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Chapter 1

Half Convex Function Method

1.1 Theoretical Basis
Let I be a real interval, s an interior point of I and
I, ={uluelu=s}, I,={uluelu<s}.

The following statement is known as the Right Half Convex Function Theorem
(RHCF-Theorem).

Right Half Convex Function Theorem (Vasile Cirtoaje, 2004). Let f be a real
function defined on an interval I and convex on I, where s € int(I). If

fG)+(n=1)f(y) = nf(s)

forall x,y €lso that x <s <y and x + (n— 1)y = ns, then the inequality

f(a1)+f(a2)+...+f(an)2nf(a1+a2—|-...+an)

(D
holds for all a,,a,,...,a, € I satisfying a; + a, + --- + a, = ns. In addition, the
inequality (1) holds for all a,a,,...,a, € Isatisfying a, +a, + - - -+ a,, = ns;, where
s, € int(l), s; > s.

Proof. Assume that
a,<a,<---<a

—_ = ne

If a; > s, then the required inequality is just Jensen’s inequality for convex func-
tions. Otherwise, if a; < s, then there exists

ke{1,2,...,n—1}

so that
G < Sq<s<q<--<a

ne

1
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Since f is convex on I, we may apply Jensen’s inequality to get

flag) +---+ fla,) = (n=k)f (2),

where .
a oo o a
Z:M’ ZE]I.
n—k

Thus, it suffices to show that
fla)+--+fla)+(n—=k)f (2) = nf(s).
Let by,..., b, be defined by
a;,+(n—1)b;=ns, i=1,...,k.

We claim that
which involves

Indeed, we have

bl =2 bk:
s—a
bk —S = k O,
n—1
and
2> b
because

(n—Db,=ns—a;=(ay+ -+ Q)+ a1+ +
<(k—=1)s+ag, +---+a,
=(k—1)s+(n—k)z <(n—1)z.

Since by, ..., b, € I, by hypothesis we have

f(a;) +(n—1)f(by) = nf(s),

fla) +(n=1)f(bi) = nf(s),
hence

fla)+-+fla)+ (=D (b)) + -+ f(b)] = knf (s),
fla)+--+fla) Zknf(s)—(n—=D[f (b)) +--- + f(b].

According to this result, the inequality (2) is true if

knf(s)—(n—=10f (b)) +---+ f(b)] + (n=k)f (z) = nf (s),

(2)
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which is equivalent to

pf@E)+(k=p)f (5) 2 f(b)+-++f(b), p=-—
By Jensen’s inequality, we have

pf(2)+(Q—=p)f(s)=f(w), w=pz+(1—p)s=s.

Thus, we only need to show that

fw)+(k=1)f(s) = f(by) + -+ f(by).

Since the decreasingly ordered vector A, = (w,s, ...,s) majorizes the decreasingly
ordered vector B, = (by,b,,...,b;), this inequality follows from Karamata’s in-
equality for convex functions.

According to this result, the inequality (1) holds for all a;, a,, ..., a, € I satisfying
a, +a,+--+a, =ns; if f(x;)+(n—1)f(y;) = nf(s;) for all x;,y; €1 so that
x; <s; <y, and x; + (n—1)y; = ns;. Thus, we need to show that if

fE)+(—=1)f(y)=nf(s)
for all x,y € Isothat x <s <y and x 4+ (n— 1)y = ns, then
fl)+(m=1)f(y1) = nf(s1) (3)

for all x;, y; €I so that x; <s; < y; and x; + (n—1)y; = ns;. Since this is true for
x; = s (by Jensen’s inequality), consider next x; <s. By hypothesis, we have

fOe)+(n=1)f (y2) = nf(s),
where y, €I such that

x;+(n—1)y,=ns, y,>s.
Thus, (3) is true if

nf(s)—(m—1)f(y)+(n—=1)f(y1) = nf(sy),

that is
(n—=1)f(y1) +nf(s) = (n—=1)f (y2) +nf (s1).
Since
(n—=1)y, +ns=(n—1)y,+ns,
and the decreasingly ordered vector C,, ; = (y1,...,Y1,5,...,s) majorizes the vec-
tor Dy, 1 = (Y9, -+, Y251, --,5,), this inequality follows from Karamata’s inequality

for convex functions.

Similarly, we can prove the Left Half Convex Function Theorem (LHCF-Theorem).
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Left Half Convex Function Theorem. Let f be a real function defined on an interval
I and convex on I, where s € int(I). If

fG)+(n=1)f(y) = nf(s)

forall x,y €lsothat x >s >y and x + (n— 1)y = ns, then the inequality

a1+a2+"'+an)

f(@)+fla)++++f(a) = nf ( @

n

holds for all ay,a,,...,a, € I satisfying a; + a, + --- + a, = ns. In addition, the
inequality (4) holds for all a,,a,,...,a, € I satisfying a; + a, + - - -+ a,, = ns;, where
s, € int(D), s; <s.

From the RHCF-Theorem and the LHCF-Theorem, we find the HCF-Theorem (Half
Convex Function Theorem).

Half Convex Function Theorem. Let f be a real function defined on an interval 1
and convex on I or I, where s € int(I). The inequality

f(a1)+f(a2)+...+f(an)2nf(a1+a2+...+an)

holds for all a,,a,,...,a, € I satisfying
a1+a2+"'+an:ns

if and only if
fG)+(n=Df(y) = nf(s)
forall x,y €1so that x +(n—1)y = ns.
The following LCRCF-Theorem is also useful to prove some symmetric inequali-
ties.

Left Convex-Right Concave Function Theorem (Vasile Cirtoaje, 2004). Let a < ¢
be real numbers, let f be a continuous function defined on I = [a, 00), strictly convex
on [a,c] and strictly concave on [c, ©0), and let

E(ay,ay,...,a,) = f(a;) + f(ap) +--- + f(a,).
If a,,a,,...,a, €Lso that
a, +a,+---+a, =S =constant,
then

(a) E is minimum fora; = a, =+ =a,_, < a,;
(b) E is maximum for either a;, =aora<a; <a,=---=a,.
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Proof Without loss of generality, assume that a; < a, < --- < a,. Since the sum
E(ay,a,,...,a,) is a continuous function on the compact set

A={(ay,a,,...,a,): a;+a,+---+a,=S8, a;,a,,...,a, €I},

E attains its minimum and maximum values.

(a) For the sake of contradiction, suppose that E is minimum at (b,, b,,..., b,)
with
blsbzs"'sbn, b1<bn_1.

For b,_; < ¢, by Jensen’s inequality for strictly convex functions we have

FO+ (b > 2 (25

while for b,_; > ¢, by Karamata’s inequality for strictly concave functions we have

f(b,) + f(by) > f(c) + f(byy + by —c).

The both results contradict the assumption that E is minimum at (b4, by, ..., b,).
(b) For the sake of contradiction, suppose that E is maximum at (b,, b, ..., b,)
with

a<b1£b23"'ﬁb b2<bn.

n»
There are three cases to consider.

Case 1: b, > c. By Jensen’s inequality for strictly concave functions, we have
b, + bn)

F)+ £ ) <2f (P

Case 2: b, < ¢ and b, + b, —a < c¢. By Karamata’s inequality for strictly convex
functions, we have

f(by)+f(by) < fa)+ f(by + by —a).

Case 3: b, < ¢ and b, + b, —c > a. By Karamata’s inequality for strictly convex
functions, we have

f(b1)+ f(by) < f(by+by—c)+f(c).
Clearly, all these results contradict the assumption that E is maximum at (b,, b,, ..., b,).

Note 1. Let us denote

g(u)

INIOETIONN
u—s

_g(x)—g(y)
Sl
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In many applications, it is useful to replace the hypothesis

f)+(m=1f(y) = nf(s)

in the RHCF-Theorem, the LHCF-Theorem and the HCF-Theorem by the equivalent
condition

h(x,y)=0 forall x,y €1 sothat x +(n—1)y =ns.

This equivalence is true because

fG)+=Df(y)—nf)=f(x)=fS]+m—Df(¥y)—f(s)]
=(x—s)g(x)+(n—1)(y —s)g(y)

e - g0 — 8]

"L e — yPhCx, ).

n

Note 2. Assume that f is differentiable on I, and let
fe)—f'(y)
x—y

The desired inequality of Jensen’s type in the RHCF-Theorem, the LHCF-Theorem
and the HCF-Theorem holds true by replacing the hypothesis

fG)+(n=1)f(y) = nf(s)

with the more restrictive condition

H(x,y)=

H(x,y)=0 forall x,y €1 sothat x+(n—1)y = ns.

To prove this, we will show that the new condition H(x, y) > 0 implies

f)+(m=1f(y) = nf(s)

for all x, y €I so that x + (n— 1)y = ns. Write this inequality as

f1(x) = nf(s),

where

GO = £+ (=D ) = £+ (= Df ().

n—1
From

i) = - (B

n—1
= ()= ')
—(x—9H(x.),
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it follows that f; is decreasing on I, and increasing on I ; therefore,

[1(x) = f1(s) = nf (s).

Note 3. From the proof of the RHCF-Theorem, it follows that the RHCF-Theorem,
the LHCF-Theorem and the HCF-Theorem are also valid in the case when f is de-
fined on I\ {u,}, where u, € I, for the RHCF-Theorem, and u, € I, for the LHCF-
Theorem.

Note 4. The desired inequalities in the RHCF-Theorem, the LHCF-Theorem and the
HCF-Theorem become equalities for

a,=a,=---=a,=s.
In addition, if there exist x, y €I so that
x+(n—1Dy=ns, f)+n—-Df(y)=nf(s), x#y,
then the equality holds also for
G =X, AG=-"=aq,=Y
(or any cyclic permutation). Notice that these equality conditions are equivalent to
x+((n—1)y =ns, h(x,y)=0
(x < y for the RHCF-Theorem, and x > y for the LHCF-Theorem).

Note 5. The part (a) in LCRCF-Theorem is also true in the case where I = (a, o)
and f(a,) = oo.

Note 6. Similarly, we can extend the weighted Jensen’s inequality to right and left
half convex functions establishing the WRHCF-Theorem, the WLHCF-Theorem and
the WHCF-Theorem (Vasile Cirtoaje, 2008).

WHCEF-Theorem. Let p,,p,, ..., P, be positive real numbers so that
pr+pyt-+p, =1, p=min{py,py,...,p.},

and let f be a real function defined on an interval I and convex on I, or I, where
s € int(I). The inequality

pif(a;) +pof(ay) +---+p.f(a,) = f(pa; + pray +---+p,a,)
holds for all a,,a,,...,a, €1so that
D1ay +pya; +---+pya, =s,

if and only if
pf)+Q=p)f(¥y)=f(s)
for all x,y € 1 satisfying
px+(1—p)y =s.
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1.2 Applications

1.1. If a, b, c are real numbers so that a + b + ¢ = 3, then

3a*+ b+ +a*+ b +c2+6>6(a+ b3 +c3).

n
so that a; +a, +---+a, =n, then

1.2. Ifay,a,,...,a, >
n—2

3 3 3
a1+a2+---+an2n.

n
1.3. If aj,a,,...,a, > 2 so that a; +a,+---+a, =n, then

CHa+-+a = +ai++al
n 1 2 n

1.4. If ay,a,,...,a, are real numbers so that a; +a, +---+a, = n, then

(n*—3n+3)(af+al+--+at—n) =2 —n+ (@ +ai+---+a—n).

1.5. If ay,a,,...,a, are nonnegative real numbers so that a; +a, + - +a, = n,
then

(M +n+ 1)@+ +-+ad—n)=(n+1)(a} +ai+---+a’—n).

1.6. If a, b, c are real numbers so that a + b + ¢ = 3, then

(a) a*+b*+c*—3+2(7+3vV7)(@® + b3+ c>—3)>0;
(b) a*+b*+c*—=3+2(7-3V7)(a®+b* +c*—3) > 0.
1.7. Let a,,a,,...,a, be nonnegative real numbers so that a; +a,+---+a, =n. If

k is a positive integer satisfying 3 < k <n+1, then

k4 ok k -
a1+a2+---+an—n>(n_1)[( n )kl—l]
ad+ai+---+a2—n n
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1.8. Let k > 3 be an integer number. If a;, a,, ..., a, are nonnegative real numbers
so that a; +a, + -+ a, =n, then

k kiy ... k_ k—1
a, +a,+ +an n n —1

2 24 ... 2_n _
aj+a;+---+a:—n n—1

1.9. If a;,a,,...,a, are positive real numbers so that a; + a, + -+ a, = n, then

1 1 1
nz(—+—+---+——n)24(n—1)(af+a§+---+a§—n).

a; a n

1.10. If ay, a,, ..., ag are positive real numbers so that a; +a, +--- +ag =8, then
1 1 1 9 9 9
—2+—2+---+—22a1+a2+---+a8.

a  a g

. 1 1
1.11. If aq,a,,...,a, are positive real numbers so that — 4+ —+---4+ — =n, then
a, a, a,

vn—1

n

af+a§+---+ai—n22(1+ )(a1+a2+---+an—n).

1.12. If a, b, c,d, e are positive real numbers so that a®+ b +c?+d?+e? =5, then

1 1 1 1 1 4(1+ v/5)
—+—-+-—F+—-+-—5+——=

(a+b+c+d+e—5)=>0.
a b ¢ d e

1.13. If a, b, c are nonnegative real numbers, no two of which are zero, then

1 1 1 2( 1 1 1 )
+ + <= + + :
3a+b+c¢c 3b+c+a 3c+a+b 5\b+c c+a a+b

1.14. Ifa,b,c,d > 3—+/7 sothat a+ b+ c + d = 4, then

11 1 1 4
24a2 2+4Db2 24c¢2 24d2 3
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1.15. If a,a,,...,a, €[—+/n,n—2] so that a; + a, + - - + a, = n, then

1 1 1 < n
n+ai n+a; n+aT21_n+1'

1.16. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

3—a + 3—b + 3—c
9+a? 9+b2 9+c2

3
> —.
5

1.17. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

1 1 1
+ +
l—a+2a®2 1—b+2b%2 1—c+2c?

3
> —.
2

1.18. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

1 1 1 3
>

+ + > =,
5+a+a2 5+b+b2 5S5+c+c2 7

1.19. If a, b, c,d are nonnegative real numbers so that a + b + ¢ +d = 4, then

1 1 1 1 1
+ + - <-.
10+a+a?2 10+b+b%2 10+c+c2 10+d+d?2 3

1.20. Let a;,a,,...,a, be nonnegative real numbers so that a; +a, +---+a, =n.
If .
k>1——,
n

then
1 1 1 n

+ +ot > .
14+ka} 1+kad; 14+ka? ™ 1+k

1.21. Let a,,a,,...,a, be real numbers so that a; +a, +---+a, =n. If

O<k§n—_1,
n—n+1

then
1 1 1 n

+ +ot < .
1+ka? 1+ka; 14+ka? ™ 1+k
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1.22. Let ay,a,,...,a, be nonnegative numbers so that a; +a,+---+a, =n. If

n2

k> ———,
4(n—1)
then
a;(a; —1)  ay(a,—1) a,(a,—1) >0
2 2 =4
aj +k a; +k a2+k
1.23. If a,,a,,...,a, are nonnegative real numbers so that a; +a,+---+a, = n,
then
al - ]. az - 1 an - 1
+ +o+ —1——>0.
(n—2a,)*>  (n—2a,)? (n—2a,)?
1.24. If a;,a,,...,a, are nonnegative real numbers so that
n
a,+ay,+---+a,=n, a,a,...,a,>—k, k>1+ T
n_
then

a—1 az—1 a>—1 -
+ o4 >0.
(a; +k)?>  (ay,+k)? (a, +k)?

1.25. Let aq,a,,...,a, be nonnegative real numbers so that a; + a, +---+a, =n.

fo<k<1+

, then
n—1

a?—1 az—1 a—1 <o
+ +od <0,
(a; +k)?>  (ay+k)? (a, +k)?

1.26. If a;,a,,...,a,2n—1—+vn®2—n+1sothata; +a,+:--+a, =n, then

2 2 2
a;j 1 a; 1 a 1

+ ook —— <
(a; +2)2 (a2+2)2 (an+2)2

0.

1.27. Let a,,a,, ..., a, be nonnegative real numbers so that a; +a, +---+a, =n.

—1)(2n—1
If k > (n )(2 n ), then
n

1 + 1 + + 1 S n
1+ka? 1+ka 1+kar31_1+k'
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1.28. Let a;,a,, ..., a, be nonnegative real numbers so that a; +a, +---+a, =n.
n —
If 0 <k < ———, then
n?—2n+2
1 N 1 . 1 < N
1+ka? 1+ka 14+kad ™~ 1+k
1.29. Let a;,a,,...,a, be nonnegative real numbers so that a; +a, +---+a, =n.
2
If k > , then
n —
a4
+
k - a]_ - az ‘/
1.30. If aq,a,,...,a, are nonnegative real numbers so that a; +a,+---+a, =n,

then
2 2 _ .2
na+n 24 4n > 1.

1.31. If a, b, c,d are nonnegative real numbers so that a + b + ¢ +d = 4, then

(3a%2+1)(3b%+1)(3c2+1)(3d% + 1) < 256.

1.32. If a,b,c,d,e >—1sothata+b+c+d+e =35, then

(@®+1D(B*+1)(c*+1)(d*+1)(e*+1)=(a+1)(b+1)(c+1)(d+1)(e+1).

1.33. Let a,,a,,...,a, be positive numbers so that a; + a, +---+a, =n. If

oV/n=1 /=1
k<Z2¥T 2 o\ 2¥YPT 2 k<3,
n n

then

1 1 1
K(/ar+ /@b /@)t etk e 2 (ke e

1.34. If a;,a,,...,a, (n = 3) are positive numbers so that a; +a, + -+ +a, =

then

() ) ()=o)
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1.35. Let ay,a,,...,a, be positive real numbers so that a; +a, +---+a,=n. If

( 2\/n—1)2
=)

k <

(ka1 + l) (ka2 + l) S (kan + l) > (k+1)".
a; a a,

1.36. If a, b, ¢, d are nonzero real numbers so that

then

—1
anJchz?, a+b+C+d:4,

then

1.37. If a;,a,,...,a, are nonnegative real numbers so that a? +a2+---+a’=n,

then
Ctad+ - +a—n+q —— (@, +ay+-+a,—n)>0
1 2 n Tl—]_ 1 2 n — .

1.38. If a, b, ¢, d, e are nonnegative real numbers so that a® + b? +c%+d?+e? = 5,
then

1 1 1 1 1
+

+ + + <1
7—2a 7—2b 7—2c 7—2d 7-—2e

1.39. Let 0 < ay,a,,...,a, <ksothata’+aZ+---+a’>=n. If

1<k<1+

J

n—1

then

1.40. If a, b, c are nonnegative real numbers, no two of which are zero, then

8 8b 8
\J1+4a+\J1+4 +\J1+4C215.
b+c c+a a+b
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1.41. If a, b, c are nonnegative real numbers, then

\J 3a? % 3b2 \J 3c2
+ + <1
7a%+5(b + c)? 7b2 4+ 5(c + a)? 7¢%+5(a + b)?

1.42. If a, b, c are nonnegative real numbers, then

a2 b2 c?
—_—t\| =\ ==
a%+2(b+c)? b2 +2(c+a)? c2+2(a+ b)?

1.43. Let a, b, c be nonnegative real numbers, no two of which are zero. If

In3
k> ko, k0:12—2—1w0.585,

(Za )k (Zb )k (Zc )k
+ + > 3.
b+c c+a a+b
1.44. If a,b,c € [1,7 + 44/3], then
\J 2a \J 2b Q 2
+ + > 3.
b+c c+a a+b

1.45. Let a, b, c be nonnegative real numbers so that a+ b+ ¢ =3. If

then

In2

0<k§k0, kozm

~1.71,

then
a“(b+c)+bfc+a)+ck(a+b)<6.

