2 + 2)(b2 + 2)(c2 + 2)(d2 + 2)≤ 144.

(Vasile C., 2006)

Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d)≤ ln 144,

where
f (u) = ln(u2 + 2), u ∈ [0,4].

From

f ′′(u) =
2(2− u2)
(u2 + 2)2

,

it follows that f is strictly convex on [0,
p

2] and strictly concave on [
p

2,4]. By
LCRCF-Theorem, it suffices to consider the cases a = 0 and 0< a ≤ b = c.
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Case 1: a = 0. We need to show that b+ c + d = 4 involves

(b2 + 2)(c2 + 2)(d2 + 2)≤ 72.

Substituting b, c, d by 4b/3,4c/3,4d/3, respectively, we need to show that b+ c+
d = 3 involves

(8b2 + 9)(8c2 + 9)(8d2 + 9)≤ 94.

This is true according to Remark from the proof of P 1.86.

Case 2: 0< a ≤ b = c = d. We need to show that a+ 3b = 4 (0< a ≤ 1) involves

(a2 + 2)(b2 + 2)3 ≤ 144,

which is equivalent to g(a)≤ 0, where

g(a) = ln(a2 + 2) + 3 ln(b2 + 2)− ln144, b =
4− a

3
, a ∈ (0,1].

Since b′(a) = −1/3, we have

g ′(a) =
2a

a2 + 2
−

2b
b2 + 2

=
2(a− b)(2− ab)
(a2 + 2)(b2 + 2)

=
8(a− 1)(a2 − 4a+ 6)

9(a2 + 2)(b2 + 2)
.

Because
a2 − 4a+ 6= (a− 2)2 + 2> 0,

we have g ′(a) > 0 for a ∈ [0, 1), g is strictly decreasing on [0, 1], hence it suffices
to show that g(0) ≤ 0. This reduces to show that the original inequality holds for
a = 0 and b = c = d = 4/3, which follows immediately from the case 1.

The equality holds for a = b = c = 0 and d = 4 (or any cyclic permutation), and
also for a = b = 0 and c = d = 2 (or any permutation).

P 1.92. If a, b, c, d are nonnegative real numbers such that

a+ b+ c + d = 4,

then
a

3a3 + 2
+

b
3b3 + 2

+
c

3c3 + 2
+

d
3d3 + 2

≤
4
5

.

(Vasile Cîrtoaje, 2019)
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Solution. Consider the function

f (u) =
−u

3u3 + 2
: I= [0,4].

Since

f ′′(u) =
18u2(4− 3u3)
(3u3 + 2)3

is positive for u ∈ [0,1], f is left convex on I≤1. According to LHCF-Theorem and
Note 1, it is enough to show that h(x , y)≥ 0 for x , y ∈ [0, 4] such that x +3y = 4.
We have

g(u) =
f (u)− f (1)

u− 1
=

3u2 + 3u− 2
3u3 + 2

,

h(x , y) =
g(x)− g(y)

x − y
=

2F(x , y)
(3x3 + 2)(3y3 + 2)

,

where

F(x , y) = 2(x2 + x y + y2) + 2(x + y) + 2− 3x2 y2 − 3x y(x + y).

From
4= x + 3y ≥ 2

p

3x y ,

we get 3x y ≤ 4. Thus, we have

F(x , y)≥ 2(x2 + x y + y2) + 2(x + y) + 2− 4x y − 4(x + y) = 26(y − 1)2 ≥ 0.

The proof is completed. The equality occurs for a = b = c = d = 1.

P 1.93. If a1, a2, ..., an are nonnegative real numbers such that a1+ a2+ · · ·+ an = 1,
then

a3
1 + a3

2 + · · ·+ a3
n ≤

1
8
+ a4

1 + a4
2 + · · ·+ a4

n.

(Vasile C., 2018)

Solution. We use the induction method. For n= 2, denoting

a1a2 = p, p ≤ 1/4,

we have
a3

1 + a3
2 = (a1 + a2)

3 − 3a1a2(a1 + a2) = 1− 3p,

a4
1 + a4

2 = (a
2
1 + a2

2)
2 − 2a2

1a2
2 = 2p2 − 4p+ 1,

and the inequality is equivalent to

(4p− 1)2 ≥ 0.
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Consider further that n≥ 3, a1 ≤ a2 ≤ · · · ≤ an, and write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≤
1
8

,

where
f (u) = u3 − u4, u ∈ [0, 1].

From
f ′′(u) = 6u(1− 2u),

it follows that f is strictly convex on [0,1/2] and strictly concave on [1/2, 1]. By
LCRCF-Theorem, it suffices to consider the cases a1 = 0 and 0< a1 ≤ a2 = · · ·= an.

Case 1: a1 = 0. The inequality follows by the induction hypothesis.
Case 2: 0< a1 ≤ a2 = · · ·= an. We only need to prove the homogeneous inequality

8(a4
1 + a4

2 + · · ·+ a4
n)+ (a1+ a2+ · · ·+ an)

4 ≥ 8(a1+ a2+ · · ·+ an)(a
3
1 + a3

2 + · · ·+ a3
n)

for a1 = x and a2 = · · ·= an−1 = 1, that is

8(x4 + n− 1) + (x + n− 1)4 ≥ 8(x + n− 1)(x3 + n− 1),

x4−4(n−1)x3+6(n−1)2 x2+4(n−1)(n2−2n−1)x +(n−3)(n−1)(n2−5)≥ 0,

x2(x −2n+2)2+2(n−1)2 x2+4(n−1)(n2−2n−1)x +(n−3)(n−1)(n2−5)≥ 0.

The equality holds for a1 = · · · = an−2 = 0 and an−1 = an = 1/2 (or any permuta-
tion).

Remark. The inequality can be also proved by using EV-method (see Corollary 5
from section 5, case k = 3 and m= 4): If

a1 + a2 + · · ·+ an = 1, a3
1 + a3

2 + · · ·+ a3
n = constant,

then the sum
Sn = a4

1 + a4
2 + · · ·+ a4

n

is minimum for either a1 = 0 or 0< a1 ≤ a2 = · · ·= an.



Chapter 2

Half Convex Function Method for
Ordered Variables

2.1 Theoretical Basis

The following statement is known as the Right Half Convex Function Theorem for
Ordered Variables (RHCF-OV Theorem).

RHCF-OV Theorem (Vasile Cîrtoaje, 2008). Let f be a real function defined on an
interval I and convex on I≥s, where s ∈ int(I). The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

and
a1 ≤ a2 ≤ · · · ≤ am ≤ s, m ∈ {1,2, . . . , n− 1},

if and only if
f (x) + (n−m) f (y)≥ (1+ n−m) f (s)

for all x , y ∈ I so that

x ≤ s ≤ y, x + (n−m)y = (1+ n−m)s.

Proof. For
a1 = x , a2 = · · ·= am = s, am+1 = · · ·= an = y,

the inequality
f (a1) + f (a2) + · · ·+ f (an)≥ nf (s)

becomes
f (x) + (n−m) f (y)≥ (1+ n−m) f (s);

147
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thus, the necessity is proved. To prove the sufficiency, we assume that

a1 ≤ a2 ≤ · · · ≤ an.

From a1 ≤ a2 ≤ · · · ≤ am ≤ s, it follows that there is an integer

k ∈ {m, m+ 1, . . . , n− 1}

so that
a1 ≤ · · · ≤ ak ≤ s ≤ ak+1 ≤ · · · ≤ an.

Since f is convex on I≥s, we may apply Jensen’s inequality to get

f (ak+1) + · · ·+ f (an)≥ (n− k) f (z),

where
z =

ak+1 + · · ·+ an

n− k
, z ∈ I.

Therefore, to prove the desired inequality

f (a1) + f (a2) + · · ·+ f (an)≥ f (s),

it suffices to show that

f (a1) + · · ·+ f (ak) + (n− k) f (z)≥ nf (s). (*)

Let b1, . . . , bk be defined by

ai + (n−m)bi = (1+ n−m)s, i = 1, . . . , k.

We claim that
z ≥ b1 ≥ · · · ≥ bk ≥ s, b1, . . . , bk ∈ I.

Indeed, we have
b1 ≥ · · · ≥ bk,

bk − s =
s− ak

n−m
≥ 0,

and
z ≥ b1

because

(n−m)b1 = (1+ n−m)s− a1

= −(m− 1)s+ (a2 + · · ·+ ak) + (ak+1 + · · ·+ an)
≤ −(m− 1)s+ (k− 1)s+ (ak+1 + · · ·+ an) =
= (k−m)s+ (n− k)z ≤ (n−m)z.
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Since b1, . . . , bk ∈ I≥s, by hypothesis we have

f (a1) + (n−m) f (b1)≥ (1+ n−m) f (s),

· · ·

f (ak) + (n−m) f (bk)≥ (1+ n−m) f (s),

hence

f (a1) + · · ·+ f (ak) + (n−m)[ f (b1) + · · ·+ f (bk)]≥ k(1+ n−m) f (s),

f (a1) + · · ·+ f (ak)≥ k(1+ n−m) f (s)− (n−m)[ f (b1) + · · ·+ f (bk)].

According to this result, the inequality (*) is true if

k(1+ n−m) f (s)− (n−m)[ f (b1) + · · ·+ f (bk)] + (n− k) f (z)≥ nf (s),

which is equivalent to

p f (z) + (k− p) f (s)≥ f (b1) + · · ·+ f (bk), p =
n− k
n−m

≤ 1.

By Jensen’s inequality, we have

p f (z) + (1− p) f (s)≥ f (w), w= pz + (1− p)s ≥ s.

Thus, we only need to show that

f (w) + (k− 1) f (s)≥ f (b1) + · · ·+ f (bk).

Since the decreasingly ordered vector ~Ak = (w, s, . . . , s) majorizes the decreasingly
ordered vector ~Bk = (b1, b2, . . . , bk), this inequality follows from Karamata’s in-
equality for convex functions.

Similarly, we can prove the Left Half Convex Function Theorem for Ordered Vari-
ables (LHCF-OV Theorem).

LHCF-OV Theorem. Let f be a real function defined on an interval I and convex on
I≤s, where s ∈ int(I). The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

and
a1 ≥ a2 ≥ · · · ≥ am ≥ s, m ∈ {1,2, . . . , n− 1},
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if and only if
f (x) + (n−m) f (y)≥ (1+ n−m) f (s)

for all x , y ∈ I so tht

x ≥ s ≥ y, x + (n−m)y = (1+ n−m)s.

From the RHCF-OV Theorem and the LHCF-OV Theorem, we find the HCF-OV
Theorem (Half Convex Function Theorem for Ordered Variables).

HCF-OV Theorem. Let f be a real function defined on an interval I and convex on
I≥s (or I≤s), where s ∈ int(I). The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I so that

a1 + a2 + · · ·+ an = ns

and at least m of a1, a2, . . . , an are smaller (greater) than s, where m ∈ {1, 2, . . . , n−1},
if and only if

f (x) + (n−m) f (y)≥ (1+ n−m) f (s)

for all x , y ∈ I satisfying x + (n−m)y = (1+ n−m)s.

The RHCF-OV Theorem, the LHCF-OV Theorem and the HCF-OV Theorem are
respectively generalizations of the RHCF-Theorem, the LHCF Theorem and the HCF-
Theorem, because the last theorems can be obtained from the first theorems for
m= 1.

Note 1. Let us denote

g(u) =
f (u)− f (s)

u− s
, h(x , y) =

g(x)− g(y)
x − y

.

In many applications, it is useful to replace the hypothesis

f (x) + (n−m) f (y)≥ (1+ n−m) f (s)

in the RHCF-OV Theorem and the LHCF-OV Theorem by the equivalent condition

h(x , y)≥ 0 for all x , y ∈ I so that x + (n−m)y = (1+ n−m)s.

This equivalence is true since

f (x) + (n−m) f (y)− (1+ n−m) f (s) = [ f (x)− f (s)] + (n−m)[ f (y)− f (s)]
= (x − s)g(x) + (n−m)(y − s)g(y)

=
n−m

1+ n−m
(x − y)[g(x)− g(y)]

=
n−m

1+ n−m
(x − y)2h(x , y).
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Note 2. Assume that f is differentiable on I, and let

H(x , y) =
f ′(x)− f ′(y)

x − y
.

The desired inequality of Jensen’s type in the RHCF-OV Theorem and the LHCF-OV
Theorem holds true by replacing the hypothesis

f (x) + (n−m) f (y)≥ (1+ n−m) f (s)

with the more restrictive condition

H(x , y)≥ 0 for all x , y ∈ I so that x + (n−m)y = (1+ n−m)s.

To prove this, we will show that the new condition implies

f (x) + (n−m) f (y)≥ (1+ n−m) f (s)

for all x , y ∈ I so that x + (n−m)y = (1+ n−m)s. Write this inequality as

f1(x)≥ (1+ n−m) f (s),

where

f1(x) = f (x) + (n−m) f
�

(1+ n−m)s− x
n−m

�

.

From

f ′1(x) = f ′(x)− f ′
�

(1+ n−m)s− x
n−m

�

= f ′(x)− f ′(y)

=
1+ n−m

n−m
(x − s)H(x , y),

it follows that f1 is decreasing on I≤s and increasing on I≥s; therefore,

f1(x)≥ f1(s) = (1+ n−m) f (s).

Note 3. The RHCF-OV Theorem and the LHCF-OV Theorem are also valid in the
case when f is defined on I \ {u0}, where u0 ∈ I<s for the RHCF-OV Theorem, and
u0 ∈ I>s for the LHCF-OV Theorem.

Note 4. The desired inequalities in the RHCF-OV Theorem and the LHCF-OV The-
orem become equalities for

a1 = a2 = · · ·= an = s.

In addition, if there exist x , y ∈ I so that

x + (n−m)y = (1+ n−m)s, f (x) + (n−m) f (y) = (1+ n−m) f (s), x 6= y,
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then the equality holds also for

a1 = x , a2 = · · ·= am = s, am+1 = · · ·= an = y

Notice that these equality conditions are equivalent to

x + (n−m)y = (1+ n−m)s, h(x , y) = 0

(x < y for the RHCF-OV Theorem, and x > y for the LHCF-OV Theorem).

Note 5. The WRHCF-OV Theorem and the WLHCF-OV Theorem are extensions of
the weighted Jensen’s inequality to right and left half convex functions with ordered
variables (Vasile Cirtoaje, 2008).

WRHCF-OV Theorem. Let p1, p2, . . . , pn be positive real numbers so that

p1 + p2 + · · ·+ pn = 1,

and let f be a real function defined on an interval I and convex on I≥s, where s ∈ int(I).
The inequality

p1 f (x1) + p2 f (x2) + · · ·+ pn f (xn)≥ f (p1 x1 + p2 x2 + · · ·+ pn xn)

holds for all x1, x2, . . . , xn ∈ I so that p1 x1 + p2 x2 + · · ·+ pn xn = s and

x1 ≤ x2 ≤ · · · ≤ xn, xm ≤ s, m ∈ {1, 2, . . . , n− 1},

if and only if
f (x) + k f (y)≥ (1+ k) f (s)

for all x , y ∈ I satisfying

x ≤ s ≤ y, x + k y = (1+ k)s,

where
k =

pm+1 + pm+2 + · · ·+ pn

p1
.

WLHCF-OV Theorem. Let p1, p2, . . . , pn be positive real numbers so that

p1 + p2 + · · ·+ pn = 1,

and let f be a real function defined on an interval I and convex on I≤s, where s ∈ int(I).
The inequality

p1 f (x1) + p2 f (x2) + · · ·+ pn f (xn)≥ f (p1 x1 + p2 x2 + · · ·+ pn xn)

holds for all x1, x2, . . . , xn ∈ I so that p1 x1 + p2 x2 + · · ·+ pn xn = s and

x1 ≥ x2 ≥ · · · ≥ xn, xm ≥ s, m ∈ {1, 2, . . . , n− 1},
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if and only if
f (x) + k f (y)≥ (1+ k) f (s)

for all x , y ∈ I satisfying

x ≥ s ≥ y, x + k y = (1+ k)s,

where
k =

pm+1 + pm+2 + · · ·+ pn

p1
.
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2.2 Applications

2.1. If a, b, c, d are real numbers so that

a ≤ b ≤ 1≤ c ≤ d, a+ b+ c + d = 4,

then

(3a2 − 2)(a− 1)2 + (3b2 − 2)(b− 1)2 + (3c2 − 2)(c − 1)2 + (3d2 − 2)(d − 1)2 ≥ 0.

2.2. If a, b, c, d are nonnegative real numbers so that

a ≥ b ≥ 1≥ c ≥ d, a+ b+ c + d = 4,

then
1

2a3 + 5
+

1
2b3 + 5

+
1

2c3 + 5
+

1
2d3 + 5

≤
4
7

.

2.3. If

−2n− 1
n− 1

≤ a1 ≤ · · · ≤ an ≤ 1≤ an+1 ≤ · · · ≤ a2n, a1 + a2 + · · ·+ a2n = 2n,

then
a3

1 + a3
2 + · · ·+ a3

2n ≥ 2n.

2.4. Let a1, a2, . . . , an (n≥ 3) be real numbers so that a1+ a2+ · · ·+ an = n. Prove
that

(a) if −3≤ a1 ≤ · · · ≤ an−2 ≤ 1≤ an−1 ≤ an, then

a3
1 + a3

2 + · · ·+ a3
n ≥ a2

1 + a2
2 + · · ·+ a2

n;

(b) if −
n− 1
n− 3

≤ a1 ≤ a2 ≤ 1≤ · · · ≤ an, then

a3
1 + a3

2 + · · ·+ a3
n + n≥ 2(a2

1 + a2
2 + · · ·+ a2

n).

2.5. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · · + an = n
and let m ∈ {1, 2, . . . , n− 1}. Prove that

(a) if a1 ≤ a2 ≤ · · · ≤ am ≤ 1, then

(n−m)(a3
1 + a3

2 + · · ·+ a3
n − n)≥ (2n− 2m+ 1)(a2

1 + a2
2 + · · ·+ a2

n − n);

(b) if a1 ≥ a2 ≥ · · · ≥ am ≥ 1, then

a3
1 + a3

2 + · · ·+ a3
n − n≤ (n−m+ 2)(a2

1 + a2
2 + · · ·+ a2

n − n).
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2.6. Let a1, a2, . . . , an (n≥ 3) be real numbers so that a1 + a2 + · · ·+ an = n. Prove
that

(a) if a1 ≤ · · · ≤ an−1 ≤ 1≤ an, then

a4
1 + a4

2 + · · ·+ a4
n − n≥ 6(a2

1 + a2
2 + · · ·+ a2

n − n);

(b) if a1 ≤ · · · ≤ an−2 ≤ 1≤ an−1 ≤ an, then

a4
1 + a4

2 + · · ·+ a4
n − n≥

14
3
(a2

1 + a2
2 + · · ·+ a2

n − n);

(c) if a1 ≤ a2 ≤ 1≤ a3 ≤ · · · ≤ an, then

a4
1 + a4

2 + · · ·+ a4
n − n≥

2(n2 − 3n+ 3)
n2 − 5n+ 7

(a2
1 + a2

2 + · · ·+ a2
n − n).

2.7. Let a, b, c, d, e be nonnegative real numbers so that a+ b+ c+d+ e = 5. Prove
that

(a) if a ≥ b ≥ 1≥ c ≥ d ≥ e, then

21(a2 + b2 + c2 + d2 + e2)≥ a4 + b4 + c4 + d4 + e4 + 100;

(b) if a ≥ b ≥ c ≥ 1≥ d ≥ e, then

13(a2 + b2 + c2 + d2 + e2)≥ a4 + b4 + c4 + d4 + e4 + 60.

2.8. Let a1, a2, . . . , an (n≥ 3) be nonnegative numbers so that a1+a2+ · · ·+an = n.
Prove that

(a) if a1 ≥ · · · ≥ an−1 ≥ 1≥ an, then

7(a3
1 + a3

2 + · · ·+ a3
n)≥ 3(a4

1 + a4
2 + · · ·+ a4

n) + 4n;

(b) if a1 ≥ · · · ≥ an−2 ≥ 1≥ an−1 ≥ an, then

13(a3
1 + a3

2 + · · ·+ a3
n)≥ 4(a4

1 + a4
2 + · · ·+ a4

n) + 9n.

2.9. If a1, a2, . . . , an are positive real numbers so that a1 + a2 + · · ·+ an = n and

a1 ≥ · · · ≥ am ≥ 1≥ am+1 ≥ · · · ≥ an, m ∈ {1,2, . . . , n− 1},

then

(n−m+ 1)2
�

1
a1
+

1
a2
+ · · ·+

1
an
− n

�

≥ 4(n−m)(a2
1 + a2

2 + · · ·+ a2
n − n).
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2.10. If a1, a2, . . . , an are positive real numbers so that
1
a1
+

1
a2
+ · · ·+

1
an
= n and

a1 ≤ · · · ≤ am ≤ 1≤ am+1 ≤ · · · ≤ an, m ∈ {1, 2, . . . , n− 1},

then

a2
1 + a2

2 + · · ·+ a2
n − n≥ 2

�

1+
p

n−m
n−m+ 1

�

(a1 + a2 + · · ·+ an − n).

2.11. Let a1, a2, . . . , an (n≥ 3) be nonnegative numbers so that a1+a2+· · ·+an = n.
Prove that

(a) if a1 ≤ · · · ≤ an−1 ≤ 1≤ an, then

1
a2

1 + 2
+

1
a2

2 + 2
+ · · ·+

1
a2

n + 2
≥

n
3

;

(b) if a1 ≤ · · · ≤ an−2 ≤ 1≤ an−1 ≤ an, then

1
2a2

1 + 3
+

1
2a2

2 + 3
+ · · ·+

1
2a2

n + 3
≥

n
5

.

2.12. If a1, a2, . . . , a2n are nonnegative real numbers so that

a1 ≥ · · · ≥ an ≥ 1≥ an+1 ≥ · · · ≥ a2n, a1 + a2 + · · ·+ a2n = 2n,

then

1
na2

1 + n2 + n+ 1
+

1
na2

2 + n2 + n+ 1
+ · · ·+

1
na2

2n + n2 + n+ 1
≤

2n
(n+ 1)2

.

2.13. If a, b, c, d, e, f are nonnegative real numbers so that

a ≥ b ≥ c ≥ 1≥ d ≥ e ≥ f , a+ b+ c + d + e+ f = 6,

then

3a+ 4
3a2 + 4

+
3b+ 4
3b2 + 4

+
3c + 4
3c2 + 4

+
3d + 4
3d2 + 4

+
3e+ 4
3e2 + 4

+
3 f + 4
3 f 2 + 4

≤ 6.
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2.14. If a, b, c, d, e, f are nonnegative real numbers so that

a ≥ b ≥ 1≥ c ≥ d ≥ e ≥ f , a+ b+ c + d + e+ f = 6,

then

a2 − 1
(2a+ 7)2

+
b2 − 1
(2b+ 7)2

+
c2 − 1
(2c + 7)2

+
d2 − 1
(2d + 7)2

+
e2 − 1
(2e+ 7)2

+
f 2 − 1
(2 f + 7)2

≥ 0.

2.15. If a, b, c, d, e, f are nonnegative real numbers so that

a ≤ b ≤ 1≤ c ≤ d ≤ e ≤ f , a+ b+ c + d + e+ f = 6,

then

a2 − 1
(2a+ 5)2

+
b2 − 1
(2b+ 5)2

+
c2 − 1
(2c + 5)2

+
d2 − 1
(2d + 5)2

+
e2 − 1
(2e+ 5)2

+
f 2 − 1
(2 f + 5)2

≤ 0.

2.16. If a, b, c are nonnegative real numbers so that

a ≤ b ≤ 1≤ c, a+ b+ c = 3,

then
√

√ 2a
b+ c

+

√

√ 2b
c + a

+

√

√ 2c
a+ b

≥ 3.

2.17. If a1, a2, . . . , a8 are nonnegative real numbers so that

a1 ≥ a2 ≥ a3 ≥ a4 ≥ 1≥ a5 ≥ a6 ≥ a7 ≥ a8, a1 + a2 + · · ·+ a8 = 8,

then
(a2

1 + 1)(a2
2 + 1) · · · (a2

8 + 1)≥ (a1 + 1)(a2 + 1) · · · (a8 + 1).

2.18. If a, b, c, d are real numbers so that

−1
2
≤ a ≤ b ≤ 1≤ c ≤ d, a+ b+ c + d = 4,

then

7
�

1
a2
+

1
b2
+

1
c2
+

1
d2

�

+ 3
�

1
a
+

1
b
+

1
c
+

1
d

�

≥ 40.
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2.19. Let a, b, c, d be real numbers. Prove that

(a) if −1≤ a ≤ b ≤ c ≤ 1≤ d, then

3
�

1
a2
+

1
b2
+

1
c2
+

1
d2

�

≥ 8+
1
a
+

1
b
+

1
c
+

1
d

;

(b) if −1≤ a ≤ b ≤ 1≤ c ≤ d, then

2
�

1
a2
+

1
b2
+

1
c2
+

1
d2

�

≥ 4+
1
a
+

1
b
+

1
c
+

1
d

.

2.20. If a, b, c, d are positive real numbers so that

a ≥ b ≥ 1≥ c ≥ d, abcd = 1,

then

a2 + b2 + c2 + d2 − 4≥ 18
�

a+ b+ c + d −
1
a
−

1
b
−

1
c
−

1
d

�

.

2.21. If a, b, c, d are positive real numbers so that

a ≤ b ≤ 1≤ c ≤ d, abcd = 1,

then
p

a2 − a+ 1+
p

b2 − b+ 1+
p

c2 − c + 1+
p

d2 − d + 1≥ a+ b+ c + d.

2.22. If a, b, c, d are positive real numbers so that

a ≤ b ≤ c ≤ 1≤ d, abcd = 1,

then
1

a3 + 3a+ 2
+

1
b3 + 3b+ 2

+
1

c3 + 3c + 2
+

1
d3 + 3d + 2

≥
2
3

.

2.23. If a1, a2, . . . , an are positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1≥ an, a1a2 · · · an = 1,

then
1
a1
+

1
a2
+ · · ·+

1
an
≥ a1 + a2 + · · ·+ an.
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2.24. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1≤ an, a1a2 · · · an = 1.

If k ≥ 1, then
1

1+ ka1
+

1
1+ ka2

+ · · ·+
1

1+ kan
≥

n
1+ k

.

2.25. If a1, a2, . . . , a9 are positive real numbers so that

a1 ≤ · · · ≤ a8 ≤ 1≤ a9, a1a2 · · · a9 = 1,

then
1

(a1 + 2)2
+

1
(a2 + 2)2

+ · · ·+
1

(a9 + 2)2
≥ 1.

2.26. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1≤ an, a1a2 · · · an = 1.

If p, q ≥ 0 so that

p+ q ≥ 1+
2pq

p+ 4q
,

then

1
1+ pa1 + qa2

1

+
1

1+ pa2 + qa2
2

+ · · ·+
1

1+ pan + qa2
n

≥
n

1+ p+ q
.

2.27. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1≤ an, a1a2 · · · an = 1.

If m≥ 1 and 0< k ≤ m, then

1
(a1 + k)m

+
1

(a2 + k)m
+ · · ·+

1
(an + k)m

≥
n

(1+ k)m
.

2.28. If a1, a2, . . . , an are positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1≤ an, a1a2 · · · an = 1,

then
1

p

1+ 3a1

+
1

p

1+ 3a2

+ · · ·+
1

p

1+ 3an

≥
n
2

.
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2.29. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1≤ an, a1a2 · · · an = 1.

If 0< m< 1 and 0< k ≤
1

21/m − 1
, then

1
(a1 + k)m

+
1

(a2 + k)m
+ · · ·+

1
(an + k)m

≥
n

(1+ k)m
.

2.30. If a1, a2, . . . , an (n≥ 4) are positive real numbers so that

a1 ≥ a2 ≥ a3 ≥ 1≥ a4 ≥ · · · ≥ an, a1a2 · · · an = 1,

then
1

3a1 + 1
+

1
3a2 + 1

+ · · ·+
1

3an + 1
≥

n
4

.

2.31. If a1, a2, . . . , an (n≥ 4) are positive real numbers so that

a1 ≥ a2 ≥ a3 ≥ 1≥ a4 ≥ · · · ≥ an, a1a2 · · · an = 1,

then
1

(a1 + 1)2
+

1
(a2 + 1)2

+ · · ·+
1

(an + 1)2
≥

n
4

.

2.32. If a1, a2, . . . , an are positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1≥ an, a1a2 · · · an = 1,

then
1

(a1 + 3)2
+

1
(a2 + 3)2

+ · · ·+
1

(an + 3)2
≤

n
16

.

2.33. Let a1, a2, . . . , an be positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1≥ an, a1a2 · · · an = 1.

If p, q ≥ 0 so that p+ q ≤ 1, then

1
1+ pa1 + qa2

1

+
1

1+ pa2 + qa2
2

+ · · ·+
1

1+ pan + qa2
n

≤
n

1+ p+ q
.
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2.34. Let a1, a2, . . . , an be positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1≥ an, a1a2 · · · an = 1.

If m> 1 and k ≥
1

21/m − 1
, then

1
(a1 + k)m

+
1

(a2 + k)m
+ · · ·+

1
(an + k)m

≤
n

(1+ k)m
.

2.35. If a1, a2, . . . , an are positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1≥ an, a1a2 · · · an = 1,

then
1

p

1+ 2a1

+
1

p

1+ 2a2

+ · · ·+
1

p

1+ 2an

≤
n
p

3
.

2.36. Let a1, a2, . . . , an be positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1≥ an, a1a2 · · · an = 1.

If 0< m< 1 and k ≥ m, then

1
(a1 + k)m

+
1

(a2 + k)m
+ · · ·+

1
(an + k)m

≤
n

(1+ k)m
.

2.37. If a1, a2, . . . , an (n≥ 3) are positive real numbers so that

a1 ≥ · · · ≥ an−2 ≥ 1≥ an−1 ≥ an, a1a2 · · · an = 1,

then
1

(a1 + 5)2
+

1
(a2 + 5)2

+ · · ·+
1

(an + 5)2
≤

n
36

.

2.38. If a1, a2, . . . , an are nonnegative real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1≥ an, a2
1 + a2

2 + · · ·+ a2
n = n,

then
1

3− a1
+

1
3− a2

+ · · ·+
1

3− an
≤

n
2

.

2.39. Let a1, a2, . . . , an be nonnegative real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1≤ an, a1 + a2 + · · ·+ an = n.

Prove that

a3
1 + a3

2 + · · ·+ a3
n − n≥ (n− 1)2

�

�n− a1

n− 1

�3

+
�n− a2

n− 1

�3

+ · · ·+
�n− an

n− 1

�3

− n
�

.
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2.3 Solutions

P 2.1. If a, b, c, d are real numbers so that

a ≤ b ≤ 1≤ c ≤ d, a+ b+ c + d = 4,

then

(3a2 − 2)(a− 1)2 + (3b2 − 2)(b− 1)2 + (3c2 − 2)(c − 1)2 + (3d2 − 2)(d − 1)2 ≥ 0.

(Vasile C., 2007)

Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d)≥ 4 f (s), s =
a+ b+ c + d

4
= 1,

where
f (u) = (3u2 − 2)(u− 1)2, u ∈ I= R.

From
f ′′(u) = 2(18u2 − 18u+ 1),

it follows that f ′′(u) > 0 for u ≥ 1, hence f is convex on I≥s. Therefore, we may
apply the RHCF-OV Theorem for n = 4 and m = 2. Thus, it suffices to show that
f (x) + 2 f (y) ≥ 3 f (1) for all real x , y so that x + 2y = 3. Using Note 1, we only
need to show that h(x , y)≥ 0, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

We have

g(u) = 3(u3 + u2 + u+ 1)− 6(u2 + u+ 1) + u+ 1= 3u3 − 3u2 − 2u− 2,

h(x , y) = 3(x2 + x y + y2)− 3(x + y)− 2= (3y − 4)2 ≥ 0.

From x + 2y = 3 and h(x , y) = 0, we get x = 1/3, y = 4/3. Therefore, in
accordance with Note 4, the equality holds for a = b = c = d = 1, and also for

a =
1
3

, b = 1, c = d =
4
3

.

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , a2n be real numbers so that

a1 ≤ · · · ≤ an ≤ 1≤ an+1 ≤ · · · ≤ a2n, a1 + a2 + · · ·+ a2n = 2n.
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If k =
n

n2 − n+ 1
, then

(a2
1 − k)(a1 − 1)2 + (a2

2 − k)(a2 − 1)2 + · · ·+ (a2
2n − k)(a2n − 1)2 ≥ 0,

with equality for a1 = a2 = · · ·= a2n = 1, and also for

a1 =
1

n2 − n+ 1
, a2 = · · ·= an = 1, an+1 = · · ·= an =

n2

n2 − n+ 1
.

P 2.2. If a, b, c, d are nonnegative real numbers so that

a ≥ b ≥ 1≥ c ≥ d, a+ b+ c + d = 4,

then
1

2a3 + 5
+

1
2b3 + 5

+
1

2c3 + 5
+

1
2d3 + 5

≤
4
7

.

(Vasile C., 2009)

Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d)≥ 4 f (s), s =
a+ b+ c + d

4
= 1,

where
f (u) =

−1
2u3 + 5

, u≥ 0.

From

f ′′(u) =
12u(5− 4u3)
(2u3 + 5)3

,

it follows that f ′′(u) ≥ 0 for u ∈ [0,1], hence f is convex on [0, s]. Therefore, we
may apply the LHCF-OV Theorem for n= 4 and m= 2. Using Note 1, we only need
to show that h(x , y)≥ 0 for x , y ≥ 0 so that x + 2y = 3. We have

g(u) =
f (u)− f (1)

u− 1
=

2(u2 + u+ 1)
7(2u3 + 5)

,

h(x , y) =
g(x)− g(y)

x − y
=

2E
7(2x3 + 5)(2y3 + 5)

,

where

E = −2x2 y2 − 2x y(x + y)− 2(x2 + x y + y2) + 5(x + y) + 5.

Since
E = (1− 2y)2(2+ 3y − 2y2) = (1− 2y)2(2+ x y)≥ 0,
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the proof is completed. From x + 2y = 3 and h(x , y) = 0, we get x = 2, y = 1/2.
Therefore, in accordance with Note 4, the equality holds for a = b = c = d = 1,
and also for

a = 2, b = 1, c = d =
1
2

.

Remark. Similarly, we can prove the following generalization.

• If a1, a2, . . . , a2n are nonnegative real numbers so that

a1 ≥ · · · ≥ an ≥ 1≥ an+1 ≥ · · · ≥ a2n, a1 + a2 + · · ·+ a2n = 2n.

then
1

a3
1 + n+ 1

n

+
1

a3
2 + n+ 1

n

+ · · ·+
1

a3
2n + n+ 1

n

≥
2n2

n2 + n+ 1
,

with equality for a1 = a2 = · · ·= a2n = 1, and also for

a1 = n, a2 = · · ·= an = 1, an+1 = · · ·= a2n =
1
n

.

P 2.3. If

−2n− 1
n− 1

≤ a1 ≤ · · · ≤ an ≤ 1≤ an+1 ≤ · · · ≤ a2n, a1 + a2 + · · ·+ a2n = 2n,

then
a3

1 + a3
2 + · · ·+ a3

2n ≥ 2n.

(Vasile C., 2007)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (a2n)≥ 2nf (s), s =
a1 + a2 + · · ·+ a2n

2n
= 1,

where

f (u) = u3, u≥
−2n− 1

n− 1
.

From f ′′(u) = 6u, it follows that f (u) is convex for u≥ s. Therefore, we may apply
the RHCF-OV Theorem for 2n numbers and m = n. By Note 1, it suffices to show

that h(x , y)≥ 0 for all x , y ≥
−2n− 1

n− 1
so that x + ny = 1+ n. We have

g(u) =
f (u)− f (1)

u− 1
= u2 + u+ 1,
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h(x , y) =
g(x)− g(y)

x − y
= x + y + 1=

(n− 1)x + 2n+ 1
n− 1

≥ 0.

From x + ny = 1+ n and h(x , y) = 0, we get

x =
−2n− 1

n− 1
, y =

n+ 2
n− 1

.

In accordance with Note 4, the equality holds for a1 = a2 = · · ·= a2n = 1, and also
for

a1 =
−2n− 1

n− 1
, a2 = · · ·= an = 1, an+1 = · · ·= a2n =

n+ 2
n− 1

.

P 2.4. Let a1, a2, . . . , an (n≥ 3) be real numbers so that a1+ a2+ · · ·+ an = n. Prove
that

(a) if −3≤ a1 ≤ · · · ≤ an−2 ≤ 1≤ an−1 ≤ an, then

a3
1 + a3

2 + · · ·+ a3
n ≥ a2

1 + a2
2 + · · ·+ a2

n;

(b) if −
n− 1
n− 3

≤ a1 ≤ a2 ≤ 1≤ · · · ≤ an, then

a3
1 + a3

2 + · · ·+ a3
n + n≥ 2(a2

1 + a2
2 + · · ·+ a2

n).

(Vasile C., 2007)

Solution. (a) Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) = u3 − u2, u≥ −3.

For u≥ 1, we have
f ′′(u) = 6u− 2> 0,

hence f (u) is convex for u ≥ s. Thus, we may apply the RHCF-OV Theorem for
m= n− 2. According to this theorem, it suffices to show that

f (x) + 2 f (y)≥ 3 f (1)

for −3 ≤ x ≤ y satisfying x + 2y = 3. Using Note 1, we only need to show that
h(x , y)≥ 0, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.
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We have
g(u) = u2,

h(x , y) = x + y =
x + 3

2
≥ 0.

From x + 2y = 3 and h(x , y) = 0, we get x = −3 and y = 3. Therefore, in
accordance with Note 4, the equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 = −3, a2 = · · ·= an−2 = 1, an−1 = an = 3.

(b) Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) = u3 − 2u2, u≥ −
n− 1
n− 3

.

For u≥ 1, we have
f ′′(u) = 6u− 4> 0,

hence f (u) is convex for u ≥ s. Thus, we may apply the RHCF-OV Theorem for
m= 2. According to this theorem, it suffices to show that

f (x) + (n− 2) f (y)≥ (n− 1) f (1)

for −
n− 1
n− 3

≤ x ≤ y satisfying x +(n−2)y = n−1. Using Note 1, we only need to

show that h(x , y)≥ 0, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

We have
g(u) = u2 − u− 1,

h(x , y) = x + y − 1=
(n− 3)x + n− 1

n− 1
≥ 0.

From x + (n − 2)y = n − 1 and h(x , y) = 0, we get x = −
n− 1
n− 3

and y =
n− 1
n− 3

.

Therefore, in accordance with Note 4, the equality holds for a1 = a2 = · · ·= an = 1.
If n≥ 4, then the equality holds also for

a1 = −
n− 1
n− 3

, a2 = 1, a3 = · · ·= an =
n− 1
n− 3

.
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P 2.5. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n
and let m ∈ {1, 2, . . . , n− 1}. Prove that

(a) if a1 ≤ a2 ≤ · · · ≤ am ≤ 1, then

(n−m)(a3
1 + a3

2 + · · ·+ a3
n − n)≥ (2n− 2m+ 1)(a2

1 + a2
2 + · · ·+ a2

n − n);

(b) if a1 ≥ a2 ≥ · · · ≥ am ≥ 1, then

a3
1 + a3

2 + · · ·+ a3
n − n≤ (n−m+ 2)(a2

1 + a2
2 + · · ·+ a2

n − n).

(Vasile C., 2007)

Solution. (a) Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) = (n−m)u3 − (2n− 2m+ 1)u2, u ∈ I= [0, n].

For u≥ 1, we have

f ′′(u) = 6(n−m)u− 2(2n− 2m+ 1)
≥ 6(n−m)− 2(2n− 2m+ 1) = 2(n−m− 1)≥ 0,

hence f is convex on I≥s. Thus, by the RHCF-OV Theorem and Note 1, we only need
to show that h(x , y) ≥ 0 for all nonnegative numbers x , y so that x + (n−m)y =
n−m+ 1. We have

g(u) =
f (u)− f (1)

u− 1
= (n−m)(u2 + u+ 1)− (2n− 2m+ 1)(u+ 1)

= (n−m)u2 − (n−m+ 1)u− n+m− 1,

h(x , y) =
g(x)− g(y)

x − y
= (n−m)(x + y)− n+m− 1= (n−m− 1)x ≥ 0.

From x+(n−m)y = 1+n−m and h(x , y) = 0, we get x = 0, y = (n−m+1)/(n−m).
Therefore, in accordance with Note 4, the equality holds for a1 = a2 = · · ·= an = 1,
and also for

a1 = 0, a2 = · · ·= am = 1, am+1 = · · ·= an = 1+
1

n−m
.

(b) Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) = (n−m+ 2)u2 − u3, u ∈ I= [0, n].
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For u≤ 1, we have

f ′′(u) = 2(n−m+ 2− 3u)≥ 2(n−m+ 2− 3) = 2(n−m− 1)≥ 0,

hence f is convex on I≤s. By the LHCF-OV Theorem and Note 1, it suffices to show
that h(x , y)≥ 0 for all x , y ≥ 0 so that x + (n−m)y = 1+ n−m. We have

g(u) =
f (u)− f (1)

u− 1
= (n−m+ 2)(u+ 1)− (u2 + u+ 1)

= −u2 + (n−m+ 1)u+ n−m+ 1,

h(x , y) =
g(x)− g(y)

x − y
= −(x + y) + n−m+ 1= (n−m− 1)y ≥ 0.

From x + (n − m)y = 1 + n − m and h(x , y) = 0, we get x = n − m + 1, y = 0.
Therefore, the equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 = n−m+ 1, a2 = · · ·= am = 1, am+1 = · · ·= an = 0.

Remark 1. For m= 1, we get the following results:

• If a1, a2, . . . , an are nonnegative real numbers so that a1+ a2+ · · ·+ an = n, then

(n− 1)(a3
1 + a3

2 + · · ·+ a3
n − n)≥ (2n− 1)(a2

1 + a2
2 + · · ·+ a2

n − n),

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 = 0, a2 = a3 = · · ·= an =
n

n− 1

(or any cyclic permutation).

• If a1, a2, . . . , an are nonnegative real numbers so that a1+ a2+ · · ·+ an = n, then

a3
1 + a3

2 + · · ·+ a3
n − n≤ (n+ 1)(a2

1 + a2
2 + · · ·+ a2

n − n),

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 = n, a2 = a3 = · · ·= an = 0

(or any cyclic permutation).

Remark 2. For m= n− 1, we get the following statements:

• If a1, a2, . . . , an are nonnegative real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1≤ an, a1 + a2 + · · ·+ an = n,

then
a3

1 + a3
2 + · · ·+ a3

n + 2n≥ 3(a2
1 + a2

2 + · · ·+ a2
n),
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with equality for a1 = a2 = · · ·= an = 1, and also for

a1 = 0, a2 = · · ·= an−1 = 1, an = 2.

• If a1, a2, . . . , an are nonnegative real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1≥ an, a1 + a2 + · · ·+ an = n,

then
a3

1 + a3
2 + · · ·+ a3

n + 2n≤ 3(a2
1 + a2

2 + · · ·+ a2
n),

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 = 2, a2 = · · ·= an−1 = 1, an = 0.

Remark 3. Replacing n with 2n and choosing then m = n, we get the following
results:

• If a1, a2, . . . , a2n are nonnegative real numbers so that

a1 ≤ · · · ≤ an ≤ 1≤ an+1 ≤ · · · ≤ a2n, a1 + a2 + · · ·+ a2n = 2n,

then
n(a3

1 + a3
2 + · · ·+ a3

2n − 2n)≥ (2n+ 1)(a2
1 + a2

2 + · · ·+ a2
2n − 2n),

with equality for a1 = a2 = · · ·= a2n = 1, and also for

a1 = 0, a2 = · · ·= an = 1, an+1 = · · ·= a2n = 1+
1
n

.

• If a1, a2, . . . , a2n are nonnegative real numbers so that

a1 ≥ · · · ≥ an ≥ 1≥ an+1 ≥ · · · ≥ a2n, a1 + a2 + · · ·+ a2n = 2n,

then
a3

1 + a3
2 + · · ·+ a3

2n − 2n≤ (n+ 2)(a2
1 + a2

2 + · · ·+ a2
2n − 2n),

with equality for a1 = a2 = · · ·= a2n = 1, and also for

a1 = n+ 1, a2 = · · ·= an = 1, an+1 = · · ·= a2n = 0.

P 2.6. Let a1, a2, . . . , an (n≥ 3) be real numbers so that a1+ a2+ · · ·+ an = n. Prove
that

(a) if a1 ≤ · · · ≤ an−1 ≤ 1≤ an, then

a4
1 + a4

2 + · · ·+ a4
n − n≥ 6(a2

1 + a2
2 + · · ·+ a2

n − n);



HCF Method for Ordered Variables 171

(b) if a1 ≤ · · · ≤ an−2 ≤ 1≤ an−1 ≤ an, then

a4
1 + a4

2 + · · ·+ a4
n − n≥

14
3
(a2

1 + a2
2 + · · ·+ a2

n − n);

(c) if a1 ≤ a2 ≤ 1≤ a3 ≤ · · · ≤ an, then

a4
1 + a4

2 + · · ·+ a4
n − n≥

2(n2 − 3n+ 3)
n2 − 5n+ 7

(a2
1 + a2

2 + · · ·+ a2
n − n).

(Vasile C., 2009)

Solution. Consider the inequality

a4
1 + a4

2 + · · ·+ a4
n − n≥ k(a2

1 + a2
2 + · · ·+ a2

n − n), k ≤ 6,

and write it as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) = u4 − ku2, u ∈ R.

From f ′′(u) = 2(6u2 − k), it follows that f is convex for u ≥ 1. Therefore, we may
apply the RHCF-OV Theorem for m= n− 1, m= n− 2 and m= 2, respectively. By
Note 1, it suffices to show that h(x , y) ≥ 0 for all real x , y so that x + (n−m)y =
1+ n−m. We have

g(u) =
f (u)− f (1)

u− 1
= u3 + u2 + u+ 1− k(u+ 1),

h(x , y) =
g(x)− g(y)

x − y
= x2 + x y + y2 + x + y + 1− k.

(a) We need to show that h(x , y)≥ 0 for k = 6, m= n−1, x + y = 2. Indeed,
we have

h(x , y) = 1− x y =
1
4
(x − y)2 ≥ 0.

From x + y = 2 and h(x , y) = 0, we get x = y = 1. Therefore, in accordance with
Note 4, the equality holds for a1 = a2 = · · ·= an = 1.

(b) For k = 14/3, m= n− 2 and x + 2y = 3, we have

h(x , y) =
1
3
(3y − 5)2 ≥ 0.

From x + 2y = 3 and h(x , y) = 0, we get x = −1/3 and y = 5/3. Therefore, the
equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 =
−1
3

, a2 = · · ·= an−2 = 1, an−1 = an =
5
3

.
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(c) We have k =
2(n2 − 3n+ 3)

n2 − 5n+ 7
, m= 2 and x+(n−2)y = n−1, which involve

h(x , y) =
[(n2 − 5n+ 7)y − n2 + 3n− 1]2

n2 − 5n+ 7
≥ 0.

From x + (n− 2)y = n− 1 and h(x , y) = 0, we get

x =
−n2 + 5n− 5
n2 − 5n+ 7

, y =
n2 − 3n+ 1
n2 − 5n+ 7

.

Therefore, the equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 =
−n2 + 5n− 5
n2 − 5n+ 7

, a2 = 1, a3 = · · ·= an =
n2 − 3n+ 1
n2 − 5n+ 7

.

P 2.7. Let a, b, c, d, e be nonnegative real numbers so that a+ b+ c+d+ e = 5. Prove
that

(a) if a ≥ b ≥ 1≥ c ≥ d ≥ e, then

21(a2 + b2 + c2 + d2 + e2)≥ a4 + b4 + c4 + d4 + e4 + 100;

(b) if a ≥ b ≥ c ≥ 1≥ d ≥ e, then

13(a2 + b2 + c2 + d2 + e2)≥ a4 + b4 + c4 + d4 + e4 + 60.

(Vasile C., 2009)

Solution. Consider the inequality

k(a2 + b2 + c2 + d2 + e2 − 5)≥ a4 + b4 + c4 + d4 + e4 − 5, k ≥ 6,

and write it as

f (a) + f (b) + f (c) + f (d) + f (e)≥ 5 f (s), s =
a+ b+ c + d + e

5
= 1,

where
f (u) = ku2 − u4, u≥ 0.

From f ′′(u) = 2(k − 6u2), it follows that f is convex on [0, 1]. Therefore, we may
apply the LHCF-OV Theorem for m = 2 and m = 3, respectively. By Note 1, it
suffices to show that h(x , y)≥ 0 for all x , y ≥ 0 so that x + (5−m)y = 6−m. We
have

g(u) =
f (u)− f (1)

u− 1
= k(u+ 1)− (u3 + u2 + u+ 1),
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h(x , y) =
g(x)− g(y)

x − y
= k− (x2 + x y + y2 + x + y + 1).

(a) We need to show that h(x , y)≥ 0 for k = 21, n= 5, m= 2 and x+3y = 4;
indeed, we have

h(x , y) = 21− (x2 + x y + y2 + x + y + 1) = y(22− 7y) = y(10+ 3x + 2y)≥ 0.

From x+3y = 4 and h(x , y) = 0, we get x = 4 and y = 0. Therefore, in accordance
with Note 4, the equality holds for a = b = c = d = e = 1, and also for

a = 4, b = 1, c = d = e = 0.

(b) We have k = 13, n= 5, m= 3 and x + 2y = 3, which involve

h(x , y) = 13− (x2 + x y + y2 + x + y + 1) = y(10− 3y) = y(4+ 2x + y)≥ 0.

From x +2y = 3 and h(x , y) = 0, we get x = 3 and y = 0. Therefore, the equality
holds for a = b = c = d = e = 1, and also for

a = 3, b = c = 1, d = e = 0.

P 2.8. Let a1, a2, . . . , an (n≥ 3) be nonnegative numbers so that a1+a2+ · · ·+an = n.
Prove that

(a) if a1 ≥ · · · ≥ an−1 ≥ 1≥ an, then

7(a3
1 + a3

2 + · · ·+ a3
n)≥ 3(a4

1 + a4
2 + · · ·+ a4

n) + 4n;

(b) if a1 ≥ · · · ≥ an−2 ≥ 1≥ an−1 ≥ an, then

13(a3
1 + a3

2 + · · ·+ a3
n)≥ 4(a4

1 + a4
2 + · · ·+ a4

n) + 9n.

(Vasile C., 2009)

Solution. Consider the inequality

k(a3
1 + a3

2 + · · ·+ a3
n − n)≥ a4

1 + a4
2 + · · ·+ a4

n − n, k ≥ 2,

and write it as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) = ku3 − u4, u≥ 0.
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From f ′′(u) = 6u(k−2u2), it follows that f is convex on [0, 1]. Therefore, we may
apply the LHCF-OV Theorem for m= n−1 and m= n−2, respectively. By Note 1,
it suffices to show that h(x , y)≥ 0 for x ≥ y ≥ 0 so that x +my = 1+m. We have

g(u) =
f (u)− f (1)

u− 1
= k(u2 + u+ 1)− (u3 + u2 + u+ 1),

h(x , y) =
g(x)− g(y)

x − y
= −(x2 + x y + y2) + (k− 1)(x + y + 1).

(a) We need to show that h(x , y) ≥ 0 for k = 7/3, m = n − 1, x + y = 2.
Indeed,

h(x , y) = x y ≥ 0.

From x > y , x + y = 2 and h(x , y) = 0, we get x = 2 and y = 0. Therefore, in
accordance with Note 4, the equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 = 2, a2 = · · ·= an−1 = 1, an = 0.

(b) We have k = 13/4, m= n− 2, x + 2y = 3, which involve

h(x , y) = 3y(9− 4y) = 3y(3+ 2x)≥ 0.

From x +2y = 3 and h(x , y) = 0, we get x = 3 and y = 0. Therefore, the equality
holds for a1 = a2 = · · ·= an = 1, and also for

a1 = 3, a2 = · · ·= an−2 = 1, an−1 = an = 0.

P 2.9. If a1, a2, . . . , an are positive real numbers so that a1 + a2 + · · ·+ an = n and

a1 ≥ · · · ≥ am ≥ 1≥ am+1 ≥ · · · ≥ an, m ∈ {1, 2, . . . , n− 1},

then

(n−m+ 1)2
�

1
a1
+

1
a2
+ · · ·+

1
an
− n

�

≥ 4(n−m)(a2
1 + a2

2 + · · ·+ a2
n − n).

(Vasile C., 2007)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
(n−m+ 1)2

u
− 4(n−m)u2, u> 0.
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For u ∈ (0, 1], we have

f ′′(u) =
2(n−m+ 1)2

u3
− 8(n−m)

≥ 2(n−m+ 1)2 − 8(n−m) = 2(n−m− 1)2 ≥ 0.

Since f is convex on (0, s], we may apply the LHCF-OV Theorem. By Note 1, it
suffices to show that h(x , y)≥ 0 for all x , y > 0 so that x + (n−m)y = 1+ n−m.
We have

g(u) =
f (u)− f (1)

u− 1
=
−(n−m+ 1)2

u
− 4(n−m)(u+ 1),

h(x , y) =
(n−m+ 1)2

x y
− 4(n−m) =

[n−m+ 1− 2(n−m)y]2

x y
≥ 0.

From x + (n−m)y = 1+ n−m and h(x , y) = 0, we get

x =
n−m+ 1

2
, y =

n−m+ 1
2(n−m)

.

Therefore, in accordance with Note 4, the equality holds for a1 = a2 = · · ·= an = 1,
and also for

a1 =
n−m+ 1

2
, a2 = a3 = · · ·= am = 1, am+1 = · · ·= an =

n−m+ 1
2(n−m)

.

Remark 1. For m= n− 1, we get the following elegant statement:

• If a1, a2, . . . , an are positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1≥ an, a1 + a2 + · · ·+ an = n,

then
1
a1
+

1
a2
+ · · ·+

1
an
≥ a2

1 + a2
2 + · · ·+ a2

n,

with equality for a1 = a2 = · · ·= an = 1

Remark 2. Replacing n with 2n and choosing then m = n, we get the following
statement:

• If a1, a2, . . . , a2n are positive real numbers so that

a1 ≥ · · · ≥ an ≥ 1≥ an+1 ≥ · · · ≥ a2n, a1 + a2 + · · ·+ a2n = 2n,

then

(n+ 1)2
�

1
a1
+

1
a2
+ · · ·+

1
a2n
− 2n

�

≥ 4n(a2
1 + a2

2 + · · ·+ a2
2n − 2n),

with equality for a1 = a2 = · · ·= a2n = 1, and also for

a1 =
n+ 1

2
, a2 = a3 = · · ·= an = 1, an+1 = · · ·= a2n =

n+ 1
2n

.
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P 2.10. If a1, a2, . . . , an are positive real numbers so that
1
a1
+

1
a2
+ · · ·+

1
an
= n and

a1 ≤ · · · ≤ am ≤ 1≤ am+1 ≤ · · · ≤ an, m ∈ {1, 2, . . . , n− 1},

then

a2
1 + a2

2 + · · ·+ a2
n − n≥ 2

�

1+
p

n−m
n−m+ 1

�

(a1 + a2 + · · ·+ an − n).

(Vasile C., 2007)

Solution. Replacing each ai by 1/ai, we need to prove that

a1 ≥ · · · ≥ am ≥ 1≥ am+1 ≥ · · · ≥ an, a1 + a2 + · · ·+ an = n

involves

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
1
u2
−

2k
u

, k = 1+
p

m− n
n−m+ 1

, u> 0.

For u ∈ (0, 1], we have

f ′′(u) =
6− 4ku

u4
≥

6− 4k
u4

=
2(
p

n−m− 1)2

(n−m+ 1)u4
≥ 0.

Thus, f is convex on (0, 1]. By the LHCF-OV Theorem and Note 1, it suffices to
show that h(x , y)≥ 0 for x , y > 0 so that x + (n−m)y = 1+ n−m, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

We have

g(u) =
−1
u2
+

2k− 1
u

and

h(x , y) =
1

x y

�

1
x
+

1
y
+ 1− 2k

�

.

We only need to show that

1
x
+

1
y
≥ 1+

2
p

n−m
n−m+ 1

.

Indeed, using the Cauchy-Schwarz inequality, we get

1
x
+

1
y
≥
(1+

p
n−m)2

x + (n−m)y
=
(1+

p
n−m)2

n−m+ 1
= 1+

2
p

n−m
n−m+ 1

.
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From x + (n−m)y = 1+ n−m and h(x , y) = 0, we get

x =
n−m+ 1

1+
p

n−m
, y =

n−m+ 1

n−m+
p

n−m
.

By Note 4, we have

f (a1) + f (a2) + · · ·+ f (an) = nf (1)

for a1 = a2 = · · ·= an = 1, and also for

a1 =
n−m+ 1

1+
p

n−m
, a2 = a3 = · · ·= am = 1, am+1 = · · ·= an =

n−m+ 1

n−m+
p

n−m
.

Therefore, the original inequality becomes an equality for a1 = a2 = · · · = an = 1,
and also for

a1 =
1+
p

n−m
n−m+ 1

, a2 = a3 = · · ·= am = 1, am+1 = · · ·= an =
n−m+

p
n−m

n−m+ 1
.

Remark. Replacing n with 2n and choosing then m = n, we get the statement
below.

• If a1, a2, . . . , a2n are positive real numbers so that

a1 ≤ · · · ≤ an ≤ 1≤ an+1 ≤ · · · ≤ a2n,
1
a1
+

1
a2
+ · · ·+

1
a2n
= 2n,

then

a2
1 + a2

2 + · · ·+ a2
2n − 2n≥ 2

�

1+
p

n
n+ 1

�

(a1 + a2 + · · ·+ a2n − 2n).

with equality for a1 = a2 = · · ·= a2n = 1, and also for

a1 =
1+
p

n
n+ 1

, a2 = a3 = · · ·= an = 1, an+1 = · · ·= a2n =
n+
p

n
n+ 1

.

P 2.11. Let a1, a2, . . . , an (n≥ 3) be nonnegative numbers so that a1+a2+· · ·+an = n.
Prove that

(a) if a1 ≤ · · · ≤ an−1 ≤ 1≤ an, then

1
a2

1 + 2
+

1
a2

2 + 2
+ · · ·+

1
a2

n + 2
≥

n
3

;

(b) if a1 ≤ · · · ≤ an−2 ≤ 1≤ an−1 ≤ an, then

1
2a2

1 + 3
+

1
2a2

2 + 3
+ · · ·+

1
2a2

n + 3
≥

n
5

.

(Vasile C., 2007)
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Solution. Consider the inequality

1
a2

1 + k
+

1
a2

2 + k
+ · · ·+

1
a2

n + k
≥

n
1+ k

, k ∈ [0,3];

and write it as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

and
f (u) =

1
u2 + k

, u≥ 0.

For u≥ 1, we have

f ′′(u) =
2(3u2 − k)
(u2 + k)3

≥
2(3− k)
(u2 + k)3

≥ 0,

hence f (u) is convex for u≥ s. Therefore, we may apply the RHCF-OV Theorem for
m= n−1 and m= n−2, respectively. By Note 1, it suffices to show that h(x , y)≥ 0
for all x , y ≥ 0 so that x + (n−m)y = 1+ n−m. Since

g(u) =
f (u)− f (1)

u− 1
=

−u− 1
(1+ k)(u2 + k)

,

h(x , y) =
g(x)− g(y)

x − y
=

x y + x + y − k
(1+ k)(x2 + k)(y2 + k)

,

we only need to show that
x y + x + y − k ≥ 0.

(a) We need to show that x y + x + y − k ≥ 0 for k = 2, m= n−1, x + y = 2;
indeed, we have

x y + x + y − k = x y ≥ 0.

From x < y , x+ y = 2 and x y+ x+ y−k = 0, we get x = 0 and y = 2. Therefore,
by Note 4, the equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 = 0, a2 = · · ·= an−1 = 1, an = 2.

(b) We have k = 3/2, m= n− 2, x + 2y = 3, hence

x y + x + y − k =
x(4− x)

2
=

x(1+ 2y)
2

≥ 0.

From x + 2y = 3 and x y + x + y − k = 0, we get x = 0 and y = 3/2. Therefore,
the equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 = 0, a2 = · · ·= an−2 = 1, an−1 = an =
3
2

.
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P 2.12. If a1, a2, . . . , a2n are nonnegative real numbers so that

a1 ≥ · · · ≥ an ≥ 1≥ an+1 ≥ · · · ≥ a2n, a1 + a2 + · · ·+ a2n = 2n,

then

1
na2

1 + n2 + n+ 1
+

1
na2

2 + n2 + n+ 1
+ · · ·+

1
na2

2n + n2 + n+ 1
≤

2n
(n+ 1)2

.

(Vasile C., 2007)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (a2n)≥ 2nf (s), s =
a1 + a2 + · · ·+ a2n

2n
= 1,

where

f (u) =
−1

nu2 + n2 + n+ 1
, u≥ 0.

For u ∈ [0,1], we have

f ′′(u) =
2nu(n2 + n+ 1− 3nu2)
(nu2 + n2 + n+ 1)3

≥
2nu(n2 + n+ 1− 3n)
(nu2 + n2 + n+ 1)3

≥ 0,

hence f is convex on [0, s]. Therefore, we may apply the LHCF-OV Theorem for 2n
numbers and m= n. By Note 1, it suffices to show that h(x , y)≥ 0 for all x , y ≥ 0
so that x + ny = 1+ n. We have

g(u) =
f (u)− f (1)

u− 1
=

n(u+ 1)
(n+ 1)2(nu2 + n2 + n+ 1)

,

h(x , y) =
g(x)− g(y)

x − y

=
n(n2 + n+ 1− nx − ny − nx y)

(n+ 1)2(nx2 + n2 + n+ 1)(ny2 + n2 + n+ 1)

=
n(ny − 1)2

(n+ 1)2(nx2 + n2 + n+ 1)(ny2 + n2 + n+ 1)
≥ 0.

From x + ny = 1+ n and h(x , y) = 0, we get x = n and y = 1/n. Therefore, the
equality holds for a1 = a2 = · · ·= a2n = 1, and also for

a1 = n, a2 = · · ·= an = 1, an+1 = · · ·= an = f rac1n.
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P 2.13. If a, b, c, d, e, f are nonnegative real numbers so that

a ≥ b ≥ c ≥ 1≥ d ≥ e ≥ f , a+ b+ c + d + e+ f = 6,

then
3a+ 4
3a2 + 4

+
3b+ 4
3b2 + 4

+
3c + 4
3c2 + 4

+
3d + 4
3d2 + 4

+
3e+ 4
3e2 + 4

+
3 f + 4
3 f 2 + 4

≤ 6.

(Vasile C., 2009)

Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d) + f (e) + f ( f )≥ 6 f (s), s =
a+ b+ c + d + e+ f

6
= 1,

where
f (u) =

−3u− 4
3u2 + 4

, u≥ 0.

For u ∈ [0,1], we have

f ′′(u) =
6(16− 9u3) + 216u(1− u)

(3u2 + 4)3
> 0,

hence f is convex on [0, s]. Therefore, we may apply the LHCF-OV Theorem for
n = 6 and m = 3. By Note 1, it suffices to show that h(x , y) ≥ 0 for all x , y ≥ 0 so
that x + 3y = 4. We have

g(u) =
f (u)− f (1)

u− 1
=

3u
3u2 + 4

,

h(x , y) =
g(x)− g(y)

x − y
=

3(4− 3x y)
(3x2 + 4)(3y2 + 4)

=
3(x − 2)2

(3x2 + 4)(3y2 + 4)
≥ 0.

From x + 3y = 4 and h(x , y) = 0, we get x = 2 and y = 2/3. Therefore, in
accordance with Note 4, the equality holds for a = b = c = d = e = f = 1, and
also for

a = 2, b = c = 1, d = e = f =
2
3

.

P 2.14. If a, b, c, d, e, f are nonnegative real numbers so that

a ≥ b ≥ 1≥ c ≥ d ≥ e ≥ f , a+ b+ c + d + e+ f = 6,

then

a2 − 1
(2a+ 7)2

+
b2 − 1
(2b+ 7)2

+
c2 − 1
(2c + 7)2

+
d2 − 1
(2d + 7)2

+
e2 − 1
(2e+ 7)2

+
f 2 − 1
(2 f + 7)2

≥ 0.

(Vasile C., 2009)
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Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d) + f (e) + f ( f )≥ 6 f (s), s =
a+ b+ c + d + e+ f

6
= 1,

where

f (u) =
u2 − 1
(2u+ 7)2

, u≥ 0.

For u ∈ [0,1], we have

f ′′(u) =
2(37− 28u)
(2u+ 7)4

> 0,

hence f is convex on [0, s]. Therefore, we may apply the LHCF-OV Theorem for
n = 6 and m = 2. By Note 1, it suffices to show that h(x , y) ≥ 0 for all x , y ≥ 0 so
that x + 4y = 5. We have

g(u) =
f (u)− f (1)

u− 1
=

u+ 1
(2u+ 7)2

,

h(x , y) =
g(x)− g(y)

x − y
=

21− 4x − 4y − 4x y
(2x + 7)2(2y + 7)2

=
(x − 4)2

(2x + 7)2(2y + 7)2
≥ 0.

From x + 4y = 5 and h(x , y) = 0, we get x = 4 and y = 1/4. Therefore, the
equality holds only for a = b = c = d = e = f = 1, and also for

a = 4, b = 1, c = d = e = f =
1
4

.

P 2.15. If a, b, c, d, e, f are nonnegative real numbers so that

a ≤ b ≤ 1≤ c ≤ d ≤ e ≤ f , a+ b+ c + d + e+ f = 6,

then

a2 − 1
(2a+ 5)2

+
b2 − 1
(2b+ 5)2

+
c2 − 1
(2c + 5)2

+
d2 − 1
(2d + 5)2

+
e2 − 1
(2e+ 5)2

+
f 2 − 1
(2 f + 5)2

≤ 0.

(Vasile C., 2009)
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Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d) + f (e) + f ( f )≥ 6 f (s), s =
a+ b+ c + d + e+ f

6
= 1,

where

f (u) =
1− u2

(2u+ 5)2
, u≥ 0.

For u≥ 1, we have

f ′′(u) =
2(20u− 13)
(2u+ 5)4

> 0,

hence f (u) is convex for u ≥ s. Therefore, we may apply the RHCF-OV Theorem
for n= 6 and m= 2. By Note 1, it suffices to show that h(x , y)≥ 0 for all x , y ≥ 0
so that x + 4y = 5. We have

g(u) =
f (u)− f (1)

u− 1
=
−u− 1
(2u+ 5)2

,

h(x , y) =
g(x)− g(y)

x − y

=
4x y + 4x + 4y − 5
(2x + 5)2(2y + 5)2

=
4x y + 3x

(2x + 5)2(2y + 5)2
≥ 0.

From x + 4y = 5 and h(x , y) = 0, we get x = 0 and y = 5/4. Therefore, in
accordance with Note 4, the equality holds only for a = b = c = d = e = f = 1,
and also for

a = 0, b = 1, c = d = e = f =
5
4

.

P 2.16. If a, b, c are nonnegative real numbers so that

a ≤ b ≤ 1≤ c, a+ b+ c = 3,

then
√

√ 2a
b+ c

+

√

√ 2b
c + a

+

√

√ 2c
a+ b

≥ 3.

(Vasile C., 2008)
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Solution. Write the inequality as

f (a) + f (b) + f (c)≥ 3 f (s), s =
a+ b+ c

3
= 1,

where

f (u) =
s

u
3− u

, u ∈ [0, 3).

From

f ′′(u) =
3(4u− 3)

4u3/2(3− u)5/2
,

it follows that f (u) is convex for u ≥ s. Therefore, we may apply the RHCF-OV
Theorem for n= 3 and m= 2. So, it suffices to show that

f (x) + f (y)≥ 2 f (1)

for x + y = 2, 0≤ x ≤ 1≤ y . This inequality is true if g(x)≥ 0, where

g(x) = f (x) + f (y)− 2 f (1), y = 2− x , x ∈ [0,1].

Since y ′ = −1, we have

g ′(x) = f ′(x)− f ′(y) =
3
2

�

1
p

x(3− x)3
−

1
p

y(3− y)3

�

.

The derivative f ′(x) has the same sign as h(x), where

h(x) = y(3− y)3 − x(3− x)3 = (2− x)(1+ x)3 − x(3− x)3

= 2(1− 11x + 15x2 − 5x3) = 2(1− x)(1− 10x + 5x2).

Let

x1 = 1−
2
p

5
.

Since h(x1) = 0, h(x) > 0 for x ∈ [0, x1) and h(x) < 0 for x ∈ (x1, 1), it follows
that g is increasing on [0, x1] and decreasing on [x1, 1]. From

g(0) = f (0) + f (2)− 2 f (1) = 0,

g(1) = f (1) + f (1)− 2 f (1) = 0,

it follows that g(x)≥ 0 for x ∈ [0,1].
The equality holds for a = b = c = 1, and also for a = 0, b = 1 and c = 2.
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P 2.17. If a1, a2, . . . , a8 are nonnegative real numbers so that

a1 ≥ a2 ≥ a3 ≥ a4 ≥ 1≥ a5 ≥ a6 ≥ a7 ≥ a8, a1 + a2 + · · ·+ a8 = 8,

then
(a2

1 + 1)(a2
2 + 1) · · · (a2

8 + 1)≥ (a1 + 1)(a2 + 1) · · · (a8 + 1).

(Vasile C., 2008)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (a8)≥ 8 f (s), s =
a1 + a2 + · · ·+ a8

8
= 1,

where
f (u) = ln(u2 + 1)− ln(u+ 1), u≥ 0.

For u ∈ [0,1], we have

f ′′(u) =
2(1− u2)
(u2 + 1)2

+
1

(u+ 1)2
=
(u2 − u4) + 4u(1− u2) + u2 + 3

(u2 + 1)2(u+ 1)2
> 0.

Therefore, f is convex on [0, s]. According to the LHCF-OV Theorem applied for
n= 8 and m= 4, it suffices to show that f (x)+4 f (y)≥ 5 f (1) for x , y ≥ 0 so that
x + 4y = 5. Using Note 2, we only need to show that H(x , y) ≥ 0 for x , y ≥ 0 so
that x + 4y = 5, where

H(x , y) =
f ′(x)− f ′(y)

x − y
=

2(1− x y)
(x2 + 1)(y2 + 1)

+
1

(x + 1)(y + 1)
.

The inequality H(x , y)≥ 0 is equivalent to

2(1− x y)(x + 1)(y + 1) + (x2 + 1)(y2 + 1)≥ 0.

Since 2(x2 + 1)≥ (x + 1)2 and 2(y2 + 1)≥ (y + 1)2, it suffices to prove that

8(1− x y) + (x + 1)(y + 1)≥ 0.

Indeed,

8(1− x y) + (x + 1)(y + 1) = 28x2 − 38x + 14= 28(x − 19/28)2 + 31/28> 0.

The proof is completed. The equality holds for a1 = a2 = · · ·= a8.
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P 2.18. If a, b, c, d are real numbers so that

−1
2
≤ a ≤ b ≤ 1≤ c ≤ d, a+ b+ c + d = 4,

then

7
�

1
a2
+

1
b2
+

1
c2
+

1
d2

�

+ 3
�

1
a
+

1
b
+

1
c
+

1
d

�

≥ 40.

(Vasile C., 2011)

Solution. We have

d = 4− a− b− c ≤ 4+
1
2
+

1
2
− 1= 4.

Write the inequality as

f (a) + f (b) + f (c) + f (d)≥ 4 f (s), s =
a+ b+ c + d

4
= 1,

where

f (u) =
7
u2
+

3
u

, u ∈ I=
�

−1
2

, 4
�

\ {0}.

Clearly, f (u) is convex for u≥ 1 (because
7
u2

and
3
u

are convex). According to Note

3, we may apply the RHCF-OV Theorem for n = 4 and m = 2. By Note 1, we only
need to show that h(x , y)≥ 0 for x , y ∈ I so that x + 2y = 3, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

We have

g(u) = −
7
u2
−

10
u

,

h(x , y) =
7(x + y) + 10x y

x2 y2
=
(2x + 1)(−5x + 21)

2x2 y2
≥ 0.

From x + 2y = 3 and h(x , y) = 0, we get x = −1/2, y = 7/3. Therefore, in
accordance with Note 4, the equality holds for a = b = c = d = 1, and also for

a =
−1
2

, b = 1, c = d =
7
4

.
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P 2.19. Let a, b, c, d be real numbers. Prove that

(a) if −1≤ a ≤ b ≤ c ≤ 1≤ d, then

3
�

1
a2
+

1
b2
+

1
c2
+

1
d2

�

≥ 8+
1
a
+

1
b
+

1
c
+

1
d

;

(b) if −1≤ a ≤ b ≤ 1≤ c ≤ d, then

2
�

1
a2
+

1
b2
+

1
c2
+

1
d2

�

≥ 4+
1
a
+

1
b
+

1
c
+

1
d

.

(Vasile C., 2011)

Solution. (a) We have

d = 4− a− b− c ≤ 4+ 1+ 1+ 1= 7.

Write the desired inequality as

f (a) + f (b) + f (c) + f (d)≥ 4 f (s), s =
a+ b+ c + d

4
= 1,

where
f (u) =

3
u2
−

1
u

, u ∈ I= [−1, 7] \ {0}.

From

f ′′(u) =
2(9− u)

u4
> 0,

it follows that f is convex on I≥s. According to Note 3, we may apply the RHCF-OV
Theorem for n = 4 and m = 3. By Note 1, it suffices to show that h(x , y) ≥ 0 for
all x , y ∈ I so that x + y = 2. We have

g(u) =
f (u)− f (1)

u− 1
= −

2
u
−

3
u2

,

h(x , y) =
g(x)− g(y)

x − y
=

3(x + y) + 2x y
x2 y2

=
2(x + 1)(3− x)

x2 y2
=

2(x + 1)(y + 1)
x2 y2

≥ 0.

From x < y , x + y = 2 and h(x , y) = 0, we get x = −1 and y = 3. Therefore, in
accordance with Note 4, the equality holds for a = b = c = d = 1, and also for

a = −1, b = c = 1, d = 3.

(b) We have
d = 4− a− b− c ≤ 4+ 1+ 1− 1= 5.
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Write the desired inequality as

f (a) + f (b) + f (c) + f (d)≥ 4 f (s), s =
a+ b+ c + d

4
= 1,

where
f (u) =

2
u2
−

1
u

, u ∈ I= [−1, 5] \ {0}.

From

f ′′(u) =
2(6− u)

u4
> 0,

it follows that f is convex on I≥s. According to Note 3, we may apply the RHCF-OV
Theorem for n = 4 and m = 2. By Note 1, it suffices to show that h(x , y) ≥ 0 for
all x , y ∈ I so that x + 2y = 3. We have

g(u) =
f (u)− f (1)

u− 1
= −

1
u
−

2
u2

,

h(x , y) =
g(x)− g(y)

x − y
=

2(x + y) + x y
x2 y2

=
(x + 1)(6− x)

2x2 y2
≥ 0.

From x+2y = 3 and h(x , y) = 0, we get x = −1 and y = 2. Therefore, the equality
holds for a = b = c = d = 1, and also for

a = −1, b = 1, c = d = 2.

P 2.20. If a, b, c, d are positive real numbers so that

a ≥ b ≥ 1≥ c ≥ d, abcd = 1,

then

a2 + b2 + c2 + d2 − 4≥ 18
�

a+ b+ c + d −
1
a
−

1
b
−

1
c
−

1
d

�

.

(Vasile C., 2008)

Solution. Using the substitution

a = ex , b = e y , c = ez, d = ew,

we need to show that

f (x) + f (y) + f (z) + f (w)≥ 4 f (s),
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where
x ≥ y ≥ 0≥ z ≥ w, s =

x + y + z +w
4

= 0,

f (u) = e2u − 1− 18(eu − e−u), u ∈ R.

For u≤ 0, we have
f ′′(u) = 4e2u + 18(e−u − eu)> 0,

hence f is convex on (−∞, s]. By the LHCF-OV Theorem applied for n = 4 and
m = 2, it suffices to show that f (x) + 2 f (y) ≥ 3 f (0) for all real x , y so that
x + 2y = 0; that is, to show that

a2 + 2b2 − 3− 18
�

a+ 2b−
1
a
−

2
b

�

≥ 0

for all a, b > 0 so that ab2 = 1. This inequality is equivalent to

(b2 − 1)2(2b2 + 1)
b4

+
18(b− 1)3(b+ 1)

b2
≥ 0,

(b− 1)2(2b− 1)2(b+ 1)(5b+ 1)
b4

≥ 0.

The proof is completed. The equality holds for a = b = c = d = 1, and also for

a = 4, b = 1, c = d = 1/2.

P 2.21. If a, b, c, d are positive real numbers so that

a ≤ b ≤ 1≤ c ≤ d, abcd = 1,

then
p

a2 − a+ 1+
p

b2 − b+ 1+
p

c2 − c + 1+
p

d2 − d + 1≥ a+ b+ c + d.

(Vasile C., 2008)

Solution. Using the substitution

a = ex , b = e y , c = ez, d = ew,

we need to show that

f (x) + f (y) + f (z) + f (w)≥ 4 f (s),

where
x ≤ y ≤ 0≤ z ≤ w, s =

x + y + z +w
4

= 0,
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f (u) =
p

e2u − eu + 1− eu, u ∈ R.

We claim that f is convex for u≥ 0. Since

e−u f ′′(u) =
4e3u − 6e2u + 9eu − 2

4(e2u − eu + 1)3/2
− 1,

we need to show that
4t3 − 6t2 + 9t − 2≥ 0

and
(4t3 − 6t2 + 9t − 2)2 ≥ 16(t2 − t + 1)3,

where t = eu ≥ 1. Indeed, we have

4t3 − 6t2 + 9t − 2≥ 4t3 − 6t2 + 7t > 4t3 − 6t2 + 2t = 2t(t − 1)(2t − 1)≥ 0

and

(4t3 − 6t2 + 9t − 2)2 − 16(t2 − t + 1)3 = 12t3(t − 1) + 9t2 + 12(t − 1)> 0.

By the RHCF-OV Theorem applied for n = 4 and m = 2, it suffices to show that
f (x) + 2 f (y)≥ 3 f (0) for all real x , y so that x + 2y = 0; that is, to show that

p

a2 − a+ 1+ 2
p

b2 − b+ 1≥ a+ 2b

for all a, b > 0 so that ab2 = 1. This inequality is equivalent to

p
b4 − b2 + 1

b2
+ 2

p

b2 − b+ 1≥
1
b2
+ 2b,

p
b4 − b2 + 1− 1

b2
+ 2(

p

b2 − b+ 1− 1)≥ 0,

b2 − 1
p

b4 − b2 + 1+ 1
+

2(1− b)
p

b2 − b+ 1+ b
≥ 0.

Since
b2 − 1

p
b4 − b2 + 1+ 1

≥
b2 − 1
b2 + 1

,

it suffices to show that

b2 − 1
b2 + 1

+
2(1− b)

p
b2 − b+ 1+ b

≥ 0,

which is equivalent to

(b− 1)
�

b+ 1
b2 + 1

−
2

p
b2 − b+ 1+ b

�

≥ 0,
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(b− 1)
�

(b+ 1)
p

b2 − b+ 1− b2 + b− 2
�

≥ 0,

(b− 1)2(3b2 − 2b+ 3)

(b+ 1)
p

b2 − b+ 1+ b2 − b+ 2
≥ 0.

The last inequality is clearly true. The equality holds for a = b = c = d = 1.

P 2.22. If a, b, c, d are positive real numbers so that

a ≤ b ≤ c ≤ 1≤ d, abcd = 1,

then
1

a3 + 3a+ 2
+

1
b3 + 3b+ 2

+
1

c3 + 3c + 2
+

1
d3 + 3d + 2

≥
2
3

.

(Vasile C., 2007)

Solution. Using the substitution

a = ex , b = e y , c = ez, d = ew,

we need to show that

f (x) + f (y) + f (z) + f (w)≥ 4 f (s),

where
x ≤ y ≤ z ≤ 0≤ w, s =

x + y + z +w
4

= 0,

f (u) =
1

e3u + 3eu + 2
, u ∈ R.

We claim that f is convex for u≥ 0. Indeed, denoting t = eu, t ≥ 1, we have

f ′′(u) =
3t(3t5 + 2t3 − 6t2 + 3t − 2)

(t3 + 3t + 2)3

=
3t(t − 1)(3t4 + 3t3 + 5t2 − t + 2)

(t3 + 3t + 2)3
≥ 0.

By the RHCF-OV Theorem applied for n = 4 and m = 3, it suffices to show that
f (x) + f (y)≥ 2 f (0) for all real x , y so that x + y = 0; that is, to show that

1
a3 + 3a+ 2

+
1

b3 + 3b+ 2
≥

1
3

for all a, b > 0 so that ab = 1. This inequality is equivalent to

(a− 1)4(a2 + a+ 1)≥ 0.

The equality holds for a = b = c = d = 1.
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P 2.23. If a1, a2, . . . , an are positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1≥ an, a1a2 · · · an = 1,

then
1
a1
+

1
a2
+ · · ·+

1
an
≥ a1 + a2 + · · ·+ an.

(Vasile C., 2007)

Solution. Using the substitution

ai = ex i , i = 1, 2, . . . , n,

we need to show that

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s),

where
x1 ≥ · · · ≥ xn−1 ≥ 0≥ xn, s =

x1 + x2 + · · ·+ xn

n
= 0,

f (u) = e−u − eu, u ∈ R.

For u≤ 0, we have
f ′′(u) = e−u − eu ≥ 0,

therefore f (u) is convex for u≤ s. By the LHCF-OV Theorem applied for m= n−1,
it suffices to show that f (x)+ f (y)≥ 2 f (0) for all real x , y so that x + y = 0; that
is, to show that

1
a
− a+

1
b
− b ≥ 0

for all a, b > 0 so that ab = 1. This is true since

1
a
− a+

1
b
− b =

1
a
− a+ a−

1
a
= 0.