1.46. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

«/E+\/Z+ﬁ—3213(\JaJ2rb+\J bzcﬂ/cza—?)).
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1.47. Let a, b, c be nonnegative real numbers so that a + b +c¢ = 3. If k > 2, then

k k k
ak+bk+ch+322(2§£) +2(b+c) +2(C+a).

2 2
1.48. If a;,a,, ..., a, are nonnegative real numbers so that a; + a,+---+a, =n,
then
n— al n— az n— Cln
va +ya+-+ 4 /Ja, +nlk—1) <k + +.-+ ,
! 2 n ) (Q n—1 \J n—1 n—1 )
where

k=(v/n—-1)(vn++vn-1).

1.49. If a, b, c are the lengths of the sides of a triangle so that a + b + ¢ = 3, then

L Lt L1 —3>42+¢®( 2 2,2 —3)
a+b—c b+c—a c+a—>b - a+b b+c c+a '

1.50. Let a;,a,,...,as be nonnegative numbers so that a; +a, +as+a,+as <5.

If
2 /761
k> ko, kO = 9+1—07 ] 566,

then

1 5
> .
Zka%+az+a3+a4+a5 T k+4

1.51. Let a;,a,,...,as be nonnegative numbers so that a; +a, +as+a,+as <5.

If
_ 11—4/101

O<k<k, ke -

~ 0.095,

then

1 5
Zkaf+a2+a3+a4+a5 T k+4

1.52. Let a;,a,,...,a, be nonnegative real numbers so that a; +a, +---+a

If 1
0<k< R
n+1

then
a a a n
- - + — oot . > :
kai+a,+---+a, a;+kas+---+a, a;+a,+---+kaz  k+n—1
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7

a, a, as a, as <1

2 T T T T3 =
a;—a;+5 a;—a,+5 azj—az+5 a;—a;+S5 az;—as+S5

1.54. Let a;,a,,...,a, be nonnegative real numbers so that a; +a, +---+a, > n.
If

0<k< —
1+ o
then
2 2 2
! 9 4+t 9 n

+ = .
kai+a,+---+a, a;+ka;+---+a, a+a,+--+ka? k+n—1

1.55. Let a;,a,, ..., a, be nonnegative real numbers so that a; +a, +---+a, < n.
If k >n—1, then

1 a; a, n
...+

+ + < .
kai+ay+---+a, a+kai+---+a, ay+ay+---+ka?” k+n—1

a

1
1.56. Let a;,a,,...,a, €[0,n] sothata; +a, +:--+a,>n. If 0 <k < —, then
n

a,—1 a,—1 a,—1

n

5 + = 4+t 5=
kai+a,+---+a, a;+ka;+---+a, a, +a,+---+ka?

1.57. If a, b, c are positive real numbers so that abc =1, then

Vae—a+1+Vb2—b+1++vVc2i—c+1>a+b+c.

1.58. If a, b,c,d > so that abcd = 1, then

1+

1 1 1 1
+ + +
a+2 b+2 c+2 d+2

4
<-.
3

1.59. If a, b, c are positive real numbers so that abc =1, then

a’*+b*+c*—3>2(ab+bc+ca—a—Db—c).
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1.60. If a, b, c are positive real numbers so that abc = 1, then

a’*+b*+c*—3>18(a+b+c—ab—bc—ca).

1.61. If a;,a,,...,qa, are positive real numbers so that a;a,---a, =1, then
5 o 5 1 1 1
a+ad+-+a—n=26V3|atay+ta,—————— — |
a a a
1.62. If a;,a,,...,a, (n > 4) are positive real numbers so that a;a,---a, =1, then

(n—1)(@+a+---+a®)+nn+3)=(2n+2)(a; +a,+---+a,).

1.63. Let a;,a,,...,a, (n = 3) be positive real numbers so that a;a,---a, =1. Ifp
and g are nonnegative real numbers so that p +q > n—1, then

1 1 1 n
5+ S+t > :
1+pa; +qai 1+pa,+qa; 1+pa,+qa?  1+p+q

1.64. Let a, b, c,d be positive real numbers so that abcd = 1. If p and q are non-
negative real numbers so that p + q = 3, then

1 1 1 1
+ + + >
l1+pa+qa® 1+pb+qb® 1+pc+qc® 1+pd+qd?

1.65. If ay,a,,...,a, are positive real numbers so that a;a, - --a, = 1, then

1 1 1
— + — 4t >
1+a;+---+aj l1+a,+---+a; 1+a,+--+art

1.66. Let a,,a,,...,a, be positive real numbers so that a;a,---a, = 1. If
k>n*—1,
then
1 1 1 n
+ oot > .
V1+tka, +/1+ka, V1+ka, V1+k
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1.67.

Let a;,a,,...,a, be positive real numbers so that a;a,---a, =1. If p,q >0

sothat0<p+qs—1, then
n_

1.68.

then

1.69.

1 1 1 n
>+ S+t < .
1+pa, +qa; 1+pa,+qa; 1+pa,+qa2  1+p+gq

Let a;,a,,...,a, (n = 3) be positive real numbers so that a,a,---a, = 1. If

2n—1
0<k<——,
(n—1)?
1 1 1 n
+ oot < :
V1+tka, +/1+ka, V1+ka, V1+k
If a,,a,,...,a, are positive real numbers so that a;a,---a,, =1, then

1.70.

1.71.

then

1.72.

1.73.

4
\a1+

2n—1 + g n—1 SRy 2n—1 > 1
(n—1)2 (n—1)2 " (n—1)2 " n-1

(a;+ay+---+a,)*

If a;,a,,...,a, are positive real numbers so that a;a,---a, =1, then
1 1 1
adt+a e+ d  +n(n—2) > (n—1)(—+—+---+—).
a @ a
Let a,,a,,...,a, be positive real numbers so that a;a,---a, = 1. If k > n,
1 1 1
a’1‘+a’2‘+---+as+kn2(k+1)(—+—+---+—).
a @ an
If a;,a,,...,a, are positive real numbers so that a,a,---a,, =1, then

1\* 1\* 1\
(1-7) +(1-7) ++(1-3) =nr
n n n

If a, b, ¢ are positive real numbers so that abc = 1, then

1 1 1
+ + <1.
1+v14+3a 1++v1+4+3b 1++v1+3c
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1.74. If ay, a,, ..., a, are positive real numbers so that a;a,---a, = 1, then

1 1 1
+ +--- 4+
1+4/1+4n(n—1)a; 1+ +/1+4n(n—1)a, 1++/1+4n(n—1)a,

>

N[

1.75. If a, b, c are positive real numbers so that abc =1, then

a® b® c®

+ +
1+2a> 14+2b5 1+ 2¢5

1.76. If a, b, c are positive real numbers so that abc =1, then

V/25a2 + 144 + V/25b2 + 144 + v/25¢2 + 144 < 5(a + b + ¢) + 24.

1.77. If a, b, c are positive real numbers so that abc = 1, then

V16a2+9+ v/ 16b2+9++/16c2+9>4(a+ b +c) + 3.

1.78. If ABC is a triangle, then

sinA(Zsing—l) +sinB (Zsing—l) +sinC (ZSing — 1) > 0.

1.79. If ABC is an acute or right triangle, then

A B
sinZA(l—ZsinE) + sin 2B (1—25in§) +sin2C (1 —Zsin%) > 0.

1.80. If a, b,c,d are real numbers so that a+ b+ c +d = 4, then

a N b N c + d <1
a?—a+4 b2—-b+4 c2—c+4 d2—-d+4

1.81. Let a, b, c be nonnegative real numbers so thata+ b +c¢ =2. If

In2

kosk<3, ko=7=75

~1.71,

then
a“(b+c)+bfc+a)+ck(a+b)<2.
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1.82.

If a;,a,,...,a, are positive real numbers so that a; +a, +---+a, = n, then

1 1 1
(n+1)2(—+—+---+—)Z4(n+2)(af+a§+---+ai)+n(n2—3n—6).

1.83.

1.84.

1.85.

then

1.86.

1.87.

1.88.

1.89.

then

a a a

If a,b,c,d,e are positive real numbers such that a+ b +c+d +e =5, then

1 1 1 1 1
27(m+—+—-+=+-)=4+ b+ +d* +¢*) +115.
a b ¢ d e

If a, b, c are nonnegative real numbers so that a + b + ¢ = 12, then

(a2 +10)(b% +10)(c? + 10) > 13310.

If a;,a,,...,a, are nonnegative real numbers so that a; +a, +:--+a, =n,
2 n
9 9 5 (n®*—2n+2)
(Cl1 +1)(a2+1)-~-(an+1) = W
If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

(a®+2)(b* +2)(c* +2) < 44.

If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

1
(@®+1D)(b*+1)(c*+1) < 1%9.

If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

(2a®2+1)(2b%2 +1)(2c2+1) < %.

If a, b, c are nonnegative real numbers so that a + b + ¢ > k,, where

3
ko= V66+ 10v/105 ~ 4.867,

2
Y@+ + D+ D)< (%b“) 41
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1.90. If a, b, c,d are nonnegative real numbers so that a + b + ¢ +d = 4, then

(a®+3)(b*+3)(c* +3)(d* +3) < 513.

1.91. If a, b, c,d are nonnegative real numbers so that a + b + c +d = 4, then

(a2 +2)(b%2+2)(c? +2)(d? +2) < 144.

1.92. If a, b, c,d are nonnegative real numbers such that
atb+c+d=4,

then

a_ . b +_C d <i¥
3a3+2 3b3+2 3¢3+2 3d3+2° 5

1.93. If a,,a,, ..., a, are nonnegative real numbers such that a; +a, +---+a, =1,
then
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1.3 Solutions

P 1.1. If a, b, ¢ are real numbers so that a + b + ¢ = 3, then
3(a*+b*+cH+ a2+ b2+ c2+6>6(a®+b3+cP).
(Vasile C., 2006)

Solution. Write the inequality as

@+ FB)+F@23G), =T 0=,
where
f(w)=3u*—6u®+u® ueR.
From

f”(u) =2(18u*—18u + 1),

it follows that f”(u) > 0 for u > 1, hence f is convex on [s,c0). By the RHCF-
Theorem, it suffices to show that f(x) + 2f(y) = 3f(1) for all real x,y so that
x+2y =3. Let

E=f(x)+2f(y)—3f(1).

We have

E=[f()—fMI+2[f(y)—f(1)]
=(Bx*—6x>+x2+2)+23y*—6y*+y*+2)
=(x—1)(3x*—3x*—2x—2)+2(y —1)(3y*—3y*—2y —2)
=(x—1D[(Bx*—3x*—2x—2)—(3y*—3y?—2y —2)]
= (x—=1)[3(x* = y*)=3(x*—y*) = 2(x — y)]
= (x = 1D)(x = y)B(x*+xy + y*) = 3(x + y) —2]

(e =1[27(x* + xy + y*) —9x + y)(x +2y) —2(x + 2y )?]
6

C12( 4y — v)2
G-y
6
: 1 4
The equality holds for a = b = ¢ = 1, and also for a = 3 and b=c = 3 (or any
cyclic permutation).
Remark. In the same manner, we can prove the following generalization:

e Ifa;,a,,...,a, are real numbers so that a; +a,+---+a, =n, then

n—1

2_ .32 2 2. ... 2_ 2
(a7 —a))*+(a;—ay)*+---+(a’—a,) Zn2—3n+

3(af+a§+---+ai—n),
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with equality for a; = a, = -+- =a, = 1, and also for
a, = L a,=a;=--+-=a,=1+ n—2
Y n2—3n+43 2R T T 2 3n 43

(or any cyclic permutation).

n
so that a; +a, +---+a, =n, then

P1.2. Ifa;,ay,...,a, >
n—2

3 3 3
at+a,+---+a, =n.

(Vasile C., 2000)

Solution. Write the inequality as

_a1+a2+"'+an
n

fla)+fla)+---+fla) = nf(s), s
where
1—2n
n—2"
From f”(u) = 6u, it follows that f is convex on [s, ©0). By the RHCF-Theorem and

fw=u®, u>

Note 1, it suffices to show that h(x, y) > Oforall x,y >

n
> so that x+(n—1)y =
n. We have

ORI 0N
u—1

— —2)x+2n—1
g(x) gW):x+y+1:01 )X +2n
x— n—1

w+u+1,

= 0.

h(x,y) =
From x + (n—1)y = n and h(x,y) =0, we get

1—2n n+1
X = , Y= .
n—2 n—2

Therefore, according to Note 4, the equality holds for a; =a, =---=a, =1, and

also for
1—2n n+1
a, = , Ao =UQa =+ =4, =
" p—27 277 " n—2

(or any cyclic permutation).

P13. Ifa;,a,,...,a, >

so that a; +a, + -+ a, =n, then

3 3 3 2 2 2
aj+a,+---+a =2aj+a;+---+a,.
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Solution. Write the inequality as

_a1+a2+"'+an

fla)+fla)+---+f(a,)=nf(s), s =1,

n

where o
fw=u*—u? u> )
n—2

From f”(u) = 6u—2, it follows that f is convex on [s, ©0). According to the RHCF-

Theorem and Note 1, it suffices to show that h(x,y) > 0 for x,y > so that

x +(n—1)y = n. We have

_fw=fQ) _
=—=1u",

u—1

:(n—2)x+n

x+y=——"20.
n—1

g(u)

h(x,y) = g(xz = g§(y) _

From x + (n—1)y = n and h(x, y) =0, we get

—n . n
Y= n—2

X = ,
n—2
Therefore, in accordance with Note 4, the equality holds fora; =a, =---=a, =1,

and also for
—n n

= a2:a3:"':a =
n—2’

" n-—2
(or any cyclic permutation).

a;

P 1.4. Ifa,,a,,...,a, are real numbers so that a; +a, + -+ +a,, = n, then
(n*—=3n+3)af+al+--+at—n) =2 —n+ (@ +ai+---+a—n).
(Vasile C., 2009)

Solution. Write the inequality as

fla)+f(a)+---+fla,) = nf(s), s

where
fW=m*-3n+3)u*—2(n*—n+1u*>, uel=R.

Foru>s =1, we have
1
Zf”(u)=3(n2—3n+3)u2—(n2—n+1)
>3(n*—3n+3)—(n*>—n+1)=2(n—2)>>0;
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therefore, f is convex on I.,. By the RHCF-Theorem and Note 1, it suffices to show
that h(x,y) > 0 for x, y € R so that x + (n— 1)y = n, where

i) = EOZE) SO

We have

gw)=n*-3n+3) > +u*+u+1)—2(n*—n+1)(u+1)

and
h(x,y)=(n*—=3n+3)(x*+xy+y*+x+y+1)—2(n*>—n+1)
=[(n*—3n+3)y—n*+n+1]>>0.
The equality holds for a; =a, =--- =a, = 1, and also for
a;=—-1+ 2 a,=a;=--=a, =1+ n—4
e n2—3n+3’ 2l T 23043

(or any cyclic permutation).
U

P 1.5. If a;,a,,...,a, are nonnegative real numbers so that a; +a, +---+a, =n,

then
(M +n+1)(@+a+-+ad—n)=(n+1)(af+aj+---+a’—n).

(Vasile C., 2009)

Solution. Write the inequality as

fla)) + fag) +---+ fla,) = nf(s), s

where
fW=m*+n+D*—(n+1u*, uel=[0,n].

The function f is convex on I, because

f’w)=6un*+n+1—-2(n+1ul>6un*+n+1-2(n+1)]
=6(n>—n—1u>0.

By the LHCF-Theorem and Note 1, it suffices to show that h(x,y) > 0 for x,y >0
so that x + (n— 1)y = n, where

h(x,y)=

g(X)—g(y)’ o(u) =
x—

fw)—f(1)
u—1
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We have

gwW)=r*+n+ D) +u+1D)—(n+ D> +u*+u+1)
=—(n+ 1D +n*@W?+u+1)

and

h(x,y)=—(n+1D)(x*+xy +y?)+n*(x+y+1)
=—(n+Dx*+xy+y)+nlx+y)[x+(n—-1y]+[x+(n—1)y]?
=(n*+n—3)xy+2n(n—2)y*>0.

The equality holds for a; =a, =--- =a, = 1, and also for

(or any cyclic permutation).

P 1.6. Let a, b, ¢ be real numbers so that a+ b +c=3. If
—14—6V7 <k <—14+6+7,

then
a*+b*+c*—3>k(a®+b>+c>—3).

(Vasile C., 2009)

Solution. Write the desired inequalities as

fl@+fB)+fl)=3f(s), s=—F—=1,
where
fwW)=u*—ku®, ueRr.

From
" (u) = 6u(2u®—k),

it follows that f”(u) > 0 for u > 1, hence f is convex on [s,c0). By the RHCF-
Theorem, it suffices to show that f(x)+ 2f(y) = 3f(1) for all real x,y so that
x + 2y = 3. Using Note 1, we only need to show that h(x, y) > 0, where

) = EDZEO) SO

We have

g =+ +u+l1—-k(@P+u+D)+u+l1=+Q -k +u+1),
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h(x,y)=x*+xy+y*+(1—-k)(x+y+1)=3y*—(10—k)y + 13— 4k

— 2 —_— —_—
=3(y—106 k) +(6ﬁ+14+k1)(26ﬁ 14 k)ZO.

The equality holds for a = b = ¢ = 1. If k = —14 — 6+4/7, then the equality holds
also for

a=-5-2v7, b=c=4+7
(or any cyclic permutation). If k = —14 + 64/7, then the equality holds also for

a=-5+2vV7, b=c=4—+7

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

e Letay,a,,...,a, be real numbers so that a, +a, +---+a,=n. If k; <k < k,,
where
L = —2(n?—n+1)—24/3(n2—n+1)(n2—3n+3)
= —2(n’—n+1)+24/3(n2—n+1)(n2—3n+3)
then
at+ai+--+at—n>k(al+a+---+a’—n).
The equality holds for a;, = a, = -+ = a,, = 1. If k € {ky,k,}, then the equality
holds also for
w = —2(n*—3n+1)+(n—1)(n—2)k
e 2(n2—3n+3) ’
e —a _2(n*—n—-1)—(n—2)k
2o T 2(n2—3n+3)
(or any cyclic permutation).
OJ
P 1.7. Let a,a,,...,a, be nonnegative real numbers so that a; +a,+---+a, =n. If

k is a positive integer satisfying 3 <k <n+ 1, then

k k CECEEY k— —
af+as+---+a nz(n—l)[( n )k 1_1]'
ad+ai+---+a2—n n—1

(Vasile C., 2012)



Half Convex Function Method 29

Solution. Denote

m:(n_l)[(niJH_l] :(nf1)k_2+(ni1)k_3+"'+1’

and write the inequality as

fla) + @)+ +f@) Znf(s), s o,
where
f(u)=uf—mu?®, uelo,n].
We will show that f is convex on [1,n]. Since
(W) = k(k—1)u"?—2m > k(k—1)—2m,
we need to show that
k(k—1 k—2 k—3
( )2( ) () e
2 n—1 n—1
Since n > k — 1, this inequality is true if
k(k—1) (k—1)’<—2 (k—1)’<—3
= +( —— +--4+ 1.
2 k—2 k—2
By Bernoulli’s inequality, we have
k—1Y 1 1 k—1 ,

Therefore, it suffices to show that

k(k—1) ( 1 1 )
>k—1D{1+=++—|.
= ( ) 2 k—1
This is true if
k 1 1
214+t —,
2 2 k—1

which can be easily proved by induction. According to the RHCF-Theorem and Note
1, we only need to show that h(x,y) = 0 for x,y > 0 so that x + (n— 1)y = n,
where

hxyy— S0=80) o F@-FQ)
xX—y u—1
We have
(W —1)—m@u*-1)
u—1 B

gluw)= W'+ 2+ D) —m(u+ 1),
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It suffices to show that f;(y) =0 for y € [O,

n 1] and j=1,2,...,k—2, where

o . . j
fj(y)=xJ+x1_1y+---+xy1_1+3’]_($), x=n—(n—1)y.

For j =1, we have

n _ (n—2)x S

[H)=x+y— 0.

n—1 n—1
For j>2,fromx’'=—(n—1)andn—1>k—2> j, we get
fl ===+ G =12y o+ YT+ T+ 20y ey
<—jljx T+ G- Py o+ y T T 2 Py 4y
== j=Dx " =[j- -1 =2]Py = =(-2—j+Dxy? <0.

As a consequence, f; is decreasing, hence it is minimum for y = Ll (when
n_
x =0):
> n =0
fi(y) —fj(m) =0.

From x + (n—1)y = n and h(x,y) =0, we get

(or any cyclic permutation).
Remark. For k = 3 and k = 4, we get the following statements (Vasile C. , 2002):

e Ifa,a,,...,a, are nonnegative real numbers so that a; +a,+---+a, = n, then
n—-1)(@+a+--+a—n)=2n—1)a+a’+---+a’—n),

which is equivalent to

3 3n—1
n— Z aiajak+n22 n—1 Z a;a;,

1<i<j<k<n 1<i<j<n
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with equality for a; = a, = -+- =a, = 1, and also for

a1=O, ad,=Aa3=-""=a, =
n—1
(or any cyclic permutation).
e Ifa,,a,,...,a, (n> 3) are nonnegative real numbers so that
a1+a2+"'+an:n,
then
(n—12(a}+a}+---+a'—n)>@r*-3n+ 1) +a+---+a’—n),

with equality for a; = a, =--- =a, = 1, and also for

alzo’ Ay =d3 =--+=0a, =
n—1

(or any cyclic permutation).

P 1.8. Let k > 3 be an integer number. If a,,a,,...,a, are nonnegative real numbers
so that a; +a,+ -+ +a, =n, then

k kg ... k_ k—1
a;+a,+--+a,—n ptl—1

ad+ai+---+a2—n"- n-—1
n

(Vasile C., 2012)

Solution. Denote

k—1
nc—1
———=n"2+n" 41,

m=
n—1
and write the inequality as
+a,+ee+
fla)) +f(ay)+---+ f(a,) = nf(s), s=a1 9 a”:L

n

where
fw)=mu®*—u*, uelo,n].

We will show that f is convex on [0, 1]. Since
(W) =2m—k(k—1)u*?>2m—k(k—1),

we need to show that

_ k(k—1)

2 P41 5
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This is true if
k(k—1)

2K 242k S 41> T

which is equivalent to
k(k—1)

2 )
2k > k%2 —k+2.

2=arrrz1+ (1) +(5)+(5)

k(k—1) | k(k—=1)(k—2)
2 6 ’

2k1_1 >

Since

=1+k+

it suffices to show that

L kk=1) | k(k=1)(k=2) _

1+k
2 6 N

k2 —k+2,
which reduces to
(k—1)(k—2)(k—3)>=0.

According to the LHCF-Theorem and Note 1, we only need to show that h(x,y) >0
for x,y > 0 so that x + (n— 1)y = n, where

o) = 8Dy F-FQ)

—y -1
We have
m(u®—1)— (U —1) ko1, ke
g(u) = 1 =m(u+1)—(@W " +u""+---+1)
u_
and k=1 _ k=1 k=2 _ k-1
e, y)=m-"—2 T Y ..
X—=y X—y

k=1 __ k-1 k=2 k=2 2 .2
:(nk—z_iy(nk—s_#%...%nﬁ Y),
X—=Yy X—=Y X—=Y

It suffices to show that
. J+1 L+l
W TV 12 k-2
xX—y

We will show that ‘ .
X]+1 _y]+1

-y

n>(x+y)y >
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The left inequality is true since
n—(x+y)=x+(n—1)y—(x+y)=(Mn—-2)y =0.

The right inequality is also true since

(x+y)j=xj+(i)xj_1y+---+(, ’ )xyj_1+yj

j—1
and
X]+1 j+1 ) ) . .
y :x]+X]_1y+...+xy]_1+y]'
X—=y
The equality holds for a; = n and a, = a; = --- = a, = 0 (or any cyclic permuta-
tion).

Remark. For k = 3 and k = 4, we get the following statements (Vasile C. , 2002):

e Ifa,,a,,...,a, are nonnegative real numbers so that a, +a,+---+a, = n, then
3 3 3 2 2 2
aj+a,+---+a, —n<(n+1)(aj+ta,+---+a,—n),

with equality for a; = a, =---=a, =1, and also for

(or any cyclic permutation).
e Ifa,,a,,...,a, are nonnegative real numbers so that a, +a,+---+a, = n, then
ad+a+-+at-n<@+n+D(a+a+---+ad—n),

with equality for a; = a, =---=a, =1, and also for

(or any cyclic permutation).

P 1.9. Ifa;,a,,...,qa, are positive real numbers so that a; +a, +---+a, =n, then

1 1 1
nz(—+—+---+——n)24(n—1)(af+a§+---+a§—n).
a; a an

(Vasile C., 2004)
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Solution. Write the inequality as

_a1+a2+"'+an

fla) + flag) +---+ fla,) = nf(s), s

n
where
n2
fw)=——4n—1u? uel=(0,n).
u
For u € (0, 1], we have
2

f”(u)=2%—8(71—1)22n2—8(n—1)=2(n—2)220,

Thus, f is convex on I,. By the LHCF-Theorem and Note 1, it suffices to show that
h(x,y) >0 for x,y > 0 so that x + (n— 1)y = n, where

g(x)—g(y) fw—-rQ1)
h(x,y)==—""—, gl)y=—""7-"".
xX—y u—1
We have
—n2
gw) = o —4(n—1)(u+1)
and
n® x+(n—1)y]? x—(n—1)y]?
S PP 3 Gt 12 PR € S Gt )0
Xy Xy Xy
In accordance with Note 4, the equality holds for a; =a, =--- =a, =1, and also
for
a:E Ao = Aq =+ =Qa,, = n
1 2; 2 3 n 2n—2
(or any cyclic permutation).
O
P 1.10. If aj,a,, ..., ag are positive real numbers so that a; + a, + ---+ag =8, then
1 1 1
S+ttt zd+d++al.
a; a ag

(Vasile C., 2007)

Solution. Write the inequality as

fla)+fla)+--+flag) = 8f(s), s= 8,

where

f(u)zlz—uz, u€(0,8).
u
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For u € (0, 1], we have
1/ 6
fflu)=——-2>6—2>0.
u4

Thus, f is convex on (0,s]. By the LHCF-Theorem and Note 1, it suffices to show
that h(x,y) > 0 for x, y > 0 so that x + 7y = 8, where

h(x,y) = g(X)—g(y), o (u) = fw—-fQa)
xX—y u—1
We have
1 1
gu)=—u—1-=—=
u u
and
1 xX+y

h(x,y)=—1+—+ .

From 8 =x+7y > 24/7xy, we get xy < 16/7. Therefore,

1 7(x + 112y%*—170y + 72
h(x,y)=—-1+—+ (x+y)_ 12y Y

Xy 16xy 16xy
112y%—176 2 14y*—22
S Yy 76y +7 _ 4y y+9 >o0.
16xy 2xy
The equality holds for a, =a, =--- =ag = 1.

Remark. In the same manner, we can prove the following generalization:

e Ifa,,a,,...,a, (n=4) are positive real numbers so that a; +a,+---+a,=n,

then . . . g

2 2 2
—2+—2+---+—2+8—n2—(a1+a2+---+an).
1 @ az n

.. 1 1 1
P 1.11. If a;,a,,...,a, are positive real numbers so that —+ — +---+— =n, then
a; da a,

vn—1
af+a§+---+aﬁ—n22(1+ - (a+a,+---+a,—n).

(Vasile C., 2006)

Solution. Replacing each a; by 1/a;, we need to prove that

_a1+a2+"'+an
n

fla)) + fag) +---+ fla,) = nf(s), s =1,
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where

f(u)—l—%, k=1+‘n_1, u e (0,n).
u n

For u € (0, 1], we have

— _ 1 _ 2
P :lku 6—ak _2(Vn—1-1)

u# nu#
Thus, f is convex on (0,s]. By the LHCF-Theorem and Note 1, it suffices to show
that h(x,y) > 0 for x,y > 0 so that x + (n— 1)y = n, where
(x)—gly) (w)-fQ)
hx,y) = 8280y SIS
xX—y u—1

We have
2k—1

u

—1
g(u)=F+
and 111
h(x,y)=—(—+—+1—2k).
Xy \x y

We only need to show that

1 1
—+—2>2k—1.
x Yy

Indeed, using the Cauchy-Schwarz inequality, we get

1 1 (1++v/n—1)> (1+\/n—1)2
x y x+((n-—-1)y n

=2k—1,

with equality for x = vn—1y. From x + (n—1)y =n and h(x, y) = 0, we get

n n
R A Y ey o
In accordance with Note 4, the original equality holds for a; = a, =--- =a, =1,
and also for
1+vn—1 n—1++n—1
al = —’ a2 = a3 — e T an =
n n

(or any cyclic permutation).

P 1.12. Ifa, b, c,d, e are positive real numbers so that a®>+ b*+c*+d*+e* = 5, then

1 1 1 1 1 41+ /5
_+_+_+_+__5+(—ﬂ(a+b+c+d+e—5)20.
a b ¢ d e 5

(Vasile C., 2006)
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Solution. Replacing a, b,c,d,e by va, b, +/c,vd, Ve, respectively, we need to
prove that

_a+b+c+d+e_

F@+F(0)+ O+ F(@)+f()256), 5= 1
where
Flu) = % +hkvE, k= 4(1+ﬁ) ~259, uel(0,5).
For 1 € (0, 1], we have
£ = g > 0

therefore, f is convex on (0,s]. By the LHCF-Theorem and Note 1, it suffices to
show that h(x, y) = 0 for x, y > 0 so that x + 4y = 5. We have

LW FQ) _ kyi-1
& u—1 u++Ju
and
_8(x)—g(y) _ X+ VY +1-kyXy

h = )
) = T S S Wr W Dy + D

Thus, we only need to show that

Vx+4/y+1—kyxy =0,

which is true if

2Jxy+1—k/xy =0.

Let

t=4Jxy.
From

5=x+4y >4/xy =4t

we get

<Y,

2

Thus,

2Jxy +1—k/xy =2t +1—kt?
2 1
=|{1——t 1+2(1+—)t:|20.
( V5 )|: V5

The equality holds fora=b=c=d=e=1.
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P 1.13. If a, b, c are nonnegative real numbers, no two of which are zero, then

1 + 1 + 1 <2( 1 + 1 + 1 )
3a+b+c 3b+c+a 3c+a+b” 5\b+c c+a a+b)’
(Vasile C., 2006)
Solution. Due to homogeneity, we may assume that a + b + ¢ = 3. So, we need to

show that
_a+b+c .

fl@+f(b)+f(c)=3f(s), s= —5 =1L
where 9 c
f) =y " qurs uEl03)
Foru €[1,3), we have
sy 4 40 3620 +3u* +9u—1)(B-uw)] _
FW =Gy " Gursyp (G—w)?(2u+3)° >0

therefore, f is convex on [s,3). By the RHCF-Theorem and Note 1, it suffices to
show that h(x, y) > 0 for x, y > 0 so that x + 2y = 3, where

hy) = B8 f@-F Q)
xX—y u—1
We have
1 2
sW =3t ouvs
and
h(x,y) = -
B—x)B3—y) (@x+3)(2y+3)
. 9(2x +2y —3)
 (3=x)(B3—y)(2x +3)(2y +3)
9x

= > 0.
B—x)B3—y)2x+3)(2y +3)

The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic
permutation).
O]

P 1.14. Ifa,b,c,d >3—+/7 so that a+ b+ c +d = 4, then

1 N 1 N 1 N 1 >4
24a2 2+Db2 2+4c¢2 2+4d2 3

(Vasile C., 2008)
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Solution. Write the inequality as

F@+FB)+FO+ f@2af(), 5=ty
where ,
f(u)=2+u2, >3—4/7.

For u>s =1, f(u) is convex because

" _ 3(3112—2)
frw) = oD

By the RHCF-Theorem and Note 1, it suffices to show that h(x,y) > 0 for x,y >
3—+/7 so that x + 3y = 4. We have

f—-fQA) _ —1-u

sW = T T3arm®
and
_ex)—g(y)  xy+x+y-—2
h(x:J’) - - )
xX—y 3(2+x2)(2+ y?2)
where

—x2+6x—2: B+ V7—=x)(x—=3++7)
3 3
_ (—1+ﬁ+3y)(x—3+ﬁ)>0
3 > 0.

Xyt+x+y—2=

In accordance with Note 4, the equality holds for a = b =c =d =1, and also for

14+ 47

a=3—+7, b=c=d= 3

(or any cyclic permutation).
Remark. Similarly, we can prove the following generalization:

e Ifa,,a,,...,a,>n—1—+/n2—3n+3so that a; + a, + -+ +a, = n, then

1 1 ' 1

S+ S+t > -,
2+a; 2+a; 2+az 3
with equality for a; = a, = -+- = a, = 1, and also for
14++/n>—3n+3
a,=n—1—+vn?2-3n+3, aq=a3=---=a,=

(or any cyclic permutation).
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P 1.15. If a;,q,,...,a, € [—v/n,n—2] so that a, + a, + - -+ + a,, = n, then

1 1 1 < n
n+ai n+a; n+a§_n+1'

(Vasile C., 2008)

Solution. Write the inequality as

fla)) + flag) + -+ f(a,) = nf(s),

n
where 1
f(u): ) —3) ue[_\/ﬁ)n_z]'
n+ u2
For u € [—+/n, 1], we have
1 z(n_u2)
2" ">
W=y 20,

hence f is convex on [—4/n,s]. By the LHCF-Theorem and Note 1, it suffices to
show that h(x,y) > 0 for x,y € [—4/n,n—2] so that x + (n— 1)y = n. We have

_f@-f) _ u+l

g u—1  (n+1(n+u?)
and
_80)—gly) .  n—x—y—xy
h(X,y)— - 2 2
x—y (n+1D)(n+x2)(n+ y2)
. (n—x)(n—2—x)
C(2—-Dn+x)(n+y2) "
The equality holds for a;, = a, =--- =a, =1, and also for
alzn—z’ ay=a3;=---=a,= 2
n—1

(or any cyclic permutation).

P 1.16. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

3—a N 3—b 4 3—c
9+a2 9+4b2 942

3
> —.
5

(Vasile C., 2013)
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Solution. Write the inequality as

F@+FB)+F@236), s=TE o,
where 3
—u
f(u)=9+u2, uelo,3].
Foru €[1, 3], we have
1,, . uO—-uw+27u—-1)
Ef (W= (9 +u2)3

Thus, f is convex on [s,3]. By the RHCF-Theorem and Note 1, it suffices to show
that h(x,y) > 0 for x, y > 0 so that x + 2y = 3, where

hx,y)= $9 =80y f@=F)
X—=Yy u—1
We have
W)= —+tw
& 5(9 + u?)
and +6x+6 9 9
h(x,y)= X TOXTOV 77 x(9—x)

5(94+x2)(9+ y2)  10(9+ x2)(9+y2) — 0.

3
The equality holds fora = b =c =1, and also fora=0and b =c¢ = > (or any
cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

e Ifa,,a,,...,a, are nonnegative real numbers so that a, +a,+---+a, = n, then
n—a n—a n—a n

! S+ 2 et . > :

n?+(n%?—3n+1)a; n?+(n?—3n+1)a; n2+(n2—3n+1)a?  2n-—1

with equality for a; = a, = -+ =a, = 1, and also for

alzo’ Ay =d3=-"+=a,=
n—1

(or any cyclic permutation).

P 1.17. If a, b, c are nonnegative real numbers so that a+ b + ¢ = 3, then

1 1 1 3
>

+ + > —.
l—a+2a2 1—b+2b2 1—c+2c2 2
(Vasile C., 2012)
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Solution. Write the inequality as

F@+FB)+F@236), 5=,
where ;
fluw)= T—uizm US [0, 3].
For u € [1,3], we have
12u? —6u—1

1 /7 _
Ef W= (1—u+2u?)3 ~

Thus, f is convex on [s,3]. By the RHCF-Theorem and Note 1, it suffices to show
that h(x,y) = 0 for x, y > 0 so that x + 2y = 3, where

h(x,y) = g(X)—g(y)J o(u) = f(u)—f(l)'
X—y u—1
We have
W= —(1+ 2u)
S S —ut )

and

4xy +2x+2y—3 x(1+4y)

) = A v 20—y 1277 2(0—x+2x3)(1—y +2y7) =

3
The equality holds fora = b =c =1, and also fora =0 and b = ¢ = 3 (or any

cyclic permutation).
Remark. In the same manner, we can prove the following generalization:

e letay,a,,...,a, be nonnegative real numbers so that a, +a, +---+a, =n.If

_ 3n—2++4/5n2—8n+4

k>ky, k
1 1 on

then

! + ! P S

l1—a;+ka®> 1—ay+ka; l1—a,+ka? ~ k’
with equality for a; = a, = --- = a,, = 1. If k = k;, then the equality holds also for
n
a; =0, ay=a3=---=a,=
n—1

(or any cyclic permutation).
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P 1.18. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then
1 1 1 3
>

+ + > —.
S5+a+a?> 5+4+b+b> S5+c+c2 7
(Vasile C., 2008)
Solution. Write the inequality as

_a+b+c_

f@+f)+f(c)=3f(s), s 3

1,

where 1
f)= o

L uel0,3].

For u > 1, from
2(3u? +3u—4)

fw = (5+u+u?) >0,

it follows that f is convex on [s,3]. By the RHCF-Theorem and Note 1, it suffices
to show that h(x, y) > 0 for x, y > 0 so that x + 2y = 3. We have

_f-f)_  —2-u

(W) -1 7(5+u+u?)
and
_gx)—gly)  xy+2(x+y)—3
hlx,y)= x—y  7G+x+x)G+y+y2)
x(5—x)

= = 0.
14(5+x+x2)(5+y +y?)
According to Note 4, the equality holds for a = b = ¢ =1, and also for a = 0 and

3
b=c= 2 (or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

e letay,a,,...,a, be nonnegative real numbers so that a; +a, +---+a, =n. If

2(2n—1
O<k<k, k=22271
n—1
then
1 N 1 . 1 SN
k+a,+ai k+a,+a; k+a,+a> k+2’
with equality for a; = a, = --- = a,, = 1. If k = k;, then the equality holds also for
n
a;=0, ay=a3=--=a,=
n—1

(or any cyclic permutation).



44 Vasile Cirtoaje

P 1.19. If a, b, c,d are nonnegative real numbers so that a+ b + c +d = 4, then
1 1 1 1 1
<

+ + + <-.
10+a+a?2 10+b+b%2 10+c+c2 10+d+d?2 3
(Vasile C., 2008)

Solution. Write the inequality as

F@+FD)+5 O+ (@2 4f(), 5=y
where 4
f(u):m, u€[0,4].
For u € [0, 1], we have
sy 6(3—u—u?)
frw= (10 + u+u2)3

Thus, f is convex on [0,s]. By the LHCF-Theorem and Note 1, it suffices to show
that h(x,y) = 0 for x, y > 0 so that x + 3y = 4. We have

o f@=IM 24w
g 1 12(10 + u + 12)
and
_gx)—g(y) 8—2(x+y)—xy
R ) = e T T Aot x (101 y +37)
3y?