The equality holds for

a1 ≥ 1, a2 = · · ·= an−1 = 1, an = 1/a1.

P 2.24. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1≤ an, a1a2 · · · an = 1.

If k ≥ 1, then
1

1+ ka1
+

1
1+ ka2

+ · · ·+
1

1+ kan
≥

n
1+ k

.

(Vasile C., 2007)
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Solution. Using the substitution

ai = ex i , i = 1, 2, . . . , n,

we need to show that

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s),

where

x1 ≤ · · · ≤ xn−1 ≤ 0≤ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,

f (u) =
1

1+ keu
, u ∈ R.

For u≥ 0, we have

f ′′(u) =
keu(keu − 1)
(1+ keu)3

≥ 0,

therefore f (u) is convex for u≥ s. By the RHCF-OV Theorem applied for m= n−1,
it suffices to show that f (x)+ f (y)≥ 2 f (0) for all real x , y so that x + y = 0; that
is, to show that

1
1+ ka

+
1

1+ kb
≥

2
1+ k

for all a, b > 0 so that ab = 1. This is true since

1
1+ ka

+
1

1+ kb
−

2
1+ k

=
k(k− 1)(a− 1)2

(1+ ka)(a+ k)
≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1. If k = 1, then the equality holds for

a1 ≤ 1, a2 = · · ·= an−1 = 1, an = 1/a1.

P 2.25. If a1, a2, . . . , a9 are positive real numbers so that

a1 ≤ · · · ≤ a8 ≤ 1≤ a9, a1a2 · · · a9 = 1,

then
1

(a1 + 2)2
+

1
(a2 + 2)2

+ · · ·+
1

(a9 + 2)2
≥ 1.

(Vasile C., 2007)
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Solution. Using the substitution

ai = ex i , i = 1,2, . . . , 9,

we can write the inequality as

f (x1) + f (x2) + · · ·+ f (x9)≥ 9 f (s),

where
x1 ≤ · · · ≤ x8 ≤ 0≤ x9, s =

x1 + x2 + · · ·+ x9

9
= 0,

f (u) =
1

(eu + 2)2
, u ∈ R.

For u ∈ [0,∞), we have

f ′′(u) =
4eu(eu − 1)
(eu + 2)4

≥ 0,

hence f is convex on [s,∞). According to the RHCF-OV Theorem (case n = 9
and m = 8), it suffices to show that f (x) + f (y) ≥ 2 f (0) for all real x , y so that
x + y = 0; that is, to show that

1
(a+ 2)2

+
1

(b+ 2)2
≥

2
9

for all a, b > 0 so that ab = 1. Write this inequality as

b2

(2b+ 1)2
+

1
(b+ 2)2

≥
2
9

,

which is equivalent to the obvious inequality

(b− 1)4 ≥ 0.

The equality holds for a1 = a2 = · · ·= a9 = 1.

P 2.26. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1≤ an, a1a2 · · · an = 1.

If p, q ≥ 0 so that

p+ q ≥ 1+
2pq

p+ 4q
,

then

1
1+ pa1 + qa2

1

+
1

1+ pa2 + qa2
2

+ · · ·+
1

1+ pan + qa2
n

≥
n

1+ p+ q
.

(Vasile C., 2007)
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Solution. Using the substitution

ai = ex i , i = 1, 2, . . . , n,

we can write the inequality as

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s),

where
x1 ≤ · · · ≤ xn−1 ≤ 0≤ xn, s =

x1 + x2 + · · ·+ xn

n
= 0,

f (u) =
1

1+ peu + qe2u
, u ∈ R.

We have

f ′′(u) =
eu f1(u)

(1+ peu + qe2u)3
,

where
f1(u) = 4q2e3u + 3pqe2u + (p2 − 4q)eu − p.

The hypothesis p+ q ≥ 1+
2pq

p+ 4q
is equivalent to

p2 + 3pq+ 4q2 ≥ p+ 4q.

For u ∈ [0,∞), we have

f1(u)≥ 4q2eu + 3pqeu + (p2 − 4q)eu − p ≥ p(eu − 1)≥ 0,

hence f is convex on [s,∞). According to the RHCF-OV Theorem (case m= n−1),
it suffices to show that f (x)+ f (y)≥ 2 f (0) for all real x , y so that x + y = 0; that
is, to show that

1
1+ pa+ qa2

+
1

1+ pb+ qb2
≥

2
1+ p+ q

for all a, b > 0 so that ab = 1. Write this inequality as

1
1+ pa+ qa2

+
a2

a2 + pa+ q
≥

2
1+ p+ q

which is equivalent to
(a− 1)2h(a)≥ 0,

where

h(a) = q(p+ q− 1)(a2 + 1) + (p2 + pq+ 2q2 − p− 2q)a

≥ 2q(p+ q− 1)a+ (p2 + pq+ 2q2 − p− 2q)a

= (p2 + 3pq+ 4q2 − p− 4q)a ≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1.

Remark. For p = 1, q = 1/4 and n= 9, we get the preceding P 2.25.
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P 2.27. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1≤ an, a1a2 · · · an = 1.

If m≥ 1 and 0< k ≤ m, then

1
(a1 + k)m

+
1

(a2 + k)m
+ · · ·+

1
(an + k)m

≥
n

(1+ k)m
.

(Vasile C., 2007)

Solution. Using the substitution

ai = ex i , i = 1, 2, . . . , n,

we can write the inequality as

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s),

where
x1 ≤ · · · ≤ xn−1 ≤ 0≤ xn, s =

x1 + x2 + · · ·+ xn

n
= 0,

f (u) =
1

(eu + k)m
, u ∈ R.

For u ∈ [0,∞), we have

f ′′(u) =
meu(meu − k)
(eu + k)m+2

≥ 0,

hence f is convex on [s,∞). According to the RHCF-OV Theorem (case m= n−1),
it suffices to show that f (x) + f (y) ≥ 2 f (0) for all real x , y so that x ≤ y and
x + y = 0; that is, to show that

1
(a+ k)m

+
1

(b+ k)m
≥

2
(1+ k)m

for all a, b > 0 so that a ∈ (0, 1] and ab = 1. Write this inequality as g(a) ≥ 0,
where

g(a) =
1

(a+ k)m
+

am

(ka+ 1)m
−

2
(1+ k)m

,

with
g ′(a)

m
=

am−1(a+ k)m+1 − (ka+ 1)m+1

(a+ k)m+1(ka+ 1)m+1
.

If g ′(a) ≤ 0 for a ∈ (0, 1], then g is decreasing, hence g(a) ≥ g(1) = 0. Thus, it
suffices to show that

am−1 ≤
�

ka+ 1
a+ k

�m+1

.
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Since
ka+ 1
a+ k

−
ma+ 1
a+m

=
(m− k)(1− a2)
(a+ k)(a+m)

≥ 0,

we only need to show that

am−1 ≤
�

ma+ 1
a+m

�m+1

,

which is equivalent to h(a)≤ 0 for a ∈ (0, 1], where

h(a) = (m− 1) ln a+ (m+ 1) ln(a+m)− (m+ 1) ln(ma+ 1),

with

h′(a) =
m− 1

a
+

m+ 1
a+m

−
m(m+ 1)
ma+ 1

=
m(m− 1)(a− 1)2

a(a+m)(ma+ 1)
.

Since h′(a) ≥ 0, h(a) is increasing for a ∈ (0,1], therefore h(a) ≤ h(1) = 0. The
equality holds for a1 = a2 = · · ·= an = 1.

Remark. For k = m= 2 and n= 9, we get the inequality in P 2.25.

P 2.28. If a1, a2, . . . , an are positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1≤ an, a1a2 · · · an = 1,

then
1

p

1+ 3a1

+
1

p

1+ 3a2

+ · · ·+
1

p

1+ 3an

≥
n
2

.

(Vasile C., 2007)

Solution. Using the substitution

ai = ex i , i = 1, 2, . . . , n,

we can write the inequality as

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s),

where
x1 ≤ · · · ≤ xn−1 ≤ 0≤ xn, s =

x1 + x2 + · · ·+ xn

n
= 0,

f (u) =
1

p
1+ 3eu

, u ∈ R.

For u≥ 0, we have

f ′′(u) =
3eu(3eu − 2)
4(1+ 3eu)5/2

> 0,
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hence f is convex on [s,∞). According to the RHCF-OV Theorem (case m= n−1),
it suffices to show that f (x)+ f (y)≥ 2 f (0) for all real x , y so that x + y = 0; that
is, to show that

1
p

1+ 3a
+

1
p

1+ 3b
≥ 1

for all a, b > 0 so that ab = 1. Write this inequality as

1
p

1+ 3a
+
s

a
a+ 3

≥ 1.

Substituting
1

p
1+ 3a

= t, 0< t < 1, the inequality becomes

√

√ 1− t2

8t2 + 1
≥ 1− t.

By squaring, we get
t(1− t)(2t − 1)2 ≥ 0,

which is true. The equality holds for a1 = a2 = · · ·= an = 1.

P 2.29. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1≤ an, a1a2 · · · an = 1.

If 0< m< 1 and 0< k ≤
1

21/m − 1
, then

1
(a1 + k)m

+
1

(a2 + k)m
+ · · ·+

1
(an + k)m

≥
n

(1+ k)m
.

(Vasile C., 2007)

Solution. By Bernoulli’s inequality, we have

21/m > 1+
1
m

,

hence
k ≤

1
21/m − 1

< m< 1.

Using the substitution
ai = ex i , i = 1, 2, . . . , n,

we can write the inequality as

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s),
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where

x1 ≤ · · · ≤ xn−1 ≤ 0≤ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,

f (u) =
1

(eu + k)m
, u ∈ R.

For u ∈ [0,∞), we have

f ′′(u) =
meu(meu − k)
(eu + k)m+2

≥ 0,

hence f is convex on [s,∞). According to the RHCF-OV Theorem (case m= n−1),
it suffices to show that f (x)+ f (y)≥ 2 f (0) for all real x , y so that x + y = 0; that
is, to show that

1
(a+ k)m

+
1

(b+ k)m
≥

2
(1+ k)m

for all a, b > 0 so that ab = 1. Write this inequality as g(a)≥ 0 for a ≥ 1, where

g(a) =
1

(a+ k)m
+

am

(ka+ 1)m
−

2
(1+ k)m

.

The derivative
g ′(a)

m
=

am−1(a+ k)m+1 − (ka+ 1)m+1

(a+ k)m+1(ka+ 1)m+1

has the same sign as the function

h(a) = (m− 1) ln a+ (m+ 1) ln(a+ k)− (m+ 1) ln(ka+ 1).

We have

h′(a) =
m− 1

a
+ (m+ 1)

�

1
a+ k

−
k

ka+ 1

�

=
kh1(a)

a(a+ k)(ka+ 1)
,

where
h1(a) = (m− 1)(a2 + 1)− 2

�

k−
m
k

�

a.

The discriminant D of the quadratic function h1(a) is

D
4
=
�

k−
m
k

�2
− (m− 1)2 = (1− k2)

�

m2

k2
− 1

�

.

Since D > 0, the roots a1 and a2 of h1(a) are real and unequal. If a1 < a2, then
h1(a)≥ 0 for a ∈ [a1, a2] and h1(a)≤ 0 for a ∈ (−∞, a1]∪ [a2,∞). Since

h1(1) =
2(k+ 1)(m− k)

k
> 0,
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it follows that a1 < 1 < a2, therefore h1(a) and h′(a) are positive for a ∈ [1, a2)
and negative for a ∈ (a2,∞), h is increasing on [1, a2] and decreasing on [a2,∞).
From h(1) = 0 and

lim
a→∞

h(a) = −∞,

it follows that there is a3 > a2 so that h(a) and g ′(a) are positive for a ∈ (1, a3) and
negative for a ∈ (a3,∞). As a result, g is increasing on [1, a3] and decreasing on
[a3,∞). Since g(1) = 0 and

lim
a→∞

g(a) =
1

km
−

2
(1+ k)m

≥ 0,

it follows that g(a)≥ 0 for a ≥ 1. This completes the proof. The equality holds for
a1 = a2 = · · ·= an = 1.

Remark. For k =
1
3

and m=
1
2

, we get the preceding P 2.28.

P 2.30. If a1, a2, . . . , an (n≥ 4) are positive real numbers so that

a1 ≥ a2 ≥ a3 ≥ 1≥ a4 ≥ · · · ≥ an, a1a2 · · · an = 1,

then
1

3a1 + 1
+

1
3a2 + 1

+ · · ·+
1

3an + 1
≥

n
4

.

(Vasile C., 2007)

Solution. Using the substitution

ai = ex i , i = 1, 2, . . . , n,

we can write the inequality as

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s),

where

x1 ≥ x2 ≥ x3 ≥ 0≥ x4 ≥ · · · ≥ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,

f (u) =
1

3eu + 1
, u ∈ R.

For u ∈ [0,∞), we have

f ′′(u) =
3eu(3eu − 1)
(3eu + 1)3

> 0,
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hence f is convex on [s,∞). According to the RHCF-OV Theorem (case m= n−3),
it suffices to show that f (x) + 3 f (y) ≥ 4 f (0) for all real x , y so that x + 3y = 0;
that is, to show that

1
3a+ 1

+
3

3b+ 1
≥ 1

for all a, b > 0 so that ab3 = 1. The inequality is equivalent to

b3

b3 + 3
+

3
3b+ 1

≥ 1,

(b− 1)2(b+ 2)≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1.

P 2.31. If a1, a2, . . . , an (n≥ 4) are positive real numbers so that

a1 ≥ a2 ≥ a3 ≥ 1≥ a4 ≥ · · · ≥ an, a1a2 · · · an = 1,

then
1

(a1 + 1)2
+

1
(a2 + 1)2

+ · · ·+
1

(an + 1)2
≥

n
4

.

(Vasile C., 2007)

Solution. Using the substitution

ai = ex i , i = 1, 2, . . . , n,

we can write the inequality as

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s),

where

x1 ≥ x2 ≥ x3 ≥ 0≥ x4 ≥ · · · ≥ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,

f (u) =
1

(eu + 1)2
, u ∈ R.

For u ∈ [0,∞), we have

f ′′(u) =
2eu(2eu − 1)
(eu + 1)4

> 0,

hence f is convex on [s,∞). According to the RHCF-OV Theorem (case m= 3), it
suffices to show that f (x)+3 f (y)≥ 4 f (0) for all real x , y so that x+3y = 0; that
is, to show that

1
(a+ 1)2

+
3

(b+ 1)2
≥ 1
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for all a, b > 0 so that ab3 = 1. The inequality is equivalent to

b6

(b3 + 1)2
+

3
(b+ 1)2

≥ 1.

Using the Cauchy-Schwarz inequality, it suffices to show that

(b3 + 3)2

(b3 + 1)2 + 3(b+ 1)2
≥ 1,

which is equivalent to the obvious inequality

(b− 1)2(4b+ 5)≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1.

P 2.32. If a1, a2, . . . , an are positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1≥ an, a1a2 · · · an = 1,

then
1

(a1 + 3)2
+

1
(a2 + 3)2

+ · · ·+
1

(an + 3)2
≤

n
16

.

(Vasile C., 2007)

Solution. Using the substitution

ai = ex i , i = 1, 2, . . . , n,

we can write the inequality as

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s),

where
x1 ≥ · · · ≥ xn−1 ≥ 0≥ xn, s =

x1 + x2 + · · ·+ xn

n
= 0,

f (u) =
−1

(eu + 3)2
, u ∈ R.

For u ∈ (−∞, 0], we have

f ′′(u) =
2eu(3− 2eu)
(eu + 3)4

> 0,

hence f is convex on (−∞, s]. According to the LHCF-OV Theorem (case m =
n−1), it suffices to show that f (x)+ f (y)≥ 2 f (0) for all real x , y so that x+ y = 0;
that is, to show that

1
(a+ 3)2

+
1

(b+ 3)2
≤

1
8
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for all a, b > 0 so that ab = 1. Write this inequality as

b2

(3b+ 1)2
+

1
(b+ 3)2

≤
1
8

,

which is equivalent to the obvious inequality

(b2 − 1)2 + 12b(b− 1)2 ≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1.

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1≥ an, a1a2 · · · an = 1,

If k ≥ 1+
p

2, then

1
(a1 + k)2

+
1

(a2 + k)2
+ · · ·+

1
(an + k)2

≤
n

(1+ k)2
,

with equality for a1 = a2 = · · ·= an = 1.

P 2.33. Let a1, a2, . . . , an be positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1≥ an, a1a2 · · · an = 1.

If p, q ≥ 0 so that p+ q ≤ 1, then

1
1+ pa1 + qa2

1

+
1

1+ pa2 + qa2
2

+ · · ·+
1

1+ pan + qa2
n

≤
n

1+ p+ q
.

(Vasile C., 2007)

Solution. Using the substitution

ai = ex i , i = 1, 2, . . . , n,

we can write the inequality as

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s),

where
x1 ≥ · · · ≥ xn−1 ≥ 0≥ xn, s =

x1 + x2 + · · ·+ xn

n
= 0,
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f (u) =
−1

1+ peu + qe2u
, u ∈ R.

For u≤ 0, we have

f ′′(u) =
eu[−4q2e3u − 3pqe2u + (4q− p2)eu + p]

(1+ peu + qe2u)3

≥
e2u[−4q2 − 3pq+ (4q− p2) + p]

(1+ peu + qe2u)3

=
e2u[(p+ 4q)(1− p− q) + 2pq]

(1+ peu + qe2u)3
≥ 0,

therefore f (u) is convex for u ≤ s. According to the LHCF-OV Theorem (case m =
n−1), it suffices to show that f (x)+ f (y)≥ 2 f (0) for all real x , y so that x+ y = 0;
that is, to show that

1
1+ pa+ qa2

+
1

1+ pb+ qb2
≤

2
1+ p+ q

for all a, b > 0 so that ab = 1. Write this inequality as

(a− 1)2[q(1− p− q)a2 + (p+ 2q− p2 − pq− 2q2)a+ q(1− p− q)]≥ 0,

which is true because

p+ 2q− p2 − pq− 2q2 ≥ (p+ 2q)(p+ q)− p2 − pq− 2q2 = 2pq ≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1.

P 2.34. Let a1, a2, . . . , an be positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1≥ an, a1a2 · · · an = 1.

If m> 1 and k ≥
1

21/m − 1
, then

1
(a1 + k)m

+
1

(a2 + k)m
+ · · ·+

1
(an + k)m

≤
n

(1+ k)m
.

(Vasile C., 2007)

Solution. By Bernoulli’s inequality, we have

21/m < 1+
1
m

,
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hence
k ≥

1
21/m − 1

> m> 1.

Using the substitution
ai = ex i , i = 1, 2, . . . , n,

we can write the inequality as

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s),

where
x1 ≥ · · · ≥ xn−1 ≥ 0≥ xn, s =

x1 + x2 + · · ·+ xn

n
= 0,

f (u) =
−1

(eu + k)m
, u ∈ R.

For u≤ 0, we have

f ′′(u) =
meu(k−meu)
(eu + k)m+2

≥ 0,

hence f is convex u ≤ s. By the LHCF-OV Theorem (case m = n− 1), it suffices to
show that f (x) + f (y) ≥ 2 f (0) for all real x , y so that x + y = 0; that is, to show
that

1
(a+ k)m

+
1

(b+ k)m
≤

2
(1+ k)m

for all a, b > 0 so that ab = 1. Write this inequality as g(a)≤ 0 for a ≥ 1, where

g(a) =
1

(a+ k)m
+

am

(ka+ 1)m
−

2
(1+ k)m

.

The derivative
g ′(a)

m
=

am−1(a+ k)m+1 − (ka+ 1)m+1

(a+ k)m+1(ka+ 1)m+1

has the same sign as the function

h(a) = (m− 1) ln a+ (m+ 1) ln(a+ k)− (m+ 1) ln(ka+ 1).

We have

h′(a) =
m− 1

a
+ (m+ 1)

�

1
a+ k

−
k

ka+ 1

�

=
kh1(a)

a(a+ k)(ka+ 1)
,

where
h1(a) = (m− 1)(a2 + 1)− 2

�

k−
m
k

�

a.

The discriminant D of the quadratic function h1(a) is

D
4
=
�

k−
m
k

�2
− (m− 1)2 = (k2 − 1)

�

1−
m2

k2

�

.
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Since D > 0, the roots a1 and a2 of h1(a) are real and unequal. If a1 < a2, then
h1(a)≤ 0 for a ∈ [a1, a2] and h1(a)≥ 0 for a ∈ (−∞, a1]∪ [a2,∞). Since

h1(1) =
2(k+ 1)(m− k)

k
< 0,

it follows that a1 < 1 < a2, therefore h1(a) and h′(a) are negative for a ∈ [1, a2)
and positive for a ∈ (a2,∞), h(a) is decreasing for a ∈ [1, a2] and increasing for
a ∈ [a2,∞). From h(1) = 0 and

lim
a→∞

h(a) =∞,

it follows that there is a3 > a2 so that h(a) and g ′(a) are negative for a ∈ (1, a3)
and positive for a ∈ (a3,∞). As a result, g is decreasing on [1, a3] and increasing
on [a3,∞). Since g(1) = 0 and

lim
a→∞

g(a) =
1

km
−

2
(1+ k)m

≤ 0,

it follows that g(a)≤ 0 for a ≥ 1. This completes the proof. The equality holds for
a1 = a2 = · · ·= an = 1.

P 2.35. If a1, a2, . . . , an are positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1≥ an, a1a2 · · · an = 1,

then
1

p

1+ 2a1

+
1

p

1+ 2a2

+ · · ·+
1

p

1+ 2an

≤
n
p

3
.

(Vasile C., 2007)

Solution. Using the substitution

ai = ex i , i = 1, 2, . . . , n,

we can write the inequality as

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s),

where
x1 ≥ · · · ≥ xn−1 ≥ 0≥ xn, s =

x1 + x2 + · · ·+ xn

n
= 0,

f (u) =
−1

p
1+ 2eu

, u ∈ R.
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For u≤ 0, we have

f ′′(u) =
eu(1− eu)
(1+ 2eu)5/2

> 0,

hence f is convex on (−∞, s]. According to the LHCF-OV Theorem (case m =
n−1), it suffices to show that f (x)+ f (y)≥ 2 f (0) for all real x , y so that x+ y = 0;
that is, to show that

√

√ 3
1+ 2a

+

√

√ 3
1+ 2b

≤ 2

for all a, b > 0 so that ab = 1. By the Cauchy-Schwarz inequality, we get

√

√ 3
1+ 2a

+

√

√ 3
1+ 2b

≤

√

√

�

3
1+ 2a

+ 1
��

1+
3

1+ 2b

�

= 2.

The equality holds for a1 = a2 = · · ·= an = 1.

P 2.36. Let a1, a2, . . . , an be positive real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1≥ an, a1a2 · · · an = 1.

If 0< m< 1 and k ≥ m, then

1
(a1 + k)m

+
1

(a2 + k)m
+ · · ·+

1
(an + k)m

≤
n

(1+ k)m
.

(Vasile C., 2007)

Solution. Using the substitution

ai = ex i , i = 1, 2, . . . , n,

we can write the inequality as

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s),

where
x1 ≥ · · · ≥ xn−1 ≥ 0≥ xn, s =

x1 + x2 + · · ·+ xn

n
= 0,

f (u) =
−1

(eu + k)m
, u ∈ R.

For u≤ 0, we have

f ′′(u) =
meu(k−meu)
(eu + k)m+2

≥ 0,
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hence f is convex on (−∞, s]. According to the LHCF-OV Theorem (case m =
n−1), it suffices to show that f (x)+ f (y)≥ 2 f (0) for all real x , y so that x+ y = 0;
that is, to show that

1
(a+ k)m

+
1

(b+ k)m
≤

2
(1+ k)m

for all a, b > 0 so that ab = 1. Write this inequality as g(a)≤ 0 for a ≥ 1, where

g(a) =
1

(a+ k)m
+

am

(ka+ 1)m
−

2
(1+ k)m

,

with
g ′(a)

m
=

am−1(a+ k)m+1 − (ka+ 1)m+1

(a+ k)m+1(ka+ 1)m+1
.

If g ′(a)≤ 0 for a ≥ 1, then g is decreasing, hence g(a)≤ g(1) = 0. Thus, it suffices
to show that

am−1 ≤
�

ka+ 1
a+ k

�m+1

.

Since
ka+ 1
a+ k

−
ma+ 1
a+m

=
(k−m)(a2 − 1)
(a+ k)(a+m)

≥ 0,

we only need to show that

am−1 ≤
�

ma+ 1
a+m

�m+1

,

which is equivalent to h(a)≤ 0 for a ≥ 1, where

h(a) = (m− 1) ln a+ (m+ 1) ln(a+m)− (m+ 1) ln(ma+ 1),

h′(a) =
m− 1

a
+

m+ 1
a+m

−
m(m+ 1)
ma+ 1

=
m(m− 1)(a− 1)2

a(a+m)(ma+ 1)
.

Since h′(a)≤ 0, h(a) is decreasing for a ≥ 1, hence

h(a)≤ h(1) = 0.

This completes the proof. The equality holds for a1 = a2 = · · ·= an = 1.

Remark. For k =
1
2

and m=
1
2

, we get the preceding P 2.35.

P 2.37. If a1, a2, . . . , an (n≥ 3)are positive real numbers so that

a1 ≥ · · · ≥ an−2 ≥ 1≥ an−1 ≥ an, a1a2 · · · an = 1,

then
1

(a1 + 5)2
+

1
(a2 + 5)2

+ · · ·+
1

(an + 5)2
≤

n
36

.

(Vasile C., 2007)
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Solution. Using the substitution

ai = ex i , i = 1, 2, . . . , n,

we can write the inequality as

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s),

where

x1 ≥ · · · ≥ xn−2 ≥ 0≥ xn−1 ≥ xn, s =
x1 + x2 + · · ·+ xn

n
= 0,

f (u) =
−1

(eu + 5)2
, u ∈ R.

For u ∈ (−∞, 0], we have

f ′′(u) =
2eu(5− 2eu)
(eu + 5)4

> 0,

hence f is convex on (−∞, s]. According to the LHCF-OV Theorem (case m= n−
2), it suffices to show that f (x)+2 f (y)≥ 3 f (0) for all real x , y so that x+2y = 0;
that is, to show that

1
(a+ 5)2

+
2

(b+ 5)2
≤

1
12

for all a, b > 0 so that ab2 = 1. Since

1
(a+ 5)2

=
b4

(5b2 + 1)2
≤

b4

(4b2 + 2b)2
=

b2

4(2b+ 1)2
,

it suffices to show that

b2

4(2b+ 1)2
+

2
(b+ 5)2

≤
1

12
,

which is equivalent to the obvious inequality

(b− 1)2(b2 + 16b+ 1)≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1.

Remark. Similarly, we can prove the following refinement:

• Let a1, a2, . . . , an be positive real numbers so that

a1 ≥ · · · ≥ an−2 ≥ 1≥ an−1 ≥ an, a1a2 · · · an = 1.

If k ≥ 2+
p

6, then

1
(a1 + k)2

+
1

(a2 + k)2
+ · · ·+

1
(an + k)2

≤
n

(1+ k)2
,

with equality for a1 = a2 = · · ·= an = 1.
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P 2.38. If a1, a2, . . . , an are nonnegative real numbers so that

a1 ≥ · · · ≥ an−1 ≥ 1≥ an, a2
1 + a2

2 + · · ·+ a2
n = n,

then
1

3− a1
+

1
3− a2

+ · · ·+
1

3− an
≤

n
2

.

(Vasile C., 2007)

Solution. From

n= a2
1 + (a

2
2 + · · ·+ a2

n−1) + a2
n ≥ a2

1 + (n− 2) + 0,

we get
a1 ≤

p
2.

Replacing a1, a2, . . . , an by
p

a1,
p

a2, . . . ,
p

an , we have to prove that

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s),

where
2≥ a1 ≥ · · · ≥ an−1 ≥ 1≥ an, s =

a1 + a2 + · · ·+ an

n
= 1,

f (u) =
1

p
u− 3

, u ∈ [0, 2].

For u ∈ [0,1], we have

f ′′(u) =
3(1−

p
u)

4u
p

u(3−
p

u)3
≥ 0.

Therefore, f is convex on [0, s]. According to the LHCF-OV Theorem and Note 1
(case m= n−1), it suffices to show that h(x , y)≥ 0 for x , y ≥ 0 so that x + y = 2.
Since

g(u) =
f (u)− f (1)

u− 1
=

−1
2(3−

p
u)(1+

p
u)

and

h(x , y) =
g(x)− g(y)

x − y
=

2−
p

x −py

2(
p

x +py)(1+
p

x)(1+py)(3−
p

x)(3−py)
,

we need to show that p
x +
p

y ≤ 2.

Indeed, we have p
x +
p

y ≤
Æ

2(x + y) = 2.

This completes the proof. The equality holds for a1 = a2 = · · ·= an = 1.
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P 2.39. Let a1, a2, . . . , an be nonnegative real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1≤ an, a1 + a2 + · · ·+ an = n.

Prove that

a3
1 + a3

2 + · · ·+ a3
n − n≥ (n− 1)2

�

�n− a1

n− 1

�3

+
�n− a2

n− 1

�3

+ · · ·+
�n− an

n− 1

�3

− n
�

.

(Vasile C., 2010)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) = u3 − (n− 1)2
�n− u

n− 1

�3

, u≥ 0.

For u≥ 1, we have

f ′′(u) =
6n(u− 1)

n− 1
≥ 0.

Therefore, f (u) is convex for u ≥ s. Thus, by the RHCF-OV Theorem (case m =
n− 1), it suffices to show that f (x) + f (y)≥ 2 f (1) for x , y ≥ 0 so that x + y = 2.
We have

f (x) + f (y)− 2 f (1) = x3 + y3 − 2− (n− 1)2
�

�n− x
n− 1

�3

+
�n− y

n− 1

�3

− 2
�

= 6(1− x y)− 6(n− 1)2
�

1−
(n− x)(n− y)
(n− 1)2

�

= 0.

This completes the proof. The equality holds for

a1 ≤ 1, a2 = · · ·= an−1 = 1, an = 2− a1.



Chapter 3

Partially Convex Function Method

3.1 Theoretical Basis

The following statement is known as the Right Partially Convex Function Theorem
(RPCF-Theorem).

Right Partially Convex Function Theorem (Vasile Cîrtoaje, 2012). Let f be a real
function defined on an interval I and convex on [s, s0], where s, s0 ∈ I, s < s0. In
addition, f is decreasing on I≤s0

and f (u)≥ f (s0) for u ∈ I. The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

if and only if
f (x) + (n− 1) f (y)≥ nf (s)

for all x , y ∈ I so that x ≤ s ≤ y and x + (n− 1)y = ns.

Proof. For
a1 = x , a2 = a3 = · · ·= an = y,

the inequality
f (a1) + f (a2) + · · ·+ f (an)≥ f (s)

becomes
f (x) + (n− 1) f (y)≥ nf (s);

therefore, the necessity is obvious.
The proof of sufficiency is based on Lemma below. According to this lemma, it
suffices to consider that a1, a2, . . . , an ∈ J, where

J= I≤s0
.

211
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Because f (u) is convex on J≥s, the desired inequality follows from the RHCF The-
orem (see Chapter 1) applied to the interval J.

Lemma. Let f be a real function defined on an interval I. In addition, f is decreasing
on I≤s0

, and f (u)≥ f (s0) for u ∈ I, where s, s0 ∈ I, s < s0. If the inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s)

holds for all a1, a2, . . . , an ∈ I≤s0
so that a1 + a2 + · · ·+ an = ns, then it holds for all

a1, a2, . . . , an ∈ I so that a1 + a2 + · · ·+ an = ns.

Proof. For i = 1, 2, . . . , n, define the numbers

bi =

¨

ai, ai ≤ s0

s0, ai > s0.

Clearly, bi ∈ I≤s0
and bi ≤ ai. Since f (u) ≥ f (s0) for u ∈ I≥s0

, it follows that
f (bi)≤ f (ai) for i = 1,2, . . . , n. Therefore,

b1 + b2 + · · ·+ bn ≤ a1 + a2 + · · ·+ an = ns

and
f (b1) + f (b2) + · · ·+ f (bn)≤ f (a1) + f (a2) + · · ·+ f (an).

Thus, it suffices to show that

f (b1) + f (b2) + · · ·+ f (bn)≥ nf (s)

for all b1, b2, . . . , bn ∈ I≤s0
so that b1 + b2 + · · · + bn ≤ ns. By hypothesis, this

inequality is true for b1, b2, . . . , bn ∈ I≤s0
and b1 + b2 + · · · + bn = ns. Since f (u)

is decreasing on I≤s0
, the more we have f (b1) + f (b2) + · · · + f (bn) ≥ nf (s) for

b1, b2, . . . , bn ∈ I≤s0
and b1 + b2 + · · ·+ bn ≤ ns.

Similarly, we can prove the Left Partially Convex Function Theorem (LPCF-Theorem).

Left Partially Convex Function Theorem (Vasile Cîrtoaje, 2012). Let f be a real
function defined on an interval I and convex on [s0, s], where s0, s ∈ I, s0 < s. In
addition, f is increasing on I≥s0

and f (u)≥ f (s0) for u ∈ I. The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

if and only if
f (x) + (n− 1) f (y)≥ nf (s)

for all x , y ∈ I so that x ≥ s ≥ y and x + (n− 1)y = ns.
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From the RPCF-Theorem and the LPCF-Theorem, we find the PCF-Theorem (Par-
tially Convex Function Theorem).

Partially Convex Function Theorem (Vasile Cîrtoaje, 2012). Let f be a real function
defined on an interval I and convex on [s0, s] or [s, s0], where s0, s ∈ I. In addition, f
is decreasing on I≤s0

and increasing on I≥s0
. The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

if and only if
f (x) + (n− 1) f (y)≥ nf (s)

for all x , y ∈ I so that x + (n− 1)y = ns.

Note 1. Let us denote

g(u) =
f (u)− f (s)

u− s
, h(x , y) =

g(x)− g(y)
x − y

.

As shown in Note 1 from Chapter 1, we may replace the hypothesis condition in
the RPCF-Theorem and the LPCF-Theorem), namely

f (x) + (n− 1) f (y)≥ nf (s),

by the condition

h(x , y)≥ 0 for all x , y ∈ I so that x + (n− 1)y = ns.

Note 2. Assume that f is differentiable on I, and let

H(x , y) =
f ′(x)− f ′(y)

x − y
.

As shown in Note 2 from Chapter 1, the inequalities in the RPCF-Theorem and the
LPCF-Theorem hold true by replacing the hypothesis

f (x) + (n− 1) f (y)≥ nf (s)

with the more restrictive condition

H(x , y)≥ 0 for all x , y ∈ I so that x + (n− 1)y = ns.

Note 3. The desired inequalities in the RPCF-Theorem and the LPCF-Theorem be-
come equalities for

a1 = a2 = · · ·= an = s.
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In addition, if there exist x , y ∈ I so that

x + (n− 1)y = ns, f (x) + (n− 1) f (y) = nf (s), x 6= y,

then the equality holds also for

a1 = x , a2 = · · ·= an = y

(or any cyclic permutation). Notice that these equality conditions are equivalent to

x + (n− 1)y = ns, h(x , y) = 0

(x < y for the RPCF-Theorem, and x > y for the LPCF-Theorem).

Note 4. From the proof of the RPCF-Theorem, it follows that this theorem is also
valid in the case when f is defined on I\{u0}, where u0 ∈ I>s0

. Similarly, the LPCF-
Theorem is also valid in the case when f is defined on I \ {u0}, where u0 ∈ I<s0

.

Note 5. The RPCF-Theorem holds true by replacing the condition
f is decreasing on I≤s0

with
ns− (n− 1)s0 ≤ inf I.

More precisely, the following theorem holds:
Theorem 1. Let f be a function defined on a real interval I, convex on [s, s0] and
satisfying

min
u∈I≥s

f (u) = f (s0),

where
s, s0 ∈ I, s < s0, ns− (n− 1)s0 ≤ inf I.

If
f (x) + (n− 1) f (y)≥ nf (s)

for all x , y ∈ I so that x ≤ s ≤ y and x + (n− 1)y = ns, then

f (x1) + f (x2) + · · ·+ f (xn)≥ nf
� x1 + x2 + · · ·+ xn

n

�

for all x1, x2, . . . , xn ∈ I satisfying x1 + x2 + · · ·+ xn = ns .

In order to prove Theorem 1, we define the function

f0(u) =

¨

f (u), u≤ s0, u ∈ I

f (s0), u≥ s0, u ∈ I,

which is convex on I≥s. Taking into account that f0(s) = f (s) and f0(u) ≤ f (u) for
all u ∈ I, it suffices to prove that

f0(x1) + f0(x2) + · · ·+ f0(xn)≥ nf0(s)
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for all x1, x2, . . . , xn ∈ I satisfying x1 + x2 + · · · + xn = ns. According to the HCF-
Theorem and Note 5 from Chapter 1, we only need to show that

f0(x) + (n− 1) f0(y)≥ nf0(s)

for all x , y ∈ I so that x ≤ s ≤ y and x + (n− 1)y = ns. Since

y − s0 =
ns− x
n− 1

− s0 =
ns− (n− 1)s0 − x

n− 1
≤

ns− (n− 1)s0 − inf I
n− 1

≤ 0,

the inequality f0(x)+ (n−1) f0(y)≥ nf0(s) turns into f (x)+ (n−1) f (y)≥ nf (s),
which holds (by hypothesis) for all x , y ∈ I so that x ≤ s ≤ y and x+(n−1)y = ns.

Similarly, the LPCF-Theorem holds true by replacing the condition
f is increasing on I≥s0

with

ns− (n− 1)s0 ≥ sup I.

More precisely, the following theorem holds:

Theorem 2. Let f be a function defined on a real interval I, convex on [s0, s] and
satisfying

min
u∈I≤s

f (u) = f (s0),

where
s, s0 ∈ I, s > s0, ns− (n− 1)s0 ≥ sup I.

If
f (x) + (n− 1) f (y)≥ nf (s)

for all x , y ∈ I so that x ≥ s ≥ y and x + (n− 1)y = ns, then

f (x1) + f (x2) + · · ·+ f (xn)≥ nf
� x1 + x2 + · · ·+ xn

n

�

for all x1, x2, . . . , xn ∈ I satisfying x1 + x2 + · · ·+ xn = ns.

The proof of Theorem 2 is similar to the proof of Theorem 1.

Note 6. From the proof of Theorem 1, it follows that Theorem 1 is also valid in
the case in which f is defined on I \ {u0}, where u0 is an interior point of I so that
u0 /∈ [s, s0]. Similarly, Theorem 2 is also valid in the case in which f is defined on
I \ {u0}, where u0 is an interior point of I so that u0 /∈ [s0, s].

Note 7. In the same manner, we can extend weighted Jensen’s inequality to right
and left partially convex functions establishing the WRPCF-Theorem, the WLPCF-
Theorem and the WPCF-Theorem (Vasile Cîrtoaje, 2014).
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WRPCF-Theorem. Let p1, p2, . . . , pn be positive real numbers so that

p1 + p2 + · · ·+ pn = 1, p =min{p1, p2, . . . , pn},

and let f be a real function defined on an interval I and convex on [s, s0], where
s, s0 ∈ I, s < s0. In addition, f is decreasing on I≤s0

and f (u) ≥ f (s0) for u ∈ I. The
inequality

p1 f (a1) + p2 f (a2) + · · ·+ pn f (an)≥ f (p1a1 + p2a2 + · · ·+ pnan)

holds for all a1, a2, . . . , an ∈ I satisfying

p1a1 + p2a2 + · · ·+ pnan = s,

if and only if
p f (x) + (1− p) f (y)≥ f (s)

for all x , y ∈ I so that x ≤ s ≤ y and px + (1− p)y = s.

WLPCF-Theorem. Let p1, p2, . . . , pn be positive real numbers so that

p1 + p2 + · · ·+ pn = 1, p =min{p1, p2, . . . , pn},

and let f be a real function defined on an interval I and convex on [s0, s], where
s0, s ∈ I, s0 < s. In addition, f is increasing on I≥s0

and f (u) ≥ f (s0) for u ∈ I. The
inequality

p1 f (a1) + p2 f (a2) + · · ·+ pn f (an)≥ f (p1a1 + p2a2 + · · ·+ pnan)

holds for all a1, a2, . . . , an ∈ I satisfying

p1a1 + p2a2 + · · ·+ pnan = s,

if and only if
p f (x) + (1− p) f (y)≥ f (s)

for all x , y ∈ I so that x ≥ s ≥ y and px + (1− p)y = s.
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3.2 Applications

3.1. If a, b, c are real numbers so that a+ b+ c = 3, then

16a− 5
32a2 + 1

+
16b− 5
32b2 + 1

+
16c − 5
32c2 + 1

≤ 1.

3.2. If a, b, c, d are real numbers so that a+ b+ c + d = 4, then

18a− 5
12a2 + 1

+
18b− 5
12b2 + 1

+
18c − 5
12c2 + 1

+
18d − 5
12d2 + 1

≤ 4.

3.3. If a, b, c, d, e, f are real numbers so that a+ b+ c + d + e+ f = 6, then

5a− 1
5a2 + 1

+
5b− 1
5b2 + 1

+
5c − 1
5c2 + 1

+
5d − 1
5d2 + 1

+
5e− 1
5e2 + 1

+
5 f − 1
5 f 2 + 1

≤ 4.

3.4. If a1, a2, . . . , an (n≥ 3) are real numbers so that a1 + a2 + · · ·+ an = n, then

n(n+ 1)− 2a1

n2 + (n− 2)a2
1

+
n(n+ 1)− 2a2

n2 + (n− 2)a2
2

+ · · ·+
n(n+ 1)− 2an

n2 + (n− 2)a2
n

≤ n.

3.5. If a, b, c, d are real numbers so that a+ b+ c + d = 4, then

a(a− 1)
3a2 + 4

+
b(b− 1)
3b2 + 4

+
c(c − 1)
3c2 + 4

+
d(d − 1)
3d2 + 4

≥ 0.

3.6. If a, b, c are real numbers so that a+ b+ c = 3, then

1
9a2 − 10a+ 9

+
1

9b2 − 10b+ 9
+

1
9c2 − 10c + 9

≤
3
8

.

3.7. If a, b, c, d are real numbers so that a+ b+ c + d = 4, then

1
4a2 − 5a+ 4

+
1

4b2 − 5b+ 4
+

1
4c2 − 5c + 4

+
1

4d2 − 5d + 4
≤

4
3

.
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3.8. Let a1, a2, . . . , an 6= −k be real numbers so that a1 + a2 + · · ·+ an = n, where

k ≥
n

2
p

n− 1
.

Then,
a1(a1 − 1)
(a1 + k)2

+
a2(a2 − 1)
(a2 + k)2

+ · · ·+
an(an − 1)
(an + k)2

≥ 0.

3.9. Let a1, a2, . . . , an 6= −k be real numbers so that a1 + a2 + · · ·+ an = n. If

k ≥ 1+
n

p
n− 1

,

then
a2

1 − 1

(a1 + k)2
+

a2
2 − 1

(a2 + k)2
+ · · ·+

a2
n − 1

(an + k)2
≥ 0.

3.10. Let a1, a2, a3, a4, a5 be real numbers so that a1 + a2 + a3 + a4 + a5 ≥ 5. If

k ∈
�

1
6

,
25
14

�

,

then
∑ 1

ka2
1 + a2 + a3 + a4 + a5

≤
5

k+ 4
.

3.11. Let a1, a2, . . . , a5 be nonnegative numbers so that a1+ a2+ a3+ a4+ a5 ≥ 5.
If k ∈ [k1, k2], where

k1 =
29−

p
761

10
≈ 0.1414, k2 =

25
14
≈ 1.7857,

then
∑ 1

ka2
1 + a2 + a3 + a4 + a5

≤
5

k+ 4
.

3.12. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an ≥ n.
If k > 1, then

1

ak
1 + a2 + · · ·+ an

+
1

a1 + ak
2 + · · ·+ an

+ · · ·+
1

a1 + a2 + · · ·+ ak
n

≤ 1.
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3.13. Let a1, a2, . . . , a5 be nonnegative numbers so that a1+ a2+ a3+ a4+ a5 ≥ 5.
If

k ∈
�

4
9

,
61
5

�

,

then
∑ a1

ka2
1 + a2 + a3 + a4 + a5

≤
5

k+ 4
.

3.14. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an ≥ n.
If k > 1, then

a1

ak
1 + a2 + · · ·+ an

+
a2

a1 + ak
2 + · · ·+ an

+ · · ·+
an

a1 + a2 + · · ·+ ak
n

≤ 1.

3.15. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an ≤ n.

If k ≥ 1−
1
n

, then

1− a1

ka2
1 + a2 + · · ·+ an

+
1− a2

a1 + ka2
2 + · · ·+ an

+ · · ·+
1− an

a1 + a2 + · · ·+ ka2
n

≥ 0.

3.16. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an ≤ n.

If k ≥ 1−
1
n

, then

1− a1

1− a1 + ka2
1

+
1− a2

1− a2 + ka2
2

+ · · ·+
1− an

1− an + ka2
n

≥ 0.

3.17. Let a1, a2, . . . , an be positive real numbers so that a1 + a2 + · · · + an = n. If

0< k ≤
n

n− 1
, then

ak/a1
1 + ak/a2

2 + · · ·+ ak/an
n ≤ n.

3.18. If a, b, c, d, e are nonzero real numbers so that a+ b+ c + d + e = 5, then

�

7−
5
a

�2

+
�

7−
5
b

�2

+
�

7−
5
c

�2

+
�

7−
5
d

�2

+
�

7−
5
e

�2

≥ 20.
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3.19. If If a1, a2, . . . , a7 are real numbers so that a1 + a2 + · · ·+ a7 = 7, then

(a2
1 + 2)(a2

2 + 2) · · · (a2
7 + 2)≥ 37.

3.20. Let a1, a2, . . . , an be real numbers so that a1+a2+· · ·+an = n. If k ≥
n2

4(n− 1)
,

then
(a2

1 + k)(a2
2 + k) · · · (a2

n + k)≥ (1+ k)n.

3.21. Let a1, a2, . . . , an be real numbers such that a1 + a2 + · · ·+ an = n. If n ≤ 10,
then

(a2
1 − a1 + 1)(a2

2 − a2 + 1) · · · (a2
n − an + 1)≥ 1.

3.22. Let a1, a2, . . . , an be real numbers such that a1 + a2 + · · ·+ an = n. If n ≤ 26,
then

(a2
1 − a1 + 2)(a2

2 − a2 + 2) · · · (a2
n − an + 2)≥ 2n.

3.23. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(1− a+ a4)(1− b+ b4)(1− c + c4)≥ 1.

3.24. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 4, then

(1− a+ a3)(1− b+ b3)(1− c + c3)(1− d + d3)≥ 1.

3.25. If a, b, c, d, e are nonzero real numbers so that a+ b+ c + d + e = 5, then

5
�

1
a2
+

1
b2
+

1
c2
+

1
d2
+

1
e2

�

+ 45≥ 14
�

1
a
+

1
b
+

1
c
+

1
d
+

1
e

�

.

3.26. If a, b, c are positive real numbers so that abc = 1, then

7− 6a
2+ a2

+
7− 6b
2+ b2

+
7− 6c
2+ c2

≥ 1.
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3.27. If a, b, c are positive real numbers so that abc = 1, then

1
a+ 5bc

+
1

b+ 5ca
+

1
c + 5ab

≤
1
2

.

3.28. If a, b, c are positive real numbers so that abc = 1, then

1
4− 3a+ 4a2

+
1

4− 3b+ 4b2
+

1
4− 3c + 4c2

≤
3
5

.

3.29. If a, b, c are positive real numbers so that abc = 1, then

1
(3a+ 1)(3a2 − 5a+ 3)

+
1

(3b+ 1)(3b2 − 5b+ 3)
+

1
(3c + 1)(3c2 − 5c + 3)

≤
3
4

.

3.30. Let a1, a2, . . . , an (n ≥ 3) be positive real numbers so that a1a2 · · · an = 1. If
p, q ≥ 0 so that p+ 4q ≥ n− 1, then

1− a1

1+ pa1 + qa2
1

+
1− a2

1+ pa2 + qa2
2

+ · · ·+
1− an

1+ pan + qa2
n

≥ 0.

3.31. If a, b, c are positive real numbers so that abc = 1, then

1− a
17+ 4a+ 6a2

+
1− b

17+ 4b+ 6b2
+

1− c
17+ 4c + 6c2

≥ 0.

3.32. If a1, a2, . . . , a8 are positive real numbers so that a1a2 · · · a8 = 1, then

1− a1

(1+ a1)2
+

1− a2

(1+ a2)2
+ · · ·+

1− a8

(1+ a8)2
≥ 0.

3.33. Let a, b, c be positive real numbers so that abc = 1. If k ∈
�

−13

3
p

3
,

13

3
p

3

�

,

then
a+ k
a2 + 1

+
b+ k
b2 + 1

+
c + k
c2 + 1

≤
3(1+ k)

2
.
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3.34. If a, b, c are positive real numbers and 0< k ≤ 2+ 2
p

2, then

a3

ka2 + bc
+

b3

kb2 + ca
+

c3

kc2 + ab
≥

a+ b+ c
k+ 1

.

3.35. If a, b, c, d, e are positive real numbers so that abcde = 1, then

2
�

1
a+ 1

+
1

b+ 1
+ · · ·+

1
e+ 1

�

≥ 3
�

1
a+ 2

+
1

b+ 2
+ · · ·+

1
e+ 2

�

.

3.36. If a1, a2, . . . , a14 are positive real numbers so that a1a2 · · · a14 = 1, then

3
�

1
2a1 + 1

+
1

2a2 + 1
+ · · ·+

1
2a14 + 1

�

≥ 2
�

1
a1 + 1

+
1

a2 + 1
+ · · ·+

1
a14 + 1

�

.

3.37. Let a1, a2, . . . , a8 be positive real numbers so that a1a2 · · · a8 = 1. If k > 1,
then

(k+ 1)
�

1
ka1 + 1

+
1

ka2 + 1
+ · · ·+

1
ka8 + 1

�

≥ 2
�

1
a1 + 1

+
1

a2 + 1
+ · · ·+

1
a8 + 1

�

.

3.38. If a1, a2, . . . , a9 are positive real numbers so that a1a2 · · · a9 = 1, then

1
2a1 + 1

+
1

2a2 + 1
+ · · ·+

1
2a9 + 1

≥
1

a1 + 2
+

1
a2 + 2

+ · · ·+
1

a9 + 2
.

3.39. If a1, a2, . . . , an are real numbers so that

a1, a2, . . . , an ≤ π, a1 + a2 + · · ·+ an = π,

then
cos a1 + cos a2 + · · ·+ cos an ≤ n cos

π

n
.

3.40. If a1, a2, . . . , an (n≥ 3) are real numbers so that

a1, a2, . . . , an ≥
−1

n− 2
, a1 + a2 + · · ·+ an = n,

then
a2

1

a2
1 − a1 + 1

+
a2

2

a2
2 − a2 + 1

+ · · ·+
a2

n

a2
n − an + 1

≤ n.
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3.41. If a1, a2, . . . , an (n≥ 3) are nonzero real numbers so that

a1, a2, . . . , an ≥
−n

n− 2
, a1 + a2 + · · ·+ an = n,

then
1
a2

1

+
1
a2

2

+ · · ·+
1
a2

n

≥
1
a1
+

1
a2
+ · · ·+

1
an

.

3.42. If a1, a2, . . . , an ≥ −1 so that a1 + a2 + · · ·+ an = n, then

(n+ 1)

�

1
a2

1

+
1
a2

2

+ · · ·+
1
a2

n

�

≥ 2n+ (n− 1)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

.

3.43. If a1, a2, . . . , an (n≥ 3) are real numbers so that

a1, a2, . . . , an ≥
−(3n− 2)

n− 2
, a1 + a2 + · · ·+ an = n,

then
1− a1

(1+ a1)2
+

1− a2

(1+ a2)2
+ · · ·+

1− an

(1+ an)2
≥ 0.

3.44. Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n.

If n≥ 3 and k ≥ 2−
2
n

, then

1− a1

(1− ka1)2
+

1− a2

(1− ka2)2
+ · · ·+

1− an

(1− kan)2
≥ 0.
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3.3 Solutions

P 3.1. If a, b, c are real numbers so that a+ b+ c = 3, then

16a− 5
32a2 + 1

+
16b− 5
32b2 + 1

+
16c − 5
32c2 + 1

≤ 1.

(Vasile C., 2012)

Solution. Write the inequality as

f (a) + f (b) + f (c)≥ 3 f (s), s =
a+ b+ c

3
= 1,

where

f (u) =
5− 16u
32u2 + 1

, u ∈ R.

From

f ′(u) =
16(32u2 − 20u− 1)
(32u2 + 1)2

,

it follows that f is increasing on

�

−∞,
5−
p

33
16

�

∪ [s0,∞)

and decreasing on
�

5−
p

33
16

, s0

�

,

where

s0 =
5+
p

33
16

≈ 0.6715.

Also, from
lim

u→−∞
f (u) = 0

and
f (s0)< 0,

it follows that f (u)≥ f (s0) for u ∈ R. In addition, for u ∈ [s0, 1], we have

1
64

f ′′(u) =
−512u3 + 480u2 + 48u− 5

(32u2 + 1)3

=
512u2(1− u) + 32u(1− u) + (16u− 5)

(32u2 + 1)3
> 0,
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hence f is convex on [s0, s]. According to the LPCF-Theorem, we only need to show
that f (x) + 2 f (y) ≥ 3 f (1) for all real x , y so that x + 2y = 3. Using Note 1, it
suffices to prove that h(x , y)≥ 0, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

Indeed, we have

g(u) =
32(2u− 1)
3(32u2 + 1)

,

h(x , y) =
64(1+ 16x + 16y − 32x y)

3(32x2 + 1)(32y2 + 1)
=

64(4x − 5)2

3(32x2 + 1)(32y2 + 1)
≥ 0.

Thus, the proof is completed. From x + 2y = 3 and h(x , y) = 0, we get

x =
5
4

, y =
7
8

.

Therefore, in accordance with Note 3, the equality holds for a = b = c = 1, and
also for

a =
5
4

, b = c =
7
8

(or any cyclic permutation).

P 3.2. If a, b, c, d are real numbers so that a+ b+ c + d = 4, then

18a− 5
12a2 + 1

+
18b− 5
12b2 + 1

+
18c − 5
12c2 + 1

+
18d − 5
12d2 + 1

≤ 4.

(Vasile C., 2012)

Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d)≥ 4 f (s), s =
a+ b+ c + d

4
= 1,

where
f (u) =

5− 18u
12u2 + 1

, u ∈ R.

From

f ′(u) =
6(36u2 − 20u− 3)
(12u2 + 1)2

,

it follows that f is increasing on
�

−∞,
5−
p

52
18

�

∪ [s0,∞)
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and decreasing on
�

5−
p

52
18

, s0

�

, s0 =
5+
p

52
18

≈ 0.678.

Also, from
lim

u→−∞
f (u) = 0

and
f (s0)< 0,

it follows that f (u)≥ f (s0) for u ∈ R. In addition, for u ∈ [s0, 1], we have

1
24

f ′′(u) =
−216u3 + 180u2 + 54u− 5

(12u2 + 1)3

=
216u2(1− u) + 36u(1− u) + (18u− 5)

(32u2 + 1)3
> 0,

hence f is convex on [s0, s]. According to the LPCF-Theorem and Note 1, we only
need to show that h(x , y)≥ 0 for x , y ∈ R so that x + 3y = 4. We have

g(u) =
f (u)− f (1)

u− 1
=

6(2u− 1)
12u2 + 1

,

h(x , y) =
g(x)− g(y)

x − y
=

12(1+ 6x + 6y − 12x y)
(12x2 + 1)(12y2 + 1)

=
12(2x − 3)2

(12x2 + 1)(12y2 + 1)
≥ 0.

Thus, the proof is completed. From x + 3y = 4 and h(x , y) = 0, we get x = 3/2
and y = 5/6. Therefore, in accordance with Note 3, the equality holds for a = b =
c = d = 1, and also for

a =
3
2

, b = c = d =
5
6

(or any cyclic permutation).

P 3.3. If a, b, c, d, e, f are real numbers so that a+ b+ c + d + e+ f = 6, then

5a− 1
5a2 + 1

+
5b− 1
5b2 + 1

+
5c − 1
5c2 + 1

+
5d − 1
5d2 + 1

+
5e− 1
5e2 + 1

+
5 f − 1
5 f 2 + 1

≤ 4.

(Vasile C., 2012)

Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d) + f (e) + f ( f )≥ 4 f (s), s =
a+ b+ c + d + e+ f

6
= 1,
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where

f (u) =
1− 5u
5u2 + 1

, u ∈ R.

From

f ′(u) =
5(5u2 − 2u− 1)
(5u2 + 1)2

,

it follows that f is increasing on

�

−∞,
1−
p

6
5

�

∪ [s0,∞)

and decreasing on

�

1−
p

6
5

, s0

�

, s0 =
1+
p

6
5

≈ 0.69.

Also, from
lim

u→−∞
f (u) = 0

and
f (s0)< 0,

it follows that f (u)≥ f (s0) for u ∈ R. In addition, for u ∈ [s0, 1], we have

1
24

f ′′(u) =
−216u3 + 180u2 + 54u− 5

(12u2 + 1)3

=
216u2(1− u) + 36u(1− u) + (18u− 5)

(32u2 + 1)3
> 0,

hence f is convex on [s0, s]. According to the LPCF-Theorem and Note 1, we only
need to show that h(x , y)≥ 0 for x , y ∈ R so that x + 5y = 6. We have

g(u) =
f (u)− f (1)

u− 1
=

5(2u− 1)
3(5u2 + 1)

,

h(x , y) =
g(x)− g(y)

x − y
=

5(2+ 5x + 5y − 10x y)
3(5x2 + 1)(5y2 + 1)

=
10(x − 2)2

3(5x2 + 1)(5y2 + 1)
≥ 0.

In accordance with Note 3, the equality holds for a = b = c = d = e = f = 1, and
also for

a = 2, b = c = d = e = f =
4
5

(or any cyclic permutation).
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P 3.4. If a1, a2, . . . , an (n≥ 3) are real numbers so that a1 + a2 + · · ·+ an = n, then

n(n+ 1)− 2a1

n2 + (n− 2)a2
1

+
n(n+ 1)− 2a2

n2 + (n− 2)a2
2

+ · · ·+
n(n+ 1)− 2an

n2 + (n− 2)a2
n

≤ n.

(Vasile C., 2008)

Solution. The desired inequality is true for a1 >
n(n+ 1)

2
since

n(n+ 1)− 2a1

n2 + (n− 2)a2
1

< 0

and
n(n+ 1)− 2ai

n2 + (n− 2)a2
i

<
n

n− 1
, i = 2, 3, . . . , n.

The last inequalities are equivalent to

n(n− 2)a2
i + 2(n− 1)ai + n> 0,

which are true because

n(n− 2)a2
i + 2(n− 1)ai + n≥ (n− 1)a2

i + 2(n− 1)ai + n> (n− 1)(ai + 1)2 ≥ 0.

Consider further that

a1, a2, . . . , an ≤
n(n+ 1)

2
,

and rewrite the desired inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
2u− n(n+ 1)
(n− 2)u2 + n2

, u ∈ I=
�

−∞,
n(n+ 1)

2

�

.

We have
f ′(u)

2(n− 2)
=

n2 + n(n+ 1)u− u2

[(n− 2)u2 + n2]2

and
f ′′(u)

2(n− 2)
=

f1(u)
[(n− 2)u2 + n2]3

,

where

f1(u) = 2(n− 2)u3 − 3n(n+ 1)(n− 2)u2 − 2n2(2n− 3)u+ n3(n+ 1).

From the expression of f ′, it follows that f is decreasing on (−∞, s0] and increasing

on
�

s0,
n(n+ 1)

2

�

, where

s0 =
n
2

�

n+ 1−
p

n2 + 2n+ 5
�

∈ (−1, 0);
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therefore,
min
u∈I

f (u) = f (s0).

On the other hand, for −1≤ u≤ 1, we have

f1(u)> −2(n− 2)− 3n(n+ 1)(n− 2)− 2n2(2n− 3) + n3(n+ 1)

= n2(n− 3)2 + 4(n+ 1)> 0,

hence f ′′(u) > 0. Since [s0, s] ⊂ [−1, 1], f is convex on [s0, s]. By the LPCF-
Theorem and Note 1, we only need to show that h(x , y) ≥ 0 for x , y ∈ R and
x + (n− 1)y = n, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

Indeed, we have

g(u) =
(n− 2)u+ n
(n− 2)u2 + n2

and

h(x , y)
n− 2

=
n2 − n(x + y)− (n− 2)x y

[(n− 2)x2 + n2][(n− 2)y2 + n2]

=
(n− 1)(n− 2)y2

[(n− 2)x2 + n2][(n− 2)y2 + n2]
≥ 0.

The proof is completed. By Note 3, the equality holds for a1 = a2 = · · · = an = 1,
and also for

a1 = n, a2 = · · ·= an = 0

(or any cyclic permutation).

P 3.5. If a, b, c, d are real numbers so that a+ b+ c + d = 4, then

a(a− 1)
3a2 + 4

+
b(b− 1)
3b2 + 4

+
c(c − 1)
3c2 + 4

+
d(d − 1)
3d2 + 4

≥ 0.

(Vasile C., 2012)

Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d)≥ 4 f (s), s =
a+ b+ c + d

4
= 1,

where

f (u) =
u2 − u

3u2 + 4
, u ∈ R.
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From

f ′(u) =
3u2 + 8u− 4
(3u2 + 4)2

,

it follows that f is increasing on

�

−∞,
−4− 2

p
7

3

�

∪ [s0,∞) and decreasing on
�

−4− 2
p

7
3

, s0

�

, where

s0 =
−4+ 2

p
7

3
≈ 0.43.

Since
lim

u→−∞
f (u) =

1
3

and f (s0)< 0, it follows that

min
u∈R

f (u) = f (s0).

For u ∈ [0,1], we have

1
2

f ′′(u) =
−9u3 − 36u2 + 36u+ 14

(3u2 + 4)3

=
9u2(1− u) + 45u(1− u) + (16− 9u)

(3u2 + 4)3
> 0.

Therefore, f is convex on [0,1], hence on [s0, s]. According to the LPCF-Theorem
and Note 1, we only need to show that h(x , y)≥ 0 for x , y ∈ R so that x +3y = 4.
We have

g(u) =
f (u)− f (1)

u− 1
=

u
3u2 + 4

,

h(x , y) =
g(x)− g(y)

x − y
=

4− 3x y
(3x2 + 4)(3y2 + 4)

=
(x − 2)2

(3x2 + 4)(3y2 + 4)
≥ 0.

The proof is completed. From x + 3y = 4 and h(x , y) = 0, we get x = 2 and
y = 2/3. By Note 3, the equality holds for a = b = c = d = 1, and also for

a = 2, b = c = d =
2
3

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:
• If a1, a2, . . . , an are real numbers so that a1 + a2 + · · ·+ an = n, then

a1(a1 − 1)
4(n− 1)a2

1 + n2
+

a2(a2 − 1)
4(n− 1)a2

2 + n2
+ · · ·+

an(an − 1)
4(n− 1)a2

n + n2
≥ 0,
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with equality for a1 = a2 = · · ·= an = 1, and also for

a1 =
n
2

, a2 = a3 = · · ·= an =
n

2(n− 1)

(or any cyclic permutation).

P 3.6. If a, b, c are real numbers so that a+ b+ c = 3, then

1
9a2 − 10a+ 9

+
1

9b2 − 10b+ 9
+

1
9c2 − 10c + 9

≤
3
8

.

(Vasile C., 2015)

Solution. Write the inequality as

f (a) + f (b) + f (c)≥ 3 f (s), s =
a+ b+ c

3
= 1,

where
f (u) =

−1
9u2 − 10u+ 9

, u ∈ R.

From

f ′(u) =
2(9u− 5)

(9u2 − 10u+ 9)2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞) and , where

s0 =
5
9
< 1= s.

For u ∈ [s0, s] = [5/9,1], we have

f ′′(u) =
2(−243u2 + 270u− 19)
(9u2 − 10u+ 9)3

>
2(−243u2 + 270u− 27)
(9u2 − 10u+ 9)3

=
54(−9u2 + 10u− 1)
(9u2 − 10u+ 9)3

=
54(1− u)(9u− 1)
(9u2 − 10u+ 9)3

≥ 0.

Therefore, f is convex on [s0, s]. According to the LPCF-Theorem and Note 1, we
only need to show that h(x , y)≥ 0 for x , y ∈ R so that x + 2y = 3. We have

g(u) =
f (u)− f (1)

u− 1
=

9u− 1)
8(9u2 − 10u+ 9)

,

h(x , y) =
g(x)− g(y)

x − y
=

9(x + y)− 81x y + 71
8(9x2 − 10x + 9)(9y2 − 10y + 9)

=
2(9y − 7)2

8(9x2 − 10x + 9)(9y2 − 10y + 9)
≥ 0.
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The proof is completed. From x + 2y = 3 and h(x , y) = 0, we get

x =
13
9

, y =
7
9

.

Thus, the equality holds for a = b = c = d = 1, and also for

a =
13
9

, b = c =
7
9

(or any cyclic permutation).

P 3.7. If a, b, c, d are real numbers so that a+ b+ c + d = 4, then

1
4a2 − 5a+ 4

+
1

4b2 − 5b+ 4
+

1
4c2 − 5c + 4

+
1

4d2 − 5d + 4
≤

4
3

.

(Vasile C., 2015)

Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d)≥ 4 f (s), s =
a+ b+ c + d

4
= 1,

where
f (u) =

−1
4u2 − 5u+ 4

, u ∈ R.

From

f ′(u) =
2(8u− 5)

(4u2 − 5u+ 4)2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 =
5
8
< 1= s.

For u ∈ [s0, s] = [5/8,1], we have

f ′′(u) =
4(−48u2 + 60u− 9)
(4u2 − 5u+ 4)3

>
4(−48u2 + 60u− 12)
(4u2 − 5u+ 4)3

=
48(−4u2 + 5u− 1)
(4u2 − 5u+ 4)3

=
48(1− u)(4u− 1)
(4u2 − 5u+ 4)3

≥ 0.

Therefore, f is convex on [s0, s]. According to the LPCF-Theorem and Note 1, we
only need to show that h(x , y)≥ 0 for x , y ∈ R so that x + 3y = 4. We have

g(u) =
f (u)− f (1)

u− 1
=

4u− 1)
3(4u2 − 5u+ 4)

,
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h(x , y) =
g(x)− g(y)

x − y
=

4(x + y)− 16x y + 11
3(4x2 − 5x + 4)(4y2 − 5y + 4)

=
(4y − 3)2

(4x2 − 5x + 4)(4y2 − 5y + 4)
≥ 0.

From x + 3y = 4 and h(x , y) = 0, we get

x =
7
4

, y =
3
4

.

In accord with Note 3, the equality holds for a = b = c = 1, and also for

a =
7
4

, b = c = d =
3
4

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be real numbers so that a1 + a2 + · · ·+ an = n. If

k = 1−
2(n− 1)

n2
,

then
1

a2
1 − 2ka1 + 1

+
1

a2
2 − 2ka2 + 1

+ · · ·+
1

a2
n − 2kan + 1

≥
n

2(1− k)
,

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 =
3n2 − 6n+ 4

n2
, a2 = a3 = · · ·= an =

n2 − 2n+ 4
n2

(or any cyclic permutation).

P 3.8. Let a1, a2, . . . , an 6= −k be real numbers so that a1 + a2 + · · ·+ an = n, where

k ≥
n

2
p

n− 1
.

Then,
a1(a1 − 1)
(a1 + k)2

+
a2(a2 − 1)
(a2 + k)2

+ · · ·+
an(an − 1)
(an + k)2

≥ 0.

(Vasile C., 2008)



Partially Convex Function Method 235

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
u(u− 1)
(u+ k)2

, u ∈ I= R \ {−k}.

From

f ′(u) =
(2k+ 1)u− k
(u+ k)3

,

it follows that f is increasing on (−∞,−k) ∪ [s0,∞) and decreasing on (−k, s0],
where

s0 =
k

2k+ 1
< 1= s.

Since
lim

u→−∞
f (u) = 1

and f (s0)< 0, we have
min
u∈I

f (u) = f (s0).

From
1
2

f ′′(u) =
k(k+ 2)− (2k+ 1)u

(u+ k)4
,

it follows that f is convex on
�

0,
k(k+ 2)
2k+ 1

�

, hence on [s0, 1]. According to the LPCF-

Theorem, Note 4 and Note 1, it suffices to show that h(x , y) ≥ 0 for all x , y ∈ I
which satisfy x + (n− 1)y = n, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

Indeed, we have
g(u) =

u
(u+ k)2

and

h(x , y) =
k2 − x y

(x + k)2(y + k)2
≥

n2

4(n−1) − x y

(x + k)2(y + k)2

=
[2(n− 1)y − n]2

4(n− 1)(x + k)2(y + k)2
≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k =
n

2
p

n− 1
, then the equality

holds also for
a1 =

n
2

, a2 = · · ·= an =
n

2(n− 1)
(or any cyclic permutation).
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P 3.9. Let a1, a2, . . . , an 6= −k be real numbers so that a1 + a2 + · · ·+ an = n. If

k ≥ 1+
n

p
n− 1

,

then
a2

1 − 1

(a1 + k)2
+

a2
2 − 1

(a2 + k)2
+ · · ·+

a2
n − 1

(an + k)2
≥ 0.

(Vasile C., 2008)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
u2 − 1
(u+ k)2

, u ∈ I= R \ {−k}.

From

f ′(u) =
2(ku+ 1)
(u+ k)3

,

it follows that f is increasing on (−∞,−k) ∪ [s0,∞) and decreasing on (−k, s0],
where

s0 =
−1
k
< 0= s, s0 > −1.

Since
lim

u→−∞
f (u) = 1

and f (s0)< 0, we have
min
u∈I

f (u) = f (s0).

For u ∈ [−1,1], we have

f ′′(u) =
2(k2 − 3− 2ku)
(u+ k)4

≥
2(k2 − 3− 2k)
(u+ k)4

=
2(k+ 1)(k− 3)
(u+ k4

≥ 0,

hence f is convex on [s0, 1]. According to the LPCF-Theorem, Note 4 and Note 1,
it suffices to show that h(x , y) ≥ 0 for x , y ∈ I which satisfy x + (n− 1)y = n. We
have

g(u) =
f (u)− f (1)

u− 1
=

u+ 1
(u+ k)2

,

h(x , y) =
g(x)− g(y)

x − y
=
(k− 1)2 − 1− x − y − x y

(x + k)2(y + k)2
≥ 0,

since

(k− 1)2 − 1− x − y − x y ≥
n2

n− 1
− 1− x − y − x y =

[(n− 1)y − 1]2

n− 1
≥ 0.
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The equality holds for a1 = a2 = · · ·= an = 1. If k = 1+
n

p
n− 1

, then the equality

holds also for
a1 = n− 1, a2 = · · ·= an =

1
n− 1

(or any cyclic permutation).

P 3.10. Let a1, a2, a3, a4, a5 be real numbers so that a1 + a2 + a3 + a4 + a5 ≥ 5. If

k ∈
�

1
6

,
25
14

�

,

then
∑ 1

ka2
1 + a2 + a3 + a4 + a5

≤
5

k+ 4
.

(Vasile C., 2006)

Solution. We see that

ka2
i − ai + (a1 + a2 + a3 + a4 + a5)>

1
6

a2
i − ai +

3
2
=
(a1 − 3)2

6
≥ 0

for all i ∈ {1,2, . . . , n}. Since each term of the left hand side of the inequality
decreases by increasing any number ai, it suffices to consider the case

a1 + a2 + a3 + a4 + a5 = 5,

when the desired inequality can be written as

f (a1) + f (a2) + f (a3) + f (a4) + f (a5)≥ 5 f (s), s =
a1 + a2 + a3 + a4 + a5

5
= 1,

where
f (u) =

−1
ku2 − u+ 5

, u ∈ R.

From

f ′(u) =
2ku− 1

(ku2 − u+ 5)2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 =
1

2k
.

We have

f ′′(u) =
2g(u)

(ku2 − u+ 5)3
, g(u) = −3k2u2 + 3ku+ 5k− 1.
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For
1
2
≤ k ≤

25
14

,

we have
s0 =

1
2k
≤ 1= s,

and for u ∈ [s0, s], that is
1

2k
≤ u≤ 1,

we have
(1− u)(2ku− 1)≥ 0,

−2ku2 ≥ (2k+ 1)u+ 1,

−2k2u2 ≥ k(2k+ 1)u+ k,

therefore

g(u)≥
3
2
[k(2k+ 1)u+ k] + 3ku+ 5k− 1=

−3k(2k− 1)u+ 13k− 2
2

≥
−3k(2k− 1) + 13k− 2

2
= −3k2 + 8k− 1= 3k(2− k) + (2k− 1)> 0.

Consequently, f is convex on [s0, s].

For
1
6
≤ k ≤

1
2

,

we have
s0 =

1
2k
≥ 1= s,

and for u ∈ [s, s0], that is

1≤ u≤
1

2k
,

we have

g(u) = −3k2u2 + 3ku+ 5k− 1≥ 3ku(1− k) + 5k− 1

≥ 3k(1− k) + 5k− 1= −3k2 + 8k− 1

> −6k2 + 7k− 1= (1− k)(6k− 1)≥ 0.

Consequently, f is convex on [s, s0].
In both cases, by the PCF-Theorem, it suffices to show that

1
kx2 − x + 5

+
4

k y2 − y + 5
≤

5
k+ 4

for
x + 4y = 5, x , y ∈ R.
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Write this inequality as follows:

1
k+ 4

−
1

kx2 − x + 5
+ 4

�

1
k+ 4

−
1

k y2 − y + 5

�

≥ 0,

(x − 1)(kx + k− 1)
kx2 − x + 5

+
4(y − 1)(k y + k− 1)

k y2 − y + 5
≥ 0.

Since
4(y − 1) = 1− x ,

the inequality is equivalent to

(x − 1)
�

kx + k− 1
kx2 − x + 5

−
k y + k− 1
k y2 − y + 5

�

≥ 0,

5(x − 1)2h(x , y)
4(kx2 − x + 5)(k y2 − y + 5)

≥ 0,

where

h(x , y) = −k2 x y − k(k− 1)(x + y) + 6k− 1

= 4k2 y2 − k(2k+ 3)y − 5k2 + 11k− 1

=
�

2k y −
2k+ 3

4

�2

+
(25− 14k)(6k− 1)

16
≥ 0.

The equality holds for a1 = a2 = a3 = a4 = a5 = 1. If k =
1
6

, then the equality

holds also for

a1 = −5, a2 = a3 = a4 = a5 =
5
2

(or any cyclic permutation). If k =
25
14

, then the equality holds also for

a1 =
79
25

, a2 = a3 = a4 = a5 =
23
50

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a1, a2, . . . , an be real numbers so that a1+ a2+ · · ·+ an ≤ n. If k ∈ [k1, k2],
where

k1 =
(n− 1)(

p
53n2 − 54n+ 101− 5n+ 11)
2(7n2 + 14n− 5)

,

k2 =
2n2 − 2n+ 1+

p

(n− 1)(3n3 − 4n2 + 3n− 1)
2(n2 − n+ 1)

,
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then
∑ 1

ka2
1 + a2 + · · ·+ an

≤
n

k+ n− 1
,

with equality for a1 = a2 = · · ·= an = 1. If k = k1, then the equality holds also for

a1 = −n, a2 = · · ·= an =
2n

n− 1

(or any cyclic permutation). If k = k2, then the equality holds also for

a1 =
(2k− 1)(n− 1) + 1

2k
, a2 = · · ·= an =

2k+ n− 2
2k(n− 1)

(or any cyclic permutation).

P 3.11. Let a1, a2, . . . , a5 be nonnegative numbers so that a1+ a2+ a3+ a4+ a5 ≥ 5.
If k ∈ [k1, k2], where

k1 =
29−

p
761

10
≈ 0.1414, k2 =

25
14
≈ 1.7857,

then
∑ 1

ka2
1 + a2 + a3 + a4 + a5

≤
5

k+ 4
.

(Vasile C., 2006)

Solution. Since all terms of the left hand side of the inequality decrease by increas-
ing any number ai, it suffices to consider the case

a1 + a2 + a3 + a4 + a5 = 5.

The proof is similar to the one of the preceding P 3.10. Having in view P 3.10, it
suffices to consider the case

k ∈
�

k1,
1
6

�

,

when
s0 =

1
2k
> 1= s.

For u ∈ [s, s0], that is

1≤ u≤
1

2k
,

f is convex because

g(u) = −3k2u2 + 3ku+ 5k− 1≥ 3ku(1− k) + 5k− 1

≥ 3k(1− k) + 5k− 1= −3k2 + 8k− 1

> −
15
4

k2 + 87k− 1=
(2− k)(15k− 2)

4
> 0.



Partially Convex Function Method 241

Thus, by the RPCF-Theorem, it suffices to show that

1
kx2 − x + 5

+
4

k y2 − y + 5
≤

5
k+ 4

for
x + 4y = 5, 0≤ x ≤ 1≤ y ≤

5
4

.

As shown at P 3.10, this inequality is true if h(x , y)≥ 0, where

h(x , y) = −k2 x y − k(k− 1)(x + y) + 6k− 1.

We have

h(x , y) = 4k2 y2 − k(2k+ 3)y − 5k2 + 11k− 1

= (5− 4y)(A− k2 y) + B = x(A− k2 y) + B,

where

A=
3k(1− k)

4
, B =

−5k2 + 29k− 4
4

.

Since B ≥ 0, it suffices to show that A− k2 y ≥ 0. Indeed, we have

A− k2 y ≥
3k(1− k)

4
−

5k2

4
=

k(3− 8k)
4

> 0.

The equality holds for a1 = a2 = a3 = a4 = a5 = 1. If k = k1, then the equality
holds also for

a1 = 0, a2 = a3 = a4 = a5 =
5
4

(or any cyclic permutation). If k = k2, then the equality holds also for

a1 =
79
25

, a2 = a3 = a4 = a5 =
23
50

(or any cyclic permutatio

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an ≤ n.
If k ∈ [k1, k2], where

k1 =
n2 + n− 1−

p
n4 + 2n3 − 5n2 + 2n+ 1

2n
,

k2 =
2n2 − 2n+ 1+

p

(n− 1)(3n3 − 4n2 + 3n− 1)
2(n2 − n+ 1)

,

then
∑ 1

ka2
1 + a2 + · · ·+ an

≤
n

k+ n− 1
,
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with equality for a1 = a2 = · · ·= an = 1. If k = k1, then the equality holds also for

a1 = 0, a2 = · · ·= an =
n

n− 1

(or any cyclic permutation). If k = k2, then the equality holds also for

a1 =
(2k− 1)(n− 1) + 1

2k
, a2 = · · ·= an =

2k+ n− 2
2k(n− 1)

(or any cyclic permutation).

P 3.12. Let a1, a2, . . . , an be nonnegative real numbers so that a1+ a2+ · · ·+ an ≥ n.
If k > 1, then

1

ak
1 + a2 + · · ·+ an

+
1

a1 + ak
2 + · · ·+ an

+ · · ·+
1

a1 + a2 + · · ·+ ak
n

≤ 1.

(Vasile C., 2006)

Solution. It suffices to consider the case a1 + a2 + · · ·+ an = n, when the desired
inequality can be written as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) =

−1
uk − u+ n

, u ∈ [0, n].

From

f ′(u) =
kuk−1 − 1
(uk − u+ n)2

,

it follows that f is decreasing on [0, s0] and increasing on [s0, n], where

s0 = k
1

1−k < 1= s.

We will show that f is convex on [s0, 1]. For u ∈ [s0, 1], we have

f ′′(u) =
−k(k+ 1)u2k−2 + k(k+ 3)uk−1 + nk(k− 1)uk−2 − 2

(uk − u+ n)3
>

g(u)
(uk − u+ n)3

,

where
g(u) = −k(k+ 1)u2k−2 + k(k+ 3)uk−1 − 2.

Denoting
t = kuk−1, 1≤ t ≤ k,
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we get

kg(u) = −(k+ 1)t2 + k(k+ 3)t − 2k
= (k+ 1)(t − 1)(k− t) + (k− 1)(t + k)> 0.

By the LPCF-Theorem, it suffices to show that

1
x k − x + n

+
n− 1

yk − y + n
≤ 1

for x ≥ 1≥ y ≥ 0 and x+(n−1)y = n. Since this inequality is trivial for x = y = 1,
assume next that x > 1> y ≥ 0, and write the desired inequality as follows:

x k − x + n≥
yk − y + n
yk − y + 1

,

x k − x ≥
(n− 1)(y − yk)

yk − y + 1
,

x k − x
x − 1

≥
y − yk

(1− y)(yk − y + 1)
.

Let h(x) =
x k − x
x − 1

, x > 1. By the weighted AM-GM inequality, we have

h′(x) =
(k− 1)x k + 1− kx k−1

(x − 1)2
> 0.

Therefore, h is increasing. Since

x − 1= (n− 1)(1− y)≥ 1− y, x ≥ 2− y > 1,

we get

h(x)≥ h(2− y) =
(2− y)k + y − 2

1− y
.

Thus, it suffices to show that

(2− y)k + y − 2≥
y − yk

yk − y + 1
,

which is equivalent to

(2− y)k + y − 1≥
1

yk − y + 1
.

Using the substitution
t = 1− y, 0< t ≤ 1,
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the inequality becomes

(1+ t)k − t ≥
1

(1− t)k + t
,

(1− t2)k + t(1+ t)k ≥ 1+ t2 + t(1− t)k.

By Bernoulli’s inequality,

(1− t2)k + t(1+ t)k ≥ 1− kt2 + t(1+ kt) = 1+ t.

So, we only need to show that

1+ t ≥ 1+ t2 + t(1− t)k,

which is equivalent to the obvious inequality

t(1− t)
�

1− (1− t)k−1
�

≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1.