= > 0.
12(10+ x + x2)(10+ y + y2)

The equality holds fora=b=c=d =1,and alsofora=4and b=c=d =0
(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

e letay,a,,...,a, (n=>4) be nonnegative real numbers so that
a,t+a,+---+a,=n.
If k> 2n+ 2, then

1 + 1 R 1 < n
k+a,+ai k+a,+d; k+a,+a>” k+2

with equality for a; = a, =--- =a, = 1. If k = 2n + 2, then the equality holds also
for

a,=n, ay,=d3=---=a,=0

(or any cyclic permutation).
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P 1.20. Let a,,a,,...,a, be nonnegative real numbers so that a; +a,+---+a, =n.
If

1
k>1——,
n

then
1 1 1 n

+ +ot > .
14+ka? 1+kad; 1+ka? ~ 14k

(Vasile C., 2005)

Solution. Write the inequality as

_a1+a2+"'+an

fla)+flag)+---+f(a,) =nf(s), s

where

flw)=

TR uelo,n].

For u € [1,n], we have

2k(3ku*—1) _ 2k(3k—1)
(1+ku2)® = (1+ku2)3

fw) =

Thus, f is convex on [s,n]. By the RHCF-Theorem and Note 1, it suffices to show
that h(x,y) > 0 for x,y > 0 so that x + (n— 1)y = n. We have

f@—rQA) _ —k(u+1)

guw) = —1 A+ +ku)
and (x)—g(y) k2( )—k
_8()—g(y) _ Xty+xy)—
h(x,y) = x—y  (I+k)A+kx2)(1+ky?)

We need to show that
k(x+y+xy)—1=0.

Indeed, we have

x(2n—2—x) S

1
k(x+y+xy)—12(1——)(x+y+xy)—1= 0.
n
. 1 .
The equality holds for a; = a, =--- =a, = 1. If k = 1 — —, then the equality
n
holds also for n
a; =0, ay=a3=---=a,=
n—1

(or any cyclic permutation).



46 Vasile Cirtoaje

P 1.21. Let a;,a,,...,a, be real numbers so that a, +a,+---+a, =n. If
—1
0<k<—"——0
n2—n+1
then
1 1 1 n

+ 4+t < .
1+ka? 1+ka; 1+ka? ™ 1+k
(Vasile C., 2005)

Solution. Replacing all negative numbers a; by —a;, we need to show the same
inequality for
a;,dy,...,a, =0, a,ta,+---+a,=n.

Since the left side of the desired inequality is decreasing with respect to each a;, is
sufficient to consider that a, + a, + - - - + a,, = n. Write this inequality as

_a1+a2+"'+an _

fla)+f(a)+---+fla,) = nf(s), s =1,

n
where
fw= %ziuz ue[o,n].
For u € [0, 1], we have
= 2R =3k

(1+ku2)® — 7

since
3(n—1)  (n—2)?

n2—n+1 n2—n+1

Thus, f is convex on [0,s]. By the LHCF-Theorem and Note 1, it suffices to show
that h(x,y) > 0 for x, y > 0 so that x + (n— 1)y = n. We have

_f@-F) _ ku+1)

1—3ku?>1—-3k>1— > 0.

s = T T ar A+ k)
and ,
_gx)—gly)  k—k(x+y+xy)
hlx,y) = x—y  (14k)(1+kx2)(1+ky2)

It suffices to show that
1—k(x+y+xy)=0.

Indeed, we have

n—1 (x —n+1)>
1—k(x+y+xy)21l—-———(x+y+xy)=——"—20
(et y +xy) nz—n+1( y+xy) n2—n+1
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—1
The equality holds fora; =a, = =a,=1. Ifk = 2n T then the equality
nz—n
holds also for .
a=n—1, a=a3=---=qa,=
n—1
(or any cyclic permutation).
O
P 1.22. Let a;,q,,...,a, be nonnegative numbers so that a; + a, +---+a, =n. If
2
k > , then
4(n—1)
a;(a; —1)  ay(a;—1) a,(a,—1) >0
az+k as+k a2+k

(Vasile C., 2012)

Solution. Write the inequality as

fla)+f(a)+---+fla,) = nf(s), s

n
where ( 3
f(u):uu’;l+k, ue[o,n].
F
o ( )_u2+2ku—k " )_Z(kz—u3)+6ku(1—u)
f=—ge > FW= W + k)? ’

it follows that f is convex on [0, 1]. By the LHCF-Theorem and Note 1, it suffices
to show that h(x, y) > 0 for x, y > 0 so that x + (n —1)y = n, where

hy) = EE=80) o f@ =)
X — u—1
We have
() = -
& u?+k
and
B k—xy n*—4(n—1)xy
M) = e G+ © 4= Do + 002 + 1
_xt(-DyP-4n-Dxy  [x—(-1yF _ 4
4(n—1)(x2+k)(y2+k) 4n—1)(x2+k)(y2+k) —
The equality holds for a; =a, =--- =a, = 1, and also for
a,=n/2, ay,=as=--=a,=n/(2n—2)

(or any cyclic permutation).
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P 1.23. If a;,a,,...,a, are nonnegative real numbers so that a; +a, +---+a, =n,
then
a;—1 a,—1 a,—1

+ ot —2——>0.
(n—2a;)? (n—2a,)>? (n—2a,)?

(Vasile C., 2012)

Solution. For n = 2, the inequality is an identity. Consider further n > 3 and write
the inequality as

_a1+a2+"'+an

fla)+f(a)+---+fla,)=nf(s), s

=1,

n
where 1
f(u):(nu_—zu)z, uel=[0,n]\ {n/2}.
from 2u+n—4 8(u+n—3)
’ . urn— " . urn—
F=1 g W=

it follows that f is convex on I,. By the LHCF-Theorem, Note 1 and Note 3, it
suffices to show that h(x,y) > 0 for x, y €I so that x + (n— 1)y = n. We have

-1 1
gu) = =
u—1 (n—2u)>2
and
— —x— —2
Mgy~ S0=80) __An=x=y) -2y
xX—y (n—2x)*(n—2y)*> (n—2x)*(n—2y)?
In accordance with Note 4, the equality holds for a; = a, = --- =a, = 1, and
also for
a=n, a=a3=---=a,=0
(or any cyclic permutation).
O
P 1.24. Ifa,,a,,...,qa, are nonnegative real numbers so that
a,+a,+---+a,=n, a,a,...,a,>—k, k=>1+ n T
n_

then

a—1 az—1 a’—1 -
+ +o >0
(a1+k)2 (a2+k)2 (an+k)2

(Vasile C., 2008)
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Solution. Write the inequality as

fla))+ fla)+---+ f(a,)=nf(s), s " =1,
where 21
u_
f(u):(u+k)2’ u>—k.

For u € (—k, 1], we have
2(k*—3—2kw) _ 2(k*~2k—3) _2(k+1)(k=3) _
(u+k)* — (u+k)# (u+k)* -

Thus, f is convex on (—k,s]. By the LHCF-Theorem and Note 1, it suffices to show
that h(x,y) > 0 for x, y > —k so that x + (n— 1)y = n. We have

f@W—rA) _ u+l

() =

gw)= u—1  (u+k)2
and (—g(y) (k=1 —(1+x)(1+y)
_8\WXX)—8Yy) \K— —l+x +y
M) = e T = T ey + K
Since )
(k=172 ——,

we need to show that
n?>(n—1)(1+x)(1+y).

Indeed,
n?—m—-1)A+x)1+y)=n*—(1+x)2n—1—x)=(x—n+1)*>0.

n

The equality holds fora;, = a, = -+ =a,=1. If k =1+ , then the
q ty 1 2 m
equality holds also for
1
a=n—1, a=a3=---=aqa,=
n—1
(or any cyclic permutation).
O

P 1.25. Let a;,a,,...,a, be nonnegative real numbers so that a; +a,+---+a, =n.

2n—1
IfO<kSl+V n 1,then
n_

2 2 2
a;j 1 a; 1 a, 1

+ ot ——— <
(a; +k)*  (ay+ k) (a, +k)*

0.

(Vasile C., 2008)
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Solution. Write the inequality as

fla)+ flay)+-+fla) =nf(s), s . _1,
where 2
fw= (111:;)2’ ue[0,n].
For u > 1, we have
F) = 2(2ku —k*+3) S 2(2k—k*+3) _ 2(1+k)(E—k) o

(u+k)* - (u+k)* (u+k)*

Thus, f is convex on [s,n]. By the RHCF-Theorem and Note 1, it suffices to show
that h(x,y) > 0 for x, y > 0 so that x + (n— 1)y = n. We have

_f@-f) _ —u-1

g ~1  (u+kp
and
— 2k — 2 2k — 2
h(x,y)zg(x) g(y): k k+x+y+xy2 k k+x+y.
-y (x +k)?(y +k)? (x +k)?(y +k)?
Since
x+y2x+(n—1)y: n ’
n—1 n—1
we get

2m—1
2k—k2+x+y22k—k2+L1=—(k—1)2+ n =20,
n—

hence h(x,y) > 0.

2n—1
The equality holds for a;, = a, =+ =a,=1. If k =1+ n T then the
n —
equality holds also for
a,=0, a=a3=---=a,= n
n—1
(or any cyclic permutation).
O

P 1.26. Ifa;,a,,...,a,2n—1—+vn?2—n+1so that a; +a,+---+a, =n, then

2 _ 2 _ 2 _
a; 1 a,—1 a; 1

-+ +o+ ———<0.
(a; +2)2  (ay+2)? (a, +2)?

(Vasile C., 2008)
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Solution. Write the inequality as

_a1+a2+"'+an

fla)+fla))+---+fla,) = nf(s), s= " =1,
where )
f(”):(i;—;)z’ u=n—1—vn2—n+1.
For u > 1, we have
po=24-D

Thus, f(u) is convex for u > s. By the RHCF-Theorem and Note 1, it suffices to
show that h(x,y) > 0 for

n—1—-vn2—n+1<x<1<y, x+(n—1)y=n.

Since
o fW=f) _ —u-1
& —1 (w+2)?’
h( )_g(x)—g(y)_ x+y+xy  —x*+2(n—1Dx+n
B T Ty T +22(y +22 (n—D(x+ 22y + 2’

we need to show that
n—1—vn2—n+1<x<n—1++vn2—n+1.

This is true because

n—1—-vn2—n+1<x<l<n—14++vnZ—n+1.

The equality holds for a; =a, =--- =a,, =1, and also for
1++vn?2—n+1
a=n—1—+vn?—n+1, a=a3=--=a,= & 1n
n —_—
(or any cyclic permutation).
O
P 1.27. Let a,,a,,...,a, be nonnegative real numbers so that a; +a,+---+a, =n.
—1)(2n—1
T i) (€l Y .
n
1 1 1 n

+ +o > .
1+kad 1+ka 14+ka® ~ 1+k

(Vasile C., 2008)
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Solution. Write the inequality as

fla)+fla))+---+fla) =nf(s), s " =1,
where 1
f(u):m, uE[O,n].

For u € [1,n], we have

6ku(2ku® —1) - 6ku(2k —1)

frw= A+ kd® — (1+kid)

Thus, f is convex on [s,n]. By the RHCF-Theorem and Note 1, it suffices to show
that h(x,y) > 0 for x,y > 0 so that x + (n— 1)y = n, where

xX)— u)—f(1
hxyy— S0=80) o F@—FQ)
X — u—1
We have
—k(u?+u+1)
gw) =
(1+ k)1 + kud)
and
h(x,y) x*y*+xy(x+y—-1)+x+y)P—(x+y+1)/k
k2 (1+K)(1+kx3)(1+ky?) '
Since .
wpyp Xty n
n—1 n—1
it suffices to show that v
(x+y)22&.
k
Fromx+y2L,weget
n—1
2n—1
k(x+y)=> n
hence
5 n (2n-—1
k(x+y) —x—y=(x+y)[k(x+y)—1]2n_1 " —1|=1.
The equality holds fora; = ay, =+--=a,=1. If k = (n—1)(22n—1)’ then the
n
equality holds also for
a,; =0 a aQ;=--=aqa, = n
1— Y 27— Y3 - n_n_l

(or any cyclic permutation).
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P 1.28. Let a,,a,,...,a, be nonnegative real numbers so that a; +a,+---+a, =n.

1
IfO<k§n—, then
nz2—2n+2

1 ot 1 o
14+ka} 1+ka; 14+kad ™~ 1+k

(Vasile C., 2008)

Solution. Write the inequality as

Fla)+fla)+ o+ @)z nf(), s N
where 4
f(U):m, UE[O,H].

For u € [0, 1], we have
_ 3 —
F) = 6ku(1—2ku?) S 6ku(1—2k) S
(1+ kud)? (1 +kud)?
Thus, f is convex on [0,s]. By the LHCF-Theorem and Note 1, it suffices to show
that h(x,y) > 0 for x, y > 0 so that x + (n— 1)y = n, where

h(x,y) =8 =800 oy f@ =)
X—Yy u—1
We have
W= k(u*+u+1)
W= 000 + k)
and

h(x,y) (x+y+D/k=x*y*—xy(x+y—1)—(x+y)
k2 (1+k)(1 +kx3)(1 +ky3) '
It suffices to show that
(n*—2n+2)(x+y+1)
n—1
which is equivalent to

[24+ny—(n—1)y?][1-(n—1)y]*>0.

—x*y?—xy(x+y—1)—(x+y)*>0,

This is true because

2+ny—(n—1)y*=2+y[n—(n—1)y]=2+xy > 0.

n—1
The equality holds for a; = a, = -+ = a, = 1. If k = —————, then the
n?—2n+2
equality holds also for
1
a=n—1, a=a3=---=aqa,=
n—1

(or any cyclic permutation).
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P 1.29. Let a,,a,,...,a, be nonnegative real numbers so that a; +a,+---+a, =n.
2

Ikan—, then
n—1

@ & L a __n
k—a, k—a, k—a,” vk—1

(Vasile C., 2008)

Solution. Write the inequality as

Fla)+fla)+ -+ fla) znf(s), s=TT2T T oy

n
where
Flw) = —,/k—fu, ue[o,n].
Foru €[0, 1], we have
f//(u) _ k(k - 4u) > k(k — 4) >0.

C4ud2(k—u)5/2 T 4ud2(k—u)5/2 T
Thus, f is convex on [0,s]. By the LHCF-Theorem, it suffices to prove that
fE)+(n—=Df(y)=nf(1)

for x > 1> y > 0so that x + (n— 1)y = n. We write the inequality as

(k—l)x+(n_1) (k_l)ySn,
k—x k—y
(n—Dk(A-y) (k—1)y
1 <1 —1)|1-— .
\J +(n—1)y+k—n_ +(n=1) k—y
Let
Z = m’ ZS]—,
J k—y
which yields
_ k2?
ST e rk—1
(k-1 -2 _ (k—1)(nz*+k—n)
1-y= 22+k—1 ~ (n=1)y +k=n= 22+ k—1 )
Since
k(1—y) _ k(1-2*) 1—22
(n—1)y+k—n k—n(1—22) 1—n(1—22)/k
1—22 _ n(1—-2%)

= 1-1—-2)(n—1)/n (—1)z2+1
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it suffices to show that

n(n—1)(1—22)
\J1+ (n—1)z2+1

<1+(n—1)(1—2).

By squaring, we get the obvious inequality

z—1)?*[(n—1)z—1]*>0.

2

The equality holds for a; = a, =+ =a, =1. If k = T then the equality
n —_—
holds also for
a, = n(n—1) ay,=a3=-"=a, = n
YT nz—2n+2’ 2T T (n—=1)(n2—2n+2)
(or any cyclic permutation).
O
P 1.30. If a;,a,,...,a, are nonnegative real numbers so that a; +a,+---+a, =n,

then
_g2 42 _2
na+n 2+ 4+n > 1

(Vasile C., 2006)

Solution. Let k =Inn. Write the inequality as

fla) +fla)+---+f(a,)=nf(s), s= =1,
where
flu)= n‘“z, ue(0,n].

For u > 1, we have
F(w) = 2kn™ (2ku® — 1) > 2kn " (2k — 1) > 2kn ™’ (2In2—1) > 0;
therefore, f is convex on [s,n]. By the RHCFE-Theorem, it suffices to show that

f)+(m=1f(y)=nf(1)

for0 < x <1< yandx+(n—1)y = n. The desired inequality is equivalent to
g(x) = 0, where

n—x

, 0<x<1l.
n—1

glx)= " + (n— 1)n_y2 -1, y=

Since y' =—1/(n—1), we get

g'(x)=—2xkn™ —2(n—Dkyy'n™ =2k(yn™ —xn™).
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The derivative g’(x) has the same sign as g,(x), where

g,(0) =In(yn™)=In(xn™" ) =Iny —Inx + k(x> — y2),

ey Y 1 . -1 2k(1 + nx —2x)
0= L~ L+ 2k ”)—”[X(n_x) . ]

For 0 < x <1, g/(x) has the same sign as

—(n—1)°

h(x)=—5¢

+ x(n—x)(1+ nx —2x).

Since

h(x)=n+2(n*>—2n—1)x —3(n—2)x2
> nx +2(n*—2n—1)x —3(n—2)x
=2(n—1)(n—2)x >0,

h is strictly increasing on [0, 1]. From

—(n—1)?

h(0)=—%¢

— 2 1

<0, h(1)=(n-1) (1 Zk) >0,

it follows that there is x; € (0,1) so that h(x;) = 0, h(x) < 0 for x € [0,x;) and
h(x) > 0 for x € (x;,1]. Therefore, g, is strictly decreasing on (0, x; ] and strictly
increasing on [x;, 1]. Since g;(0,) = oo and g,(1) = 0, there is x, € (0, x;) so that
g1(x,) =0, g,(x) > 0 for x € (0, x,) and g,(x) < 0 for x € (x,,1). Consequently, g
is strictly increasing on [0, x, ] and strictly decreasing on [x,, 1]. Because g(0) > 0
and g(1) = 0, it follows that g(x) > 0 for x € [0,1]. The proof is completed.

The equality holds fora;, =a, =+ =a, = 1.

P 1.31. Ifa, b, c,d are nonnegative real numbers so that a+ b + ¢ +d = 4, then

(3a%2+1)(3b%2+1)(3c2+1)(3d% + 1) < 256.

(Vasile C., 2006)
Solution. Write the inequality as

_atb+c+d

F@+ B+ FO+F(A) 2 4f(), s=—p—"=1,

where
f(w)=—In(3u*+1), ue€l0,4].
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For u € [1,4], we have
6(3u?—1)

(Buz+1)2
Therefore, f is convex on [s,4]. By the RHCF-Theorem, we only need to show that

fw) =

f)+3f(y)=4f(1)

for 0 < x <1 < y so that x + 3y = 4; that is, to show that g(x) > 0 for x € [0,1],

where .
g(x) = F(x)+3f(y)—4f(1), y= 3’“.

Since y’(x) =—1/3, we have

/ / !/ r/ E"( Ey

_6(x—y)Bxy—1) 8(1—x)(x*—4x+1) -
(Bx2+1)(3By2+1) (3x2+1)(3y2+1)

Since g is increasing on [0,2 — +/3] and decreasing on [2 — +/3, 1], it suffices to
show that g(0) > 0 and g(1) > 0. The inequality g(0) > O is true if the original
inequality holds for a = 0 and b = ¢ = d = 4/3. This reduces to 19°> < 27 - 256,
which is true because 27 - 256 — 19 = 53 > 0. The inequality g(1) > 0 is also true
because g(1) =0.