Remark. Using this result, we can formulate the following statement:

• Let x1, x2, . . . , xn be nonnegative real numbers so that x1 + x2 + · · ·+ xn ≥ n. If
k > 1, then

x k
1 − x1

x k
1 + x2 + · · ·+ xn

+
x k

2 − x2

x1 + x k
2 + · · ·+ xn

+ · · ·+
x k

n − xn

x1 + x2 + · · ·+ x k
n

≥ 0.

This inequality is equivalent to

1

x k
1 + x2 + · · ·+ xn

+
1

x1 + x k
2 + · · ·+ xn

+· · ·+
1

x1 + x2 + · · ·+ x k
n

≤
n

x1 + x2 + · · ·+ xn
.

Using the substitutions

s =
x1 + x2 + · · ·+ xn

n
, s ≥ 1,

and
ai =

x i

s
, i = 1, 2, . . . , n,

which yields a1 + a2 + · · ·+ an = n, the desired inequality becomes

∑ 1

sk−1ak
1 + a2 + · · ·+ an

≤ 1.

Since sk−1 ≥ 1, it suffices to show that

∑ 1

ak
1 + a2 + · · ·+ an

≤ 1,
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which follows immediately from the inequality in P 3.12.

Since x1 x2 · · · xn ≥ 1 involves x1+ x2+ · · ·+ xn ≥ n, the inequality is also true
under the more restrictive condition x1 x2 · · · xn ≥ 1. For n= 3 and k = 5/2, we get
the inequality from IMO-2005:

• If x , y, z are nonnegative real numbers so that x yz ≥ 1, then

x5 − x2

x5 + y2 + z2
+

y5 − y2

x2 + y5 + z2
+

z5 − z2

x2 + y2 + z5
≥ 0.

P 3.13. Let a1, a2, . . . , a5 be nonnegative numbers so that a1+ a2+ a3+ a4+ a5 ≥ 5.
If

k ∈
�

4
9

,
61
5

�

,

then
∑ a1

ka2
1 + a2 + a3 + a4 + a5

≤
5

k+ 4
.

(Vasile C., 2006)

Solution. Using the substitution

x1 =
a1

s
, x2 =

a2

s
, x3 =

a3

s
, x4 =

a4

s
, x5 =

a5

s
,

where
s =

a1 + a2 + a3 + a4 + a5

5
≥ 1,

we need to show that x1 + x2 + x3 + x4 + x5 = 5 involves

x1

ksx2
1 + x2 + x3 + x4 + x5

+ · · ·+
x5

x1 + x2 + x3 + x4 + ksx2
5

≤
5

k+ 4
.

Since s ≥ 1, it suffices to prove the inequality for s = 1; that is, to show that

a1

ka2
1 − a1 + 5

+
a2

ka2
2 − a1 + 5

+ · · ·+
a5

ka2
5 − an + 5

≤
5

k+ 4

for
a1 + a2 + a3 + a4 + a5 = 5.

Write the desired inequality as

f (a1) + f (a2) + f (a3) + f (a4) + f (a5)≥ 5 f (s),
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where
s =

a1 + a2 + a3 + a4 + a5

5
= 1

and
f (u) =

−u
ku2 − u+ 5

, u ∈ [0, 5].

From

f ′(u) =
ku2 − 5

(ku2 − u+ 5)2
,

it follows that f is decreasing on [0, s0] and increasing on [s0, 5], where

s0 =

√

√5
k

.

We have

f ′′(u) =
2g(u)

(u2 − u+ 5)3
, g(u) = −k2u3 + 15ku− 5, g ′(u) = 3k(5− ku2).

Case 1:
4
9
≤ k ≤ 5. We have

s0 =

√

√5
k
≥ 1= s.

For u ∈ [1, s0], the derivative g ′ is nonnegative, g is increasing, hence

g(u)≥ g(1) = −k2 + 15k− 5=
�

k−
4
9

�

(5− k) +
86k− 25

9
> 0.

Consequently, f ′′(u)> 0 for u ∈ [1, s0], hence f is convex on [s, s0].

Case 2: 5≤ k ≤
61
5

. We have

s0 =

√

√5
k
< 1= s.

For u ∈ [s0, 1], we have g ′(u)≤ 0, g(u) is decreasing, hence

g(u)≥ g(1) = −k2 + 15k− 5= (k− 1)(13− k) + k+ 8> 0.

Consequently, f ′′(u)> 0 for u ∈ [s0, 1], hence f is convex on [s0, s].

In both cases, by the PCF-Theorem, it suffices to show that

x
kx2 − x + 5

+
4y

k y2 − y + 5
≤

5
k+ 4
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for
x + 4y = 5, x , y ≥ 0.

Write this inequality as follows:

1
k+ 4

−
x

kx2 − x + 5
+ 4

�

1
k+ 4

−
y

k y2 − y + 5

�

≥ 0,

(x − 1)(kx − 5)
kx2 − x + 5

+
4(y − 1)(k y − 5)

k y2 − y + 5
≥ 0.

Since
4(y − 1) = 1− x ,

the inequality is equivalent to

(x − 1)
�

kx − 5
kx2 − x + 5

−
k y − 5

k y2 − y + 5

�

≥ 0,

(x − 1)2h(x , y)
(kx2 − x + 5)(k y2 − y + 5)

≥ 0,

where

h(x , y) = −k2 x y + 5k(x + y) + 5k− 5

= 4k2 y2 − 5k(k+ 3)y + 5(6k− 1).

We need to show that h(x , y)≥ 0 for k ∈
�

4
9

,
61
5

�

. For k ∈
�

4
9

,1
�

, we have

h(x , y) = (5− 4y)
�

−k2 y +
15k

4

�

+
5(9k− 4)

4

=
kx(15− 4k y)

4
+

5(9k− 4)
4

=
kx(kx + 15− 5k)

4
+

5(9k− 4)
4

≥ 0,

while for k ∈
�

1,
61
5

�

, we have

h(x , y) =
�

2k y −
5k+ 15

4

�2

+
(61− 5k)(k− 1)

16
≥ 0.

The equality holds for a1 = a2 = a3 = a4 = a5 = 1. If k =
4
9

, then the equality

holds also for

a1 = 0, a2 = a3 = a4 = a5 =
5
4
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(or any cyclic permutation). If k =
61
5

, then the equality holds also for

a1 =
115
61

, a2 = a3 = a4 = a5 =
95

122

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a1, a2, . . . , an be real numbers so that a1+ a2+ · · ·+ an ≤ n. If k ∈ [k1, k2],
where

k1 =
n− 1

2n− 1
,

k2 =
n2 + 2n− 2+ 2

p

(n− 1)(2n2 − 1)
n

,

then
∑ a1

ka2
1 + a2 + · · ·+ an

≤
n

k+ n− 1
,

with equality for a1 = a2 = · · ·= an = 1. If k = k1, then the equality holds also for

a1 = 0, a2 = a3 = a4 = a5 =
n

n− 1

(or any cyclic permutation). If k = k2, then the equality holds also for

a1 =
n(k− n+ 2)

2k
, a2 = · · ·= an =

n(k+ n− 2)
2k(n− 1)

(or any cyclic permutation).

P 3.14. Let a1, a2, . . . , an be nonnegative real numbers so that a1+ a2+ · · ·+ an ≥ n.
If k > 1, then

a1

ak
1 + a2 + · · ·+ an

+
a2

a1 + ak
2 + · · ·+ an

+ · · ·+
an

a1 + a2 + · · ·+ ak
n

≤ 1.

(Vasile C., 2006)

Solution. Using the substitution

x1 =
a1

s
, x2 =

a2

s
, . . . , xn =

an

s
,

where
s =

a1 + a2 + · · ·+ an

n
≥ 1,
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we need to show that x1 + x2 + · · ·+ xn = n involves

x1

sk−1 x k
1 + x2 + · · ·+ xn

+ · · ·+
xn

x1 + x2 + · · ·+ sk−1 x k
n

≤ 1.

Since sk−1 ≥ 1, it suffices to prove the inequality for s = 1; that is, to show that

a1

ak
1 − a1 + n

+
a2

ak
2 − a2 + n

+ · · ·+
an

ak
n − an + n

≤ 1

for
a1 + a2 + · · ·+ an = n.

Case 1: 1< k ≤ n+ 1. By Bernoulli’s inequality, we have

ak
1 ≥ 1+ k(a1 − 1), ak

1 − a1 + n≥ (k− 1)a1 + n− k+ 1.

Thus, it suffices to show that
∑ a1

(k− 1)a1 + n− k+ 1
≤ 1.

This is an equality for k = n− 1. If 1< k < n+ 1, then the inequality is equivalent
to

∑ 1
(k− 1)a1 + n− k+ 1

≥ 1,

which follows from the the AM-HM inequality

∑ 1
(k− 1)a1 + n− k+ 1

≥
n2

∑

[(k− 1)a1 + n− k+ 1]
.

Case 2: k > n+ 1. Write the desired inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) =

−u
uk − u+ n

, u ∈ [0, n].

We have

f ′(u) =
(k− 1)uk − n
(uk − u+ n)2

and

f ′′(u) =
f1(u)

(uk − u+ n)3
,

where

f1(u) = k(k− 1)uk−1(uk − u+ n)− 2(kuk−1 − 1)[(k− 1)uk − n].
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From the expression of f ′, it follows that f is decreasing on [0, s0] and increasing
on [s0, n], where

s0 =
� n

k− 1

�1/k
< 1= s.

For u ∈ [s0, 1], we have

(k− 1)uk − n≥ (k− 1)sk
0 − n= 0,

hence

f1(u)≥ k(k− 1)uk−1(uk − u+ n)− 2kuk−1[(k− 1)uk − n]

= kuk−1[−(k− 1)(uk + u) + n(k+ 1)]

≥ kuk−1[−2(k− 1) + 2(k+ 1)] = 4kuk−1 > 0.

Since f ′′(u) > 0, it follows that f is convex on [s0, s]. By the LPCF-Theorem, we
need to show that

f (x) + (n− 1) f (y)≥ nf (1)

for
x ≥ 1≥ y ≥ 0, x + (n− 1)y = n.

Consider the nontrivial case where x > 1> y ≥ 0 and write the required inequality
as follows:

x
x k − x + n

+
(n− 1)y

yk − y + n
≤ 1,

x k − x + n≥
x(yk − y + n)
yk − ny + n

,

x k − x ≥
(n− 1)y(y − yk)

yk − ny + n
.

Since y < 1 and yk − ny + n> yk − y + 1, it suffices to show that

x k − x ≥
(n− 1)(y − yk)

yk − y + 1
,

which has been proved at P 3.12.
The equality holds for a1 = a2 = · · ·= an = 1.

P 3.15. Let a1, a2, . . . , an be nonnegative real numbers so that a1+ a2+ · · ·+ an ≤ n.

If k ≥ 1−
1
n

, then

1− a1

ka2
1 + a2 + · · ·+ an

+
1− a2

a1 + ka2
2 + · · ·+ an

+ · · ·+
1− an

a1 + a2 + · · ·+ ka2
n

≥ 0.

(Vasile C., 2006)
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Solution. Let
s =

a1 + a2 + · · ·+ an

n
, s ≤ 1.

We have three cases to consider.

Case 1: s ≤
1
n

. The inequality is trivial because

ai ≤ a1 + a2 + · · ·+ an = ns ≤ 1

for i = 1,2, . . . , n.

Case 2:
1
n
< s < 1. Without loss of generality, assume that

a1 ≤ · · · ≤ a j < 1≤ a j+1 · · · ≤ an, j ∈ {1, 2, . . . , n}.

Clearly, there are b1, b2, . . . , bn so that b1 + b2 + · · ·+ bn = n and

a1 ≤ b1 ≤ 1, . . . , a j ≤ b j ≤ 1, b j+1 = a j+1, . . . , bn = an.

Write the desired inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ 0,

where

f (u) =
1− u

ku2 − u+ ns
, u ∈ [0, ns].

For u ∈ [0,1], we have

f ′(u) =
k[(1− u)2 − 1] + (1− ns)

(ku2 − u+ ns)2
< 0,

hence f is strictly decreasing on [0,1] and

f (b1)≤ f (a1), . . . , f (b j)≤ f (a j), f (b j+1) = f (a j+1), . . . , f (bn) = f (an).

Since
f (b1) + f (b2) + · · ·+ f (bn)≤ f (a1) + f (a2) + · · ·+ f (an),

it suffices to show that f (b1) + f (b2) + · · ·+ f (bn) ≥ 0 for b1 + b2 + · · ·+ bn = n.
This inequality is proved at Case 3.

Case 3: s = 1. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
1− u

ku2 − u+ n
, u ∈ [0, n].
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From

f ′(u) =
k[(u− 1)2 − 1]− (n− 1)

(ku2 − u+ n)2
,

it follows that f is decreasing on [0, s0] and increasing on [s0, n], where

s0 = 1+

√

√

1+
n− 1

k
> 1= s, s0 < n.

We will show that f is convex on [1, s0]. We have

f ′′(u) =
2g(u)

(ku2 − u+ n)3
,

where

g(u) = −k2u3+3k2u2+3k(n−1)u− kn−n+1, g ′(u) = 3k(−ku2+2ku+n−1).

For u ∈ [1, s0], we have g ′(u)≥ 0, g is increasing, therefore

g(u)≥ g(1) = 2k2 + (2n− 3)k− n+ 1

≥
2(n− 1)2

n2
+
(2n− 3)(n− 1)

n
− n+ 1

=
(n2 − 1)(n− 2)

n2
≥ 0,

f ′′(u) ≥ 0, f (u) is convex for u ∈ [s, s0]. By the RPCF-Theorem, it suffices to show
that

1− x
kx2 − x + n

+
(n− 1)(1− y)
k y2 − y + n

≥ 0

for 0≤ x ≤ 1≤ y and x + (n− 1)y = n. Since (n− 1)(1− y) = x − 1, we have

1− x
kx2 − x + n

+
(n− 1)(1− y)
k y2 − y + n

= (x − 1)
�

−
1

kx2 − x + n
+

1
k y2 − y + n

�

=
(x − 1)(x − y)(kx + k y − 1)
(kx2 − x + n)(k y2 − y + n)

=
n(x − 1)2(kx + k y − 1)

(n− 1)(kx2 − x + n)(k y2 − y + n)
≥ 0,

because

k(x + y)− 1≥
n− 1

n
(x + y)− 1=

(n− 2)x
n

≥ 0.

The proof is completed. The equality holds for a1 = a2 = · · ·= an = 1. If k = 1−
1
n

,

then the equality holds also for

a1 = 0, a2 = a3 = · · ·= an =
n

n− 1
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(or any cyclic permutation).

Remark. For k = 1, we get the following statement:

• If a1, a2, . . . , an are nonnegative real numbers so that a1+ a2+ · · ·+ an ≤ n, then

1− a1

a2
1 + a2 + · · ·+ an

+
1− a2

a1 + a2
2 + · · ·+ an

+ · · ·+
1− an

a1 + a2 + · · ·+ a2
n

≥ 0.

with equality for a1 = a2 = · · ·= an = 1.

P 3.16. Let a1, a2, . . . , an be nonnegative real numbers so that a1+ a2+ · · ·+ an ≤ n.

If k ≥ 1−
1
n

, then

1− a1

1− a1 + ka2
1

+
1− a2

1− a2 + ka2
2

+ · · ·+
1− an

1− an + ka2
n

≥ 0.

(Vasile C., 2006)

Solution. The proof is similar to the one of the preceding P 3.15. For the case 3,
we need to show that

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) =

1− u
1− u+ ku2

, u ∈ [0, n].

From

f ′(u) =
ku(u− 2)

(1− u+ ku2)2
,

it follows that f is decreasing on [0, s0] and increasing on [s0, n], where

s0 = 2> s.

We will show that f is convex on [1, s0]. For u ∈ [1, s0], we have

f ′′(u) =
2kg(u)

(1− u+ ku2)3
, g(u) = −ku3 + 3ku2 − 1.

Since
g ′(u) = 3ku(2− u)≥ 0,

g is increasing, g(u) ≥ g(1) = 2k − 1 ≥ 0, hence f ′′(u) ≥ 0 for u ∈ [1, s0]. By the
RPCF-Theorem, it suffices to show that

1− x
1− x + kx2

+
(n− 1)(1− y)
1− y + k y2

≥ 0
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for 0≤ x ≤ 1≤ y and x + (n− 1)y = n. Since (n− 1)(1− y) = x − 1, we have

1− x
1− x + kx2

+
(n− 1)(1− y)
1− y + k y2

= (1− x)
�

1
1− x + kx2

−
1

1− y + k y2

�

=
(1− x)(y − x)(kx + k y − 1)
(1− x + kx2)(1− y + k y2)

=
n(x − 1)2(kx + k y − 1)

(n− 1)(1− x + kx2)(1− y + k y2)
.

Since

k(x + y)− 1≥
n− 1

n
(x + y)− 1=

(n− 2)x
n

≥ 0,

the conclusion follows. The equality holds for a1 = a2 = · · ·= an = 1. If k = 1−
1
n

,

then the equality holds also for

a1 = 0, a2 = a3 = · · ·= an =
n

n− 1

(or any cyclic permutation).

P 3.17. Let a1, a2, . . . , an be positive real numbers so that a1 + a2 + · · ·+ an = n. If
0< k ≤

n
n− 1

, then

ak/a1
1 + ak/a2

2 + · · ·+ ak/an
n ≤ n.

(Vasile C., 2006)

Solution. According to the power mean inequality, we have

�

ap/a1
1 + ap/a2

2 + · · ·+ ap/an
n

n

�1/p

≥

�

aq/a1
1 + aq/a2

2 + · · ·+ aq/an
n

n

�1/q

for all p ≥ q > 0. Thus, it suffices to prove the desired inequality for

k =
n

n− 1
, 1< k ≤ 2.

Rewrite the desired inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) = −uk/u, u ∈ I= (0, n).
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We have
f ′(u) = ku

k
u−2(ln u− 1),

f ′′(u) = ku
k
u−4[u+ (1− ln u)(2u− k+ k ln u)].

For n= 2, when k = 2 and I= (0, 2), f is convex on [1,2) because

1− ln u> 0, 2u− k+ k ln u= 2u− 2+ 2 ln u≥ 2u− 2≥ 0.

Therefore, we may apply the RHCF-Theorem. Consider now that n ≥ 3. From the
expression of f ′, it follows that f is decreasing on (0, s0] and increasing on [s0, n),
where

s0 = e > 1= s.

In addition, we claim that f is convex on [1, s0]. Indeed, since

1− ln u≥ 0, 2u− k+ k ln u≥ 2− k > 0,

we have f ′′ > 0 for u ∈ [1, s0]. Therefore, by the RHCF-Theorem (for n = 2) and
the RPCF-Theorem (for n≥ 3), we only need to show that

x k/x + (n− 1)yk/y ≤ n

for
0< x ≤ 1≤ y, x + (n− 1)y = n.

We have
k
x
≥ k > 1.

Also, from

k
y
=

n
(n− 1)y

>
n

x + (n− 1)y
= 1,

k
y
=

n
(n− 1)y

≤
2
y
≤ 2,

we get

0<
k
y
− 1≤ 1.

Therefore, by Bernoulli’s inequality, we have

x k/x + (n− 1)yk/y − n=
1

�

1
x

�k/x
+ (n− 1)y · yk/y−1 − n

≤
1

1+ k
x

�

1
x − 1

� + (n− 1)y
�

1+
�

k
y
− 1

�

(y − 1)
�

− n

=
x2

x2 − kx + k
− (k− 1)x2 − (2− k)x

=
−x(x − 1)2[(k− 1)x + k(2− k)]

x2 − kx + k
≤ 0.

The proof is completed. The equality holds for a1 = a2 = · · ·= an = 1.
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P 3.18. If a, b, c, d, e are nonzero real numbers so that a+ b+ c + d + e = 5, then

�

7−
5
a

�2

+
�

7−
5
b

�2

+
�

7−
5
c

�2

+
�

7−
5
d

�2

+
�

7−
5
e

�2

≥ 20.

(Vasile C., 2012)

Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d) + f (e)≥ 5 f (s), s =
a+ b+ c + d + e

5
= 1,

where

f (u) =
�

7−
5
u

�2

, u ∈ I= R \ {0}.

From

f ′(u) =
10(7u− 5)

u3
,

it follows that f is increasing on (−∞, 0)∪[s0,∞) and decreasing on (0, s0], where

s0 =
5
7
< 1= s.

Since
lim

u→−∞
f (u) = 49

and f (s0) = 0, we have
min
u∈I

f (u) = f (s0).

Also, f is convex on [s0, s] = [5/7,1] because

f ′′(u) =
10(15− 14u)

u4
> 0.

According to the LPCF-Theorem and Note 4, we only need to show that

f (x) + 4 f (y)≥ 5 f (1)

for all nonzero real x , y so that x + 4y = 5. Using Note 1, it suffices to prove that
h(x , y)≥ 0, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

We have

g(u) = 5
�

9
u
−

5
u2

�

,

h(x , y) =
5(5x + 5y − 9x y)

x2 y2
=

5(6y − 5)2

x2 y2
≥ 0.
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In accordance with Note 3, the equality holds for a = b = c = d = e = 1, and also
for

a =
5
3

, b = c = d = e =
5
6

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be nonzero real numbers so that a1 + a2 + · · · + an = n. If
k =

n

n+
p

n− 1
, then

�

1−
k
a1

�2

+
�

1−
k
a2

�2

+ · · ·+
�

1−
k
an

�2

≥ n(1− k)2,

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 =
n

1+
p

n− 1
, a2 = a3 = · · ·= an =

n

n− 1+
p

n− 1

(or any cyclic permutation).

P 3.19. If a1, a2, . . . , a7 are real numbers so that a1 + a2 + · · ·+ a7 = 7, then

(a2
1 + 2)(a2

2 + 2) · · · (a2
7 + 2)≥ 37.

(Vasile C., 2007)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (a7)≥ 7 f (s), s =
a1 + a2 + · · ·+ a7

7
= 1,

where
f (u) = ln(u2 + 2), u ∈ R.

From

f ′(u) =
2u

u2 + 2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞], where

s0 = 0.

From

f ′′(u) =
2(2− u2)
(u2 + 2)2

,
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it follows that f ′′(u) > 0 for u ∈ [0,1], therefore f is convex on [s0, s]. By the
LPCF-Theorem, it suffices to prove that

f (x) + 6 f (y)≥ 7 f (1)

for x , y ∈ R so that x + 6y = 7. The inequality can be written as g(y)≥ 0, where

g(y) = ln [(7− 6y)2 + 2] + 6 ln (y2 + 2)− 7 ln3, y ∈ R.

From

g ′(y) =
4(6y − 7)

12y2 − 28y + 17
+

12y
y2 + 2

=
28(6y3 − 13y2 + 9y − 2)
(12y2 − 28y + 17)(y2 + 2)

=
28(2y − 1)(3y − 2)(y − 1)
(12y2 − 28y + 17)(y2 + 2)

,

it follows that g is decreasing on
�

−∞,
1
2

�

∪
�

2
3

,1
�

and increasing on
�

1
2

,
2
3

�

∪

[1,∞); therefore,
g ≥min{g(1/2), g(1)}.

Since g(1) = 0, we only need to show that g(1/2) ≥ 0; that is, to show that x = 4
and y = 1/2 involve

(x2 + 2)(y2 + 2)6 ≥ 37.

Indeed, we have

(x2 + 2)(y2 + 2)6 − 37 = 37
�

37

211
− 1

�

=
139 · 37

211
> 0.

The equality holds for a1 = a2 = · · ·= a7 = 1.

P 3.20. Let a1, a2, . . . , an be real numbers so that a1+a2+· · ·+an = n. If k ≥
n2

4(n− 1)
,

then
(a2

1 + k)(a2
2 + k) · · · (a2

n + k)≥ (1+ k)n.

(Vasile C., 2007)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,
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where
f (u) = ln(u2 + k), u ∈ R.

From
f ′(u) =

2u
u2 + k

,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞], where

s0 = 0.

From

f ′′(u) =
2(k− u2)
(u2 + k)2

,

it follows that f ′′(u) ≥ 0 for u ∈ [0, 1], therefore f is convex on [s0, s]. By the
LPCF-Theorem and Note 2, it suffices to prove that H(x , y)≥ 0 for x , y ∈ R so that
x + (n− 1)y = n, where

H(x , y) =
f ′(x)− f ′(y)

x − y
.

We have

1
2

H(x , y) =
k− x y

(x2 + k)(y2 + k)

≥
n2 − 4(n− 1)x y

4(n− 1)(x2 + k)(y2 + k)
,

=
[x + (n− 1)y]2 − 4(n− 1)x y

4(n− 1)(x2 + k)(y2 + k)

=
[x − (n− 1)y)]2

4(n− 1)(x2 + k)(y2 + k)
≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1.

P 3.21. Let a1, a2, . . . , an be real numbers such that a1+ a2+ · · ·+ an = n. If n≤ 10,
then

(a2
1 − a1 + 1)(a2

2 − a2 + 1) · · · (a2
n − an + 1)≥ 1.

(Vasile C., 2007)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1

where
f (u) = ln(u2 − u+ 1), u ∈ R.



260 Vasile Cîrtoaje

From
f ′(u) =

2u− 1
u2 − u+ 1

,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 =
1
2
< 1= s.

In addition, from

f ′′(u) =
1+ 2u(1− u)
(u2 − u+ 1)2

,

it follows that f ′′(u) > 0 for u ∈ [s0, 1], hence f is convex on [s0, s]. According to
LPCF-Theorem, we only need to show that

f (x) + (n− 1) f (y)≥ nf (1)

for all real x , y so that x + (n− 1)y = n. Write this inequality as g(x)≥ 0, where

g(x) = ln(x2 − x + 1) + (n− 1) ln(y2 − y + 1), y =
n− x
n− 1

.

Since y ′(x) =
−1

n− 1
, we have

g ′(x) =
2x − 1

x2 − x + 1
+ (n− 1)y ′

2y − 1
y2 − y + 1

=
2x − 1

x2 − x + 1
−

2y − 1
y2 − y + 1

=
(x − y)(1+ x + y − 2x y)
(x2 − x + 1)(y2 − y + 1)

=
(x − 1)[2x2 − (n+ 2)x + 2n− 1]
(n− 1)2(x2 − x + 1)(y2 − y + 1)

.

Because 2x2−(n+2)x+2n−1> 0 for n≤ 10, we have g ′(x)≤ 0 for x ∈ (−∞, 1]
and g ′(x)≥ 0 for x ∈ [1,∞). Therefore, since g(x) is decreasing on (−∞, 1] and
increasing on [1,∞), we have

g(x)≥ g(1) = 0.

The equality occurs for a1 = a2 = · · ·= an = 1.

Remark 1. The inequality holds also for n = 11, n = 12 and n = 13, when the
equation

2x2 − (n+ 2)x + 2n− 1= 0

has two positive roots, namely

x1 =
n+ 2−

p

n2 − 12(n− 1)
4

, x2 =
n+ 2+

p

n2 − 12(n− 1)
4

,

satisfying 1< x1 < x2. Thus, g(x) is decreasing on (−∞, 1]∪ [x1, x2] and increas-
ing on [1, x1]∪ [x2,∞). Therefore, it suffices to show that

min{g(1), g(x2)} ≥ 0.
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We have g(1) = 0. For n= 13, we have

x2 = 5, y2 =
13− x2

12
=

2
3

,

hence

g(x2) = ln(x2
2 − x2 + 1) + (n− 1) ln(y2

2 − y2 + 1) = ln21+ 12 · ln
7
9
= ln

713

323
> 0.

For n= 14, the inequality does not hold.

Remark 2. By replacing a1, a2, . . . , an respectively with 1−a1, 1−a2, . . . , 1−an, we
get the following statement:
• Let a1, a2, . . . , an be real numbers such that a1+a2+ · · ·+an = 0. If n≤ 13, then

(1− a1 + a2
1)(1− a2 + a2

2) · · · (1− an + a2
n)≥ 1,

with equality for a1 = a2 = · · ·= an = 0.

P 3.22. Let a1, a2, . . . , an be real numbers such that a1+ a2+ · · ·+ an = n. If n≤ 26,
then

(a2
1 − a1 + 2)(a2

2 − a2 + 2) · · · (a2
n − an + 2)≥ 2n.

(Vasile C., 2007)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) = ln(u2 − u+ 2), u ∈ R.

From
f ′(u) =

2u− 1
u2 − u+ 2

,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 =
1
2
< 1= s.

In addition, from

f ′′(u) =
3+ 2u(1− u)
(u2 − u+ 2)2

,

it follows that f ′′(u) > 0 for u ∈ [s0, 1], hence f is convex on [s0, s]. According to
LPCF-Theorem, we only need to show that

f (x) + (n− 1) f (y)≥ nf (1)
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for all real x , y so that x + (n− 1)y = n. Write this inequality as g(x)≥ 0, where

g(x) = ln(x2 − x + 2) + (n− 1) ln(y2 − y + 2), y =
n− x
n− 1

.

Since y ′(x) =
−1

n− 1
, we have

g ′(x) =
2x − 1

x2 − x + 2
+ (n− 1)y ′

2y − 1
y2 − y + 2

=
2x − 1

x2 − x + 2
−

2y − 1
y2 − y + 2

=
(x − y)(3+ x + y − 2x y)
(x2 − x + 2)(y2 − y + 2)

=
(x − 1)[2x2 − (n+ 2)x + 4n− 3]
(n− 1)2(x2 − x + 1)(y2 − y + 1)

.

Because 2x2−(n+2)x+4n−3> 0 for n≤ 26, we have g ′(x)≤ 0 for x ∈ (−∞, 1]
and g ′(x)≥ 0 for x ∈ [1,∞). Therefore, since g(x) is decreasing on (−∞, 1] and
increasing on [1,∞), we have

g(x)≥ g(1) = 0.

The equality occurs for a1 = a2 = · · ·= an = 1.

Remark 1. The inequality holds also for 27≤ n≤ 38, when the equation

2x2 − (n+ 2)x + 4n− 3= 0

has two positive roots, namely

x1 =
n+ 2−

p

n2 − 28(n− 1)
4

, x2 =
n+ 2+

p

n2 − 28(n− 1)
4

,

satisfying 1< x1 < x2. Thus, g(x) is decreasing on (−∞, 1]∪ [x1, x2] and increas-
ing on [1, x1]∪ [x2,∞). Therefore, it suffices to show that

min{g(1), g(x2)} ≥ 0.

We have g(1) = 0 and g(x2) > 0 for 27 ≤ n ≤ 38. For n = 39, the inequality does
not hold.

Remark 2. By replacing a1, a2, . . . , an respectively with 1−a1, 1−a2, . . . , 1−an, we
get the following statement:

• Let a1, a2, . . . , an be real numbers such that a1+a2+ · · ·+an = 0. If n≤ 38, then

(2− a1 + a2
1)(2− a2 + a2

2) · · · (2− an + a2
n)≥ 2n,

with equality for a1 = a2 = · · ·= an = 0.
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P 3.23. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(1− a+ a4)(1− b+ b4)(1− c + c4)≥ 1.

Solution. Write the inequality as

f (a) + f (b) + f (c)≥ 3 f (s), s =
a+ b+ c

3
= 1,

where
f (u) = ln(1− u+ u4), u ∈ [0, 3].

From

f ′(u) =
4u3 − 1

1− u+ u4
,

it follows that f is decreasing on [0, s0] and increasing on [s0, 3], where

s0 =
1

3p4
< 1= s.

Also, f is convex on [s0, 1] because

f ′′(u) =
−4u6 − 4u3 + 12u2 − 1

(1− u+ u4)2
≥
−4u2 − 4u2 + 12u2 − 1

(1− u+ u4)2
=

4u2 − 1
(1− u+ u4)2

> 0.

According to the LPCF-Theorem, we only need to show that

f (x) + 2 f (y)≥ 3 f (1)

for all x , y ≥ 0 so that x+2y = 3. Using Note 2, it suffices to prove that H(x , y)≥ 0,
where

H(x , y) =
f ′(x)− f ′(y)

x − y
.

We have

H(x , y) =
(x + y)(x − y)2 − 1+ 4(x2 + y2 + x y)− 2x y(x + y)− 4x3 y3

(1− x + x4)(1− y + y4)

≥
−1+ 4(x2 + y2 + x y)− 2x y(x + y)− 4x3 y3

(1− x + x4)(1− y + y4)

=
h(x , y)

(1− x + x4)(1− y + y4)
,

where
h(x , y) = −1+ 2(x + y)[2(x + y)− x y]− 4x y − 4x3 y3.

From 3= x + 2y ≥ 2
p

2x y and (1− x)(1− y)≤ 0, we get

x y ≤
9
8

, x + y ≥ 1+ x y.
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Therefore,

h(x , y)≥ −1+ 2(1+ x y)[2(1+ x y)− x y]− 4x y − 4x3 y3

= 3+ 2x y + 2x2 y2 − 4x3 y3 ≥ 3+ 2x y + 2x2 y2 − 5x2 y2

= 3+ 2x y − 3x2 y2 ≥ 3+ 2x y − 4x y = 3− 2x y > 0.

The proof is completed. The equality holds for a = b = c = 1.

P 3.24. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 4, then

(1− a+ a3)(1− b+ b3)(1− c + c3)(1− d + d3)≥ 1.

(Vasile C., 2012)

Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d)≥ 4 f (s), s =
a+ b+ c + d

4
= 1,

where
f (u) = ln(1− u+ u3), u ∈ [0,4].

From

f ′(u) =
3u2 − 1

1− u+ u3
,

it follows that f is decreasing on [0, s0] and increasing on [s0, 4], where

s0 =
1
p

3
< 1= s.

In addition, f is convex on [s0, 1] because

f ′′(u) =
−3u4 + 6u− 1
(1− u+ u3)2

≥
−3u+ 6u− 1
(1− u+ u3)2

=
3u− 1

(1− u+ u3)2
> 0.

According to the LPCF-Theorem, we only need to show that

f (x) + 3 f (y)≥ 4 f (1)

for all x , y ≥ 0 so that x+3y = 4. Using Note 2, it suffices to prove that H(x , y)≥ 0,
where

H(x , y) =
f ′(x)− f ′(y)

x − y
.

We have

H(x , y) =
(x − y)2 + 3(x + y)− 1− 3x2 y2

(1− x + x3)(1− y + y3)
≥

3(x + y)− 1− 3x2 y2

(1− x + x3)(1− y + y3)
.
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From 4= x + 3y ≥ 2
p

3x y and (1− x)(1− y)≤ 0, we get

x y ≤
4
3

, x + y ≥ 1+ x y.

Therefore,

3(x + y)− 1− 3x2 y2 ≥ 3(1+ x y)− 1− 3x2 y2

≥ 3(1+ x y)− 1− 4x y = 2− x y > 0,

hence H(x , y)> 0. The equality holds for a = b = c = d = 1.

P 3.25. If a, b, c, d, e are nonzero real numbers so that a+ b+ c + d + e = 5, then

5
�

1
a2
+

1
b2
+

1
c2
+

1
d2
+

1
e2

�

+ 45≥ 14
�

1
a
+

1
b
+

1
c
+

1
d
+

1
e

�

.

(Vasile C., 2013)

Solution. Write the desired inequality as

f (a) + f (b) + f (c) + f (d) + f (e)≥ 5 f (s), s =
a+ b+ c + d + e

5
= 1,

where

f (u) =
5
u2
−

14
u
+ 9, u ∈ I= R \ {0}.

From

f ′(u) =
2(7u− 5)

u3
,

it follows that f is increasing on (−∞, 0)∪[s0,∞) and decreasing on (0, s0], where

s0 =
5
7
< 1= s.

Since
lim

u→−∞
f (u) = 9

and f (s0)< f (1) = 0, we have

min
u∈I

f (u) = f (s0).

From

f ′′(u) =
2(15− 14u)

u4
,
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it follows that f is convex on [s0, 1]. By the LPCF-Theorem, Note 4 and Note 1, it
suffices to show that h(x , y)≥ 0 for all x , y ∈ I which satisfy x + 4y = 5, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

Indeed, we have

g(u) =
9
u
−

5
u2

,

h(x , y) =
5x + 5y − 9x y

x2 y2
=
(6y − 5)2

x2 y2
≥ 0.

In accordance with Note 3, the equality holds for a = b = c = d = e = 1, and also
for

a =
5
3

, b = c = d = e =
5
6

(or any cyclic permutation).

P 3.26. If a, b, c are positive real numbers so that abc = 1, then

7− 6a
2+ a2

+
7− 6b
2+ b2

+
7− 6c
2+ c2

≥ 1.

(Vasile C., 2008)

Solution. Using the substitution

a = ex , b = e y , c = ez,

we need to show that
f (x) + f (y) + f (z)≥ 3 f (s),

where
s =

x + y + z
3

= 0

and

f (u) =
7− 6eu

2+ e2u
, u ∈ R.

From

f ′(u) =
2(3eu + 2)(eu − 3)
(2+ e2u)2

,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln3> s.
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We have

f ′′(u) =
2t · h(t)
(2+ t2)3

, h(t) = −3t4 + 14t3 + 36t2 − 28t − 12, t = eu.

We will show that h(t)> 0 for t ∈ [1,3], hence f is convex on [0, s0]. We have

h(t) = 3(t2 − 1)(9− t2) + 14t3 + 6t2 − 28t + 15

≥ 14t3 + 6t2 − 28t + 15

= 14t2(t − 1) + 14(t − 1)2 + 6t2 + 1> 0.

By the RPCF-Theorem, we only need to prove that

f (x) + 2 f (y)≥ 3 f (0)

for all real x , y so that x + 2y = 0. That is, to show that the original inequality
holds for b = c and a = 1/c2. Write this inequality as

c2(7c2 − 6)
2c4 + 1

+
2(7− 6c)

2+ c2
≥ 1,

(c − 1)2(c − 2)2(5c2 + 6c + 3)≥ 0.

By Note 3, the equality holds for a = b = c = 1, and also for

a =
1
4

, b = c = 2

(or any cyclic permutation).

P 3.27. If a, b, c are positive real numbers so that abc = 1, then

1
a+ 5bc

+
1

b+ 5ca
+

1
c + 5ab

≤
1
2

.

(Vasile C., 2008)

Solution. Write the inequality as

a
a2 + 5

+
b

b2 + 5
+

c
c2 + 5

≤
1
2

.

Using the substitution
a = ex , b = e y , c = ez,

we need to show that
f (x) + f (y) + f (z)≥ 3 f (s),
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where
s =

x + y + z
3

= 0

and

f (u) =
−eu

e2u + 5
, u ∈ R.

From

f ′(u) =
eu(e2u − 5)
(e2u + 5)2

,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 =
ln 5
2
> 0= s.

Also, from

f ′′(u) =
eu(−e4u + 30e2u − 25)

(e2u + 5)3
,

it follows that f is convex on [s, s0], because u ∈ [0, s0] involves eu ∈ [1,
p

5 ] and
e2u ∈ [1,5], hence

−e4u + 30e2u − 25= e2u(5− e2u) + 25(e2u − 1)> 0.

By the RPCF-Theorem, we only need to prove the original inequality for b = c and
a = 1/c2. Write this inequality as

c2

5c4 + 1
+

2c
c2 + 5

≤
1
2

,

(c − 1)2(5c4 − 10c3 − 2c2 + 6c + 5)≥ 0,

(c − 1)2[5(c − 1)4 + 2c(5c2 − 16c + 13)]≥ 0.

The equality holds for a = b = c = 1.

P 3.28. If a, b, c are positive real numbers so that abc = 1, then

1
4− 3a+ 4a2

+
1

4− 3b+ 4b2
+

1
4− 3c + 4c2

≤
3
5

.

(Vasile Cirtoaje, 2008)

Solution. Let
a = ex , b = e y , c = ez.

We need to show that
f (x) + f (y) + f (z)≥ 3 f (s),
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where
s =

x + y + z
3

= 0

and
f (u) =

−1
4− 3eu + 4e2u

, u ∈ R.

From

f ′(u) =
eu(8eu − 3)

(4− 3eu + 4e2u)2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln
3
8
< 0= s.

We claim that f is convex on [s0, 0]. Since

f ′′(u) =
eu(−64e3u + 36e2u + 55eu − 12)

(4− 3eu + 4e2u)3
,

we need to show that
−64t3 + 36t2 + 55t − 12≥ 0,

where

t = eu ∈
�

3
8

,1
�

.

Indeed, we have

−64t3 + 36t2 + 55t − 12> −72t3 + 36t2 + 48t − 12

= 12(1− t)(6t2 + 3t − 1)≥ 0.

By the LPCF-Theorem, we only need to prove the original inequality for b = c and
a = 1/c2. Write this inequality as follows:

c4

4c4 − 3c2 + 4
+

2
4− 3c + 4c2

≤
3
5

,

28c6 − 21c5 − 48c4 + 27c3 + 42c2 − 36c + 8≥ 0,

(c − 1)2(28c4 + 35c3 − 6c2 − 20c + 8)≥ 0.

It suffices to show that

7(4c4 + 5c3 − c2 − 3c + 1)≥ 0.

Indeed,
4c4 + 5c3 − c2 − 3c + 1= c2(2c − 1)2 + 9c3 − 2c2 − 3c + 1

and
9c3 − 2c2 − 3c + 1= c(3c − 1)2 + (2c − 1)2 > 0.
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The equality holds for a = b = c = 1.

Remark. Since

1
4− 3a+ 4a2

≥
1

4− 3a+ 4a2 + (1− a)2
=

1
5(1− a+ a2)

,

we get the following known inequality

1
1− a+ a2

+
1

1− b+ b2
+

1
1− c + c2

≤ 3.

P 3.29. If a, b, c are positive real numbers so that abc = 1, then

1
(3a+ 1)(3a2 − 5a+ 3)

+
1

(3b+ 1)(3b2 − 5b+ 3)
+

1
(3c + 1)(3c2 − 5c + 3)

≤
3
4

.

Solution. Let
a = ex , b = e y , c = ez.

We need to show that
f (x) + f (y) + f (z)≥ 3 f (s),

where
s =

x + y + z
3

= 0

and
f (u) =

−1
(3eu + 1)(3e2u − 5eu + 3)

, u ∈ R.

From

f ′(u) =
(3eu − 2)(9eu − 2)

(3eu + 1)2(3e2u − 5eu + 3)2
,

it follows that f is increasing on (−∞, s1] ∪ [s0,∞) and decreasing on [s1, s0],
where

s1 = ln 2− ln 9, s0 = ln2− ln 3, s1 < s0 < 0= s.

Since
lim

u→−∞
f (u) = f (s0) =

−1
3

,

we get
min
u∈R

f (u) = f (s0).

We claim that f is convex on [s0, 0]. We have

f ′′(u) =
t · h(t)

(3t + 1)3(3t2 − 5t + 3)3
,
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where

t = eu ∈
�

2
3

,1
�

, h(t) = −729t5 + 1188t4 − 648t3 + 387t2 − 160t + 12.

Since the polynomial h(t) has the real roots

t1 ≈ 0.0933, t2 ≈ 0.5072, t3 ≈ 1.11008,

it follows that h(t) > 0 for t ∈ [2/3,1] ⊂ [t2, t3], hence f is convex on [s0, 0]. By
the LPCF-Theorem, we only need to prove the original inequality for b = c ≤ 1 and
a = 1/c2. Write this inequality as follows:

c6

(c2 + 3)(3c4 − 5c2 + 3)
+

2
(3c + 1)(3c2 − 5c + 3)

≤
3
4

.

Since
c2 + 3≥ 2(c + 1)

and
3c4 − 5c2 + 3≥ c(3c2 − 5c + 3),

it suffices to prove that

c5

2(c + 1)(3c2 − 5c + 3)
+

2
(3c + 1)(3c2 − 5c + 3)

≤
3
4

.

This is equivalent to the obvious inequality

(1− c)2(1+ 15c + 5c2 − 14c3 − 6c4)≥ 0.

The equality holds for a = b = c = 1.

P 3.30. Let a1, a2, . . . , an (n ≥ 3) be positive real numbers so that a1a2 · · · an = 1. If
p, q ≥ 0 so that p+ 4q ≥ n− 1, then

1− a1

1+ pa1 + qa2
1

+
1− a2

1+ pa2 + qa2
2

+ · · ·+
1− an

1+ pan + qa2
n

≥ 0.

(Vasile C., 2008)

Solution. For q = 0, we get a known inequality (see Remark 2 from the proof
of P 1.63). Consider further that q > 0. Using the substitutions ai = ex i for i =
1,2, . . . , n, we need to show that

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s),
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where
s =

x1 + x2 + · · ·+ xn

n
= 0

and

f (u) =
1− eu

1+ peu + qe2u
, u ∈ R.

From

f ′(t) =
eu(qe2u − 2qeu − p− 1)
(1+ peu + qe2u)2

,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln r0 > 0= s, r0 = 1+

√

√

1+
p+ 1

q
.

Also, we have

f ′′(u) =
t · h(t)

(1+ pt + qt2)3
,

where

h(t) = −q2 t4 + q(p+ 4q)t3 + 3q(p+ 2)t2 + (p− 4q+ p2)t − p− 1, t = eu.

We will show that h(t)≥ 0 for t ∈ [1, r0], hence f is convex on [0, s0]. We have

h′(t) = −4q2 t3 + 3q(p+ 4q)t2 + 6q(p+ 2)t + p− 4q+ p2,

h′′(t) = 6q[−2qt2 + (p+ 4q)t + p+ 2].

Since

h′′(t) = 6q[2(−qt2 + 2qt + p+ 1) + p(t − 1)]≥ 12q(−qt2 + 2qt + p+ 1)≥ 0,

h′(t) is increasing,

h′(t)≥ h′(1) = p2 + 9pq+ 8q2 + p+ 8q > 0,

h is increasing, hence

h(t)≥ h(1) = p2 + 4pq+ 3q2 + 2q− 1= (p+ 2q)2 − (q− 1)2

= (p+ q+ 1)(p+ 3q− 1).

Since

p+ 3q− 1≥ p+ 3q−
p+ 4q
n− 1

=
p+ 2q

2
> 0,

f ′′(u)> 0 for u ∈ [0, s0], therefore f is convex on [s, s0]. By the RPCF-Theorem, we
only need to prove the original inequality for

a2 = · · ·= an := t, a1 = 1/tn−1, t ≥ 1.
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Write this inequality as

tn−1(tn−1 − 1)
t2n−2 + ptn−1 + q

+
(n− 1)(1− t)
1+ pt + qt2

≥ 0,

or
pA+ qB ≥ C ,

where

A= tn−1(tn − nt + n− 1),

B = t2n − tn+1 − (n− 1)(t − 1),

C = tn−1[(n− 1)tn + 1− ntn−1].

Since p + 4q ≥ n − 1 and C ≥ 0 (by the AM-GM inequality applied to n positive
numbers), it suffices to show that

pA+ qB ≥
(p+ 4q)C

n− 1
,

which is equivalent to

p[(n− 1)A− C] + q[(n− 1)B − 4C]≥ 0.

This is true if
(n− 1)A− C ≥ 0

and
(n− 1)B − 4C ≥ 0

for t ≥ 1. By the AM-GM inequality, we have

(n− 1)A− C = ntn−1[tn−1 + n− 2− (n− 1)t]≥ 0.

For n= 3, we have

B = (t − 1)2(t4 + 2t3 + 2t2 + 2t + 2),

C = t2(t − 1)2(2t + 1),

B − 2C = (t − 1)2(t4 − 2t3 + 2t + 2)

= (t − 1)2[(t − 1)2(t2 − 1) + 3]≥ 0.

Consider further that
n≥ 4.

Since
t − 1≤ tn−1(t − 1),
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we have

B ≥ t2n − tn+1 − (n− 1)tn−1(t − 1)

= tn−1[tn+1 − t2 − (n− 1)t + n− 1].

Thus, the inequality (n− 1)B − 4C ≥ 0 is true if

(n− 1)[tn+1 − t2 − (n− 1)t + n− 1]− 4(n− 1)tn − 4− 4ntn−1 ≥ 0,

which is equivalent to g(t)≥ 0, where

g(t) = (n− 1)tn+1 − 4(n− 1)tn + 4ntn−1 − (n− 1)t2 − (n− 1)2 t + n2 − 2n− 3.

We have

g ′(t) = (n− 1)g1(t), g1(t) = (n+ 1)tn − 4ntn−1 + 4ntn−2 − 2t − n+ 1,

g ′1(t) = n(n+ 1)tn−1 − 4n(n− 1)tn−2 + 4n(n− 2)tn−3 − 2.

Since
n(n+ 1)tn−1 + 4n(n− 2)tn−3 ≥ 4n

Æ

(n+ 1)(n− 2)tn−2,

we get

g ′1(t)≥ 4n
�Æ

(n+ 1)(n− 2)− n+ 1
�

tn−2 − 2

≥ 4n
�Æ

(n+ 1)(n− 2)− n+ 1
�

− 2

=
4n(n− 3)

p

(n+ 1)(n− 2) + n− 1
− 2

>
4n(n− 3)

(n+ 1) + n− 1
− 2= 2(n− 4)≥ 0.

Therefore, g1(t) is increasing for t ≥ 1, g1(t) ≥ g1(1) = 0, g(t) is increasing for
t ≥ 1, hence

g(t)≥ g(1) = 0.

The equality holds for a1 = a2 = · · ·= an = 1.

Remark. For p = 0 and q = 1, we get the inequality (Vasile C., 2006)

1− a
1+ a2

+
1− b
1+ b2

+
1− c
1+ c2

+
1− d
1+ d2

+
1− e
1+ e2

≥ 0,

where a, b, c, d, e are positive real numbers so that abcde = 1. Replacing a, b, c, d, e
by 1/a, 1/b, 1/c, 1/d, 1/e, we get

1+ a
1+ a2

+
1+ b
1+ b2

+
1+ c
1+ c2

+
1+ d
1+ d2

+
1+ e
1+ e2

≤ 5,
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where a, b, c, d, e are positive real numbers so that abcde = 1.
Notice that the inequality

1− a1

1+ a2
1

+
1− a2

1+ a2
2

+
1− a3

1+ a2
3

+
1− a4

1+ a2
4

+
1− a5

1+ a2
5

+
1− a6

1+ a2
6

≥ 0

is not true for all positive numbers a1, a2, a3, a4, a5, a6 satisfying a1a2a3a4a5a6 = 1.
Indeed, for a2 = a3 = a4 = a5 = a6 = 2, the inequality becomes

1− a1

1+ a2
1

− 1≥ 0,

which is false for a1 > 0.

P 3.31. If a, b, c are positive real numbers so that abc = 1, then

1− a
17+ 4a+ 6a2

+
1− b

17+ 4b+ 6b2
+

1− c
17+ 4c + 6c2

≥ 0.

(Vasile C., 2008)

Solution. Using the substitution

a = ex , b = e y , c = ez,

we need to show that
f (x) + g(y) + g(z)≥ 3 f (s),

where

s =
x + y + z

3
= 0

and

f (u) =
1− eu

1+ peu + qe2u
, u ∈ R,

with

p =
4
17

, q =
6

17
.

As we have shown in the proof of the preceding P 3.30, f is decreasing on (−∞, s0]
and increasing on [s0,∞), where

s0 = ln r0 > 0= s, r0 = 1+

√

√

1+
p+ 1

q
= 1+

√

√9
2

.
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In addition, since p + 3q − 1 =
5

17
> 0 (see the proof of P 3.30), f is convex on

[0, s0]. By the RPCF-Theorem, we only need to prove the original inequality for
b = c ≥ 1 and a = 1/c2. Write this inequality as follows:

c2(c2 − 1)
c4 + pc2 + q

+
2(1− c)

1+ pc + qc2
≥ 0,

pA+ qB ≥ C ,

where
A= c2(c − 1)2(c + 2),

B = (c − 1)2(c4 + 2c3 + 2c2 + 2c + 2),

C = c2(c − 1)2(2c + 1).

Indeed, we have

pA+ qB − C =
3(c − 1)2(c − 2)2(2c2 + 2c + 1)

17
≥ 0.

In accordance with Note 3, the equality holds for a = b = c = 1, and also for

a =
1
4

, b = c = 2

(or any cyclic permutation).

P 3.32. If a1, a2, . . . , a8 are positive real numbers so that a1a2 · · · a8 = 1, then

1− a1

(1+ a1)2
+

1− a2

(1+ a2)2
+ · · ·+

1− a8

(1+ a8)2
≥ 0.

(Vasile C., 2006)

Solution. Using the substitutions ai = ex i for i = 1, 2, . . . , 8, we need to show that

f (x1) + f (x2) + · · ·+ f (x8)≥ 8 f (s),

where
s =

x1 + x2 + · · ·+ x8

8
= 0

and

f (u) =
1− eu

(1+ eu)2
, u ∈ R.

From

f ′(t) =
eu(eu − 3)
(1+ eu)3

,
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it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln 3> 1= s.

We have

f ′′(u) =
eu(8eu − e2u − 3)
(1+ eu)4

.

For u ∈ [0, ln 3], that is eu ∈ [1,3], we have

8eu − e2u − 3> 8eu − 3eu − 7= (eu − 1)(7− eu)≥ 0;

therefore, f is convex on [s, s0]. By the RPCF-Theorem, we only need to prove the
original inequality for a2 = · · · = a8 := t and a1 = 1/t7, where t ≥ 1. For the
nontrivial case t > 1, write this inequality as follows:

t7(t7 − 1)
(t7 + 1)2

≥
7(t − 1)
(t + 1)2

.

t7(t7 − 1)(t + 1)2

(t − 1)(t7 + 1)2
≥ 7,

t7(t6 + t5 + t4 + t3 + t2 + t + 1)
(t6 − t5 + t4 − t3 + t2 − t + 1)2

≥ 7.

Since

t6 − t5 + t4 − t3 + t2 − t + 1= t4(t2 − t + 1)− (t − 1)(t2 + 1)< t4(t2 − t + 1),

it suffices to show that

t6 + t5 + t4 + t3 + t2 + t + 1
t(t2 − t + 1)2

≥ 7,

which is equivalent to the obvious inequality

(t − 1)6 ≥ 0.

Thus, the proof is completed. The equality holds for a1 = a2 = · · ·= a8 = 1.

Remark. The inequality

1− a1

(1+ a1)2
+

1− a2

(1+ a2)2
+ · · ·+

1− a9

(1+ a9)2
≥ 0

is not true for all positive numbers a1, a2, . . . , a9 satisfying a1a2 · · · a9 = 1. Indeed,
for a2 = a3 = · · ·= a9 = 3, the inequality becomes

1− a1

(1+ a1)2
− 1≥ 0,

which is false for a1 > 0.



278 Vasile Cîrtoaje

P 3.33. Let a, b, c be positive real numbers so that abc = 1. If k ∈
�

−13

3
p

3
,

13

3
p

3

�

,

then
a+ k
a2 + 1

+
b+ k
b2 + 1

+
c + k
c2 + 1

≤
3(1+ k)

2
.

(Vasile C., 2012)

Solution. The inequality is equivalent to

k
�

∑ 1
a2 + 1

−
3
2

�

≤
∑

�

1
2
−

a
a2 + 1

�

,

∑ (a− 1)2

a2 + 1
≥ k

�

∑ 2
a2 + 1

− 3
�

. (*)

Thus, it suffices to prove it for |k| =
13

3
p

3
. On the other hand, replacing a, b, c by

1/a, 1/b, 1/c, the inequality becomes

∑ (a− 1)2

a2 + 1
≥ k

�

3−
∑ 2

a2 + 1

�

. (**)

Based on (∗) and (∗∗), we only need to prove the desired inequality for

k =
13

3
p

3
.

Using the substitution
a = ex , b = e y , c = ez,

we need to show that
f (x) + g(y) + g(z)≥ 3 f (s),

where
s =

x + y + z
3

= 0

and

f (u) =
−eu − k
e2u + 1

, u ∈ R.

From

f ′(t) =
e2u + 2keu − 1
(e2u + 1)2

,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln r0 < 0= s, r0 = −k+
p

k2 + 1=
1

3
p

3
.

Also, we have

f ′′(u) =
t · h(t)
(1+ t2)3

,
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where
h(t) = −t4 − 4kt3 + 6t2 + 4kt − 1, t = eu.

We will show that h(t) > 0 for t ∈ [r0, 1], hence f is convex on [s0, s]. Indeed,
since

4kt =
52t

3
p

3
≥

52
27
> 1,

we have

h(t) = −t4 + 6t2 − 1+ 4kt(1− t2)≥ −t4 + 6t2 − 1+ (1− t2) = t2(5− t2)> 0.

By the LPCF-Theorem, we only need to prove the original inequality for b = c := t
and a = 1/t2, where t > 0. Write this inequality as

t2(kt2 + 1)
t4 + 1

+
2(t + k)
t2 + 1

≤
3(1+ k)

2
,

3t6 − 4t5 + t4 + t2 − 4t + 3− k(1− t2)3 ≥ 0,

(t − 1)2[(3+ k)t4 + 2(1+ k)t3 + 2t2 + 2(1− k)t + 3− k]≥ 0,

(t − 1)2
�

t − 2+
p

3
�2 �
(27+ 13

p
3)t2 + 24(2+

p
3)t + 33+ 17

p
3
�

≥ 0.

The equality holds for a = b = c = 1. If k =
13

3
p

3
, then the equality holds also for

a = 7+ 4
p

3, b = c = 2−
p

3

(or any cyclic permutation). If k =
−13

3
p

3
, then the equality holds also for

a = 7− 4
p

3, b = c = 2+
p

3

(or any cyclic permutation).

P 3.34. If a, b, c are positive real numbers and 0< k ≤ 2+ 2
p

2, then

a3

ka2 + bc
+

b3

kb2 + ca
+

c3

kc2 + ab
≥

a+ b+ c
k+ 1

.

(Vasile C., 2011)

Solution. Due to homogeneity, we may assume that abc = 1. On this hypothesis,
we write the inequality as follows:

a4

ka3 + 1
+

b4

kb3 + 1
+

b4

kb3 + 1
≥

a
k+ 1

+
b

k+ 1
+

c
k+ 1

,
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a4 − a
ka3 + 1

+
b4 − b

kb3 + 1
+

c4 − c
kc3 + 1

≥ 0.

Using the substitution
a = ex , b = e y , c = ez,

we need to show that
f (x) + g(y) + g(z)≥ 3 f (s),

where
s =

x + y + z
3

= 0

and

f (u) =
e4u − eu

ke3u + 1
, u ∈ R.

From

f ′(t) =
ke6u + 2(k+ 2)e3u − 1

(ke3u + 1)2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln r0 < 0, r0 =
3

√

√

√−k− 2+
p

(k+ 1)(k+ 4)
k

∈ (0, 1).

Also, we have

f ′′(u) =
t · h(t)
(kt3 + 1)3

,

where
h(t) = k2 t9 − k(4k+ 1)t6 + (13k+ 16)t3 − 1, t = eu.

If h(t) > 0 for t ∈ [r0, 1], then f is convex on [s0, 0]. We will prove this only for
k = 2+2

p
2, when r0 ≈ 0.415 and h(t)≥ 0 for t ∈ [t1, t2], where t1 ≈ 0.2345 and

t2 ≈ 1.02. Since [r0, 1] ⊂ [t1, t2], the conclusion follows. By the LPCF-Theorem,
we only need to prove the original inequality for b = c. Due to homogeneity, we
may consider that b = c = 1. Thus, we need to show that

a3

ka2 + 1
+

2
a+ k

≥
a+ 2
k+ 1

,

which is equivalent to the obvious inequality

(a− 1)2[a2 − (k− 2)a+ 2]≥ 0.

For k = 2+ 2
p

2, this inequality has the form

(a− 1)2(a−
p

2)2 ≥ 0.

The equality holds for a = b = c. If k = 2+ 2
p

2, then the equality holds also for
a
p

2
= b = c

(or any cyclic permutation).
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P 3.35. If a, b, c, d, e are positive real numbers so that abcde = 1, then

2
�

1
a+ 1

+
1

b+ 1
+ · · ·+

1
e+ 1

�

≥ 3
�

1
a+ 2

+
1

b+ 2
+ · · ·+

1
e+ 2

�

.

(Vasile C., 2012)

Solution. Write the inequality as

1− a
(a+ 1)(a+ 2)

+
1− b

(b+ 1)(b+ 2)
+

1− c
(c + 1)(c + 2)

+
1− d

(d + 1)(d + 2)
+

1− e
(e+ 1)(e+ 2)

≥ 0.

Using the substitution

a = ex , b = e y , c = ez, d = et , e = ew,

we need to show that

f (x) + f (y) + f (z) + f (t) + f (w)≥ 5 f (s),

where
s =

x + y + z + t +w
5

= 0

and

f (u) =
1− eu

(eu + 1)(eu + 2)
, u ∈ R.

From

f ′(u) =
eu(e2u − 2eu − 5)
(eu + 1)2(eu + 2)2

,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln(1+
p

6)< 2, s < s0.

Also, we have

f ′′(u) =
t · h(t)

(t + 1)3(t + 2)3
, t = eu,

where
h(t) = −t4 + 7t3 + 21t2 + 7t − 10.

We will show that h(t)> 0 for t ∈ [1,2], hence f is convex on [0, s0]. We have

h(t)≥ −2t3 + 7t3 + 21t2 + 7t − 10= 5t3 + 21t2 + 7t − 10> 0.

By the RPCF-Theorem, we only need to prove the original inequality for

b = c = d = e := t, a = 1/t4, t ≥ 1.
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Write this inequality as

t4(t4 − 1)
(t4 + 1)(2t4 + 1)

≥
4(t − 1)

(t + 1)(t + 2)
,

which is true if

t4(t + 1)(t + 2)(t3 + t2 + t + 1)≥ 4(t4 + 1)(2t4 + 1).

Since
(t4 + 1)(2t4 + 1) = 2t8 + 3t4 + 1≤ 2t4(t4 + 2),

it suffices to show that

(t + 1)(t + 2)(t3 + t2 + t + 1)≥ 8(t4 + 2).

This inequality is equivalent to

t5 − 4t4 + 6t3 + 6t2 + 5t − 14≥ 0,

t(t − 1)4 + 10(t2 − 1) + 4(t − 1)≥ 0.

The equality holds for a = b = c = d = e = 1.

P 3.36. If a1, a2, . . . , a14 are positive real numbers so that a1a2 · · · a14 = 1, then

3
�

1
2a1 + 1

+
1

2a2 + 1
+ · · ·+

1
2a14 + 1

�

≥ 2
�

1
a1 + 1

+
1

a2 + 1
+ · · ·+

1
a14 + 1

�

.

(Vasile C., 2012)

Solution. Write the inequality as

1− a1

(a1 + 1)(2a1 + 1)
+

1− a2

(a2 + 1)(2a2 + 1)
+ · · ·+

1− a14

(a14 + 1)(2a14 + 1)
≥ 0.

Using the substitutions ai = ex i for i = 1,2, . . . , 14, we need to show that

f (x1) + f (x2) + · · ·+ f (x14)≥ 14 f (s),

where
s =

x1 + x2 + · · ·+ x14

14
= 0

and

f (u) =
1− eu

(eu + 1)(2eu + 1)
, u ∈ R.
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From

f ′(u) =
2eu(e2u − 2eu − 2)
(eu + 1)2(2eu + 1)2

,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln(1+
p

3)< 2, s < s0.

Also, we have

f ′′(u) =
2t · h(t)

(t + 1)3(2t + 1)3
, t = eu,

where
h(t) = −2t4 + 11t3 + 15t2 + 2t − 2.

We will show that h(t)> 0 for t ∈ [1,2], hence f is convex on [0, s0]. We have

h(t)≥ −4t3 + 11t3 + 15t2 + 2t − 2= 7t3 + 15t2 + 2t − 2> 0.

By the RPCF-Theorem, we only need to prove the original inequality for

a2 = a3 = · · ·= a14 := t, a1 = 1/t13, t ≥ 1.

Write this inequality as

t13(t13 − 1)
(t13 + 1)(t13 + 2)

≥
13(t − 1)

(t + 1)(2t + 1)
.

Since
(t13 + 1)(t13 + 2) = t26 + 3t13 + 2≤ t13(t13 + 5),

it suffices to show that
t13 − 1
t13 + 5

≥
13(t − 1)

(t + 1)(2t + 1)
,

which is equivalent to

t13(t2 − 5t + 7)− t2 − 34t + 32≥ 0.

Substituting
t = 1+ x , x ≥ 0,

the inequality becomes

(1+ x)13(x2 − 3x + 3)− x2 − 36x − 3≥ 0.

Since
(1+ x)13 ≥ 1+ 13x + 78x2,

it suffices to show that

(78x2 + 13x + 1)(x2 − 3x + 3)− x2 − 36x − 3≥ 0.
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This inequality, equivalent to

x2(78x2 − 221x + 196)≥ 0,

is true since

78x2 − 221x + 196≥ 64x2 − 224x + 196= 4(4x − 7)2 ≥ 0.

The equality holds for a1 = a2 = · · ·= a14 = 1.

P 3.37. Let a1, a2, . . . , a8 be positive real numbers so that a1a2 · · · a8 = 1. If k > 1,
then

(k+ 1)
�

1
ka1 + 1

+
1

ka2 + 1
+ · · ·+

1
ka8 + 1

�

≥ 2
�

1
a1 + 1

+
1

a2 + 1
+ · · ·+

1
a8 + 1

�

.

(Vasile C., 2012)

Solution. Write the inequality as

1− a1

(a1 + 1)(ka1 + 1)
+

1− a2

(a2 + 1)(ka2 + 1)
+ · · ·+

1− a8

(a8 + 1)(ka8 + 1)
≥ 0.

Using the substitutions ai = ex i for i = 1,2, . . . , 8, we need to show that

f (x1) + f (x2) + · · ·+ f (x8)≥ 8 f (s),

where
s =

x1 + x2 + · · ·+ x8

8
= 0

and

f (u) =
1− eu

(eu + 1)(keu + 1)
, u ∈ R.

From

f ′(u) =
eu(ke2u − 2keu − k− 2)
(eu + 1)2(keu + 1)2

,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln

�

1+

√

√

2+
2
k

�

< 2, s < s0.

Also, we have

f ′′(u) =
t · h(t)

(t + 1)3(kt + 1)3
, t = eu,
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where

h(t) = −k2 t4 + k(5k+ 1)t3 + 3k(k+ 3)t2 + (k2 − k+ 2)t − k− 2.

We will show that h(t)> 0 for t ∈ [1,2], hence f is convex on [0, s0]. We have

h(t)> −2k2 t3 + k(5k+ 1)t3 + 3k(k+ 3)t2 + (k2 − k+ 2)t − k− 2

= k(3k+ 1)t3 + 3k(k+ 3)t2 + (k2 − k+ 2)t − k− 2

> 3k(k+ 3) + (k2 − k+ 2)− k− 2> 0.

By the RPCF-Theorem, we only need to prove the original inequality for

a2 = a3 = · · ·= a8 := t, a1 = 1/t7, t ≥ 1.

Write this inequality as

t7(t7 − 1)
(t7 + 1)(t7 + k)

≥
7(t − 1)

(t + 1)(kt + 1)
.

Since
(t7 + 1)(t7 + k) = t14 + (k+ 1)t7 + k ≤ t7(t7 + 2k+ 1),

it suffices to show that

t7 − 1
t7 + 2k+ 1

≥
7(t − 1)

(t + 1)(kt + 1)
,

which is equivalent to
k(t − 1)P(t) +Q(t)≥ 0,

where
P(t) = t(t + 1)(t6 + t5 + t4 + t3 + t2 + t + 1)− 14,

Q(t) = (t + 1)(t7 − 1)− 7(t − 1)(t7 + 1).

Since (t − 1)P(t) ≥ 0 for t ≥ 1, it suffices to consider the case k = 1. So, we need
to show that

t7 − 1
t7 + 3

≥
7(t − 1)
(t + 1)2

,

which is equivalent to

t7(t2 − 5t + 8)− t2 − 23t + 20≥ 0.

Substituting
t = 1+ x , x ≥ 0,

the inequality becomes

(1+ x)7(x2 − 3x + 4)− x2 − 25x − 4≥ 0.
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Since
(1+ x)7 ≥ 1+ 7x + 21x2,

it suffices to show that

(21x2 + 7x + 1)(x2 − 3x + 4)− x2 − 25x − 4≥ 0.

This inequality, equivalent to

x2(21x2 − 56x + 63)≥ 0.

is true since

21x2 − 56x + 63> 16x2 − 56x + 49= (4x − 7)2 ≥ 0.

The equality holds for a1 = a2 = · · ·= a8 = 1.

P 3.38. If a1, a2, . . . , a9 are positive real numbers so that a1a2 · · · a9 = 1, then

1
2a1 + 1

+
1

2a2 + 1
+ · · ·+

1
2a9 + 1

≥
1

a1 + 2
+

1
a2 + 2

+ · · ·+
1

a9 + 2
.

(Vasile C., 2012)

Solution. Write the inequality as

1− a1

(2a1 + 1)(a1 + 2)
+

1− a2

(2a2 + 1)(a2 + 2)
+ · · ·+

1− a9

(2a9 + 1)(a9 + 2)
≥ 0.

Using the substitutions ai = ex i for i = 1,2, . . . , 9, we need to show that

f (x1) + f (x2) + · · ·+ f (x9)≥ 9 f (s),

where
s =

x1 + x2 + · · ·+ x9

9
= 0

and

f (u) =
1− eu

(2eu + 1)(eu + 2)
, u ∈ R.

From

f ′(u) =
eu(2e2u − 4eu − 7)
(2eu + 1)2(eu + 2)2

,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln

�

1+
3
p

2
2

�

< 2, s < s0.
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Also, we have

f ′′(u) =
t · h(t)

(2t + 1)3(t + 2)3
, t = eu,

where
h(t) = −4t4 + 26t3 + 54t2 + 19t − 14.

We will show that h(t)> 0 for t ∈ [1,2], hence f is convex on [0, s0]. We have

h(t)≥ −8t3 + 26t3 + 54t2 + 19t − 14= 18t3 + 54t2 + 19t − 14> 0.

By the RPCF-Theorem, we only need to prove the original inequality for

a2 = a3 = · · ·= a9 := t, a1 = 1/t8, t ≥ 1.

Write this inequality as

t8(t8 − 1)
(t8 + 2)(2t8 + 1)

≥
8(t − 1)

(2t + 1)(t + 2)
.

Since
(t8 + 2)(2t8 + 1) = 2t16 + 5t8 + 2≤ t8(2t8 + 7),

it suffices to show that
t8 − 1

2t8 + 7
≥

8(t − 1)
(2t + 1)(t + 2)

,

which is equivalent to

t8(2t2 − 11t + 18)− 2t2 − 61t + 54≥ 0.

Substituting
t = 1+ x , x ≥ 0,

the inequality becomes

(1+ x)8(2x2 − 7x + 9)− 2x2 − 65x − 9≥ 0.

Since
(1+ x)8 ≥ 1+ 8x + 28x2,

it suffices to show that

(28x2 + 8x + 1)(2x2 − 7x + 9)− 2x2 − 65x − 9≥ 0.

This inequality, equivalent to

x2(56x2 − 180x + 196)≥ 0.

is true since

56x2 − 180x + 196≥ 49x2 − 196x + 196= 49(x − 2)2 ≥ 0.

The equality holds for a1 = a2 = · · ·= a9 = 1.
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P 3.39. If a1, a2, . . . , an are real numbers so that

a1, a2, . . . , an ≤ π, a1 + a2 + · · ·+ an = π,

then
cos a1 + cos a2 + · · ·+ cos an ≤ n cos

π

n
.

(Vasile C., 2000

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
=
π

n
,

where
f (u) = − cos u, u ∈ I= [−(n− 2)π,π].

Let
s0 = 0< s.

We see that f is increasing on [s0,π] = I≥s0
and f (u) ≥ f (s0) = −1 for u ∈ I. In

addition, f is convex on [s0, s]. Thus, by the LPCF-Theorem, we only need to prove
that g(x)≤ 0, where

g(x) = cos x + (n− 1) cos y − n cos s, x + (n− 1)y = π, π≥ x ≥ s ≥ y ≥ 0.

Since y ′ =
−1

n− 1
, we get

g ′(x) = − sin x + sin y = −2 sin
x − y

2
cos

x + y
2

.

We have g ′(x)≤ 0 because

0<
x + y

2
≤

x + (n− 1)y
2

=
π

2
and

0≤
x − y

2
<
π

2
.

From g ′ ≤ 0, it follows that g is decreasing, hence g(x)≤ g(s) = 0.

The equality holds for a1 = a2 = · · ·= an =
π

n
. If n= 2, then the inequality is an

identity.
Remark. In the same manner, we can prove the following generalization:

• If a1, a2, . . . , an are real numbers so that

a1, a2, . . . , an ≤ π,
a1 + a2 + · · ·+ an

n
= s, 0< s ≤

π

4
,

then
cos a1 + cos a2 + · · ·+ cos an ≤ n cos s,

with equality for a1 = a2 = · · ·= an = s.
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P 3.40. If a1, a2, . . . , an (n≥ 3) are real numbers so that

a1, a2, . . . , an ≥
−1

n− 2
, a1 + a2 + · · ·+ an = n,

then
a2

1

a2
1 − a1 + 1

+
a2

2

a2
2 − a2 + 1

+ · · ·+
a2

n

a2
n − an + 1

≤ n.

(Vasile Cirtoaje, 2012)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
1− u

u2 − u+ 1
, u ∈ I=

�

−1
n− 2

,
n2 − n− 1

n− 2

�

.

Let s0 = 2. We have s < s0 and

min
u∈I

f (u) = f (s0)

because

f (u)− f (2) =
1− u

u2 − u+ 1
+

1
3
=

(u− 2)2

3(u2 − u+ 1)
≥ 0.

From

f ′(u) =
u(u− 2)

(u2 − u+ 1)2
,

f ′′(u) =
2(3u2 − u3 − 1)
(u2 − u+ 1)3

=
2u2(2− u) + 2(u2 − 1)

(u2 − u+ 1)3
,

it follows that f is convex on [1, s0]. However, we can’t apply the RPCF-Theorem
in its original form because f is not decreasing on I≤s0

. According to Theorem 1,
we may replace this condition with ns− (n− 1)s0 ≤ inf I. Indeed, we have

ns− (n− 1)s0 = n− 2(n− 1) = −n+ 2≤
−1

n− 2
= inf I.

So, it suffices to show that f (x) + (n− 1) f (y)≥ nf (1) for all x , y ∈ I so that

x + (n− 1)y = n.

According to Note 1, we only need to show that h(x , y)≥ 0, where

g(u) =
f (u)− f (1)

u− 1
, h(x , y) =

g(x)− g(y)
x − y

.
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We have

g(u) =
−1

u2 − u+ 1
,

h(x , y) =
x + y − 1

(x2 − x + 1)(y2 − y + 1)
=

(n− 2)x + 1
(n− 1)(x2 − x + 1)(y2 − y + 1)

≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 =
−1

n− 2
, a2 = a3 = · · ·= an =

n− 1
n− 2

(or any cyclic permutation).

P 3.41. If a1, a2, . . . , an (n≥ 3) are nonzero real numbers so that

a1, a2, . . . , an ≥
−n

n− 2
, a1 + a2 + · · ·+ an = n,

then
1
a2

1

+
1
a2

2

+ · · ·+
1
a2

n

≥
1
a1
+

1
a2
+ · · ·+

1
an

.

(Vasile Cirtoaje, 2012)

Solution. According to P 2.25-(a) in Volume 1, the inequality is true for n = 3.
Assume further that n≥ 4 and write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
1
u2
−

1
u

, u ∈ I=
�

−n
n− 2

,
n(2n− 3)

n− 2

�

\ {0}.

Let
s0 = 2, s < s0.

From

f (u)− f (2) =
1
u2
−

1
u
+

1
4
=
(u− 2)2

4u2
≥ 0,

it follows that
min
u∈I

f (u) = f (s0),

while from

f ′(u) =
u− 2

u3
, f ′′(u) =

2(3− u)
u4

,
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it follows that f is convex on [s, s0]. However, we can’t apply the RPCF-Theorem
because f is not decreasing on I≤s0

. According to Theorem 1 and Note 6, we may
replace this condition with ns− (n− 1)s0 ≤ inf I. For n≥ 4, we have

ns− (n− 1)s0 = n− 2(n− 1) = −n+ 2≤
−n

n− 2
= inf I.

So, according to Note 1, it suffices to show that h(x , y) ≥ 0 for all x , y ∈ I so that
x + (n− 1)y = n. We have

g(u) =
f (u)− f (1)

u− 1
=
−1
u2

,

h(x , y) =
g(x)− g(y)

x − y
=

x + y
x2 y2

=
(n− 2)x + n
(n− 1)x2 y2

≥ 0.

The proof is completed. By Note 3, the equality holds for a1 = a2 = · · · = an = 1,
and also for

a1 =
−n

n− 2
, a2 = a3 = · · ·= an =

n
n− 2

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an ≥
−n

n− 2
so that a1+ a2+ · · ·+ an = n. If n≥ 3 and k ≥ 0, then

1− a1

k+ a2
1

+
1− a2

k+ a2
2

+ · · ·+
1− an

k+ a2
n

≥ 0,

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 =
−n

n− 2
, a2 = a3 = · · ·= an =

n
n− 2

(or any cyclic permutation).

P 3.42. If a1, a2, . . . , an ≥ −1 so that a1 + a2 + · · ·+ an = n, then

(n+ 1)

�

1
a2

1

+
1
a2

2

+ · · ·+
1
a2

n

�

≥ 2n+ (n− 1)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

.

(Vasile C., 2013)
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Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
n+ 1

u2
−

n− 1
u

, u ∈ I= [−1, 2n− 1] \ {0}.

Let

s0 =
2(n+ 1)

n− 1
∈ I, s < s0.

Since

f (u)− f (s0) =
[(n− 1)u− 2(n+ 1)]2

4(n+ 1)u2
≥ 0,

we have
min
u∈I

f (u) = f (s0).

From

f ′(u) =
(n− 1)u− 2(n+ 1)

u3
, f ′′(u) =

6(n+ 1)− 2(n− 1)u
u4

,

it follows that f is convex on [1, s0]. Since f is not decreasing on I≤s0
, according

to Theorem 1 and Note 6, we may replace this condition in RPCF-Theorem with
ns− (n− 1)s0 ≤ inf I. We have

ns− (n− 1)s0 = n− 2(n+ 1) = −n− 2< −1= inf I.

According to Note 1, we only need to show that h(x , y) ≥ 0 for −1 ≤ x ≤ 1 ≤ y
and x + (n− 1)y = n. We have

g(u) =
f (u)− f (1)

u− 1
= −

2
u
−

n+ 1
u2

and

h(x , y) =
g(x)− g(y)

x − y
=

2x y + (n+ 1)(x + y)
x2 y2

=
(x + 1)(n2 + n− 2x)
(n− 1)x2 y2

≥ 0.

According to Note 4, the equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 = −1, a2 = · · ·= an =
n+ 1
n− 1

(or any cyclic permutation).
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P 3.43. If a1, a2, . . . , an (n≥ 3) are real numbers so that

a1, a2, . . . , an ≥
−(3n− 2)

n− 2
, a1 + a2 + · · ·+ an = n,

then
1− a1

(1+ a1)2
+

1− a2

(1+ a2)2
+ · · ·+

1− an

(1+ an)2
≥ 0.

(Vasile C., 2014)

Solution. According to P 2.25-(b) in Volume 1, the inequality is true for n = 3.
Assume further that n≥ 4 and write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
1− u
(1+ u)2

, u ∈ I=
�

−(3n− 2)
n− 2

,
4n2 − 7n+ 2

n− 2

�

\ {−1}.

Let
s0 = 3, s < s0.

From

f (u)− f (3) =
1− u
(1+ u)2

+
1
8
=
(u− 3)2

8(u+ 1)2
≥ 0,

it follows that
min
u∈I

f (u) = f (s0).

From

f ′(u) =
u− 3
(u+ 1)3

, f ′′(u) =
2(5− u)
(u+ 1)4

,

it follows that f is convex on [1, s0]. We can’t apply the RPCF-Theorem in its original
form because f is not decreasing on I≤s0

. However, according to Theorem 1 and
Note 6, we may replace this condition with ns− (n−1)s0 ≤ inf I. Indeed, for n≥ 4,
we have

ns− (n− 1)s0 = n− 3(n− 1) = −2n+ 3≤
−(3n− 2)

n− 2
= inf I.

According to Note 1, it suffices to show that h(x , y) ≥ 0 for all x , y ∈ I so that
x ≤ 1≤ y and x + (n− 1)y = n. We have

g(u) =
f (u)− f (1)

u− 1
=

−1
(u+ 1)2

,

h(x , y) =
g(x)− g(y)

x − y
=

x + y + 2
(x + 1)2(y + 1)2

=
(n− 2)x + 3n− 2

(n− 1)(x + 1)2(y + 1)2
≥ 0.
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In accordance with Note 3, the equality holds for a1 = a2 = · · · = an = 1, and also
for

a1 =
−(3n− 2)

n− 2
, a2 = a3 = · · ·= an =

n+ 2
n− 2

(or any cyclic permutation).

P 3.44. Let a1, a2, . . . , an be nonnegative real numbers so that a1+ a2+ · · ·+ an = n.

If n≥ 3 and k ≥ 2−
2
n

, then

1− a1

(1− ka1)2
+

1− a2

(1− ka2)2
+ · · ·+

1− an

(1− kan)2
≥ 0.

(Vasile C., 2012)

Solution. According to P 3.99 in Volume 1, the inequality is true for n= 3. Assume
further that n≥ 4 and write the inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where

f (u) =
1− u
(1− ku)2

, u ∈ I= [0, n] \ {1/k}.

Let
s0 = 2− 1/k, 1= s < s0.

Since

f (u)− f (s0) =
1− u
(1− ku)2

+
1

4k(k− 1)
=

(ku− 2k+ 1)2

4k(k− 1)(1− ku)2
≥ 0,

we have
min
u∈I

f (u) = f (s0).

From

f ′(u) =
ku− 2k+ 1
(ku− 1)3

, f ′′(u) =
2k(−ku+ 3k− 2)
(1− ku)4

,

it follows that f is convex on [1, s0]. We can’t apply the RPCF-Theorem because f
is not decreasing on I≤s0

. According to Theorem 1 and Note 6, we may replace this
condition with ns− (n− 1)s0 ≤ inf I. Indeed, we have

ns− (n− 1)s0 ≤ n− (n− 1) ·
3n− 4

2(n− 1)
=

4− n
2
≤ 0= inf I.
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So, it suffices to show that f (x) + (n − 1) f (y) ≥ nf (1) for all x , y ∈ I so that
x ≤ 1 ≤ y and x + (n− 1)y = n. According to Note 1, we only need to show that
h(x , y)≥ 0, where

g(u) =
f (u)− f (1)

u− 1
, h(x , y) =

g(x)− g(y)
x − y

.

Since

g(u) =
−1

(1− ku)2
, h(x , y) =

k[k(x + y)− 2]
(1− kx)2(1− k y)2

,

we need to show that k(x + y)− 2≥ 0. Indeed, we have

k(x + y)− 2
2

≥
(n− 1)(x + y)

n
−1=

(n− 1)(x + y)
n

−
x + (n− 1)y

n
=
(n− 2)x

n
≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k = 2−
2
n

, then the equality also

holds for
a1 = 0, a2 = a3 = · · ·= an =

n
n− 1

(or any cyclic permutation).
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Chapter 4

Partially Convex Function Method
for Ordered Variables

4.1 Theoretical Basis

The following statement is known as Right Partially Convex Function Theorem for
Ordered Variables (RPCF-OV Theorem).

RPCF-OV Theorem (Vasile Cirtoaje, 2014). Let f be a real function defined on an
interval I and convex on [s, s0], where s, s0 ∈ I, s < s0. In addition, f is decreasing on
I≤s0

and f (u)≥ f (s0) for u ∈ I. The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

and
a1 ≤ a2 ≤ · · · ≤ am ≤ s, m ∈ {1,2, . . . , n− 1},

if and only if
f (x) + (n−m) f (y)≥ (1+ n−m) f (s)

for all x , y ∈ I so that x ≤ s ≤ y and x + (n−m)y = (1+ n−m)s.

Proof. For
a1 = x , a2 = · · ·= am = s, am+1 = · · ·= an = y,

the inequality
f (a1) + f (a2) + · · ·+ f (an)≥ nf (s)

becomes
f (x) + (n−m) f (y)≥ (1+ n−m) f (s);

297
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therefore, the necessity is obvious. By Lemma from Chapter 3, to prove the suffi-
ciency, it suffices to consider that a1, a2, . . . , an ∈ J, where

J= I≤s0
.

Because f is convex on J≥s, the desired inequality follows from HCF-OV Theorem
applied to the interval J.

Similarly, we can prove Left Partially Convex Function Theorem for Ordered Vari-
ables (LPCF-OV Theorem).

LPCF-OV Theorem. Let f be a real function defined on an interval I and convex on
[s0, s], where s0, s ∈ I, s0 < s. In addition, f is increasing on I≥s0

and f (u) ≥ f (s0)
for u ∈ I. The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

and
a1 ≥ a2 ≥ · · · ≥ am ≥ s, m ∈ {1,2, . . . , n− 1},

if and only if
f (x) + (n−m) f (y)≥ (1+ n−m) f (s)

for all x , y ∈ I so that x ≥ s ≥ y and x + (n−m)y = (1+ n−m)s.

The RPCF-OV Theorem and the LPCF-OV Theorems are respectively generaliza-
tions of the RPCF Theorem and LPCF Theorem, because the last theorems can be
obtained from the first theorems for m= 1.

Note 1. Let us denote

g(u) =
f (u)− f (s)

u− s
, h(x , y) =

g(x)− g(y)
x − y

.

We may replace the hypothesis condition in the RPCF-OV Theorem and the LPCF-OV
Theorem, namely

f (x) +mf (y)≥ (1+m) f (s),

by the condition

h(x , y)≥ 0 for all x , y ∈ I so that x +my = (1+m)s.

Note 2. Assume that f is differentiable on I, and let

H(x , y) =
f ′(x)− f ′(y)

x − y
.
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The desired inequality of Jensen’s type in the RPCF-OV Theorem and the LPCF-OV
Theorem holds true by replacing the hypothesis

f (x) +mf (y)≥ (1+m) f (s)

with the more restrictive condition

H(x , y)≥ 0 for all x , y ∈ I so that x +my = (1+m)s.

Note 3. The desired inequalities in the RPCF-OV Theorem and the LPCF-OV Theo-
rem become equalities for

a1 = a2 = · · ·= an = s.

In addition, if there exist x , y ∈ I so that

x + (n−m)y = (1+ n−m)s, f (x) + (n−m) f (y) = (1+ n−m) f (s), x 6= y,

then the equality holds also for

a1 = x , a2 = · · ·= am = s, am+1 = · · ·= an = y

(or any cyclic permutation). Notice that these equality conditions are equivalent to

x + (n−m)y = (1+ n−m)s, h(x , y) = 0

(x < y for RHCF-OV Theorem, and x > y for LHCF-OV Theorem).

Note 4. The RPCF-OV Theorem is also valid in the case where f is defined on
I \ {u0}, where u0 is an interior point of I so that u0 > s0. Similarly, LPCF Theorem
is also valid in the case in which f is defined on I \ {u0}, where u0 is an interior
point of I so that u0 < s0.

Note 5. The RPCF-Theorem holds true by replacing the condition
f is decreasing on I≤s0

with
ns− (n− 1)s0 ≤ inf I.

More precisely, the following theorem holds:
Theorem 1. Let f be a function defined on a real interval I, convex on [s, s0] and
satisfying

min
u∈I≥s

f (u) = f (s0),

where
s, s0 ∈ I, s < s0, (1+ n−m)s− (n−m)s0 ≤ inf I.

The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�



300 Vasile Cîrtoaje

holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

and
a1 ≤ a2 ≤ · · · ≤ am ≤ s, m ∈ {1,2, . . . , n− 1},

if and only if
f (x) + (n−m) f (y)≥ (1+ n−m) f (s)

for all x , y ∈ I so that x ≤ s ≤ y and x + (n−m)y = (1+ n−m)s.

The proof of this theorem is similar to the one of Theorem 1 from chapter 3.

Similarly, the LPCF-Theorem holds true by replacing the condition
f is increasing on I≥s0

with

ns− (n− 1)s0 ≥ sup I.

More precisely, the following theorem holds:

Theorem 2. Let f be a function defined on a real interval I, convex on [s0, s] and
satisfying

min
u∈I≤s

f (u) = f (s0),

where
s, s0 ∈ I, s > s0, (1+ n−m)s− (n−m)s0 ≥ sup I.

The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

and
a1 ≥ a2 ≥ · · · ≥ am ≥ s, m ∈ {1,2, . . . , n− 1},

if and only if
f (x) + (n−m) f (y)≥ (1+ n−m) f (s)

for all x , y ∈ I so that x ≥ s ≥ y and x + (n−m)y = (1+ n−m)s.

Note 6. Theorem 1 is also valid in the case in which f is defined on I\{u0}, where
u0 is an interior point of I so that u0 /∈ [s, s0]. Similarly, Theorem 2 is also valid in
the case in which f is defined on I \ {u0}, where u0 is an interior point of I so that
u0 /∈ [s0, s].
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Note 7. We can extend weighted Jensen’s inequality to right and left partially con-
vex functions with ordered variables establishing the WRPCF-OV Theorem and the
WLPCF-OV Theorem (Vasile Cirtoaje, 2014).

WRPCF-OV Theorem. Let p1, p2, . . . , pn be positive real numbers so that

p1 + p2 + · · ·+ pn = 1,

and let f be a real function defined on an interval I and convex on [s, s0], where
s, s0 ∈ int(I), s < s0. In addition, f is decreasing on I≤s0

and f (u) ≥ f (s0) for u ∈ I.
The inequality

p1 f (x1) + p2 f (x2) + · · ·+ pn f (xn)≥ f (p1 x1 + p2 x2 + · · ·+ pn xn)

holds for all x1, x2, . . . , xn ∈ I so that p1 x1 + p2 x2 + · · ·+ pn xn = s and

x1 ≤ x2 ≤ · · · ≤ xn, xm ≤ s, m ∈ {1, 2, . . . , n− 1},

if and only if
f (x) + k f (y)≥ (1+ k) f (s)

for all x , y ∈ I satisfying

x ≤ s ≤ y, x + k y = (1+ k)s,

where
k =

pm+1 + pm+2 + · · ·+ pn

p1
.

WLPCF-OV Theorem. Let p1, p2, . . . , pn be positive real numbers so that

p1 + p2 + · · ·+ pn = 1,

and let f be a real function defined on an interval I and convex on [s0, s], where
s0, s ∈ I, s0 < s. In addition, f is increasing on I≥s0

and f (u) ≥ f (s0) for u ∈ I. The
inequality

p1 f (x1) + p2 f (x2) + · · ·+ pn f (xn)≥ f (p1 x1 + p2 x2 + · · ·+ pn xn)

holds for all x1, x2, . . . , xn ∈ I so that p1 x1 + p2 x2 + · · ·+ pn xn = s and

x1 ≥ x2 ≥ · · · ≥ xn, xm ≥ s, m ∈ {1, 2, . . . , n− 1},

if and only if
f (x) + k f (y)≥ (1+ k) f (s)

for all x , y ∈ I satisfying

x ≥ s ≥ y, x + k y = (1+ k)s,
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where
k =

pm+1 + pm+2 + · · ·+ pn

p1
.

For the most commonly used case

p1 = p2 = · · ·= pn =
1
n

,

the WRPCF-OV Theorem and the WLPCF-OV Theorem yield the RPCF-OV Theorem
and the LPCF-OV Theorem, respectively.
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4.2 Applications

4.1. If a, b, c, d are real numbers so that

a ≤ 1≤ b ≤ c ≤ d, a+ b+ c + d = 4,

then
a

3a2 + 1
+

b
3b2 + 1

+
c

3c2 + 1
+

d
3d2 + 1

≤ 1.

4.2. If a, b, c, d are real numbers so that

a ≥ b ≥ 1≥ c ≥ d, a+ b+ c + d = 4,

then
16a− 5
32a2 + 1

+
16b− 5
32b2 + 1

+
16c − 5
32c2 + 1

+
16d − 5
32d2 + 1

≤
4
3

.

4.3. If a, b, c, d, e are real numbers so that

a ≥ b ≥ 1≥ c ≥ d ≥ e, a+ b+ c + d + e = 5,

then
18a− 5
12a2 + 1

+
18b− 5
12b2 + 1

+
18c − 5
12c2 + 1

+
18d − 5
12d2 + 1

+
18e− 5
12e2 + 1

≤ 5.

4.4. If a, b, c, d, e are real numbers so that

a ≥ b ≥ 1≥ c ≥ d ≥ e, a+ b+ c + d + e = 5,

then
a(a− 1)
3a2 + 4

+
b(b− 1)
3b2 + 4

+
c(c − 1)
3c2 + 4

+
d(d − 1)
3d2 + 4

+
e(e− 1)
3e2 + 4

≥ 0.

4.5. Let a1, a2, . . . , a2n 6= −k be real numbers so that

a1 ≥ · · · ≥ an ≥ 1≥ an+1 ≥ · · · ≥ a2n, a1 + a2 + · · ·+ a2n = 2n.

If k ≥
n+ 1
2
p

n
, then

a1(a1 − 1)
(a1 + k)2

+
a2(a2 − 1)
(a2 + k)2

+ · · ·+
a2n(a2n − 1)
(a2n + k)2

≥ 0.
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4.6. Let a1, a2, . . . , a2n 6= −k be real numbers so that

a1 ≥ · · · ≥ an ≥ 1≥ an+1 ≥ · · · ≥ a2n, a1 + a2 + · · ·+ a2n = 2n.

If k ≥ 1+
n+ 1
p

n
, then

a2
1 − 1

(a1 + k)2
+

a2
2 − 1

(a2 + k)2
+ · · ·+

a2
2n − 1

(a2n + k)2
≥ 0.

4.7. If a1, a2, . . . , an are positive real numbers so that

a1 ≥ 1≥ a2 ≥ · · · ≥ an, a1 + a2 + · · ·+ an = n,

then
a3/a1

1 + a3/a2
2 + · · ·+ a3/an

n ≤ n.

4.8. If a1, a2, . . . , a11 are real numbers so that

a1 ≥ a2 ≥ 1≥ a3 ≥ · · · ≥ a11, a1 + a2 + · · ·+ a11 = 11,

then
(1− a1 + a2

1)(1− a2 + a2
2) · · · (1− a11 + a2

11)≥ 1.

4.9. If a1, a2, . . . , a8 are nonzero real numbers so that

a1 ≥ a2 ≥ a3 ≥ a4 ≥ 1≥ a5 ≥ a6 ≥ a7 ≥ a8, a1 + a2 + · · ·+ a8 = 8,

then

5

�

1
a2

1

+
1
a2

2

+ · · ·+
1
a2

8

�

+ 72≥ 14
�

1
a1
+

1
a2
+ · · ·+

1
a8

�

.

4.10. If a, b, c, d are positive real numbers so that

a ≤ b ≤ 1≤ c ≤ d, abcd = 1,

then
7− 6a
2+ a2

+
7− 6b
2+ b2

+
7− 6c
2+ c2

+
7− 6d
2+ d2

≥
4
3

.
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4.11. If a, b, c are positive real numbers so that

a ≤ b ≤ 1≤ c, abc = 1,

then
7− 4a
2+ a2

+
7− 4b
2+ b2

+
7− 4c
2+ c2

≥ 3.

4.12. If a, b, c are positive real numbers so that

a ≥ 1≥ b ≥ c, abc = 1,

then
23− 8a
3+ 2a2

+
23− 8b
3+ 2b2

+
23− 8c
3+ 2c2

≥ 9.

4.13. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1≤ an, a1a2 · · · an = 1.

If p, q ≥ 0 so that p+ 3q ≥ 1, then

1− a1

1+ pa1 + qa2
1

+
1− a2

1+ pa2 + qa2
2

+ · · ·+
1− an

1+ pan + qa2
n

≥ 0.

4.14. If a, b, c, d, e are real numbers so that

−2≤ a ≤ b ≤ 1≤ c ≤ d ≤ e, a+ b+ c + d + e = 5,

then
1
a2
+

1
b2
+

1
c2
+

1
d2
+

1
e2
≥

1
a
+

1
b
+

1
c
+

1
d
+

1
e

.
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4.3 Solutions

P 4.1. If a, b, c, d are real numbers so that

a ≤ 1≤ b ≤ c ≤ d, a+ b+ c + d = 4,

then
a

3a2 + 1
+

b
3b2 + 1

+
c

3c2 + 1
+

d
3d2 + 1

≤ 1.

Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d)≥ 4 f (s), s =
a+ b+ c + d

4
= 1,

where
f (u) =

−u
3u2 + 1

, u ∈ R.

From

f ′(u) =
3u2 − 1
(3u2 + 1)2

,

it follows that f is increasing on (−∞,−s0]∪ [s0,∞) and decreasing on [−s0, s0],
where s0 = 1/

p
3. Since

lim
u→−∞

f (u) = 0

and f (s0)< 0, it follows that

min
u∈R

f (u) = f (s0).

From

f ′′(u) =
18u(1− u2)
(3u2 + 1)3

,

it follows that f is convex on [0,1], hence on [s0, 1]. Therefore, we may apply the
LPCF-OV Theorem for n= 4 and m= 1. We only need to show that f (x)+ f (y)≥
2 f (1) for all real x , y so that x + y = 2. Using Note 1, it suffices to prove that
h(x , y)≥ 0, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

Indeed, we have

g(u) =
3u− 1

4(3u2 + 1)
,

h(x , y) =
3(1+ x + y − 3x y)
4(3x2 + 1)(3y2 + 1)

=
9(1− x y)

4(3x2 + 1)(3y2 + 1)
≥ 0,
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since
4(1− x y) = (x + y)2 − 4x y = (x − y)2 ≥ 0.

Thus, the proof is completed. The equality holds for a = b = c = d = 1.

Remark. Similarly, we can prove the following generalization:

• If a1, a2, . . . , an are real numbers so that

a1 ≤ 1≤ a2 ≤ · · · ≤ an, a1 + a2 + · · ·+ an = n,

then a1

3a2
1 + 1

+
a2

3a2
2 + 1

+ · · ·+
an

3a2
n + 1

≤
n
4

,

with equality for a1 = a2 = · · ·= an = 1.

P 4.2. If a, b, c, d are real numbers so that

a ≥ b ≥ 1≥ c ≥ d, a+ b+ c + d = 4,

then
16a− 5
32a2 + 1

+
16b− 5
32b2 + 1

+
16c − 5
32c2 + 1

+
16d − 5
32d2 + 1

≤
4
3

.

(Vasile C., 2012)

Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d)≥ 4 f (s), s =
a+ b+ c + d

4
= 1,

where

f (u) =
5− 16u
32u2 + 1

, u ∈ R.

As shown in the proof of P 3.1, f is convex on [s0, 1], increasing for u≥ s0 and

min
u∈R

f (u) = f (s0),

where

s0 =
5+
p

33
16

≈ 0.6715.

Therefore, we may apply the LPCF-OV Theorem for n= 4 and m= 2. We only need
to show that f (x)+2 f (y)≥ 3 f (1) for all real x , y so that x +2y = 3. Using Note
1, it suffices to prove that h(x , y)≥ 0, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.
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Indeed, we have

g(u) =
32(2u− 1)
3(32u2 + 1)

,

h(x , y) =
64(1+ 16x + 16y − 32x y)

3(32x2 + 1)(32y2 + 1)
=

64(4x − 5)2

3(32x2 + 1)(32y2 + 1)
≥ 0.

From x + 2y = 3 and h(x , y) = 0, we get x = 5/4 and y = 7/8. Therefore, in
accordance with Note 3, the equality holds for a = b = c = d = 1, and also for

a =
5
4

, b = 1, c = d =
7
8

.

Remark. Similarly, we can prove the following generalization:

• If a1, a2, . . . , an (n≥ 3) are real numbers so that

a1 ≥ · · · ≥ an−2 ≥ 1≥ an−1 ≥ an, a1 + a2 + · · ·+ an = n,

then
16a1 − 5
32a2

1 + 1
+

16a2 − 5
32a2

2 + 1
+ · · ·+

16an − 5
32a2

n + 1
≤

n
3

,

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 =
5
4

, a2 = · · ·= an−2 = 1, an−1 = an =
7
8

.

P 4.3. If a, b, c, d, e are real numbers so that

a ≥ b ≥ 1≥ c ≥ d ≥ e, a+ b+ c + d + e = 5,

then
18a− 5
12a2 + 1

+
18b− 5
12b2 + 1

+
18c − 5
12c2 + 1

+
18d − 5
12d2 + 1

+
18e− 5
12e2 + 1

≤ 5.

(Vasile C., 2012)

Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d) + f (e)≥ 5 f (s), s =
a+ b+ c + d + e

5
= 1,

where
f (u) =

5− 18u
12u2 + 1

, u ∈ R.

As shown in the proof of P 3.2, f is convex on [s0, 1], increasing for u≥ s0 and

min
u∈R

f (u) = f (s0),
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where

s0 =
5+
p

52
18

≈ 0.678.

Therefore, applying the LPCF-OV Theorem for n = 5 and m = 3, we only need to
show that f (x)+3 f (y)≥ 4 f (1) for all real x , y so that x +3y = 4. Using Note 1,
it suffices to prove that h(x , y)≥ 0, where

h(x , y) =
g(x)− g(y)

x − y
, g(u) =

f (u)− f (1)
u− 1

.

Indeed, we have

g(u) =
6(2u− 1)
12u2 + 1

,

h(x , y) =
12(1+ 6x + 6y − 12x y)
(12x2 + 1)(12y2 + 1)

=
12(2x − 3)2

(12x2 + 1)(12y2 + 1)
≥ 0.

From x + 3y = 4 and h(x , y) = 0, we get x = 3/2 and y = 5/6. Therefore, in
accordance with Note 3, the equality holds for a = b = c = d = e = 1, and also for

a =
3
2

, b = 1, c = d = e =
5
6

.

Remark. Similarly, we can prove the following generalization:

• If a1, a2, . . . , an (n≥ 4) are real numbers so that

a1 ≥ · · · ≥ an−3 ≥ 1≥ an−2 ≥ an−1 ≥ an, a1 + a2 + · · ·+ an = n,

then
18a1 − 5
12a2

1 + 1
+

18a2 − 5
12a2

2 + 1
+ · · ·+

18an − 5
12a2

n + 1
≤ n,

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 =
3
2

, a2 = · · ·= an−3 = 1, an−2 = an−1 = an =
5
6

.

P 4.4. If a, b, c, d, e are real numbers so that

a ≥ b ≥ 1≥ c ≥ d ≥ e, a+ b+ c + d + e = 5,

then
a(a− 1)
3a2 + 4

+
b(b− 1)
3b2 + 4

+
c(c − 1)
3c2 + 4

+
d(d − 1)
3d2 + 4

+
e(e− 1)
3e2 + 4

≥ 0.

(Vasile C., 2012)
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Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d) + f (e)≥ 5 f (s), s =
a+ b+ c + d + e

5
= 1,

where

f (u) =
u2 − u

3u2 + 4
, u ∈ R.

As shown in the proof of P 3.5, f is convex on [s0, 1], increasing for u≥ s0 and

min
u∈R

f (u) = f (s0),

where

s0 =
−4+ 2

p
7

3
≈ 0.43.

Therefore, we may apply the LPCF-OV Theorem for n= 5 and m= 2. We only need
to show that f (x)+3 f (y)≥ 4 f (1) for all real x , y so that x +3y = 4. Using Note
1, it suffices to prove that h(x , y)≥ 0. Indeed, we have

g(u) =
f (u)− f (1)

u− 1
=

u
3u2 + 4

,

h(x , y) =
g(x)− g(y)

x − y
=

4− 3x y
(3x2 + 4)(3y2 + 4)

=
(x − 2)2

(12x2 + 1)(12y2 + 1)
≥ 0.

From x + 3y = 4 and h(x , y) = 0, we get x = 2 and y = 2/3. Therefore, in
accordance with Note 3, the equality holds for

a = b = c = d = e = 1,

and also for
a = 2, b = 1, c = d = e =

2
3

.

Remark. Similarly, we can prove the following generalizations:

• If a1, a2, . . . , an (n≥ 4) are real numbers so that

a1 ≥ · · · ≥ an−3 ≥ 1≥ an−2 ≥ an−1 ≥ an, a1 + a2 + · · ·+ an = n,

then
a1(a1 − 1)

3a2
1 + 4

+
a2(a2 − 1)

3a2
2 + 4

+ · · ·+
an(an − 1)

3a2
n + 4

≥ 0,

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 = 2, a2 = · · ·= an−3 = 1, an−2 = an−1 = an =
2
3

.
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• If a1, a2, . . . , an (n≥ 3) are real numbers so that

a1 ≥ a2 ≥ 1≥ a3 ≥ · · · ≥ an, a1 + a2 + · · ·+ an = n,

then

a1(a1 − 1)
4(n− 2)a2

1 + (n− 1)2
+

a2(a2 − 1)
4(n− 2)a2

2 + (n− 1)2
+ · · ·+

an(an − 1)
4(n− 2)a2

n + (n− 1)2
≥ 0,

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 =
n− 1

2
, a2 = 1, a3 = · · ·= an =

n− 1
2(n− 2)

.

P 4.5. Let a1, a2, . . . , a2n 6= −k be real numbers so that

a1 ≥ · · · ≥ an ≥ 1≥ an+1 ≥ · · · ≥ a2n, a1 + a2 + · · ·+ a2n = 2n.

If k ≥
n+ 1
2
p

n
, then

a1(a1 − 1)
(a1 + k)2

+
a2(a2 − 1)
(a2 + k)2

+ · · ·+
a2n(a2n − 1)
(a2n + k)2

≥ 0.

(Vasile C., 2012)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (a2n)≥ 2nf (s), s =
a1 + a2 + · · ·+ a2n

2n
= 1,

where

f (u) =
u(u− 1)
(u+ k)2

, u ∈ I= R \ {−k}.

As shown in the proof of P 3.8, f is convex on [s0, 1], increasing for u≥ s0 and

min
u∈I

f (u) = f (s0),

where

s0 =
k

2k+ 1
< 1.

Having in view Note 4, we may apply the LPCF-OV Theorem for 2n real numbers
and m = n. We only need to show that f (x) + nf (y) ≥ (n+ 1) f (1) for x , y ∈ I so
that x + ny = n+ 1. Using Note 1, it suffices to prove that h(x , y)≥ 0. We have

g(u) =
f (u)− f (1)

u− 1
=

u
(u+ k)2

,
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h(x , y) =
g(x)− g(y)

x − y
=

k2 − x y
(x + k)2(y + k)2

≥ 0,

because

k2 − x y ≥
(n+ 1)2

4n
− x y =

(x + ny)2

4n
− x y =

(x − ny)2

4n
≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1. If k =
n+ 1
2
p

n
, then the equality holds

also for

a1 =
n+ 1

2
, a2 = · · ·= an = 1, an+1 = · · ·= a2n =

n+ 1
2n

.

P 4.6. Let a1, a2, . . . , a2n 6= −k be real numbers so that

a1 ≥ · · · ≥ an ≥ 1≥ an+1 ≥ · · · ≥ a2n, a1 + a2 + · · ·+ a2n = 2n.

If k ≥ 1+
n+ 1
p

n
, then

a2
1 − 1

(a1 + k)2
+

a2
2 − 1

(a2 + k)2
+ · · ·+

a2
2n − 1

(a2n + k)2
≥ 0.

(Vasile C., 2012)

Solution. Write the inequality as

f (a1) + f (a2) + · · ·+ f (a2n)≥ 2nf (s), s =
a1 + a2 + · · ·+ a2n

2n
= 1,

where

f (u) =
u2 − 1
(u+ k)2

, u ∈ I= R \ {−k}.

As shown in the proof of P 3.9, f is convex on [s0, 1], increasing for u≥ s0 and

min
u∈I

f (u) = f (s0),

where
s0 =

−1
k
∈ (−1, 0).

According to Note 4, we may apply the LPCF-OV Theorem for 2n real numbers and
m = n. Thus, we only need to show that f (x) + nf (y) ≥ (n+ 1) f (1) for x , y ∈ I
so that x + ny = n+1. Using Note 1, it suffices to prove that h(x , y)≥ 0. We have

g(u) =
f (u)− f (1)

u− 1
=

u+ 1
(u+ k)2

,
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h(x , y) =
g(x)− g(y)

x − y
=
(k− 1)2 − 1− x − y − x y

(x + k)2(y + k)2
≥ 0,

because

(k− 1)2 − 1− x − y − x y ≥
(n+ 1)2

n
− 1− x − y − x y =

(ny − 1)2

n
≥ 0.

The equality holds for a1 = a2 = · · · = an = 1. If k = 1+
n+ 1
p

n
, then the equality

holds also for

a1 = n, a2 = · · ·= an = 1, an+1 = · · ·= a2n =
1
n

.

P 4.7. If a1, a2, . . . , an are positive real numbers so that

a1 ≥ 1≥ a2 ≥ · · · ≥ an, a1 + a2 + · · ·+ an = n,

then
a3/a1

1 + a3/a2
2 + · · ·+ a3/an

n ≤ n.

(Vasile C., 2012)

Solution. Rewrite the desired inequality as

f (a1) + f (a2) + · · ·+ f (an)≥ nf (s), s =
a1 + a2 + · · ·+ an

n
= 1,

where
f (u) = −u3/u, u ∈ I= (0, n).

We have
f ′(u) = 3u

3
u−2(ln u− 1),

f ′′(u) = 3u
3
u−4 g(t), g(t) = u+ (1− ln u)(2u− 3+ 3 ln u).

From the expression of f ′, it follows that f is decreasing on (0, s0] and increasing
on [s0, n), where

s0 = e.

In addition, we claim that f ′′(u)≥ for u ∈ [1, e]. If u ∈ [3/2, e], then

g(t)> (1− ln u)(2u− 3)≥ 0.

Also,for u ∈ [1,3/2], we have

g(t) = 3(u−1)+(6−2u−3 ln u) ln u≥ (6−2u−3 ln u) ln u≥ 3
�

1− ln
3
2

�

ln u> 0.
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Since f is convex on [1, s0], we may apply the RPCF-OV Theorem for m = n− 1.
We only need to show that f (x) + f (y)≥ 2 f (1) for all x , y > 0 so that x + y = 2.
The inequality f (x) + f (y)≥ 2 f (1) is equivalent to

x3/x + y3/y ≤ 2,

which is just the inequality in P 3.32 from Volume 2. The equality holds for

a1 = a2 = · · ·= an = 1.

P 4.8. If a1, a2, . . . , a11 are real numbers so that

a1 ≥ a2 ≥ 1≥ a3 ≥ · · · ≥ a11, a1 + a2 + · · ·+ a11 = 11,

then
(1− a1 + a2

1)(1− a2 + a2
2) · · · (1− a11 + a2

11)≥ 1.

(Vasile C., 2012)

Solution. Rewrite the desired inequality as

f (a1) + f (a2) + · · ·+ f (a11)≥ 11 f (s), s =
a1 + a2 + · · ·+ a11

11
= 1,

where
f (u) = ln(1− u+ u2), u ∈ R.

From

f ′(u) =
2u− 1

1− u+ u2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = 1/2.

Also, from

f ′′(u) =
1+ 2u(1− u)
(1− u+ u2)2

,

it follows that f ′′(u) > 0 for u ∈ [s0, 1], hence f is convex on [s0, 1]. Therefore,
applying the LPCF-OV Theorem for n = 11 and m = 2, we only need to show that
f (x)+9 f (y)≥ 9 f (1) for all real x , y so that x+9y = 10. Using Note 2, it suffices
to prove that H(x , y)≥ 0, where

H(x , y) =
f ′(x)− f ′(y)

x − y
=

1+ x + y − 2x y
(1− x + x2)(1− y + y2)

.
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Since
1+ x + y − 2x y = 18y2 − 8y + 1= 2y2 + (4y − 1)2 > 0,

the conclusion follows. The equality holds for a1 = a2 = · · ·= a11 = 1.

Remark. By replacing a1, a2, . . . , a11 respectively with 1− a1, 1− a2, . . . , 1− a11, we
get the following statement.

• If a1, a2, . . . , a11 are real numbers so that

a1 ≤ a2 ≤ 0≤ a3 ≤ · · · ≤ a11, a1 + a2 + · · ·+ a11 = 0,

then
(1− a1 + a2

1)(1− a2 + a2
2) · · · (1− a11 + a2

11)≥ 1,

with equality for a1 = a2 = · · ·= an = 0.

P 4.9. If a1, a2, . . . , a8 are nonzero real numbers so that

a1 ≥ a2 ≥ a3 ≥ a4 ≥ 1≥ a5 ≥ a6 ≥ a7 ≥ a8, a1 + a2 + · · ·+ a8 = 8,

then

5

�

1
a2

1

+
1
a2

2

+ · · ·+
1
a2

8

�

+ 72≥ 14
�

1
a1
+

1
a2
+ · · ·+

1
a8

�

.

(Vasile C., 2012)

Solution. Write the desired inequality as

f (a1) + f (a2) + · · ·+ f (a8)≥ 8 f (s), s =
a1 + a2 + · · ·+ a8

8
= 1,

where
f (u) =

5
u2
−

14
u
+ 9, u ∈ I= R \ {0}.

As shown in the proof of P 3.25, f is convex on [s0, 1], increasing for u≥ s0 and

min
u∈I

f (u) = f (s0),

where
s0 =

5
7

.

Taking into account Note 4, we may apply the LPCF-OV Theorem for n = 8 and
m = 4. We only need to show that f (x) + 4 f (y) ≥ 5 f (1) for x , y ∈ I so that
x + 4y = 5. Using Note 1, it suffices to prove that h(x , y)≥ 0. Indeed, we have

g(u) =
f (u)− f (1)

u− 1
=

9
u
−

5
u2

,
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h(x , y) =
g(x)− g(y)

x − y
=

5(x + y)− 9x y
x2 y2

=
(x + 4y)(x + y)− 9x y

x2 y2
=
(x − 2y)2

x2 y2
≥ 0.

In accordance with Note 3, the equality holds for a1 = a2 = · · · = a8 = 1, and also
for

a1 =
5
3

, a2 = a3 = a4 = 1, a5 = a6 = a7 = a8 =
5
6

.

P 4.10. If a, b, c, d are positive real numbers so that

a ≤ b ≤ 1≤ c ≤ d, abcd = 1,

then
7− 6a
2+ a2

+
7− 6b
2+ b2

+
7− 6c
2+ c2

+
7− 6d
2+ d2

≥
4
3

.

(Vasile C., 2012)

Solution. Using the substitution

a = ex , b = e y , c = ez, d = ew,

we need to show that

f (x) + f (y) + f (z) + f (w)≥ 4 f (s),

where
x ≤ y ≤ 0≤ z ≤ w, s =

x + y + z +w
4

= 0,

f (u) =
7− 6eu

2+ e2u
, u ∈ R.

As shown in the proof of P 3.26, f is convex on [0, s0], is decreasing on (−∞, s0]
and increasing on [s0,∞), where

s0 = ln3.

Therefore, we may apply the RPCF-OV Theorem for n = 4 and m = 2. We only
need to show that f (x) + 2 f (y) ≥ 3 f (0) for all real x , y so that x + 2y = 0; that
is, to prove that

7− 6a
2+ a2

+
2(7− 6d)

2+ d2
≥ 1

for a, d > 0 so that ad2 = 1. This is equivalent to

(d − 1)2(d − 2)2(5d2 + 6d + 3)≥ 0,
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which is clearly true. In accordance with Note 3, the equality holds for a = b =
c = d = 1, and also for

a =
1
4

, b = 1, c = d = 2.

P 4.11. If a, b, c are positive real numbers so that

a ≤ b ≤ 1≤ c, abc = 1,

then
7− 4a
2+ a2

+
7− 4b
2+ b2

+
7− 4c
2+ c2

≥ 3.

(Vasile C., 2012)

Solution. Using the substitution

a = ex , b = e y , c = ez,

we need to show that
f (x) + f (y) + f (z)≥ 3 f (s),

where
x ≤ y ≤ 0≤ z, s =

x + y + z
3

= 0,

f (u) =
7− 4eu

2+ e2u
, u ∈ R.

From

f ′(u) =
2eu(2eu + 1)(eu − 4)

(2+ e2u)2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where

s0 = ln4.

Also, we have

f ′′(u) =
4t · h(t)
(2+ t2)3

, t = eu,

where
h(t) = −t4 + 7t3 + 12t2 − 14t − 4.

We will show that h(t)≥ 0 for t ∈ [1,4], hence f is convex on [0, s0]. Indeed,

h(t) = (t − 1)[t2(−t + 6) + 18t + 4]≥ 0.
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Therefore, we may apply the RPCF-OV Theorem for n = 3 and m = 2. We only
need to show that f (x) + f (y)≥ 2 f (0) for all real x , y so that x + y = 0. That is,
to prove that

7− 4a
2+ a2

+
7− 4b
2+ b2

≥ 2

for all a, b > 0 so that ab = 1. This is equivalent to

(a− 1)4 ≥ 0.

The equality holds for a = b = c = 1.

P 4.12. If a, b, c are positive real numbers so that

a ≥ 1≥ b ≥ c, abc = 1,

then
23− 8a
3+ 2a2

+
23− 8b
3+ 2b2

+
23− 8c
3+ 2c2

≥ 9.

(Vasile C., 2012)

Solution. Using the substitution

a = ex , b = e y , c = ez,

we need to show that
f (x) + f (y) + f (z)≥ 3 f (s),

where
x ≥ 1≥ y ≥ z, s =

x + y + z
3

= 0,

f (u) =
23− 8eu

3+ 2e2u
, u ∈ R.

From

f ′(u) =
4eu(4eu + 1)(eu − 6)

(3+ 2e2u)2
,

it follows that f is decreasing on (−∞, s0] and increasing on [s0,∞), where s0 =
ln6. Also, we have

f ′′(u) =
8t · h(t)
(3+ 2t2)3

, t = eu,

where
h(t) = −4t4 + 46t3 + 36t2 − 69t − 9.

We will show that h(t)≥ 0 for t ∈ [1,6], hence f is convex on [0, s0]. Indeed,

h(t) = (t − 1)(2t + 3)[2t(−t + 12) + 3]≥ 0.
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Therefore, we may apply the RPCF-OV Theorem for n = 3 and m = 2. We only
need to show that f (x) + f (y)≥ 2 f (0) for all real x , y so that x + y = 0. That is,
to prove that

23− 8a
3+ 2a2

+
23− 8b
3+ 2b2

≥ 6.

for all a, b > 0 so that ab = 1. This is equivalent to

(a− 1)4 ≥ 0.

The equality holds for a = b = c = 1.

P 4.13. Let a1, a2, . . . , an be positive real numbers so that

a1 ≤ · · · ≤ an−1 ≤ 1≤ an, a1a2 · · · an = 1.

If p, q ≥ 0 so that p+ 3q ≥ 1, then

1− a1

1+ pa1 + qa2
1

+
1− a2

1+ pa2 + qa2
2

+ · · ·+
1− an

1+ pan + qa2
n

≥ 0.

(Vasile C., 2012)

Solution. For q = 0, we need to show that p ≥ 1 involves

1− a1

1+ pa1
+

1− a2

1+ pa2
+ · · ·+

1− an

1+ pan
≥ 0.

This is just the inequality from P 2.24. Consider next that q > 0. Using the substi-
tutions ai = ex i for i = 1,2, . . . , n, we need to show that

f (x1) + f (x2) + · · ·+ f (xn)≥ nf (s),

where
x1 ≤ · · · ≤ xn−1 ≤ 0≤ xn, s =

x1 + x2 + · · ·+ xn

n
= 0,

f (u) =
1− eu

1+ peu + qe2u
, u ∈ R.

As shown in the proof of P 3.30, if p+3q−1≥ 0, then f is convex on [0, s0], where

s0 = ln r0 > 0, r0 = 1+

√

√

1+
p+ 1

q
.

In addition, f is decreasing on (−∞, s0] and increasing on [s0,∞). Therefore,
we may apply the RPCF-OV Theorem for m = n − 1. We only need to show that
f (x) + f (y)≥ 2 f (0) for all real x , y so that x + y = 0; that is, to prove that

1− a
1+ pa+ qa2

+
1− b

1+ pb+ qb2
≥ 0
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for a, b > 0 so that ab = 1. This is equivalent to

(a− 1)2[(p− 1)a+ q(a2 + a+ 1)]≥ 0,

which is true because

(p− 1)a+ q(a2 + a+ 1)≥ (p− 1)a+ q(3a) = (p+ 3q− 1)a ≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1.

P 4.14. If a, b, c, d, e are real numbers so that

−2≤ a ≤ b ≤ 1≤ c ≤ d ≤ e, a+ b+ c + d + e = 5,

then
1
a2
+

1
b2
+

1
c2
+

1
d2
+

1
e2
≥

1
a
+

1
b
+

1
c
+

1
d
+

1
e

.

Solution. Write the inequality as

f (a) + f (b) + f (c) + f (d) + f (e)≥ 5 f (s), s =
a+ b+ c + d + e

5
= 1,

where

f (u) =
1
u2
−

1
u

, u ∈ I= [−2, 7] \ {0}.

Let
s0 = 2, s < s0.

From

f (u)− f (2) =
1
u2
−

1
u
+

1
4
=
(u− 2)2

4u2
≥ 0,

it follows that
min
u∈I

f (u) = f (s0),

while from

f ′(u) =
u− 2

u3
, f ′′(u) =

2(3− u)
u4

,

it follows that f is convex on [s, s0]. We can’t apply the the RPCF-OV Theorem
because f is not decreasing on I≤s0

. According to Theorem 1 (applied for n= 5 and
m= 2) and Note 6, we may replace this condition with (1+n−m)s−(n−m)s0 ≤ inf I.
Indeed, we have

(1+ n−m)s− (n−m)s0 = 4− 6= −2= inf I.
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So, according to Note 1, it suffices to show that h(x , y) ≥ 0 for all x , y ∈ I so that
x + 3y = 4. We have

g(u) =
f (u)− f (1)

u− 1
=
−1
u2

,

h(x , y) =
g(x)− g(y)

x − y
=

x + y
x2 y2

=
2(x + 2)
3x2 y2

≥ 0.

The proof is completed. By Note 3, the equality holds for a = b = c = d = e = 1,
and also for

a = −2, b = 1, c = d = e = 2.



Chapter 5

EV Method for Nonnegative Variables

5.1 Theoretical Basis

The Equal Variables Method is an effective tool for solving some difficult symmetric
inequalities.

EV-Theorem (Vasile Cirtoaje, 2005). Let a1, a2, . . . , an (n ≥ 3) be fixed nonnegative
real numbers, and let

0≤ x1 ≤ x2 ≤ · · · ≤ xn

so that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an, x k
1 + x k

2 + · · ·+ x k
n = ak

1 + ak
2 + · · ·+ ak

n,

where k is a nonnegative real number (k 6= 1); k = 0 means x1 x2 · · · xn = a1a2 · · · an.
Let f be a real-valued function, continuous on [0,∞) and differentiable on (0,∞),
so that the joined function

g(x) = f ′
�

x
1

k−1

�

is strictly convex on (0,∞). Then, the sum

Sn = f (x1) + f (x2) + · · ·+ f (xn)

is maximal only for
x1 = x2 = · · ·= xn−1 ≤ xn ,

and minimal only for x1 = 0 or 0< x1 ≤ x2 = x3 = · · ·= xn.

To prove the EV-Theorem, we need the EV-Lemma and the EV-Proposition be-
low.

EV-Lemma. Let a, b, c be fixed nonnegative real numbers, not all equal and, for k ≥ 0,
at most one of them equal to zero, and let x ≤ y ≤ z be nonnegative real numbers so
that

x + y + z = a+ b+ c, x k + yk + zk = ak + bk + ck,

323
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where k is a real number (k 6= 1); for k = 0, the second equation is x yz = abc. Then,
the range of y is an interval [m, M] with m< M; in addition,

(1) y = m if and only if x = y < z;
(2) y = M if and only if 0= x < y ≤ z or 0< x ≤ y = z.

Proof. We show first, by the contradiction method, that x < z. Indeed, if x = z,
then

x = z ⇒ x = y = z ⇒ x k + yk + zk = 3
� x + y + z

3

�k

⇒ ak + bk + ck = 3
�

a+ b+ c
3

�k

⇒ a = b = c,

which is false. Notice that the last implication follows from Jensen’s inequalities

ak + bk + ck ≥ 3
�

a+ b+ c
3

�k

, k ∈ (−∞, 0)∪ (1,∞),

ak + bk + ck ≤ 3
�

a+ b+ c
3

�k

, k ∈ (0,1),

abc ≤
�

a+ b+ c
3

�3

, k = 0,

where the equality holds if and only if a = b = c.
According to the relations

x + z = a+ b+ c − y, x k + zk = ak + bk + ck − yk,

we may consider x and z as functions of y . From

x ′ + z′ = −1, x k−1 x ′ + zk−1z′ = −yk−1,

we get

x ′ =
yk−1 − zk−1

zk−1 − x k−1
≤ 0, z′ =

yk−1 − x k−1

x k−1 − zk−1
≤ 0. (*)

Let us define the nonnegative functions

f1(y) = y − x(y), f2(y) = z(y)− y. f3(y) = x(y).

Since

f ′1(y) = 1− x ′(y)> 0, f ′2(y) = z′(y)− 1< 0, f ′3(y) = x ′(y)≤ 0,

these functions are strictly increasing, decreasing and decreasing, respectively. Thus,
the inequality f1(y) ≥ 0 (with f1 increasing) involves y ≥ m, where m is a root of
the equation x(y) = y , and the inequality f2(y) ≥ 0 (with f2 decreasing) involves
involves y ≤ y2, where y2 is a root of the equation z(y) = y . If x(y2) ≥ 0, then
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y2 is the maximal value of y . Otherwise, the maximal value of y is given by the
inequality f3(y) ≥ 0 (with f3 decreasing), which involves y ≤ y3, where y3 is a
root of the equation x(y) = 0. Therefore, y ∈ [m, M], with y = m for x = y , and
y = M for either y = z or x = 0.

EV-Proposition. Let a, b, c be fixed nonnegative real numbers, and let 0≤ x ≤ y ≤ z
so that

x + y + z = a+ b+ c, x k + yk + zk = ak + bk + ck,

where k is a real number (k 6= 1); k = 0 means x yz = abc. Let f be a real-valued
function, continuous on [0,∞) and differentiable on (0,∞), so that the joined func-
tion

g(x) = f ′
�

x
1

k−1

�

is strictly convex on (0,∞). Then, the sum

S3 = f (x) + f (y) + f (z)

is maximal only when 0 ≤ x = y ≤ z, and minimal only when x = 0 or 0 < x ≤
y = z.

Proof. If a = b = c, then

ak + bk + ck = 3
�

a+ b+ c
3

�k

,

hence

x k + yk + zk = 3
� x + y + z

3

�k

,

which involves x = y = z. If k > 0 and two of a, b, c are equal to zero, then

ak + bk + ck = (a+ b+ c)k,

hence
x k + yk + zk = (x + y + z)k,

which involves x = y = 0. In both cases, the extremum conditions in the statement
(x = y and either x = 0 or y = z) are satisfied. Consider further that a, b, c are
not all equal and at most one of them is equal to zero. As shown in the proof of the
EV-Lemma, we have x < z. According to the relations

x + z = a+ b+ c − y, x k + zk = ak + bk + ck − yk,

we may consider x and z as functions of y . Thus, we have

S3 = f (x(y)) + f (y) + f (z(y)) := F(y).



326 Vasile Cîrtoaje

According to the EV-Lemma, it suffices to show that F is maximal for y = m and is
minimal for y = M . Using (*), we have

F ′(y) = x ′ f ′(x) + f ′(y) + z′ f ′(z)

=
yk−1 − zk−1

zk−1 − x k−1
g(x k−1) + g(yk−1) +

yk−1 − x k−1

x k−1 − zk−1
g(zk−1),

which, for x < y < z, is equivalent to

F ′(y)
(yk−1 − x k−1)(yk−1 − zk−1)

=
g(x k−1)

(x k−1 − yk−1)(x k−1 − zk−1)

+
g(yk−1)

(yk−1 − zk−1)(yk−1 − x k−1)
+

g(zk−1)
(zk−1 − x k−1)(zk−1 − yk−1)

.

Since g is strictly convex, the right hand side is positive. Moreover, since

(yk−1 − x k−1)(yk−1 − zk−1)< 0,

we have F ′(y)< 0 for y ∈ (m, M) (see the EV-Lemma), hence F is strictly decreas-
ing on [m, M]. Therefore, F is maximal for y = m (when 0 ≤ x = y ≤ z) and is
minimal for y = M (when x = 0 or 0< x ≤ y = z.

Proof of the EV-Theorem. Since X = {x1, x2, . . . , xn} is defined as a compact set
in R+n, Sn attains its minimum and maximum. For n = 3, the EV-Theorem follows
immediately from the EV-Proposition. To prove the theorem for n ≥ 4, we use the
contradiction method.

(a) For the sake of contradiction, assume that Sn is maximal at (b1, b2, . . . , bn),
where b1 ≤ b2 ≤ · · · ≤ bn and b1 < bn−1. Let x1, xn−1 and xn be real numbers so
that x1 ≤ xn−1 ≤ xn and

x1 + xn−1 + xn = b1 + bn−1 + bn, x k
1 + x k

n−1 + x k
n = bk

1 + bk
n−1 + bk

n.

According to the EV-Proposition, the sum f (x1) + f (xn−1) + f (xn) is maximal for
x1 = xn−1, when

f (x1) + f (xn−1) + f (xn)> f (b1) + f (bn−1) + f (bn).

This result contradicts the assumption that Sn attains its maximum at (b1, b2, . . . , bn)
with b1 < bn−1.

(b) Similarly, we can prove that Sn is minimal for n≥ 4 when either x1 = 0 or

0< x1 ≤ x2 = · · ·= xn.

Corollary 1. Let a1, a2, . . . , an (n≥ 3) be fixed nonnegative real numbers, and let

0≤ x1 ≤ x2 ≤ · · · ≤ xn
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so that
x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

x2
1 + x2

2 + · · ·+ x2
n = a2

1 + a2
2 + · · ·+ a2

n.

Let f be a real-valued function, continuous on [0,∞) and differentiable on (0,∞),
so that the joined function

g(x) = f ′(x)

is strictly convex on (0,∞). The sum

Sn = f (x1) + f (x2) + · · ·+ f (xn)

is maximal only when
x1 = x2 = · · ·= xn−1 ≤ xn ,

and is minimal only when either x1 = 0 or 0< x1 ≤ x2 = x3 = · · ·= xn.

Corollary 2. Let a1, a2, . . . , an (n≥ 3) be fixed positive real numbers, and let

0< x1 ≤ x2 ≤ · · · ≤ xn

so that
x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

1
x1
+

1
x2
+ · · ·+

1
xn
=

1
a1
+

1
a2
+ · · ·+

1
an

.

Let f be a real-valued function, continuous and differentiable on (0,∞), so that the
joined function

g(x) = f ′
�

1
p

x

�

is strictly convex on (0,∞). The sum

Sn = f (x1) + f (x2) + · · ·+ f (xn)

is maximal only when
x1 = x2 = · · ·= xn−1 ≤ xn ,

and is minimal only when

x1 ≤ x2 = x3 = · · ·= xn.

Corollary 3. Let a1, a2, . . . , an (n≥ 3) be fixed nonnegative real numbers, and let

0≤ x1 ≤ x2 ≤ · · · ≤ xn

so that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an, x1 x2 · · · xn = a1a2 · · · an.
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Let f be a real-valued function, continuous on [0,∞) and differentiable on (0,∞),
so that the joined function

g(x) = f ′(1/x)

is strictly convex on (0,∞). The sum

Sn = f (x1) + f (x2) + · · ·+ f (xn)

is maximal only when
x1 = x2 = · · ·= xn−1 ≤ xn ,

and is minimal only when either x1 = 0 or 0< x1 ≤ x2 = x3 = · · ·= xn.

Corollary 4. Let a1, a2, . . . , an (n≥ 3) be fixed nonnegative real numbers, and let

0≤ x1 ≤ x2 ≤ · · · ≤ xn

so that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an, x k
1 + x k

2 + · · ·+ x k
n = ak

1 + ak
2 + · · ·+ ak

n,

where k is a real number (k 6= 0, k 6= 1).
(1) For k < 0, the product Pn = x1 x2 · · · xn is maximal when

0< x1 ≤ x2 = x3 = · · ·= xn,

and is minimal only when

0< x1 = x2 = · · ·= xn−1 ≤ xn;

(2) For k > 0, the product Pn = x1 x2 · · · xn is maximal when

x1 = x2 = · · ·= xn−1 ≤ xn,

and is minimal only when either x1 = 0 or 0< x1 ≤ x2 = x3 = · · ·= xn.

Note 1. The EV-Theorem, Corollary 1 and Corollary 3 are also valid for the cases
when x1, x2, . . . , xn > 0, f is continuous and differentiable on (0,∞), f (0+) =
±∞ and the sum Sn has a global maximum (minimum).

From the EV-Theorem and Note 1, we can obtain some interesting particular
results, which are useful in many applications.

Corollary 5. Let a1, a2, . . . , an (n≥ 3) be fixed nonnegative real numbers, and let

0≤ x1 ≤ x2 ≤ · · · ≤ xn

so that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an, x k
1 + x k

2 + · · ·+ x k
n = ak

1 + ak
2 + · · ·+ ak

n.
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Let us denote
Sn = xm

1 + xm
2 + · · ·+ xm

n .

Case 1 : k < 0.

(a) If m ∈ (k, 0)∪ (1,∞), then Sn is maximal only for

0< x1 = x2 = · · ·= xn−1 ≤ xn,

and is minimal only for

0< x1 ≤ x2 = x3 = · · ·= xn.

(b) If m ∈ (−∞, k)∪ (0, 1), then Sn is minimal only for

0< x1 = x2 = · · ·= xn−1 ≤ xn,

and is maximal only for

0< x1 ≤ x2 = x3 = · · ·= xn.

Case 2 : 0≤ k < 1 (k = 0 means x1 x2 · · · xn = a1a2 · · · an ).

(a) If m ∈ (0, k)∪ (1,∞), then Sn is maximal only for

0≤ x1 = x2 = · · ·= xn−1 ≤ xn,

and is minimal only for either x1 = 0 or 0< x1 ≤ x2 = x3 = · · ·= xn.

(b) If m ∈ (−∞, 0), then Sn is minimal only for

0< x1 = x2 = · · ·= xn−1 ≤ xn,

and is maximal (if it has a global maximum) only for

0< x1 ≤ x2 = x3 = · · ·= xn.

(c) If m ∈ (k, 1), then Sn is minimal only for

0≤ x1 = x2 = · · ·= xn−1 ≤ xn,

and is maximal only for either x1 = 0 or 0< x1 ≤ x2 = x3 = · · ·= xn.

Case 3 : k > 1.

(a) If m ∈ (0, 1)∪ (k,∞), then Sn is maximal only for

0≤ x1 = x2 = · · ·= xn−1 ≤ xn,



330 Vasile Cîrtoaje

and is minimal only for either x1 = 0 or 0< x1 ≤ x2 = x3 = · · ·= xn.

(b) If m ∈ (−∞, 0), then Sn is minimal only for

0< x1 = x2 = · · ·= xn−1 ≤ xn,

and is maximal (if it has a global maximum) only for

0< x1 ≤ x2 = x3 = · · ·= xn.

(c) If m ∈ (1, k), then Sn is minimal only for

0≤ x1 = x2 = · · ·= xn−1 ≤ xn,

and is maximal only for either x1 = 0 or 0< x1 ≤ x2 = x3 = · · ·= xn.

Proof. We apply the EV-Theorem and Note 1 to the function

f (u) = m(m− 1)(m− k)um.

We have
f ′(u) = m2(m− 2)(m− k)um−1

and

g(x) = m2(m− 1)(m− k)x
m−1
k−1 , g ′′(x) =

m2(m− 1)2(m− k)2

(k− 1)2
x

1+m−2k
k−1 .

Since g ′′(x)> 0 for x > 0, g is strictly convex on (0,∞).

Corollary 6. Let a1, a2, . . . , an (n≥ 3) be fixed nonnegative real numbers, and let

0≤ x1 ≤ x2 ≤ · · · ≤ xn

so that

x p
1 + x p

2 + · · ·+ x p
n = ap

1 + ap
2 + · · ·+ ap

n, xq
1 + xq

2 + · · ·+ xq
n = aq

1 + aq
2 + · · ·+ aq

n,

where
p, q ∈ {1, 2,3}, p 6= q.

The symmetric sum
Sn =

∑

1≤i1<i2<i3≤n

x i1 x i2 x i3

is maximal only for
0≤ x1 = x2 = · · ·= xn−1 ≤ xn,

and is minimal only for either x1 = 0 or 0< x1 ≤ x2 = x3 = · · ·= xn.
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Proof. Taking into account that

6
∑

1≤i1<i2<i3≤n

x i1 x i2 x i3 =
�∑

x1

�3
− 3

�∑

x1

��∑

x2
1

�

+ 2
∑

x3
1 ,

Corollary 6 is a consequence of Corollary 5. For p = 2 and q = 3, according to
this identity, the sum

∑

1≤i1<i2<i3≤n x i1 x i2 x i3 is maximal/minimal when
∑

x1 is max-
imal/minimal. Therefore, we need to show that if

x2
1 + x2

2 + · · ·+ x2
n = constant, x3

1 + x3
2 + · · ·+ x3

n = constant,

then the sum
∑

x1 is maximal for

0≤ x1 = x2 = · · ·= xn−1 ≤ xn,

and is minimal for either x1 = 0 or 0 < x1 ≤ x2 = x3 = · · · = xn. This follows by
replacing x1, x2, . . . , xn with x2

1 , x2
2 , . . . , x2

n in Corollary 5, case k = 3/2 and m= 1/2.

Note 2. The EV-Theorem and Corollaries 1-3 can be extended to the cases where:

(a) x1, x2, . . . , xn ≥ m ≥ 0, f is continuous on [m,∞) and differentiable on
(m,∞), and g(x) is strictly convex for x

1
k−1 > m; so, the sum

Sn = f (x1) + f (x2) + · · ·+ f (xn)

is maximal for x1 = x2 = · · · = xn−1 ≤ xn, and is minimal for either x1 = m or
m< x1 ≤ x2 = x3 = · · ·= xn;

(b) 0 ≤ x1, x2, . . . , xn ≤ M , f is continuous on [0, M] and differentiable on
(0, M), and g(x) is strictly convex for x

1
k−1 < M ; so, the sum

Sn = f (x1) + f (x2) + · · ·+ f (xn)

is maximal for either xn = M or x1 = x2 = · · · = xn−1 ≤ xn, and is minimal
x1 ≤ x2 = x3 = · · ·= xn;

Note 3. The EV-Theorem and Corollaries 1-3 can be extended to the cases where:

(a) x1, x2, . . . , xn > m ≥ 0, f is continuous and differentiable on (m,∞),
f (m+) = ±∞, g(x) is strictly convex for x

1
k−1 > m and the sum Sn has a global

maximum (minimum);

(b) 0 ≤ x1, x2, . . . , xn < M , f is continuous and differentiable on [0, M),
f (M−) = ±∞, g(x) is strictly convex for x

1
k−1 < M and the sum Sn has a global

maximum (minimum).
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5.2 Applications

5.1. If a, b, c, d are nonnegative real numbers so that

a+ b+ c + d = a3 + b3 + c3 + d3 = 2,

then
7
4
≤ a2 + b2 + c2 + d2 ≤ 2.

5.2. If a1, a2, . . . , a9 are nonnegative real numbers so that

a1 + a2 + · · ·+ a9 = a2
1 + a2

2 + · · ·+ a2
9 = 3,

then
3≤ a3

1 + a3
2 + · · ·+ a3

9 ≤
14
3

.

5.3. If a, b, c, d are nonnegative real numbers so that

a+ b+ c + d = a2 + b2 + c2 + d2 =
27
7

,

then
5427
1372

≤ a3 + b3 + c3 + d3 ≤
1377
343

.

5.4. If a, b, c are positive real numbers so that abc = 1, then

a5 + b5 + c5 ≥
Æ

3(a7 + b7 + c7).

5.5. If a, b, c, d are positive real numbers so that abcd = 1, then

a3 + b3 + c3 + d3 ≥
Æ

4(a4 + b4 + c4 + d4).

5.6. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 4, then

bcd
11a+ 16

+
cda

11b+ 16
+

dab
11c + 16

+
abc

11d + 16
≤

4
27

.
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5.7. If a, b, c are real numbers, then

bc
3a2 + b2 + c2

+
ca

3b2 + c2 + a2
+

ab
3c2 + a2 + b2

≤
3
5

.

5.8. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(a)
bc

a2 + 2
+

ca
b2 + 2

+
ab

c2 + 2
≤

9
8

;

(b)
bc

a2 + 3
+

ca
b2 + 3

+
ab

c2 + 3
≤

11
p

33− 45
24

;

(c)
bc

a2 + 4
+

ca
b2 + 4

+
ab

c2 + 4
≤

3
5

.

5.9. If a, b, c, d are nonnegative real numbers so that

(3a+ 1)(3b+ 1)(3c + 1)(3d + 1) = 64,

then
abc + bcd + cda+ dab ≤ 1.

5.10. If a1, a2, . . . , an and p, q are nonnegative real numbers so that

a1 + a2 + · · ·+ an = p+ q, a3
1 + a3

2 + · · ·+ a3
n = p3 + q3,

then
a2

1 + a2
2 + · · ·+ a2

n ≤ p2 + q2.

5.11. If a, b, c are nonnegative real numbers, then

a
p

a2 + 4b2 + 4c2 + b
p

b2 + 4c2 + 4a2 + c
p

c2 + 4a2 + 4b2 ≥ (a+ b+ c)2.

5.12. If a, b, c are nonnegative real numbers so that ab+ bc + ca = 3, then

1
a+ b

+
1

b+ c
+

1
c + a

≤
3

2(a+ b+ c)
+

a+ b+ c
3

.
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5.13. If a, b, c are nonnegative real numbers so that ab+ bc + ca = 3, then

1
a+ b

+
1

b+ c
+

1
c + a

≥
3

a+ b+ c
+

a+ b+ c
6

.

5.14. Let a, b, c be nonnegative real numbers, no two of which are zero. If

a2 + b2 + c2 = 3,

then
1

a+ b
+

1
b+ c

+
1

c + a
+

a+ b+ c
9

≥
11

2(a+ b+ c)
.

5.15. Let a, b, c be nonnegative real numbers, no two of which are zero. If

a+ b+ c = 4,

then
1

a+ b
+

1
b+ c

+
1

c + a
≥

15
8+ ab+ bc + ca

.

5.16. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
a+ b

+
1

b+ c
+

1
c + a

≥
1

a+ b+ c
+

2
p

ab+ bc + ca
.

5.17. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
a+ b

+
1

b+ c
+

1
c + a

≥
3−
p

3
a+ b+ c

+
2+
p

3

2
p

ab+ bc + ca
.

5.18. Let a, b, c be nonnegative real numbers, no two of which are zero, so that

ab+ bc + ca = 3.

If

0≤ k ≤
9+ 5

p
3

6
≈ 2.943,

then
2

a+ b
+

2
b+ c

+
2

c + a
≥

9(1+ k)
a+ b+ c + 3k

.
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5.19. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
a+ b

+
1

b+ c
+

1
c + a

≥
20

a+ b+ c + 6
p

ab+ bc + ca
.

5.20. If a, b, c are positive real numbers so that

7(a2 + b2 + c2) = 11(ab+ bc + ca),

then
51
28
≤

a
b+ c

+
b

c + a
+

c
a+ b

≤ 2.

5.21. If a1, a2, . . . , an are nonnegative real numbers so that

a2
1 + a2

2 + · · ·+ a2
n

n+ 3
=
�a1 + a2 + · · ·+ an

n+ 1

�2

,

then

(n+ 1)(2n− 1)
2

≤ (a1 + a2 + · · ·+ an)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

≤
3n2(n+ 1)
2(n+ 2)

.

5.22. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 3, then

abc + bcd + cda+ dab ≤ 1+
176
81

abcd.

5.23. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 3, then

a2 b2c2 + b2c2d2 + c2d2a2 + d2a2 b2 +
3
4

abcd ≤ 1.

5.24. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 3, then

a2 b2c2 + b2c2d2 + c2d2a2 + d2a2 b2 +
4
3
(abcd)3/2 ≤ 1.

5.25. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 4, then

a2 b2c2 + b2c2d2 + c2d2a2 + d2a2 b2 + 2(abcd)3/2 ≤ 6.
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5.26. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

11(ab+ bc + ca) + 4(a2 b2 + b2c2 + c2a2)≤ 45.

5.27. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

a2 b2 + b2c2 + c2a2 + a3 b3 + b3c3 + c3a3 ≥ 6abc.

5.28. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

2(a2 + b2 + c2) + 5
�p

a+
p

b+
p

c
�

≥ 21.

5.29. If a, b, c are nonnegative real numbers so that ab+ bc + ca = 3, then
√

√1+ 2a
3

+

√

√1+ 2b
3

+

√

√1+ 2c
3
≥ 3.

5.30. Let a, b, c be nonnegative real numbers, no two of which are zero. If

0≤ k ≤ 15,

then

1
(a+ b)2

+
1

(b+ c)2
+

1
(c + a)2

+
k

(a+ b+ c)2
≥

9+ k
4(ab+ bc + ca)

.

5.31. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
(a+ b)2

+
1

(b+ c)2
+

1
(c + a)2

+
24

(a+ b+ c)2
≥

8
ab+ bc + ca

.

5.32. If a, b, c are nonnegative real numbers, no two of which are zero, so that

k(a2 + b2 + c2) + (2k+ 3)(ab+ bc + ca) = 9(k+ 1), 0≤ k ≤ 6,

then
1

(a+ b)2
+

1
(b+ c)2

+
1

(c + a)2
+

9k
(a+ b+ c)2

≥
3
4
+ k.
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5.33. If a, b, c are nonnegative real numbers, no two of which are zero, then

(a)
2

a2 + b2
+

2
b2 + c2

+
2

c2 + a2
≥

8
a2 + b2 + c2

+
1

ab+ bc + ca
;

(b)
2

a2 + b2
+

2
b2 + c2

+
2

c2 + a2
≥

7
a2 + b2 + c2

+
6

(a+ b+ c)2
;

(c)
2

a2 + b2
+

2
b2 + c2

+
2

c2 + a2
≥

45
4(a2 + b2 + c2) + ab+ bc + ca

.

5.34. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
a2 + b2

+
1

b2 + c2
+

1
c2 + a2

+
3

a2 + b2 + c2
≥

4
ab+ bc + ca

.

5.35. If a, b, c are nonnegative real numbers, no two of which are zero, then

(a)
3

a2 + ab+ b2
+

3
b2 + bc + c2

+
3

c2 + ca+ a2
≥

5
ab+ bc + ca

+
4

a2 + b2 + c2
;

(b)
3

a2 + ab+ b2
+

3
b2 + bc + c2

+
3

c2 + ca+ a2
≥

1
ab+ bc + ca

+
24

(a+ b+ c)2
;

(c)
1

a2 + ab+ b2
+

1
b2 + bc + c2

+
1

c2 + ca+ a2
≥

21
2(a2 + b2 + c2) + 5(ab+ bc + ca)

.

5.36. Let f be a real-valued function, continuous on [0,∞) and differentiable on
(0,∞), so that f ′′′(u)≥ 0 for u ∈ (0,∞). If a, b, c ≥ 0, then

f (a2 + 2bc) + f (b2 + 2ca) + f (c2 + 2ab)≤ f (a2 + b2 + c2) + 2 f (ab+ bc + ca).

5.37. If a, b, c are the lengths of the side of a triangle, then

1
(a+ b)2

+
1

(b+ c)2
+

1
(c + a)2

≤
85

36(ab+ bc + ca)
.

5.38. If a, b, c are the lengths of the side of a triangle so that a+ b+ c = 3, then

1
(a+ b)2

+
1

(b+ c)2
+

1
(c + a)2

≤
3(a2 + b2 + c2)
4(ab+ bc + ca)

.
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5.39. Let a, b, c ≥
2
5

so that a+ b+ c = 3. Then,

1
3+ 2(a2 + b2)

+
1

3+ 2b2 + c2)
+

1
3+ 2(c2 + a2)

≤
3
7

.

5.40. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

2
2+ a2 + b2

+
2

2+ b2 + c2
+

2
2+ c2 + a2

≤
99

63+ a2 + b2 + c2
.

5.41. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

1
3+ a2 + b2

+
1

3+ b2 + c2
+

1
3+ c2 + a2

≤
18

27+ a2 + b2 + c2
.

5.42. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

5
3+ a2 + b2

+
5

3+ b2 + c2
+

5
3+ c2 + a2

≥
27

6+ a2 + b2 + c2
.

5.43. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 4, then

∑ 3
3+ 2(a2 + b2 + c2)

≤
296

218+ a2 + b2 + c2 + d2
.

5.44. If a, b, c are nonnegative real numbers so that ab+ bc + ca = 3, then

4
2+ a2 + b2

+
4

2+ b2 + c2
+

4
2+ c2 + a2

≥
21

4+ a2 + b2 + c2
.

5.45. If a, b, c are nonnegative real numbers so that a2 + b2 + c2 = 3, then

1
10− (a+ b)2

+
1

10− (b+ c)2
+

1
10− (c + a)2

≤
1
2

.

5.46. If a, b, c are nonnegative real numbers, no two of which are zero, so that
a4 + b4 + c4 = 3, then

1
a5 + b5

+
1

b5 + c5
+

1
c5 + a5

≥
3
2

.
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5.47. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n,
then

q

a2
1 + 1+

q

a2
2 + 1+· · ·+

Æ

a2
n + 1≥

√

√

2
�

1−
1
n

�

(a2
1 + a2

2 + · · ·+ a2
n) + 2(n2 − n+ 1).

5.48. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n,
then

∑q

(3n− 4)a2
1 + n≥

q

(3n− 4)(a2
1 + a2

2 + · · ·+ a2
n) + n(4n2 − 7n+ 4).

5.49. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

p

a2 + 4+
p

b2 + 4+
p

c2 + 4≤

√

√8
3
(a2 + b2 + c2) + 37.

5.50. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then
p

32a2 + 3+
p

32b2 + 3+
p

32c2 + 3≤
Æ

32(a2 + b2 + c2) + 219.

5.51. If a1, a2, . . . , an are positive real numbers so that a1 + a2 + · · ·+ an = n, then

1
a1
+

1
a2
+ · · ·+

1
an
+

2n
p

n− 1
a2

1 + a2
2 + · · ·+ a2

n

≥ n+ 2
p

n− 1.

5.52. If a, b, c ∈ [0,1], then

(1+ 3a2)(1+ 3b2)(1+ 3c2)≥ (1+ ab+ bc + ca)3.

5.53. If a, b, c are nonnegative real numbers so that a+ b+ c = ab+ bc+ ca, then

1
4+ 5a2

+
1

4+ 5b2
+

1
4+ 5c2

≥
1
3

.

5.54. If a, b, c, d are positive real numbers so that a+ b+ c + d = 4abcd, then

1
1+ 3a

+
1

1+ 3b
+

1
1+ 3c

+
1

1+ 3d
≥ 1.
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5.55. If a1, a2, . . . , an are positive real numbers so that

a1 + a2 + · · ·+ an =
1
a1
+

1
a2
+ · · ·+

1
an

,

then
1

1+ (n− 1)a1
+

1
1+ (n− 1)a2

+ · · ·+
1

1+ (n− 1)an
≥ 1.

5.56. If a, b, c, d, e are nonnegative real numbers so that a4+ b4+ c4+ d4+ e4 = 5,
then

7(a2 + b2 + c2 + d2 + e2)≥ (a+ b+ c + d + e)2 + 10.

5.57. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n,
then

(a2
1 + a2

2 + · · ·+ a2
n)

2 − n2 ≥
n(n− 1)

n2 − n+ 1

�

a4
1 + a4

2 + · · ·+ a4
n − n

�

.

5.58. If a1, a2, . . . , an are nonnegative real numbers so that a2
1 + a2

2 + · · ·+ a2
n = n,

then

a3
1 + a3

2 + · · ·+ a3
n ≥

√

√

n2 − n+ 1+
�

1−
1
n

�

(a6
1 + a6

2 + · · ·+ a6
n).

5.59. If a, b, c are positive real numbers so that abc = 1, then

4
�

1
a
+

1
b
+

1
c

�

+
50

a+ b+ c
≥ 27.

5.60. If a, b, c are positive real numbers so that abc = 1, then

a3 + b3 + c3 + 15≥ 6
�

1
a
+

1
b
+

1
c

�

.

5.61. Let a1, a2, . . . , an be positive numbers so that a1a2 · · · an = 1. If k ≥ n − 1,
then

ak
1 + ak

2 + · · ·+ ak
n + (2k− n)n≥ (2k− n+ 1)

�

1
a1
+

1
a2
+ · · ·+

1
an

�

.
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5.62. Let a1, a2, . . . , an (n≥ 3) be nonnegative numbers so that a1+a2+· · ·+an = n,
and let k be an integer satisfying 2≤ k ≤ n+ 2. If

r =
� n

n− 1

�k−1
− 1,

then
ak

1 + ak
2 + · · ·+ ak

n − n≥ nr(1− a1a2 · · · an).

5.63. If a, b, c are positive real numbers so that
1
a
+

1
b
+

1
c
= 3, then

4(a2 + b2 + c2) + 9≥ 21abc.

5.64. If a1, a2, . . . , an are positive real numbers so that
1
a1
+

1
a2
+ · · · +

1
an
= n,

then,
a1 + a2 + · · ·+ an − n≤ en−1(a1a2 · · · an − 1),

where

en−1 =
�

1+
1

n− 1

�n−1

.

5.65. If a1, a2, . . . , an are positive real numbers, then

an
1 + an

2 + · · ·+ an
n

a1a2 · · · an
+ n(n− 1)≥ (a1 + a2 + · · ·+ an)

�

1
a1
+

1
a2
+ · · ·+

1
an

�

.

5.66. If a1, a2, . . . , an are nonnegative real numbers, then

(n−1)(an
1+an

2+ · · ·+an
n)+na1a2 · · · an ≥ (a1+a2+ · · ·+an)(a

n−1
1 +an−1

2 + · · ·+an−1
n ).

5.67. If a1, a2, . . . , an are nonnegative real numbers, then

(n−1)(an+1
1 +an+1

2 + · · ·+an+1
n )≥ (a1+a2+ · · ·+an)(a

n
1+an

2+ · · ·+an
n−a1a2 · · · an).

5.68. If a1, a2, . . . , an are positive real numbers, then

(a1 + a2 + · · ·+ an − n)
�

1
a1
+

1
a2
+ · · ·+

1
an
− n

�

+ a1a2 · · · an +
1

a1a2 · · · an
≥ 2.
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5.69. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then
�

�

�

�

�

�

1
p

a1 + a2 + · · ·+ an − n
−

1
Ç

1
a1
+ 1

a2
+ · · ·+ 1

an
− n

�

�

�

�

�

�

< 1.

5.70. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

an−1
1 + an−1

2 + · · ·+ an−1
n +

n2(n− 2)
a1 + a2 + · · ·+ an

≥ (n− 1)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

.

5.71. If a, b, c are nonnegative real numbers, then

(a+ b+ c − 3)2 ≥
abc − 1
abc + 1

(a2 + b2 + c2 − 3).

5.72. If a1, a2, . . . , an are positive real numbers so that a1+ a2+ · · ·+ an = n, then

(a1a2 · · · an)
1p
n−1 (a2

1 + a2
2 + · · ·+ a2

n)≤ n.

5.73. If a1, a2, . . . , an are positive real numbers such that a1+ a2+ · · ·+ an = n−1,
then

n

√

√ n− 1
a1a2 · · · an

≥ 4

√

√

√a2
1 + a2

2 + · · ·+ a2
n

n(n− 1)
.

5.74. If a1, a2, . . . , an are positive real numbers so that a3
1+ a3

2+ · · ·+ a3
n = n, then

a1 + a2 + · · ·+ an ≥ n n+1
p

a1a2 · · · an.

5.75. Let a, b, c be nonnegative real numbers so that ab+ bc + ca = 3. If

k ≥ 2−
ln4
ln3
≈ 0.738,

then
ak + bk + ck ≥ 3.
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5.76. Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If

k ≥
ln9− ln8
ln3− ln2

≈ 0.29,

then
ak + bk + ck ≥ ab+ bc + ca.

5.77. If a1, a2, . . . , an (n≥ 4) are nonnegative numbers so that a1+a2+· · ·+an = n,
then

1
n+ 1− a2a3 · · · an

+
1

n+ 1− a3a4 · · · a1
+ · · ·+

1
n+ 1− a1a2 · · · an−1

≤ 1.

5.78. If a, b, c are nonnegative real numbers so that

a+ b+ c ≥ 2, ab+ bc + ca ≥ 1,

then
3pa+

3
p

b+ 3pc ≥ 2.

5.79. If a, b, c, d are positive real numbers so that abcd = 1, then

(a+ b+ c + d)4 ≥ 36
p

3 (a2 + b2 + c2 + d2).

5.80. If a, b, c are nonnegative real numbers so that ab+ bc + ca = 1, then
p

33a2 + 16+
p

33b2 + 16+
p

33c2 + 16≤ 9(a+ b+ c).

5.81. If a, b, c are positive real numbers so that a+ b+ c = 3, then

a2 b2 + b2c2 + c2a2 ≤
3

3pabc
.

5.82. If a1, a2, . . . , an (n≤ 81) are nonnegative real numbers so that

a2
1 + a2

2 + · · ·+ a2
n = a5

1 + a5
2 + · · ·+ a5

n,

then
a6

1 + a6
2 + · · ·+ a6

n ≤ n.
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5.83. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

1+
p

1+ a3 + b3 + c3 ≥
Æ

3(a2 + b2 + c2).

5.84. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

p

a+ b+
p

b+ c +
p

c + a ≤

√

√

16+
2
3
(ab+ bc + ca).

5.85. If a, b, c ∈ [0,4] and ab+ bc + ca = 4, then
p

a+ b+
p

b+ c +
p

c + a ≤ 3+
p

5.

5.86. If a, b, c are positive real numbers so that abc = 1, then

(a)
a+ b+ c

3
≥ 3

√

√2+ a2 + b2 + c2

5
;

(b) a3 + b3 + c3 ≥
p

3(a4 + b4 + c4).

5.87. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 4, then

(a2 + b2 + c2 + d2 − 4)(a2 + b2 + c2 + d2 + 18)≤ 10(a3 + b3 + c3 + d3 − 4).

5.88. If a, b, c, d are nonnegative real numbers such that

a+ b+ c + d = 4,

then
(a4 + b4 + c4 + d4)2 ≥ (a2 + b2 + c2 + d2)(a5 + b5 + c5 + d5).

5.89. If a, b, c, d are nonnegative real numbers such that

a+ b+ c + d = 4,

then
13(a2 + b2 + c2 + d2)2 ≥ 12(a4 + b4 + c4 + d4) + 160.
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5.90. If a1, a2, . . . , a8 are nonnegative real numbers, then

19(a2
1 + a2

2 + · · ·+ a2
8)

2 ≥ 12(a1 + a2 + · · ·+ a8)(a
3
1 + a3

2 + · · ·+ a3
8).

5.91. If a, b, c are nonnegative real numbers so that

5(a2 + b2 + c2) = 17(ab+ bc + ca),

then

3

√

√3
5
≤
s

a
b+ c

+

√

√ b
c + a

+
s

c
a+ b

≤
1+
p

7
p

2
.

5.92. If a, b, c are nonnegative real numbers so that

8(a2 + b2 + c2) = 9(ab+ bc + ca),

then
19
12
≤

a
b+ c

+
b

c + a
+

c
a+ b

≤
141
88

.

5.93. If a, b, c ∈ (0,2] such that a+ b+ c = 3, then
√

√2(b+ c)
a

− 1+

√

√2(c + a)
b

− 1+

√

√2(a+ b)
c

− 1≥
9

p
ab+ bc + ca

.

5.94. Let a, b, c and x , y, z be nonnegative real numbers such that

x3 + y3 + z3 = a3 + b3 + c3.

Then,
(a+ b+ c)(x + y + z)

ab+ bc + ca+ x y + yz + zx
≥ 3p

3.

5.95. If a, b, c, d are positive numbers such that

a+ b+ c + d =
1
a
+

1
b
+

1
c
+

1
d

,

then
ab+ ac + ad + bc + bd + cd + 3abcd ≥ 9.
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5.96. If a1, a2, a3, a4, a5 are nonnegative real numbers, then

(a3
1 + a3

2 + a3
3 + a3

4 + a3
5)

2

a4
1 + a4

2 + a4
3 + a4

4 + a4
5

≥
1
2

∑

i< j

aia j.

5.97. If a1, a2, . . . , an ≥ 0 such that

a1 + a2 + · · ·+ an = n,

then
p

a1 +
p

a2 + · · ·+
p

an ≤

√

√

√2n− 1+ 2
�

1−
1
n

�

∑

i< j

aia j.

5.98. If a1, a2, . . . , an ≥ 0 such that

a1 + a2 + · · ·+ an =
∑

i< j

aia j > 0,

then
(n− 1)(n− 2)

2
(a1 + a2 + · · ·+ an) +

∑

i< j

p

aia j ≥ n(n− 1).

5.99. Let

F(a1, a2, . . . , an) = n(a2
1 + a2

2 + · · ·+ a2
n)− (a1 + a2 + · · ·+ an)

2 ,

where a1, a2, . . . , an are positive real numbers such that a1 ≤ a2 ≤ · · · ≤ an and

a2
1(a

2
2 + a2

3 + · · ·+ a2
n)≥ n− 1.

Then,

F(a1, a2, . . . , an)≥ F
�

1
a1

,
1
a2

, . . . ,
1
an

�

.

5.100. Let

F(a1, a2, . . . , an) = a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an,

where a1, a2, . . . , an are positive real numbers such that a1 ≤ a2 ≤ · · · ≤ an and

a1(a2 + a3 + · · ·+ an)≥ n− 1.

Then,

F(a1, a2, . . . , an)≥ F
�

1
a1

,
1
a2

, . . . ,
1
an

�

.
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5.101. Let

F(a1, a2, . . . , an) =

√

√a2
1 + a2

2 + · · ·+ a2
n

n
−

a1 + a2 + · · ·+ an

n
,

where a1, a2, . . . , an are positive real numbers such that a1 ≤ a2 ≤ · · · ≤ an and

an−1
1 (a2 + a3 + · · ·+ an)≥ n− 1.

Then,

F(a1, a2, . . . , an)≥ F
�

1
a1

,
1
a2

, . . . ,
1
an

�

.

5.102. If a1, a2, . . . , an (n≥ 4) are positive real numbers such that

a1 + a2 + · · ·+ an = n, an =max{a1, a2, . . . , an},

then

n
�

1
a1
+

1
a2
+ · · ·+

1
an−1

�

≥ 4(a2
1 + a2

2 + · · ·+ a2
n) + n(n− 5).

5.103. If a, b, c are nonnegative real numbers so that ab+ bc + ca = 3, then

1
a+ b+ 1

+
1

b+ c + 1
+

1
c + a+ 1

≤ 1.
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5.3 Solutions

P 5.1. If a, b, c, d are nonnegative real numbers so that

a+ b+ c + d = a3 + b3 + c3 + d3 = 2,

then
7
4
≤ a2 + b2 + c2 + d2 ≤ 2.

(Vasile C., 2010)

Solution. The right inequality follows from the Cauchy-Schwarz inequality

(a2 + b2 + c2 + d2)2 ≤ (a+ b+ c + d)(a3 + b3 + c3 + d3).