The equality holds fora=b=c=d =1.

P 1.32. Ifa,b,c,d,e>—1sothata+b+c+d+e =25, then
(@ +1D(B*+1)(c2+1)(d*+1)(e*+1)=>(a+1)(b+1)(c+1)(d+1)(e+1).

(Vasile C., 2007)

Solution. Consider the nontrivial case a, b,c,d,e > —1, and write the inequality
as

_a+b+c+d+e_

f@+f)+fl)+f(d)+f(e)=nf(s), s= c 1,

where
fW=mh@*+1)—In(u+1), u>-1.

For u € (—1, 1], we have

o 21—u?) 1
S= e Far e
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Therefore, f is convex on (—1,s]. By the LHCF-Theorem and Note 2, it suffices to
show that H(x,y) > 0 for x,y > —1 so that x + 4y =5, where

FE=f)_ 20-xy) 1

H(x,y) = x—y (2 +DO2+D) e+ D +1)

thus, we need to show that

(x2+1)(y?+1) -

=)+ ) 2

Since ) )
x+12x+1’ y+12y+1
x+1 2 y+1 2

it suffices to prove that

+(x+1)(y+1)20

2(1_Xy) 4 )

which is equivalent to
x+y+9—7xy =0,
28x%2—38x+14>0,
(28x —19)* +31 > 0.
The equality holds fora=b=c=d =e=1.

P 1.33. Let a,,a,,...,qa, be positive numbers so that a; +a,+---+a, =n. If

k< 2\/n—1_|_2 2vn—1

n n

) kSS:

then

1 1 1
k(ya,+vyao+-+4/a )+ —+—+---+—=(k+1)n.
(Var+va, %) Ja /G ¢a—n‘( n

(Vasile C., 2006)

Solution. Write the inequality as

fla)+ flag)+---+f(a,) =nf(s), s

where

f(u)=%+«/ﬂ, u € (0,n).
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From 3k
—ku
7 _
it follows that f is convex on (0, 1]. Thus, according to the LHCF-Theorem and Note
1, it suffices to show that h(x,y)>0forx > 1>y > O0such that x+(n—1)y =n,
where

) = EOZEO) SO

—1
We have
W = kKo 1
& Ju+1l u+4u
and /5
X+ +1
(VX + VIV + DT + Dh(x,y) = —k + LoD
VXY
So, we need to show that
1
M > k.
VXY
Since
Vx+/y =29xy,
it suffices to show that
2Jxy +1
Ve >k,
VXY
which is equivalent to
1 2
—+ > k.
Xy o Jxy
From
n=x+(Mn—-1)y>24y/(n—-1)xy,
we get
1 > 2v/n—1
JXxy  n '
hence
1 2 2v/n— vn—
PN Lt P\ AP
VXY  Yxy n n
The proof is completed. The equality holds for a; =a, =---=aqa, =1.

Remark. Since
24/n—1 24/n—1
< +2
n n
for n < 134, the following inequality holds for a;,a,,...,a;3, > 0 such that a; +
a2+"'+a134 - 134:

1

> 268.

1 1
VT Tttt et
Jyai  Ja V134
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Since
\/n—l_i_2 2vn—1
n n

for n < 12, the following inequality holds for a;, a,,...,a;; > 0 such that a; + a, +
cee a12 - 12:

2
2<

1 1 1
2 + 4ot 4+ —F — 44 > 36.
Wardar e m T

P 1.34. If a,,q,,...,a, (n = 3) are positive numbers so that a; +a,+---+a, =1,
then

1 1 1 1\"
(_Ja_l_”al)(_@_”az)"'(Fan_”a”)z( n__«/n) '
(Vasile C., 2006)

Solution. Write the inequality as

Fla)+fla)+- -+ fay) > nf(s), s:“1+a2:"+“n:%,
where
f(u)=ln(%—1/ﬂ)=ln(1—u)—%lnu, ue(0,1).
From . , oy ,
W= ————, )= —a
f(u)_l—u 2u’ f(u)_ZuZ(l—u)Z’

it follows that f”(u) > 0 for u € (0, +/2—1]. Since
1 1
s=-<-<+vV2-— 1,
n 3

f is convex on (0,s]. Thus, we can apply the LHCF-Theorem.

First Solution. By the LHCF-Theorem, it suffices to show that

FO+ = 1F ) = ()

for all x, y > 0 so that x + (n— 1)y = 1; that is, to show that

(FA5) =5
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Write this inequality as
n"?(1—y)" ' > (n—1)""1x1/2y =32,
By squaring, this inequality becomes as follows:
n*(1 _y)Zn—Z > (n— 1)2n—2xyn—3’

2n—2 2n—2
(2—2y)" 2> (2n—2y77 xy"?,
nn

1 2n—2 1
[n C= 4 x+ (n—3)y] >[n+1+(n—3)]"H03 . — . x.yn3,
n nn
The last inequality follows from the AM-GM inequality. The proof is completed.
The equality holds fora; =a, =---=a, =1/n.

Second Solution. By the LHCF-Theorem and Note 2, it suffices to prove that H(x, y) >
0 for x, y > 0 so that x + (n—1)y = 1, where

f)—f'(y)
x—y

H(x,y)=

We have

Hx,y)= l—-x—y—xy :n(y+1)—y—3
’ 2xy(1—=x)(1—y) 2x(1—x)(1—Y)

L3 +1)—y-3 _ y
S 2x(1-x)1-y) x(1—x)(1-y)

Remark 1. We may write the inequality in P 1.34 in the form

[1(=-1) T Tasvar= (vi-%)

i=1

> 0.

On the other hand, by the AM-GM inequality and the Cauchy-Schwarz inequality,
we have

l:[(1+\/5,~)s(1+%g\/a_i) s(1+ %Zai) :(1+%)“.

Thus, the following statement follows:

e Ifa,,a,,...,a, (n=>3) are positive real numbers so that a; +a, +---+a, =1,

then
1 1 1 = n

with equality fora; =a, =---=a, =1/n.
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Remark 2. By squaring, the inequality in P 1.34 becomes

[0z, o-v
i=1 a;

nn

1
On the other hand, since the function f(x) = In 1 is convex on (0,1), by

Jensen’s inequality we have
a,+a,+---+a,\"

ﬁ(1+ai)> 1+ n _(n+1)”
l—q;) | {_Gatdt - +d, \n—-1)"

i=1

n
Multiplying these inequalities yields the following result (Kee-Wai Lau, 2000):

e Ifa;,a,,...,a, (n=> 3) are positive real numbers so that a; +a, +---+a, =1,

then
&) ) (G -)=(3)
—a || ——a || ——a,|=|n—— ],
a, a, a, n
with equality for a, =a, =---=a, =1/n.
O
P 1.35. Let ay,a,,...,a, be positive real numbers so that a; +a, +---+a, =n. If
2
2vn—1
0<ks(1+L),
n
then

1 1 1
(ka1 + —) (ka2 + —) ee (kan + —) > (k+1)".
a a, a,

(Vasile C., 2006)

Solution. Write the inequality as

fla)+f@)+-+f@)=nf(s) s ey,
where
f(u)=1n(ku+%), u € (0,n).
We have
ku?—1 1+ 4ku® —K*u?

flu)= m, f(u)=

For u € (0,1], we get f”(u) > 0 since

u?(ku2 +1)>2

1+ 4ku® — k*u* > ku*(4 — ku®) > ku*(4—k) > 0.
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Therefore, f is convex on (0,s]. By the LHCF-Theorem and Note 2, it suffices to
prove that H(x,y) = 0 for x, y > 0 so that x + (n — 1)y = n, where

f/)—f'(y)
x—y

H(x,y)=

Since
1+k(x +y)?—k*x?y? - k[(x + y)*> —kx?y?]

xy(kx2+1)(ky2+1) = xy(kx2+1)(ky2+1)’

H(x,y)=

it suffices to show that
xX+y= Vi x y.

Indeed, by the Cauchy-Schwarz inequality, we have
(x+)[(n—1y+x]=(¥n—1+1)xy,

hence

1 2vn—1
x+y2—(Vn—1+1)2xy:(1+n—)xy2 \/Exy.
n n

The equality holds for a; =a, =---=a, = 1.

P 1.36. Ifa, b, c,d are nonzero real numbers so that
—1
a,b,c,d > P a+b+c+d=4,

then

3(l+i+l+l)+1+1+1+1>16
a2 b2 ¢2 d2) a b ¢ d

Solution. Write the inequality as

F@+FO)+ O+ f@2af(), 5=y
where - 11
fw=2+1 wer=[2L 2 o)

is convex on I, (because 3/ u? and 1/u are convex). By the RHCF-Theorem, Note
1 and Note 3, it suffices to prove that h(x, y) = 0 for x, y €I so that

x+3y =4,

where

) = S0E0) g [

—1
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Indeed, we have

4 3

u)=————,
gw)=———3

4xy +3x+3y  2(1+2x)(6—x) S

h(x,y) = 0.

x2y2 3x2y2
In accordance with Note 4, the equality holds fora = b =c =d =1, and also
for

—1 3
a=—, b=c=d=-—
2 2
(or any cyclic permutation).
O
P 1.37. If aj,a,,...,a, are nonnegative real numbers so that a>+ a5 +---+a’>=n,

then

Cra+ o +a—n+q —— (@ +ay+-+a,—n)>0
1 2 n n—1 1 2 n = V.

(Vasile C., 2007)
Solution. Replacing each qa; by ,/a;, we have to prove that
fla)+f(a)+---+ f(a,) = nf(s),

where
_a1+a2+"'+an

S =1

n
and

f(u) =uvu+k+/u, k:”nnTl’ uelo,n].

For u > 1, we have

3u—k S 3—k
4uyu ~ 4uyu
Therefore, f is convex on [s,n]. According to the RHCF-Theorem and Note 1, it
suffices to show that h(x, y) > 0 for x, y = 0 so that x + (n— 1)y = n. Since

fW-fQAQ) _ u+k
u—1 _1+ﬁ+1

> 0.

frw) =

g(u) =

and
g)—g(y) X+ I+ XYk
X—y (VX + P Wx+1)(/F +1)

h(x,y) =

we need to show that

VX + .y +J/xy =k
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Since
VX+ Y+ Xy = V/x+ /Yy =/x+y,
it suffices to show that
x+y =k
Indeed, we have
Xx+y=——+y= = k*
Y=n n—1 '
In accordance with Note 4, the equality holds for a; = a, = --- = a, = 1, and
also for
n
a=0, a=---=aqa,=
1 2 n—1

(or any cyclic permutation).

P 1.38. Ifa, b, c,d, e are nonnegative real numbers so that a®>+ b*+c%>+d?+e? =5,
then

1 1 1 1 1
+ +

+ + <1
7—2a 7—2b 7—2c 7—-2d 7-—2e

(Vasile C., 2010)
Solution. Replacing a, b,c,d, e by +/a,v'b, v/c,Vd, v/e, we have to prove that

fl@)+f(b)+f(c)+ f(d)+ f(e) = 5f(s),

where
a+b+c+d+e
s = =1
5
and ;
= s €(0,5].
fa)= 5= uclos]
For u € [0, 1], we have
—6
Fru) = — LSV

= Suyi—2yap

Therefore, f is convex on [0,s]. According to the LHCF-Theorem and Note 1, it
suffices to show that h(x, y) > 0 for x, y > 0 so that x +4y = 5. Since

_f@—f@) _ 2
—1 T 57—2/a(1+ V)

g(u)

and

_8)—g(y) _ 2(5—2JT—2,7)
x=y  (xt DA+ VOA+ 7T 2/~ 2/7)

h(x,y)
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we need to show that

5
Indeed, by the Cauchy-Schwarz inequality, we have

25

(Vx + ﬁ)23(1+%)(x+4y)=:.

The proof is completed. The equality holds fora=b =c=d =e =1, and also for

1
a=2, b=c=d=e=-

(or any cyclic permutation).

Remark In the same manner, we can prove the following generalization:

e Let ay,a,,...,a, be nonnegative real numbers so that a> + a5 +---+a> =n. If
n
k>1+ , then
Vvn—1
1 + 1 o 1 < n
k—a, k—a, k—a,  k—1
n
with equality fora; =a, =--=a,=1. Ifk=1+ , then the equality holds
1= @y —
also for
1
alz\/n—]_’ ay=---=a,= -
n—

(or any cyclic permutation).

P 1.39. Let 0 < a,dy,...,a, <ksothata+a+---+a’=n. If

1<k<1+

then
1 + 1 R 1 > n
k—a, k—a, k—a, k-1

(Vasile C., 2010)
Solution. Replacing a,,a,,...,a, by J/a;, +/a,,...,+/a,, we have to prove that
fla))+ fla)+---+ f(a,) = nf(s),

where
a1+a2+"'+an 1
S: =

n
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and

flw)= ue0,k?).

k—yu’
From

3Ju—k
4uv/u(k — Ju)*’
it follows that f is convex on [s, k?). According to the RHCF-Theorem and Note 1,
it suffices to show that h(x,y) > 0 for all x,y € [0,k?) so that x + (n— 1)y = n.

£ =

Since
qy = FO=F @ _ 1
-1 (k—1)(k— vu)(1 + +u)
and
_glx)—gly) _ X+ /Y +1—k
h(x, J’) -

x—y  (k=D(/x+ /A + /01 + /7 k— /XN k— /)

we need to show that

Vx+.4/y=>k—1.
Indeed,
X n
Vx+4/y > x+y2\/—+y=\/—2k—1-
n—1 n—1
The proof is completed. The equality holds for a; =a, =--- =a, =1, and also for
n
= O’ = = n =
a, a, a —

(or any cyclic permutation).

P 1.40. If a, b, c are nonnegative real numbers, no two of which are zero, then

\J1+ 48a +\J1+ 48b +\J1+ 48 S 1s.
b+c c+a a+b

(Vasile C., 2005)

Solution. Due to homogeneity, we may assume that a + b + ¢ = 1. Thus, we need
to show that

fla)+f(B)+ f(c) = 3f(s),
where
_a+b+c 1
T3 T3
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and
1
f=\ =2 yelo,1).
1—u
From
—11
F(u) = 48(47u )

VO —w)5(1 + 47u)

it follows that f is convex on [s, 1). By the RHCF-Theorem, it suffices to show that

fe+2£ (0235

for x, y > 0 so that x + 2y = 1; that is,

1 —
\J +47x +2% 49—47x o

1—x 1+x
Setting
t= M’ 1<t< 7’
J 1+x
the inequality turns into
1175 —23¢2
752238 1o o)
t2—1

By squaring, this inequality becomes
350— 15t —61t*+ 156> —t* > 0,

(5—t)*2+t)(7—t)>0.

The original inequality is an equality for a = b = ¢, and also fora =0and b =¢
(or any cyclic permutation).
O

P 1.41. If a, b, c are nonnegative real numbers, then

\J 3a? % 3b2 \J 3¢2
+ + <1
7a%+5(b + c)? 7b%2 4+ 5(c + a)? 7¢%+5(a + b)?

(Vasile C., 2008)
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Solution. Due to homogeneity, we may assume that a + b + ¢ = 3. Thus, we need
to show that

fla)+f(B)+ f(c) =3f(s),
where
a+b+c
s=——— =1
3
and
3u? —u
f(”)__\J 7o tsG_uy  vae—tongi 03
From
Q2 _ _ Q2 _ — —
F(u) = 5(—8u® + 41u—30) S 5(—8u”+38u—30)  10(u—1)(15—4u)

(4u2 —10u+15)52 ~ (4u2—10u+15)5/2  (4u2—10u+ 15)5/2’

it follows that f is convex on [s,3]. By the RHCF-Theorem, it suffices to prove the
original homogeneous inequality for b = ¢ = 0 and b = ¢ = 1. For the nontrivial
case b =c =1, we need to show that

3a2 3
—_—+2 <1
7a2+ 20 5a2+10a + 12

By squaring two times, the inequality becomes

a(5a® + 10a® + 16a + 50) > 3a+/(7a2 + 20)(5a2 + 10a + 12),

a?(5a® +20a® — 11a* + 38a® — 80a% — 40a + 68) > 0,
a*(a—1)*(5a* + 30a® + 44a* + 96a + 68) > 0.

The last inequality is clearly true.
The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic
permutation).
U

P 1.42. If a, b, c are nonnegative real numbers, then

a2 2 2
———t\|lm——+\|m———==>1
\Ja2+2(b+c)2 \Jb2+2(c+a)2 \Jc2+2(a+b)2_
(Vasile C., 2008)

Solution. Due to homogeneity, we may assume that a + b + ¢ = 3. Thus, we need
to show that

fl@)+f(b)+f(c) = 3f(s),
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where
a+b+c
s= =1
3
and
3u? u
u)= = , uel0,3].
fw \ju2+2(3—u)2 Viz—4u+6 10,3]
From

2020’ —11u+12) _ 2(=11u+12)
(u2—4u+6)5/2 — (u2—4u+6)5/2’
it follows that f is convex on [0,s]. By the LHCF-Theorem, it suffices to prove the

original homogeneous inequality for b = c = 0 and b = ¢ = 1. For the nontrivial
case b = ¢ = 1, the inequality has the form

£(w) =

a 2

+ >1.
vaz+8 +2a2+4a+3

By squaring, the inequality becomes

ay/ (a2 +8)(2a2 + 4a + 3) > 3a® + 8a — 2.
For the nontrivial case 3a2 + 8a — 2 > 0, by squaring both sides we get
a®+2a® +5a* —8a® — 14a* + 16a —2 > 0,

(a—1)*[a*+4a® + 9a® + 4a + (3a* + 8a—2)] = 0.

The equality holds for a = b = ¢, and also for b = ¢ = 0 (or any cyclic permutation).
O

P 1.43. Let a, b, c be nonnegative real numbers, no two of which are zero. If

In3
k> ke, k0=1E—2—1m0.585,

(Za)k (2b)k (2c )k
+ + > 3.
b+c c+a a+b

Solution. For k =1, the inequality is just the well known Nesbitt’s inequality

then

(Vasile C., 2005)

2a 2b 2c
+ + > 3.
b+c c¢c+a a+b
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For k > 1, the inequality follows from Nesbitt’s inequality and Jensens’s inequality
applied to the convex function f (u) = u*:

2a 2b 2c \k
(Za )k+( 2b )k+( 2c )k>3 bre e taws | o g
b+c c+a a+b/) 3 -

Consider now that

ko <k<1.

Due to homogeneity, we may assume that a + b + ¢ = 1. Thus, we need to show
that

fla)+f(b)+ f(c)=3f(s),
where
_a+b+c_1
T3 T3
and )
2u
f(u)=(1_u), uel0,1).
From s
e~ 4k 2u " _
f (u)_(l—u)4(1—u) Qu+k—1),

it follows that f is convex on [s,1) (because u > s = 1/3 involves 2u +k—1 >
2/3+k—1=k—1/3>0). By the RHCF-Theorem, it suffices to prove the original
homogeneous inequality for b =c =1 and a € [0, 1]; that is, to show that h(a) > 3,
where

k
h(a) = ak+2(%) , a€[0,1].