The equality holds for a = b = 0 and c = d = 1 (or any permutation).
To prove the left inequality, assume that a ≤ b ≤ c ≤ d, then apply Corollary 5

for k = 3 and m= 2:
• If a, b, c, d are nonnegative real numbers so that

a+ b+ c + d = 2 , a3 + b3 + c3 + d3 = 2, a ≤ b ≤ c ≤ d,

then
S4 = a2 + b2 + c2 + d2

is minimal for a = b = c.
So, we only need to prove that the equations

3a+ d = 3a3 + d3 = 2, a, d ≥ 0,

imply
7
4
≤ 3a2 + d2.

Indeed, from 3a+ d = 3a3 + d3 = 2, we get a = 1/4 and d = 5/4, when

3a2 + d2 =
7
4

.

The left inequality is an equality for

a = b = c =
1
4

, d =
5
4

(or any cyclic permutation).
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P 5.2. If a1, a2, . . . , a9 are nonnegative real numbers so that

a1 + a2 + · · ·+ a9 = a2
1 + a2

2 + · · ·+ a2
9 = 3,

then
3≤ a3

1 + a3
2 + · · ·+ a3

9 ≤
14
3

.

(Vasile C., 2010)

Solution. The left inequality follows from the Cauchy-Schwarz inequality

(a1 + a2 + · · ·+ a9)(a
3
1 + a3

2 + · · ·+ a3
9)≥ (a

2
1 + a2

2 + · · ·+ a2
9)

2.

The equality holds for a1 = a2 = · · · = a6 = 0 and a7 = a8 = a9 = 1 (or any
permutation).

To prove the right inequality, assume that

a1 ≤ a2 ≤ · · · ≤ a9,

then apply Corollary 5 for k = 2 and m= 3:
• If a1, a2, . . . , a9 are nonnegative real numbers so that

a1 + a2 + · · ·+ a9 = 3 , a2
1 + a2

2 + · · ·+ a2
9 = 3, a1 ≤ a2 ≤ · · · ≤ a9,

then
S9 = a3

1 + a3
2 + · · ·+ a3

9

is maximal for a1 = a2 = · · ·= a8 ≤ a9.
Thus, we only need to prove that the equations

8a+ b = 3, 8a2 + b2 = 3, a, b ≥ 0,

involve
8a3 + b3 ≤

14
3

.

Indeed, from the equations above, we get a = 1/6 and b = 5/3, when

8a3 + b3 =
1

27
+

125
27
=

14
3

.

The equality holds for

a1 = a2 = · · ·= a8 =
1
6

, a9 =
5
3

(or any cyclic permutation).
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P 5.3. If a, b, c, d are nonnegative real numbers so that

a+ b+ c + d = a2 + b2 + c2 + d2 =
27
7

,

then
5427
1372

≤ a3 + b3 + c3 + d3 ≤
1377
343

.

(Vasile C., 2014)

Solution. Assume that a ≤ b ≤ c ≤ d.

(a) To prove the right inequality, we apply Corollary 5 for k = 2 and m= 3:

• If a, b, c, d are nonnegative real numbers so that

a+ b+ c + d =
27
7

, a2 + b2 + c2 + d2 =
27
7

, a ≤ b ≤ c ≤ d,

then
S4 = a3 + b3 + c3 + d3

is maximal for a = b = c ≤ d

Thus, we only need to prove that the equations

3a+ d =
27
7

, 3a2 + d2 =
27
7

, a, d ≥ 0,

involve
3a3 + d3 ≤

1377
343

.

Indeed, from the equations above, we get a = 6/7 and d = 9/7, when

3a3 + d3 = 3
�

6
7

�3

+
�

9
7

�3

=
1377
343

.

The equality holds for

a = b = c =
6
7

, d =
9
7

(or any cyclic permutation).

(b) To prove the left inequality, we apply Corollary 5 for k = 2 and m= 3:

• If a, b, c, d are nonnegative real numbers so that

a+ b+ c + d =
27
7

, a2 + b2 + c2 + d2 =
27
7

, a ≤ b ≤ c ≤ d,

then
S4 = a3 + b3 + c3 + d3
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is minimal for either a = 0 or a ≤ b = c = d.

The case a = 0 is not possible because from

b+ c + d =
27
7

, b2 + c2 + d2 =
27
7

,

we get

3(b2 + c2 + d2)− (b+ c + d)2 =
27
7

�

3−
27
7

�

< 0,

which contradicts the known inequality

3(b2 + c2 + d2)≥ b+ c + d)2.

For a ≤ b = c = d, we need to prove that the equations

a+ 3d =
27
7

, a2 + 3d2 =
27
7

, a, d ≥ 0,

involve
a3 + 3d3 ≥

5427
1372

.

Indeed, from the equations above, we get a = 9/14 and d = 15/14, when

a3 + 3d3 =
�

9
14

�3

+ 3
�

15
14

�3

=
5427
1372

.

The equality holds for

a =
9
14

, b = c = d =
15
14

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let k be a positive real number (k > 2), and let a1, a2, . . . , an be nonnegative real
numbers so that

a1 + a2 + · · ·+ an = a2
1 + a2

2 + · · ·+ a2
n =

(n− 1)3

n2 − 3n+ 3
.

The sum
Sn = ak

1 + ak
2 + · · ·+ ak

n

is maximal for

a1 = · · ·= an−1 =
(n− 1)(n− 2)

n2 − 3n+ 3
, an =

(n− 1)2

n2 − 3n+ 3
,

and is minimal for

a1 =
(n− 1)2(n− 2)
n(n2 − 3n+ 3)

, a2 = · · ·= an =
(n− 1)(n2 − 2n+ 2)

n(n2 − 3n+ 3)
.
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P 5.4. If a, b, c are positive real numbers so that abc = 1, then

a5 + b5 + c5 ≥
Æ

3(a7 + b7 + c7).

(Vasile C., 2014)

Solution. Substituting

a = x1/5, b = y1/5, c = z1/5,

we need to show that x yz = 1 involves

x + y + z ≥
Æ

3(x7/5 + y7/5 + z7/5).

Assume that x ≤ y ≤ z, then apply Corollary 5 for k = 0 and m= 7/5:

• If x , y, z are positive real numbers so that

x + y + z = constant , x yz = 1, x ≤ y ≤ z,

then
S3 = x7/5 + y7/5 + z7/5

is maximal for x = y .

So, it suffices to prove the original inequality for a = b. Write this inequality in
the homogeneous form

(a5 + b5 + c5)2 ≥ 3abc(a7 + b7 + c7).

We only need to prove this inequality for a = b = 1; that is, to show that f (c)≥ 0,
where

f (c) = (c5 + 2)2 − 3c(c7 + 2), c > 0.

We have
f ′(c) = 10c4(c5 + 2)− 24c7 − 6,

f ′′(c) = 2c3 g(t), g(t) = 45c5 − 84c3 + 40.

By the AM-GM inequality, we get

g(t) = 15c5 + 15c5 + 15c5 + 20+ 20− 84c3 ≥ 5 5
Æ

(15c5)3 · 202 − 84c3

= 5
p

27 · 16
�

25− 14
5p

18
�

c3 > 0,

hence f ′′(c) > 0, f ′(c) is increasing. Since f ′(0) = 1, it follows that f ′(c) ≤ 0 for
c ≤ 1, f ′(c) ≥ 0 for c ≥ 1, therefore f is decreasing on (0,1] and increasing on
[1,∞); consequently, f (c)≥ f (1) = 0. The equality occurs for a = b = c = 1.
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P 5.5. If a, b, c, d are positive real numbers so that abcd = 1, then

a3 + b3 + c3 + d3 ≥
Æ

4(a4 + b4 + c4 + d4).

(Vasile C., 2014)

Solution. Substituting

a = x1/3, b = y1/3, c = z1/3, d = t1/3,

we need to show that x yzt = 1 involves

x + y + z + t ≥
Æ

4(x4/3 + y4/3 + z4/3 + t4/3).

Apply Corollary 5, case k = 0 and m= 4/3:

• If x , y, z, t are positive real numbers so that

x + y + z + t = constant , x yzt = 1, x ≤ y ≤ z ≤ t,

then
S4 = x4/3 + y4/3 + z4/3 + t4/3

is maximal for x = y = z.

Therefore, it suffices to prove the original inequality for a = b = c. Write the
original inequality in the homogeneous form

(a3 + b3 + c3 + d3)2 ≥ 4
p

abcd (a4 + b4 + c4 + d4).

We only need to prove this inequality for a = b = c = 1; that is, to show that

(d3 + 3)2 ≥ 4
p

d (d4 + 3).

Putting u=
p

d, we have

(d3 + 3)2 − 4
p

d (d4 + 3) = (u6 + 3)2 − 4u(u8 + 3)

= (u3 − 1)4 + 4(u+ 2)(u− 1)2 ≥ 0.

The equality holds for a = b = c = d = 1.

P 5.6. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 4, then

bcd
11a+ 16

+
cda

11b+ 16
+

dab
11c + 16

+
abc

11d + 16
≤

4
27

.

(Vasile C., 2008)
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Solution. For a = 0, the inequality becomes

bcd ≤
64
27

,

where b, c, d ≥ 0, b+ c + d = 4. By the AM-GM inequality, we have

bcd ≤
�

b+ c + d
3

�3

=
�

4
3

�3

=
64
27

.

For abcd 6= 0, we write the inequality in the form

f (a) + f (b) + f (c) + f (d) +
4

(1+ k)abcd
≥ 0,

where

f (u) =
−1

u(u+ k)
, k =

16
11

, u> 0.

We have f (0+) = −∞ and

f ′(u) =
2u+ k
(u2 + ku)2

,

g(x) = f ′(1/x) =
kx4 + 2x3

(kx + 1)2
,

g ′′(x) =
2x(k3 x3 + 4k2 x2 + 6kx + 6)

(kx + 1)4
.

Since g ′′(x)> 0 for x > 0, g is strictly convex on (0,∞). By Corollary 3 and Note
1, if

a+ b+ c + d = 4, abcd = constant, 0< a ≤ b ≤ c ≤ d,

then the sum
S4 = f (a) + f (b) + f (c) + f (d)

is minimal for b = c = d. Thus, we only need to prove that

b3

11a+ 16
+

3ab2

11b+ 16
≤

4
27

for a+ 3b = 4. The inequality is equivalent to

b3

3(20− 11b)
+

3b2(4− 3b)
11b+ 16

≤
4
21

,

(b− 1)2(4− 3b)(231b+ 80)≥ 0,

(b− 1)2a(231b+ 80)≥ 0.

The equality holds for a = b = c = d = 1, and also for

a = 0, b = c = d =
4
3

(or any cyclic permutation).
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P 5.7. If a, b, c are real numbers, then

bc
3a2 + b2 + c2

+
ca

3b2 + c2 + a2
+

ab
3c2 + a2 + b2

≤
3
5

.

(Vasile Cirtoaje and Pham Kim Hung, 2005)

Solution. For a = 0, the inequality is true because

bc
b2 + c2

≤
1
2
<

3
5

.

Consider further that a, b, c are different from zero. The inequality remains un-
changed by replacing a, b, c with −a,−b,−c, respectively. Thus, we only need to
consider the case a < 0, b, c > 0, and the case a, b, c > 0. In the first case, it suffices
to show that

bc
3a2 + b2 + c2

≤
3
5

.

Indeed, we have
bc

3a2 + b2 + c2
<

bc
b2 + c2

≤
1
2
<

3
5

.

Consider now the case a, b, c > 0. Replacing a, b, c with
p

a,
p

b,
p

c, the inequality
becomes

1
p

a(3a+ b+ c)
+

1
p

b(3b+ c + a)
+

1
p

c(3c + a+ b)
≤

3

5
p

abc
.

Due to homogeneity, we may consider that a+ b+ c = 2. So, we need to show that

f (a) + f (b+ f (c) +
6

5
p

abc
≥ 0,

where
f (u) =

−1
p

u(u+ 1)
, u> 0.

We have f (0+) = −∞ and

f ′(u) =
3u+ 1

2u
p

u(u+ 1)2
,

g(x) = f ′(1/x) =
x2px(x + 3)

2(x + 1)2
,

g ′′(x) =
p

x(3x3 + 11x2 + 5x + 45)
8(x + 1)4

.

Since g ′′(x)> 0 for x > 0, g is strictly convex on (0,∞). By Corollary 3 and Note
1, if

a+ b+ c = 2, abc = constant, 0< a ≤ b ≤ c,
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then the sum
S3 = f (a) + f (b) + f (c)

is minimal for b = c. Thus, we only need to prove the original homogeneous in-
equality for b = c = 1; that is,

1
3a2 + 2

+
2a

a2 + 4
≤

3
5

,

9a4 − 30a3 + 37a2 − 20a+ 4≥ 0,

(a− 1)2(3a− 2)2 ≥ 0.

The equality holds for a = b = c, and also for

3a = 2b = 2c

(or any cyclic permutation).

P 5.8. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

(a)
bc

a2 + 2
+

ca
b2 + 2

+
ab

c2 + 2
≤

9
8

;

(b)
bc

a2 + 3
+

ca
b2 + 3

+
ab

c2 + 3
≤

11
p

33− 45
24

;

(c)
bc

a2 + 4
+

ca
b2 + 4

+
ab

c2 + 4
≤

3
5

.

(Vasile C., 2008)

Solution. For the nontrivial case abc 6= 0, we can write the desired inequalities in
the form

f (a) + f (b) + f (c) +
m

abc
≥ 0,

where
f (u) =

−1
u(u2 + k)

, k ∈ {2,3, 4}, u> 0.

We have f (0+) = −∞ and

f ′(u) =
3u2 + k

u2(u2 + k)2
,

g(x) = f ′(1/x) =
kx6 + 3x4

(kx2 + 1)2
,

g ′′(x) =
2x2(k3 x6 + 4k2 x4 − 3kx2 + 18)

(kx2 + 1)4
.
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Since
k3 x6 + 4k2 x4 − 3kx2 + 18> 4k2 x4 − 3kx2 + 18> 0,

we have g ′′(x)> 0, hence g is strictly convex on (0,∞). According to Corollary 3
and Note 1, if

a+ b+ c = 3, abc = constant, 0< a ≤ b ≤ c,

then the sum
S3 = f (a) + f (b) + f (c)

is minimal for b = c. Thus, we only need to prove the original inequalities for b = c.

(a) We only need to prove the homogeneous inequality

bc
9a2 + 2(a+ b+ c)2

+
ca

9b2 + 2(a+ b+ c)2
+

ab
9c2 + 2(a+ b+ c)2

≤
1
8

for b = c = 1, that is

1
11a2 + 8a+ 8

+
2a

2a2 + 8a+ 17
≤

1
8

,

2a
2a2 + 8a+ 17

≤
a(11a+ 8)

8(11a2 + 8a+ 8)
,

a(22a3 − 72a2 + 123a+ 8)≥ 0.

Since

22a3 − 72a2 + 123a+ 8> 20a3 − 80a2 + 80a = 20a(a− 2)2 ≥ 0,

the conclusion follows. The equality holds for a = 0 and b = c = 3/2 (or any cyclic
permutation).

(b) Let

m=
11
p

33− 45
72

≈ 0.253, r =
p

33− 5
4

≈ 0.186.

We only need to prove the homogeneous inequality

bc
3a2 + (a+ b+ c)2

+
ca

3b2 + (a+ b+ c)2
+

ab
3c2 + (a+ b+ c)2

≤ m

for b = c = 1; that is, to show that f (a)≤ m, where

f (a) =
1

4(a2 + a+ 1)
+

2a
a2 + 4a+ 7

.
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We have

f ′(a) =
−8a6 − 18a5 + 15a4 + 28a3 + 18a2 − 42a+ 7

4(a2 + a+ 1)2(a2 + 4a+ 7)2

=
(1− a)2(7+ 7a+ 4a2)(1− 5a− 2a2)

4(a2 + a+ 1)2(a2 + 4a+ 7)2
.

Since f ′(a) ≥ 0 for a ∈ [0, r], and f ′(a) ≤ 0 for a ∈ [r,∞), f is increasing on
[0, r] and decreasing on [r,∞); therefore,

f (a)≥ f (r) = m.

The equality holds for
a/r = b = c

(or any cyclic permutation).

(c) We only need to prove the homogeneous inequality

bc
9a2 + 4(a+ b+ c)2

+
ca

9b2 + 4(a+ b+ c)2
+

ab
9c2 + 4(a+ b+ c)2

≤
1

15

for b = c = 1, that is

1
13a2 + 16a+ 16

+
2a

4a2 + 16a+ 25
≤

1
15

,

52a4 − 118a3 + 105a2 − 64a+ 25≥ 0,

(a− 1)2(52a2 − 14a+ 25)≥ 0.

Since
52a2 − 14a+ 25> 7a2 − 14a+ 7= 7(a− 1)2 ≥ 0,

the conclusion follows. The equality holds for a = b = c = 1.

P 5.9. If a, b, c, d are nonnegative real numbers so that

(3a+ 1)(3b+ 1)(3c + 1)(3d + 1) = 64,

then
abc + bcd + cda+ dab ≤ 1.

(Vasile C., 2014)
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Solution. For d = 0, we need to show that

(3a+ 1)(3b+ 1)(3c + 1) = 64

involves abc ≤ 1. Indeed, by the AM-GM inequality, we have

64= (3a+ 1)(3b+ 1)(3c + 1)≥
�

4
4
p

a3
��

4
4
p

b3
��

4
4
p

c3
�

= 64 4
Æ

(abc)3,

hence abc ≤ 1. Consider further that a, b, c, d > 0 and use the contradiction
method. Assume that

abc + bcd + cda+ dab > 1,

and prove that
(3a+ 1)(3b+ 1)(3c + 1)> 64.

It suffices to show that
abc + bcd + cda+ dab ≥ 1

involves
(3a+ 1)(3b+ 1)(3c + 1)≥ 64.

Replacing a, b, c, d by 1/a, 1/b, 1/c, 1/d, we need to show that

a+ b+ c + d = abcd

involves
�

3
a
+ 1

��

3
b
+ 1

��

3
c
+ 1

��

3
d
+ 1

�

≥ 64,

which is equivalent to

f (a) + f (b) + f (c) + f (d)≤ −6 ln2,

where

f (u) = − ln
�

3
u
+ 1

�

, u> 0.

We have f (0+) = −∞ and

g(x) = f ′(1/x) =
3x2

3x + 1
, g ′′(x) =

6
(3x + 1)3

> 0,

hence g is strictly convex on (0,∞). By Corollary 3 and Note 1, if a, b, c, d are
positive real numbers so that

a+ b+ c + d = constant , abcd = constant , a ≤ b ≤ c ≤ d,

then
S4 = f (a) + f (b) + f (c) + f (d)

is maximal for a = b = c.
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Thus, we only need to prove that

�

3
a
+ 1

�3�3
d
+ 1

�

≥ 64

for 3a+ d = a3d, that is

3
d
=

a3 − 1
a

, 1< a ≤ d.

Write this inequality as
(3+ a)3(3+ d)≥ 64a3d,

(3+ a)4(3+ d)≥ 64a3d(3+ a),

4
�

1+
a− 1

4

�4

(3+ d)≥ a3d(3+ a).

By Bernoulli’s inequality, we have

�

1+
a− 1

4

�4

≥ 1+ 4 ·
a− 1

4
= a.

Thus, it suffices to show that

4(3+ d)≥ a2d(3+ a),

which is equivalent to
12
d
≥ a3 + 3a2 − 4,

4(a3 − 1)
a

≥ a3 + 3a2 − 4,

a4 − a3 − 4a+ 4≤ 0,

(a− 1)(a3 − 4)≤ 0.

This is true if a3 ≤ 4. Indeed, we have

0≤
3
a
−

3
d
=

3
a
−

a3 − 1
a

=
4− a3

a
.

The proof is completed. The original inequality is an equality for

a = b = c = 1, d = 0

(or any cyclic permutation).
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P 5.10. If a1, a2, . . . , an and p, q are nonnegative real numbers so that

a1 + a2 + · · ·+ an = p+ q, a3
1 + a3

2 + · · ·+ a3
n = p3 + q3,

then
a2

1 + a2
2 + · · ·+ a2

n ≤ p2 + q2.

(Vasile C., 2013)

Solution. For n = 2, the inequality is an equality. Consider now that n ≥ 3 and
a1 ≤ a2 ≤ · · · ≤ an. We will apply Corollary 5 for k = 3 and m= 2:

• If a1, a2, . . . , an are nonnegative real numbers so that a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = p+ q, a3
1 + a3

2 + · · ·+ a3
n = p3 + q3,

then
Sn = a2

1 + a2
2 + · · ·+ a2

n

is maximal for either a1 = 0 or a2 = a3 = · · ·= an.

In the first case a1 = 0, the conclusion follows by induction method. In the
second case, for

a1 = a, a2 = a3 = · · ·= an = b,

we need to show that
a2 + (n− 1)b2 ≤ p2 + q2

for
a+ (n− 1)b = p+ q, a3 + (n− 1)b3 = p3 + q3.

Since

3(p2 + q2) = (p+ q)2 +
2(p3 + q3)

p+ q
,

the inequality can be written as

3a2 + 3(n− 1)b2 ≤ [a+ (n− 1)b]2 +
2[a3 + (n− 1)b3]

a+ (n− 1)b
,

which is equivalent to

(n− 1)(n− 2)b2[3a+ (n− 3)b]≥ 0.

The equality holds when n− 2 of a1, a2, . . . , an are equal to zero.

P 5.11. If a, b, c are nonnegative real numbers, then

a
p

a2 + 4b2 + 4c2 + b
p

b2 + 4c2 + 4a2 + c
p

c2 + 4a2 + 4b2 ≥ (a+ b+ c)2.

(Vasile C., 2010)
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Solution. Due to homogeneity and symmetry, we may assume that

a2 + b2 + c2 = 3, 0≤ a ≤ b ≤ c ≤
p

3.

Under this assumption, we write the desired inequality as

f (a) + f (b) + f (c) +
1
p

3
(a+ b+ c)2 ≤ 0,

where
f (u) = −u

p

4− u2, 0≤ u≤
p

3.

We have

g(x) = f ′(x) =
2(x2 − 2)
p

4− x2
,

g ′′(x) =
48

(4− x2)5/2
.

Since g ′′(x) > 0 for x ∈ (0,2), g is strictly convex on [0,
p

3]. According to Corol-
lary 1, if

a+ b+ c = constant , a2 + b2 + c2 = 3 , 0≤ a ≤ b ≤ c,

then the sum
S3 = f (a) + f (b) + f (c)

is maximal for a = b ≤ c. Thus, we only need to prove the original inequality for
a = b. Since the inequality is an identity for a = b = 0, we may consider a = b = 1
and c ≥ 1. We need to prove that

2
p

4c2 + 5+ c
p

c2 + 8≥ (c + 2)2.

By squaring, the inequality becomes

c
Æ

(4c2 + 5)(c2 + 8)≥ 2c3 + 8c − 1.

This is true if
c2(4c2 + 5)(c2 + 8)≥ (2c3 + 8c − 1)2,

which is equivalent to

5c4 + 4c3 − 24c2 + 16c − 1≥ 0,

(c − 1)2(5c2 + 14c − 1)≥ 0.

The equality holds for a = b = c, and also for a = b = 0 (or any cyclic permutation).
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P 5.12. If a, b, c are nonnegative real numbers so that ab+ bc + ca = 3, then

1
a+ b

+
1

b+ c
+

1
c + a

≤
3

2(a+ b+ c)
+

a+ b+ c
3

.

(Vasile C., 2010)

Solution. Write the inequality in the homogeneous form

1
a+ b

+
1

b+ c
+

1
c + a

≤
3

2(a+ b+ c)
+

a+ b+ c
ab+ bc + ca

.

Due to homogeneity and symmetry, we may assume that

a+ b+ c = 1, 0≤ a ≤ b ≤ c, ab+ bc + ca > 0.

Under this assumption, we write the desired inequality as

f (a) + f (b) + f (c)≤
3
2
+

1
ab+ bc + ca

,

where
f (u) =

1
1− u

, 0≤ u< 1.

We will apply Corollary 1 to the function f , which satisfies f (1−) =∞ and

g(x) = f ′(x) =
1

(1− x)2
,

g ′′(x) =
6

(1− x)4
.

Since g ′′(x) > 0, g is strictly convex on [0,1). According to Corollary 1 and Note
3, if

a+ b+ c = 1 , ab+ bc + ca = constant , 0≤ a ≤ b ≤ c,

then the sum
S3 = f (a) + f (b) + f (c)

is maximal for a = b ≤ c. Thus, we only need to prove the homogeneous inequality
for a = b = 1 and c ≥ 1; that is,

1+
4

c + 1
≤

3
c + 2

+
2(c + 2)
2c + 1

,

which reduces to
(c − 1)2 ≥ 0.

The original inequality is an equality for a = b = c = 1.
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P 5.13. If a, b, c are nonnegative real numbers so that ab+ bc + ca = 3, then

1
a+ b

+
1

b+ c
+

1
c + a

≥
3

a+ b+ c
+

a+ b+ c
6

.

(Vasile C., 2010)

Solution. Proceeding in the same manner as in the proof of the preceding P 5.12,
we only need to prove the homogeneous inequality

1
a+ b

+
1

b+ c
+

1
c + a

≥
3

a+ b+ c
+

a+ b+ c
2(ab+ bc + ca)

for a = 0 and for a ≤ b = c = 1.

Case 1: a = 0. The homogeneous inequality reduces to

1
b
+

1
c
≥

2
b+ c

+
b+ c
2bc

,

which is equivalent to
(b− c)2 ≥ 0.

Case 2: a ≤ b = c = 1. The homogeneous inequality becomes

1
2
+

2
a+ 1

≥
3

a+ 2
+

a+ 2
2(2a+ 1)

,

1
2
−

a+ 2
2(2a+ 1)

≥
3

a+ 2
−

2
a+ 1

,

a− 1
2(2a+ 1)

≥
a− 1

(a+ 1)(a+ 2)
,

a(a− 1)2 ≥ 0.

The equality holds for a = b = c = 1, and also for

a = 0, b = c =
p

3

(or any cyclic permutation).

P 5.14. Let a, b, c be nonnegative real numbers, no two of which are zero. If

a2 + b2 + c2 = 3,

then
1

a+ b
+

1
b+ c

+
1

c + a
+

a+ b+ c
9

≥
11

2(a+ b+ c)
.

(Vasile C., 2010)
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Solution. Using the same method as in the proof of P 5.12, we only need to prove
the homogeneous inequality

1
a+ b

+
1

b+ c
+

1
c + a

+
a+ b+ c

3(a2 + b2 + c2)
≥

11
2(a+ b+ c)

for a = 0 and for a ≤ b = c = 1.

Case 1: a = 0. The homogeneous inequality reduces to

1
b
+

1
c
+

1
b+ c

+
b+ c

3(b2 + c2)
≥

11
2(b+ c)

,

b+ c
bc
+

b+ c
3(b2 + c2)

≥
9

2(b+ c)
,

(b+ c)2
�

1
bc
+

1
3(b2 + c2)

�

≥
9
2

.

Using the substitution

x =
b2 + c2

bc
, x ≥ 2,

the inequality becomes

(x + 2)
�

1+
1

3x

�

≥
9
2

,

which is equivalent to
6x2 − 13x + 4≥ 0,

x + 2(x − 2)(3x − 1)≥ 0.

Case 2: a ≤ 1= b = c. The homogeneous inequality becomes

1
2
+

2
a+ 1

+
a+ 2

3(a2 + 2)
≥

11
2(a+ 2)

,

a+ 2
3(a2 + 2)

+
a2 − 4a− 1

2(a+ 1)(a+ 2)
≥ 0,

3a4 − 10a3 + 13a2 − 8a+ 2≥ 0,

(a− 1)2(3a2 − 4a+ 2)≥ 0,

(a− 1)2[a2 + 2(a− 1)2]≥ 0.

The equality holds for a = b = c = 1.
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P 5.15. Let a, b, c be nonnegative real numbers, no two of which are zero. If

a+ b+ c = 4,

then
1

a+ b
+

1
b+ c

+
1

c + a
≥

15
8+ ab+ bc + ca

.

(Vasile C., 2010)

Solution. Using the same method as in P 5.12, we only need to prove the homo-
geneous inequality

2
a+ b

+
2

b+ c
+

2
c + a

≥
15(a+ b+ c)

(a+ b+ c)2 + 2(ab+ bc + ca)

for a = 0 and for a ≤ b = c = 1.

Case 1: a = 0. The homogeneous inequality reduces to

2(b+ c)
bc

+
2

b+ c
≥

15(b+ c)
(b+ c)2 + 2bc

,

2(b+ c)2

bc
+ 2≥

15(b+ c)2

(b+ c)2 + 2bc
.

Using the substitution

x =
(b+ c)2

bc
, x ≥ 4,

the inequality becomes

2x + 2≥
15x
x + 2

,

which is equivalent to
2x2 − 9x + 4≥ 0,

(x − 4)(2x − 1)≥ 0.

Case 2: a ≤ 1, b = c = 1. The homogeneous inequality becomes

1+
4

a+ 1
≥

15(a+ 2)
(a+ 2)2 + 2(2a+ 1)

,

a+ 5
a+ 1

≥
15(a+ 2)

a2 + 8a+ 6
,

a(a− 1)2 ≥ 0.

The equality holds for a = b = c = 4/3, and also for

a = 0, b = c = 2

(or any cyclic permutation).



368 Vasile Cîrtoaje

P 5.16. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
a+ b

+
1

b+ c
+

1
c + a

≥
1

a+ b+ c
+

2
p

ab+ bc + ca
.

(Vasile C., 2010)

Solution. Using the same method as in P 5.12, we only need to prove the desired
homogeneous inequality for a = 0 and for 0< a ≤ b = c = 1.

Case 1: a = 0. The inequality reduces to the obvious form

1
b
+

1
c
≥

2
p

bc
.

Case 2: 0< a ≤ 1= b = c. The inequality becomes

1
2
+

2
a+ 1

≥
1

a+ 2
+

2
p

2a+ 1
,

1
2
−

1
a+ 2

≥
2

p
2a+ 1

−
2

a+ 1
,

a
2(a+ 2)

≥
2(a+ 1−

p
2a+ 1)

(a+ 1)
p

2a+ 1
,

a
2(a+ 2)

≥
2a2

(a+ 1)
p

2a+ 1 (a+ 1+
p

2a+ 1)
.

Since
p

2a+ 1 (a+ 1+
p

2a+ 1)≥
p

2a+ 1(
p

2a+ 1+
p

2a+ 1) = 2(2a+ 1),

it suffices to show that
a

2(a+ 2)
≥

a2

(a+ 1)(2a+ 1)
,

which is equivalent to
a(1− a)≥ 0.

The equality holds for
a = 0, b = c

(or any cyclic permutation).

P 5.17. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
a+ b

+
1

b+ c
+

1
c + a

≥
3−
p

3
a+ b+ c

+
2+
p

3

2
p

ab+ bc + ca
.

(Vasile C., 2010)
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Solution. As shown in the proof of P 5.12, it suffices to consider the cases a = 0
and a ≤ b = c = 1.

Case 1: a = 0. The inequality reduces to

1
b
+

1
c
≥

2−
p

3
b+ c

+
2+
p

3

2
p

bc
.

It suffices to show that
1
b
+

1
c
≥

2−
p

3

2
p

bc
+

2+
p

3

2
p

bc
,

which is equivalent to the obvious inequality

1
b
+

1
c
≥

2
p

bc
.

Case 2: a ≤ 1= b = c. The inequality reduces to

1
2
+

2
a+ 1

≥
3−
p

3
a+ 2

+
2+
p

3

2
p

2a+ 1
.

Using the substitution

2a+ 1= 3x2, x ≥
p

3
3

,

the inequality becomes

1
2
+

4
3x2 + 1

≥
6− 2

p
3

3(x2 + 1)
+

2+
p

3

2
p

3 x
,

1
2
+

4
3x2 + 1

−
2

x2 + 1
−

1
2x
≥

1
p

3 x
−

2
p

3 (x2 + 1)
,

3x5 − 3x4 − 4x2 + 5x − 1
2x(x2 + 1)(3x2 + 1)

≥
1
p

3

�

1
x
−

2
x2 + 1

�

,

(x − 1)2(3x3 + 3x2 + 3x − 1)
2x(x2 + 1)(3x2 + 1)

≥
(x − 1)2

p
3 x(x2 + 1)

.

This is true if
3x3 + 3x2 + 3x − 1

2(3x2 + 1)
≥
p

3
3

,

which is equivalent to

9x3 + 3(3− 2
p

3)x2 + 9x − 3− 2
p

3≥ 0,

(3x −
p

3 )[3x2 + (3−
p

3)x + 2+
p

3]≥ 0.

The equality holds for a = b = c, and also for

a = 0, b = c

(or any cyclic permutation).
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P 5.18. Let a, b, c be nonnegative real numbers, no two of which are zero, so that

ab+ bc + ca = 3.

If

0≤ k ≤
9+ 5

p
3

6
≈ 2.943,

then
2

a+ b
+

2
b+ c

+
2

c + a
≥

9(1+ k)
a+ b+ c + 3k

.

(Vasile Cirtoaje and Lorian Saceanu, 2014)

Solution. From
(a+ b+ c)2 ≥ 3(ab+ bc + ca),

we get
a+ b+ c ≥ 3.

Let

m=
9+ 5

p
3

6
, m≥ k.

We claim that
1+m

a+ b+ c + 3m
≥

1+ k
a+ b+ c + 3k

.

Indeed, this inequality is equivalent to the obvious inequality

(m− k)(a+ b+ c − 3)≥ 0.

Thus, we only need to show that

2
a+ b

+
2

b+ c
+

2
c + a

≥
9(1+m)

a+ b+ c + 3m
,

which can be rewritten in the homogeneous form

2
a+ b

+
2

b+ c
+

2
c + a

≥
9(1+m)

a+ b+ c +m
p

3(ab+ bc + ca)
.

As shown in the proof of P 5.12, it suffices to prove this homogeneous inequality
for a = 0 and for a ≤ b = c = 1.

Case 1: a = 0. The inequality reduces to

2
b
+

2
c
+

2
b+ c

≥
9(1+m)

b+ c +m
p

3bc
.

Substituting

x =
b+ c
p

bc
, x ≥ 2,
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the inequality becomes

2x +
2
x
≥

9(1+m)

x +m
p

3
,

2x3 + 2
p

3 mx2 − (7+ 9m)x + 2
p

3 m≥ 0,

(x − 2)[2x2 + 2(
p

3 m+ 2)x −
p

3 m]≥ 0.

Case 2: a ≤ 1= b = c. The inequality has the form

1+
4

a+ 1
≥

9(1+m)

a+ 2+m
p

3(2a+ 1)
.

Using the substitution

2a+ 1= 3x2, x ≥
p

3
3

,

the inequality becomes
3x2 + 9
3x2 + 1

≥
6(1+m)

x2 + 2mx + 1
,

x4 + 2mx3 − 2(3m+ 1)x2 + 6mx + 1− 2m≥ 0,

(x − 1)2[x2 + 2(m+ 1)x + 1− 2m]≥ 0,

which is true since

x2 + 2(m+ 1)x + 1− 2m≥
1
3
+

2(m+ 1)
p

3
3

+ 1− 2m

=
2[2+

p
3− (3−

p
3)m]

3
= 0.

The equality holds for a = b = c = 1. If k =
9+ 5

p
3

6
, then the equality holds also

for
a = 0, b = c =

p
3

(or any cyclic permutation).

P 5.19. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
a+ b

+
1

b+ c
+

1
c + a

≥
20

a+ b+ c + 6
p

ab+ bc + ca
.

(Vasile C., 2010)
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Solution. The proof is similar to the one of P 5.12. Finally, we only need to prove
the inequality for a = 0 and for a ≤ b = c = 1.

Case 1: a = 0. The inequality reduces to

1
b
+

1
c
+

1
b+ c

≥
20

b+ c + 6
p

bc
.

Substituting

x =
b+ c
p

bc
, x ≥ 2,

the inequality becomes

x +
1
x
≥

20
x + 6

,

x3 + 6x2 − 19x + 6≥ 0,

(x − 2)(x2 + 8x − 3)≥ 0.

Case 2: a ≤ 1= b = c. We need to show that

1
2
+

2
a+ 1

≥
20

a+ 2+ 6
p

2a+ 1
.

Using the substitution
2a+ 1= x2, x ≥ 1,

the inequality becomes
x2 + 9

2(x2 + 1)
≥

40
x2 + 12x + 3

,

x4 + 12x3 − 68x2 + 108x − 53≥ 0,

(x − 1)(x3 + 13x2 − 55x + 53)≥ 0.

It is true since

x3 + 13x2 − 55x + 53= (x − 1)3 + 16x2 − 58x + 54

= (x − 1)3 + 16
�

x −
29
16

�2

+
23
16
> 0.

The equality holds for
a = 0, b = c

(or any cyclic permutation).
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P 5.20. If a, b, c are positive real numbers so that

7(a2 + b2 + c2) = 11(ab+ bc + ca),

then
51
28
≤

a
b+ c

+
b

c + a
+

c
a+ b

≤ 2.

(Vasile C., 2008)

Solution. Due to homogeneity and symmetry, we may consider that

a+ b+ c = 1, 0< a ≤ b ≤ c < 1.

Thus, we need to show that

a+ b+ c = 1, a2 + b2 + c2 =
11
25

, 0< a ≤ b ≤ c < 1

involves
51
28
≤

a
1− a

+
b

1− b
+

c
1− c

≤ 2.

We apply Corollary 1 to the function

f (u) =
u

1− u
, 0≤ u< 1.

We have f (1−) =∞ and

g(x) = f ′(x) =
1

(1− x)2
, g ′′(x) =

6
(1− x)4

.

Since g ′′(x) > 0, g is strictly convex on [0,1). According to Corollary 1 and Note
3, if

a+ b+ c = 1 , a2 + b2 + c2 =
11
25

, 0≤ a ≤ b ≤ c < 1,

then the sum
S3 = f (a) + f (b) + f (c)

is maximal for a = b ≤ c, and is minimal for either a = 0 or 0 < a ≤ b = c. Note
that the case a = 0 is not possible because it involves 7(b2 + c2) = 11bc, which is
false.

(1) To prove the right original inequality for a = b ≤ c, let us denote

t =
c
a

, t ≥ 1.

The hypothesis 7(a2 + b2 + c2) = 11(ab+ bc + ca) involves t = 3, hence

a
b+ c

+
b

c + a
+

c
a+ b

=
2a

a+ c
+

c
2a
=

2
1+ t

+
t
2
= 2.
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The right inequality is an equality for a = b =
c
3

(or any cyclic permutation).

(2) To prove the left original inequality for 0< a ≤ b = c, let us denote

t =
a
b

, 0< t ≤ 1.

The hypothesis 7(a2 + b2 + c2) = 11(ab+ bc + ca) involves t =
1
7

, hence

a
b+ c

+
b

c + a
+

c
a+ b

=
a

2b
+

2b
a+ b

=
t
2
+

2
t + 1

=
51
28

.

The left inequality is an equality for 7a = b = c (or any cyclic permutation).

P 5.21. If a1, a2, . . . , an are nonnegative real numbers so that

a2
1 + a2

2 + · · ·+ a2
n

n+ 3
=
�a1 + a2 + · · ·+ an

n+ 1

�2

,

then

(n+ 1)(2n− 1)
2

≤ (a1 + a2 + · · ·+ an)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

≤
3n2(n+ 1)
2(n+ 2)

.

(Vasile C., 2008)

Solution. For n= 2, both inequalities are identities. For n≥ 3, assume that

a1 ≤ a2 ≤ · · · ≤ an.

The case a1 = 0 is not possible because the hypothesis involves

a2
2 + · · ·+ a2

n

(a2 + · · ·+ an)2
=

n+ 3
(n+ 1)2

<
1

n− 1
,

which contradicts the Cauchy-Schwarz inequality

a2
2 + · · ·+ a2

n

(a2 + · · ·+ an)2
≥

1
n− 1

.

Due to homogeneity and symmetry, we may consider that

a1 + a2 + · · ·+ an = n+ 1,

which implies
a2

1 + a2
2 + · · ·+ a2

n = n+ 3.
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Thus, we need to show that

a1 + a2 + · · ·+ an = n+ 1, a2
1 + a2

2 + · · ·+ a2
n = n+ 3, 0< a1 ≤ a2 ≤ · · · ≤ an

involves
2n− 1

2
≤

1
a1
+

1
a2
+ · · ·+

1
an
≤

3n2

2(n+ 2)
.

We apply Corollary 5 for k = 2 and m= −1:

• If a1, a2, . . . , an are positive real numbers so that 0< a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = n+ 1, a2
1 + a2

2 + · · ·+ a2
n = n+ 3,

then
Sn =

1
a1
+

1
a2
+ · · ·+

1
an

is minimal for
0< a1 = a2 = · · ·= an−1 ≤ an,

and is maximal for
a1 ≤ a2 = a3 = · · ·= an.

(1) To prove the left original inequality, we only need to consider the case

a1 = a2 = · · ·= an−1 ≤ an.

The hypothesis
a2

1 + a2
2 + · · ·+ a2

n

n+ 3
=
�a1 + a2 + · · ·+ an

n+ 1

�2

implies
(n− 1)a2

1 + a2
n

n+ 3
=
�

(n− 1)a1 + an

n+ 1

�2

,

(2a1 − an)[2a1 − (n+ 2)an] = 0,

a1 =
an

2
,

hence

(a1 + a2 + · · ·+ an)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

= [(n− 1)a1 + an]
�

n− 1
a1
+

1
an

�

= (n− 1)2 + 1+ (n− 1)
�

a1

an
+

an

a1

�

=
(n+ 1)(2n− 1)

2
.

The equality holds for

a1 = a2 = · · ·= an−1 =
an

2
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(or any cyclic permutation).

(2) To prove the right original inequality, we only need to consider the case

a1 ≤ a2 = a3 = · · ·= an.

The hypothesis involves

(a1 − 2an)[(n+ 2)a1 − 2an] = 0,

a1 =
2an

n+ 2
,

hence

(a1 + a2 + · · ·+ an)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

= [(n− 1)a1 + an]
�

n− 1
a1
+

1
an

�

= (n− 1)2 + 1+ (n− 1)
�

a1

an
+

an

a1

�

=
3n2(n+ 1)
2(n+ 2)

.

The equality holds for

a1 = a2 = · · ·= an−1 =
2an

n+ 2
(or any cyclic permutation).

P 5.22. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 3, then

abc + bcd + cda+ dab ≤ 1+
176
81

abcd.

(Vasile C., 2005)

Solution. Assume that
a ≤ b ≤ c ≤ d.

For a = 0, we need to show that b+ c + d = 3 implies

bcd ≤ 1,

which follows immediately from the AM-GM inequality:

bcd ≤
�

b+ c + d
3

�3

= 1.
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For a > 0, rewrite the inequality in the form

abcd
�

1
a
+

1
b
+

1
c
+

1
d

�

≤ 1+
176
81

abcd

and apply Corollary 5 for k = 0 and m= −1:

• If

a+ b+ c + d = 3, abcd = constant, 0< a ≤ b ≤ c ≤ d,

then
S4 =

1
a
+

1
b
+

1
c
+

1
d

is maximal for
a ≤ b = c = d.

Thus, we only need to prove the homogeneous inequality

27(a+ b+ c + d)(abc + bcd + cda+ dab)≤ (a+ b+ c + d)4 + 176abcd

for a ≤ b = c = d = 1. The inequality becomes

27(a+ 3)(3a+ 1)≤ (a+ 3)4 + 176a,

a4 + 12a3 − 27a2 + 14a ≥ 0,

a(a− 1)2(a+ 14)≥ 0.

The equality holds for a = b = c = d = 3/4, and also for

a = 0, b = c = d = 1

(or any cyclic permutation).

P 5.23. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 3, then

a2 b2c2 + b2c2d2 + c2d2a2 + d2a2 b2 +
3
4

abcd ≤ 1.

(Gabriel Dospinescu and Vasile Cirtoaje, 2005)

Solution. Assume that
a ≤ b ≤ c ≤ d.

For a = 0, we need to show that

b2c2d2 ≤ 1,
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which follows immediately from the AM-GM inequality:

bcd ≤
�

b+ c + d
3

�3

= 1.

For a > 0, rewrite the inequality in the form

a2 b2c2d2
�

1
a2
+

1
b2
+

1
c2
+

1
d2

�

+
3
4

abcd ≤ 1,

and apply Corollary 5 for k = 0 and m= −2:

• If

a+ b+ c + d = 3, abcd = constant, 0< a ≤ b ≤ c ≤ d,

then
S4 =

1
a2
+

1
b2
+

1
c2
+

1
d2

is maximal for a ≤ b = c = d.

Thus, we only need to prove the homogeneous inequality

�

a+ b+ c + d
3

�6

≥ a2 b2c2 + b2c2d2 + c2d2a2 + d2a2 b2 +
1

12
abcd(a+ b+ c + d)2

for a ≤ b = c = d = 1; that is, to show that 0< a ≤ 1 implies

�

1+
a
3

�6
≥ 1+ 3a2 +

1
12

a(a+ 3)2.

Since
�

1+
a
3

�3
= 1+ a+

a2

3
+

a3

27
> 1+ a+

a2

3
,

it suffices to show that
�

1+ a+
a2

3

�2

≥ 1+ 3a2 +
1

12
a(a+ 3)2,

which is equivalent to the obvious inequality

4a4 + 3a(1− a)(15− 7a)≥ 0.

The equality holds for
a = 0, b = c = d = 1

(or any cyclic permutation).
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P 5.24. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 3, then

a2 b2c2 + b2c2d2 + c2d2a2 + d2a2 b2 +
4
3
(abcd)3/2 ≤ 1.

(Vasile C., 2005)

Solution. The proof is similar to the one of the preceding P 5.23. We need to prove
that

�

1+
a
3

�6
≥ 1+ 3a2 +

4
3

a3/2

for 0≤ a ≤ 1. Since
2a3/2 ≤ a2 + a,

it suffices to show that
�

1+
a
3

�6
≥ 1+

2
3

a+
11
3

a2.

Since
�

1+
a
3

�3
= 1+ a+

a2

3
+

a3

27
≥ 1+ a+

a2

3
and

�

1+ a+
a2

3

�2

= 1+ 2a+
5
3

a2 +
2
3

a3 +
1
9

a4

≥ 1+ 2a+
5
3

a2 +
2
3

a3,

it suffices to show that

1+ 2a+
5
3

a2 +
2
3

a3 ≥ 1+
2
3

a+
11
3

a2,

which is equivalent to the obvious inequality

a(1− a)(2− a)≥ 0.

The equality holds for
a = 0, b = c = d = 1

(or any cyclic permutation).

P 5.25. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 4, then

a2 b2c2 + b2c2d2 + c2d2a2 + d2a2 b2 + 2(abcd)3/2 ≤ 6.

(Vasile C., 2005)
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Solution. The proof is similar to the one of P 5.23. We need to prove that

6
�

a+ 3
4

�6

≥ 1+ 3a2 + 2a3/2

for 0≤ a ≤ 1. Since
2a3/2 ≤ a2 + a,

it suffices to show that

6
�

a+ 3
4

�6

≥ 1+ a+ 4a2.

Using the substitution

x =
1− a

4
, 0≤ x ≤

1
4

,

the inequality becomes

3(1− x)6 ≥ 3− 18x + 32x2,

x2(13− 60x + 45x2 − 18x3 + 3x4)≥ 0.

It is true since

2(13− 60x + 45x2 − 18x3 + 3x4)> 25− 120x + 90x2 − 40x3

= 5(1− 4x)(5− 4x + 2x2)≥ 0.

The equality holds for a = b = c = d = 1.

P 5.26. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

11(ab+ bc + ca) + 4(a2 b2 + b2c2 + c2a2)≤ 45.

(Vasile C., 2005)

Solution. Assume that a ≤ b ≤ c. For a = 0, we need to show that b + c = 3
involves

11bc + 4b2c2 ≤ 45.

We have

bc ≤
�

b+ c
2

�2

=
9
4

,

hence
11bc + 4b2c2 ≤

99
4
+

81
4
= 45.

For a > 0, rewrite the desired inequality in the form

11abc
�

1
a
+

1
b
+

1
c

�

+ 4a2 b2c2
�

1
a2
+

1
b2
+

1
c2

�

≤ 45.



EV Method for Nonnegative Variables 381

According to Corollary 5 (case k = 2 and m< 0), if

a+ b+ c = 3, abc = constant, 0< a ≤ b ≤ c,

then the sums
1
a
+

1
b
+

1
c

and
1
a2
+

1
b2
+

1
c2

are maximal for 0< a ≤ b = c.

Therefore, we only need to prove that a+ 2b = 3 involves

11(2ab+ b2) + 4(2a2 b2 + b4)≤ 45,

which is equivalent to

15− 22b− 13b2 + 32b3 − 12b4 ≥ 0,

(3− 2b)(1− b)2(5+ 6b)≥ 0,

a(1− b)2(5+ 6b)≥ 0.

The equality holds for a = b = c = 1, and also for

a = 0, b = c =
3
2

(or any cyclic permutation).

Remark. In the same manner, we can prove the following statement:

• If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 4, then

abc + bcd + cda+ dab+ a2 b2c2 + b2c2d2 + c2d2a2 + d2a2 b2 ≤ 8,

with equality for a = b = c = d = 1.

P 5.27. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

a2 b2 + b2c2 + c2a2 + a3 b3 + b3c3 + c3a3 ≥ 6abc.

(Vasile C., 2005)

Solution. Assume that a ≤ b ≤ c. For a = 0, the inequality is trivial. For a > 0,
rewrite the desired inequality in the form

abc
�

1
a2
+

1
b2
+

1
c2

�

+ a2 b2c2
�

1
a3
+

1
b3
+

1
c3

�

≥ 6.

According to Corollary 5 (case k = 0 and m< 0), if

a+ b+ c = 3, abc = constant, 0< a ≤ b ≤ c,
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then the sums
1
a2
+

1
b2
+

1
c2

and
1
a3
+

1
b3
+

1
c3

are maximal for 0< a ≤ b = c.

Thus, we only need to prove that

2a2 b2 + b4 + 2a3 b3 + b6 ≥ 6ab2

for
a+ 2b = 3, 1≤ b < 3/2.

The inequality is equivalent to

b3(14− 33b+ 24b2 − 5b3)≥ 0,

b3(1− b)2(14− 5b)≥ 0.

The equality holds for a = b = c = 1, and also for

a = b = 0, c = 3

(or any cyclic permutation).

P 5.28. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

2(a2 + b2 + c2) + 5
�p

a+
p

b+
p

c
�

≥ 21.

(Vasile C., 2008)

Solution. Apply Corollary 5 for k = 2 and m= 1/2:

• If
a+ b+ c = 3, a2 + b2 + c2 = constant, 0≤ a ≤ b ≤ c,

then
S3 =

p
a+

p

b+
p

c

is minimal for either a = 0 or 0< a ≤ b = c.

Case 1: a = 0. We need to show that b+ c = 3 involves

2(b2 + c2) + 5
�p

b+
p

c
�

≥ 21,

which is equivalent to

5
q

3+ 2
p

bc ≥ 3+ 4bc.

Substituting

x =
p

bc, 0≤ x ≤
b+ c

2
=

3
2

,
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the inequality becomes
5
p

3+ 2x ≥ 3+ 4x2,

25(3+ 2x)≥ (3+ 4x2)2.

This inequality is equivalent to f (x)≥ 0, where

f (x) =
66
x
+ 50− 24x − 16x3, 0< x ≤ 3/2.

Since f is decreasing, we have

f (x)≥ f (3/2) = 4> 0.

Case 2: 0< a ≤ b = c. We need to show that

2(a2 + 2b2) + 5
�p

a+ 2
p

b
�

≥ 21

for

a+ 2b = 3, 1≤ b <
3
2

.

Write the inequality as

5
p

3− 2b+ 10
p

b ≥ 3+ 24b− 12b2.

Substituting

x =
p

b, 1≤ x <

√

√3
2

,

the inequality becomes

5
p

3− 2x2 ≥ 3− 10x + 24x2 − 12x4,

12(x2 − 1)2 ≥ 5
�

3− 2x −
p

3− 2x2
�

,

12(x2 − 1)2 ≥
30(x − 1)2

3− 2x +
p

3− 2x2
,

which is true if
2(x + 1)2 ≥

5

3− 2x +
p

3− 2x2
.

It suffices to show that
2(x + 1)2 ≥

5
3− 2x

,

which is equivalent to
1+ 8x − 2x2 − 4x3 ≥ 0,

x(5− 4x)
�

7
4
+ x

�

+
4− 3x

4
≥ 0.



384 Vasile Cîrtoaje

Since

x <

√

√3
2
<

5
4
<

4
3

,

the conclusion follows.

The equality holds for a = b = c = 1.

P 5.29. If a, b, c are nonnegative real numbers so that ab+ bc + ca = 3, then
√

√1+ 2a
3

+

√

√1+ 2b
3

+

√

√1+ 2c
3
≥ 3.

(Vasile C., 2008)

Solution. Write the hypothesis ab+ bc + ca = 3 as

(a+ b+ c)2 = 6+ a2 + b2 + c2,

and apply Corollary 1 to

f (u) =

√

√1+ 2u
3

, u≥ 0.

We have
g(x) = f ′(x) =

1
p

3(1+ 2x)
,

g ′′(x) =
p

3
(1+ 2x)5/2

.

Since g ′′(x) > 0 for x ≥ 0, g is strictly convex on [0,∞). According to Corollary
1, if

a+ b+ c = constant, a2 + b2 + c2 = constant, 0≤ a ≤ b ≤ c,

then the sum
S3 = f (a) + f (b) + f (c)

is minimal for either a = 0 or 0< a ≤ b = c.

Case 1: a = 0. We need to show that bc = 3 involves
p

1+ 2b+
p

1+ 2c ≥ 3
p

3− 1.

By squaring, the inequality becomes

b+ c +
Æ

13+ 2(b+ c)≥ 13− 3
p

3.
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We have b+ c ≥ 2
p

bc = 2
p

3, hence

b+ c +
Æ

13+ 2(b+ c)≥ 2
p

3+
Æ

13+ 4
p

3= 4
p

3+ 1> 13− 3
p

3.

Case 2: 0< a ≤ b = c. From ab+ bc + ca = 3, it follows that

a =
3− b2

2b
. 0< b <

p
3.

Thus, the inequality can be written as
√

√

1+
3− b2

b
+ 2

p

1+ 2b ≥ 3
p

3.

Substituting

t =

√

√1+ 2b
3

,
1
p

3
< t <

√

√1+ 2
p

3
3

<
5
4

,

the inequality turns into
√

√3+ 4t2 − 3t4

2(3t2 − 1)
≥ 3− 2t.

By squaring, we need to show that

7− 8t − 14t2 + 24t3 − 9t4 ≥ 0,

which is equivalent to
(1− t)2(7+ 6t − 9t2)≥ 0.

This is true since

7+ 6t − 9t2 = 8− (3t − 1)2 > 8−
�

15
4
− 1

�2

=
7

16
> 0.

The equality holds for a = b = c = 1.

P 5.30. Let a, b, c be nonnegative real numbers, no two of which are zero. If

0≤ k ≤ 15,

then
1

(a+ b)2
+

1
(b+ c)2

+
1

(c + a)2
+

k
(a+ b+ c)2

≥
9+ k

4(ab+ bc + ca)
.

(Vasile C., 2007)
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Solution. Due to homogeneity and symmetry, we may consider that

a+ b+ c = 1, 0≤ a ≤ b ≤ c.

On this assumption, the inequality becomes

1
(1− a)2

+
1

(1− b)2
+

1
(1− c)2

+ k ≥
9+ k

2(1− a2 − b2 − c2)
.

To prove it, we apply Corollary 1 to the function

f (u) =
1

(1− u)2
, 0≤ u< 1.

We have f (1−) =∞ and

g(x) = f ′(x) =
2

(1− x)3
, g ′′(x) =

24
(1− x)5

.

Since g ′′(x) > 0, g is strictly convex on [0,1). According to Corollary 1 and Note
3, if

a+ b+ c = 1, a2 + b2 + c2 = constant, 0≤ a ≤ b ≤ c,

then the sum
S3 = f (a) + f (b) + f (c)

is minimal for either a = 0 or 0< a ≤ b = c.

Case 1: a = 0. For

x =
b
c
+

c
b

, x ≥ 2,

the original inequality becomes

1
b2
+

1
c2
+

1+ k
(b+ c)2

≥
9+ k
4bc

,

x +
1+ k
x + 2

≥
9+ k

4
,

(x − 2)(4x + 7− k)≥ 0.

This is true since
4x + 7− k ≥ 15− k ≥ 0.

Case 2: 0< a ≤ b = c. The original inequality becomes

2
(a+ b)2

+
1

4b2
+

k
(a+ 2b)2

≥
9+ k

4b(2a+ b)
,

a(a− b)2

2b2(a+ b)2(2a+ b)
+

ka(4b− a)
4b(a+ 2b)2(2a+ b)

≥ 0.
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The equality holds for
a = 0, b = c

(or any cyclic permutation). If k = 0 (Iran 1996 inequality), then the equality holds
also for a = b = c.

P 5.31. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
(a+ b)2

+
1

(b+ c)2
+

1
(c + a)2

+
24

(a+ b+ c)2
≥

8
ab+ bc + ca

.

(Vasile C., 2007)

Solution. As shown in the proof of the preceding P 5.30, it suffices to prove the
inequality for a = 0, and for 0< a ≤ b = c.

Case 1: a = 0. For

x =
b
c
+

c
b

, x ≥ 2,

the original inequality becomes

1
b2
+

1
c2
+

25
(b+ c)2

≥
8
bc

,

x +
25

x + 2
≥ 8,

(x − 3)2 ≥ 0.

Case 2: 0< a ≤ b = c. Due to homogeneity, we only need to prove the homoge-
neous inequality for 0< a ≤ b = c = 1; that is,

2
(a+ 1)2

+
1
4
+

24
(a+ 2)2

≥
8

2a+ 1
.

It suffices to show that

2
(a+ 1)2

≥
8

2a+ 1
−

24
(a+ 2)2

,

which is equivalent to
1

(1+ a)2
≥

4(1− a)2

(2a+ 1)(a+ 2)2
,

a(2a2 + 9a+ 12)≥ 4a2(a2 − 2).

This is true since
a(2a2 + 9a+ 12)≥ 0≥ 4a2(a2 − 2).
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The equality holds for

a = 0,
b
c
+

c
b
= 3

(or any cyclic permutation).

Remark. Actually, the following generalization holds:

• Let a, b, c be nonnegative real numbers, no two of which are zero. If k ≥ 15, then

1
(a+ b)2

+
1

(b+ c)2
+

1
(c + a)2

+
k

(a+ b+ c)2
≥

2(
p

k+ 1 − 1)
ab+ bc + ca

,

with equality for

a = 0,
b
c
+

c
b
=
p

k+ 1− 2

(or any cyclic permutation).

P 5.32. If a, b, c are nonnegative real numbers, no two of which are zero, so that

k(a2 + b2 + c2) + (2k+ 3)(ab+ bc + ca) = 9(k+ 1), 0≤ k ≤ 6,

then
1

(a+ b)2
+

1
(b+ c)2

+
1

(c + a)2
+

9k
(a+ b+ c)2

≥
3
4
+ k.

(Vasile C., 2007)

Solution. Write the inequality in the homogeneous form

4
(a+ b)2

+
4

(b+ c)2
+

4
(c + a)2

+
36k

(a+ b+ c)2
≥

9(k+ 1)(4k+ 3)
k(a2 + b2 + c2) + (2k+ 3)(ab+ bc + ca)

.

As shown in the proof of P 5.30, it suffices to prove this inequality for a = 0, and
for 0< a ≤ b = c.

Case 1: a = 0. Let

x =
b
c
+

c
b

, x ≥ 2.

The homogeneous inequality becomes

4
�

1
b2
+

1
c2

�

+
36k+ 4
(b+ c)2

≥
9(k+ 1)(4k+ 3)

k(b2 + c2) + (2k+ 3)bc
,

4x +
36k+ 4

x + 2
≥

9(k+ 1)(4k+ 3)
kx + 2k+ 3

,

4kx3 + 4(4k+ 3)x2 − (43k+ 3)x − 2(5k+ 21)≥ 0,
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(x − 2)[4kx2 + 4(6k+ 3)x + 5k+ 21]≥ 0.

Case 2: 0 < a ≤ b = c. We only need to prove the homogeneous inequality for
b = c = 1. The inequality becomes

8
(a+ 1)2

+ 1+
36k
(a+ 2)2

≥
9(k+ 1)(4k+ 3)

ka2 + (4k+ 6)a+ 4k+ 3
,

ka6 + (10k+ 6)a5 − (14k− 12)a4 − (10k+ 18)a3 + (17k− 24)a2 + (24− 4k)a ≥ 0,

a(a− 1)2[ka3 + 6(2k+ 1)a2 + 3(3k+ 8)a+ 4(6− k)]≥ 0.

Clearly, the last inequality is true for 0≤ k ≤ 6.

The equality holds for a = b = c, and also for

a = 0, b = c

(or any cyclic permutation).

P 5.33. If a, b, c are nonnegative real numbers, no two of which are zero, then

(a)
2

a2 + b2
+

2
b2 + c2

+
2

c2 + a2
≥

8
a2 + b2 + c2

+
1

ab+ bc + ca
;

(b)
2

a2 + b2
+

2
b2 + c2

+
2

c2 + a2
≥

7
a2 + b2 + c2

+
6

(a+ b+ c)2
;

(c)
2

a2 + b2
+

2
b2 + c2

+
2

c2 + a2
≥

45
4(a2 + b2 + c2) + ab+ bc + ca

.

(Vasile C., 2007)

Solution. (a) Due to homogeneity and symmetry, we may consider that

a2 + b2 + c2 = 1, 0≤ a ≤ b ≤ c.

On this assumption, the inequality can be written as

2
1− a2

+
2

1− b2
+

2
1− c2

≥ 8+
2

(a+ b+ c)2 − 1
.

To prove it, we apply Corollary 1 to the function

f (u) =
1

1− u2
, 0≤ u< 1.

We have f (1−) =∞ and

g(x) = f ′(x) =
2x

(1− x2)2
, g ′′(x) =

24x(1+ x2)
(1− x2)4

.
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Since g ′′(x)> 0 for x ∈ (0, 1), g is strictly convex on [0, 1). According to Corollary
1 and Note 3, if

a+ b+ c = constant, a2 + b2 + c2 = 1, 0≤ a ≤ b ≤ c,

then the sum
S3 = f (a) + f (b) + f (c)

is minimal for either a = 0 or 0< a ≤ b = c.

Case 1: a = 0. For

x =
b
c
+

c
b

, x ≥ 2,

the original inequality becomes

2
b2
+

2
c2
≥

6
b2 + c2

+
1
bc

,

2x ≥
6
x
+ 1,

(x − 2)(2x + 3)≥ 0.

Case 2: 0 < a ≤ b = c. Due to homogeneity, it suffices to prove the original
inequality for b = c = 1. Thus, we need to show that

1+
4

a2 + 1
≥

8
a2 + 2

+
1

2a+ 1
,

which is equivalent to
2a

2a+ 1
≥

4a2

(a2 + 1)(a2 + 2)
,

a(a4 − a2 − 2a+ 2)≥ 0,

a(a− 1)2(a2 + 2a+ 2)≥ 0.

The equality holds for a = b = c, and also for a = 0, b = c (or any cyclic permu-
tation).

(b) The proof is similar to the one of the inequality in (a). For a = 0 and

x =
b
c
+

c
b

, x ≥ 2,

the original inequality becomes

2
b2
+

2
c2
≥

5
b2 + c2

+
6

(b+ c)2
,

2x ≥
5
x
+

6
x + 2

,
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(x − 2)(2x2 + 8x + 5)≥ 0.

For b = c = 1, the original inequality is

1+
4

a2 + 1
≥

7
a2 + 2

+
6

(a+ 2)2
,

a(a5 + 4a4 − 2a3 − 15a+ 12)≥ 0,

a(a− 1)2(a3 + 6a2 + 9a+ 12)≥ 0.

The equality holds for a = b = c, and also for a = 0, b = c (or any cyclic permu-
tation).

(c) The proof is also similar to the one of the inequality in (a). For a = 0 and

x =
b
c
+

c
b

, x ≥ 2,

the original inequality becomes

2
�

1
b2
+

1
c2

�

+
2

b2 + c2
≥

45
4(b2 + c2) + bc

,

2x +
2
x
≥

45
4x + 1

,

(x − 2)(8x2 + 18x − 1)≥ 0.

For b = c = 1, the original inequality can be written as

1+
4

a2 + 1
≥

45
4a2 + 2a+ 9

,

a(2a3 + a2 − 8a+ 5)≥ 0,

a(a− 1)2(2a+ 5)≥ 0.

The equality holds for a = b = c, and also for a = 0, b = c (or any cyclic permu-
tation).

P 5.34. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
a2 + b2

+
1

b2 + c2
+

1
c2 + a2

+
3

a2 + b2 + c2
≥

4
ab+ bc + ca

.

(Vasile C., 2007)
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Solution. As shown in the proof of the preceding P 5.33, it suffices to prove the
inequality for a = 0, and for 0< a ≤ b = c.

Case 1: a = 0. For

x =
b
c
+

c
b

, x ≥ 2,

the original inequality becomes

1
b2
+

1
c2
+

4
b2 + c2

≥
4
bc

,

x +
4
x
≥ 4,

(x − 2)2 ≥ 0.

Case 2: 0 < a ≤ b = c. Due to homogeneity, it suffices to prove the original
inequality for 0< a ≤ b = c = 1. Thus, we need to show that

1
2
+

2
a2 + 1

+
3

a2 + 2
≥

4
2a+ 1

.

It suffices to show that

2
a+ 1

+
3

a+ 2
≥

4
2a+ 1

−
1
2

,

which is equivalent to
5a+ 7

a2 + 3a+ 2
≥

7− 2a
4a+ 2

,

a(2a2 + 19a+ 21)≥ 0,

The equality holds for
a = 0, b = c

(or any cyclic permutation).

Remark. Actually, the following generalization holds:

• Let a, b, c be nonnegative real numbers, no two of which are zero.
(a) If −4≤ k ≤ 3, then

2
a2 + b2

+
2

b2 + c2
+

2
c2 + a2

+
2k

a2 + b2 + c2
≥

k+ 5
ab+ bc + ca

,

with equality for
a = 0, b = c

(or any cyclic permutation).

(b) If k ≥ 3, then

1
a2 + b2

+
1

b2 + c2
+

1
c2 + a2

+
k

a2 + b2 + c2
≥

2
p

k+ 1
ab+ bc + ca

,
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with equality for

a = 0,
b
c
+

c
b
=
p

k+ 1

(or any cyclic permutation).

P 5.35. If a, b, c are nonnegative real numbers, no two of which are zero, then

(a)
3

a2 + ab+ b2
+

3
b2 + bc + c2

+
3

c2 + ca+ a2
≥

5
ab+ bc + ca

+
4

a2 + b2 + c2
;

(b)
3

a2 + ab+ b2
+

3
b2 + bc + c2

+
3

c2 + ca+ a2
≥

1
ab+ bc + ca

+
24

(a+ b+ c)2
;

(c)
1

a2 + ab+ b2
+

1
b2 + bc + c2

+
1

c2 + ca+ a2
≥

21
2(a2 + b2 + c2) + 5(ab+ bc + ca)

.

(Vasile C., 2007)

Solution. (a) Due to homogeneity and symmetry, we may consider that

a+ b+ c = 1, 0≤ a ≤ b ≤ c.

Let

p =
1+ a2 + b2 + c2

2
.

Since

1
2(b2 + bc + c2)

=
1

(a+ b+ c)2 + a2 + b2 + c2 − 2a(a+ b+ c)
=

1
2(p− a)

,

the inequality can be written as

3
p− a

+
3

p− b
+

3
p− c

≥
5

1− p
+

4
2p− 1

.

To prove it, we apply Corollary 1 to the function

f (u) =
3

p− u
, 0≤ u< p.

We have f (p−) =∞ and

g(x) = f ′(x) =
3

(p− x)2
, g ′′(x) =

18
(p− x)4

.

Since g ′′(x) > 0, g is strictly convex on [0, p). According to Corollary 1 and Note
3, if

a+ b+ c = 1, a2 + b2 + c2 = 2p− 1= constant, 0≤ a ≤ b ≤ c,
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then the sum
S3 = f (a) + f (b) + f (c)

is minimal for either a = 0 or 0< a ≤ b = c.

Case 1: a = 0. For

x =
b
c
+

c
b

, x ≥ 2,

the original inequality becomes

3
�

1
b2
+

1
c2

�

+
3

b2 + bc + c2
≥

5
bc
+

4
b2 + c2

,

which is equivalent to

3x +
3

x + 1
≥ 5+

4
x

,

(x − 2)(3x2 + 4x + 2)≥ 0.

Case 2: 0 < a ≤ b = c. Due to homogeneity, it suffices to prove the original
inequality for b = c = 1. Thus, we need to show that

6
a2 + a+ 1

+ 1≥
5

2a+ 1
+

4
a2 + 2

,

which is equivalent to

a(a4 − a3 + 3a2 − 7a+ 4)≥ 0,

a(a− 1)2(a2 + a+ 4)≥ 0.

The equality holds for a = b = c, and also for a = 0, b = c (or any cyclic permuta-
tion).

(b) The proof is similar to the one of the inequality in (a). For a = 0, the
original inequality becomes

3
�

1
b2
+

1
c2

�

+
3

b2 + bc + c2
≥

1
bc
+

24
(b+ c)2

,

which is equivalent to

3x +
3

x + 1
≥ 1+

24
x + 2

, x =
b
c
+

c
b

,

(x − 2)(3x2 + 14x + 10)≥ 0.

For b = c = 1, the original inequality becomes

6
a2 + a+ 1

+ 1≥
1

2a+ 1
+

24
a2 + 2

,
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which is equivalent to

a(a4 + 5a3 − 9a2 − a+ 4)≥ 0,

a(a− 1)2(a2 + 7a+ 4)≥ 0.

The equality holds for a = b = c, and also for a = 0, b = c (or any cyclic permuta-
tion).

(c) The proof is similar to the one of the inequality in (a). For a = 0, the
original inequality becomes

1
b2
+

1
c2
+

1
b2 + bc + c2

≥
21

2(b2 + c2) + 5bc
,

which is equivalent to

x +
1

x + 1
≥

21
2x + 5

, x =
b
c
+

c
b

,

(x − 2)(2x2 + 11x + 8)≥ 0.

For b = c = 1, the original inequality becomes

2
a2 + a+ 1

+
1
3
≥

21
2a2 + 10a+ 9

,

which is equivalent to
a(a3 + 6a2 − 15a+ 8)≥ 0,

a(a− 1)2(a+ 8)≥ 0.

The equality holds for a = b = c, and also for a = 0, b = c (or any cyclic permuta-
tion).

P 5.36. Let f be a real-valued function, continuous on [0,∞) and differentiable on
(0,∞), so that f ′′′(u)≥ 0 for u ∈ (0,∞). If a, b, c ≥ 0, then

f (a2 + 2bc) + f (b2 + 2ca) + f (c2 + 2ab)≤ f (a2 + b2 + c2) + 2 f (ab+ bc + ca).

Solution. Denoting

x = a2 + 2bc, y = b2 + 2ca, z = c2 + 2ab,

the inequality becomes

f (x) + f (y) + f (z)≤ f (a2 + b2 + c2) + 2 f (ab+ bc + ca).
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Assume that

a+ b+ c = constant, a2 + b2 + c2 = constant,

which involve

2(ab+ bc + ca) = (a+ b+ c)2 − (a2 + b2 + c2) = constant.

We have
x + y + z = (a+ b+ c)2 = constant,

x2 + y2 + z2 = (a2 + b2 + c2)2 + 2(ab+ bc + ca)2 = constant.

According to the EV-Theorem (Corollary 1), since f ′′′(u) ≥ 0 for u ∈ (0,∞), the
sum f (x) + f (y) + f (z) is maximal for x = y ≤ z, that is

a2 + 2bc = b2 + 2ca ≤ c2 + 2ab.

From a2 + 2bc = b2 + 2ca, we get a = b or a + b = 2c. If a + b = 2c, the
inequality b2 + 2ca ≤ c2 + 2ab is equivalent to (b− c)2 ≤ 0, which involves b = c.
Thus it suffices to prove the required inequality for two equal variables, when the
inequality is an identity.
The equality holds for a = b or b = c or c = a.

Remark 1. The inequality is also true for a real-valued function f , continuous
on (0,∞) and differentiable on (0,∞), so that f ′′′(u) ≥ 0 for u ∈ (0,∞) and
limu→0 f (u) = ±∞.

Remark 2. The following inequalities hold:

1
a2 + 2bc

+
1

b2 + 2ca
+

1
c2 + 2ab

≥
1

a2 + b2 + c2
+

2
ab+ bc + ca

,

p

a2 + 2bc +
p

b2 + 2ca+
p

c2 + 2ab ≤
p

a2 + b2 + c2 + 2
p

ab+ bc + ca,

1
p

a2 + 2bc
+

1
p

b2 + 2ca
+

1
p

c2 + 2ab
≥

1
p

a2 + b2 + c2
+

2
p

ab+ bc + ca
,

(a2 + 2bc)(b2 + 2ca)(c2 + 2ab)≤ (a2 + b2 + c2)(ab+ bc + ca)2.

P 5.37. If a, b, c are the lengths of the side of a triangle, then

1
(a+ b)2

+
1

(b+ c)2
+

1
(c + a)2

≤
85

36(ab+ bc + ca)
.

(Vasile C., 2007)
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Solution. Use the substitution

a = y + z, b = z + x , c = x + y,

where x , y, z are nonnegative real numbers. Due to homogeneity and symmetry,
we may consider that

x + y + z = 2, 0≤ x ≤ y ≤ z.

We need to show that

1
(x + 2)2

+
1

(y + 2)2
+

1
(z + 2)2

≤
85

18(12− x2 − y2 − z2)
,

which can be written as

f (x) + f (y) + f (z) +
85

18(12− x2 − y2 − z2)
≥ 0,

where
f (u) =

−1
(u+ 2)2

, u≥ 0.

We have
g(x) = f ′(x) =

2
(x + 2)3

, g ′′(x) =
24

(x + 2)5
.

Since g ′′(x) > 0 for x ≥ 0, g is strictly convex on [0,∞). According to Corollary
1, if

x + y + z = 2, x2 + y2 + z2 = constant, 0≤ x ≤ y ≤ z,

then the sum
S3 = f (x) + f (y) + f (z)

is minimal for either x = 0 or 0< x ≤ y = z.

Case 1: x = 0. This implies a = b+ c. Since

1
(a+ b)2

+
1

(c + a)2
=

5(b2 + c2) + 8bc
(2b2 + 2c2 + 5bc)2

and
ab+ bc + ca = a(b+ c) + bc = (b+ c)2 + bc = b2 + c2 + 3bc,

we need to show that

5(b2 + c2) + 8bc
(2b2 + 2c2 + 5bc)2

+
1

(b+ c)2
≤

85
36(b2 + c2 + 3bc)

.

For bc = 0, the inequality is true. For bc 6= 0, substituting

t =
b
c
+

c
b

, t ≥ 2,
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the inequality becomes

5t + 8
(2t + 5)2

+
1

t + 2
≤

85
36(t + 3)

,

5t + 8
(2t + 5)2

≤
49t + 62

36(t + 2)(t + 3)
.

It suffices to show that

5t + 8
(2t + 5)2

≤
48t + 64

36(t + 2)(t + 3)
,

which is equivalent to
5t + 8
(2t + 5)2

≤
12t + 16

9(t + 2)(t + 3)
,

3t3 + 7t2 − 10t − 32≥ 0,

(t − 2)(3t2 + 13t + 16)≥ 0.

Case 2: 0 < x ≤ y = z. This involves b = c. Since the original inequality is
homogeneous, we may consider b = c = 1 and 0 ≤ a ≤ b + c = 2. Thus, we only
need to show that

1
4
+

2
(a+ 1)2

≤
85

36(2a+ 1)
,

which is equivalent to
(a− 2)(9a2 − 2a+ 1)≤ 0.

The equality holds for a degenerated isosceles triangle with a = b+ c, b = c (or
any cyclic permutation).

P 5.38. If a, b, c are the lengths of the side of a triangle so that a+ b+ c = 3, then

1
(a+ b)2

+
1

(b+ c)2
+

1
(c + a)2

≤
3(a2 + b2 + c2)
4(ab+ bc + ca)

.

(Vasile C., 2007)

Solution. Write the inequality in the homogeneous form

1
(a+ b)2

+
1

(b+ c)2
+

1
(c + a)2

≤
27(a2 + b2 + c2)

4(a+ b+ c)2(ab+ bc + ca)
.

As shown in the proof of the preceding P 5.37, it suffices to prove this inequality
for a = b+ c and for b = c = 1.
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Case 1: a = b+ c. Since

1
(a+ b)2

+
1

(c + a)2
=

5(b2 + c2) + 8bc
(2b2 + 2c2 + 5bc)2

and
27(a2 + b2 + c2)

4(a+ b+ c)2(ab+ bc + ca)
=

27(b2 + c2 + bc)
8(b+ c)2(b2 + c2 + 3bc)

,

we need to show that

5(b2 + c2) + 8bc
(2b2 + 2c2 + 5bc)2

+
1

(b+ c)2
≤

27(b2 + c2 + bc)
8(b+ c)2(b2 + c2 + 3bc)

.

For bc = 0, the inequality is true. For bc 6= 0, substituting

t =
b
c
+

c
b

, t ≥ 2,

the inequality becomes

5t + 8
(2t + 5)2

+
1

t + 2
≤

27(t + 1)
8(t + 2)(t + 3)

,

9t2 + 38t + 41
(2t + 5)2

≤
27(t + 1)
8(t + 3)

.

It suffices to show that

9t2 + 45t + 27
(2t + 5)2

≤
27(t + 1)
8(t + 3)

,

which is equivalent to
t2 + 5t + 3
(2t + 5)2

≤
3(t + 1)
8(t + 3)

,

4t3 + t(8t − 9) + 3≥ 0.

Case 2: b = c = 1, a ≤ b+ c = 2. The homogeneous inequality becomes

2
(a+ 1)2

+
1
4
≤

27(a2 + 2)
4(2a+ 1)(a+ 2)2

.

Since
4(2a+ 1)(a+ 2)≤ 9(a+ 1)2,

it suffices to show that

2
(a+ 1)2

+
1
4
≤

3(a2 + 2)
(a+ 1)2(a+ 2)

,

which is equivalent to
(a− 6)(a− 1)2 ≤ 0.

The equality holds for a an equilateral triangle.
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P 5.39. Let a, b, c ≥
2
5

so that a+ b+ c = 3. Then,

1
3+ 2(a2 + b2)

+
1

3+ 2(b2 + c2)
+

1
3+ 2(c2 + a2)

≤
3
7

.

(Vasile C., 2006)

Solution. For a ≤ b ≤ c, we have

2
5
≤ a ≤ b ≤ c ≤

11
5

.

Indeed,

c = 3− a− b ≤ 3−
2
5
−

2
5
=

11
5

.

Using the substitution

m=
3
2
+ a2 + b2 + c2, m≥

3
2
+

1
3
(a+ b+ c)2 =

9
2

,

we have to show that

f (a) + f (b) + f (c)≤
6
7

for
a+ b+ c = 3, a2 + b2 + c2 = m−

3
2

,
2
5
≤ a ≤ b ≤ c ≤

11
5

,

f (u) =
1

m− u2
,

2
5
≤ u≤

11
5

.

From

g(x) = f ′(x) =
2x

(m− x2)2
, g ′′(x) =

24x(m+ x2)
(m− x2)4

,

it follows that g ′′(x)> 0, hence g is strictly convex. By Corollary 1 and Note 2, if

a+ b+ c = 3, a2 + b2 + c2 = constant,
2
5
≤ a ≤ b ≤ c ≤

11
5

,

then the sum
S3 = f (a) + f (b) + f (c)

is maximal for either c = 11/5 or a = b ≤ c. The case c = 11/5 leads to a = b = 2/5,
when the inequality is an equality. In the second case, we need to prove that

1
3+ 4a2

+
2

3+ 2(a2 + c2)
≤

3
7

for 2a+ c = 3,
2
5
≤ a ≤ c. Write the inequality as follows

1
3+ 4a2

+
2

21− 24a+ 10a2
≤

3
7

,
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1
3+ 4a2

≤
49− 72a+ 30a2

7(21− 24a+ 10a2)
,

a(a− 1)2(5a− 2)≥ 0.

The equality holds for a = b = c = 1, and also for

a = b =
2
5

, c =
11
5

(or any cyclic permutation).

Remark In the same manner, we can prove the following statement:

• Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n. If

k ≥
n2 − 1

n2 − n− 1
, then

∑ 1
k+ a2

2 + · · ·+ a2
n

≤
n

k+ n− 1
,

with equality for a1 = a2 = · · · = an = 1. If k =
n2 − 1

n2 − n− 1
, then the equality holds

also for

a1 = · · ·= an−1 =
1

n2 − n− 1
, an = n−

n− 1
n2 − n− 1

(or any cyclic permutation).

P 5.40. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

2
2+ a2 + b2

+
2

2+ b2 + c2
+

2
2+ c2 + a2

≤
99

63+ a2 + b2 + c2
.

(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.39. Thus, we only need to prove
the inequality for 0≤ a = b ≤ c; that is, to show that 2a+ c = 3 involves

1
1+ a2

+
4

2+ a2 + c2
≤

99
63+ 2a2 + c2

.

Write this inequality as follows

1
a2 + 1

+
4

5a2 − 12a+ 11
≤

33
2(a2 − 2a+ 12)

,

49a4 − 112a3 + 78a2 − 16a+ 1≥ 0,
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(a− 1)2(7a− 1)2 ≥ 0.

The equality holds for a = b = c = 1, and also for

a = b =
1
7

, c =
19
7

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If
8
5
≤ k ≤ 3, then

k+ 2
k+ a2 + b2

+
k+ 2

k+ b2 + c2
+

k+ 2
k+ c2 + a2

≤
9(3k2 + 11k+ 10)

9(k2 + 2k+ 6) + (5k− 8)(a2 + b2 + c2)
,

with equality for a = b = c = 1, and also for

a = b =
3− k

7
, c =

2k+ 15
7

(or any cyclic permutation).

P 5.41. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

1
3+ a2 + b2

+
1

3+ b2 + c2
+

1
3+ c2 + a2

≤
18

27+ a2 + b2 + c2
.

(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.39. Thus, we only need to prove
the inequality for 0 ≤ a = b ≤ c. Therefore, we only need to show that 2a+ c = 3
involves

1
3+ 2a2

+
2

3+ a2 + c2
≤

18
27+ 2a2 + c2

.

Write this inequality as follows

1
2a2 + 3

+
2

5a2 − 12a+ 12
≤

3
a2 − 2a+ 6

,

a2(a− 1)2 ≥ 0.

The equality holds for a = b = c = 1, and also for

a = b = 0, c = 3

(or any cyclic permutation).
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Remark. In the same manner, we can prove the following generalization:

• Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n. If
k ≥

n
n− 2

, then

∑ 1
k+ a2

2 + · · ·+ a2
n

≤
n2(n+ k)

n(n2 + kn+ k2) + (kn− n− k)(a2
1 + a2

2 + · · ·+ a2
n)

,

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 = · · ·= an−1 = 0, an = n

(or any cyclic permutation).

P 5.42. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

5
3+ a2 + b2

+
5

3+ b2 + c2
+

5
3+ c2 + a2

≥
27

6+ a2 + b2 + c2
.

(Vasile C., 2014)

Solution. Using the substitution

m= 3+ a2 + b2 + c2,

we have to show that

f (a) + f (b) + f (c)≥
27

24+m
for

a+ b+ c = 3, a2 + b2 + c2 = m− 3, 0≤ a ≤ b ≤ c,

f (u) =
5

m− u2
, 0≤ u≤

p
m− 3.

From

g(x) = f ′(x) =
10x

(m− x2)2
, g ′′(x) =

120x(m+ x2)
(m− x2)4

,

it follows that g ′′(x) ≥ 0 for 0 ≤ x ≤
p

m− 3, hence g is strictly convex. By
Corollary 1, if

a+ b+ c = 3, a2 + b2 + c2 = constant, 0≤ a ≤ b ≤ c,

then the sum
S3 = f (a) + f (b) + f (c)
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is minimal for either a = 0 or 0 < a ≤ b = c. Write the inequality in the homoge-
neous form

∑ 5
(a+ b+ c)2 + 3(a2 + b2)

≥
27

2(a+ b+ c)2 + 3(a2 + b2 + c2)
.

Case 1: a = 0. The homogeneous inequality becomes

5
(b+ c)2 + 3b2

+
5

(b+ c)2 + 3c2
+

5
(b+ c)2 + 3(b2 + c2)

≥
27

2(b+ c)2 + 3(b2 + c2)
,

5[5(b2 + c2) + 4bc]
4(b2 + c2)2 + 10bc(b2 + c2) + 13b2c2

+
5

4(b2 + c2) + 2bc
≥

27
5(b2 + c2) + 4bc

.

For the nontrivial case bc 6= 0, substituting

b
c
+

c
b
= t, t ≥ 2,

we may write the inequality as

5(5t + 4)
4t2 + 10t + 13

+
5

4t + 2
≥

27
5t + 4

,

5(5t + 4)
4t2 + 10t + 13

≥
83t + 34

2(2t + 1)(5t + 4)
.

Since
83t + 34≤ 90t + 20,

it suffices to show that

5t + 4
4t2 + 10t + 13

≥
9t + 2

(2t + 1)(5t + 4)
,

which is equivalent to
14t3 + 7t2 − 65t − 10≥ 0,

(t − 2)(14t2 + 35t + 5)≥ 0.

Case 2: 0 < a ≤ b = c. We only need to prove the homogeneous inequality for
b = c = 1; that is,

10
(a+ 2)2 + 3(a2 + 1)

+
5

(a+ 2)2 + 6
≥

27
2(a+ 2)2 + 3(a2 + 2)

,

10
4a2 + 4a+ 7

+
5

a2 + 4a+ 10
≥

27
5a2 + 8a+ 14

,

a(a3 − 3a+ 2)≥ 0,

a(a− 1)2(a+ 2)≥ 0.
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The equality holds for a = b = c = 1, and also for

a = 0, b = c =
3
2

(or any cyclic permutation).

Remark 1. Similarly, we can prove the following generalization:

• Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If k ≥ 0, then

1
k+ a2 + b2

+
1

k+ b2 + c2
+

1
k+ c2 + a2

≥
9(4k+ 15)

3(4k2 + 15k+ 9) + (8k+ 21)(a2 + b2 + c2)
.

with equality for a = b = c = 1, and also for

a = 0, b = c =
3
2

(or any cyclic permutation).

For k = 0, we get the inequality in P 1.171 from Volume 2:

1
a2 + b2

+
1

b2 + c2
+

1
c2 + a2

≥
45

(a+ b+ c)2 + 7(a2 + b2 + c2)
.

Remark 2. More general, the following statement holds:

• Let a1, a2, . . . , an be nonnegative real numbers so that a1 + a2 + · · ·+ an = n. If
k ≥ 0, then

∑ 1
k+ a2

2 + · · ·+ a2
n

≥
p

q+ a2
1 + a2

2 + · · ·+ a2
n

,

where

p =
n2(n− 1)2k+ n3(n2 − n− 1)
(n− 1)3k+ n(n3 − 2n2 − n+ 1)

, q =
n(n− 1)2k2 + n2(n2 − n− 1)k+ n3

(n− 1)3k+ n(n3 − 2n2 − n+ 1)
,

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 = 0, a2 = · · ·= an =
n

n− 1

(or any cyclic permutation).

For k = 0 and k = n, we get the inequalities

∑ 1
a2

2 + · · ·+ a2
n

≥
n2(n2 − n− 1)

n2 + (n3 − 2n2 − n+ 1)(a2
1 + a2

2 + · · ·+ a2
n)

,

∑ 2n− 1
n+ a2

2 + · · ·+ a2
n

≥
n2(2n− 3)

n(n− 1) + (n− 2)(a2
1 + a2

2 + · · ·+ a2
n)

.
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P 5.43. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 4, then

∑ 3
3+ 2(a2 + b2 + c2)

≤
296

218+ a2 + b2 + c2 + d2
.

(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.39. Thus, we only need to prove
the inequality for 0≤ a = b = c ≤ d, that is to show that 3a+ d = 4 involves

1
1+ 2a2

+
9

3+ 4a2 + 2d2
≤

296
218+ 3a2 + d2

.

Write this inequality as follows

1
1+ 2a2

+
9

35− 48a+ 22a2
≤

148
3(39− 4a+ 2a2)

,

(a− 1)2(14a− 1)2 ≥ 0.

The equality holds for a = b = c = d = 1, and also for

a = b = c =
1

14
, d =

53
14

(or any cyclic permutation).

P 5.44. If a, b, c are nonnegative real numbers so that ab+ bc + ca = 3, then

4
2+ a2 + b2

+
4

2+ b2 + c2
+

4
2+ c2 + a2

≥
21

4+ a2 + b2 + c2
.

(Vasile C., 2014)

Solution. The proof is similar to the one of P 5.42. Thus, we only need to prove
the inequality for a = 0 and for 0< a ≤ b = c.

Case 1: a = 0. We need to show that bc = 3 involves

1
2+ b2

+
1

2+ c2
+

1
2+ b2 + c2

≥
21

4(4+ b2 + c2)
.

Denote
x = b2 + c2, x ≥ 2bc = 6.

Since
1

2+ b2
+

1
2+ c2

=
4+ b2 + c2

b2c2 + 2(b2 + c2) + 4
=

x + 4
2x + 13

,
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we only need to show that

x + 4
2x + 13

+
1

x + 2
≥

21
4(x + 4)

.

Since
x + 4

2x + 13
+

1
x + 2

=
x2 + 8x + 21
(2x + 13)(x + 2)

≥
7(2x + 3)

(2x + 13)(x + 2)
,

it suffices to show that

2x + 3
(2x + 13)(x + 2)

≥
3

4(x + 4)
.

This inequality reduces to
(x − 6)(2x + 5)≥ 0.

Case 2: 0< a ≤ b = c. Let
q = ab+ bc + ca.

We only need to prove the homogeneous inequality

4
2q+ 3(a2 + b2)

+
4

2q+ 3(b2 + c2)
+

4
2q+ 3(c2 + a2)

≥
21

4q+ 3(a2 + b2 + c2)

for b = c = 1. Thus, we need to show that

8
2(2a+ 1) + 3(a2 + 1)

+
4

2(2a+ 1) + 6
≥

21
4(2a+ 1) + 3(a2 + 2)

,

which is equivalent to

8
3a2 + 4a+ 5

+
1

a+ 2
≥

21
3a2 + 8a+ 10

,

a2 + 4a+ 7
(3a2 + 4a+ 5)(a+ 2)

≥
7

3a2 + 8a+ 10
,

a(3a3 − a2 − 7a+ 5)≥ 0,

a(a− 1)2(3a+ 5)≥ 0.

The equality holds for a = b = c = 1, and also for

a = 0, b = c =
p

3

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• Let a, b, c be nonnegative real numbers so that ab+ bc + ca = 3. If k ≥ 0, then

1
k+ a2 + b2

+
1

k+ b2 + c2
+

1
k+ c2 + a2

≥
9(k+ 5)

3(k2 + 5k+ 2) + 2(k+ 4)(a2 + b2 + c2)
.
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with equality for a = b = c = 1, and also for

a = 0, b = c =
p

3

(or any cyclic permutation).

For k = 0, we get the inequality in P 1.171 from Volume 2:

1
a2 + b2

+
1

b2 + c2
+

1
c2 + a2

≥
45

2(ab+ bc + ca) + 8(a2 + b2 + c2)
.

P 5.45. If a, b, c are nonnegative real numbers so that a2 + b2 + c2 = 3, then

1
10− (a+ b)2

+
1

10− (b+ c)2
+

1
10− (c + a)2

≤
1
2

.

(Vasile C., 2006)

Solution. Let
s = a+ b+ c, s ≤ 3.

We need to show that

1
10− (s− a)2

+
1

10− (s− b)2
+

1
10− (s− c)2

≤
1
2

for a+ b+ c = s and a2 + b2 + c2 = 3. Apply Corollary 1 to the function

f (u) =
−1

10− (s− u)2
, 0≤ u≤ s ≤ 3.

We have

g(x) = f ′(x) =
2(s− x)

[10− (s− x)2]2
,

g ′′(x) =
24(s− x)[10+ (s− x)2]
[10− (s− x)2]4

.

Since g ′′(x) > 0 for x ∈ [0, s), g is strictly convex on [0, s]. According to the
Corollary 1, if

a+ b+ c = s, a2 + b2 + c2 = 3, 0≤ a ≤ b ≤ c,

then
S3 = f (a) + f (b) + f (c)
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is minimal for either a = 0 or 0 < a ≤ b = c. Therefore, we only need to prove the
homogeneous inequality

∑ 1
10(a2 + b2 + c2)− 3(b+ c)2

≤
1

2(a2 + b2 + c2)

for a = 0 and for b = c = 1.

Case 1: a = 0. The homogeneous inequality becomes

1
7(b2 + c2)− 6bc

+
1

10b2 + 7c2
+

1
7b2 + 10c2

≤
1

2(b2 + c2)
.

This is true since
1

7(b2 + c2)− 6bc
≤

1
4(b2 + c2)

and

1
10b2 + 7c2

+
1

7b2 + 10c2
=

17(b2 + c2)
70(b2 + c2) + 149b2c2

≤
17(b2 + c2)

70(b2 + c2) + 140b2c2

=
17

70(b2 + c2)
<

1
4(b2 + c2)

.

Case 2: b = c = 1. The homogeneous inequality turns into

1
2(5a2 + 4)

+
2

7a2 − 6a+ 17
≤

1
2(a2 + 2)

,

2
7a2 − 6a+ 17

≤
2a2 + 1

(5a2 + 4)(a2 + 2)
,

4a4 − 12a3 + 13a2 − 6a+ 1≥ 0,

(a− 1)2(2a− 1)2 ≥ 0.

The equality holds for a = b = c = 1, and also for

2a = b = c =
2
p

3

(or any cyclic permutation).

P 5.46. If a, b, c are nonnegative real numbers, no two of which are zero, so that
a4 + b4 + c4 = 3, then

1
a5 + b5

+
1

b5 + c5
+

1
c5 + a5

≥
3
2

.

(Vasile C., 2010)
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Solution. Using the substitution

x = a4, y = b4, z = c4, p = x5/4 + y5/4 + z5/4,

we need to show that x + y + z = 3 and x5/4 + y5/4 + z5/4 = p involve

f (x) + f (y) + f (z)≥
3
2

,

where
f (u) =

1
p− u5/4

, 0≤ u< p4/5.

We will apply the EV-Theorem for k = 5/4. We have

f ′(u) =
5u1/4

4(p− u5/4)2
,

g(x) = f ′
�

x
1

k−1

�

= f ′(x4) =
5x

4(p− x5)2
,

g ′′(x) =
75x4(2p+ 3x5)

2(p− x5)4
.

Since g ′′(x)≥ 0, g is strictly convex. According to the EV-Theorem and Note 3, if

x + y + z = 3, x5/4 + y5/4 + z5/4 = p = constant, 0≤ x ≤ y ≤ z,

then
S3 = f (x) + f (y) + f (z)

is minimal for either x = 0 or 0 < x ≤ y = z. Thus, we only need to prove the
homogeneous inequality

1
a5 + b5

+
1

b5 + c5
+

1
c5 + a5

≥
3
2

�

3
a4 + b4 + c4

�5/4

for a = 0 and 0< a ≤ b = c = 1.

Case 1: a = 0. The homogeneous inequality becomes

1
b5
+

1
c5
+

1
b5 + c5

≥
3
2

�

3
b4 + c4

�5/4

,

�

b
c

�5/2

+
� c

b

�5/2
+

1
�

b
c

�5/2
+
�

c
b

�5/2
≥
�

3
2

�9/4





2
�

b
c

�2
+
�

c
b

�2





5/4

,

t5/2 + t−5/2 +
1

t5/2 + t−5/2
≥
�

3
2

�9/4� 2
t2 + t−2

�5/4

,
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2A5/2 +
1

2A5/2
≥
�

3
2

�9/4

·
1

B5/2
,

where

A=

�

t5/2 + t−5/2

2

�2/5

, B =
�

t2 + t−2

2

�1/2

, t =
b
c

.

By power mean inequality, we have A≥ B ≥ 1. Since

2A5/2 +
1

2A5/2
−
�

2B5/2 +
1

2B5/2

�

=
�

A5/2 − B5/2
�

�

2−
1

2A5/2B5/2

�

≥ 0,

it suffices to show that

2B5/2 +
1

2B5/2
≥
�

3
2

�9/4

·
1

B5/2
,

4B5 + 1≥
�

39

25

�1/4

,

which is true if

5≥
�

39

25

�1/4

,

32 · 54 ≥ 39.

This inequality follows by multiplying the inequalities

54 > 23 · 33

and
32 · 23> 36.

Case 2: 0< a ≤ 1= b = c. The homogeneous inequality becomes

a5 + 5
a5 + 1

≥ 3
�

3
a4 + 2

�5/4

,

which is true if g(a)≥ 0, where

g(a) = ln(a5 + 5)− ln(a5 + 1) +
5
4

ln(a4 + 2)−
9 ln3

4
,

with

g ′(a)
5a3

=
a

a5 + 5
−

a
a5 + 1

+
1

a4 + 2
=

a10 + 2a5 − 8a+ 5
(a4 + 5)(a5 + 1)(a4 + 2)

=
(a− 1)(a9 + a8 + a7 + a6 + a5 + 3a4 + 3a3 + 3a2 + 3a− 5)

(a4 + 5)(a5 + 1)(a4 + 2)
.
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There exists d ∈ (0,1) so that g ′(d) = 0, g ′(a) > 0 for a ∈ [0, d) and g ′(a) < 0 for
a ∈ (d, 1). Therefore, g is increasing on [0, d] and is decreasing on [d, 1]. Since
g(1) = 0, we only need to show that g(0)≥ 0. Indeed,

g(0) =
1
4

ln
54 · 25

39
> 0.

The equality holds for a = b = c = 1.

P 5.47. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n,
then

q

a2
1 + 1+

q

a2
2 + 1+· · ·+

Æ

a2
n + 1≥

√

√

2
�

1−
1
n

�

(a2
1 + a2

2 + · · ·+ a2
n) + 2(n2 − n+ 1).

(Vasile C., 2014)

Solution. For n= 2, we need to show that a1 + a2 = 2 involves
q

a2
1 + 1+

q

a2
2 + 1≥

q

a2
1 + a2

2 + 6.

By squaring, the inequality becomes
q

(a2
1 + 1)(a2

2 + 1)≥ 2,

which follows immediately from the Cauchy-Schwarz inequality:

(a2
1 + 1)(a2

2 + 1) = (a2
1 + 1)(1+ a2

2)≥ (a1 + a2)
2 = 4.

Assume further that n≥ 3 and a1 ≤ a2 ≤ · · · ≤ an. We will apply Corollary 1 to the
function

f (u) = −
p

u2 + 4, u≥ 0.

We have
g(x) = f ′(x) =

−x
p

x2 + 4
,

g ′′(x) =
12x

(x2 + 4)5/2
.

Since g ′′(x) > 0 for x > 0, g(x) is strictly convex for x ≥ 0. By Corollary 1, if
a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = n, a2
1 + a2

2 + · · ·+ a2
n = constant,

then the sum
Sn = f (a1) + f (a2) + · · ·+ f (an)
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is maximal for a1 = a2 = · · ·= an−1. Thus, we only need to show that

p

a2 + 1+ (n− 1)
p

b2 + 1≥

√

√

2
�

1−
1
n

�

[a2 + (n− 1)b2] + 2(n2 − n+ 1).

for
a+ (n− 1)b = n.

By squaring, the inequality becomes

2n(n− 1)
Æ

(a2 + 1)(b2 + 1)≥ (n− 2)a2 − (n− 2)(n− 1)2 b2 + n3,

which is equivalent to
Æ

(b2 + 1)[(n− 1)2 b2 − 2n(n− 1)b+ n2 + 1]≥ n− (n− 2)b.

This is true if

(b2 + 1)[(n− 1)2 b2 − 2n(n− 1)b+ n2 + 1]≥ [n− (n− 2)b]2,

which is equivalent o

(n− 1)2 b4 − 2n(n− 1)b3 + (n2 + 2n− 2)b2 − 2nb+ 1≥ 0,

(b− 1)2[(n− 1)b− 1]2 ≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 = a2 = · · ·= an−1 =
1

n− 1
, an = n− 1

(or any cyclic permutation).

P 5.48. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n,
then

∑q

(3n− 4)a2
1 + n≥

q

(3n− 4)(a2
1 + a2

2 + · · ·+ a2
n) + n(4n2 − 7n+ 4).

(Vasile C., 2009)

Solution. The proof is similar to the one of the preceding P 5.47. Thus, it suf-
fices to prove the inequality for a1 = a2 = · · · = an−1. Write the inequality in the
homogeneous form
∑q

n(3n− 4)a2
1 + S2 ≥

q

n(3n− 4)(a2
1 + a2

2 + · · ·+ a2
n) + (4n2 − 7n+ 4)S2,
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where S = a1 + a2 + · · ·+ an. We only need to prove this inequality for a1 = a2 =
· · ·= an−1 = 1, that is

(n− 1)
Æ

n(3n− 4) + (n− 1+ an)2 +
q

n(3n− 4)a2
n + (n− 1+ an)2 ≥

≥
q

n(3n− 4)(n− 1+ a2
n) + (4n2 − 7n+ 4)(n− 1+ an)2,

which is equivalent to

q

(n− 1)[a2
n + 2(n− 1)an + 4n2 − 6n+ 1] +

q

(3n− 1)a2
n + 2an + n− 1≥

≥
q

(7n− 4)a2
n + 2(4n2 − 7n+ 4)an + 4n3 − 8n2 + 7n− 4.

By squaring, the inequality turns into

2
q

(n− 1)[(3n− 1)a2
n + 2an + n− 1][a2

n + 2(n− 1)an + 4n2 − 6n+ 1]≥

(3n− 2)a2
n + 2(n− 1)(3n− 2)an + 2n2 − n− 2.

Squaring again, we get

(an − 1)2(an − 2n+ 3)2 ≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 = a2 = · · ·= an−1 =
an

2n− 3
=

n
3n− 4

(or any cyclic permutation).

Remark. For n= 3, we get the inequality

p

5a2 + 3+
p

5b2 + 3+
p

5c2 + 3≥
Æ

5(a2 + b2 + c2) + 57,

where a, b, c are nonnegative real numbers so that a+ b+ c = 3. By squaring, the
inequality turns into

Æ

(5a2 + 3)(5b2 + 3) +
Æ

(5b2 + 3)(5c2 + 3) +
Æ

(5c2 + 3)(5a2 + 3)≥ 24,

with equality for a = b = c = 1, and also for

a = b =
c
3
=

3
5

(or any cyclic permutation).
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P 5.49. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

p

a2 + 4+
p

b2 + 4+
p

c2 + 4≤

√

√8
3
(a2 + b2 + c2) + 37.

(Vasile C., 2009)

Solution. Assume that a ≤ b ≤ c, and apply Corollary 1 to the function a

f (u) = −
p

u2 + 4, u≥ 0.

We have
g(x) = f ′(x) =

−x
p

x2 + 4
,

g ′′(x) =
12x

(x2 + 4)5/2
.

Since g ′′(x)> 0 for x > 0, g(x) is strictly convex for x ≥ 0. By Corollary 1, if

a+ b+ c = 3, a2 + b2 + c2 = constant , a ≤ b ≤ c,

then the sum
S3 = f (a) + f (b) + f (c)

is minimal for either a = 0 or 0 < a ≤ b = c. Thus, we only need to prove the
desired inequality for these cases.

Case 1: a = 0. We need to prove that b+ c = 3 involves

p

b2 + 4+
p

c2 + 4≤

√

√8
3
(b2 + c2) + 37 − 2.

Substituting

b =
3x
2

, c =
3y
2

,

we need to prove that x + y = 2 involves
p

9x2 + 16+
p

9y2 + 16≤ 2
Æ

6(x2 + y2) + 37 − 4.

By squaring, the inequality becomes

2
Æ

(9x2 + 16)(9y2 + 16)≤ 15(x2 + y2) + 132− 16
Æ

6(x2 + y2) + 37.

Denoting
p = x y, 0≤ p ≤ 1,

we have

x2 + y2 = 4− 2p, (9x2 + 16)(9y2 + 16) = 81p2 − 288p+ 832,
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and the inequality becomes
p

81p2 − 288p+ 832≤ −15p+ 96− 8
p

61− 12p,
√

√81
4

p2 − 72p+ 208≤ −
15
2

p+ (48− 4
p

61− 12p),

By squaring again (the right hand side is positive), the inequality becomes

81
4

p2 − 72p+ 208≤
225

4
p2 − 15p(48− 4

p

61− 12p) + (48− 4
p

61− 12p)2,

3p2 − 70p+ 256≥ (32− 5p)
p

61− 12p.

Since

2
p

61− 12p ≤ 7+
61− 12p

7
=

2(55− 6p)
7

,

it suffices to show that

7(3p2 − 70p+ 256)≥ (32− 5p)(55− 6p),

which is equivalent to
(1− p)(32+ 9p)≥ 0.

Case 2: b = c. We need to prove that

a+ 2b = 3

implies
p

a2 + 4+ 2
p

b2 + 4≤

√

√8
3
(a2 + 2b2) + 37.

By squaring, the inequality becomes

12
Æ

(a2 + 4)(b2 + 4)≤ 5a2 + 4b2 + 51,

which is equivalent to
Æ

(4b2 − 12b+ 13)(b2 + 4)≤ 2b2 − 5b+ 8.

By squaring again, the inequality becomes

2b3 − 7b2 + 8b− 3≤ 0,

(b− 1)2(2b− 3)≤ 0,

(b− 1)2a ≥ 0.

The equality holds for a = b = c = 1, and also for

a = 0, b = c =
3
2

(or any cyclic permutation).
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P 5.50. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then
p

32a2 + 3+
p

32b2 + 3+
p

32c2 + 3≤
Æ

32(a2 + b2 + c2) + 219.

(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.49. Thus, it suffices to prove the
homogeneous inequality

∑
Æ

96a2 + (a+ b+ c)2 ≤
Æ

96(a2 + b2 + c2) + 73(a+ b+ c)2

for a = 0 and for b = c = 1.

Case 1: a = 0. We have to show that

b+ c +
p

97b2 + 2bc + c2 +
p

b2 + 2bc + 97c2 ≤
Æ

169(b2 + c2) + 146bc.

Since 2bc ≤ b2 + c2, it suffices to prove that

b+ c +
p

98b2 + 2c2 +
p

2b2 + 98c2 ≤
Æ

169(b2 + c2) + 146bc.

By squaring, we get

(b+ c)
�
p

98b2 + 2c2 +
p

2b2 + 98c2
�

+ 2
Æ

(49b2 + c2)(b2 + 49c2)≤

≤ 34(b2 + c2) + 72bc.

Since
p

98b2 + 2c2 +
p

2b2 + 98c2 ≤
Æ

2(98b2 + 2c2 + 2b2 + 98c2) = 10
Æ

2(b2 + c2)

and
10(b+ c)

Æ

2(b2 + c2)≤ 20(b+ c)2,

it suffices to show that
Æ

(49b2 + c2)(b2 + 49c2)≤ 7(b2 + c2) + 36bc.

Squaring again, the inequality becomes

bc(b− c)2 ≥ 0.

Case 2: b = c = 1. The homogeneous inequality turns into
p

97a2 + 4a+ 4+ 2
p

a2 + 4a+ 100≤
p

169a2 + 292a+ 484.

By squaring, we get
Æ

(97a2 + 4a+ 4)(a2 + 4a+ 100)≤ 17a2 + 68a+ 20.
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Squaring again, the inequality reduces to

a(a− 1)2(a+ 12)≥ 0.

The equality holds for a = b = c = 1, and also for a = 0 and b = c = 3/2 (or any
cyclic permutation).

Remark. By squaring, we deduce the inequality
Æ

(32a2 + 3)(32b2 + 3) +
Æ

(32b2 + 3)(32c2 + 3) +
Æ

(32c2 + 3)(32a2 + 3)≤ 105,

with equality for a = b = c = 1, and also for

a = 0, b = c =
3
2

(or any cyclic permutation).

P 5.51. If a1, a2, . . . , an are positive real numbers so that a1 + a2 + · · ·+ an = n, then

1
a1
+

1
a2
+ · · ·+

1
an
+

2n
p

n− 1
a2

1 + a2
2 + · · ·+ a2

n

≥ n+ 2
p

n− 1.

(Vasile C., 2009)

Solution. For n= 2, the inequality reduces to

(a1a2 − 1)2 ≥ 0.

Consider further that n≥ 3 and a1 ≤ a2 ≤ · · · ≤ an. By Corollary 5 (case k = 2 and
m= −1), if a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = n, a2
1 + a2

2 + · · ·+ a2
n = constant,

then the sum
Sn =

1
a1
+

1
a2
+ · · ·+

1
an

is minimal for a1 = · · ·= an−1 ≤ an. Therefore, we only need to prove that

n− 1
a1
+

1
an
+

2n
p

n− 1
(n− 1)a2

1 + a2
n

≥ n+ 2
p

n− 1,

for (n− 1)a1 + an = n. The inequality is equivalent to

(a1 − 1)2
�

a1 −
n

n− 1+
p

n− 1

�2

≥ 0.
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The equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 = a2 = · · ·= an−1 =
anp
n− 1

(or any cyclic permutation).

P 5.52. If a, b, c ∈ [0, 1], then

(1+ 3a2)(1+ 3b2)(1+ 3c2)≥ (1+ ab+ bc + ca)3.

Solution. Since

2(ab+ bc + ca) = (a+ b+ c)2 − (a2 + b2 + c2),

we may apply Corollary 1 to the function

f (u) = − ln(1+ 3u2), u ∈ [0,1],

to prove the inequality

f (a) + f (b) + f (c) + 3 ln(1+ ab+ bc + ca)≤ 0.

We have

g(x) = f ′(x) =
−6x

1+ 3x2
,

g ′′(x) =
108x(1− x2)
(1+ 3x2)3

.

Since g ′′(x)> 0 for x ∈ (0, 1), g is strictly convex on [0, 1]. According to Corollary
1 and Note 2, if

a+ b+ c = constant, a2 + b2 + c2 = constant, 0≤ a ≤ b ≤ c ≤ 1,

then
S3 = f (a) + f (b) + f (c)

is maximal for a = b ≤ c. or for c = 1. Thus, we only need to prove the original
inequality for these cases.

Case 1: a = b ≤ c. We need to show that

(1+ 3a2)2(1+ 3c2)≥ (1+ a2 + 2ac)3.

For c = 0, the inequality is an equality. For fixed c, 0< c ≤ 1, we need to show that
h(a)≥ 0, where

h(a) = 2 ln(1+ 3a2) + ln(1+ 3c2)− 3 ln(1+ a2 + 2ac), a ∈ [0, c].
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From

h′(a) =
12a

1+ 3a2
−

6(a+ c)
1+ a2 + 2ac

=
6(1− a2)(a− c)

(1+ 3a2)(1+ a2 + 2ac)
≤ 0,

it follows that h is decreasing on [0, c], hence h(a)≥ h(c) = 0.

Case 2: c = 1. We need to show that

4(1+ 3a2)(1+ 3b2)≥ (1+ a)3(1+ b)3.

This is true because

2(1+ 3a2)≥ (1+ a)3, 2(1+ 3b2)≥ (1+ b)3.

The first inequality is equivalent to

(1− a)3 ≥ 0.

The proof is completed. The equality holds for a = b = c.

P 5.53. If a, b, c are nonnegative real numbers so that a+ b+ c = ab+ bc+ ca, then

1
4+ 5a2

+
1

4+ 5a2
+

1
4+ 5a2

≥
1
3

.

(Vasile C., 2007)

Solution. By expanding, the inequality becomes

4(a2 + b2 + c2) + 15≥ 25a2 b2c2 + 5(a2 b2 + b2c2 + c2a2).

Let p = a+ b+ c. Since

a2 + b2 + c2 = p2 − 2p, a2 b2 + b2c2 + c2a2 = p2 − 2pabc,

the inequality becomes
(2p− 4)2 ≥ (p− 5abc)2,

(3p− 4− 5abc)(p+ 5abc − 4)≥ 0.

We will show that 3p ≥ 4+5abc and p+5abc ≥ 4. According to Corollary 4 (case
n= 3, k = 2) or P 3.57 in Volume 1, if

a+ b+ c = constant, ab+ bc + ca = constant, 0≤ a ≤ b ≤ c ≤ d,

then the product abc is maximal for a = b, and is minimal for a = 0 or b = c. Thus,
we only need to prove that 3p ≥ 4+ 5abc for a = b, and p + 5abc ≥ 4 for a = 0
and for b = c.
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For a = b, from a+ b+ c = ab+ bc + ca we get

c =
a(2− a)
2a− 1

,
1
2
< a ≤ 2,

hence

3p− 4− 5abc = (3− 5a2)c + 6a− 4=
(a− 1)2(5a2 + 4)

2a− 1
≥ 0.

For a = 0, from a+ b+ c = ab+ bc + ca we get

c =
b

b− 1
, b > 1,

hence

p+ 5abc − 4= b+ c − 4=
(b− 2)2

b− 1
≥ 0.

For b = c, from a+ b+ c = ab+ bc + ca we get

a =
b(2− b)
2b− 1

,
1
2
< b ≤ 2,

hence

p+ 5abc − 4= a(5b2 + 1) + 2b− 4=
(2− b)(5b3 − 3b+ 2)

2b− 1

=
(2− b)[4b3 + (b− 1)2(b+ 2)]

2b− 1
≥ 0.

The equality holds for a = b = c = 1, and also for a = 0 and b = c = 2 (or any
cyclic permutation).

P 5.54. If a, b, c, d are positive real numbers so that a+ b+ c + d = 4abcd, then

1
1+ 3a

+
1

1+ 3b
+

1
1+ 3c

+
1

1+ 3d
≥ 1.

(Vasile C., 2007)

Solution. By expanding, the inequality becomes

1+ 3(ab+ ac + ad + bc + bd + cd)≥ 19abcd,

2+ 3(a+ b+ c + d)2 ≥ 3(a2 + b2 + c2 + d2) + 38abcd.

According to Corollary 5 (case n= 4, k = 0, m= 2), if

a+ b+ c + d = constant, abcd = constant, 0< a ≤ b ≤ c ≤ d,
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then the sum
S4 = a2 + b2 + c2 + d2

is maximal for a = b = c ≤ d. Thus, we only need to prove that

3a+ d = 4a3d, d =
3a

4a3 − 1
, a >

1
3p4

,

involves
3

3a+ 1
+

1
3d + 1

≥ 1,

3
3a+ 1

+
4a3 − 1

4a3 + 9a− 1
≥ 1,

4a3 − 9a2 + 6a− 1≥ 0,

(a− 1)2(4a− 1)≥ 0.

The equality holds for a = b = c = d = 1.

Open problem. If a1, a2, . . . , an (n≥ 3) are positive real numbers so that

a1 + a2 + · · ·+ an = na1a2 · · · an,

then
1

1+ (n− 1)a1
+

1
1+ (n− 1)a2

+ · · ·+
1

1+ (n− 1)an
≥ 1.

P 5.55. If a1, a2, . . . , an are positive real numbers so that

a1 + a2 + · · ·+ an =
1
a1
+

1
a2
+ · · ·+

1
an

,

then
1

1+ (n− 1)a1
+

1
1+ (n− 1)a2

+ · · ·+
1

1+ (n− 1)an
≥ 1.

(Vasile C., 1996)

Solution. For n= 2, the inequality is an identity. For n≥ 3, we consider

a1 ≤ a2 ≤ · · · ≤ an,

and apply Corollary 2 to the function

f (u) =
1

1+ (n− 1)u
, u> 0.
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We have

f ′(u) =
−(n− 1)

[1+ (n− 1)u]2
,

g(x) = f ′
�

1
p

x

�

=
−(n− 1)x
[
p

x + n− 1]2
,

g ′′(x) =
3(n− 1)2

2
p

x(
p

x + n− 1)4
.

Since g ′′(x) > 0 for x > 0, g is strictly convex on [0,∞). By Corollary 2, if
0< a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = constant,
1
a1
+

1
a2
+ · · ·+

1
an
= constant,

then the sum
Sn = f (a1) + f (a2) + · · ·+ f (an)

is minimal for a2 = · · ·= an. Therefore, we only need to show that

1
1+ (n− 1)a

+
n− 1

1+ (n− 1)b
≥ 1

for
a+ (n− 1)b =

1
a
+

n− 1
b

, 0< a ≤ b.

Write the hypothesis as
1
a
− a = (n− 1)

�

b−
1
b

�

,

which involves a ≤ 1≤ b and

1
a
− a ≥ b−

1
b

, ab ≤ 1.

Write the desired inequality as

n− 1
1+ (n− 1)b

≥ 1−
1

1+ (n− 1)a
,

which is equivalent to
n− 1

1+ (n− 1)b
≥

(n− 1)a
1+ (n− 1)a

,

1− a ≥ (n− 1)a(b− 1).

For the nontrivial case b 6= 1, we have

1− a− (n− 1)a(b− 1) = 1− a−
b(1− a2)
a(b2 − 1)

a(b− 1) =
(1− a)(1− ab)

b+ 1
≥ 0.

If n≥ 3, then the equality holds for a1 = a2 = · · ·= an = 1.
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P 5.56. If a, b, c, d, e are nonnegative real numbers so that a4+ b4+ c4+d4+ e4 = 5,
then

7(a2 + b2 + c2 + d2 + e2)≥ (a+ b+ c + d + e)2 + 10.

(Vasile C., 2008)

Solution. According to Corollary 5 (case n= 5, k = 4, m= 2), if

a+ b+ c+d+ e = constant, a4+ b4+ c4+d4+ e4 = 5, 0≤ a ≤ b ≤ c ≤ d ≤ e,

then the sum
S4 = a2 + b2 + c2 + d2 + e2

is minimal for a = b = c = d ≤ e. Thus, we only need to prove the homogeneous
inequality

[7(a2 + b2 + c2 + d2 + e2)− (a+ b+ c + d + e)2]2 ≥ 20(a4 + b4 + c4 + d4 + e4)

for a = b = c = d = 0 and a = b = c = d = 1. The first case is trivial. In the second
case, the inequality becomes

[7(4+ e2)− (4+ e)2]2 ≥ 20(4+ e4),

(3e2 − 4e+ 6)2 ≥ 5e4 + 20,

e4 − 6e3 + 13e2 − 12e+ 4≥ 0,

(e− 1)2(e− 2)2 ≥ 0.

The equality holds for a = b = c = d = e = 1, and also for

a = b = c = d =
e
2
=

1
p

2

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• If a1, a2, . . . , an are nonnegative real numbers so that

a4
1 + a4

2 + · · ·+ a4
n = n,

then
(n+

p
n− 1)(a2

1 + a2
2 + · · ·+ a2

n − n)≥ (a1 + a2 + · · ·+ an)
2 − n2,

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 = · · ·= an−1 =
anp
n− 1

=
1

4pn− 1

(or any cyclic permutation).
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P 5.57. If a1, a2, . . . , an are nonnegative real numbers so that a1 + a2 + · · ·+ an = n,
then

(a2
1 + a2

2 + · · ·+ a2
n)

2 − n2 ≥
n(n− 1)

n2 − n+ 1

�

a4
1 + a4

2 + · · ·+ a4
n − n

�

.

(Vasile C., 2008)

Solution. For n= 2, the inequality reduces to (a1a2−1)2 ≥ 0. For n≥ 3, we apply
Corollary 5 for k = 2 and m= 4 : if 0≤ a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = n, a2
1 + a2

2 + · · ·+ a2
n = constant,

then
Sn = a4

1 + a4
2 + · · ·+ a4

n

is maximal for a1 = · · ·= an−1 ≤ an. Thus, we only need to prove the homogeneous
inequality

n2(n2− n+1)(a2
1 + a2

2 + · · ·+ a2
n)

2 ≥ (n2−2n+2)(a1+ a2+ · · ·+ an)
4+ n3(n−1)Sn,

for a1 = · · · = an−1 = 0 and for a1 = · · · = an−1 = 1. For the nontrivial case
a1 = · · ·= an−1 = 1, the inequality becomes

n2(n2 − n+ 1)(n− 1+ a2
n)

2 ≥ (n2 − 2n+ 2)(n− 1+ an)
4 + n3(n− 1)(n− 1+ a4

n),

(an − 1)2[an − (n− 1)2]2 ≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 = · · ·= an−1 =
1

n− 1
, an = n− 1

(or any cyclic permutation).

P 5.58. If a1, a2, . . . , an are nonnegative real numbers so that a2
1 + a2

2 + · · ·+ a2
n = n,

then

a3
1 + a3

2 + · · ·+ a3
n ≥

√

√

n2 − n+ 1+
�

1−
1
n

�

(a6
1 + a6

2 + · · ·+ a6
n).

(Vasile C., 2008)

Solution. For n= 2, the inequality is equivalent to

a6
1 + a6

2 + 4a3
1a3

2 ≥ 6,

(a2
1 + a2

2)
3 − 3a2

1a2
2(a

2
1 + a2

2) + 4a3
1a3

2 ≥ 6,

2a3
1a3

2 − 3a2
1a2

2 + 1≥ 0,
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(a1a2 − 1)2(2a1a2 + 1)≥ 0.

For n≥ 3, we apply Corollary 5 for k = 3/2 and m= 3 : if 0≤ x1 ≤ x2 ≤ · · · ≤ xn

and
x1 + x2 + · · ·+ xn = n, x3/2

1 + x3/2
2 + · · ·+ x3/2

n = constant,

then
Sn = x3

1 + x3
2 + · · ·+ x3

n

is maximal for x1 = · · ·= xn−1 ≤ xn. Thus, we only need to prove the homogeneous
inequality

(a3
1 + a3

2 + · · ·+ a3
n)

2 ≥
n2 − n+ 1

n3
(a2

1 + a2
2 + · · ·+ a2

n)
3+

�

1−
1
n

�

(a6
1 + a6

2 + · · ·+ a6
n)

for a1 = · · · = an−1 = 0 and for a1 = · · · = an−1 = 1. For the nontrivial case
a1 = · · ·= an−1 = 1, the inequality becomes

n3(n− 1+ a3
n)

2 ≥ (n2 − n+ 1)(n− 1+ a2
n)

3 + n2(n− 1)(n− 1+ a6
n),

(an − 1)2(an − n+ 1)2(a2
n + 2nan + n− 1)≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 = · · ·= an−1 =
an

n− 1
=

1
p

n− 1

(or any cyclic permutation).

P 5.59. If a, b, c are positive real numbers so that abc = 1, then

4
�

1
a
+

1
b
+

1
c

�

+
50

a+ b+ c
≥ 27.

(Vasile C., 2012)

Solution. According to Corollary 5 (case k=0 and m= −1, if

a+ b+ c = constant, abc = 1, 0< a ≤ b ≤ c,

then
S3 =

1
a
+

1
b
+

1
c

is minimal for 0< a = b ≤ c. Thus, we only need to prove that

4
�

2
a
+

1
c

�

+
50

2a+ c
≥ 27
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for
a2c = 1, a ≤ 1.

The inequality is equivalent to

8a6 − 54a4 − 26a3 − 27a+ 8≥ 0,

(2a− 1)2(2a4 + 2a3 − 12a2 + 5a+ 8)≥ 0.

It is true for a ∈ (0, 1] because

2a4 + 2a3 − 12a2 + 5a+ 8> −12a2 + 4a+ 8= 4(1− a)(2+ 3a)≥ 0.

The equality holds for

a = b =
1
2

, c = 4

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

• If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

2n
�

1
a1
+

1
a2
+ · · ·+

1
an

�

+
(2n + n− 1)2

a1 + a2 + · · ·+ an
≥ 2n(2n + 1),

with equality for

a1 = · · ·= an−1 =
1
2

, an = 2n−1

(or any cyclic permutation).

For
a1 = · · ·= an−1 = a ≤ 1, an−1an = 1,

the inequality is equivalent to f (a)≥ 0, where

f (a) = 2n
�

n− 1
a
+ an−1

�

+
(2n + n− 1)2an−1

(n− 1)an + 1
− 2n(2n + 1).

We have

f ′(a)
n− 1

=
2n(an − 1)

a2
−
(2n + n− 1)2an−2(an − 1)

[(n− 1)an + 1]2

=
(an − 1)(2nan − 1)[(n− 1)2an − 2n]

a2[(n− 1)an + 1]2
.

Since
(n− 1)2an − 2n ≤ (n− 1)2 − 2n < 0,
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it follows that f ′(a) < 0 for a ∈
�

0,
1
2

�

, and f ′(a) > 0 for a ∈
�

1
2

,1
�

. Therefore,

f is decreasing on
�

0,
1
2

�

and increasing on
�

1
2

,1
�

, hence

f (a)≥ f
�

1
2

�

= 0.

P 5.60. If a, b, c are positive real numbers so that abc = 1, then

a3 + b3 + c3 + 15≥ 6
�

1
a
+

1
b
+

1
c

�

.

(Michael Rozenberg, 2006)

Solution. Replacing a, b, c by their reverses 1/a, 1/b, 1/c, we need to show that
abc = 1 involves

1
a3
+

1
b3
+

1
c3
+ 15≥ 6(a+ b+ c).

According to Corollary 5 (case k=0 and m= −3, if

a+ b+ c = constant, abc = 1, 0< a ≤ b ≤ c,

then
S3 =

1
a3
+

1
b3
+

1
c3

is minimal for 0< a = b ≤ c. Thus, we only need to prove that

2
a3
+

1
c3
+ 15≥ 6(2a+ c)

for
a2c = 1, a ≤ 1.

The inequality is equivalent to

2
a3
+ a6 + 15≥ 6

�

2a+
1
a2

�

,

a9 − 12a4 + 15a3 − 6a+ 2≥ 0,

(1− a)2(2− 2a− 6a2 + 5a3 + 4a4 + 3a5 + 2a6 + a7)≥ 0.

It suffices to show that

2− 2a− 6a2 + 5a3 + 3a4 ≥ 0.

Indeed, we have

2(2− 2a− 6a2 + 5a3 + 3a4) = (2− 3a)2
�

1+ 2a+
3
4

a2
�

+ a3
�

1−
3
4

a
�

≥ 0.

The equality holds for a = b = c = 1.
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P 5.61. Let a1, a2, . . . , an be positive numbers so that a1a2 · · · an = 1. If k ≥ n − 1,
then

ak
1 + ak

2 + · · ·+ ak
n + (2k− n)n≥ (2k− n+ 1)

�

1
a1
+

1
a2
+ · · ·+

1
an

�

.

(Vasile C., 2008)

Solution. For n = 2 and k = 1, the inequality is an identity. For n = 2 and k > 1,
we need to show that f (a)≥ 0 for a > 0, where

f (a) = ak + a−k + 4(k− 1)− (2k− 1)(a+ a−1).

We have
f ′(a) = k(ak−1 − a−k−1)− (2k− 1)(1− a−2),

f ′′(a) = k[(k− 1)ak−2 + (k+ 1)a−k−2]− 2(2k− 1)a−3.

By the weighted AM-GM inequality, we get

(k− 1)ak−2 + (k+ 1)a−k−2 ≥ 2ka
(k−1)(k−2)+(k+1)(−k−2)

2k = 2ka−3,

hence
f ′′(a)≥ 2k2a−3 − 2(2k− 1)a−3 = 2(k− 1)2a−3 > 0,

f ′ is strictly increasing. Since f ′(1) = 0, it follows that f ′(a) < 0 for a < 1 and
f ′(a) > 0 for a > 1, f is decreasing on (0, 1] and increasing on [1,∞), hence
f (a)≥ f (1) = 0.

Consider further that n ≥ 3. Replacing a1, a2, . . . , an by 1/a1, 1/a2, . . . , 1/an, we
need to show that a1a2 · · · an = 1 involves

1

ak
1

+
1

ak
2

+ · · ·+
1
ak

n

+ (2k− n)n≥ (2k− n+ 1)(a1 + a2 + · · ·+ an).

According to Corollary 5, if 0< a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = constant, a1a2 · · · an = 1,

then

Sn =
1

ak
1

+
1

ak
2

+ · · ·+
1
ak

n

is minimal for 0 < a1 = · · · = an−1 ≤ an. Thus, we only need to prove the original
inequality for a1 = · · · = an−1 ≥ 1; that is, to show that t ≥ 1 involves f (t) ≥ 0,
where

f (t) = (n− 1)tk +
1

tk(n−1)
+ (2k− n)n− (2k− n+ 1)

�

n− 1
t
+ tn−1

�

.
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We have

f ′(t) =
(n− 1)g(t)

tkn−k+1
, g(t) = k(tkn − 1)− (2k− n+ 1)tkn−k−1(tn − 1),

g ′(t) = tkn−k−2h(t), h(t) = k2ntk+1− (2k− n+1)[(k+1)(n−1)tn− kn+ k+1],

h′(t) = (k+ 1)ntn−1[k2 tk−n+1 − (2k− n+ 1)(n− 1)].

If k = n− 1, then h(t) = n(n− 1)(n− 2)> 0. If k > n− 1, then

k2 tk−n+1 − (2k− n+ 1)(n− 1)≥ k2 − (2k− n+ 1)(n− 1) = (k− n+ 1)2 > 0,

h′(t)> 0 for t ≥ 1, h is strictly increasing on [1,∞), hence

h(t)≥ h(1) = n[(k− 1)2 + n− 2]> 0.

From h > 0, we get g ′ > 0, g is strictly increasing, g(t) ≥ g(1) = 0 for t ≥ 1,
f ′(t)> 0 for t > 1, f is strictly increasing, f (t)≥ f (1) = 0 for t ≥ 1.

The equality holds for a1 = a2 = · · · = an = 1. If n = 2 and k = 1, then the
equality holds for a1a2 = 1.

P 5.62. Let a1, a2, . . . , an (n≥ 3) be nonnegative numbers so that a1+a2+· · ·+an = n,
and let k be an integer satisfying 2≤ k ≤ n+ 2. If

r =
� n

n− 1

�k−1
− 1,

then
ak

1 + ak
2 + · · ·+ ak

n − n≥ nr(1− a1a2 · · · an).

(Vasile C., 2005)

Solution. According to Corollary 4, if 0≤ a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = n, ak
1 + ak

2 + · · ·+ ak
n = constant,

then the product
P = a1a2 · · · an

is minimal for either a1 = 0 or 0< a1 ≤ a2 = · · ·= an.

Case 1: a1 = 0. We need to show that

ak
2 + · · ·+ ak

n ≥
nk

(n− 1)k−1



EV Method for Nonnegative Variables 431

for a2 + · · ·+ an = n. This follows by Jensen’s inequality

ak
2 + · · ·+ ak

n ≥ (n− 1)
�a2 + · · ·+ an

n− 1

�k

.

Case 2: 0< a1 ≤ a2 = · · ·= an. Denoting a1 = x and a2 = y (x ≤ y), we only need
to show that

f (x)≥ 0,

where

f (x) = x k + (n− 1)yk + nr x yn−1 − n(r + 1), y =
n− x
n− 1

, 0< x ≤ 1≤ y.

It is easy to check that
f (0) = f (1) = 0.

Since
y ′ =

−1
n− 1

,

we have

f ′(x) = k(x k−1 − yk−1) + nr yn−2(y − x)

= (y − x)[nr yn−2 − k(yk−2 + yk−3 x + · · ·+ x k−2)]

= (y − x)yn−2[nr − kg(x)],

where

g(x) =
1

yn−k
+

x
yn−k+1

+ · · ·+
x k−2

yn−2
.

We see that f ′(x) has the same sign as

h(x) = nr − kg(x).

Since the function
y(x) =

n− x
n− 1

is strictly decreasing, g is strictly increasing for 2 ≤ k ≤ n. Also, g is strictly
increasing for k = n+ 1, when

g(x) = y + x +
x2

y
+ · · ·+

xn−1

yn−2

=
(n− 2)x + n

n− 1
+

x2

y
+ · · ·+

xn−1

yn−2
,

and for k = n+ 2, when

g(x) = y2 + y x + x2 +
x3

y
+ · · ·+

xn

yn−2

=
(n2 − 3n+ 3)x2 + n(n− 3)x + n2

(n− 1)2
+

x3

y
+ · · ·+

xn

yn−2
.
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Therefore, the function h(x) is strictly decreasing for x ∈ [0, 1]. Since f (0) =
f (1) = 0, there exists x1 ∈ (0, 1) so that f (x) is increasing on [0, x1] and decreasing
on [x1, 1]. As a consequence, f (x)≥ 0 for x ∈ [0,1].

The equality holds for a1 = a2 = · · ·= an = 1, and also for

a1 = 0, a2 = · · ·= an =
n

n− 1

(or any cyclic permutation).

Remark. For the particular case k = n, the inequality has been posted in 2004 on
Art of Problem Solving website by Gabriel Dospinescu and Calin Popa.

P 5.63. If a, b, c are positive real numbers so that
1
a
+

1
b
+

1
c
= 3, then

4(a2 + b2 + c2) + 9≥ 21abc.

(Vasile C., 2006)

Solution. Replacing a, b, c by their reverses 1/a, 1/b, 1/c, we need to show that
a+ b+ c = 3 involves

4
�

1
a2
+

1
b2
+

1
c2

�

+ 9≥
21
abc

.

According to Corollary 5 (case k=0 and m= −2), if

a+ b+ c = 3, abc = constant, 0< a ≤ b ≤ c,

then
S3 =

1
a2
+

1
b2
+

1
c2

is minimal for 0< a = b ≤ c. Thus, we only need to prove that

4
�

2
a2
+

1
c2

�

+ 9≥
21
a2c

for 2a+ b = 3. The inequality is equivalent to

(9a2 + 8)c2 − 21c + 4a2 ≥ 0,

4a4 − 12a3 + 13a2 − 6a+ 1≥ 0,

(a− 1)2(2a− 1)2 ≥ 0.

The equality holds for a = b = c = 1, and also for

a = b = 2, c =
1
2

(or any cyclic permutation).
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P 5.64. If a1, a2, . . . , an are positive real numbers so that
1
a1
+

1
a2
+ · · ·+

1
an
= n,

then
a1 + a2 + · · ·+ an − n≤ en−1(a1a2 · · · an − 1),

where

en−1 =
�

1+
1

n− 1

�n−1

.

(Gabriel Dospinescu and Calin Popa, 2004)

Solution. For n= 2, the inequality is an identity. For n≥ 3, replacing a1, a2, . . . , an

by 1/a1, 1/a2, . . . , 1/an, we need to show that a1 + a2 + · · ·+ an = n involves

a1a2 · · · an

�

1
a1
+

1
a2
+ · · ·+

1
an
− n+ en−1

�

≤ en−1.

According to Corollary 5 (case k = 0 and m= −1), if 0< a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = n, a1a2 · · · an = constant,

then
Sn =

1
a1
+

1
a2
+ · · ·+

1
an

is maximal for 0 < a1 ≤ a2 = · · · = an. Using the notation a1 = x and a2 = y , we
only need to show that f (x)≤ 0 for

x + (n− 1)y = n, 0< x ≤ 1,

where

f (x) = x yn−1
�

1
x
+

n− 1
y
− n+ en−1

�

− en−1

= yn−1 + (n− 1)x yn−2 − (n− en−1)x yn−1 − en−1.

Since
y ′ =

−1
n− 1

,

we get
f ′(x)
yn−3

= (y − x)h(x),

where
h(x) = n− 2− (n− en−1)y = n− 2− (n− en−1)

n− x
n− 1

is a linear increasing function. Since

h(0) =
n

n− 1

�

en−1 − 3+
2
n

�

< 0
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and
h(1) = en−1 − 2> 0,

there exists x1 ∈ (0, 1) so that h(x1) = 0, h(x)< 0 for x ∈ [0, x1), and h(x)> 0 for
x ∈ (x1, 1]. Consequently, f is strictly decreasing on [0, x1] and strictly increasing
on [x1, 1]. From

f (0) = f (1) = 0,

it follows that f (x)≤ 0 for x ∈ [0, 1].

The equality holds for a1 = a2 = · · · = an = 1. If n = 2, then the equality holds
for a1 + a2 = 2a1a2.

P 5.65. If a1, a2, . . . , an are positive real numbers, then

an
1 + an

2 + · · ·+ an
n

a1a2 · · · an
+ n(n− 1)≥ (a1 + a2 + · · ·+ an)

�

1
a1
+

1
a2
+ · · ·+

1
an

�

.

(Vasile C., 2004)

Solution. For n= 2, the inequality is an identity. For n≥ 3, according to Corollary
5 (case k = 0 and m ∈ {−1, n}), if 0< a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = constant, a1a2 · · · an = constant,

then the sum
1
a1
+

1
a2
+ · · ·+

1
an

is maximal and the sum an
1 + an

2 + · · ·+ an
n is minimal

for
0< a1 ≤ a2 = · · ·= an.

Consequently, we only need to prove the desired homogeneous inequality for a2 =
· · ·= an = 1, when it becomes

an
1 + (n− 2)a1 ≥ (n− 1)a2

1.

Indeed, by the AM-GM inequality, we have

an
1 + (n− 2)a1 ≥ (n− 1) n−1

q

an
1 · a

n−2
1 = (n− 1)a2

1.

For n≥ 3, the equality holds when a1 = a2 = · · ·= an.

P 5.66. If a1, a2, . . . , an are nonnegative real numbers, then

(n−1)(an
1+an

2+ · · ·+an
n)+na1a2 · · · an ≥ (a1+a2+ · · ·+an)(a

n−1
1 +an−1

2 + · · ·+an−1
n ).

(Janos Suranyi, MSC-Hungary)
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Solution. For n= 2, the inequality is an identity. For n≥ 3, according to Corollary
5 (case k = n and m= n− 1), if 0≤ a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = constant, an
1 + an

2 + · · ·+ an
n = constant,

then the sum an−1
1 +an−1

2 +· · ·+an−1
n is maximal and the product a1a2 · · · an is minimal

for either a1 = 0 or 0< a1 ≤ a2 = · · ·= an. Consequently, we only need to consider
these cases.

Case 1: a1 = 0. The inequality reduces to

(n− 1)(an
2 + · · ·+ an

n)≥ (a2 + · · ·+ an)(a
n−1
2 + · · ·+ an−1

n ),

which follows immediately from Chebyshev’s inequality.

Case 2: 0< a1 ≤ a2 = · · ·= an. Due to homogeneity, we may set a2 = · · ·= an = 1,
when the inequality becomes

(n− 2)an
1 + a1 ≥ (n− 1)an−1

1 .

Indeed, by the AM-GM inequality, we have

(n− 2)an
1 + a1 ≥ (n− 1)

n−1
Ç

an(n−2)
1 · a1 = (n− 1)an−1

1 .

For n≥ 3, the equality holds when a1 = a2 = · · ·= an, and also when

a1 = 0, a2 = · · ·= an

(or any cyclic permutation).

P 5.67. If a1, a2, . . . , an are nonnegative real numbers, then

(n−1)(an+1
1 +an+1

2 + · · ·+an+1
n )≥ (a1+a2+ · · ·+an)(a

n
1+an

2+ · · ·+an
n−a1a2 · · · an).

(Vasile C., 2006)

Solution. For n= 2, the inequality is an identity. For n≥ 3, according to Corollary
5 (case k = n+ 1 and m= n), if 0≤ a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = constant, an+1
1 + an+1

2 + · · ·+ an+1
n = constant,

then the sum an
1 + an

2 + · · ·+ an
n is maximal and the product a1a2 · · · an is minimal for

either a1 = 0 or 0 < a1 ≤ a2 = · · · = an. Consequently, we only need to consider
these cases.

Case 1: a1 = 0. The inequality reduces to

(n− 1)(an+1
2 + · · ·+ an+1

n )≥ (a2 + · · ·+ an)(a
n
2 + · · ·+ an

n),
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which follows immediately from Chebyshev’s inequality.

Case 2: 0< a1 ≤ a2 = · · ·= an. Due to homogeneity, we may set a2 = · · ·= an = 1,
when the inequality becomes

(n− 2)an+1
1 + a2

1 ≥ (n− 1)an
1 .

Indeed, by the AM-GM inequality, we have

(n− 2)an+1
1 + a2

1 ≥ (n− 1)
n−1
Ç

a(n+1)(n−2)
1 · a2

1 = (n− 1)an
1 .

For n≥ 3, the equality holds when a1 = a2 = · · ·= an, and also when

a1 = 0, a2 = · · ·= an

(or any cyclic permutation).

P 5.68. If a1, a2, . . . , an are positive real numbers, then

(a1 + a2 + · · ·+ an − n)
�

1
a1
+

1
a2
+ · · ·+

1
an
− n

�

+ a1a2 · · · an +
1

a1a2 · · · an
≥ 2.

(Vasile C., 2006)

Solution. For n= 2, the inequality reduces to

(1− a1)
2(1− a2)

2 ≥ 0.

Consider further that n ≥ 3. Since the inequality remains unchanged by replacing
each ai with 1/ai, we may consider a1a2 · · · an ≥ 1. By the AM-GM inequality, we
get

a1 + a2 + · · ·+ an ≥ n n
p

a1a2 · · · an ≥ n.

According to Corollary 5 (case k = 0 and m= −1), if 0< a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = constant, a1a2 · · · an = constant,

then the sum
Sn =

1
a1
+

1
a2
+ · · ·+

1
an

is minimal for 0 < a1 = a2 = · · · = an−1 ≤ an. Consequently, we only need to
consider

a1 = a2 = · · ·= an−1 = x , an = y, x ≤ y.

The inequality becomes

[(n− 1)x + y − n]
�

n− 1
x
+

1
y
− n

�

+ xn−1 y +
1

xn−1 y
≥ 2,
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�

xn−1 +
n− 1

x
− n

�

y +
�

1
xn−1

+ (n− 1)x − n
�

1
y
≥

n(n− 1)(x − 1)2

x
.

Since

xn−1 +
n− 1

x
− n=

x − 1
x

�

(xn−1 − 1) + (xn−2 − 1) + · · ·+ (x − 1)
�

=
(x − 1)2

x

�

xn−2 + 2xn−3 + · · ·+ (n− 1)
�

,

and
1

xn−1
+ (n− 1)x − n=

(x − 1)2

x

�

1
xn−2

+
2

xn−3
+ · · ·+ (n− 1)

�

,

it is enough to prove the inequality

�

xn−2 + 2xn−3 + · · ·+ (n− 1)
�

y +
�

1
xn−2

+
2

xn−3
+ · · ·+ (n− 1)

�

1
y
≥ n(n− 1),

which is equivalent to
�

xn−2 y +
1

xn−2 y
− 2

�

+ 2
�

xn−3 y +
1

xn−3 y
− 2

�

+ · · ·+ (n− 1)
�

y +
1
y
− 2

�

≥ 0,

(xn−2 y − 1)2

xn−2 y
+

2(xn−3 y − 1)2

xn−3 y
+ · · ·+

(n− 1)(y − 1)2

y
≥ 0.

The equality holds if n− 1 of the numbers ai are equal to 1.

P 5.69. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then
�

�

�

�

�

�

1
p

a1 + a2 + · · ·+ an − n
−

1
Ç

1
a1
+ 1

a2
+ · · ·+ 1

an
− n

�

�

�

�

�

�

< 1.

(Vasile C., 2006)

Solution. Let

A= a1 + a2 + · · ·+ an − n, B =
1
a1
+

1
a2
+ · · ·+

1
an
− n.

By the AM-GM inequality, it follows that A > 0 and B > 0. According to the pre-
ceding P 5.68, the following inequality holds

(a1 + · · ·+ an+1 − n− 1)
�

1
a1
+ · · ·+

1
an+1

− n− 1
�

+ a1 · · · an+1 +
1

a1 · · · an+1
≥ 2,
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which is equivalent to

(A− 1+ an+1)
�

B − 1+
1

an+1

�

+ an+1 +
1

an+1
≥ 2,

A
an+1

+ Ban+1 + AB − A− B ≥ 0.

Choosing

an+1 =

√

√A
B

,

we get
2
p

AB + AB − A− B ≥ 0,

AB ≥
�p

A−
p

B
�2

,

1≥
�

�

�

�

1
p

A
−

1
p

B

�

�

�

�

.

P 5.70. If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

an−1
1 + an−1

2 + · · ·+ an−1
n +

n2(n− 2)
a1 + a2 + · · ·+ an

≥ (n− 1)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

.

Solution. For n = 2, the inequality is an identity. Consider further that n ≥ 3.
According to Corollary 5 (case k = 0), if 0< a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = constant, a1a2 · · · an = 1,

then the sum an−1
1 + an−1

2 + · · ·+ an−1
n is minimal and the sum

1
a1
+

1
a2
+ · · ·+

1
an

is

maximal for 0< a1 ≤ a2 = · · ·= an. Thus, we only need to prove the homogeneous
inequality

an−1
1 +an−1

2 +· · ·+an−1
n +

n2(n− 2)a1a2 · · · an

a1 + a2 + · · ·+ an
≥ (n−1)a1a2 · · · an

�

1
a1
+

1
a2
+ · · ·+

1
an

�

for a2 = · · ·= an = 1; that is, to show that f (x)≥ 0 for x ∈ [0, 1], where

f (x) = xn−2 +
n2(n− 2)
x + n− 1

− (n− 1)2,

f ′(x)
n− 2

= xn−3 −
n2

(x + n− 1)2
.

Since f ′ is increasing, we have f ′(x)≤ f ′(1) = 0 for x ∈ [0, 1], f is decreasing on
[0,1], hence f (x)≥ f (1) = 0.

The equality holds for a1 = a2 = · · · = an = 1. If n = 2, then the equality holds
for a1a2 = 1.
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P 5.71. If a, b, c are nonnegative real numbers, then

(a+ b+ c − 3)2 ≥
abc − 1
abc + 1

(a2 + b2 + c2 − 3).

(Vasile C., 2006)

Solution. For a = 0, the inequality reduces to

b2 + c2 + bc + 3≥ 3(b+ c),

which is equivalent to
(b− c)2 + 3(b+ c − 2)2 ≥ 0.

For abc > 0, according to Corollary 5 (case k = 0 and m= 2), if

a+ b+ c = constant, abc = constant,

then
S3 = a2 + b2 + c2

is minimal and maximal when two of a, b, c are equal. Thus, we only need to prove
the desired inequality for a = b; that is,

(2a+ c − 3)2 ≥
a2c − 1
a2c + 1

(2a2 + c2 − 3),

which is equivalent to

(a− 1)2[ca2 + 2c(c − 2)a+ c2 − 3c + 3]≥ 0.

For c ≥ 2, the inequality is clearly true. It is also true for c ≤ 2, because

ca2 + 2c(c − 2)a+ c2 − 3c + 3= c(a+ c − 2)2 + (1− c)2(3− c)≥ 0.

The equality holds if two of a, b, c are equal to 1.

P 5.72. If a1, a2, . . . , an are positive real numbers so that a1+ a2+ · · ·+ an = n, then

(a1a2 · · · an)
1p
n−1 (a2

1 + a2
2 + · · ·+ a2

n)≤ n.

(Vasile C., 2006)
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Solution. For n= 2, the inequality is equivalent to

(a1a2 − 1)2 ≥ 0.

For n ≥ 3, according to Corollary 5 (case k = 0, m = 2), if 0 < a1 ≤ a2 ≤ · · · ≤ an

and
a1 + a2 + · · ·+ an = n, a1a2 · · · an = constant,

then the sum
Sn = a2

1 + a2
2 + · · ·+ a2

n

is maximal for a1 = a2 = · · ·= an−1. Therefore, we only need to prove the homoge-
neous inequality

(a1a2 · · · an)
1p
n−1 ·

a2
1 + a2

2 + · · ·+ a2
n

n
≤
�a1 + a2 + · · ·+ an

n

�2+ np
n−1

for a1 = a2 = · · · = an−1 = 1. The inequality is equivalent to f (x) ≥ 0 for x ≥ 1,
where

f (x) =
�

2+
n

p
n− 1

�

ln
x + n− 1

n
−

ln x
p

n− 1
− ln

x2 + n− 1
n

.

Let
p =

1
p

n− 1
.

Since

f ′(x) =
2+ np

x + n− 1
−

p
x
−

2x
x2 + n− 1

=
(n− 1)(x − 1)

x + n− 1

�

p
x
−

2
x2 + n− 1

�

=
p(n− 1)(x − 1)(x −

p
n− 1)2

x(x + n− 1)(x2 + n− 1)
≥ 0,

f (x) is increasing for x ≥ 1, hence

f (x)≥ f (1) = 0.

The equality holds for a1 = a2 = · · ·= an = 1.

Remark. For n= 5, from the homogeneous inequality above, we get the following
nice results:

• If a, b, c, d, e are positive real numbers so that

a2 + b2 + c2 + d2 + e2 = 5,

then
(a) abcde(a4 + b4 + c4 + d4 + e4)≤ 5;

(b) a+ b+ c + d + e ≥ 5
9pabcde.
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P 5.73. If a1, a2, . . . , an are positive real numbers such that a1+ a2+ · · ·+ an = n−1,
then

n

√

√ n− 1
a1a2 · · · an

≥ 4

√

√

√a2
1 + a2

2 + · · ·+ a2
n

n(n− 1)
.

(Vasile Cîrtoaje and KaiRain, 2020)

Solution. For n= 2, we need to show that a1 + a2 = 1 involves

1
a1a2

≥ 8(a2
1 + a2)

2,

which is equivalent to
(4a1a2 − 1)2 ≥ 0.

For n≥ 3, write the inequality in the homogeneous form

�a1 + a2 + · · ·+ an

n− 1

�2
n

√

√ n− 1
a1a2 · · · an

≥ 4

√

√

√a2
1 + a2

2 + · · ·+ a2
n

n(n− 1)
.

According to Corollary 4, for a1+ a2+ · · ·+ an = constant and a2
1 + a2

2 + · · ·+ a2
n =

constant, the product a1a2 · · · an is maximal for a1 = a2 = · · · = an−1 ≤ an. Due to
homogeneity, we may set a1 = a2 = · · ·= an−1 = 1, when the inequality becomes

A(x + n− 1)2
npx

≥
p

x2 + n− 1,

where

A=
p

n
4(n− 1)(3n−2)/(2n)

, x ≥ 1.

The inequality is true if f (x)≥ 0, where

f (x) = ln A+ 2 ln(x + n− 1)−
1
n

ln x −
1
2

ln(x2 + n− 1).

From
f ′(x) =

2
x + n− 1

−
1

nx
−

x
x2 + n− 1

=
(n− 1)

�

x3 − (n+ 1)x2 + (2n− 1)x − n+ 1
�

nx(x + n− 1)(x2 + n− 1)

=
(n− 1)(x − 1)2(x − n+ 1)
nx(x + n− 1)(x2 + n− 1)

,

it follows that f is decreasing on [1, n−1] and increasing on [n−1,∞), therefore

f (x)≥ f (n− 1) = 0.

The equality occurs for a1 = a2 = · · · = an−1 =
1
2

and an =
n− 1

2
(or any cyclic

permutation).
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P 5.74. If a1, a2, . . . , an are positive real numbers so that a3
1+a3

2+ · · ·+a3
n = n, then

a1 + a2 + · · ·+ an ≥ n n+1
p

a1a2 · · · an.

(Vasile C., 2007)

Solution. For n= 2, we need to show that a3
1+ a3

2 = 2 involves (a1+ a2)3 ≥ 8a1a2.
Let

x = a1 + a2.

From
2= a3

1 + a3
2 = x3 − 3a1a2 x ,

we get

a1a2 =
x3 − 2

3x
.

Thus,

(a1 + a2)
3 − 8a1a2 = x3 −

8(x3 − 2)
3x

=
(x − 2)2(3x2 + 4x + 4)

3x
≥ 0.

For n≥ 3, according to Corollary 4, if 0< a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = constant, a3
1 + a3

2 + · · ·+ a3
n = n,

then the product
P = a1a2 · · · an

is maximal for a1 = a2 = · · ·= an−1. Therefore, we only need to prove the homoge-
neous inequality

�a1 + a2 + · · ·+ an

n

�n+1

≥ a1a2 · · · an

3

√

√a3
1 + a3

2 + · · ·+ a3
n

n

for a1 = a2 = · · · = an−1 = 1. The inequality is equivalent to f (x) ≥ 0 for x ≥ 1,
where

f (x) = (n+ 1) ln
x + n− 1

n
− ln x −

1
3

ln
x3 + n− 1

n
.

Since

f ′(x) =
n+ 1

x + n− 1
−

1
x
−

x2

x3 + n− 1

=
(n− 1)(x − 1)(x3 − x2 − x + n− 1)

x(x + n− 1)(x3 + n− 1)

≥
(n− 1)(x − 1)(x3 − x2 − x + 1)

x(x + n− 1)(x3 + n− 1)

=
(n− 1)(x − 1)3(x + 1)

x(x + n− 1)(x3 + n− 1)
,
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f (x) is increasing for x ≥ 1, hence

f (x)≥ f (1) = 0.

The equality holds for a1 = a2 = · · ·= an = 1.

P 5.75. Let a, b, c be nonnegative real numbers so that ab+ bc + ca = 3. If

k ≥ 2−
ln4
ln3
≈ 0.738,

then
ak + bk + ck ≥ 3.

(Vasile C., 2004)

Solution. Let

r = 2−
ln4
ln3

.

By the power mean inequality, we have

ak + bk + ck

3
≥
�

ar + br + c r

3

�k/r

.

Thus, it suffices to show that

ar + br + c r ≥ 3.

Since
2(ab+ bc + ca) = (a+ b+ c)2 − (a2 + b2 + c2),

according to Corollary 5 (case k = 2, m= r), if a ≤ b ≤ c and

a+ b+ c = constant, a2 + b2 + c2 = constant,

then
S3 = ar + br + c r

is minimal for either a = 0 or 0< a ≤ b = c.

Case 1: a = 0. We need to show that bc = 3 implies br + c r ≥ 3. Indeed, by the
AM-GM inequality, we have

br + c r ≥ 2
Æ

(bc)r = 2 · 3r/2 = 3.

Case 2: 0< a ≤ b = c. We only need to show that the homogeneous inequality

ar + br + c r ≥ 3
�

ab+ bc + ca
3

�r/2
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holds for b = c = 1; that is, to show that a ∈ (0, 1] involves

ar + 2≥ 3
�

2a+ 1
3

�r/2

,

which is equivalent to f (a)≥ 0, where

f (a) = ln
ar + 2

3
−

r
2

ln
2a+ 1

3
.

The derivative

f ′(a) =
rar−1

ar + 2
−

r
2a+ 1

=
r g(a)

a1−r(ar + 2)(2a+ 1)
,

where
g(a) = a− 2a1−r + 1.

From

g ′(a) = 1−
2(1− r)

ar
,

it follows that g ′(a)< 0 for a ∈ (0, a1), and g ′(a)> 0 for a ∈ (a1, 1], where

a1 = (2− 2r)1/r ≈ 0.416.

Then, g is strictly decreasing on [0, a1] and strictly increasing on [a1, 1]. Since
g(0) = 1 and g(1) = 0, there exists a2 ∈ (0,1) so that g(a2) = 0, g(a) > 0 for
a ∈ [0, a2), and g(a) < 0 for a ∈ (a2, 1]. Consequently, f is increasing on [0, a2]
and decreasing on [a2, 1]. Since f (0) = f (1) = 0, we have f (a)≥ 0 for 0< a ≤ 1.

The equality holds for a = b = c = 1. If k = 2−
ln 4
ln 3

, then the equality holds also

for
a = 0, b = c =

p
3

(or any cyclic permutation).

Remark. For k = 3/4, we get the following nice results (see P 3.33 in Volume 1):

• Let a, b, c be positive real numbers.

(a) If a4 b4 + b4c4 + c4a4 = 3, then

a3 + b3 + c3 ≥ 3.

(b) If a3 + b3 + c3 = 3, then

a4 b4 + b4c4 + c4a4 ≤ 3.
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P 5.76. Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If

k ≥
ln9− ln8
ln3− ln2

≈ 0.29,

then
ak + bk + ck ≥ ab+ bc + ca.

(Vasile C., 2005)

Solution. For k ≥ 1, by Jensen’s inequality, we get

ak + bk + ck ≥ 3
�

a+ b+ c
3

�k

= 3=
1
3
(a+ b+ c)2 ≥ ab+ bc + ca.

Let

r =
ln 9− ln8
ln3− ln2

.

Assume further that
r ≤ k < 1,

and write the inequality as

2(ak + bk + ck) + a2 + b2 + c2 ≥ 9.

By Corollary 5, if a ≤ b ≤ c and

a+ b+ c = 3, a2 + b2 + c2 = constant,

then the sum
S3 = ak + bk + ck

is minimal for either a = 0 or 0 < a ≤ b = c. Thus, we only need to prove the
desired inequality for these cases.

Case 1: a = 0. We need to show that b + c = 3 involves bk + ck ≥ bc. Indeed, by
the AM-GM inequality, we have

bk + ck − bc ≥ 2(bc)k/2 − bc = (bc)k/2
�

2− (bc)1−k/2
�

≥ (bc)k/2
�

2−
�

b+ c
2

�2−k
�

= (bc)k/2
�

2−
�

3
2

�2−k
�

≥ (bc)k/2
�

2−
�

3
2

�2−r
�

= 0.

Case 2: 0< a ≤ b = c. We only need to show that the homogeneous inequality

(ak + bk + ck)
�

a+ b+ c
3

�2−k

≥ ab+ bc + ca
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holds for b = c = 1; that is, to show that a ∈ (0, 1] involves

(ak + 2)
�

a+ 2
3

�2−k

≥ 2a+ 1,

which is equivalent to f (a)≥ 0, where

f (a) = ln(ak + 2) + (2− k) ln
a+ 2

3
− ln(2a+ 1).

We have

f ′(a) =
kak−1

ak + 2
+

2− k
a+ 2

−
2

2a+ 1
=

2g(a)
a1−k(ak + 2)(2a+ 1)

,

where
g(a) = a2 + (2k− 1)a+ k+ 2(1− k)a2−k − (k+ 2)a1−k,

with
g ′(a) = 2a+ 2k− 1+ 2(1− k)(2− k)a1−k − (k+ 2)(1− k)a−k,

g ′′(a) = 2+ 2(1− k)2(2− k)a−k + k(k+ 2)(1− k)a−k−1.

Since g ′′ > 0, g ′ is strictly increasing. From g ′(0+) = −∞ and g ′(1) = 3(1 −
k) + 3k2 > 0, it follows that there exists a1 ∈ (0,1) so that g ′(a1) = 0, g ′(a) < 0
for a ∈ (0, a1) and g ′(a) > 0 for a ∈ (a1, 1]. Therefore, g is strictly decreasing
on [0, a1] and strictly increasing on [a1, 1]. Since g(0) = k > 0 and g(1) = 0,
there exists a2 ∈ (0, a1) so that g(a2) = 0, g(a) > 0 for a ∈ [0, a2) and g(a) < 0
for a ∈ (a2, 1]. Consequently, f is increasing on [0, a2] and decreasing on [a2, 1].
Since

f (0) = ln2+ (3− k) ln
2
3
≥ ln2+ (3− r) ln

2
3
= 0

and f (1) = 0, we get f (a)≥ 0 for 0≤ a ≤ 1.

The equality holds for a = b = c = 1. If k =
ln 9− ln 8
ln 3− ln 2

, then the equality holds

also for
a = 0, b = c =

3
2

(or any cyclic permutation).

P 5.77. If a1, a2, . . . , an (n≥ 4) are nonnegative numbers so that a1+a2+· · ·+an = n,
then

1
n+ 1− a2a3 · · · an

+
1

n+ 1− a3a4 · · · a1
+ · · ·+

1
n+ 1− a1a2 · · · an−1

≤ 1.

(Vasile C., 2004)
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Solution. Let a1 ≤ a2 ≤ · · · ≤ an and

en−1 =
�

1+
1

n− 1

�n−1

.

By the AM-GM inequality, we have

a2a3 · · · an ≤
�a2 + a3 + · · ·+ an

n− 1

�n−1

≤
�a1 + a2 + · · ·+ an

n− 1

�n−1

= en−1,

hence
n+ 1− a2a3 · · · an ≥ n+ 1− en−1 = (n− 2) + (3− en−1)> 0.

Consider the cases a1 = 0 and a1 > 0.

Case 1: a1 = 0. We need to show that a2 + a3 + · · ·+ an = n involves

1
n+ 1− a2a3 · · · an

+
n− 1
n+ 1

≤ 1,

which is equivalent to

a2a3 · · · an ≤
n+ 1

2
.

Since

a2a3 · · · an ≤
�a2 + a3 + · · ·+ an

n− 1

�n−1

= en−1,

it suffices to show that
en−1 ≤

n+ 1
2

.

For n= 4, we have
n+ 1

2
− en−1 =

7
54
> 0.

For n≥ 5, we get
n+ 1

2
≥ 3> en−1.

Case 2: 0< a1 ≤ a2 ≤ · · · ≤ an. Denote

a1a2 · · · an = (n+ 1)r, r > 0.

From a2a3 · · · an ≤ en−1, we get

a1 ≥ a, a =
(n+ 1)r

en−1
> r.

Write the inequality as follows

a1

a1 − r
+

a2

a2 − r
+ · · ·+

an

an − r
≤ n+ 1,
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1
a1 − r

+
1

a2 − r
+ · · ·+

1
an − r

≤
1
r

,

f (a1) + f (a2) + · · ·+ f (an) +
1
r
≥ 0,

where
f (u) =

−1
u− r

, u≥ a.

We will apply Corollary 3 to the function f . We have

f ′(u) =
1

(u− r)2
,

g(x) = f ′
�

1
x

�

=
x2

(1− r x)2
, g ′′(x) =

4r x + 2
(1− r x)4

> 0.

According to Corollary 3, if a ≤ a1 ≤ a2 ≤ · · · ≤ an and

a1 + a2 + · · ·+ an = n, a1a2 · · · an = (n+ 1)r = constant,

then the sum S3 = f (a1)+ f (a2)+ · · ·+ f (an) is minimal for a ≤ a1 ≤ a2 = · · ·= an.
Thus, we only need to prove the homogeneous inequality

1

n+ 1−
a2a3 · · · an

sn−1

+
1

n+ 1−
a3a4 · · · a1

sn−1

+ · · ·+
1

n+ 1−
a1a2 · · · an−1

sn−1

≤ 1

for 0< a1 ≤ a2 = a3 = · · ·= an = 1, where

s =
a1 + a2 + · · ·+ an

n
;

that is,
sn−1

(n+ 1)sn−1 − 1
+

(n− 1)sn−1

(n+ 1)sn−1 − a1
≤ 1, s =

a1 + n− 1
n

,

which is equivalent to
f (s)≥ 0, s1 < s ≤ 1,

where
s1 =

n− 1
n

and
f (s) = (n+ 1)s2n−2 − n2sn + (n+ 1)(n− 2)sn−1 + ns− n+ 1.

We have
f ′(s) = 2(n2 − 1)s2n−3 − n3sn−1 + (n2 − 1)(n− 2)sn−2 + n,

f ′′(s) = (n− 1)sn−3 g(s),

where
g(s) = 2(2n− 3)(n+ 1)sn−1 − n3s+ (n− 2)2(n+ 1),
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g ′(s) = 2(2n− 3)(n2 − 1)sn−2 − n3.

Since

g ′(s)≥ g ′(s1) =
2n(2n− 3)(n+ 1)

en−1
− n3

>
2n(2n− 3)(n+ 1)

3
− n3 =

n(n2 − 2n− 6)
3

> 0,

g is increasing. There are two cases to consider: g(s1)≥ 0 and g(s1)< 0.