For a € (0, 1], the derivative

k+1
h'(a) = ka"' —k (i)
a+1

has the same sign as

gla)=(k—1)Ina—(k+1)In

a+1
From
2ka+k—1

a(a+1) ’
it follows that g’(a,) = 0 for a, = (1 —k)/(2k) < 1, g’(a) < 0 for a € (0,a,) and
g’(a) > 0fora € (ay, 1]. Consequently, g is strictly decreasing on (0, a, ] and strictly
increasing on (ay, 1]. Since g(0,) = oo and g(1) = O, there exists a; € (0,a,) so

g'(a) =
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that g(a,) =0, g(a) > 0 for a € (0,a,) and g(a) < 0 for a € (a,, 1); therefore, h(a)
is strictly increasing on [0, a, ] and strictly decreasing on [a;, 1]. As a result,

h(a) = min{h(0), h(1)}.

Since h(0) = 2™ > 3 and h(1) = 3, we get h(a) > 3. The proof is completed. The
equality holds for a = b = c. If k = k,, then the equality holds also for a = 0 and
b = ¢ (or any cyclic permutation).

Remark. For k = 2/3, we can give the following solution (based on the AM-GM

inequality):
Z( 2a )2/3 _ Z 2a
b+c v2a-(b+c)-(b+c)

6a
ZZ:2a+(b+c)+(b+c):3

P 1.44. Ifa,b,c €[1,7 +4+/3], then

% 2a Q 2b q 2c
+ + > 3.
b+c c+a a+b

(Vasile C., 2007)

Solution. Denoting

Sziigiﬁ, 1<s<7+4v3,
we need to show that
fla)+ f(b)+ f(c) = 3f(s),

where

2
fw=\ 4 , 1<u<3s.
3s—u

35—u)3/2 4u—3s
2u (8s—u)*

For u > s, we have

f”(u)=35( > 0.

Therefore, f (u) is convex for u > s. By the RHCF-Theorem, it suffices to prove the
original inequality for b = c; that is,

[a 1I 2b
—4+2 > 3.
b a+
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\ ' b
Putting t = \| —, the condition a, b € [1,7 + 4+/3] involves
a

2—+v/3<t<2+43.

2t2 1
2 >3—-.
t2+1 t

8t2 ( 1)2
>(3—-=],
t2+1 t

which is equivalent to the obvious inequality

We need to show that

This is true if

(t—1)*(t—2++V3)(t—2—+3)<0.

The equality holds for a = b = c, and also fora = 1, and b = ¢ = 7+ 4+/3 (or
any cyclic permutation).
O]

P 1.45. Let a, b, c be nonnegative real numbers so that a+ b +c = 3. If

In2

O<ksko, ko=y=775

~1.71,

then
a“(b+c)+b(c+a)+ck(a+b)<6.

Solution. For 0 < k < 1, the inequality follows from Jensens’s inequality applied
to the convex function f (u) = —u*:

(b+c)a+(c+a)b+(a+b)c]k
2(a+b+c)

k 2k
:6(ab+l;c+ca) S6(a+§+c) Y

(b+c)ak+(c+a)bk+(a+b)ck32(a+b+c)[

Consider now that

1 <k <k,
and write the inequality as
fl@)+f(b)+f(c)=3f(s),
where
a+b+c
s=——=1

3
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and
fw)=uf(w—-3), uelo,3].

For u > 1, we have
F7(w) = ku*?[(k + Du—3k + 3] > ku*?[(k + 1) — 3k + 3] = 2k(2 — k)u*2 > 0;

therefore, f is convex on [1,s]. By the RHCF-Theorem, it suffices to consider the
case a < b =c. So, we only need to prove the homogeneous inequality

k+1
a“(b+c)+b(c+a)+cfla+b)<6 (%bﬂ)

for b=c=1 and a € [0, 1]; that is, to show that g(a) > 0 for a > 0, where

2k+1
g(a)=3(a;) —df—a—1.
We have
a+2\ 1 k+1(a+2\*!' k-1
e i, Lpw=ke (a2
g@=(+ (52 ] —ka -1, L@ = (5 o

Since g” is strictly increasing, g”(0,) = —oo and g”(1) = 2k(2—k)/3 > 0, there
exists a; € (0,1) so that g”’(a;) = 0, g”’(a) < O for a € (0,a;), g"’(a) > O for
a € (a,,1]. Therefore, g’ is strictly decreasing on [0, a; ] and strictly increasing on
[a;,1]. Since

k+1 k—1

g'(0)=(k+1)(2/3)—1= (k+1)(2/3) —1= — - —l=—>0,

g'(1)=0,
there exists a, € (0,a;) so that g’(a,) = 0, g’(a) > 0 for a € [0,a,), g’'(a) < 0
for a € (a,,1]. Thus, g is strictly increasing on [0, a,] and strictly decreasing on
[a,, 1]; consequently,
g(a) = min{g(0), g(1)}.

From
g(0)=3(2/3)"1—1>3(2/3)0t ' —1=1—-1=0, g(1)=0,

we get g(a) = 0. This completes the proof. The equality holds fora =b =c = 1.
If k = k,, then the equality holds also for a = 0 and b = ¢ = 3/2 (or any cyclic
permutation).

Remark 1. Using the Cauchy-Schwarz inequality and the inequality in P 1.45, we
get

2
Z a >(a+b+c) B 9

3
= > 2.
bk+ck = Sa(bk+ck)  diak(b+c) ~ 2
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Thus, the following statement holds.

e Let a, b, c be nonnegative real numbers so that a+ b +c = 3. If

In2
O<k<k, kjyj=—o—=~1.71,
0 ®  In3—In2
then
a + b N c >§
bk+ck  ck+ak  ak+bk T 2’

with equality for a =b = c = 1. If k = k,, then the equality holds also for a = 0 and
b =c =3/2 (or any cyclic permutation).

Remark 2. Also, the following statement holds:

e Let a, b, c be nonnegative real numbers so that a+ b +c = 3. If

In9—1In8
k>k = ~0.2905
- b 1 In3—1In2 205,
then
ak bk ck 3
> =

+ + >
b+c c¢c+a a+b 2

with equality for a = b = ¢ = 1. If k = k;, then the equality holds also for a = 0 and
b = c =3/2 (or any cyclic permutation).

For k; < k < 2, the inequality can be proved using the Cauchy-Schwarz inequality
and the inequality in P 1.45, as follows:

Z ak - (a+b+c) 9 .3

b+c Yaxk(b+c) Dazk(b+c)” 2

For k > 2, the inequality can be deduced from the Cauchy-Schwarz inequality and
Bernoulli’s inequality, as follows:

& Zak/z2 z:ak/z2
oo S (e)

b+c D(b+c) 6

Zak/zzz[wg(a—n] =3,
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P 1.46. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

¢E+v€+v6—3213(qa;b+qb;C+wC;a—3)

(Vasile C., 2008)

Solution. Write the inequality as

_a+b+c

fl@)+f(b)+f(c) = 3f(s), s=—75 =1

where

Flu) = vu—13 3;“, uelo,3].

Foru €[1,3), we have

13 (3—u\%/? 13
4=+ 2 () ze Do
4\ 2 4

Therefore, f is convex on [s,3]. By the RHCF-Theorem, it suffices to consider only
the case a < b = c. Write the original inequality in the homogeneous form

Va+ v b+vc—3\ —a+§+C213(\JaJ2rb+\J b;rcﬂ/cga—?,\ a+§+c).

Due to homogeneity, we may assume that b = ¢ = 1. Moreover, it is convenient
to use the notation /a = x. Thus, we need to show that g(x) > 0 for x € [0,1],

where
Jdxze2 [ x241
g)=x—11+36\| 22 06\ X2
3 2
We have
3 2
! :1+12 _13 b
g'(x) X\Jx2+2 X x2+1
13/ 2 2 x2+1\*?
"x)=— m- ) -1/,
gx)=73 (x2+1) [( X2+2
where ,
v52
m=6135 ~1.72.

Clearly, g”(x) has the same sign as h(x), where

x2+1
x2+2

h(x)=m
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Since h is strictly increasing,
2
h(o):%—1 <0, h(1):?m—1>o,

there is x; € (0,1) so that h(x;) = 0, h(x) < 0 for x € [0,x;) and h(x) > O for
x € (x;,1]. Therefore, g’ is strictly decreasing on [0, x;] and strictly increasing on
[x;,1]. Since g’(0) = 1 and g’(1) = 0, there is x, € (0, x;) so that g'(x,) = 0,
g'(x) > 0 for x € (0,x,) and g'(x) < O for x € (x,,1). Thus, g(x) is strictly
increasing on [0, x, ] and strictly decreasing on [x,, 1]. From

g(0)=—11+12/6—13v2>0

and g(1) = 0, it follows that g(x) > 0 for x € [0, 1]. This completes the proof. The
equality holds fora=b=c=1.

Remark. Similarly, we can prove the following generalizations:
e Let a, b, c be nonnegative real numbers so that a + b + ¢ = 3. If k > k,, where
. V6—2
S Ve—v2-1

\/E+\/E+1/E—32k(\JaJ2rb+\J b;rcﬂlcza—:%),

with equality for a = b = ¢ = 1. If k = k,, then the equality holds also for a = 0 and
b =c =3/2 (or any cyclic permutation).

=2+ vV2)2+V3)~12.74,

then

e Let aj,a,,...,a, be nonnegative real numbers so that a; +a, +---+a, =n. If
k > ko, where
= Jn—+vn—1
0 1 b
Vi—Vn—2— 7=
then
T‘l—al n_az n_an
Va +Jag++ 4 Ja,—n>k + +-o —n|,
1TV " (\J n—1 \Jn—l n—1 )
with equality for a; = a, = --- = a,, = 1. If k = k,, then the equality holds also for
n
a,=0anda,=a;=--=aqa, = 1 (or any cyclic permutation).
n_

]

P 1.47. Let a, b, c be nonnegative real numbers so that a+ b +c = 3. If k > 2, then

+b)* b+c)F +ayk
a’<+bk+c’<+322(a2 ) +2( Zc) +2(C2a) i
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Solution. Write the inequality as

F@+FB)+F@23f6), 5=,
where )
f(u)=uk—2(3%u), ue[o,3].

For u > 1, we have

f//(U) _ k_z_l 3—u
k(k—1) - 2( 2

)k—z 1
>1—=>0.
2

Therefore, f is convex on [s,3]. By the RHCFE-Theorem, it suffices to consider only
the case a < b = c. Write the original inequality in the homogeneous form

+b+c)F +b\ b+c)F +a\k
ak+bk+ck+3(u) zz(a ) +2( C) +2(C a) :
3 2 2 2

Due to homogeneity, we may assume that b = ¢ = 1. Thus, we need to prove that

2)\K 1\F
a’<+3(aJr )z4(a+ )
3 2

for a € [0, 1]. Substituting

a=t, te[0,1],

we need to show that g(t) > 0, where

£k 420\ ek 41\
g(t)=t+3( 3 —4 2 .

We have
1/k k—1 1/k k—1
g/(t): 1+t1/k_1 t +2 _2t1/k—1 t +1 ,
3 2
k2 1/k STLE R LD WAV b
g'(t)= -= .
k—1 2 3 3
Setting

0\ o
m:(g) , O0<m<l,

we see that g”(t) has the same sign as h(t), where

tk 41 ttk 42
—m
2 3

h(t)=6( )=(3—2m)t1/k+3—4m
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is strictly increasing. There are two cases to consider: 0 <m < 3/4and 3/4 <m <
1.

Case 1: 0 < m < 3/4. Since h(0) = 3—4m > 0, we have h(t) > 0 for t € (0,1],
hence g’ is strictly increasing on (0, 1]. From g’(1) = 0, it follows that g’(t) < 0 for
t €(0,1), hence g is strictly decreasing on [0, 1]. Since g(1) =0, we get g(t) >0
for t €[0,1).
Case 2: 3/4 <m < 1. From m > 3/4, we get

22k—3 > 3k—1.

Since h(0) = 3—4m < 0 and h(1) = 3(1 —m) > O, there is t; € (0,1) so that
h(t,) =0, h(t) <0 for t € [0, t;) and h(t) > O for t € (t;,1]. Thus, g’(t) is strictly
decreasing on (0, t1] and strictly increasing on [t;,1]. Since g’(0,.) = +oo and
g’(1) = 0, there exists t, € (0, t;) so that g’(t,) =0, g’(t) > 0 for t € (0, t,) and
g'(t) <0 for t € (t,,1). Therefore, g(t) is strictly increasing on [0, t,] and strictly
decreasing on [t,, 1]. Since

22k—2_3k—1
800)= 55 >0
and g(1) =0, we have g(t) >0 fort €[0,1].
The equality holds fora =b =c =1.

Remark 1. The inequality in P 1.47 is Popoviciu’s inequality

st (23w (252)(52) (559

applied to the convex function f(x) = x* defined on [0, 00).

Remark 2. In the same manner, we can prove the following refinements (Vasile C.,
2008):

e let a,b,c be nonnegative real numbers so that a+ b +c = 3. If k > 2 and

m < m,, where
2k(3k—1 _ 2k—1)
Mo = 6k—1 4 3k—1 _ 92k—1

k k k
ak+bk+ck_32m|:(a+b) +(b+c) +(c+a) _3:|’
2 2 2

with equality for a = b = ¢ = 1. If m = m,, then the equality holds also for a =0
and b = ¢ = 3/2 (or any cyclic permutation).

> 2,

then

e Let aj,a,,...,a, be nonnegative real numbers so that a; +a, +---+a, =n. If
k > 2 and m < m,, where

1 1
(n—1)F1 k=1

1 + (n—2)k 1

m; = >Tl_1,

(n—DF T (n—1)2k-1 " pkT
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then
k k k
n—a n—a n—a
alf+a§+---+ak—n2m[( 1) +(—2) +---+( ”) —n],
" n—1 n—1 n—1
with equality for a; = a, = --- = a,, = 1. If m = m,, then the equality holds also for
n
a,=0anda,=a;=---=aqa, = 1 (or any cyclic permutation).
n_
O
P 1.48. If a;,a,,...,a, are nonnegative real numbers so that a; +a, +---+a, =n,
then

\/a_1+\/a_2+---+\/a_n+n(k—1)ﬁk(% n_a1+\J Lt n_a”>,

n—1 n—1 n—1

where

k=(/n—-1)(vn++vn—1).
(Vasile C., 2008)

Solution. For n = 2, the inequality is an identity. Consider further that n > 3. We
will show first that
n—1<k<2(n—1).

The left inequality reduces to
(Vn—1D(@n—-1-1)>0,
while the right inequality is equivalent to
(Vai—1)(vn—+vn—1+2)>0.

Write the inequality as

_a1+a2+"'+an

Fla)+ fla)++ fla) 2 nf@), s LT,
where
f(u):—\/ﬂ+k,/%, uelo,n].
For u < 1, we have
me Y — =3/2 _ k . N=3/2 i k _ 1y=3/2
4f"(u)=u n—1(n u) >1 m(n 1)

k
C(n—1)2 21_2(n—1) ~

0.
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Therefore, f is convex on [0,s]. By the LHCF-Theorem, it suffices to consider the
case
a, =2 a,=---=4a,.

Write the original inequality in the homogeneous form

a1+a2 a2 ‘+a,
Z\/_+n(k—1)\J kY —

Do to homogeneity, we need to prove this inequality for a, = --- = a, = 1 and
va,; = x > 1; that is, to show that g(x) <0 for x > 1, where

g(x):x+n—1—k+(k—1)\/n(x2+n—1)—k\/(n—1)(x2+n—2).

We have

R e e =t

k(n—Z)M[( 'x2+n—2)3/2_1]’

(x24+n—2)32 x2+n—-1

g'(x)=

where

B \J (k—1)2n(n—1)
- k2(n—2)2

Clearly, g”(x) has the same sign as h(x), where

24+n—2 1
h(x):M_lzm(l__)_l,
x2+n—1 x2+n—1

We have

1
n)="""D 1 i k) =m—1.
n X—00

We will show that h(1) < 0 and lim,_, ., h(x) > 0; that is, to show that

l<m<
n—1
The inequality m > 1 is equivalent to
1 —2
o1y one2
vn(n—1)
which is true since
1 1>1 1 _n—2> n—2
k n—1 n—1" /an—1)
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. . n . .
The inequality m < 1 is equivalent to

n_
1_1 < n(n—2)’
k  (n—1)2
which is also true because
1 1 2n— —
l—-<1— _2n=3 _nln=2)
k 2(n—1) 2(n—1)" (n—1)2

Since h is strictly increasing on [1,00), h(1) < 0 and lim,_,, h(x) > 0, there

is x; € (1,00) so that h(x;) = 0, h(x) < 0 for x € [1,x;) and h(x) > O for

x € (x,,00). Therefore, g’ is strictly decreasing on [1, x;] and strictly increasing

on [x;,00). Since g’(1) = 0 and lim,_,, g’'(x) = 0, it follows that g’(x) < O for

x € (1, 00). Thus, g(x) is strictly decreasing on [1, 00), hence g(x) < g(1) =0.
The equality holds for a;, = a, =--- =a, =1, and also for

a, =n, ay=0Aa3=---=4a,=

(or any cyclic permutation).

Remark. Since k > n—1 for n > 3, the inequality in P 1.48 is sharper than Popovi-
ciu’s inequality applied to the convex function f(x) = —4/x, x > 0:

\/a_1+1/a_2+---+\/a_n+n(n—2)§(n—1)(\j r:l_—all +\J n—dy oy n_an).

n—1 n—1

P 1.49. If a, b, c are the lengths of the sides of a triangle so that a + b + ¢ = 3, then

1+1+1 3>4(2+«/§)(2+2+23)
a+b—c b+c—a c+a—>b . a+b b+c c+a '

(Vasile C., 2008)
Solution. Write the inequality as

_a+b+c

fl@)+f(b)+f(c)=3f(s), s=—— =L

where

1 B 4k
3—2u 3—u’

For u > 1, we have

P G Gy 7 [(3—1211)3_ (35”)3]'

flu)= k=22++v3)~7.464, ue€[0,3/2).
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Since
1 2
= >
3—2u 3—u
it follows that f is convex on [s,3/2). By the RHCF-Theorem and Note 1, it suffices
to show that h(x,y) > 0 for x,y €[0,3/2) so that x + 2y = 3. We have

ue(l1,3/2),

gy f@W=F 2 2%
u—1 3—2u 3—u
and
hix,y) = 809 =80 _ 2 _ k
’ x—y (B3—2x)3—-2y) (B—x)B—Y)

2k
C@y—x)x  2y(x+y)
_ kx?—2(k—2)xy +4y*
— 2xy(x+y)(2y —x)
_ [(V3+1)x—2y]? -
2xy(x+y)2y—x) —

According to Note 4, the equality holds for a = b = ¢ =1, and also for

3(v3—1
a=3(2-+3), b=c:%
(or anu cyclic permutation).
O
P 1.50. Let a;,a,,...,as be nonnegative numbers so that a; +a,+as;+a,+as < 5.
If
29+ 4761
k>k, ky=———"~5.66,
10
then

1 5
> .
Zka%+a2+a3+a4+a5 T k+4
(Vasile C., 2006)

Solution. Since each term of the left hand side of the inequality decreases by in-
creasing any number q;, it suffices to consider the case

a; t+a,+as+a,+as=>35,
when the desired inequality can be written as

flay) + fax) + fas) + f(as) + f(aq) = 5f(s),
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where

_a;taytaztastas
B 5

S =1

and
1

f(u):kuT

, uel0,5].
u+5 [ ]

For u > 1, we have
. 2[3ku(ku—1)—5k+1]
frw= (ku2—u+5)3
S 2[3k(k—1)—5k+1]
- (kuz—u+5)3
_ 2[k(3k—8)+1]
~ (ku2—u+5)3

> 0;

therefore, f is convex on [s,5]. By the RHCF-Theorem, it suffices to show that
1 4 5
+ >
kx?2—x+5 ky?—y+5" k+4

for
0<x<1<y, x+4y=5.

Write this inequality as follows:

1 +4[ 11 ]>0
kx2—x+5 k+4 ky2—y+5 k+4]" "7

(x—l)(l—k—kx)+4(y—1)(1—k—ky) >0
kx2—x+5 ky2—y+5 -

Since

the inequality is equivalent to

1—k—kx 1—k—ky
(x—1) — >0,
kx2—x+5 ky?—y+5

S(X _ 1)2g(x7 Y k)
4(kx2—x+5)ky2—y+5)

where
g(x,y, k) =k*>xy + k(k—1)(x + y) — 6k + 1.

For fixed x and y, let h(k) = g(x, y, k). Since

h'(k)=2kxy+2k—1)(x+y)—6=>2k—1)(x+y)—6

10k —2
y 0 9>

Z(Zk_l)(XJrZ)_E’: 2 0,
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it suffices to show that g(x, y, k,) = 0. We have
g(x,y, ko) = kxy + ko(ko—1)(x + y) — 6ko + 1
= —4k2y? + ko(2ko + 3)y + 5k2 — 11k, + 1.

Since
5k2—29k,+4=0,
we get
11k, —1 11k, —1

It suffices to show that
, 1lky—1
ky———=0
5
Indeed,

5 S5
The equality holds for a; = a, = a; = a, = a5 = 1. If k = k, then the equality

holds also for 5

4
(or any cyclic permutation).
Remark. In the same manner, we can prove the following statement:

e Letay,a,,...,a, be nonnegative real numbers so that a; +a,+---+a, < n. If

_n*+n—1++vn*+2n3—5n2+2n+1

k >k, ko, = ,
0 0 on
then
> .
= )
ka?+ay+---+a, k+n—1
with equality for a; = a, = -+- = a, = 1. If k = k,, then the equality holds also for
n
a, =0, a,=---=qa,=
1 2 n n—1
(or any cyclic permutation).
O
P 1.51. Let ay,a,,...,as be nonnegative numbers so that a; +a,+a;+a,+as <5.
If
11—-+101
0<k <k, ko= —— ~0.095,
10
then

1 5
> .
Zka%+a2+a3+a4+a5 T k+4
(Vasile C., 2006)
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Solution. As shown at the preceding P 1.50, it suffices to consider the case
a; +a,+as+a,+as=>35,
when the desired inequality can be written as

fla) + fay) + f(az) + f(ay) + f(ay) = 5f(s),

where
a, +a,+as+a,+as 1
s: = 5
5
and ;
u)=————— u€[0,5].
fw ku2—u+5 [0,5]

For u € [0, 1], we have
uku—1)—(k—1)=(1—u)(1—ku) >0,

hence

. 2[3ku(ku—1)—5k+1]
frw= (ku2—u+5)3

_ 2[3k(k—1) —5k+1]

- (ku2—u+5)3

_ 2[(1—8k)+3k?]
~ (ku2—u+5)3

> 0;

therefore, f is convex on [0,s]. By the LHCF-Theorem, it suffices to show that
1 4 5
+ >
kx2—x+5 ky?—y+5" k+4

for
x=1>2y=>0, x+4y=5.

Write this inequality as follows:

0,

1 1 [ 1 1 ]
— + 4 — >
kx2—x+5 k+4 ky?—y+5 k+4
(x—1)(1—k—kx)+4(y—1)(1—k—ky) > 0.
kx?2—x+5 ky?—y+5

Since

the inequality is equivalent to

1—k—k 1—k—k
(x—l)( X _ y)zo,
kx2—x+5 ky?—y+5
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S(X_]-)Zg(xay: k) >0
4(kx2—x+5)ky2—y+5)

where
g(x,y, k) =k?xy —k(1 —k)(x + y) — 6k + 1.

For fixed x and y, let h(k) = g(x, y, k). Since

h'(k) =2kxy —(1—2k)(x +y)—6<2kxy—6

2
<@_6:%_6<0’

it suffices to show that g(x, y,k,) = 0. We have

g(x,y,ko) = kﬁxy +ko(ko—1)(x + y)—6k +1
= —4k2y* + ko(2ko + 3)y + 5k2 — 11k, + 1.
Since
5k2—11k,+1=0,

we get

The equality holds for a; = a, = a3 = a, = a5 = 1. If k = k, then the equality
holds also for
a;=5 a=a3=a,=a;=0

(or any cyclic permutation).
Remark. Similarly, we can prove the following statement:

e Let ay,a,,...,a, be nonnegative real numbers so that a; +a,+---+a, < n. If

m+1—vVaZ+1
O<k<k, ky=="7F a1l

2n
then
Z 1 n
= )
kaij+a,+---+a, k+n—1
with equality for a; = a, = --- = a, = 1. If k = k,, then the equality holds also for

a=n, a,=---=a,=0

(or any cyclic permutation).
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P 1.52. Let a,,a,,...,a, be nonnegative real numbers so that a; +a,+---+a, < n.

If

1
0<k< ,
n+1

then
a a a n
: : + — ot & S .
kai+a,+---+a, a;+kas+---+a, a;+a,+---+kaz  k+n—1

(Vasile C., 2006)

Solution. Using the notation

where
_a1+a2+"‘+an

N
n

we need to show that x; + x, + -+ + x,, = n involves
X X, n

> oot > :
ksxi+x,+ -+ x, X;+xy+--+ksx2  k+n—1

Since s < 1, it suffices to prove the inequality for s = 1; that is, to show that

a, a, a, n
: +— Ho o — >
kai—a;+n ka;—a,+n ka2—a,+n  k+n—1

for
a,t+a,+---+a,=n.

Write the desired inequality as

fla)) + fla)+---+ f(a,) = nf(s),

where
a1+a2+"'+an
s = =1
n
and "
=— e[0,n].
f=————, ucon]
We have , W
/ _ n—ku 17 _ flu
f(u)_(kuz—u+n)2’ f (u)_(uz—u+n)3’
where

f1(w) = k*u® — 3knu + n.
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For u € [0, 1], we have

fi(u) = —-3knu+n=>—-3kn+n
3n _n(n—2) S

n+1 n+1

0.

Since f”(u) > 0, it follows that f is convex on [0,s]. By the LHCF-Theorem, we
only need to show that

x (n—1)y n
+ >
kx2—x+n ky’?—y+n  k+n-1

for all nonnegative x, y which satisfy x + (n — 1)y = n. Write this inequality as
follows:

x 1 +(n—1)[ y 1 }>0
kx2—x+n k+n—1 ky2—y+n k+n—-1]" "
—k —k
(x—1)( e 7Y )zo,
kx2—x+n ky?—y+n

(x —1)*h(x,y)
(kx2—x+n)(ky2—y+n)

where
h(x,y) = k*xy —kn(x + y) + n—nk.

We need to show that h(x, y) = 0. Indeed,

h(x,y)=ky[n(k+n—2)—k(n—1)y]+n[1—k(n+1)]
=ky[n(n—2)+kx]+n[1—k(n+1)]>0.

The equality holds fora; =a, =---=a,=1. Ifk = T then the equality holds
n
also for
a,=n, a=a3=---=a,=0
(or any cyclic permutation).
O

P 1.53. If a;,a,,a;,a4,a5 <

N

so that a; +a, + a; +a, + as =5, then

al a2 Cl3 a4 a5

) +— 3 +— +— <1
a;—a;+5 a;—a,+5 ay—az+5 a;—a,+5 az;—as+S5

(Vasile C., 2006)
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Solution. Write the desired inequality as

flay) + fay) + f(as) + f(as) + f(as) = 5f(s),

where
_aqytaytaztagtas
s= =1
5
and ;
—u
uyy=———, u<—.
fw) uz—u+5 2
7
Foru e [1, E]’ we have
—u®+15u—5
1z
u)=s——
fw (u?—u+5)3
_(2u+9)(u—1)(7—2u)+43—7u>O
B 4(u2—u+5)3 '

7
Thus, f is convex on [s, 5] By the RHCF-Theorem, it suffices to show that

X 4
+— <1
x2—x+5 y?—y+5

7
for all nonnegative x,y < > which satisfy x + 4y = 5. Write this inequality as
follows: ; ,
L__H(#__)] <o,
x2—x+5 5 y2—y+5 5

5— 5—
(x—1)( s )so,
x2—x+5 y?—y+5

(x—1)*[5(x +y)—xy]
(x2—x+5)(y2—y+5) "~
e =1 [ +4y)(x +y) —xy] 0
(x2—x+5)(y2—y+5) -

(x —1)%*(x +2y)?
(x2—x+5)(y2—y+5)

The equality holds for a; = a, = a; = a, = a5 = 1, and also for

>

5

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:
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e Letay,a,,...,a, < V3sothata, +a,+---+a, <n. If

_ n’+2n—2-24/(n—1)(2n2—1)

k
n
then a a a n
1 2 n
+ ot < ,
kai—a,+n  kai—a,+n ka?2—a,+n "~ k—1+n
with equality for a; = a, =--- =a, = 1, and also for
. _nlk—n+2) = =g _n(k+n—2)
e 2k 7 2T T 2k(n—1)

(or any cyclic permutation).

P 1.54. Let a,,a,,...,a, be nonnegative real numbers so that a; + a,+---+a, > n.

If

1
0<k< >

1+ 4(n—1)2

then
2 2 2
a4 a; a, n
; + > oot s> :
kai+a,+---+a, a;+kas+---+a, a;+a,+---+kaz  k+n—1
(Vasile C., 2006)
Solution. Using the substitution
a a, an
xl ) X2 — T ) xn =
s s

where
_a1+a2+"'+an

S
n

we need to show that x; + x, + -+ + x,, = n involves

2 2
xl xn n

- 4.+ > .
kxs+(xy+---+x,)/s (x; 4+ +x,4)/s+kx2 " k+n—1

Since s > 1, it suffices to prove the inequality for s = 1; that is, to show that

2 2 2
1 a, a, n

4ot >
ka?—a,+n ka:—a,+n ka2—a,+n ~ k+n—1

a

for
a,+a,+---+a,=n.
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Write the desired inequality as

fla))+ flag) +---+ f(a,) = nf(s),

where
a1+a2+"'+an
s = =1
n
and )
u
fw)= Z—utn U €[0,n].
We have @ ) 2, ()
1oy — et =) ney— 2\
f(u)_(kuz—u+n)2’ fw (u2—u+n)?
where

f,(w) = ku® — 3knu® + n®.
For u €[0,1] and n > 3, we have
fi(u) > =3knu* +n? > —3kn+n*>—-3n+n*>0.

Also, foru€[0,1] and n = 2, we have

) =4—ku*(6—u) 24—gu2(6—u)
c > 0.

Since f”(u) = 0 for u € [0, 1], it follows that f is convex on [0,s]. By the LHCF-
Theorem, we need to show that

24—gu(6—u)

2 . 2
x +(n 1y S n

kx2—x+n ky’?—y+n  k+n-—1

for all nonnegative x, y which satisfy x + (n — 1)y = n. Write this inequality as
follows:

2

Y

2
— >0,
ky?—y+n k+n—1]

X
kx2—x+n k+n—

1 +(n—1)[

(x—1)(nx—x+n)+4(y—1)(ny—y+n) >0
kx2—x+5 ky?—y+5 h

nx—x+n ny—y+n)
—1 — >0,
(x )(kx2—x+n ky2—y+n

b

(x —1)*h(x, y)
(kx2—x+n)(ky2—y+n)

where
h(x,y)=n*—kn(x +y)—k(n—1)xy.
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Since

O<k<ky ko=—"""\
1+4(n—1)2
we have
h(x,y) > n?—kon(x + y)—ko(n—1)xy
= (n—1)*koy? —nkyy +n*(1—k,)
n 2
=k —1)y——| >0.
R i
The equality holds for a; = a, = --- = a,, = 1. If k = k, then the equality holds
also for
@ =n@n=3) o __"
" om—=1) T T M 2(n—1)2

(or any cyclic permutation).

P 1.55. Let aq,a,,...,a, be nonnegative real numbers so that a; +a,+---+a, < n.
Ifk>n—1, then

a a; a, n
: + ~ ot > < :
kai+ay+---+a, a;+ka;+---+a, a;+a,+---+ka2  k+n—1

(Vasile C., 2006)

Solution. Using the notation

where
a1+a2+"'+an
S:

n
we need to show that x; + x, +--- + x, = n involves

X

2 2
: ! oot < .
kxs+(xy+--+x,)/s (x; 4+ +x,4)/s+kx2 ™ k+n—1

Xn n

Since s < 1, it suffices to prove the inequality for s = 1; that is, to show that

2 2 2
ay a, . a, n

+ <
kai—a,+n kai—a,+n ka?—a,+n "~ k+n—1

for
a,+a,+---+a,=n.
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Write the desired inequality as

flap))+ flax)+ -+ f(a,) =nf(s), s " =1,
where ,
—u
f(u):m, u€f0,n].

We have ( o) 2£,)

oy u(u—2n by (u

f= (kuz —u+n)?’ fw= (u2—u+n)3¥’
where

f,(w) = —ku?® + 3knu* — n?.

For u € [1,n], we have
f1(u) = —knu? + 3knu® — n* = 2knu®* — n®
>2kn—n*>2(n—1)n—n*=n(n—2) > 0.

Since f”(u) = 0 for u € [1,n], it follows that f is convex on [s,n]. By the RHCF-
Theorem, it suffices to show that

2 12

x N (n—1)y < n

kx2—x+n ky’—y+n k+n-—1

for all nonnegative x, y which satisfy x + (n—1)y = n. As shown in the proof of
the preceding P 1.54, we only need to show that h(x, y) > 0, where

h(x,y)=kn(x+y)+k(n—1)xy —n?
Since k > n—1, we have

h(x,y)=>n(n—1)(x+y)+(n—1)*xy —n?
=—(n—-12y*+n(n—1)y +n*(n—2)
=[n—(n—1yln(n—2)+(n—1)"y]
=x[n(n—2)+(n—1)*y]>0.

The equality holds for a; = a, =---=a, = 1. If k = n—1, then the equality holds
also for

alzo’ Ay =d3=+"+=a,=

(or any cyclic permutation).
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1
P 1.56. Let a,,a,,...,a, €[0,n] so that a, +a,+---+a,>n. If0 <k < —, then
n

al_]. az_]. Cln—].
> + > 4t >0
kai+a,+---+a, a;+kas+---+a, a, +a,+---+ka?

(Vasile C., 2006)

Solution. Let
a1+a2+"'+an
s= , s>1.
n

Case 1: s > 1 Without loss of generality, assume that
a=z--2za;>12a,-2a, JjE€{1,2,...,n}
Clearly, there are by, b,,..., b, so that by + b, +---+ b, =n and
a;=2b; =21, ...,a;2b;21, bjy; =044, ..., by=a,.
Write the desired inequality as
fla) +flag)+---+f(a,) =20,
where

u—1
flw)= ku?—u+ns’
f1(w)

(ku?2 —u+ ns)?’

For u € [1,n), we have

ue[0,n],

f'(uw) fi(w) = k(—u?+ 2u) + ns — 1.

filu) = k(—nu+2u)+ns—1=—k(n—2)u+ns—1
>—k(n—2n+ns—1>—(n—2)+ns—1=n(s—1)+1>0.

Consequently, f is strictly increasing on [1,n] and

f(b) < fla), ..., f(b)) < f(a)), f(bj) =f(aj), ..., f(by)=f(ay)
Since
FB)+fb)+---+ f(by) < fla)) + fax) + -+ f(ay),

it suffices to show that f(b;) + f(b,) +---+ f(b,) = 0 for by + by + -+ b, = n.
This inequality is proved at Case 2.

Case 2: s = 1. Write the inequality as

fla)+flag)+---+f(a,)=nf(s), s
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where ;
u_
f(u):kuTu—i-n’ ue[0,n],
1 2g(u) 2.3 2.2
f (U)Zm, gw) =k*u” —3k*u*—3k(n—1u+kn+n—1.

We will show that f”(u) > 0 for u € [0,1]. From
g’ (u) = 3k%u(u—2)—3k(n—1),
it follows that g’(u) < 0, g is decreasing, hence

gw)>g(1)=—2k*—(2n—3)k+n—1

-2 2n-—3
= — — +n—1
n2 n
—1)3
n2

Thus, f is convex on [0,s]. By the LHCE-Theorem, it suffices to show that

—1 —1)(y—1
x-1  (-Du-D_
kx2—x+n ky?—y+n

for all nonnegative real x, y so that x + (n—1)y = n. Since (n—1)(y—1)=1—x,
we have

x—1 (n—1D(y—1) 1 1
kxz—x+n+ ky?—y+n :(x_l)(kxz—x+n_ky2—y+n)

_ =D —y)A —kx —ky)
(kx?—x+n)(ky?—y +n)

_ n(x—1)*(1—kx —ky)

 (n=1)(kx2—x +n)(ky2—y +n)

- n(x—1)*(1—=2)

T (n—1)(kx2—x+n)(ky2—y +n)

_ (n—2)y(x—1)* -0
(n—1D(kx2—x+n)(ky2—y+n)

The proof is completed. The equality holds fora; = a, =---=aqa,=1. If k =

E)
then the equality holds also for

a,=n, a=as=---=a,=0.
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P 1.57. If a, b, c are positive real numbers so that abc = 1, then

Vae—a+1+Vb2—b+1++vVc2i—c+1>a+b+c.

Solution. Using the substitution

we need to show that
fO)+f)+f()=3f(s), s=——F"=0,

where

fuy=+Vve—et+1—e“, uel=R.
We claim that f is convex on I,. Since

4¢3 — 6e? 4+ 9t —2

—u /! —
e 4(e2u — et 4 1)3/2

b

we need to show that 4x® —6x% +9x —2 > 0 and
(4x% —6x% 4+ 9x —2)* > 16(x* — x +1)°,
where x = e" > 1. Indeed,
4x3 —6x2+9x —2=x(x—3)*+(3x*=2)>0
and
(4x3—6x24+9x—2)2—16(x2—x+1)P =12x3(x — 1)+ 9x2 + 12(x —1) > 0.
By the RHCF-Theorem, it suffices to prove the original inequality for

b=c:=t, a=1/t% t>0;

that is,
Vit —t2+1 1
e e
t2—1 N 2(1—1t) o
Vtr—t2+1+1 Je2—t+1+t
Since

t2—1 - t2—1

Vti—tz+1 2+ 1

it suffices to show that
t2—1 2(1—1t)
+ >
t2+1  Je2—t+14+t
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which is equivalent to

t+1 2
(t—1) — >0
t24+1  Ve2—t+1+t

(t—1)[(t+1)\/t2—t+1—t2+t—2]20,

(t—1)%(3t2—2t +3) -0
(t+DVEe2—t+1+t2—t+2
The equality holds fora=b=c=1.

1
P 1.58. Ifa,b,c,d > ) so that abcd = 1, then
+

1 1 1 1 4
+ + <-.
a+2 b+2 c+2 d+2 3

(Vasile C., 2005)

Solution. Using the notation

we need to show that

)+ FO+FE+F) 2 47, 5= 5 =,
where B
f(u):m, uel=R.
For u < 0, we have
P = > 0

hence f is convex on I,. By the LHCF-Theorem, it suffices to prove the original
inequality for

1
b=c=d:=t, a=1/t3, t> :
1+ /6
that is,
3
¢, 3 4
2t34+1 t+2 3

which is equivalent to the obvious inequality

(t—1)*(5t*+2t—1)>0.
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According to Note 4, the equality holds for a = b =c =d =1, and also for

a=19+9\/€, b=c=d=

(or any cyclic permutation).