Subcase A: g(s1)≥ 0. Then, g(s)≥ 0, f ′′(s)≥ 0, f ′ is increasing. Since f ′(1) = 0,
it follows that f ′(s)≤ 0 for s ∈ [s1, 1], f is decreasing, hence f (s)≥ f (1) = 0.

Subcase B: g(s1)< 0. Then, since g(1) = n2−2n+4> 0, there exists s2 ∈ (s1, 1) so
that g(s2) = 0, g(s) < 0 for s ∈ [s1, s2) and g(s) > 0 for s ∈ (s2, 1], f ′ is decreasing
on [s1, s2] and increasing on [s2, 1]. We see that f ′(1) = 0. If f ′(s1) ≤ 0, then
f ′(s) ≤ 0 for s ∈ [s1, 1], f is decreasing, hence f (s) ≥ f (1) = 0. If f ′(s1) > 0, then
there exists s3 ∈ (s1, s2) so that f ′(s3) = 0, f ′(s) > 0 for s ∈ [s1, s3) and g(s) < 0
for s ∈ (s3, 1], hence f is increasing on [s1, s3] and decreasing on [s3, 1]. Since
f (1) = 0, it suffices to show that f (s1) ≥ 0. This is true since s = s1 involves
a1 = 0, and we have shown that the desired inequality holds for a1 = 0.

The equality occurs for a1 = a2 = · · ·= an = 1.

P 5.78. If a, b, c are nonnegative real numbers so that

a+ b+ c ≥ 2, ab+ bc + ca ≥ 1,

then
3pa+

3
p

b+ 3pc ≥ 2.

(Vasile C., 2005)

Solution. According to Corollary 5 (case k = 2 and m= 1/3), if 0≤ a ≤ b ≤ c and

a+ b+ c = constant, ab+ bc + ca = constant,

then the sum S3 =
3pa+ 3p

b+ 3pc is minimal for either a = 0 or 0< a ≤ b = c.

Case 1: a = 0. The hypothesis ab+ bc + ca ≥ 1 implies bc ≥ 1; consequently,

3pa+
3
p

b+ 3pc =
3
p

b+ 3pc ≥ 2
6
p

bc ≥ 2.

Case 2: 0< a ≤ b = c. If c ≥ 1, then

3pa+
3
p

b+ 3pc ≥ 2 3pc ≥ 2.
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If c < 1, then
3pa+

3
p

b+ 3pc ≥ a+ b+ c ≥ 2.

The equality holds for
a = 0, b = c = 1

(or any cyclic permutation).

P 5.79. If a, b, c, d are positive real numbers so that abcd = 1, then

(a+ b+ c + d)4 ≥ 36
p

3 (a2 + b2 + c2 + d2).

(Vasile C., 2008)

Solution. According to Corollary 5 (case k = 0 and m= 2), if a ≤ b ≤ c ≤ d and

a+ b+ c + d = constant, abcd = 1,

then the sum
S4 = a2 + b2 + c2 + d2

is maximal for a = b = c ≤ d. Thus, we only need to show that

(3a+ d)4 ≥ 36
p

3 (3a2 + d2)

for a3d = 1. Write this inequality as f (a)≥ 0, where

f (a) = 4 ln
�

3a+
1
a3

�

− ln
�

3a2 +
1
a6

�

− ln 36
p

3, 0< a ≤ 1.

Since

f ′(a) =
12(a4 − 1)
a(3a4 + 1)

−
6(a8 − 1)
a(3a8 + 1)

=
6(a4 − 1)2(3a4 − 1)
a(3a4 + 1)(3a8 + 1)

,

f is decreasing on [0,1/ 4p3] and increasing on [1/ 4p3, 1]; therefore,

f (a)≥ f
�

1
4p3

�

= 0.

The equality holds for

a = b = c =
1

4p3
, d = 4

p

27

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:



EV Method for Nonnegative Variables 451

• If a1, a2, . . . , an are positive real numbers so that a1a2 · · · an = 1, then

(a1 + a2 + · · ·+ an)
4 ≥

16
n

n
Æ

(n− 1)3n−2 (a2
1 + a2

2 + · · ·+ a2
n),

with equality for

a1 = a2 = · · ·= an−1 =
1

npn− 1
, an =

n
Æ

(n− 1)n−1

(or any cyclic permutation).

P 5.80. If a, b, c are nonnegative real numbers so that ab+ bc + ca = 1, then
p

33a2 + 16+
p

33b2 + 16+
p

33c2 + 16≤ 9(a+ b+ c).

(Vasile C., 2006)

Solution. Write the inequality as

f (a) + f (b) + f (c) + 297(a+ b+ c)≥ 0,

where
f (u) = −

1
33

p

33u2 + 16, u≥ 0.

We have
g(x) = f ′(x) =

−x
p

33x2 + 16
,

g ′′(x) =
33 · 48x

(33x2 + 16)5/2
.

Since g ′′(x) > 0 for x > 0, g is strictly convex on [0,∞). According to Corollary
1, if 0≤ a ≤ b ≤ c and

a+ b+ c = constant, a2 + b2 + c2 = constant,

then the sum
Sn = f (a) + f (b) + f (c)

is minimal for either a = 0 or 0< a ≤ b = c.

Case 1: a = 0. We need to show that bc = 1 involves
p

33b2 + 16+
p

33c2 + 16≤ 9(b+ c)− 4.

We see that
9(b+ c)− 4≥ 18

p

bc − 4= 14> 0.
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By squaring, the inequality becomes

p

528t2 + 289≤ 24t2 − 36t + 25,

where
t = b+ c ≥ 2.

Since
24t2 − 36t + 25≥ 6t2 + 25,

it suffices to show that
528t2 + 289≤ (6t2 + 25)2,

which is equivalent to
(t2 − 4)(3t2 − 7)≥ 0.

Case 2: 0< a ≤ b = c. Write the inequality in the homogeneous form
∑

Æ

33a2 + 16(ab+ bc + ca)≤ 9(a+ b+ c).

Without loss of generality, assume that b = c = 1, when the inequality becomes

p

33a2 + 32a+ 16+ 2
p

32a+ 49≤ 9a+ 18.

By squaring twice, the inequality turns as follows:

Æ

(33a2 + 32a+ 16)(32a+ 49)≤ 12a2 + 41a+ 28,

72a(2a3 − a2 − 4a+ 3)≥ 0,

72a(a− 1)2(2a+ 3)≥ 0.

The equality holds for a = b = c =
1
p

3
, and also for

a = 0, b = c = 1

(or any cyclic permutation).

P 5.81. If a, b, c are positive real numbers so that a+ b+ c = 3, then

a2 b2 + b2c2 + c2a2 ≤
3

3pabc
.

(Vasile C., 2006)
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Solution. Write the inequality in the homogeneous form

�

a+ b+ c
3

�15

≥ abc
�

a2 b2 + b2c2 + c2a2

3

�3

.

Since

a2 b2 + b2c2 + c2a2 = (ab+ bc + ca)2 − 2abc(a+ b+ c)

=
1
4
(9− a2 − b2 − c2)− 6abc,

we will apply Corollary 5 (case k = 0 and m= 2):
• If 0≤ a ≤ b ≤ c and

a+ b+ c = 3, abc = constant,

them the sum
S3 = a2 + b2 + c2

is minimal for 0< a ≤ b = c.

Therefore, we only need to prove the homogeneous inequality for 0< a ≤ 1 and
b = c = 1. Taking logarithms, we have to show that f (a)≥ 0, where

f (a) = 15 ln
a+ 2

3
− ln a− 3 ln

2a2 + 1
3

.

Since the derivative

f ′(a) =
15

a+ 2
−

1
a
−

12a
2a2 + 1

=
2(a− 1)(2a− 1)(4a− 1)

a(a+ 2)(2a2 + 1)

is negative for a ∈
�

0,
1
4

�

∪
�

1
2

,1
�

and positive for a ∈
�

1
4

,
1
2

�

, f is decreasing

on
�

0,
1
4

�

∪
�

1
2

,1
�

and increasing on
�

1
4

,
1
2

�

. Therefore, it suffices to show that

f
�

1
4

�

≥ 0 and f (1)≥ 0. Indeed, we have f (1) = 0 and

f
�

1
4

�

= ln
312

219
> 0.

The equality holds for a = b = c = 1.
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P 5.82. If a1, a2, . . . , an (n≤ 81) are nonnegative real numbers so that

a2
1 + a2

2 + · · ·+ a2
n = a5

1 + a5
2 + · · ·+ a5

n,

then
a6

1 + a6
2 + · · ·+ a6

n ≤ n.

(Vasile C., 2006)

Solution. Setting an = 1, we obtain the statement for n − 1 numbers ai. Conse-
quently, it suffices to prove the inequality for n = 81. We need to show that the
following homogeneous inequality holds:

81(a5
1 + a5

2 + · · ·+ a5
81)

2 ≥ (a6
1 + a6

2 + · · ·+ a6
81)(a

2
1 + a2

2 + · · ·+ a2
81)

2.

According to Corollary 5 (case k = 3 and m= 5/2), if 0≤ a1 ≤ a2 ≤ · · · ≤ a81 and

a2
1 + a2

2 + · · ·+ a2
81 = constant, a6

1 + a6
2 + · · ·+ a6

81 = constant,

then the sum a5
1 + a5

2 + · · ·+ a5
81 is minimal for a1 = a2 = · · ·= a80 ≤ a81. Therefore,

we only need to prove the homogeneous inequality for a1 = a2 = · · ·= a80 = 0 and
for a1 = a2 = · · · = a80 = 1. The first case is trivial. In the second case, denoting
a81 by x , the homogeneous inequality becomes as follows:

81(80+ x5)2 ≥ (80+ x6)(80+ x2)2,

x10 − 2x8 − 80x6 + 162x5 − x4 − 160x2 + 80≥ 0,

(x − 1)2(x − 2)2(x6 + 6x5 + 21x4 + 60x3 + 75x2 + 60x + 20)≥ 0.

Thus, the proof is completed. The equality holds for a1 = a2 = · · · = an = 1. If
n= 81, then the equality holds also for

a1 = a2 = · · ·= a80 =
a81

2
= 3

√

√3
4

(or any cyclic permutation).

P 5.83. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

1+
p

1+ a3 + b3 + c3 ≥
Æ

3(a2 + b2 + c2).

(Vasile C., 2006)
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Solution. Write the inequality as

p

1+ a3 + b3 + c3 ≥
Æ

3(a2 + b2 + c2)− 1.

By squaring, we may rewrite the inequality in the homogeneous form

a3 + b3 + c3 + 2
�

a+ b+ c
3

�2
Æ

3(a2 + b2 + c2)≥ (a+ b+ c)(a2 + b2 + c2).

According to Corollary 5 (case k = 2 and m= 3), if 0≤ a ≤ b ≤ c and

a+ b+ c = constant, a2 + b2 + c2 = constant,

then the sum
S3 = a3 + b3 + c3

is minimal for either a = 0 or 0 < a ≤ b = c. Thus, we only need to prove the
homogeneous inequality for a = 0 and for b = c = 1.

Case 1: a = 0. We need to show that

b3 + c3 + 2
�

b+ c
3

�2
Æ

3(b2 + c2)≥ (b+ c)(b2 + c2).

Simplifying by b+ c, it remains to show that

(b+ c)
p

b2 + c2 ≥
3
p

3
2

bc.

Indeed,

(b+ c)
p

b2 + c2 ≥
�

2
p

bc
�p

2bc ≥
3
p

3
2

bc.

Case 2: b = c = 1. We need to prove that

(a+ 2)2
Æ

3(a2 + 2)≥ 9(a2 + a+ 1).

By squaring, the inequality becomes

a6 + 8a5 − a4 − 6a3 − 17a2 + 10a+ 5≥ 0,

(a− 1)2(a4 + 10a3 + 18a2 + 20a+ 5)≥ 0.

The equality holds for a = b = c = 1.
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P 5.84. If a, b, c are nonnegative real numbers so that a+ b+ c = 3, then

p

a+ b+
p

b+ c +
p

c + a ≤

√

√

16+
2
3
(ab+ bc + ca).

(Lorian Saceanu, 2017)

Solution. Write the inequality in the form

f (a) + f (b) + f (c) +

√

√

16+
2
3
(ab+ bc + ca)≥ 0,

where
f (u) = −

p
3− u, 0≤ u≤ 3.

We have
g(x) = f ′(x) =

1

2
p

3− x
,

g ′′(x) =
3
8
(3− x)−5/2.

Since g ′′(x)> 0 for x ∈ [0, 3), g is strictly convex on [0,3]. According to Corollary
1, if 0≤ a ≤ b ≤ c and

a+ b+ c = 3, ab+ bc + ca = constant,

then the sum S3 = f (a) + f (b) + f (c) is minimal for either a = 0 or 0 < a ≤ b = c.
Therefore, we only need to prove the homogeneous inequality

p

a+ b+
p

b+ c +
p

c + a ≤

√

√16
3
(a+ b+ c) +

2(ab+ bc + ca)
a+ b+ c

for a = 0 and b = c = 1.

Case 1: a = 0. We need to show that

p

b+
p

c +
p

b+ c ≤

√

√16
3
(b+ c) +

2bc
b+ c

.

Consider the nontrivial case b, c > 0, use the substitution

x =

√

√ b
c
+
s

c
b

, x ≥ 2,

and write the inequality as

q

b+ c + 2
p

bc +
p

b+ c ≤

√

√16
3
(b+ c) +

2bc
b+ c

,
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p
x + 2+

p
x ≤

√

√16
3

x +
2
x

.

By squaring twice, the inequality becomes as follows:

Æ

x(x + 2)≤
5
3

x − 1+
1
x

,

16x4 − 48x3 + 39x2 − 18x + 9≥ 0,

(x − 2)[16x2(x − 1) + 7x − 4] + 1≥ 0.

Case 2: b = c = 1. We need to prove that

2
p

a+ 1+
p

2≤

√

√16
3
(a+ 2) +

2(2a+ 1)
a+ 2

By squaring twice, the inequality becomes as follows:

6(a+ 2)
Æ

2(a+ 1)≤ 2a2 + 17a+ 17,

4a4 − 4a3 − 3a2 + 2a+ 1≥ 0,

(a− 1)2(2a+ 1)2 ≥ 0.

The equality holds for a = b = c = 1.

P 5.85. If a, b, c ∈ [0, 4] and ab+ bc + ca = 4, then
p

a+ b+
p

b+ c +
p

c + a ≤ 3+
p

5.

(Vasile Cîrtoaje, 2019)

First Solution. Denote s = a+ b+ c, consider s fixed and write the inequality as

f (a) + f (b) + f (c)≥ −3−
p

5,

where
f (x) = −

p
s− x . 0≤ x < s.

From
g(x) = f ′(x) =

1
2
(s− x)−1/2, g ′′(x) =

3
8
(s− x)−5/2 > 0,

it follows that g is strictly convex. Thus, by Corollary 1 and Note 2, the sum f (a)+
f (b) + f (c) is minimal for either a ≤ b = c or a = 0.

Case 1: a ≤ b = c. We need to show that 2ac + c2 = 4 yields

2
p

a+ c +
p

2c ≤ 3+
p

5,
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that is
√

√2(c2 + 1)
c

+
p

2c ≤ 3+
p

5.

From 2ac + c2 = 4,it follows that

2
p

3
≤ c ≤ 2.

Since
p

2c ≤ 2, it is enough to show that
√

√2(c2 + 1)
c

≤ 1+
p

5,

that is
c2 − (3+

p
5)c + 4≤ 0.

Indeed,
c2 − (3+

p
5)c + 4≤ c2 − 5c + 4= (c − 1)(c − 4)< 0.

Case 2: a = 0. We need to show that bc = 4 yields
p

b+
p

c +
p

b+ c ≤ 3+
p

5.

From (4− b)(4− c)≥ 0, we get b+ c ≤ 5. Thus,

p

b+
p

c +
p

b+ c ≤
q

b+ c + 2
p

bc +
p

b+ c

≤
Æ

5+ 2
p

4+
p

5= 3+
p

5.

The equality occurs for a = 0, b = 1 and c = 4 (or any permutation).

Second Solution(by Kiyoras-2001) Assume that a ≥ b ≥ c, denote

S = ab+ bc + ca

and show that

f (a, b, c)≤ f
�

a,
S
a

, 0
�

≤ 3+
p

5,

where
f (a, b, c) =

p

a+ b+
p

b+ c +
p

c + a.

The left homogeneous inequality is true because

f
�

a,
S
a

, 0
�

− f (a, b, c) =

=

√

√

a+
S
a
−
p

a+ b+

√

√S
a
−
p

b+ c +
p

a−
p

c + a
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=
c
a (a+ b)

q

(a+b)(a+c)
a +

p
a+ b

+
bc
a

q

S
a +
p

b+ c
−

c
p

a+
p

c + a

≥
c
a

� p

a(a+ b)
p

a+ c +
p

a
−

a
p

a+
p

c + a

�

≥ 0.

Also, the right inequality is true for S = 4 and a, b, c ∈ [0,4] since a > 1 and

f
�

a,
4
a

, 0
�

− 3−
p

5=

=

√

√

a+
4
a
−
p

5+
2
p

a
+
p

a− 3

=
(a− 1)

�

1− 4
a

�

q

a+ 4
a +
p

5
+ (
p

a− 1)
�

1−
2
p

a

�

≤ 0.

P 5.86. If a, b, c are positive real numbers so that abc = 1, then

(a)
a+ b+ c

3
≥ 3

√

√2+ a2 + b2 + c2

5
;

(b) a3 + b3 + c3 ≥
p

3(a4 + b4 + c4).
(Vasile C., 2006)

Solution. (a) According to Corollary 5 (case k = 0 and m= 2), if a ≤ b ≤ c and

a+ b+ c = constant, abc = 1,

the sum S3 = a2+ b2+ c2 is maximal for 0< a = b ≤ c. Thus, we only need to show
that a2c = 1 involves

2a+ c
3
≥ 3

√

√2+ 2a2 + c2

5
,

which is equivalent to

5
�

2a+
1
a2

�3

≥ 27
�

2+ 2a2 +
1
a4

�

,

40a9 − 54a8 + 6a6 + 30a3 − 27a2 + 5≥ 0,

(a− 1)2(40a7 + 26a6 + 12a5 + 4a4 − 4a3 − 12a2 + 10a+ 5)≥ 0.
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The inequality is true since

12a5 + 4a4 − 4a3 − 12a2 + 10a+ 5> 2a5 + 4a4 − 4a3 − 12a2 + 10a

= 2a(a− 1)2(a2 + 4a+ 5)≥ 0.

The equality holds for a = b = c = 1.

(b) According to Corollary 5 (case k = 0 and m= 4/3), if a ≤ b ≤ c and

a3 + b3 + c3 = constant, a3 b3c3 = 1,

the sum S3 = a4+ b4+ c4 is maximal for 0< a = b ≤ c. Thus, we only need to show
that

2a3 + c3 ≥
Æ

3(2a4 + c4)

for a2c = 1, a ≤ 1. The inequality is equivalent to

�

2a3 +
1
a6

�2

≥ 3
�

2a4 +
1
a8

�

.

Substituting a = 1/t, t ≥ 1, the inequality becomes

�

2
t3
+ t6

�2

≥ 3
�

2
t4
+ t8

�

,

which is equivalent to f (t)≥ 0, where

f (t) = t18 − 3t14 + 4t9 − 6t2 + 4.

We have
f ′(t) = 6t g(t), g(t) = 3t16 − 7t12 + 6t7 − 2,

g ′(t) = 6t6h(t), h(t) = 8t9 − 14t5 + 7,

h′(t) = 2t4(36t2 − 35).

Since h′(t)> 0 for t ≥ 1, h is increasing, h(t)≥ h(1) = 1 for t ≥ 1, g is increasing,
g(t)≥ g(1) = 0 for t ≥ 1, f is increasing, hence f (t)≥ f (1) = 0 for t ≥ 1.

The equality holds for a = b = c = 1.

P 5.87. If a, b, c, d are nonnegative real numbers so that a+ b+ c + d = 4, then

(a2 + b2 + c2 + d2 − 4)(a2 + b2 + c2 + d2 + 18)≤ 10(a3 + b3 + c3 + d3 − 4).

(Vasile Cîrtoaje, 2010)
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Solution. Apply Corollary 2 for n= 4, k = 2, m= 3:

• If a, b, c, d are real numbers so that 0≤ a ≤ b ≤ c ≤ d and

a+ b+ c + d = 4, a2 + b2 + c2 + d2 = constant,

then
S4 = a3 + b3 + c3 + d3

is minimal for either 0< a ≤ b = c = d or a = 0.

Case 1: 0< a ≤ b = c = d. We need to show that a+ 3d = 4 involves

(a2 + 3d2 − 4)(a2 + 3d2 + 18)≤ 10(a3 + 3d3 − 4).

This inequality is equivalent to

(1− d)2(1+ d)(4− 3d)≥ 0,

(1− d)2(1+ d)a ≥ 0.

Case 2: a = 0. Let
s = b2 + c2 + d2.

We need to show that b+ c + d = 4 involves

(s− 4)(s+ 18)≤ 10(b3 + c3 + d3 − 4).

By the Cauchy-Schwarz inequality, we have

s ≥
1
3
(b+ c + d)2 =

16
3

and

(b+ c + d)(b3 + c3 + d3)≥ (b2 + c2 + d2)2, b3 + c3 + d3 ≥
s2

4
.

Thus, it suffices to show that

(s− 4)(s+ 18)≤ 10
�

s2

4
− 4

�

,

which is equivalent to the obvious inequality

(s− 4)(3s− 16)≥ 0.

The equality holds for a = b = c = d = 1, and also for

a = 0, b = c = d =
4
3

(or any cyclic permutation).
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P 5.88. If a, b, c, d are nonnegative real numbers such that

a+ b+ c + d = 4,

then
(a4 + b4 + c4 + d4)2 ≥ (a2 + b2 + c2 + d2)(a5 + b5 + c5 + d5).

(Vasile C., 2020)

Proof. Consider the inequality

(a4
1 + a4

2 + · · ·+ a4
n)

2 ≥ (a2
1 + a2

2 + · · ·+ a2
n)(a

5
1 + a5

2 + · · ·+ a5
n),

where a1, a2, . . . , an are nonnegative real numbers such that a1 + a2 + · · ·+ an = n.
Write this inequality in the homogeneous form

n(a4
1 + a4

2 + · · ·+ a4
n)

2 ≥ (a1 + a2 + · · ·+ an)(a
2
1 + a2

2 + · · ·+ a2
n)(a

5
1 + a5

2 + · · ·+ a5
n).

Replacing a1, a2, . . . , an with x1/4
1 , x1/4

2 , . . . , x1/4
n , the inequality becomes

n(x1 + x2 + · · ·+ xn)
2 ≥

≥
�

x1/4
1 + x1/4

2 + · · ·+ x1/4
n

� �

x1/2
1 + x1/2

2 + · · ·+ x1/2
n

� �

x5/4
1 + x5/4

2 + · · ·+ x5/4
n

�

.

By Corollary 5 (case k = 5/4), if

x1 + x2 + · · ·+ xn = constant, x5/4
1 + x5/4

2 + · · ·+ x5/4
n = constant,

then the sums x1/4
1 + x1/4

2 + · · ·+ x1/4
n and x1/2

1 + x1/2
2 + · · ·+ x1/2

n are maximal for

0≤ x1 = x2 = · · ·= xn−1 ≤ xn.

Since the case a1 = a2 = · · · = an−1 = 0 is trivial, it suffices to consider the case
a1 = a2 = · · ·= an−1 = 1, when the required inequality becomes f (a)≥ 0, where

f (a) = (a4 + n− 1)2 − (a+ n− 1)(a2 + n− 1)(a5 + n− 1), a ≥ 1.

We have

f (a)
n− 1

= a8 − a7 − a6 − (n− 1)a5 + 2na4 − a3 − (n− 1)a2 − (n− 1)a+ n− 1

= a3A− (n− 1)B,

where
A= a5 − a4 − a3 + 2a− 1, B = a5 − 2a4 + a2 + a− 1.

Since
A= (a− 1)2(a3 + a2 − 1), B = (a− 1)2(a3 − a− 1),
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we have
f (a) = (n− 1)(a− 1)2 g(a),

where
g(a) = a6 + a5 − na3 + (n− 1)a+ n− 1.

The inequality is true if g(a)≥ 0. For n= 4, we have

g(a) = a6 + a5 − 4a3 + 3a+ 3> 2a5 − 4a3 + 2a = 2a(a2 − 1)2 ≥ 0.

The equality occurs for a = b = c = d = 1.

Remark 1. Since g(a) ≥ 0 for n ≤ 16, the homogeneous inequality is true for all
n≤ 16.

Remark 2. Since

(a1 + a2 + · · ·+ an)(a
5
1 + a5

2 + · · ·+ a5
n)≤ |(a1 + a2 + · · ·+ an)(a

5
1 + a5

2 + · · ·+ a5
n)|

≤ (|a1|+ |a2|+ · · ·+ |an|)(|a1|5 + |a2|5 + · · ·+ |an|5),
the homogeneous inequality is true for n≤ 16 and real a1, a2, . . . , an.

P 5.89. If a, b, c, d are nonnegative real numbers such that

a+ b+ c + d = 4,

then
13(a2 + b2 + c2 + d2)2 ≥ 12(a4 + b4 + c4 + d4) + 160.

(Vasile Cîrtoaje, 2020)

Solution. Write the inequality in the homogeneous form

104(a2 + b2 + c2 + d2)2 ≥ 96(a4 + b4 + c4 + d4) + 5(a+ b+ c + d)4.

According to Corollary 5, for a + b + c + d = constant and a2 + b2 + c2 + d2 =
constant, the sum

S = a4 + b4 + c4 + d4

is maximal when a ≥ b = c = d. Therefore, it suffices to consider this case. Due
to homogeneity, for the nontrivial case b = c = d 6= 0, we may consider that
b = c = d = 1. Thus we only need to prove that

104(a2 + 3)2 ≥ 96(a4 + 3) + 5(a+ 3)4,

which is equivalent to
(a− 1)2(a− 9)2 ≥ 0.

The equality occurs for a = b = c = d = 1, and also for a = 3 and b = c = d =
1
3

(or any cyclic permutation).
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P 5.90. If a1, a2, . . . , a8 are nonnegative real numbers, then

19(a2
1 + a2

2 + · · ·+ a2
8)

2 ≥ 12(a1 + a2 + · · ·+ a8)(a
3
1 + a3

2 + · · ·+ a3
8).

(Vasile C., 2007)

Solution. By Corollary 5 (case n= 8, k = 2, m= 3), if 0≤ a1 ≤ a2 ≤ · · · ≤ a8 and

a1 + a2 + · · ·+ a8 = constant, a2
1 + a2

2 + · · ·+ a2
8 = constant,

then the sum
S8 = a3

1 + a3
2 + · · ·+ a3

8

is maximal for a1 = a2 = · · · = a7 ≤ a8. Due to homogeneity, we only need to
consider the cases a1 = a2 = · · · = a7 = 0 and a1 = a2 = · · · = a7 = 1. For the
second case (nontrivial), we need to show that

19(7+ a2
8)

2 ≥ 12(7+ a8)(7+ a3
8),

which is equivalent to

a4
8 − 12a3

8 + 38a2
8 − 12a8 + 49≥ 0,

(a2
8 − 6a8 + 1)2 + 48≥ 0.

The equality holds for a1 = a2 = · · ·= a8 = 0.

P 5.91. If a, b, c are nonnegative real numbers so that

5(a2 + b2 + c2) = 17(ab+ bc + ca),

then

3

√

√3
5
≤
s

a
b+ c

+

√

√ b
c + a

+
s

c
a+ b

≤
1+
p

7
p

2
.

(Vasile C., 2006)

Solution. Due to homogeneity, we may assume that a + b + c = 9. From the
hypothesis 5(a2 + b2 + c2) = 17(ab+ bc + ca), which is equivalent to

27(a2 + b2 + c2) = 17(a+ b+ c)2,

we get
a2 + b2 + c2 = 51.

Also, from 2(b2 + c2)≥ (b+ c)2 and

b+ c = 9− a, b2 + c2 = 51− a2,
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we get a ≤ 7. Write the desired inequality in the form

3

√

√3
5
≤ f (a) + f (b) + f (c)≤

1+
p

7
p

2
.

where

f (u) =
s

u
9− u

, 0≤ u≤ 7.

We have
g(x) = f ′(x) =

9
2x1/2(9− x)3/2

,

g ′′(x) =
27(8x2 − 36x + 81)

8x5/2(9− x)7/2
.

Since g ′′(x)> 0 for x ∈ (0, 7], g is strictly convex on (0, 7]. According to Corollary
1, if 0≤ a ≤ b ≤ c and

a+ b+ c = 9, a2 + b2 + c2 = 51,

then the sum S3 = f (a) + f (b) + f (c) is maximal for a = b ≤ c, and is minimal for
either a = 0 or 0< a ≤ b = c.

(a) To prove the right inequality, it suffices to consider the case a = b ≤ c.
From

a+ b+ c = 9, a2 + b2 + c2 = 51,

we get a = b = 1 and c = 7, therefore

s

a
b+ c

+

√

√ b
c + a

+
s

c
a+ b

=
1+
p

7
p

2
.

The original right inequality is an equality for a = b = c/7 (or any cyclic permuta-
tion).

(b) To prove the left inequality, it suffices to consider the cases a = 0 and
0< a ≤ b = c. For a = 0, from

a+ b+ c = 9, a2 + b2 + c2 = 51,

we get
b
c
+

c
b
=

17
5

,

therefore
s

a
b+ c

+

√

√ b
c + a

+
s

c
a+ b

=

√

√ b
c
+
s

c
b
=

√

√ b
c
+

c
b
+ 2= 3

√

√3
5

.

The case 0< a ≤ b = c is not possible, because from

a+ b+ c = 9, a2 + b2 + c2 = 51,
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we get a = 7 and b = c = 1, which don’t satisfy the condition a ≤ b. The original
left inequality is an equality for

a = 0,
b
c
+

c
b
=

17
5

(or any cyclic permutation).

P 5.92. If a, b, c are nonnegative real numbers so that

8(a2 + b2 + c2) = 9(ab+ bc + ca),

then
19
12
≤

a
b+ c

+
b

c + a
+

c
a+ b

≤
141
88

.

(Vasile C., 2006)

Solution. The proof is similar to the one of the preceding P 5.91. Assume that
a + b + c = 15, which involves a2 + b2 + c2 = 81 and a ∈ [3,7], then write the
inequality in the form

19
12
≤ f (a) + f (b) + f (c)≤

141
88

,

where
f (u) =

u
15− u

, 3≤ u≤ 7.

We have
g(x) = f ′(x) =

1
5
(15− x)2, g ′′(x) =

90
(15− x)4

.

Since g is strictly convex on [3,7], according to Corollary 1, if 0≤ a ≤ b ≤ c and

a+ b+ c = 15, a2 + b2 + c2 = 81,

then the sum S3 = f (a) + f (b) + f (c) is maximal for a = b ≤ c, and is minimal for
either a = 0 or 0< a ≤ b = c.

(a) To prove the right inequality, it suffices to consider the case a = b ≤ c,
which involves

a = b = 4, c = 7,

and
a

b+ c
+

b
c + a

+
c

a+ b
=

141
88

.

The original right inequality is an equality for a = b = 4c/7 (or any cyclic permu-
tation).
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(b) To prove the left inequality, it suffices to consider the cases a = 0 and
0< a ≤ b = c. The first case is not possible, while the second case involves

a = 3, b = c = 6,

and
a

b+ c
+

b
c + a

+
c

a+ b
=

19
12

.

The original left inequality is an equality for 2a = b = c (or any cyclic permutation).

P 5.93. If a, b, c ∈ (0,2] such that a+ b+ c = 3, then
√

√2(b+ c)
a

− 1 +

√

√2(c + a)
b

− 1 +

√

√2(a+ b)
c

− 1≥
9

p
ab+ bc + ca

.

(Vasile C., 2020)

Solution. Write the inequality in the form

f (a) + f (b) + f (c)≤
−3
p

3
p

ab+ bc + ca
,

where

f (u) = −

√

√2
u
− 1, 0< u≤ 2.

We have f (0+) = −∞ and

g(x) = f ′(x) = x−3/2(2− x)−1/2, g ′(x) = (2x − 3)x−5/2(2− x)−3/2,

g ′′(x) = (7x2 − 20x + 15)x−7/2(2− x)−5/2 > 0.

Since g is strictly convex on (0, 2), according to Corollary 1, Note 1 and Note 2, if
a ≥ b ≥ c > 0 and

a+ b+ c = 3, ab+ bc + ca = constant,

then the sum S3 = f (a) + f (b) + f (c) is maximal for a = 2 or a ≥ b = c. Thus, it
suffices to prove the desired inequality for these cases.

Case 1: a = 2. We need to prove the homogeneous inequality
√

√2(b+ c)
a

− 1 +

√

√2(c + a)
b

− 1 +

√

√2(a+ b)
c

− 1≥
3(a+ b+ c)
p

ab+ bc + ca

for
a = 2(b+ c).
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The inequality is equivalent to
√

√2b
c
+ 1+

√

√2c
b
+ 1≥

3
p

3(b+ c)
p

2(b+ c)2 + bc
.

Let

x =
(b+ c)2

4bc
, x ≥ 1.

Since
√

√2c
b
+ 1+

√

√2b
c
+ 1≥ 2 4

√

√

�

2b
c
+ 1

��

2c
b
+ 1

�

= 2
4p

8x + 1,

the inequality becomes
4p

8x + 1≥
3
p

3x
p

8x + 1
,

(8x + 1)3 ≥ 729x2.

Since
8x + 1≥ 3(2x + 1),

it suffices to show that
(2x + 1)3 ≥ 27x2.

This is true because
2x + 1= x + x + 1≥ 3

3
p

x2.

Case 2: a ≥ b = c. We need to show that a+ 2c = 3 implies
√

√4c
a
− 1+ 2

√

√2(a+ c)
c

− 1≥
9

p
2ac + c2

,

that is
√

√2− a
a
+ 2

√

√1+ a
3− a

≥
6

p

(1+ a)(3− a)
,

√

√2− a
a
≥

2(2− a)
p

(1+ a)(3− a)
.

It is true if
1
p

a
≥

2
p

2− a
p

(1+ a)(3− a)
,

which, by squaring, reduces to

(a− 1)2 ≥ 0.

The equality occurs for a = b = c = 1, and also for a = b =
1
2

and c = 2 (or any

cyclic permutation).
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P 5.94. Let a, b, c and x , y, z be nonnegative real numbers such that

x3 + y3 + z3 = a3 + b3 + c3.

Then,
(a+ b+ c)(x + y + z)

ab+ bc + ca+ x y + yz + zx
≥ 3p

3.

(Vasile Cîrtoaje, 2019)

Solution. Assume that
x + y + z ≥ a+ b+ c

and denote

t =
x + y + z

3
, t ≥

a+ b+ c
3

.

Since
a+ b+ c

3
≤

x + y + z
3

≤ 3

√

√ x3 + y3 + z3

3
=

3

√

√a3 + b3 + c3

3
,

we have
t1 ≤ t ≤ t2,

where

t1 =
a+ b+ c

3
, t2 =

3

√

√a3 + b3 + c3

3
.

It is enough to prove the inequality

1
3p3
(a+ b+ c)(x + y + z)≥ ab+ bc + ca+

1
3
(x + y + z)2.

For fixed a, b, c, we may write the required inequality as f (t)≤ 0, where

f (t) = 3t2 − 3
p

9 (a+ b+ c)t + ab+ bc + ca

is a quadratic convex function. Thus, it is enough to show that f (t1) ≤ 0 and
f (t2)≤ 0. We have

3 f (t1) = 3(ab+ bc + ca)−
�

3
p

9− 1
�

(a+ b+ c)2

≤ 3
�

2− 3
p

9
�

(ab+ bc + ca)≤ 0.

To prove the inequality f (t2)≤ 0, we write it as

3t2
2 −

3
p

9 (a+ b+ c)t2 + ab+ bc + ca ≤ 0.

According to Corollary 5, for a + b + c = constant and an + bn + cn = constant,
the sum a2 + b2 + c2 is minimal (hence the sum ab + bc + ca is maximal) for a ≥
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b = c. Thus, due to homogeneity, it is enough to prove the inequality for a = 1 and
b = c ≤ 1. So, we need to prove that g(u)≤ 0, where

g(u) = u2 − (2c + 1)u+
c2 + 2c

3p3
,

with
u=

3
p

2c3 + 1, c ∈ [0, 1].

Consider two cases: c ∈ [0,4/5] and c ∈ [4/5, 1].

Case 1: c ∈ [0,4/5]. Since 3p3> 4/3, we have

g(u)≤ u2 − (2c + 1)u+
3(c2 + 2c)

4
=
(2u− 3c)(2u− c − 2)

4
.

Thus, we need to show that
3c
2
≤ u≤

c + 2
2

.

The left inequality is equivalent to

c ≤

√

√ 8
11

.

This is true since

c ≤
4
5
<

√

√ 8
11

.

The right inequality is equivalent to

c(2c + 6− 5c2)≥ 0.

Case 2: c ∈ [4/5,1]. Since 3p3> 7/5, we have g(u)< h(u), where

h(u) = u2 − (2c + 1)u+
5(c2 + 2c)

7
.

It suffices to prove that h(u)≤ 0. From

h′(u) = 2u− 2c − 1

and

(2u)3 − (2c + 1)3 = 7+ 8c3 − 12c2 − 6c ≤ 7− 4c2 − 6c ≤ 7−
64
25
−

24
5
=
−9
25
< 0,

it follows that h′(u)< 0, hence h(u) is a decreasing function. Since

u> 1+
c3

3
,
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it follows that

h(u)< h
�

1+
c3

3

�

= c
�

5c
7
+

c2

3
+

c5

9
−

4
7
−

2c3

3

�

.

Since
5c
7
+

c2

3
+

c5

9
≤

5c
7
+

c
3
+

c3

9
=

22c
21
+

c3

9
,

it suffices to show that
22c
21
+

c3

9
−

4
7
−

2c3

3
≤ 0,

that is
22c
21
−

4
7
−

5c3

9
≤ 0.

Indeed, we have

4
7
+

5c3

9
=

2
7
+

2
7
+

5c3

9
≥ 3

3

√

√ 20c3

49 · 9
>

22c
21

.

Thus, the proof is completed. If a ≥ b ≥ c and x ≥ y ≥ z, then the equality occurs

for a = b = c =
x

np3
and y = z = 0, and for x = y = z =

a
np3

and b = c = 0.

P 5.95. If a, b, c, d are positive numbers such that

a+ b+ c + d =
1
a
+

1
b
+

1
c
+

1
d

,

then
ab+ ac + ad + bc + bd + cd + 3abcd ≥ 9.

(Vasile Cîrtoaje, 2019)

Solution. Write the inequality as

(a+ b+ c + d)2 + 6abcd ≥ 18+ a2 + b2 + c2 + d2

and apply Corollary 4 for k = −1, and Corollary 5 for k = −1 and m= 2:
• If a, b, c, d are positive numbers such that

a+ b+ c + d = constant ,
1
a
+

1
b
+

1
c
+

1
d
= constant, a ≤ b ≤ c ≤ d,

then the product abcd is minimal and the sum a2 + b2 + c2 + d2 is maximal for
a = b = c ≤ d.
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Thus, it suffices to consider this case. We need to show that

3a+ d =
3
a
+

1
d

involve
a2 + ad + a3d ≥ 3.

From the hypothesis, we get

d =
3(1− a2) +

p
9a4 − 14a2 + 9

2a
.

So, the required inequality becomes as follows:

a2 + (a2 + 1)ad ≥ 3,

(a2 + 1)
p

9a4 − 14a2 + 9≥ 3a4 − 2a2 + 3,

(a2 + 1)2(9a4 − 14a2 + 9)≥ (3a4 − 2a2 + 3)2,

16a2(a2 − 1)2 ≥ 0.

The equality occurs for a = b = c = d = 1.

P 5.96. If a1, a2, a3, a4, a5 are nonnegative real numbers, then

(a3
1 + a3

2 + a3
3 + a3

4 + a3
5)

2

a4
1 + a4

2 + a4
3 + a4

4 + a4
5

≥
1
2

∑

i< j

aia j.

(Vasile Cîrtoaje, 2019)

Solution. Write the inequality in the form

4(a3
1 + a3

2 + a3
3 + a3

4 + a3
5)

2

a4
1 + a4

2 + a4
3 + a4

4 + a4
5

+ a2
1 + a2

2 + a2
3 + a2

4 + a2
5 ≥ (a1 + a2 + a3 + a4 + a5)

2.

According to Corollary 5, for a1 + a2 + a3 + a4 + a5 = constant and a3
1 + a3

2 +
a3

3 + a3
4 + a3

5 = constant, the sum a2
1 + a2

2 + a2
3 + a2

4 + a2
5 is minimal and the sum

a4
1 + a4

2 + a4
3 + a4

4 + a4
5 is maximal for a1 = a2 = a3 = a4 ≤ a5.Thus, it is enough to

show that
4(4x3 + y3)2

4x4 + y4
+ 4x2 + y2 ≥ (4x + y)2,

which can be written as

4x6 − 8x5 y + 8x3 y3 − 3x2 y4 − 2x y5 + y6 ≥ 0,

(x − y)2(2x2 − y2)2 ≥ 0.

The proof is completed. The equality occurs for a1 = a2 = a3 = a4 = a5, and also

for a1 = a2 = a3 = a4 =
a5p

2
(or any cyclic permutation).
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P 5.97. If a1, a2, . . . , an ≥ 0 such that

a1 + a2 + · · ·+ an = n,

then
p

a1 +
p

a2 + · · ·+
p

an ≤

√

√

√2n− 1+ 2
�

1−
1
n

�

∑

i< j

aia j.

(Vasile C., 2018)

Proof. Since

2
∑

i< j

aia j = (a1 + a2 + · · ·+ an)
2 − a2

1 − a2
2 − · · · − a2

n = n2 − a2
1 − a2

2 − · · · − a2
n,

we can write the inequality as

�
p

a1 +
p

a2 + · · ·+
p

an

�2
≤ n2 + n− 1−

�

1−
1
n

�

(a2
1 + a2

2 + · · ·+ a2
n).

Now, we can apply Corollary 5 for k = 2 and m= 1/2:

• If a1, a2, . . . , an are nonnegative real numbers so that

a1 + a2 + · · ·+ an = n , a2
1 + a2

2 + · · ·+ a2
n = constant, a1 ≤ a2 ≤ · · · ≤ an,

then the sum
p

a1 +
p

a2 + · · ·+
p

an

is maximal for 0≤ a1 = · · ·= an−1 ≤ an.

Thus, it suffices to show that

[(n− 1)x + y]2 ≤ n2 + n− 1−
�

1−
1
n

�

[(n− 1)x4 + y4].

for
(n− 1)x2 + y2 = n, 0≤ x ≤ y

Write this inequality in the homogeneous form

[(n− 1)x + y]2 ≤
(n2 + n− 1) [(n−1)x2+y2]2

n − (n− 1)[(n− 1)x4 + y4]

(n− 1)x2 + y2
,

which is equivalent to

(n− 1)2 x4 − 2n(n− 1)x3 y + (n2 + 2n− 2)x2 y2 − 2nx y3 + y4 ≥ 0,

(x − y)2[(n− 1)x − y]2 ≥ 0.

The inequality is an equality for a1 = a2 = · · ·= an = 1, and also for a1 = · · ·=

an−1 =
1

n− 1
and an = n− 1 (or any cyclic permutation).
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P 5.98. If a1, a2, . . . , an ≥ 0 such that

a1 + a2 + · · ·+ an =
∑

i< j

aia j > 0,

then
(n− 1)(n− 2)

2
(a1 + a2 + · · ·+ an) +

∑

i< j

p

aia j ≥ n(n− 1).

(Vasile C., 2020)

Proof. For n = 2, we need to show that a1 + a2 = a1a2 involves a1a2 ≥ 4. Indeed,
this follows from

a1a2 = a1 + a2 ≥ 2
p

a1a2,

Since
2
∑

i< j

aia j = (a1 + a2 + · · ·+ an)
2 − a2

1 − a2
2 − · · · − a2

n

and
2
∑

i< j

p

aia j = (
p

a1 +
p

a2 + · · ·+
p

an)
2 − a1 − a2 − · · · − an,

we can apply Corollary 5 for k = 2 and m= 1/2:
• If a1, a2, . . . , an are nonnegative real numbers so that

a1+a2+ · · ·+an = constant , a2
1+a2

2+ · · ·+a2
n = constant, a1 ≤ a2 ≤ · · · ≤ an,

then the sum
p

a1 +
p

a2 + · · ·+
p

an

is minimal for either 0< a1 ≤ a2 = · · ·= an or a1 = 0.
Thus, it suffices to consider the case a1 = x2, a2 = · · · = an = y2, 0 < x ≤ y , and
the case a1 = 0. In addition, we will use the induction method.

Case 1: a1 = x2, a2 = · · ·= an = y2. We need to show that

x2 + (n− 1)y2 = (n− 1)x2 y2 +
(n− 1)(n− 2)

2
y4

implies
(n− 2)

2
[x2 + (n− 1)y2] + x y +

(n− 2)
2

y2 ≥ n,

which can be written in the homogeneous form

(n− 2)x2 + 2x y + n(n− 2)y2 ≥ n
2(n− 1)x2 y2 + (n− 1)(n− 2)y4

x2 + (n− 1)y2
.

For y = 1, the inequality becomes

(x2 + n− 1)[(n− 2)x2 + 2x + n(n− 2)]≥ 2n(n− 1)x2 + n(n− 1)(n− 2),
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(n− 2)x4 + 2x3 − (3n− 2)x2 + 2(n− 1)x ≥ 0,

x(x − 1)2[(n− 2)x + 2(n− 1)]≥ 0.

Case 2: a1 = 0. We need to show that

a2 + a3 + · · ·+ an =
∑

2≤i< j

aia j > 0 (1)

involves

(n− 1)(n− 2)
2

(a2 + a3 + · · ·+ an) +
∑

2≤i< j

p

aia j ≥ n(n− 1). (2)

From
(a2 + a3 + · · ·+ an)

2 ≤ (n− 1)(a2
2 + a3

2 + · · ·+ a2
n)

= (n− 1)(a2 + a3 + · · ·+ an)
2 − 2(n− 1)

∑

2≤i< j

aia j,

we get

(n− 2)(a2 + a3 + · · ·+ an)
2 ≥ 2(n− 1)

∑

2≤i< j

aia j = 2(n− 1)(a2 + a3 + · · ·+ an),

hence

a2 + a3 + · · ·+ an ≥
2(n− 1)

n− 2
. (3)

On the other hand, by the induction hypothesis, (1) involves

(n− 2)(n− 3)
2

(a2 + a3 + · · ·+ an) +
∑

2≤i< j

p

aia j ≥ (n− 1)(n− 2).

According to this inequality, (2) is true if

(n− 1)(n− 2)
2

(a2+a3+ · · ·+an)+(n−1)(n−2)−
(n− 2)(n− 3)

2
(a2+a3+ · · ·+an)

≥ n(n− 1),

which is equivalent to (3).

The inequality is an equality for a1 = a2 = · · ·= an =
2

n− 1
, and also for a1 = 0

and a2 = a3 = · · ·= an =
2

n− 2
(or any cyclic permutation).
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P 5.99. Let

F(a1, a2, . . . , an) = n(a2
1 + a2

2 + · · ·+ a2
n)− (a1 + a2 + · · ·+ an)

2 ,

where a1, a2, . . . , an are positive real numbers such that a1 ≤ a2 ≤ · · · ≤ an and

a2
1(a

2
2 + a2

3 + · · ·+ a2
n)≥ n− 1.

Then,

F(a1, a2, . . . , an)≥ F
�

1
a1

,
1
a2

, . . . ,
1
an

�

.

(Vasile C., 2020)

Proof. For n= 2, we need to show that a1a2 ≥ 1 involves

(a2
1a2

2 − 1)(a1 − a2)
2 ≥ 0,

which is clearly true. For n≥ 3, write the inequality as

n(a2
1+a2

2+· · ·+a2
n)−(a1+a2+· · ·+an)

2 ≥ n

�

1
a2

1

+
1
a2

2

+ · · ·+
1
a2

n

�

−
�

1
a1
+

1
a2
+ · · ·+

1
an

�2

.

According to Corollary 5 (case k = −1), we have:

• If a2, a3, . . . , an are positive real numbers so that

a2+a3+· · ·+an = constant ,
1
a2
+

1
a3
+· · ·+

1
an
= constant, a2 ≤ a3 ≤ · · · ≤ an,

then the sum a2
2+ a2

3+ · · ·+ a2
n is minimal and the sum

1
a2

2

+
1
a2

3

+ · · ·+
1
a2

n

is maximal

for a2 ≤ a3 = · · ·= an.
Thus, it suffices to consider the case a2 ≤ a3 = · · · = an. We need to show that if
x , y, z are positive real numbers such that x ≤ y ≤ z and

x2[y2 + (n− 2)z2]≥ n− 1,

then

n[x2+y2+(n−2)z2]−[x+y+(n−2)z]2 ≥ n
�

1
x2
+

1
y2
+

n− 2
z2

�

−
�

1
x
+

1
y
+

n− 2
z

�2

,

which is equivalent to

(x−y)2+(n−2)(y−z)2+(n−2)(z−x)2 ≥
(x − y)2

x2 y2
+
(n− 2)(y − z)2

y2z2
+
(n− 2)(z − x)2

z2 x2
,

(x− y)2
�

1−
1

x2 y2

�

+(n−2)(y−z)2
�

1−
1

y2z2

�

+(n−2)(z− x)2
�

1−
1

z2 x2

�

≥ 0.
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From
n− 1≤ x2[y2 + (n− 2)z2]≤ (n− 1)x2z2,

it follows that
xz ≥ 1, yz ≥ 1.

Thus, suffices to show that

(x − y)2
�

1−
1

x2 y2

�

+ (n− 2)(z − x)2
�

1−
1

z2 x2

�

≥ 0,

that is

(n− 2)
�

1−
x
z

�2�

z2 −
1
x2

�

≥
�

1−
x
y

�2� 1
x2
− y2

�

.

Since
1−

x
z
≥ 1−

x
y
≥ 0,

it suffices to show that

(n− 2)
�

z2 −
1
x2

�

≥
1
x2
− y2,

that is equivalent to the hypothesis

y2 + (n− 2)z2 ≥
n− 1

x2
.

The equality occurs for a1 = a2 = · · ·= an ≥ 1 and for
1
a1
= a2 = · · ·= an ≥ 1.

Remark. Since a1(a2 + a3 + · · ·+ an) ≥ n− 1 yields a2
1(a

2
2 + a2

3 + · · ·+ a2
n) ≥ n− 1,

the inequality is also true for

a1(a2 + a3 + · · ·+ an)≥ n− 1.

In addition, it is true in the particular case

a1, a2, . . . , an ≥ 1.

P 5.100. Let

F(a1, a2, . . . , an) = a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an,

where a1, a2, . . . , an are positive real numbers such that a1 ≤ a2 ≤ · · · ≤ an and

a1(a2 + a3 + · · ·+ an)≥ n− 1.

Then,

F(a1, a2, . . . , an)≥ F
�

1
a1

,
1
a2

, . . . ,
1
an

�

.

(Vasile C., 2020)
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Solution. For n= 2, we need to show that a1a2 ≥ 1 involves

(a1a2 − 1)
�
p

a1 −
p

a2

�2
≥ 0,

which is true. For n≥ 3, the inequality has the form

a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an ≥
1
a1
+

1
a2
+ · · ·+

1
an
−

n
n
p

a1a2 · · · an
.

According to Corollary 5 (case k = 0 and m= −1), we have:

• If a2, a3, . . . , an are positive real numbers so that

a2 + a3 + · · ·+ an = constant , a2a3 · · · an = constant, a2 ≤ a3 ≤ · · · ≤ an ,

then the sum
1
a2
+

1
a3
+ · · ·+

1
an

is maximal for a2 ≤ a3 = · · ·= an.

Thus, we only need to show that

x + y + (n− 2)z − n n
p

x yzn−2 ≥
1
x
+

1
y
+

n− 2
z
−

n
n
p

x yzn−2

for 0 < x ≤ y ≤ z and x[y + (n− 2)z] ≥ n− 1. Since both sides of the inequality
are nonnegative, it suffices to prove the homogeneous inequality

�

x + y + (n− 2)z − n n
p

x yzn−2
�

≥
x[y + (n− 2)z]

n− 1

�

1
x
+

1
y
+

n− 2
z
−

n
n
p

x yzn−2

�

,

that is
(n− 1)

�

x + y + (n− 2)z − n n
p

x yzn−2
�

≥

≥ y + (n− 2)z +
[y + (n− 2)z][(n− 2)y + z]

yz
x − n[y + (n− 2)z] n

√

√ xn−1

yzn−2
.

For fixed y and z, write this inequality as f (x)≥ 0, x ∈ (0, y]. We will show that

f (x)≥ f (y)≥ 0.

To prove that f (x)≥ f (y), we show that f ′(x)≤ 0, which is equivalent to

n− 1− (n− 1)
n

√

√ yzn−2

xn−1
−
[y + (n− 2)z][(n− 2)y + z]

yz
+ (n− 1)

y + (n− 2)z
n
p

x yzn−2
≤ 0 ,

(n− 2)
�

y
z
+

z
y
+ n− 3

�

+ (n− 1)
n

√

√ yzn−2

xn−1
≥ (n− 1)

y + (n− 2)z
n
p

x yzn−2
.

By the AM-GM inequality, we have

(n− 2) ·
�

y
z
+

z
y
+ n− 3

�

+ (n− 1)
n

√

√ yzn−2

xn−1
≥
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≥ (n− 1)
n−1

√

√

√

�

y
z
+

z
y
+ n− 3

�n−2

· (n− 1)
n

√

√ yzn−2

xn−1
.

Thus, it suffices to show that

n−1

√

√

√

�

y
z
+

z
y
+ n− 3

�n−2

· (n− 1)
n

√

√ yzn−2

xn−1
≥

y + (n− 2)z
n
p

x yzn−2
,

which is equivalent to

(n− 1)
�

y
z
+

z
y
+ n− 3

�n−2

yzn−2 ≥ [y + (n− 2)z]n−1 .

Due to homogeneity, we may set z = 1, when the inequality becomes

(n− 1)Ay ≥ y + n− 2,

where

A=
�

y + 1/y + n− 3
y + n− 2

�n−2

, 0< y ≤ 1.

By Bernoulli’s inequality, we have

A=
�

1+
1/y − 1
y + n− 2

�n−2

≥ 1+
(n− 2)(1/y − 1)

y + n− 2
=

y2 + n− 2
y(y + n− 2)

,

hence

(n− 1)Ay − (y + n− 2)≥
(n− 1)(y2 + n− 2)

y + n− 2
− (y + n− 2)

=
(n− 2)(y − 1)2

y + n− 2
≥ 0 .

The inequality f (y)≥ 0 has the form

2y + (n− 2)z − n n
p

y2zn−2 ≥
y[y + (n− 2)z]

n− 1

�

2
y
+

n− 2
z
−

n
n
p

y2zn−2

�

.

Due to homogeneity, we may set z = 1 (hence 0 < y ≤ 1), when the inequality
becomes

2y + n− 2− n n
p

y2 ≥
y(y + n− 2)

n− 1

�

2
y
+ n− 2−

n
n
p

y2

�

.

Denoting
t = npy , 0< t ≤ 1,

we need to show that g(t)≥ 0, where

g(t) = (n− 1)(2tn − nt2 + n− 2)− (tn + n− 2)[(n− 2)tn − ntn−2 + 2]
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= −(n−2)t2n+nt2n−2−(n−2)(n−4)tn+n(n−2)tn−2−n(n−1)t2+(n−2)(n−3) .

For n= 3, we have
g(t) = t(1− t)3(3+ 3t + t2)≥ 0,

and for n= 4, we have

g(t) = 2(1− t2)3(1+ t2)≥ 0.

For n≥ 5, we have
g ′(t) = nt g1(t),

g1(t) = −2(n−2)t2n−2+2(n−1)t2n−4−(n−2)(n−4)tn−2+(n−2)2 tn−4−2(n−1),

g ′1(t) = (n− 2)tn−5(1− t2)[4(n− 1)tn + n− 2]≥ 0 ,

hence g1(t) is increasing, g1(t) ≤ g1(1) = 0, g ′(t) ≤ 0, g(t) is decreasing, g(t) ≥
g(1) = 0. Thus, the proof is completed. The equality holds for a1 = a2 = · · · =
an ≥ 1.

Remark 1. Since an−1
1 a2a3 · · · an ≥ 1 yields a1(a2 + a3 + · · · + an) ≥ n − 1, the

inequality

F(a1, a2, . . . , an)≥ F
�

1
a1

,
1
a2

, . . . ,
1
an

�

is also valid if a1, a2, . . . , an are positive real numbers such that

a1 ≤ a2 ≤ · · · ≤ an, an−1
1 a2a3 · · · an ≥ 1.

Also, it is valid in the particular case

a1, a2, . . . , an ≥ 1.

Remark 2. Since a1a2 · · · an ≥ 1, from P 5.100 it follows that

a1 + a2 + · · ·+ an ≥
1
a1
+

1
a2
+ · · ·+

1
an

for
a1(a2 + a3 + · · ·+ an)≥ n− 1.

P 5.101. Let

F(a1, a2, . . . , an) =

√

√a2
1 + a2

2 + · · ·+ a2
n

n
−

a1 + a2 + · · ·+ an

n
,

where a1, a2, . . . , an are positive real numbers such that a1 ≤ a2 ≤ · · · ≤ an and

an−1
1 (a2 + a3 + · · ·+ an)≥ n− 1.
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Then,

F(a1, a2, . . . , an)≥ F
�

1
a1

,
1
a2

, . . . ,
1
an

�

.

(Vasile C., 2020)

Solution. For n= 2, we need to show that a1a2 ≥ 1 involves

(a1a2 − 1)(
q

2(a2
1 + a2

2)− a1 − a2)≥ 0,

which is true. For n≥ 3, write the inequality in the form
q

n(a2
1 + a2

2 + · · ·+ a2
n)− (a1 + a2 + · · ·+ an)

≥

√

√

√

n

�

1
a2

1

+
1
a2

2

+ · · ·+
1
a2

n

�

−
1
a1
+

1
a2
+ · · ·+

1
an
≥ 0 .

According to Corollary 5 (case k = −1), we have:

• If a2, a3, . . . , an are positive real numbers so that

a2+a3+· · ·+an = constant ,
1
a2
+

1
a3
+· · ·+

1
an
= constant, a2 ≤ a3 ≤ · · · ≤ an,

then the sum a2
2+ a2

3+ · · ·+ a2
n is minimal and the sum

1
a2

2

+
1
a2

3

+ · · ·+
1
a2

n

is maximal

for a2 ≤ a3 = · · ·= an.

Thus, it suffices to consider the case a2 ≤ a3 = · · · = an. We need to show that if
x , y, z are positive real numbers such that x ≤ y ≤ z and

xn−1[y + (n− 2)z]≥ n− 1,

then E(x , y, z)≥ 0, where

E(x , y, z) =
Æ

x2 + y2 + (n− 2)z2 −
x + y + (n− 2)z

p
n

−
√

√ 1
x2
+

1
y2
+

n− 2
z2
+

1
p

n

�

1
x
+

1
y
+

n− 2
z

�

.

We will show that
E(x , y, z)≥ E(x , w, w)≥ 0,

where

w=
y + (n− 2)z

n− 1
, x ≤ y ≤ w≤ z.

Write the inequality E(x , y, z)≥ E(x , w, w) as follows:

y2 + (n− 2)z2 − (n− 1)w2

p

x2 + y2 + (n− 2)z2 +
p

x2 + (n− 1)w2
+

1
p

n

�

1
y
+

n− 2
z
−

n− 1
w

�
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≥
1
y2 + n−2

z2 + n−1
w2

Ç

1
x2 + 1

y2 + n−2
z2 +

q

1
x2 + n−1

w2

,

(n− 2)(y − z)2

n− 1
·

1
p

x2 + y2 + (n− 2)z2 +
p

x2 + (n− 1)w2
+

(n− 2)(y − z)2
p

nyz[y + (n− 2)z]

≥
(n− 2)(y − z)2[y2 + 2(n− 1)yz + (n− 2)z2]

y2z2[y + (n− 2)z]2
·

1
Ç

1
x2 + 1

y2 + n−2
z2 +

q

1
x2 + n−1

w2

,

which is true if

1
n− 1

·
1

p

x2 + y2 + (n− 2)z2 +
p

x2 + (n− 1)w2
+

1
p

nyz[y + (n− 2)z]

≥
y2 + 2(n− 1)yz + (n− 2)z2

y2z2[y + (n− 2)z]2
·

1
Ç

1
x2 + 1

y2 + n−2
z2 +

q

1
x2 + n−1

w2

.

Since x ≤ y , it is enough to show that

1
n− 1

·
1

p

2y2 + (n− 2)z2 +
p

y2 + (n− 1)w2
+

1
p

nyz[y + (n− 2)z]

≥
y2 + 2(n− 1)yz + (n− 2)z2

y2z2[y + (n− 2)z]2
·

1
Ç

2
y2 + n−2

z2 +
Ç

1
y2 + n−1

w2

.

In addition, since w≤ z, it suffices to show that

1
n− 1

·
1

p

2y2 + (n− 2)z2 +
p

y2 + (n− 1)z2
+

1
p

nyz[y + (n− 2)z]

≥
y2 + 2(n− 1)yz + (n− 2)z2

y2z2[y + (n− 2)z]2
·

1
Ç

2
y2 + n−2

z2 +
Ç

1
y2 + n−1

z2

.

Since
y2 + 2(n− 1)yz + (n− 2)z2 = [y2 + (n− 2)z2] + 2(n− 1)yz,

we rewrite the inequality as
A+ B ≥ C + D,

where
A=

1
n− 1

·
1

p

2y2 + (n− 2)z2 +
p

y2 + (n− 1)z2
,

B =
1

p
nyz[y + (n− 2)z]

,

C =
y2 + (n− 2)z2

y2z2[y + (n− 2)z]2
·

1
Ç

2
y2 + n−2

z2 +
Ç

1
y2 + n−1

z2

,
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D =
2(n− 1)yz

y2z2[y + (n− 2)z]2
·

1
Ç

2
y2 + n−2

z2 +
Ç

1
y2 + n−1

z2

.

We will show that
A≥ C , B ≥ D.

Since the inequality B ≥ D is homogeneous, we may consider y = 1 and z ≥ 1,
when it becomes

[(n− 2)z + 1]
�p

2z2 + n− 2+
p

z2 + n− 1
�

≥ 2
p

n(n− 1)z .

Since
p

2z2 + n− 2+
p

z2 + n− 1≥
2z + n− 2
p

n
+

z + n− 1
p

n
=

3z + 2n− 3
p

n
,

it is sufficient to show that

[(n− 2)z + 1](3z + 2n− 3)≥ 2n(n− 1),

which is equivalent to

(z − 1)[3(n− 2)z + 2n2 − 4n+ 3]≥ 0.

To show that A≥ C , we see that xn−1[y + (n− 2)z]≥ n− 1 yields

yn−1[y + (n− 2)z]≥ n− 1.

Thus, it suffices to prove the homogeneous inequality

A≥ C0C , C0 =

�

yn−1[y + (n− 2)z]
n− 1

�2/n

,

that is
1

p

2y2 + (n− 2)z2 +
p

y2 + (n− 1)z2
≥

≥
(n− 1)[y2 + (n− 2)z2]

y2z2[y + (n− 2)z]
·

C0
Ç

2
y2 + n−2

z2 +
Ç

1
y2 + n−1

z2

,

Due to homogeneity, we may set y = 1, hence z ≥ 1. The inequality becomes
p

2z2 + n− 2+
p

z2 + n− 1≥

≥
(n− 1)[1+ (n− 2)z2]C1

z[1+ (n− 2)z]2
�Æ

2+ (n− 2)z2 +
Æ

1+ (n− 1)z2
�

,

where

C1 =
�

1+ (n− 2)z
n− 1

�2/n

.
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By Bernoulli’s inequality, we have

C1 =
�

1+
(n− 2)(z − 1)

n− 1

�2/n

≤ 1+
2(n− 2)(z − 1)

n(n− 1)
=

2(n− 2)z + n2 − 3n+ 4)
n(n− 1)

.

Thus, it suffices to show that
p

2z2 + n− 2+
p

z2 + n− 1≥

≥
[1+ (n− 2)z2][2(n− 2)z + n2 − 3n+ 4]

nz[1+ (n− 2)z]2
�Æ

2+ (n− 2)z2 +
Æ

1+ (n− 1)z2
�

.

We will show that

p

2z2 + n− 2≥
[1+ (n− 2)z2][2(n− 2)z + n2 − 3n+ 4]

nz[1+ (n− 2)z]2
Æ

(n− 1)z2 + 1

and

p

z2 + n− 1≥
[1+ (n− 2)z2][2(n− 2)z + n2 − 3n+ 4]

nz[1+ (n− 2)z]2
Æ

(n− 2)z2 + 2 .

Since

2z2 + n− 2
(n− 1)z2 + 1

−
z2 + n− 1
(n− 2)z2 + 2

=
(n− 3)(z2 − 1)2

[n− 1)z2 + 1][(n− 2)z2 + 2]
≥ 0 ,

it suffices to prove the second inequality. After squaring and making many cal-
culations, this inequality can be written as (z − 1)P(z) ≥ 0, where P(z) ≥ 0 for
z ≥ 1.

To complete the proof, we need to show that E(x , w, w) ≥ 0 for xn−1w ≥ 1.
Write the required inequality as follows:

Æ

n[x2 + (n− 1)w2]− [x + (n− 1)w]≥

√

√

n
�

1
x2
+

n− 1
w2

�

−
�

1
x
+

n− 1
w

�

,

(n− 1)(x −w)2
p

x2 + (n− 1)w2 + x+(n−1)wp
n

≥
1

xw
·

(n− 1)(x −w)2
p

(n− 1)x2 +w2 + (n−1)x+wp
n

.

This is true if

Æ

(n− 1)x2 +w2 +
(n− 1)x +w

p
n

≥
1

xw
·
�

Æ

x2 + (n− 1)w2 +
x + (n− 1)w
p

n

�

.

Since xn−1w≥ 1, it suffices to prove the homogeneous inequality

Æ

(n− 1)x2 +w2+
(n− 1)x +w

p
n

≥
(xn−1w)2/n

xw
·
�

Æ

x2 + (n− 1)w2 +
x + (n− 1)w
p

n

�

.
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Due to homogeneity, we may set w= 1, which yields x ≤ 1. The inequality becomes

Æ

(n− 1)x2 + 1+
(n− 1)x + 1
p

n
≥ x

n−2
n

�

p

x2 + n− 1+
x + n− 1
p

n

�

.

We can get this by summing the inequalities

Æ

(n− 1)x2 + 1≥ x
n−2

n ·
p

x2 + n− 1

and
(n− 1)x + 1
p

n
≥ x

n−2
n ·

x + n− 1
p

n
.

Replacing x with x2 in the second inequality gives the first inequality. Thus,it suf-
fices to prove the second inequality, which can be rewritten as f (x)≥ 0, where

f (x) = ln[(n− 1)x + 1]− ln(x + n− 1)−
n− 2

n
ln x .

From

f ′(x) =
n− 1

(n− 1)x + 1
−

1
x + n− 1

−
n− 2
nx

=
−(n− 1)(n− 2)(x − 1)2

nx[(n− 1)x + 1]x + n− 1)
≤ 0 ,

it follows that f is decreasing, hence f (x)≥ f (1) = 0.
The proof is completed. The equality holds for a1 = a2 = · · ·= an ≥ 1.

Remark. The inequality

F(a1, a2, . . . , an)≥ F
�

1
a1

,
1
a2

, . . . ,
1
an

�

is also valid in the particular case

a1, a2, . . . , an ≥ 1.

P 5.102. If a1, a2, . . . , an (n≥ 4) are positive real numbers such that

a1 + a2 + · · ·+ an = n, an =max{a1, a2, . . . , an},

then

n
�

1
a1
+

1
a2
+ · · ·+

1
an−1

�

≥ 4(a2
1 + a2

2 + · · ·+ a2
n) + n(n− 5).

(Vasile C., 2021)
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Solution. Assume that an is fixed and a1 ≤ a2 ≤ · · · ≤ an. According to Corollary 5
(case k = 2 and m= −1), we have:

• If a1, a2, . . . , an−1 are positive real numbers so that

a1+a2+· · ·+an−1 = constant, a2
1+a2

2+· · ·+a2
n−1 = constant, a1 ≤ a2 ≤ · · · ≤ an−1,

then the sum
1
a1
+

1
a2
+ · · ·+

1
an−1

is minimal for a1 = a2 = · · ·= an−2 ≤ an−1.

Therefore, it suffices to consider the case a1 = a2 = · · · = an−2, that is to show that
F(a, b)≥ 0, where

F(a, b) = n
�

n− 2
a
+

1
b

�

−4(n−2)a2−4b2−4c2−n(n−5), c = n− (n−2)a− b,

with a, b positive real numbers such that a ≤ b ≤ c. From c ≥ b, we get

(n− 2)a+ 2b ≤ n.

We will show that
F(a, b)≥ F(t, t)≥ 0,

where

t =
(n− 2)a+ b

n− 1
, t ≤ 1.

Since

F(a, b)− F(t, t) = n
�

n− 2
a
+

1
b
−

n− 1
t

�

− 4
�

(n− 2)a2 + b2 − (n− 1)t2
�

=
n(n− 2)(a− b)2

(n− 1)abt
−

4(n− 2)(a− b)2

n− 1

≥
n(n− 2)(a− b)2

(n− 1)ab
−

4(n− 2)(a− b)2

n− 1

=
(n− 2)(a− b)2(n− 4ab)

(n− 1)ab
,

it suffices to show that 4ab ≤ n. From

n≥ (n− 2)a+ 2b ≥ 2
Æ

2(n− 2)ab,

we get

4ab− n≤
n2

2(n− 2)
− n=

n(4− n)
n− 2

≤ 0.

In addition,

F(t, t) =
n(n− 1)

t
− 4(n− 1)t2 − 4[n− (n− 1)t]2 − n(n− 5)
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=
n(n− 1)(1− t)(1− 2t)2

t
≥ 0.

The equality occurs for a1 = a2 = · · ·= an = 1, and also for

a1 = a2 = · · ·= an−1 =
1
2

, an =
n+ 1

2
.

P 5.103. If a, b, c are nonnegative real numbers so that ab+ bc + ca = 3, then

1
a+ b+ 1

+
1

b+ c + 1
+

1
c + a+ 1

≤ 1.

(Vasile C., 2021)

Solution. Using the substitution

m= a+ b+ c + 1,

we have to show that
f (a) + f (b) + f (c)≤ 1

for
a+ b+ c = m− 1, a2 + b2 + c2 = (m− 1)2 − 6,

f (u) =
1

m− u
, 0≤ u< m− 1.

From

g(x) = f ′(x) =
1

(m− u)2
, g ′′(x) =

6
(m− u)4

,

it follows that g ′′(x)> 0, hence g is strictly convex. For fixed m, by Corollary 1, if

a+ b+ c = f i xed, a2 + b2 + c2 = f i xed,

then the sum
S3 = f (a) + f (b) + f (c)

is maximal for a = b ≤ c. Thus, we only need to prove the inequality for a = b ≤ c;
that is, to show that a2 + 2ac = 3 involves

2
a+ c + 1

+
1

2a+ 1
≤ 1.

Write this inequality as follows

4a
a2 + 2a+ 3

+
1

2a+ 1
≤ 1,

a(a− 1)2 ≥ 0.

The equality holds for a = b = c = 1.
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Chapter 6

EV Method for Real Variables

6.1 Theoretical Basis

The Equal Variables Method may be extended to solve some difficult symmetric
inequalities in real variables.

EV-Theorem (Vasile Cirtoaje, 2010). Let a1, a2, . . . , an (n≥ 3) be fixed real numbers,
and let

x1 ≤ x2 ≤ · · · ≤ xn

so that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an, x k
1 + x k

2 + · · ·+ x k
n = ak

1 + ak
2 + · · ·+ ak

n,

where k is an even positive integer. If f is a differentiable function on R so that the
joined function g : R→ R defined by

g(x) = f ′
�

k−1px
�

is strictly convex on R, then the sum

Sn = f (x1) + f (x2) + · · ·+ f (xn)

is minimum for x2 = x3 = · · ·= xn, and is maximum for x1 = x2 = · · ·= xn−1.

To prove this theorem, we will use EV-Lemma and EV-Proposition below.

EV-Lemma. Let a, b, c be fixed real numbers, not all equal, and let x , y, z be real
numbers satisfying

x ≤ y ≤ z, x + y + z = a+ b+ c, x k + yk + zk = ak + bk + ck,

where k is an even positive integer. Then, there exist two real numbers m and M so
that m< M and
(1) y ∈ [m, M];

489
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(2) y = m if and only if x = y;
(3) y = M if and only if y = z.

Proof. We show first, by contradiction method, that x < z. Indeed, if x = z, then

x = z ⇒ x = y = z ⇒ x k + yk + zk = 3
� x + y + z

3

�k

⇒ ak + bk + ck = 3
�

a+ b+ c
3

�k

⇒ a = b = c,

which is false. Notice that the last implication follows from Jensen’s inequality

ak + bk + ck ≥ 3
�

a+ b+ c
3

�k

,

with equality if and only if a = b = c.
According to the relations

x + z = a+ b+ c − y, x k + zk = ak + bk + ck − yk,

we may consider x and z as functions of y . From

x ′ + z′ = −1, x k−1 x ′ + zk−1z′ = −yk−1,

we get

x ′ =
yk−1 − zk−1

zk−1 − x k−1
, z′ =

yk−1 − x k−1

x k−1 − zk−1
. (*)

The two-sided inequality
x(y)≤ y ≤ z(y)

is equivalent to the inequalities f1(y)≤ 0 and f2(y)≥ 0, where

f1(y) = x(y)− y, f2(y) = z(y)− y.

Using (*), we get

f ′1(y) =
yk−1 − zk−1

zk−1 − x k−1
− 1

and

f ′2(y) =
yk−1 − x k−1

x k−1 − zk−1
− 1.

Since f ′1(y) ≤ −1 and f ′2(y) ≤ −1, f1 and f2 are strictly decreasing. Thus, the
inequality f1(y)≤ 0 involves y ≥ m, where m is the root of the equation x(y) = y ,
while the inequality f2(y)≥ 0 involves y ≤ M , where M is the root of the equation
z(y) = y . Moreover, y = m if and only if x = y , and y = M if and only if y = z.

EV-Proposition. Let a, b, c be fixed real numbers, and let x , y, z be real numbers
satisfying

x ≤ y ≤ z, x + y + z = a+ b+ c, x k + yk + zk = ak + bk + ck,
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where k is an even positive integer. If f is a differentiable function on R so that the
joined function g : R→ R defined by

g(x) = f ′
�

k−1px
�

is strictly convex on R, then the sum

S = f (x) + f (y) + f (z)

is minimum if and only if y = z, and is maximum if and only if x = y.

Proof. If a = b = c, then

a = b = c ⇒ ak + bk + ck = 3
�

a+ b+ c
3

�k

⇒ x k + yk + zk = 3
� x + y + z

3

�k

⇒ x = y = z.

Consider further that a, b, c are not all equal. As it is shown in the proof of EV-
Lemma, we have x < z. According to the relations

x + z = a+ b+ c − y, x k + zk = ak + bk + ck − yk,

we may consider x and z as functions of y . Thus, we have

S = f (x(y)) + f (y) + f (z(y)) := F(y).

According to EV-Lemma, it suffices to show that F is maximum for y = m and is
minimum for y = M . Using (*), we have

F ′(y) = x ′ f ′(x) + f ′(y) + z′ f ′(z)

=
yk−1 − zk−1

zk−1 − x k−1
g(x k−1) + g(yk−1) +

yk−1 − x k−1

x k−1 − zk−1
g(zk−1),

which, for x < y < z, is equivalent to

F ′(y)
(yk−1 − x k−1)(yk−1 − zk−1)

=
g(x k−1)

(x k−1 − yk−1)(x k−1 − zk−1)

+
g(yk−1)

(yk−1 − zk−1)(yk−1 − x k−1)
+

g(zk−1)
(zk−1 − x k−1)(zk−1 − yk−1)

.

Since g is strictly convex, the right hand side is positive. Moreover, since

(yk−1 − x k−1)(yk−1 − zk−1)< 0,

we have F ′(y)< 0 for y ∈ (m, M), hence F is strictly decreasing on [m, M]. There-
fore, F is maximum for y = m and is minimum for y = M .
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Proof of EV-Theorem. For n = 3, EV-Theorem follows immediately from EV-
Proposition. Consider next that n ≥ 4. Since X = (x1, x2, . . . , xn) is defined in
EV-Theorem as a compact set in Rn, Sn attains its minimum and maximum values.
Using this property and EV-Proposition, we can prove EV-Theorem via contradic-
tion. Thus, for the sake of contradiction, assume that Sn attains its maximum at
(b1, b2, . . . , bn), where b1 ≤ b2 ≤ · · · ≤ bn and b1 < bn−1. Let x1, xn−1 and xn be
real numbers so that

x1 ≤ xn−1 ≤ xn, x1+ xn−1+ xn = b1+ bn−1+ bn, x k
1 + x k

n−1+ x k
n = bk

1 + bk
n−1+ bk

n.

According to EV-Proposition, the sum f (x1)+ f (xn−1)+ f (xn) is maximum for x1 =
xn−1, when

f (x1) + f (xn−1) + f (xn)> f (b1) + f (bn−1) + f (bn).

This result contradicts the assumption that Sn attains its maximum value at (b1, b2, . . . , bn)
with b1 < bn−1. Similarly, we can prove that Sn is minimum for x2 = x3 = · · ·= xn.

Taking k = 2 in EV-Theorem, we obtain the following corollary.

Corollary 1. Let a1, a2, . . . , an (n≥ 3) be fixed real numbers, and let x1, x2, . . . , xn

be real variables so that
x1 ≤ x2 ≤ · · · ≤ xn,

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

x2
1 + x2

2 + · · ·+ x2
n = a2

1 + a2
2 + · · ·+ a2

n.

If f is a differentiable function on R so that the derivative f ′ is strictly convex on R,
then the sum

Sn = f (x1) + f (x2) + · · ·+ f (xn)

is minimum for x2 = x3 = · · ·= xn, and is maximum for x1 = x2 = · · ·= xn−1.

Corollary 2. Let a1, a2, . . . , an (n≥ 3) be fixed real numbers, and let x1, x2, . . . , xn

be real variables so that
x1 ≤ x2 ≤ · · · ≤ xn,

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

x k
1 + x k

2 + · · ·+ x k
n = ak

1 + ak
2 + · · ·+ ak

n,

where k is an even positive integer. For any positive odd number m, m> k, the power
sum

Sn = xm
1 + xm

2 + · · ·+ xm
n

is minimum for x2 = x3 = · · ·= xn, and is maximum for x1 = x2 = · · ·= xn−1.

Proof. We apply the EV-Theorem the function f (u) = um. The joined function

g(x) = f ′
�

k−1px
�

= m
k−1
p

xm−1
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is strictly convex on R because its derivative

g ′(x) =
m(m− 1)

k− 1
k−1
p

xm−k

is strictly increasing on R.

Theorem 1. Let a1, a2, . . . , an (n≥ 3) be fixed real numbers, and let x1, x2, . . . , xn be
real variables so that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

x2
1 + x2

2 + · · ·+ x2
n = a2

1 + a2
2 + · · ·+ a2

n.

The power sum
Sn = x4

1 + x4
2 + · · ·+ x4

n

is minimum and maximum when the set (x1, x2, . . . , xn) has at most two distinct val-
ues.

To prove this theorem, we will use Proposition 1 below.

Proposition 1. Let a, b, c be fixed real numbers, and let x , y, z be real numbers so
that

x + y + z = a+ b+ c, x2 + y2 + z2 = a2 + b2 + c2.

The power sum
S = x4 + y4 + z4

is minimum and maximum when two of x , y, z are equal

Proof. The proof is based on EV-Lemma. Without loss of generality, assume that
x ≤ y ≤ z. For the nontrivial case when a, b, c are not all equal (which involves
x < z), consider the function of y

F(y) = x4(y) + y4 + z4(y).

According to (*), we have

F ′(y) = 4x3 x ′ + 4y3 + 4z3z′ = 4x3 y − z
z − x

+ 4y3 + 4z3 y − x
x − z

= 4(x + y + z)(y − x)(y − z) = 4(a+ b+ c)(y − x)(y − z).

There are three cases to consider.

Case 1: a + b + c < 0. Since F ′(y) > 0 for x < y < z, F is strictly increasing on
[m, M].

Case 2: a+ b+ c > 0. Since F ′(y) < 0 for x < y < z, F is strictly decreasing on
[m, M].

Case 3: a+ b+ c = 0. Since F ′(y) = 0, F is constant on [m, M].
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In all cases, F is monotonic on m, M]. Therefore, F is minimum and maximum for
y = m or y = M ; that is, when x = y or y = z (see EV-Lemma). Notice that for
a+b+c 6= 0, F is strictly monotonic on [m, M], hence F is minimum and maximum
if and only if y = m or y = M ; that is, if and only if x = y or y = z.

Proof of Theorem 1. For n = 3, Theorem 1 follows from Proposition 1. In order
to prove Theorem 1 for any n ≥ 4, we will use the contradiction method. For the
sake of contradiction, assume that (b1, b2, . . . , bn) is an extreme point having at
least three distinct components; let us say b1 < b2 < b3. Let x1, x2 and x3 be real
numbers so that

x1 ≤ x2 ≤ x3, x1 + x2 + x3 = b1 + b2 + b3 x2
1 + x2

2 + x2
3 = b2

1 + b2
2 + b2

3.

We need to consider two cases.

Case 1: b1 + b2 + b3 6= 0. According to Proposition 1, the sum x4
1 + x4

2 + x4
3 is

extreme only when two of x1, x2, x3 are equal, which contradicts the assumption
that the sum x4

1 + x4
2 + · · · + x4

n attains its extreme value at (b1, b2, . . . , bn) with
b1 < b2 < b3.

Case 2: b1+ b2+ b3 = 0. There exist three real numbers x1, x2, x3 so that x1 = x2

and
x1 + x2 + x3 = b1 + b2 + b3 = 0, x2

1 + x2
2 + x2

3 = b2
1 + b2

2 + b2
3.

Letting x1 = x2 := x and x3 := y , we have 2x + y = 0, x 6= y . According to
Proposition 1, the sum x4

1 + x4
2 + x4

3 is constant (equal to b4
1 + b4

2 + b4
3). Thus,

(x , x , y, b4, . . . , bn) is also an extreme point. According to our hypothesis, this ex-
treme point has at least three distinct components. Therefore, among the numbers
b4, . . . , bn there is one, let us say b4, so that x , y and b4 are distinct. Since

x + y + b4 = −x + b4 6= 0,

we have a case similar to Case 1, which leads to a contradiction.

Theorem 2. Let a1, a2, . . . , an (n≥ 3) be fixed real numbers, and let x1, x2, . . . , xn be
real variables so that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

x2
1 + x2

2 + · · ·+ x2
n = a2

1 + a2
2 + · · ·+ a2

n.

For m ∈ {6,8}, the power sum

Sn = xm
1 + xm

2 + · · ·+ xm
n

is maximum when the set (x1, x2, . . . , xn) has at most two distinct values.

Theorem 2 can be proved using Proposition 2 below, in a similar way as the
EV-Theorem.
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Proposition 2. Let a, b, c be fixed real numbers, let x , y, z be real numbers so that

x + y + z = a+ b+ c, x2 + y2 + z2 = a2 + b2 + c2.

For m ∈ {6,8}, the power sum

Sm = xm + ym + zm

is maximum if and only if two of x , y, z are equal.

Proof. Consider the nontrivial case where a, b, c are not all equal. Let

p = a+ b+ c, q = ab+ bc + ca, r = x yz.

Since x + y + z = p and x y + yz + zx = q, from

(x − y)2(y − z)2(z − x)2 ≥ 0,

which is equivalent to

27r2 + 2(2p3 − 9pq)r − p2q2 + 4q3 ≤ 0,

we get r ∈ [r1, r2], where

r1 =
9pq− 2p3 − 2(p2 − 3q)

p

p2 − 3q
27

, r2 =
9pq− 2p3 + 2(p2 − 3q)

p

p2 − 3q
27

.

From
−27(r − r1)(r − r2) = (x − y)2(y − z)2(z − x)2 ≥ 0,

it follows that the product r = x yz attains its minimum value r1 and its maximum
value r2 only when two of x , y, z are equal. For fixed p and q, we have

S6 = 3r2 + f6(p, q)r + h6(p, q) := g6(r),

S8 = 4(3p2 − 2q)r2 + f8(p, q)r + h8(p, q) := g8(r).

Since
3p2 − 2q =

7
3

p2 +
2
3
(p2 − 3q)> 0,

the functions g6 and g8 are strictly convex, hence are maximum only for r = r1 or
r = r2; that is, only when two of x , y, z are equal.

Open problem. Theorem 2 is valid for any integer number m≥ 3.

Note. The EV-Theorem for real variables and Corollary 1 are also valid under the
conditions in Note 2 and Note 3 from the preceding chapter 5, where m, M ∈ R.
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6.2 Applications

6.1. If a, b, c, d are real numbers so that a+ b+ c + d = 4, then

�

a2 + b2 + c2 + d2 +
8
3

�2

≥ 4
�

a3 + b3 + c3 + d3 +
64
9

�

.

6.2. If a, b, c, d are real numbers so that a+ b+ c + d = 4, then

(a2 + b2 + c2 + d2 − 4)
�

a2 + b2 + c2 + d2 +
76
3

�

≥ 8(a3 + b3 + c3 + d3 − 4).

6.3. If a, b, c are real numbers so that a+ b+ c = 3, then

(a2 + b2 + c2 − 3)(a2 + b2 + c2 + 93)≥ 24(a3 + b3 + c3 − 3).

6.4. If a, b, c, d are real numbers so that a+ b+ c + d = 4, then

(a2 + b2 + c2 + d2 − 4)(a2 + b2 + c2 + d2 + 116)≥ 24(a3 + b3 + c3 + d3 − 4).

6.5. Let a, b, c, d be real numbers so that a+ b+ c + d = 4, and let

E = a2 + b2 + c2 + d2 − 4, F = a3 + b3 + c3 + d3 − 4.

Prove that

E

�√

√E
3
+ 3

�

≥ F.

6.6. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = 0, a2
1 + a2

2 + · · ·+ a2
n = n(n− 1).

If m is an odd number (m≥ 3), then

n− 1− (n− 1)m ≤ am
1 + am

2 + · · ·+ am
n ≤ (n− 1)m − n+ 1.
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6.7. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = 1, a2
1 + a2

2 + · · ·+ a2
n = n2 + n− 1.

If m is an odd number (m≥ 3), then

(n− 1)
�

1+
2
n

�m

−
�

n−
2
n

�m

≤ am
1 + am

2 + · · ·+ am
n ≤ nm − n+ 1.

6.8. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = 1, a2
1 + a2

2 + · · ·+ a2
n = n2 − 3n+ 3.

If m is an odd number (m≥ 3), then

n− 1− (n− 2)m ≤ am
1 + am

2 + · · ·+ am
n ≤

�

n− 2+
2
n

�m

− (n− 1)
�

1−
2
n

�m

.

6.9. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = a2
1 + a2

2 + · · ·+ a2
n = n− 1.

If m is an odd number (m≥ 3), then

n− 1≤ am
1 + am

2 + · · ·+ am
n ≤ (n− 1)

�

1−
2
n

�m

+
�

2−
2
n

�m

.

6.10. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = n+ 1, a2
1 + a2

2 + · · ·+ a2
n = n+ 3.

If m is an odd number (m≥ 3), then
�

2
n

�m

+ (n− 1)
�

1+
2
n

�m

≤ am
1 + am

2 + · · ·+ am
n ≤ 2m + n− 1.

6.11. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = a4
1 + a4

2 + · · ·+ a4
n = n− 1,

then
a5

1 + a5
2 + · · ·+ a5

n ≥ n− 1.
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6.12. If a, b, c are real numbers so that a2 + b2 + c2 = 3, then

a3 + b3 + c3 + 3≥ 2(a+ b+ c).

6.13. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 0, a2
1 + a2

2 + · · ·+ a2
n = n(n− 1),

then
a4

1 + a4
2 + · · ·+ a4

n ≤ n(n− 1)(n2 − 3n+ 3).

6.14. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n+ 1, a2
1 + a2

2 + · · ·+ a2
n = 4n2 + n− 1,

then
a4

1 + a4
2 + · · ·+ a4

n ≤ 16n4 + n− 1.

6.15. If n is an odd number and a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 0, a2
1 + a2

2 + · · ·+ a2
n = n(n2 − 1),

then
a4

1 + a4
2 + · · ·+ a4

n ≥ n(n2 − 1)(n2 + 3).

6.16. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n2 − n− 1, a2
1 + a2

2 + · · ·+ a2
n = n3 + 2n2 − n− 1,

then
a4

1 + a4
2 + · · ·+ a4

n ≥ n4 + (n− 1)(n+ 1)4.

6.17. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n2 − 2n− 1, a2
1 + a2

2 + · · ·+ a2
n = n3 + 2n+ 1,

then
a4

1 + a4
2 + · · ·+ a4

n ≥ (n+ 1)4 + (n− 1)n4.



500 Vasile Cîrtoaje

6.18. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n2 − 3n− 2, a2
1 + a2

2 + · · ·+ a2
n = n3 + 2n2 − 3n− 2,

then
a4

1 + a4
2 + · · ·+ a4

n ≥ 2n4 + (n− 2)(n+ 1)4.

6.19. If a, b, c, d are real numbers so that a+ b+ c + d = 4, then

(a2 + b2 + c2 + d2 − 4)(a2 + b2 + c2 + d2 + 36)≤ 12(a4 + b4 + c4 + d4 − 4).

6.20. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 0, a2
1 + a2

2 + · · ·+ a2
n = n(n− 1),

then
a6

1 + a6
2 + · · ·+ a6

n ≤ (n− 1)6 + n− 1.

6.21. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 1, a2
1 + a2

2 + · · ·+ a2
n = n2 + n− 1,

then
a6

1 + a6
2 + · · ·+ a6

n ≤ n6 + n− 1.

6.22. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 0, a2
1 + a2

2 + · · ·+ a2
n = n(n− 1),

then
a8

1 + a8
2 + · · ·+ a8

n ≤ (n− 1)8 + n− 1.

6.23. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 1, a2
1 + a2

2 + · · ·+ a2
n = n2 + n− 1,

then
a8

1 + a8
2 + · · ·+ a8

n ≤ n8 + n− 1.
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6.24. Let a1, a2, . . . , an (n≥ 2) be real numbers (not all equal), and let

A=
a1 + a2 + · · ·+ an

n
, B =

a2
1 + a2

2 + · · ·+ a2
n

n
, C =

a3
1 + a3

2 + · · ·+ a3
n

n
.

Then,
1
4

�

1−

√

√

1+
2n2

n− 1

�

≤
B2 − AC
B2 − A4

≤
1
4

�

1+

√

√

1+
2n2

n− 1

�

.

6.25. If a, b, c, d are real numbers so that

a+ b+ c + d = 2,

then
a4 + b4 + c4 + d4 ≤ 40+

3
4
(a2 + b2 + c2 + d2)2.

6.26. If a, b, c, d, e are real numbers, then

a4+ b4+ c4+ d4+ e4 ≤
31+ 18

p
3

8
(a+ b+ c+ d + e)4+

3
4
(a2+ b2+ c2+ d2+ e2)2.

6.27. Let a, b, c, d, e 6=
−5
4

be real numbers so that a+ b+ c + d + e = 5. Then,

a(a− 1)
(4a+ 5)2

+
b(b− 1)
(4b+ 5)2

+
c(c − 1)
(4c + 5)2

+
d(d − 1)
(4d + 5)2

+
e(e− 1)
(4e+ 5)2

≥ 0.

6.28. If a, b, c are real numbers so that

a+ b+ c = 9, ab+ bc + ca = 15,

then
19

175
≤

1
b2 + bc + c2

+
1

c2 + ca+ a2
+

1
a2 + ab+ b2

≤
7

19
.

6.29. If a, b, c are real numbers so that

8(a2 + b2 + c2) = 9(ab+ bc + ca),

then
419
175
≤

a2

b2 + bc + c2
+

b2

c2 + ca+ a2
+

c2

a2 + ab+ b2
≤

311
19

.

6.30. Let a1, a2, . . . , an be real numbers such that a1 + a2 + · · ·+ an = n. If n ≤ 10,
then

2(a2
1 + a2

2 + · · ·+ a2
n)

2 − n(a3
1 + a3

2 + · · ·+ a3
n)≥ n2.
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6.3 Solutions

P 6.1. If a, b, c, d are real numbers so that a+ b+ c + d = 4, then
�

a2 + b2 + c2 + d2 +
8
3

�2

≥ 4
�

a3 + b3 + c3 + d3 +
64
9

�

.

(Vasile Cîrtoaje, 2010)

Solution. Apply Corollary 2 for n= 4, k = 2, m= 3:

• If a, b, c, d are real numbers so that a ≤ b ≤ c ≤ d and

a+ b+ c + d = 4, a2 + b2 + c2 + d2 = constant,

then
S4 = a3 + b3 + c3 + d3

is maximum for a = b = c ≤ d.

Thus, we only need to show that 3a+ d = 4 involves
�

3a2 + d2 +
8
3

�2

≥ 4
�

3a3 + d3 +
64
9

�

.

This inequality is equivalent to

(a− 1)2(3a− 2)2 ≥ 0.

The equality holds for a = b = c = d = 1, and also for

a = b = c =
2
3

, d = 2

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n,

then
�

a2
1 + a2

2 + · · ·+ a2
n +

n3

8n− 8

�2

≥ n
�

a3
1 + a3

2 + · · ·+ a3
n

�

+
n4(n2 + 16n− 16)

64(n− 1)2
,

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 = a2 = · · ·= an−1 =
n

2n− 2
, an =

n
2

(or any cyclic permutation).
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P 6.2. If a, b, c, d are real numbers so that a+ b+ c + d = 4, then

(a2 + b2 + c2 + d2 − 4)
�

a2 + b2 + c2 + d2 +
76
3

�

≥ 8(a3 + b3 + c3 + d3 − 4).

(Vasile Cîrtoaje, 2010)

Solution. As shown in the preceding P 6.1, we only need to show that

3a+ d = 4

involves

(3a2 + d2 − 4)
�

3a2 + d2 +
76
3

�

≥ 8(3a3 + d3 − 4).

This inequality is equivalent to

(a− 1)2(3a− 1)2 ≥ 0.

The equality holds for a = b = c = d = 1, and also for

a = b = c =
1
3

, d = 3

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n,

then

�

a2
1 + · · ·+ a2

n − n
�

�

a2
1 + · · ·+ a2

n +
n(n2 + n− 1)

n− 1

�

≥ 2n
�

a3
1 + · · ·+ a3

n − n
�

,

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 = a2 = · · ·= an−1 =
1

n− 1
, an = n− 1

(or any cyclic permutation).

P 6.3. If a, b, c are real numbers so that a+ b+ c = 3, then

(a2 + b2 + c2 − 3)(a2 + b2 + c2 + 93)≥ 24(a3 + b3 + c3 − 3).

(Vasile Cîrtoaje, 2010)
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Solution. As shown in the proof of P 6.1, we only need to show that

2a+ c = 3

involves
(2a2 + c2 − 3)(2a2 + c2 + 93)≥ 24(2a3 + c3 − 3).

This inequality is equivalent to

(a2 − 1)2 ≥ 0.

The equality holds for a = b = c = 1, and also for

a = b = −1, c = 5

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a, b, c be real numbers so that a + b + c = 3. For any real k, the following
inequality holds

(a2 + b2 + c2 − 3)(a2 + b2 + c2 + 6k2 + 36k− 3)≥ 12k(a3 + b3 + c3 − 3),

with equality for a = b = c = 1, and also for

a = b = 1− k, c = 1+ 2k

(or any cyclic permutation).

P 6.4. If a, b, c, d are real numbers so that a+ b+ c + d = 4, then

(a2 + b2 + c2 + d2 − 4)(a2 + b2 + c2 + d2 + 116)≥ 24(a3 + b3 + c3 + d3 − 4).

(Vasile Cîrtoaje, 2010)

Solution. As shown in the proof of P 6.1, we only need to show that

3a+ d = 4

involves
(3a2 + d2 − 4)(3a2 + d2 + 116)≥ 24(3a3 + d3 − 4).

This inequality is equivalent to

(a2 − 1)2 ≥ 0.
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The equality holds for a = b = c = d = 1, and also for

a = b = c = −1, d = 7

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = n.

If k is a real number, then

k(a3
1 + · · ·+ a3

n − n)

a2
1 + · · ·+ a2

n − n
≤

a2
1 + · · ·+ a2

n + n(n− 1)(n− 2)2k2 + 6n(n− 1)k− n

2n(n− 1)
,

with equality for

a1 = · · ·= an−1 = 1− (n− 2)k, an = 1+ (n− 1)(n− 2)k

(or any cyclic permutation).

For k =
−6

n− 2
, we get the following nice inequality

�

a2
1 + a2

2 + · · ·+ a2
n − n

�2
+

12n(n− 1)
n− 2

�

a3
1 + a3

2 + · · ·+ a3
n − n

�

≥ 0,

with equality for a1 = a2 = · · ·= an = 1, and also for

a1 = · · ·= an−1 = 7, an = 7− 6n

(or any cyclic permutation).

P 6.5. Let a, b, c, d be real numbers so that a+ b+ c + d = 4, and let

E = a2 + b2 + c2 + d2 − 4, F = a3 + b3 + c3 + d3 − 4.

Prove that

E

�√

√E
3
+ 3

�

≥ F.

(Vasile Cîrtoaje, 2016)
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Solution. As shown in the proof of P 6.1, we only need to prove the desired in-
equality for 3a+ d = 4 and

E = 3a2 + d2 − 4, F = 3a3 + d3 − 4.

Since
E = 12(1− a)2, F = 12(5− 2a)(1− a)2,

we get

E

�√

√E
3
+ 3

�

− F = 12(1− a)2(2|1− a|+ 3)− 12(5− 2a)(1− a)2

= 24(1− a)2[|1− a| − (1− a)]≥ 0.

The equality holds for

a = b = c =
4− d

3
≤ 1

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be real numbers so that a1 + a2 + · · ·+ an = n, and let

E = a2
1 + a2

2 + · · ·+ a2
n − n, F = a3

1 + a3
2 + · · ·+ a3

n − n.

Then,

E

�

(n− 2)

√

√ E
n(n− 1)

+ 3

�

≥ F,

with equality for

a1 = · · ·= an−1 =
n− an

n− 1
≤ 1

(or any cyclic permutation).

P 6.6. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = 0, a2
1 + a2

2 + · · ·+ a2
n = n(n− 1).

If m is an odd number (m≥ 3), then

n− 1− (n− 1)m ≤ am
1 + am

2 + · · ·+ am
n ≤ (n− 1)m − n+ 1.

(Vasile Cîrtoaje, 2010)



508 Vasile Cîrtoaje

Solution. Without loss of generality, assume that

a1 ≤ a2 ≤ · · · ≤ an.

(a) Consider the right inequality. For n= 2, we need to show that

a1 + a2 = 0, a2
1 + a2

2 = 2

implies
am

1 + am
2 ≤ 0.

We have
a1 = −1, a2 = 1,

therefore am
1 + am

2 = 0. Assume now that n≥ 3. According to Corollary 2, the sum

Sn = am
1 + am

2 + · · ·+ am
n

is maximum for a1 = a2 = · · ·= an−1. Thus, we only need to show that

(n− 1)a+ b = 0, (n− 1)a2 + b2 = n(n− 1), a ≤ b

involve
(n− 1)am + bm ≤ (n− 1)m − n+ 1.

From the equations above, we get

a = −1, b = n− 1;

therefore,

(n− 1)am + bm = (n− 1)(−1)m + (n− 1)m = (n− 1)m − n+ 1.

The equality holds for

a1 = · · ·= an−1 = −1, an = n− 1

(or any cyclic permutation).

(b) The left inequality follows from the right inequality by replacing a1, a2, . . . , an

with −a1,−a2, . . . ,−an, respectively. The equality holds for

a1 = −n+ 1, a2 = a3 = · · ·= an = 1

(or any cyclic permutation).
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P 6.7. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = 1, a2
1 + a2

2 + · · ·+ a2
n = n2 + n− 1.

If m is an odd number (m≥ 3), then

(n− 1)
�

1+
2
n

�m

−
�

n−
2
n

�m

≤ am
1 + am

2 + · · ·+ am
n ≤ nm − n+ 1.

(Vasile Cîrtoaje, 2010)

Solution. Without loss of generality, assume that

a1 ≤ a2 ≤ · · · ≤ an.

For n= 2, we need to show that

a1 + a2 = 1, a2
1 + a2

2 = 5,

implies
2m − 1≤ am

1 + am
2 ≤ 2m − 1.

We have
a1 = −1, a2 = 2,

for which am
1 + am

2 = 2m − 1. Assume now that n≥ 3.

(a) Consider the right inequality. According to Corollary 2, the sum

Sn = am
1 + am

2 + · · ·+ am
n

is maximum for a1 = a2 = · · ·= an−1. Thus, we only need to show that

(n− 1)a+ b = 1, (n− 1)a2 + b2 = n2 + n− 1, a ≤ b

involve
(n− 1)am + bm ≤ nm − n+ 1.

From the equations above, we get

a = −1, b = n;

therefore,
(n− 1)am + bm = (n− 1)(−1)m + nm = nm − n+ 1.

The equality holds for

a1 = a2 = · · ·= an−1 = −1, an = n

(or any cyclic permutation).



510 Vasile Cîrtoaje

(b) Consider the left inequality. According to Corollary 2, the sum

Sn = am
1 + am

2 + · · ·+ am
n

is minimum for a2 = a3 = · · ·= an. Thus, we only need to show that

a+ (n− 1)b = 1, a2 + (n− 1)b2 = n2 + n− 1, a ≤ b

involve

am + (n− 1)bm ≥ (n− 1)
�

1+
2
n

�m

−
�

n−
2
n

�m

.

From the equations above, we get

a = −n+
2
n

, b = 1+
2
n

;

therefore,

am + (n− 1)bm =
�

−n+
2
n

�m

+ (n− 1)
�

1+
2
n

�m

= (n− 1)
�

1+
2
n

�m

−
�

n−
2
n

�m

.

The equality holds for

a1 = −n+
2
n

, a2 = a3 = · · ·= an = 1+
2
n

(or any cyclic permutation).

P 6.8. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = 1, a2
1 + a2

2 + · · ·+ a2
n = n2 − 3n+ 3.

If m is an odd number (m≥ 3), then

n− 1− (n− 2)m ≤ am
1 + am

2 + · · ·+ am
n ≤

�

n− 2+
2
n

�m

− (n− 1)
�

1−
2
n

�m

.

(Vasile Cîrtoaje, 2010)

Solution. Without loss of generality, assume that

a1 ≤ a2 ≤ · · · ≤ an.

For n= 2, we need to show that

a1 + a2 = 1, a2
1 + a2

2 = 1,
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implies
1≤ am

1 + am
2 ≤ 1.

We have
a1 = 0, a2 = 1,

when am
1 + am

2 = 1. Assume now that n≥ 3.

(a) Consider the left inequality. According to Corollary 2, the sum

Sn = am
1 + am

2 + · · ·+ am
n

is minimum for a2 = a3 = · · ·= an. Thus, we only need to show that

a+ (n− 1)b = 1, a2 + (n− 1)b2 = n2 − 3n+ 3, a ≤ b

involve
am + (n− 1)bm ≤ n− 1− (n− 2)m.

From the equations above, we get

a = 2− n, b = 1;

therefore,

am + (n− 1)bm = (2− n)m + n− 1= n− 1− (n− 2)m.

The equality holds for

a1 = 2− n, a2 = a3 = · · ·= an = 1

(or any cyclic permutation).

(b) Consider the right inequality. According to Corollary 2, the sum

Sn = am
1 + am

2 + · · ·+ am
n

is maximum for a1 = a2 = · · ·= an−1. Thus, we only need to show that

(n− 1)a+ b = 1, (n− 1)a2 + b2 = n2 − 3n+ 3, a ≤ b

involve

(n− 1)am + bm ≤
�

n− 2+
2
n

�m

− (n− 1)
�

1−
2
n

�m

.

From the equations above, we get

a = −1+
2
n

, b = n− 2+
2
n

;
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therefore,

(n− 1)am + bm = (n− 1)
�

−1+
2
n

�m

+
�

n− 2+
2
n

�m

=
�

n− 2+
2
n

�m

− (n− 1)
�

1−
2
n

�m

.

The equality holds for

a1 = · · ·= an−1 = −1+
2
n

, an = n− 2+
2
n

(or any cyclic permutation).

P 6.9. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = a2
1 + a2

2 + · · ·+ a2
n = n− 1.

If m is an odd number (m≥ 3), then

n− 1≤ am
1 + am

2 + · · ·+ am
n ≤ (n− 1)

�

1−
2
n

�m

+
�

2−
2
n

�m

.

(Vasile Cîrtoaje, 2010)

Solution. Without loss of generality, assume that

a1 ≤ a2 ≤ · · · ≤ an.

For n= 2, we need to show that

a1 + a2 = 1, a2
1 + a2

2 = 1,

implies
1≤ am

1 + am
2 ≤ 1.

The above equations involve

a1 = 0, a2 = 1,

hence am
1 + am

2 = 1. Assume now that n≥ 3.

(a) Consider the left inequality. According to Corollary 2, the sum

Sn = am
1 + am

2 + · · ·+ am
n

is minimum for a2 = a3 = · · ·= an. Thus, we only need to show that

a+ (n− 1)b = n− 1, a2 + (n− 1)b2 = n− 1, a ≤ b
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involve
am + (n− 1)bm ≥ n− 1.

From the equations above, we get

a = 0, b = 1;

therefore,
am + (n− 1)bm = n− 1.

The equality holds for
a1 = 0, a2 = · · ·= an = 1

(or any cyclic permutation).

(b) Consider the right inequality. According to Corollary 2, the sum

Sn = am
1 + am

2 + · · ·+ am
n

is maximum for a1 = a2 = · · ·= an−1. Thus, we only need to show that

(n− 1)a+ b = n− 1, (n− 1)a2 + b2 = n− 1, a ≤ b

involve

(n− 1)am + bm ≤ (n− 1)
�

1−
2
n

�m

+
�

2−
2
n

�m

.

From the equations above, we get

a = 1−
2
n

, b = 2−
2
n

,

when

(n− 1)am + bm = (n− 1)
�

1−
2
n

�m

+
�

2−
2
n

�m

.

The equality holds for

a1 = a2 = · · ·= an−1 = 1−
2
n

, an = 2−
2
n

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = k, a2
1 + a2

2 + · · ·+ a2
n = n2 + (2k− 1)n+ k(k− 2),

where k is a real number, k ≥ −n. If m is an odd number (m≥ 3), then
�

2k
n
+ 1− n− k

�m

+(n−1)
�

2k
n
+ 1

�m

≤ am
1 + am

2 + · · ·+ am
n ≤ (n+ k−1)m−n+1.
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The left inequality is an equality for

a1 =
2k
n
+ 1− n− k, a2 = · · ·= an =

2k
n
+ 1

(or any cyclic permutation). The right inequality is an equality for

a1 = · · ·= an−1 = −1, an = n+ k− 1

(or any cyclic permutation).

For k = 0 and k = 1, we get the inequalities in P 6.6 and P 6.7, respectively. For k =
−1 and k = −n+1, by replacing k with−k and a1, a2, . . . , an with−a1,−a2, . . . ,−an,
we get the inequalities in P 6.8 and P 6.9, respectively.

P 6.10. Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = n+ 1, a2
1 + a2

2 + · · ·+ a2
n = n+ 3.

If m is an odd number (m≥ 3), then
�

2
n

�m

+ (n− 1)
�

1+
2
n

�m

≤ am
1 + am

2 + · · ·+ am
n ≤ 2m + n− 1.

(Vasile Cîrtoaje, 2010)

Solution. Without loss of generality, assume that

a1 ≤ a2 ≤ · · · ≤ an.

For n= 2, we need to show that

a1 + a2 = 3, a2
1 + a2

2 = 5,

implies
2m + 1≤ am

1 + am
2 ≤ 2m + 1.

We get
a1 = 1, a2 = 2,

when am
1 + am

2 = 2m + 1. Assume now that n≥ 3.

(a) Consider the left inequality. According to Corollary 2, the sum

Sn = am
1 + am

2 + · · ·+ am
n

is minimum for a2 = a3 = · · ·= an. Thus, we only need to show that

a+ (n− 1)b = n+ 1, a2 + (n− 1)b2 = n+ 3, a ≤ b
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involve

am + (n− 1)bm ≥
�

2
n

�m

+ (n− 1)
�

1+
2
n

�m

.

From the equations

a+ (n− 1)b = n+ 1, a2 + (n− 1)b2 = n+ 3,

we get

a =
2
n

, b = 1+
2
n

;

therefore,

am + (n− 1)bm =
�

2
n

�m

+ (n− 1)
�

1+
2
n

�m

.

The equality holds for

a1 =
2
n

, a2 = · · ·= an = 1+
2
n

(or any cyclic permutation).

(b) Consider the right inequality. According to Corollary 2, the sum

Sn = am
1 + am

2 + · · ·+ am
n

is maximum for a1 = a2 = · · ·= an−1. Thus, we only need to show that

(n− 1)a+ b = n+ 1, (n− 1)a2 + b2 = n+ 3, a ≤ b

involve
(n− 1)am + bm ≤ 2m + n− 1.

From the equations

(n− 1)a+ b = n+ 1, (n− 1)a2 + b2 = n+ 3,

we get
a = 1, b = 2;

therefore,
(n− 1)am + bm = n− 1+ 2m.

The equality holds for

a1 = · · ·= an−1 = 1, an = 2

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:
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• Let a1, a2, . . . , an be real numbers so that

a1 + a2 + · · ·+ an = k, a2
1 + a2

2 + · · ·+ a2
n = n2 − (2k+ 1)n+ k(k+ 2),

where k is a positive number, k > n. If m is an odd number (m≥ 3), then
�

2k
n
− 1+ n− k

�m

+(n−1)
�

2k
n
− 1

�m

≤ am
1 + am

2 + · · ·+ am
n ≤ (k−n+1)m+n−1.

The left inequality is an equality for

a1 =
2k
n
− 1+ n− k, a2 = · · ·= an =

2k
n
− 1

(or any cyclic permutation). The right inequality is an equality for

a1 = · · ·= an−1 = 1, an = k− n+ 1

(or any cyclic permutation).

For k = n+ 1, we get the inequalities in P 6.10.

P 6.11. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = a4
1 + a4

2 + · · ·+ a4
n = n− 1,

then
a5

1 + a5
2 + · · ·+ a5

n ≥ n− 1.

(Vasile Cîrtoaje, 2010)

Solution. For n= 2, we need to show that

a1 + a2 = 1, a4
1 + a4

2 = 1,

implies
a5

1 + a5
2 ≥ 1.

We have
a1 = 0, a2 = 1,

or
a1 = 1, a2 = 0.

For each of these cases, the inequality is an equality. Assume now that n≥ 3 and

a1 ≤ a2 ≤ · · · ≤ an.
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According to Corollary 2, the sum

Sn = a5
1 + a5

2 + · · ·+ a5
n

is minimum for a2 = a3 = · · ·= an. Thus, we only need to show that

a+ (n− 1)b = a4 + (n− 1)b4 = n− 1, a ≤ b

involve
a5 + (n− 1)b5 ≥ n− 1.

The equations

a+ (n− 1)b = n− 1, a4 + (n− 1)b4 = n− 1,

are equivalent to

(1− b)[(n− 1)3(1− b)3 − 1− b− b2 − b3] = 0, a = (n− 1)(1− b);

that is,
b = 1, a = 0,

and
a3 = 1+ b+ b2 + b3, a = (n− 1)(1− b).

For the second case, the condition a ≤ b involves

b3 ≥ 1+ b+ b2 + b3,

which is not possible. Therefore, it suffices to show that

a5 + (n− 1)b5 ≥ n− 1

for a = 0 and b = 1, that is clearly true. Thus, the proof is completed. The equality
holds for

a1 = 0, a2 = · · ·= an = 1

(or any cyclic permutation).

P 6.12. If a, b, c are real numbers so that

a2 + b2 + c2 = 3,

then
a3 + b3 + c3 + 3≥ 2(a+ b+ c).

(Vasile Cîrtoaje, 2010)
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Solution. Assume that
a ≤ b ≤ c.

According to Corollary 2, for a ≤ b ≤ c and

a+ b+ c = constant, a2 + b2 + c2 = 3,

the sum
S3 = a3 + b3 + c3

is minimum for a ≤ b = c. Thus, we only need to show that

a2 + 2b2 = 3, a ≤ b,

involves
a3 + 2b3 + 3≥ 2(a+ 2b).

We will show this by two methods. From a2 + 2b2 = 3 and a ≤ b, it follows that

−
p

3≤ a ≤ 1, −

√

√3
2
< b ≤

√

√3
2

.

Method 1. Write the desired inequality as

a3 + b(3− a2) + 3≥ 2(a+ 2b),

a3 − 2a+ 3≥ b(a2 + 1).

For a ≥ 0, we have
a3 − 2a+ 3≥ −2a+ 3> 0,

and for a ≤ 0, we have

a3 − 2a+ 3= a(a2 − 3) + a+ 3= −2ab2 + a+ 3≥ a+ 3> 0.

Thus, it suffices to show that

(a3 − 2a+ 3)2 ≥ b2(a2 + 1)2,

which is equivalent to

2(a3 − 2a+ 3)2 ≥ (3− a2)(a2 + 1)2,

(a− 1)2 f (a)≥ 0,

where
f (a) = a4 + 2a3 + 2a+ 5.

We need to prove that f (a)≥ 0. For a ≥ −1, we have

f (a) = (a+ 2)(a3 + 2) + 1> 0.
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For a ≤ −1, we have

f (a) = (a+ 1)2(a+ 2)2 + g(a), g(a) = −4a3 − 13a2 − 10a+ 1.

It suffices to show that g(a)≥ 0. Since

g(a) = −(a+ 1)
�

2a+
7
2

�2

+ 5h(a), h(a) = a2 +
13
4

a+
53
20

and

h(a) =
�

a+
13
8

�2

+
3

320
> 0,

the conclusion follows. The equality holds for a = b = c = 1.

Method 2. Write the desired inequality as follows:

2(a3 − 2a+ 1) + 4(b3 − 2b+ 1)≥ 0,

2(a3 − 2a+ 1) + 4(b3 − 2b+ 1)≥ a2 + 2b2 − 3,

(2a3 − a2 − 4a+ 3) + 2(b3 − b2 − 4b+ 3)≥ 0,

(a− 1)2(2a+ 3) + 2(b− 1)2(2b+ 3)≥ 0.

Since 2b+ 3> 0, the inequality is true for a ≥ −3/2. Consider further that

−
p

3≤ a ≤
−3
2

,

and rewrite the desired inequality as follows:

2(a3 − 2a+ 1) + 4(b3 − 2b+ 1) + 4(a2 + 2b2 − 3)≥ 0,

(2a3 + 4a2 − 4a− 2) + 2(2b3 + 4b2 − 4b− 2)≥ 0,
�

2a3 + 4a2 − 4a−
33
4

�

+
�

4b3 + 8b2 − 8b+
9
4

�

≥ 0,

(2a+ 3)
�

a2 +
1
2

a−
11
4

�

+ f (b)≥ 0,

where
f (b) = 4b3 + 8b2 − 8b+

9
4

.

Since 2a+ 3≤ 0 and

a2 +
1
2

a−
11
4
≤ 3+

1
2

a−
11
4
=

1
4
(2a+ 1)< 0,

it suffices to show that f (b)≥ 0. For b ≥ 0, we have

f (b)> 8b2 − 8b+ 2= 2(2b− 1)2 ≥ 0,

and for b ≤ 0, we have

f (b)> 4b3 + 8b2 = 4b2(b+ 2)≥ 0.
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P 6.13. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 0, a2
1 + a2

2 + · · ·+ a2
n = n(n− 1),

then
a4

1 + a4
2 + · · ·+ a4

n ≤ n(n− 1)(n2 − 3n+ 3).

(Vasile Cîrtoaje, 2010)

Solution. For n= 2, we need to show that

a1 + a2 = 0, a2
1 + a2

2 = 2,

implies
a4

1 + a4
2 ≤ 2.

We have
a1 = −1, a2 = 1,

or
a1 = 1, a2 = −1.

For each of these cases, the desired inequality is an equality. Assume now that
n≥ 3. According to Theorem 1, the sum

Sn = a4
1 + a4

2 + · · ·+ a4
n

is maximum for
a1 = · · ·= a j, a j+1 = · · ·= an,

where j ∈ {1, 2, . . . , n− 1}. Thus, we only need to show that

ja1 + (n− j)an = 0, ja2
1 + (n− j)a2

n = n(n− 1)

involve
ja4

1 + (n− j)a4
n ≤ n(n− 1)(n2 − 3n+ 3).

From the equations above, we get

a2
1 =
(n− j)(n− 1)

j
, a2

n =
j(n− 1)

n− j
;

therefore,

ja4
1 + (n− j)a4

n =
(n− j)3 + j3

j(n− j)
(n− 1)2 =

�

n2

j(n− j)
− 3

�

n(n− 1)2.

Since
j(n− j)− (n− 1) = ( j − 1)(n− j − 1)≥ 0,
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we get

ja4
1 + (n− j)a4

n ≤
�

n2

n− 1
− 3

�

n(n− 1)2 = n(n− 1)(n2 − 3n+ 3).

The equality holds for

a1 = −n+ 1, a2 = · · ·= an = 1

and for
a1 = n− 1, a2 = · · ·= an = −1

(or any cyclic permutation).

P 6.14. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n+ 1, a2
1 + a2

2 + · · ·+ a2
n = 4n2 + n− 1,

then
a4

1 + a4
2 + · · ·+ a4

n ≤ 16n4 + n− 1.

(Vasile Cîrtoaje, 2010)

Solution. Replacing n by 2n + 1 in the preceding P 6.13, we get the following
statement:

• If a1, a2, . . . , a2n+1 are real numbers so that

a1 + a2 + · · ·+ a2n+1 = 0, a2
1 + a2

2 + · · ·+ a2
2n+1 = 2n(2n+ 1),

then
a4

1 + a4
2 + · · ·+ a4

2n+1 ≤ 2n(2n+ 1)(4n2 − 2n+ 1),

with equality for
a1 = −2n, a2 = · · ·= a2n+1 = 1

and for
a1 = 2n, a2 = · · ·= a2n+1 = −1

(or any cyclic permutation).

Putting
an+1 = · · ·= a2n+1 = −1,

it follows that

a1 + a2 + · · ·+ an − n− 1= 0, a2
1 + a2

2 + · · ·+ a2
n + n+ 1= 2n(2n+ 1)
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involve
a4

1 + a4
2 + · · ·+ a4

n + n+ 1≤ 2n(2n+ 1)(4n2 − 2n+ 1).

This is equivalent to the desired statement. The equality holds for

a1 = 2n, a2 = · · ·= an = −1

(or any cyclic permutation).

P 6.15. If n is an odd number and a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 0, a2
1 + a2

2 + · · ·+ a2
n = n(n2 − 1),

then
a4

1 + a4
2 + · · ·+ a4

n ≥ n(n2 − 1)(n2 + 3).

(Vasile Cîrtoaje, 2010)

Solution. According to Theorem 1, the sum

Sn = a4
1 + a4

2 + · · ·+ a4
n

is minimum for
a1 = · · ·= a j, a j+1 = · · ·= an,

where j ∈ {1, 2, . . . , n− 1}. Thus, we only need to show that

ja1 + (n− j)an = 0, ja2
1 + (n− j)a2

n = n(n2 − 1)

involve
ja4

1 + (n− j)a4
n ≤ n(n2 − 1)(n2 + 3).

From the equations above, we get

a2
1 =
(n− j)(n2 − 1)

j
, a2

n =
j(n2 − 1)

n− j
;

therefore,

ja4
1 + (n− j)a4

n =
(n− j)3 + j3

j(n− j)
(n2 − 1)2 =

�

n2

j(n− j)
− 3

�

n(n2 − 1)2.

Since
n2 − 1

4
− j(n− j) =

(n− 2 j)2 − 1
4

≥ 0,

we get

ja4
1 + (n− j)a4

n ≥
�

4n2

n2 − 1
− 3

�

n(n2 − 1)2 = n(n2 − 1)(n2 + 3).
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The equality holds when
n− 1

2
of a1, a2, . . . , an are equal to −n− 1 and the other

n+ 1
2

are equal to n − 1, and also when
n− 1

2
of a1, a2, . . . , an are equal to n + 1

and the other
n+ 1

2
are equal to −n+ 1.

P 6.16. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n2 − n− 1, a2
1 + a2

2 + · · ·+ a2
n = n3 + 2n2 − n− 1,

then
a4

1 + a4
2 + · · ·+ a4

n ≥ n4 + (n− 1)(n+ 1)4.

(Vasile Cîrtoaje, 2010)

Solution. Replacing a1, a2, . . . , an by 2a1, 2a2, . . . , 2an and then n by 2n + 1, the
preceding P 6.15 becomes as follows:

• If a1, a2, . . . , a2n+1 are real numbers so that

a1 + a2 + · · ·+ a2n+1 = 0, a2
1 + a2

2 + · · ·+ a2
2n+1 = n(n+ 1)(2n+ 1),

then
a4

1 + a4
2 + · · ·+ a4

2n+1 ≥ n(n+ 1)(2n+ 1)(n2 + n+ 1),

with equality when n of a1, a2, . . . , a2n+1 are equal to −n− 1 and the other n+ 1 are
equal to n, and also when n of a1, a2, . . . , a2n+1 are equal to n+1 and the other n+1
are equal to −n.

Putting
an+1 = · · ·= a2n = −n, a2n+1 = n+ 1,

it follows that
a1 + a2 + · · ·+ an + n(−n) + (n+ 1) = 0

and
a2

1 + a2
2 + · · ·+ a2

n + n(−n)2 + (n+ 1)2 = n(n+ 1)(2n+ 1)

involve

a4
1 + a4

2 + · · ·+ a4
n + n(−n)4 + (n+ 1)4 ≤ n(n+ 1)(2n+ 1)(n2 + n+ 1).

This is equivalent to the desired statement. The equality holds for

a1 = · · ·= an−1 = n+ 1, an = −n

(or any cyclic permutation).
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P 6.17. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n2 − 2n− 1, a2
1 + a2

2 + · · ·+ a2
n = n3 + 2n+ 1,

then
a4

1 + a4
2 + · · ·+ a4

n ≥ (n+ 1)4 + (n− 1)n4.

(Vasile Cîrtoaje, 2010)

Solution. As shown in the proof of the preceding P 6.16, the following statement
holds:

• If a1, a2, . . . , a2n+1 are real numbers so that

a1 + a2 + · · ·+ a2n+1 = 0, a2
1 + a2

2 + · · ·+ a2
2n+1 = n(n+ 1)(2n+ 1),

then
a4

1 + a4
2 + · · ·+ a4

2n+1 ≥ n(n+ 1)(2n+ 1)(n2 + n+ 1),

with equality when n of a1, a2, . . . , a2n+1 are equal to −n− 1 and the other n+ 1 are
equal to n, and also when n of a1, a2, . . . , a2n+1 are equal to n+1 and the other n+1
are equal to −n.

Putting
an+1 = · · ·= a2n−1 = −n− 1, a2n = a2n+1 = n,

it follows that
a1 + a2 + · · ·+ an + (n− 1)(−n− 1) + 2n= 0

and
a2

1 + a2
2 + · · ·+ a2

n + (n− 1)(−n− 1)2 + 2n2 = n(n+ 1)(2n+ 1)

involve

a4
1 + a4

2 + · · ·+ a4
n + (n− 1)(−n− 1)4 + 2n4 ≤ n(n+ 1)(2n+ 1)(n2 + n+ 1),

which is equivalent to the desired statement. The equality holds for

a1 = −n− 1, a2 = · · ·= an = n

(or any cyclic permutation).

P 6.18. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = n2 − 3n− 2, a2
1 + a2

2 + · · ·+ a2
n = n3 + 2n2 − 3n− 2,

then
a4

1 + a4
2 + · · ·+ a4

n ≥ 2n4 + (n− 2)(n+ 1)4.

(Vasile Cîrtoaje, 2010)



EV Method for Real Variables 525

Solution. As shown in the proof of P 6.16, the following statement holds:

• If a1, a2, . . . , a2n+1 are real numbers so that

a1 + a2 + · · ·+ a2n+1 = 0, a2
1 + a2

2 + · · ·+ a2
2n+1 = n(n+ 1)(2n+ 1),

then
a4

1 + a4
2 + · · ·+ a4

2n+1 ≥ n(n+ 1)(2n+ 1)(n2 + n+ 1),

with equality when n of a1, a2, . . . , a2n+1 are equal to −n− 1 and the other n+ 1 are
equal to n, and also when n of a1, a2, . . . , a2n+1 are equal to n+1 and the other n+1
are equal to −n.

Putting
an+1 = · · ·= a2n−1 = −n, a2n = a2n+1 = n+ 1,

it follows that

a1 + a2 + · · ·+ an + (n− 1)(−n) + 2(n+ 1) = 0

and
a2

1 + a2
2 + · · ·+ a2

n + (n− 1)(−n)2 + 2(n+ 1)2 = n(n+ 1)(2n+ 1)

involve

a4
1 + a4

2 + · · ·+ a4
n + (n− 1)(−n)4 + 2(n+ 1)4 ≤ n(n+ 1)(2n+ 1)(n2 + n+ 1),

which is equivalent to the desired statement. The equality holds for

a1 = a2 = −n, a3 = · · ·= an = n+ 1

(or any permutation).

P 6.19. If a, b, c, d are real numbers so that a+ b+ c + d = 4, then

(a2 + b2 + c2 + d2 − 4)(a2 + b2 + c2 + d2 + 36)≤ 12(a4 + b4 + c4 + d4 − 4).

(Vasile Cîrtoaje, 2010)

Solution. By Theorem 1, for a+ b+ c+d = 4 and a2+ b2+ c2+d2 = constant, the
sum a4+ b4+ c4+ d4 is maximum when the set (a, b, c, d) has at most two distinct
values. Therefore, it suffices to consider the following two cases.

Case 1: a = b and c = d. We need to show that a+ c = 2 involves

(a2 + c2 − 2)(a2 + c2 + 18)≤ 6(a4 + c4 − 2).
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Since

a2 + c2 − 2= (a+ c)2 − 2ac − 2= 2(1− ac), a2 + c2 + 18= 2(11− ac),

a4 + c4 − 2= (a2 + c2)2 − 2a2c2 − 2= 2(1− ac)(7− ac),

the inequality becomes

(1− ac)(11− ac)≤ 3(1− ac)(7− ac),

(1− ac)(5− ac)≥ 0.

It is true because

ac ≤
1
4
(a+ c)2 = 1.

Case 2: b = c = d. We need to show that a+ 3b = 4 involves

(a2 + 3b2 − 4)(a2 + 3b2 + 36)≤ 12(a4 + 3b4 − 4).

Since

a2 + 3b2 − 4= 12(b− 1)2, a2 + 3b2 + 36= 4(3b2 − 6b+ 13),

a4 + 3b4 − 4= (4− 3b)4 + 3b4 − 4= 12(b− 1)2(7b2 − 22b+ 21),

the inequality becomes

(b− 1)2[(3b2 − 6b+ 13)≤ 3(b− 1)2(7b2 − 22b+ 21),

(b− 1)2(3b− 5)2 ≥ 0.

The equality holds for a = b = c = d = 1, and also for

a = −1, b = c = d =
5
3

(or any cyclic permutation).

P 6.20. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 0, a2
1 + a2

2 + · · ·+ a2
n = n(n− 1),

then
a6

1 + a6
2 + · · ·+ a6

n ≤ (n− 1)6 + n− 1.

(Vasile Cîrtoaje, 2010)
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Solution. For n= 2, we need to show that

a1 + a2 = 0, a2
1 + a2

2 = 2,

implies
a6

1 + a6
2 ≤ 2.

We have
a1 = −1, a2 = 1,

or
a1 = 1, a2 = −1.

For each of these cases, the desired inequality is an equality. According to Theorem
2, the sum

Sn = a6
1 + a6

2 + · · ·+ a6
n

is maximum for
a1 = · · ·= a j, a j+1 = · · ·= an,

where j ∈ {1, 2, . . . , n− 1}. Thus, we only need to show that

ja1 + (n− j)an = 0, ja2
1 + (n− j)a2

n = n(n− 1)

involve
ja6

1 + (n− j)a6
n ≤ (n− 1)6 + n− 1.

From the equations above, we get

a2
1 =
(n− j)(n− 1)

j
, a2

n =
j(n− 1)

n− j
.

Thus, the desired inequality becomes

(n− j)5 + j5

j2(n− j)2
≤
(n− 1)5 + 1
(n− 1)2

,

(n− j)4 − (n− j)3 j + (n− j)2 j2 − (n− j) j3 + j4

j2(n− j)2
≤

≤
(n− 1)4 − (n− 1)3 + (n− 1)2 − (n− 1) + 1

(n− 1)2
,

(n− j)2

j2
−

n− j
j
−

j
n− j

+
j2

(n− j)2
≤ (n− 1)2 − (n− 1)−

1
n− 1

+
1

(n− 1)2
,

which can be written as
f (a)≥ f (b),

where
f (x) = x2 − x −

1
x
+

1
x2

,
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a = n− 1, b =
n
j
− 1.

Since a ≥ b and

ab− 1= (n− 1)
�

n
j
− 1

�

− 1= n
�

n− 1
j
− 1

�

≥ 0,

we have

f (a)− f (b) = (a− b)
�

a+ b− 1+
1

ab
−

a+ b
a2 b2

�

= (a− b)
�

1−
1

ab

��

(a+ b)
�

1+
1

ab

�

− 1
�

≥ 0.

The equality holds for

a1 = −n+ 1, a2 = · · ·= an = 1,

and for
a1 = n− 1, a2 = · · ·= an = −1

(or any cyclic permutation).

P 6.21. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 1, a2
1 + a2

2 + · · ·+ a2
n = n2 + n− 1,

then
a6

1 + a6
2 + · · ·+ a6

n ≤ n6 + n− 1.

(Vasile Cîrtoaje, 2010)

Solution. The inequality follows from the preceding P 6.20 by replacing n with
n+ 1, and then making an+1 = −1. The equality holds for

a1 = n, a2 = · · ·= an = −1

(or any cyclic permutation).

P 6.22. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 0, a2
1 + a2

2 + · · ·+ a2
n = n(n− 1),

then
a8

1 + a8
2 + · · ·+ a8

n ≤ (n− 1)8 + n− 1.

(Vasile Cîrtoaje, 2010)
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Solution. For n= 2, we need to show that

a1 + a2 = 0, a2
1 + a2

2 = 2,

implies
a8

1 + a8
2 ≤ 2.

We have
a1 = −1, a2 = 1,

or
a1 = 1, a2 = −1.

For each of these cases, the desired inequality is an equality. According to Theorem
2, the sum

Sn = a8
1 + a8

2 + · · ·+ a8
n

is maximum for
a1 = · · ·= a j, a j+1 = · · ·= an,

where j ∈ {1, 2, . . . , n− 1}. Thus, we only need to show that

ja1 + (n− j)an = 0, ja2
1 + (n− j)a2

n = n(n− 1)

involve
ja8

1 + (n− j)a8
n ≤ (n− 1)8 + n− 1.

From the equations above, we get

a2
1 =
(n− j)(n− 1)

j
, a2

n =
j(n− 1)

n− j
.

Thus, the desired inequality becomes

(n− j)7 + j7

j3(n− j)3
≤
(n− 1)7 + 1
(n− 1)4

,

(n− j)3

j3
−
(n− j)2

j2
+

n− j
j
+

j
n− j

−
j2

(n− j)2
+

j3

(n− j)3
≤

≤ (n− 1)3 − (n− 1)2 + (n− 1) +
1

n− 1
−

1
(n− 1)2

+
1

(n− 1)3
,

f (a)≥ f (b),

where
a = n− 1, b =

n
j
− 1,

f (x) = x3 − x2 + x +
1
x
−

1
x2
+

1
x3

, x > 0.
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Since

f (x) = (t − 1)(t2 − 2), t = x +
1
x
≥ 2,

it suffices to show that

a+
1
a
≥ b+

1
b

.

We have a ≥ b,

ab− 1= (n− 1)
�

n
j
− 1

�

− 1= n
�

n− 1
j
− 1

�

≥ 0,

therefore

a+
1
a
− b−

1
b
= (a− b)

�

1−
1

ab

�

≥ 0.

The equality holds for

a1 = −n+ 1, a2 = · · ·= an = 1

and for
a1 = n− 1, a2 = · · ·= an = −1

(or any cyclic permutation).

P 6.23. If a1, a2, . . . , an are real numbers so that

a1 + a2 + · · ·+ an = 1, a2
1 + a2

2 + · · ·+ a2
n = n2 + n− 1,

then
a8

1 + a8
2 + · · ·+ a8

n ≤ n8 + n− 1.

(Vasile Cîrtoaje, 2010)

Solution. The inequality follows from the preceding P 6.22 by replacing n with
n+ 1, and making an+1 = −1. The equality holds for

a1 = n, a2 = · · ·= an = −1

(or any cyclic permutation).
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P 6.24. Let a1, a2, . . . , an (n≥ 2) be real numbers (not all equal), and let

A=
a1 + a2 + · · ·+ an

n
, B =

a2
1 + a2

2 + · · ·+ a2
n

n
, C =

a3
1 + a3

2 + · · ·+ a3
n

n
.

Then,
1
4

�

1−

√

√

1+
2n2

n− 1

�

≤
B2 − AC
B2 − A4

≤
1
4

�

1+

√

√

1+
2n2

n− 1

�

.

(Vasile Cîrtoaje, 2010)

Solution. It is well-known that B > A2, hence B2 > A4.

(a) For n = 2, the right inequality reduces to (a2
1 − a2

2)
2 ≥ 0. Consider further

that n≥ 3. Since the right inequality remains unchanged by replacing a1, a2, . . . , an

with −a1,−a2, . . . ,−an, we may suppose that A≥ 0. Assuming that

A= constant, B = constant,

we only need to consider the case when C is minimum. Thus, according to Corollary
2, it suffices to prove the required inequality for a1 < a2 = a3 = · · ·= an. Setting

a1 := a, a2 = a3 = · · ·= an := b, a < b,

the inequality becomes

�

a2 + (n− 1)b2

n

�2

−
a+ (n− 1)b

n
·

a3 + (n− 1)b3

n
�

a2 + (n− 1)b2

n

�2

−
�

a+ (n− 1)b
n

�4
≤

1
4

�

1+

√

√

1+
2n2

n− 1

�

,

After dividing the numerator and denominator of the left fraction by (a − b)2, the
inequality reduces to

−4n2ab
(n+ 1)a2 + 2(n− 1)ab+ (2n2 − 3n+ 1)b

≤ 1+

√

√

1+
2n2

n− 1
,

−2ab
(n+ 1)a2 + 2(n− 1)ab+ (2n2 − 3n+ 1)b

≤
1

p

(n2 − 1)(2n− 1)− n+ 1
,

�

a+

√

√2n2 − 3n+ 1
n+ 1

b

�2

≥ 0.

The equality holds for

−
√

√ n+ 1
(n− 1)(2n− 1)

a1 = a2 = · · ·= an
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(or any cyclic permutation).

(b) For n= 2, the left inequality reduces to (a1−a2)4 ≥ 0. For n≥ 3, the proof
is similar to the one of the right inequality. The equality holds for

√

√ n+ 1
(n− 1)(2n− 1)

a1 = a2 = · · ·= an

(or any cyclic permutation).

P 6.25. If a, b, c, d are real numbers so that

a+ b+ c + d = 2,

then
a4 + b4 + c4 + d4 ≤ 40+

3
4
(a2 + b2 + c2 + d2)2.

(Vasile Cîrtoaje, 2010)

Solution. Write the inequality in the homogeneous form

10(a+ b+ c + d)4 + 3(a2 + b2 + c2 + d2)2 ≥ 4(a4 + b4 + c4 + d4).

By Theorem 1, for a+ b+ c + d = constant and a2 + b2 + c2 + d2 = constant, the
sum a4+ b4+ c4+ d4 is maximum when the set (a, b, c, d) has at most two distinct
values. Therefore, it suffices to consider the following two cases.
Case 1: a = b and c = d. The inequality reduces to

41(a2 + c2)2 + 160ac(a2 + c2) + 164a2c2 ≥ 0,

which can be written in the obvious form

(a2 + c2)2 + 40(a2 + c2 + 2ac)2 + 4a2c2 ≥ 0.

Case 2: b = c = d. The inequality reduces to the obvious form

(a+ 5b)2(3a2 + 10ab+ 11b2)≥ 0.

Since the homogeneous inequality becomes an equality for

−a
5
= b = c = d

(or any cyclic permutation), the original inequality is an equality for

a = 5, b = c = d = −1

(or any cyclic permutation).
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P 6.26. If a, b, c, d, e are real numbers, then

a4+ b4+ c4+ d4+ e4 ≤
31+ 18

p
3

8
(a+ b+ c+ d + e)4+

3
4
(a2+ b2+ c2+ d2+ e2)2.

(Vasile Cîrtoaje, 2010)

Solution. We proceed as in the proof of the preceding P 6.25. Taking into account
Theorem 1, it suffices to consider the cases b = c = d = e, and a = b and c = d = e.

Case 1: b = c = d = e. Due to homogeneity, we may consider b = c = d = e = 0
and b = c = d = e = 1. The first case is trivial. In the second case, the inequality
becomes

a4 + 4≤
31+ 18

p
3

8
(a+ 4)4 +

3
4
(a2 + 4)2,

�

a+ 2+ 2
p

3
�2 �

f (a) + 2
p

3 g(a)
�

≥ 0,

where
f (a) = 29a2 + 164a+ 272, g(a) = 9a2 + 50a+ 76.

It suffices to show that f (a)≥ 0 and g(a)≥ 0. Indeed, we have

f (a)> 25a2 + 164a+ 269=
�

5a+
82
5

�2

+
1
25
> 0,

g(a)> 9a2 + 50a+ 70=
�

3a+
25
3

�2

+
5
9
> 0.

Case 2: a = b and c = d = e. It suffices to show that

a4 + b4 + c4 + d4 + e4 ≤
3
4
(a2 + b2 + c2 + d2 + e2)2,

which reduces to

2a4 + 3c4 ≤
3
4
(2a2 + 3c2)2,

3(2a2 + 3c2)2 ≥ 4(2a4 + 3c4),

4a4 + 36a2c2 + 15c4 ≥ 0.

The equality holds for

−a

2(1+
p

3)
= b = c = d = e

(or any cyclic permutation).
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P 6.27. Let a, b, c, d, e 6=
−5
4

be real numbers so that a+ b+ c + d + e = 5. Then,

a(a− 1)
(4a+ 5)2

+
b(b− 1)
(4b+ 5)2

+
c(c − 1)
(4c + 5)2

+
d(d − 1)
(4d + 5)2

+
e(e− 1)
(4e+ 5)2

≥ 0.

(Vasile Cîrtoaje, 2010)

Solution. Write the inequality as

∑

�

180a(a− 1)
(4a+ 5)2

+ 1
�

≥ 5,

∑ (14a− 5)2

(4a+ 5)2
≥ 5.

By the Cauchy-Schwarz inequality, we have

∑ (14a− 5)2

(4a+ 5)2
≥

�∑

(4a+ 5)(14a− 5)
�2

∑

(4a+ 5)4
.

Therefore, it suffices to show that
�

56
∑

a2 + 125
�2
≥ 5

∑

(4a+ 5)4.

Using the substitution

a1 =
4a+ 5

9
, a2 =

4b+ 5
9

, . . . , a5 =
4e+ 5

9
,

we need to prove that a1 + a2 + a3 + a4 + a5 = 5 involves

�

7
5
∑

i=1

a2
i − 25

�2

≥ 20
5
∑

i=1

a4
i .

Rewrite this inequality in the homogeneous form



7
5
∑

i=1

a2
i −

�

5
∑

i=1

ai

�2




2

≥ 20
5
∑

i=1

a4
i .

By Theorem 1, for a1+ a2+ a3+ a4+ a5 = 5 and a2
1 + a2

2 + a2
3 + a2

4 + a2
5 = constant,

the sum a4
1 + a4

2 + a4
3 + a4

4 + a4
5 is maximum when the set (a1, a2, a3, a4, a5) has at

most two distinct values. Therefore, we need to consider the following two cases.

Case 1: a1 = x and a2 = a3 = a4 = a5 = y . The homogeneous inequality reduces
to

(3x2 + 6y2 − 4x y)2 ≥ 5(x4 + 4y4),
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which is equivalent to the obvious inequality

(x − y)2(x − 2y)2 ≥ 0.

Case 2: a1 = a2 = x and a3 = a4 = a5 = y . The homogeneous inequality becomes

(5x2 + 6y2 − 6x y)2 ≥ 5(2x4 + 3y4),

which is equivalent to the obvious inequality

(x − y)2[5(x − y)2 + 2y2]≥ 0.

The equality holds for a = b = c = d = e = 1, and also for

a =
5
2

, b = c = d = e =
5
8

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization.

• Let x1, x2, . . . , xn 6= −k be real numbers so that x1 + x2 + · · ·+ xn = n, where

k ≥
n

2
p

n− 1
.

Then,
x1(x1 − 1)
(x1 + k)2

+
x2(x2 − 1)
(x2 + k)2

+ · · ·+
xn(xn − 1)
(xn + k)2

≥ 0,

with equality for x1 = x2 = · · · = xn = 1. If k =
n

2
p

n− 1
, then the equality holds

also for

x1 =
n
2

, x2 = · · ·= xn =
n

2(n− 1)

(or any cyclic permutation).

P 6.28. If a, b, c are real numbers so that

a+ b+ c = 9, ab+ bc + ca = 15,

then
19

175
≤

1
b2 + bc + c2

+
1

c2 + ca+ a2
+

1
a2 + ab+ b2

≤
7

19
.

(Vasile C., 2011)
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Solution. From
(b+ c)2 ≥ 4bc

and

b+ c = 9− a, bc = 15− a(b+ c) = 15− a(9− a) = a2 − 9a+ 15,

we get a ≤ 7. Since

b2 + bc + c2 = (a+ b+ c)(b+ c)− (ab+ bc + ca) = 9(9− a)− 15= 3(22− 3a),

we may write the inequality in the form

57
175
≤ f (a) + f (b) + f (c)≤

21
19

.

where
f (u) =

1
22− 3u

, u≤ 7.

We have
g(x) = f ′(x) =

3
(22− 3x)2

,

g ′′(x) =
162

(22− 3x)4
.

Since g ′′(x)> 0 for x ≤ 7, g is strictly convex on (−∞, 7]. According to Corollary
1, if a ≤ b ≤ c and

a+ b+ c = 9, a2 + b2 + c2 = 51,

then the sum S3 = f (a) + f (b) + f (c) is maximum for a = b ≤ c, and is minimum
for a ≤ b = c.

(a) To prove the right inequality, it suffices to consider the case a = b ≤ c.
From

a+ b+ c = 9, ab+ bc + ca = 15,

we get a = b = 1 and c = 7, therefore

1
b2 + bc + c2

+
1

c2 + ca+ a2
+

1
a2 + ab+ b2

=
7

19
.

The original right inequality is an equality for a = b = 1 and c = 7 (or any cyclic
permutation).

(b) To prove the left inequality, it suffices to consider the case a ≤ b = c, which
involves a = −1 and b = c = 5, hence

1
b2 + bc + c2

+
1

c2 + ca+ a2
+

1
a2 + ab+ b2

=
19

175
.

The original left inequality is an equality for a = −1 and b = c = 5 (or any cyclic
permutation).
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P 6.29. If a, b, c are real numbers so that

8(a2 + b2 + c2) = 9(ab+ bc + ca),

then
419
175
≤

a2

b2 + bc + c2
+

b2

c2 + ca+ a2
+

c2

a2 + ab+ b2
≤

311
19

.

(Vasile C., 2011)

Solution. Due to homogeneity, we may assume that

a+ b+ c = 9, a2 + b2 + c2 = 51.

Next, the proof is similar to the one of the preceding P 6.28. Write the inequality
in the form

1257
175

≤ f (a) + f (b) + f (c)≤
933
19

.

where

f (u) =
u2

22− 3u
, u≤ 7.

We have

g(x) = f ′(x) =
−3x2 + 44x
(22− 3x)2

, g ′′(x) =
8712

(22− 3x)4
.

Since g is strictly convex on (−∞, 7], according to Corollary 1, the sum S3 =
f (a) + f (b) + f (c) is maximum for a = b ≤ c, and is minimum for a ≤ b = c.

(a) To prove the right inequality, it suffices to consider the case a = b ≤ c,
which involves

a = b = 1, c = 7,

and
a2

b2 + bc + c2
+

b2

c2 + ca+ a2
+

c2

a2 + ab+ b2
=

311
19

.

The original right inequality is an equality for a = b = c/7 (or any cyclic permuta-
tion).

(b) To prove the left inequality, it suffices to consider the case a ≤ b = c, which
involves a = −1 and b = c = 5, hence

a2

b2 + bc + c2
+

b2

c2 + ca+ a2
+

c2

a2 + ab+ b2
=

419
175

.

The original left inequality is an equality for −5a = b = c (or any cyclic permuta-
tion).



538 Vasile Cîrtoaje

P 6.30. Let a1, a2, . . . , an be real numbers such that a1+ a2+ · · ·+ an = n. If n≤ 10,
then

2(a2
1 + a2

2 + · · ·+ a2
n)

2 − n(a3
1 + a3

2 + · · ·+ a3
n)≥ n2.

(Vasile Cîrtoaje, 2020)

Solution. Write the inequality in the homogeneous form

2n2(a2
1+a2

2+· · ·+a2
n)

2−n2(a1+a2+· · ·+an)(a
3
1+a3

2+· · ·+a3
n)≥ (a1+a2+· · ·+an)

4.

According to Corollary 2, for a1+a2+· · ·+an = constant > 0 and a2
1+a2

2+· · ·+a2
n =

constant, the sum
S = a3

1 + a3
2 + · · ·+ a3

n

is maximal when n− 1 of a1, a2, . . . , an are equal. Therefore, it suffices to consider
the case a2 = a3 = · · · = an. Due to homogeneity, for the nontrivial case a2 = a3 =
· · · = an 6= 0, we may consider that a2 = a3 = · · · = an = 1. Thus we only need to
prove that

2n2(a2
1 + n− 1)2 − n2(a1 + n− 1)(a3

1 + n− 1)≥ (a1 + n− 1)4,

which is equivalent to

(a1 − 1)2(Aa2
1 − Ba1 + C)≥ 0,

where

A= n(n+ 1), B = n(n2 − 2n+ 2), C = n(n− 1)(2n− 1).

The inequality is true because

4AC − B2 = n4(−n2 + 12n− 12)≥ 0.

The equality occurs for a1 = a2 = · · ·= an = 1.
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Glosar

1. AM-GM (ARITHMETIC MEAN-GEOMETRIC MEAN) INEQUALITY

If a1, a2, . . . , an are nonnegative real numbers, then

a1 + a2 + · · ·+ an ≥ n n
p

a1a2 · · · an,

with equality if and only if a1 = a2 = · · ·= an.

2. WEIGHTED AM-GM INEQUALITY

Let p1, p2, . . . , pn be positive real numbers satisfying

p1 + p2 + · · ·+ pn = 1.

If a1, a2, . . . , an are nonnegative real numbers, then

p1a1 + p2a2 + · · ·+ pnan ≥ ap1
1 ap2

2 · · · a
pn
n ,

with equality if and only if a1 = a2 = · · ·= an.

3. AM-HM (ARITHMETIC MEAN-HARMONIC MEAN) INEQUALITY

If a1, a2, . . . , an are positive real numbers, then

(a1 + a2 + · · ·+ an)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

≥ n2,

with equality if and only if a1 = a2 = · · ·= an.

539
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4. POWER MEAN INEQUALITY

The power mean of order k of positive real numbers a1, a2, . . . , an,

Mk =











�

ak
1+ak

2+···+ak
n

n

�
1
k

, k 6= 0

n
p

a1a2 · · · an, k = 0
,

is an increasing function with respect to k ∈ R. For instant, M2 ≥ M1 ≥ M0 ≥ M−1

is equivalent to
√

√a2
1 + a2

2 + · · ·+ a2
n

n
≥

a1 + a2 + · · ·+ an

n
≥ n
p

a1a2 · · · an ≥
n

1
a1
+

1
a2
+ · · ·+

1
an

.

5. BERNOULLI’S INEQUALITY

For any real number x ≥ −1, we have
a) (1+ x)r ≥ 1+ r x for r ≥ 1 and r ≤ 0;
b) (1+ x)r ≤ 1+ r x for 0≤ r ≤ 1.

If a1, a2, . . . , an are real numbers such that either a1, a2, . . . , an ≥ 0 or

−1≤ a1, a2, . . . , an ≤ 0,

then
(1+ a1)(1+ a2) · · · (1+ an)≥ 1+ a1 + a2 + · · ·+ an.

6. SCHUR’S INEQUALITY

For any nonnegative real numbers a, b, c and any positive number k, the inequality
holds

ak(a− b)(a− c) + bk(b− c)(b− a) + ck(c − a)(c − b)≥ 0,

with equality for a = b = c, and for a = 0 and b = c (or any cyclic permutation).
For k = 1, we get the third degree Schur’s inequality, which can be rewritten as
follows

a3 + b3 + c3 + 3abc ≥ ab(a+ b) + bc(b+ c) + ca(c + a),

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca),

a2 + b2 + c2 +
9abc

a+ b+ c
≥ 2(ab+ bc + ca),
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(b− c)2(b+ c − a) + (c − a)2(c + a− b) + (a− b)2(a+ b− c)≥ 0.

For k = 2, we get the fourth degree Schur’s inequality, which holds for any real
numbers a, b, c, and can be rewritten as follows

a4 + b4 + c4 + abc(a+ b+ c)≥ ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2),

a4 + b4 + c4 − a2 b2 − b2c2 − c2a2 ≥ (ab+ bc + ca)(a2 + b2 + c2 − ab− bc − ca),

(b− c)2(b+ c − a)2 + (c − a)2(c + a− b)2 + (a− b)2(a+ b− c)2 ≥ 0,

6abcp ≥ (p2 − q)(4q− p2), p = a+ b+ c, q = ab+ bc + ca.

A generalization of the fourth degree Schur’s inequality, which holds for any
real numbers a, b, c and any real number m, is the following (Vasile Cirtoaje, 2004)

∑

(a−mb)(a−mc)(a− b)(a− c)≥ 0,

with equality for a = b = c, and also for a/m = b = c (or any cyclic permutation).
This inequality is equivalent to

∑

a4 +m(m+ 2)
∑

a2 b2 + (1−m2)abc
∑

a ≥ (m+ 1)
∑

ab(a2 + b2),

∑

(b− c)2(b+ c − a−ma)2 ≥ 0.

7. CAUCHY-SCHWARZ INEQUALITY

If a1, a2, . . . , an and b1, b2, . . . , bn are real numbers, then

(a2
1 + a2

2 + · · ·+ a2
n)(b

2
1 + b2

2 + · · ·+ b2
n)≥ (a1 b1 + a2 b2 + · · ·+ an bn)

2,

with equality for
a1

b1
=

a2

b2
= · · ·=

an

bn
.

Notice that the equality conditions are also valid for ai = bi = 0, where 1≤ i ≤ n.

8. HÖLDER’S INEQUALITY

If x i j (i = 1,2, · · · , m; j = 1, 2, · · ·n) are nonnegative real numbers, then

m
∏

i=1

�

n
∑

j=1

x i j

�

≥

 

n
∑

j=1

m

√

√

√

m
∏

i=1

x i j

!m

.
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9. CHEBYSHEV’S INEQUALITY

Let a1 ≥ a2 ≥ · · · ≥ an be real numbers.

a) If b1 ≥ b2 ≥ · · · bn, then

n
n
∑

i=1

ai bi ≥

�

n
∑

i=1

ai

��

n
∑

i=1

bi

�

;

b) If b1 ≤ b2 ≤ · · · ≤ bn, then

n
n
∑

i=1

ai bi ≤

�

n
∑

i=1

ai

��

n
∑

i=1

bi

�

.

10. REARRANGEMENT INEQUALITY

(1) If (a1, a2, . . . , an) and (b1, b2, . . . , bn) are two increasing (or decreasing) real
sequences, and (i1, i2, · · · , in) is an arbitrary permutation of (1,2, · · · , n), then

a1 b1 + a2 b2 + · · ·+ an bn ≥ a1 bi1 + a2 bi2 + · · ·+ an bin

and

n(a1 b1 + a2 b2 + · · ·+ an bn)≥ (a1 + a2 + · · ·+ an)(b1 + b2 + · · ·+ bn).

(2) If (a1, a2, . . . , an) is decreasing and (b1, b2, . . . , bn) is increasing, then

a1 b1 + a2 b2 + · · ·+ an bn ≤ a1 bi1 + a2 bi2 + · · ·+ an bin

and

n(a1 b1 + a2 b2 + · · ·+ an bn)≤ (a1 + a2 + · · ·+ an)(b1 + b2 + · · ·+ bn).

(3) Let b1, b2, . . . , bn) and (c1, c2, . . . , cn) be two real sequences such that

b1 + · · ·+ bi ≥ c1 + · · ·+ ci, i = 1,2, · · · , n.

If a1 ≥ a2 ≥ · · · ≥ an ≥ 0, then

a1 b1 + a2 b2 + · · ·+ an bn ≥ a1c1 + a2c2 + · · ·+ ancn.

Notice that all these inequalities follow immediately from the identity

n
∑

i=1

ai(bi − ci) =
n
∑

i=1

(ai − ai+1)

�

i
∑

j=1

b j −
i
∑

j=1

c j

�

, an+1 = 0.
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11. SQUARE PRODUCT INEQUALITY

Let a, b, c be real numbers, and let

p = a+ b+ c, q = ab+ bc + ca, r = abc,

s =
p

p2 − 3q =
p

a2 + b2 + c2 − ab− bc − ca.

From the identity

(a− b)2(b− c)2(c − a)2 = −27r2 + 2(9pq− 2p3)r + p2q2 − 4q3,

it follows that

−2p3 + 9pq− 2(p2 − 3q)
p

p2 − 3q
27

≤ r ≤
−2p3 + 9pq+ 2(p2 − 3q)

p

p2 − 3q
27

,

which is equivalent to

p3 − 3ps2 − 2s3

27
≤ r ≤

p3 − 3ps2 + 2s3

27
.

Therefore, for constant p and q, the product r is minimum and maximum when
two of a, b, c are equal.

12. KARAMATA’S MAJORIZATION INEQUALITY

Let f be a convex function on a real interval I. If a decreasingly ordered sequence

A= (a1, a2, . . . , an), ai ∈ I,

majorizes a decreasingly ordered sequence

B = (b1, b2, . . . , bn), bi ∈ I,

then
f (a1) + f (a2) + · · ·+ f (an)≥ f (b1) + f (b2) + · · ·+ f (bn).

We say that a sequence A= (a1, a2, . . . , an) with a1 ≥ a2 ≥ · · · ≥ an majorizes a
sequence B = (b1, b2, . . . , bn) with b1 ≥ b2 ≥ · · · ≥ bn, and write it as

A� B,

if
a1 ≥ b1,

a1 + a2 ≥ b1 + b2,
· · · · · · · · · · · · · · · · · · · · ·

a1 + a2 + · · ·+ an−1 ≥ b1 + b2 + · · ·+ bn−1,
a1 + a2 + · · ·+ an = b1 + b2 + · · ·+ bn.
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13. CONVEX FUNCTIONS

A function f defined on a real interval I is said to be convex if

f (αx + β y)≤ α f (x) + β f (y)

for all x , y ∈ I and any α, β ≥ 0 with α+β = 1. If the inequality is reversed, then
f is said to be concave.
If f is differentiable on I, then f is (strictly) convex if and only if the derivative f ′

is (strictly) increasing. If f ′′ ≥ 0 on I, then f is convex on I. Also, if f ′′ ≥ 0 on (a,
b) and f is continuous on [a, b], then f is convex on [a, b].

Jensen’s inequality. Let p1, p2, . . . , pn be positive real numbers. If f is a convex
function on a real interval I, then for any a1, a2, . . . , an ∈ I, the inequality holds

p1 f (a1) + p2 f (a2) + · · ·+ pn f (an)
p1 + p2 + · · ·+ pn

≥ f
�

p1a1 + p2a2 + · · ·+ pnan

p1 + p2 + · · ·+ pn

�

.

For p1 = p2 = · · ·= pn, Jensen’s inequality becomes

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

.

Right Half Convex Function Theorem (Vasile Cîrtoaje, 2004). Let f be a real
function defined on an interval I and convex on I≥s, where s ∈ int(I). The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

if and only if
f (x) + (n− 1) f (y)≥ nf (s)

for all x , y ∈ I such that x ≤ s ≤ y and x + (n− 1)y = ns.

Left Half Convex Function Theorem (Vasile Cîrtoaje, 2004). Let f be a real function
defined on an interval I and convex on I≤s, where s ∈ int(I). The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

if and only if
f (x) + (n− 1) f (y)≥ nf (s)
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for all x , y ∈ I such that x ≥ s ≥ y and x + (n− 1)y = ns.

Left Convex-Right Concave Function Theorem (Vasile Cîrtoaje, 2004). Let a ≤ c
be real numbers, let f be a continuous function defined on I= [a,∞), strictly convex
on [a, c] and strictly concave on [c,∞), and let

E(a1, a2, . . . , an) = f (a1) + f (a2) + · · ·+ f (an).

If a1, a2, . . . , an ∈ I such that

a1 + a2 + · · ·+ an = S = constant,

then
(a) E is minimum for a1 = a2 = · · ·= an−1 ≤ an;
(b) E is maximum for either a1 = a or a < a1 ≤ a2 = · · ·= an.

Right Half Convex Function Theorem for Ordered Variables (Vasile Cîrtoaje,
2008). Let f be a real function defined on an interval I and convex on I≥s, where
s ∈ int(I). The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

and
a1 ≤ a2 ≤ · · · ≤ am ≤ s, m ∈ {1,2, . . . , n− 1},

if and only if
f (x) + (n−m) f (y)≥ (1+ n−m) f (s)

for all x , y ∈ I such that

x ≤ s ≤ y, x + (n−m)y = (1+ n−m)s.

Left Half Convex Function Theorem for Ordered Variables (Vasile Cîrtoaje, 2008).
Let f be a real function defined on an interval I and convex on I≤s, where s ∈ int(I).
The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

and
a1 ≥ a2 ≥ · · · ≥ am ≥ s, m ∈ {1,2, . . . , n− 1},
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if and only if
f (x) + (n−m) f (y)≥ (1+ n−m) f (s)

for all x , y ∈ I such tht

x ≥ s ≥ y, x + (n−m)y = (1+ n−m)s.

Right Partially Convex Function Theorem (Vasile Cîrtoaje, 2012). Let f be a real
function defined on an interval I and convex on [s, s0], where s, s0 ∈ I, s < s0. In
addition, f is decreasing on I≤s0

and f (u)≥ f (s0) for u ∈ I. The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

if and only if
f (x) + (n− 1) f (y)≥ nf (s)

for all x , y ∈ I such that x ≤ s ≤ y and x + (n− 1)y = ns.

Left Partially Convex Function Theorem (Vasile Cîrtoaje, 2012). Let f be a real
function defined on an interval I and convex on [s0, s], where s0, s ∈ I, s0 < s. In
addition, f is increasing on I≥s0

and f (u)≥ f (s0) for u ∈ I. The inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

if and only if
f (x) + (n− 1) f (y)≥ nf (s)

for all x , y ∈ I such that x ≥ s ≥ y and x + (n− 1)y = ns.

Right Partially Convex Function Theorem for Ordered Variables (Vasile Cirtoaje,
2014). Let f be a real function defined on an interval I and convex on [s, s0], where
s, s0 ∈ I, s < s0. In addition, f is decreasing on I≤s0

and f (u) ≥ f (s0) for u ∈ I. The
inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns



Glosar 547

and
a1 ≤ a2 ≤ · · · ≤ am ≤ s, m ∈ {1,2, . . . , n− 1},

if and only if
f (x) + (n−m) f (y)≥ (1+ n−m) f (s)

for all x , y ∈ I such that x ≤ s ≤ y and x + (n−m)y = (1+ n−m)s.

Left Partially Convex Function Theorem for Ordered Variables (Vasile Cirtoaje,
2014). Let f be a real function defined on an interval I and convex on [s0, s], where
s0, s ∈ I, s0 < s. In addition, f is increasing on I≥s0

and f (u) ≥ f (s0) for u ∈ I. The
inequality

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

holds for all a1, a2, . . . , an ∈ I satisfying

a1 + a2 + · · ·+ an = ns

and
a1 ≥ a2 ≥ · · · ≥ am ≥ s, m ∈ {1,2, . . . , n− 1},

if and only if
f (x) + (n−m) f (y)≥ (1+ n−m) f (s)

for all x , y ∈ I such that x ≥ s ≥ y and x + (n−m)y = (1+ n−m)s.

Equal Variables Theorem for Nonnegative Variables (Vasile Cirtoaje, 2005). Let
a1, a2, . . . , an (n≥ 3) be fixed nonnegative real numbers, and let

0≤ x1 ≤ x2 ≤ · · · ≤ xn

such that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an, x k
1 + x k

2 + · · ·+ x k
n = ak

1 + ak
2 + · · ·+ ak

n,

where k is a real number (k 6= 1); for k = 0, assume that

x1 x2 · · · xn = a1a2 · · · an.

Let f be a real-valued function, continuous on [0,∞) and differentiable on (0,∞),
such that the associated function

g(x) = f ′
�

x
1

k−1

�

is strictly convex on (0,∞). Then, the sum

Sn = f (x1) + f (x2) + · · ·+ f (xn)

is maximum for
x1 = x2 = · · ·= xn−1 ≤ xn,
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and is minimum for
0< x1 ≤ x2 = x3 = · · ·= xn

or
0= x1 = · · ·= x j ≤ x j+1 ≤ x j+2 = · · ·= xn, j ∈ {1, 2, . . . , n− 1}.

Equal Variables Theorem for Real Variables (Vasile Cirtoaje, 2010). Let a1, a2, . . . , an

(n≥ 3) be fixed real numbers, and let

0≤ x1 ≤ x2 ≤ · · · ≤ xn

such that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an, x k
1 + x k

2 + · · ·+ x k
n = ak

1 + ak
2 + · · ·+ ak

n,

where k is an even positive integer. If f is a differentiable function on R such that the
associated function g : R→ R defined by

g(x) = f ′
�

k−1px
�

is strictly convex on R, then the sum

Sn = f (x1) + f (x2) + · · ·+ f (xn)

is minimum for x2 = x3 = · · ·= xn, and is maximum for x1 = x2 = · · ·= xn−1.

Best Upper Bound of Jensen’s Difference Theorem (Vasile Cirtoaje, 1990). Let
p1, p2, . . . , pn (n ≥ 3) be fixed positive real numbers, and let f be a convex function
on I= [a, b]. If a1, a2, . . . , an ∈ I, then Jensen’s difference

p1 f (a1) + p2 f (a2) + · · ·+ pn f (an)
p1 + p2 + · · ·+ pn

− f
�

p1a1 + p2a2 + · · ·+ pnan

p1 + p2 + · · ·+ pn

�

is maximum when all ai ∈ {a, b}.
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