P 1.59. If a, b, c are positive real numbers so that abc = 1, then

a’*+b*+c*—3>2(ab+bc+ca—a—Db—c).

Solution. Using the substitution

we need to show that
fEI+fO)+f(z)=3f(s), s=—F=0,

where
flw)=e*—1+2(e"*—e™), ueR=R.

For u > 0, we have
F(u) =4e* +2(e" —e ™) >0,

hence f is convex on I.,. By the RHCF-Theorem, it suffices to prove the original
inequality for b =c :=t and a = 1/t2, where t > 0; that is, to show that

4¢° —3t*—4t3 +2t24+1>0,
which is equivalent to
(t—1)%(4t3+5t>+2t+1)>0.

The equality holds fora=b=c=1.

P 1.60. If a, b, c are positive real numbers so that abc = 1, then

a’*+b*+c*—3>18(a+b+c—ab—bc—ca).
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Solution. Using the substitution

we need to show that
FOI+f)+f()=3f(s), s
where
flw)=e*—1—18(e"—e™), u€eR.
For u < 0, we have
f(u) =4e* +18(e " —e") > 0,

hence f is convex on I_,. By the LHCF-Theorem, it suffices to prove the original
inequality for b =c:=t and a = 1/t?, where t > 0. Since
(t2—1)%(2t2+1)

t4

1
a2+b2+c2—3:§+2tz—3:
and

a+b+c—ab—bc—ca=

—(t*—2°+2t—1) —(t—1)°(t+1)
2 B t2 ’

we get

(t—1)2@t—1D*(t+1)(5t+1) -0

a’+b?+c2—3-18(a+b+c—ab—bc—ca) = ”

The equality holds fora = b =c =1, and also fora =4 and b = ¢ = 1/2 (or any
cyclic permutation).
O

P 1.61. Ifa,,a,,...,a, are positive real numbers so that a,a,---a, =1, then

1 1 1
a?+ai+--+a>—n>=6v3 (a1+a2+---+an ————————— —)

Solution. Using the notation a; =e*i fori =1,2,...,n, we need to show that

_X1+X2+"‘+Xn _

flx)+flx)+---+f(x,) =nf(s), s= =0,

n

where
fw=e*—1—6V3(e*—e¥), uel=R.
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For u <0, we have
F"(w) = 4e* 4+ 6V3(e ™ —e') > 0,

hence f is convex on I,. By the LHCF-Theorem and Note 2, it suffices to show that
H(x,y) >0 for x,y € R so that x + (n— 1)y = 0, where

_ ) =f'y)
==

H(x,y)

From
f(u) =2e* — 643 (e +e™¥),
we get

2(e*—e”) (

H(x,y)= ex+ey—3\/§+31/§e_"_y).

Since (e —e”)/(x — y) > 0, we need to prove that
e* +e¥ +3v3 e Y >34/3.

Indeed, by the AM-GM inequality, we have

eX+e’ +3vV3e Y > 3\3/ex-e«v-31/§ e—x—y = 34/3.

The proof is completed. The equality holds for a; =a, =---=a, =1.

P 1.62. Ifa,,a,,...,a, (n > 4) are positive real numbers so that a,a, - --a, =1, then

(n—1)(@+a+---+a)+nn+3)=2n+2)(a; +a,+---+a,).

Solution. Using the substitutions a; = e* fori =1,2,...,n, we need to show that

_x1+x2+"'+xn_0

fO)+ flxg) +--+ f(x,) 2 nf(s), s

n

where
fw=((n—-1)e*—(2n+2)", uel=R.

For u > 0, we have
f"(w) =4(n—1)e* —(2n + 2)e"

=2e"[2(n—1)e"—n—1]
>2e'[2(n—1)—n—1]=2(n—3)e"* > 0.
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Therefore, f is convex on I ;. By the RHCF-Theorem and Note 2, it suffices to show
that H(x,y) > 0 for x,y € R so that x + (n—1)y = 0, where

H(x,y) = f—(x,zif, 2

From
f'(w)=2(n—1)e* —(2n + 2)e",
we get

[(n—1D)(e*+e’)—(n+1)].

H(x,y)=w

Since (e —e”)/(x —y) > 0, we need to prove that (n—1)(e* +e”) > n+ 1. Using
the AM-GM inequality, we have

(n_l)(ex+ey):(n—l)ex+ey+ey+...+e}'

>ny/(n—1)ex-ey-ev---ev

= n\"/(n —1)ex+-1y = nv/n—1.

Thus, it suffices to show that

nvn—1>n+1,
1 n

n—12(1+—) .
n

1 n
n—123>(1+—) .
n

which is equivalent to

This is true for n > 4, since

The proof is completed. The equality holds for a; =a, =---=a, =1.

Remark. From the proof above, the following sharper inequality follows (Gabriel
Dospinescu and Calin Popa):

e Ifay,a,,...,a, are positive real numbers so that a;a,---a, =1, then

2nvn—1
aZ+ai+--+ad—n= —1(a1+a2+---+an—n).
O]
P 1.63. Let a;,a,,...,a, (n > 3) be positive real numbers so that a;a,---a, = 1. If

p,q = 0so that p+q = n—1, then

1 1 1 n
5+ S+t 5= :
1+pa; +qai 1+pa,+qa; 1+pa,+qaz 1+p+q

(Vasile C., 2007)
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Solution. Using the substitutions a; = e* fori =1,2,...,n, we need to show that

_X1+X2+"'+Xn _

fOe)+fx)+ -+ f(x) = nf(s), s 0,

n

where 1
uUy=———— ucl=R.
flw 1+ pev +qe?:

For u > 0, we have

Fr) = e"[4¢”¢™ + 3pge™ + (p* — 4q)e" — p]
(1+ pet + qe2v)3
_ ¢*[4q” +3pq +(p® —4q) —p]
- (14 pev +qe?+)3
_ el +29)p+9—2)+2¢° +p]
(1+ pe* +qe?v)3

0,

therefore f is convex on I ;. By the RHCF-Theorem, it suffices to prove the original
inequality for
a]_:l/tn_l, a2:"':an:t, t>0.

Write this inequality as

t2n2 n—1 n
+ = .
t2n2+ptl+q 1+pt+qt? 1+p+gq

Applying the Cauchy-Schwarz inequality, it suffices to prove that

(t"t+n—1)>2 o n
(t2n24+pt14q)+(n—1)(A+pt+qt2)  1+p+q’

which is equivalent to
pB+qC = A,

where
A=(n-1(t"'-1)*>0,

B=(t"'—1)?+4+nE= +nE, E=t"'4+n—2—(n—1t,

n_

A
c:(t"—1—1)2+nF=—1+nF, F=2t"1+n—-3—(n—1)t>

n_

By the AM-GM inequality applied to n — 1 positive numbers, we have E > 0 and
F>0forn=>3. SinccA>0and p+q=>n—1, we have

(p+qA

pB+qC—A>pB+qC— =n(pE +qF) > 0.
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The equality holds for a; =a, =---=a, = 1.

Remark 1. For p = 2k and q = k?, we get the following result:

e let a,,a,,...,a, (n > 3) be positive real numbers so that a;a,---a, = 1. If
k> /n—1, then

1 1 1 n
+ +- >
(1+kay)? (1+kay)? (1+ka,)? ~ (1+k)?’

with equality fora; =a, =---=a, = 1.

In addition, for n =4 and k = 1, we get the known inequality (Vasile C., 1999):

1 1 1 1
+ + + 21
(1+a)® (1+b)2 (1+c)2 A+d)2?

where a, b, c,d > 0 so that abcd = 1.

Remark 2. For p+q=n—1 (n> 3), we get the beautiful inequality

1 1 1

S+ st —————— 21,
1+pa; +qa; 1+pa,+qa; 1+pa, +qa2
which is a generalization of the following inequalities:
L + ! s — 1 >y
1+(n—1)a; 1+((n—1)a, 1+(n—1a,
1 1 1
+ +eet >1,
[1+(vVn—1a;]* [1+(vVn—1)a, ] [1+(vVn—1)a; ]?
1 1 1 1
+ oot > .
2+((n—1)(a;+ai) 2+(n—1)(a,+da; 2+(n—1)(a,+a?) 2
O

P 1.64. Let a,b,c,d be positive real numbers so that abcd = 1. If p and q are
nonnegative real numbers so that p + q = 3, then

1 1 1 1
+ + + >1
1+pa+qa® 1+4+pb+qgb® 1+pc+qcd 1+pd+qd3

(Vasile C., 2007)
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Solution. Using the notation

we need to show that
_Xty+zt+tw

FE)+f )+ f(2)+f(w) =41 (s), 2

0,

where 1
uy=—————, ucl=R.
fw 1+ pet +qe3u

We will show that f”(u) > 0 for u > 0, hence f is convex on L. Since

neoy th(t)
frw= (1+pt+qt3)3’

where
h(t) = 9q¢%*t° +2pqt® —9qt* + p*t —p, t=¢é",

we need to show that h(t) > 0 for t > 1. Indeed, we have
h(t) > 9q%t3 + 2pqt® —9qt> + p*t —pt = tg(t),
where
g(t) =(9¢* + 2pq)t>* —9qt + p* —p
> (992 +2pq)(2t —1)—9qt +p*>—p
=q(18q +4p —9)t —9¢*> —2pq + p* —p

>q(18q+4p—9)—9q*>—2pq+p*—p
=p*+2pq+99°—p—9q

+9q)(p +
— P+ opq+ogi— P qg)(p Q)
PRY) 2
:Z(p q)3+16q >0

By the RHCF-Theorem, it suffices to prove the original inequality for

b=c=d=t, a=1/t, t>0;

that is,
t° N 3
t®+ptéb+q 1+pt+qtd
6
3 S pt°+gq

1+pt+qt3 ~ t94+pté+q’
(3—pq)t® —p?t’ +2pt® —q*t® —pqt +2¢ > 0,
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[(p +q)*—3pqlt® —3p*t” + 2p(p + q)t® — 3¢*t> — 3pqt + 2q(p + q) = 0,
Ap*+Bq® > Cpq,

where
A=t>=3t7+2t=t%(t—1)*(t +2) >0,

B=t"—3t3+2=(t>—1)*(t*+2)>0,
C=1t"—2t°+3t—2.
Since A> 0 and B > 0, it suffices to consider the case C > 0. Since
Ap2 -+—Bq2 > 21/A_qu,
we only need to show that 4AB > C2. From
t2—3t+2=(t—1)*(t+2)>0,
we get 3t — 2 < t3. Therefore
c<t?—=2t+t3=13(t2-1)?,
hence

4AB — C* > 4AB — t°(t3 —1)*
=t(t —1*(3 = 1)?[4(t + 2)(£> +2) — (2 + t + 1)?]
= t%(t —1)%(3—1)?(3t* + 6> —3t>+ 6t +15) > 0.

The proof is completed. The inequality holds fora=b=c=d =1.

Remark 1. For p =1 and p = 2, we get the following nice inequalities:

1 1 1
+ + + >1,
l1+a+2a3 1+b+2b3 14c+2c3 1+4+d+2d3

1 1 1 1
+ - + >1
1+2a+a3 1+2b+b3 142c+c3 14+2d+d3

Remark 2. Similarly, we can prove the following generalizations:

e [eta,b,c,d be positive real numbers so that abcd = 1. If p and q are nonnegative
real numbers so that p +q > 3, then

1 1 1 1
+ + + > 1 .
l+pa+qa® 1+pb+qb® 1+pc+qc® 1+pd+qd® 1+p+gq
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e Let aj,a,,...,a, (n > 4) be positive real numbers so that a,a,-- =1 If
p,q,r =0so thatp+q+r >n—1, then

n

1 n
= .
;1+pai+qai2+rai3 T l4+p+gq+r

For n =4 and p + g+ r = 3, we get the beautiful inequality

4
>
—'1+pa; + qa + ra
Since
,  a+a
a = >
! 2
the best inequality with respect to q if for ¢ = 0:

P 1.65. If a;,a,,...,a, are positive real numbers so that a;a,---a, =1, then

1 1 1
1 n—1+1 n1+'“+1 n—-1 —
+a, 4+ +a +ay+---+al +a,+---+an

(Vasile C., 2007)

Solution. Using the substitutions a; = e*i fori =1,2,...,n, we need to show that
X1 +Xy+ e+ x
flO)+f(x)+--+f(x,)=nf(s), s= 1 2n 1=,
where 1
flu)= , uel=R.

1+eu+...+e(n—1)u
We will show by induction on n that f is convex on I ;. Setting t = e“, the condition
f”(u) =0 foru>0 (t > 1) is equivalent to

2A%2 > B(1+C),

where
A=t+2t2+-- -+ (n—1Dt" Y,
B=t+4t*+---+(n—1)*t"",
C=t+t>+---+t"L.
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For n = 2, the inequality becomes t(t —1) > 0. Assume now that the inequality is
true for n and prove it for n+ 1, n > 2. So, we need to show that 242 > B(1 + C)
involves

2(A+nt")?> > (B+n?t")(1+C+th),

which is equivalent to
2A>—B(1+C)+t"[n*(t"—1)+D]>0,

where
n—1

D=4nA—B—n’C= Y bt', b=3n—2n—i)
i=1
Since 2A*> — B(1 + C) > 0 (by the induction hypothesis), it suffices to show that

D > 0. Since
by<b,<---<b, ., t<t><-..<t"

we may apply Chebyshev’s inequality to get
1
D> —=(by+by+---+b,_)(t+t>+---+t" ).
n
Thus, it suffices to show that b; + b, +---+ b,_; > 0. Indeed,

n(n—1)(4n+1) -
6

0.

n—1
by+ byt +b, = > [3n*—(2n—i)]=
i=1

By the RHCF-Theorem, it suffices to prove the original inequality for
a1:1/tn—1, a2:..-:an:t, tzl’

Setting k =n—1 (k > 1), we need to show that

£k

+ >1
1+th4o 4t 14t4---+tk

For the nontrivial case t > 1, this inequality is equivalent to each of the following
inequalities:
k >1+tk+---+t(k_1)k
1+t4--4+tk ™ 14th4. 4 tF
k(=1 -1 tk—1
thil —1 = k—1 t+Dk—1°
k(e—=1) t—1
tk+1 -1~ t(k+1)k -1 ?

>

t(k+1)k_1 - tk2_1
thktl—1 = t—1

2
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K[14 8 4 200D o g G ] > ) g g g2 e DD
k[1-14¢e 544t O DR > (T4 e+ ) [T+ R 4o DR

Sincel<t<---<tfland 1< th <. <t~k the last inequality follows from
Chebyshev’s inequality.

The equality holds for a; =a, =---=a, = 1.
Remark. Actually, the following generalization holds:

e Leta,,a,,...,a, bepositive numbers so that a,a, - --a, = 1, and let k|, k,, ..., k,, >
O0so thatky+ky+---+k,=2n—1. If m<n—1, then

n

1 n
> .
;1+k1ai+k2a?+...+kma;” T 14k tky etk

In addition, since

m—k)a; + k—1a
ak ( ) ( ) s =2,3,....,m—1
! m—1

(by the AM-GM inequality applied to m — 1 positive numbers), the best inequality
with respect to k, ..., k,,_; is for k, =0, ..., k,_, = 0; that is,

n

> 1 >_ N ki +k >n—1, 1<m<n—1
414k tkat T 1+k kT S '

If ky +k,, =n—1, then

therefore

>1, k1+kn_1:n_1.

Z:l+k1a +k,_qalt

For k; =1 and k; = n—2, we get the following strong inequalities:

n

1
Z n—1 = 1’
—1+a;+(n—2)q;

n—1 —
1+ (n— 2)a +a;
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P 1.66. Let a,,a,,...,a, be positive real numbers so that a,a,---a, = 1. If
k>n?—1,

then

1 1 1
+ 4+t >_°
V1+ka, +/1+ka, V1+ka, V1+k

Solution. Using the substitutions a; = e*i fori =1,2,...,n, we need to show that

:X1+X2+"‘+Xn:O

fO)+ )+ +f(x,)=nf(s), s

n
where 1
(W)= ——, uel=R.
/ Vv1+ ke
For u > 0, we have
F) = ke'(ke" —2) S ke*(k—2)

T 4(1+ ken)s2 T 4(1 + kev)s/?

Therefore, f is convex on I ;. By the RHCF-Theorem, it suffices to prove the original
inequality for
a,=1/t""'", ay=---=q,=t, t>1.

Write this inequality as h(t) > 0, where

)=\ Al
t"1+k  J1+kt V1+k
The derivative
R = (n—1)kt(=3)/2 _ (n=1k

20t 1+ k)32 2(kt +1)3/2
has the same sign as

hy(t) =t Ykt +1)— " —k.
Denoting m =n/3 (m > 2/3), we see that
h(t)=kt™+ ™ =3 — ke =k(t™—1)—t™(t*" — 1) = (t" — 1)h,(t),

where
hy(t) =k —t™ 1 —¢2m1,

For t > 1, we have

Ry(6) = t"*[-m+1—(2m—1t"] < t"?[-m+1—(2m—1)]
=—(Bm-—-2)t"?<0,
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hence h,(t) is strictly decreasing for t > 1. Since

there exists t; > 1 so that h,(t;) = 0, hy(t) > 0 for t € [1,t;), hy(t) < O for
t € (t;,00). Since h,(t), h;(t) and h’(t) has the same sign for t > 1, h(t) is strictly
increasing for t € [1, t;] and strictly decreasing for t € [t;, 00); this yields

h(t) > min{h(1),h(c0)}.

From h(1) =0 and h(c0)=1—

> 0, it follows that h(t) > O for all t > 1.
The proof is completed. The equality holds for a; =a, =---=aqa, =1.
Remark. The following generalization holds (Vasile C., 2005):

e let a,a,,...,a, be positive real numbers so that a;a,---a, = 1. If k and m are
positive numbers so that

m<n—1, k>n"/"-1,

then
1, 1 .1 n
(1+ka)m™  (1+kay)m (1+ka,)™ — (1+k)m’
with equality fora; =a, =---=a, =1.

For 0 <m <n—1and k =n'™—1, we get the beautiful inequality

1 1 1
+ Fooodb———— >
(I+ka;)™ (1 +kay,)m (1+ ka,)m

P 1.67. Let a,,a,,...,a, be positive real numbers so that a;a,---a,=1. If p,q=>0

1
so that0<p+qs—1, then
n_

1 1 1 n
s+ S+t < .
1+pa;+qa; 1+pa,+qa; 1+pa,+qa?  1+p+q

(Vasile C., 2007)

Solution. Using the notation a; = e*i fori =1,2,...,n, we need to show that

_X1+X2+"‘+Xn _

fle)+flx)+--+f(x,) =nf(s), s= =0,

n

where )
u)=———7—, uEH:R.
fw 1+ pet +qe?«
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For u <0, we have

e'[—4q’e®™ —3pge™ + (4q¢ —p*)e" +p]
(1+ pet + qe2v)3
e*'[—4q”e™ —3pge" + (49 —p*) + pe™"]
(1+ pev +qe?+)3
e*[—4q” —3pq + (49 —p*) + p]
(14 pet + qe2v)3
_ el +49)(1—p—9)+2pq] _
(1+ pev +qge2u)3 -

£ =

therefore f is convex on I,. By the LHCF-Theorem, it suffices to prove the original
inequality for

a,=1/t""'", a=---=a,=t, t>0.

Write this inequality as

22 n—1 n
+ < ,
t2n2+ptrl4+q 1+pt+qt? 1+p+q

p*A+q°B +pqC < pD +qE,

where
A=t"Yt"—nt+n—1), B=t"—nt>’+n—1,
C =

22—t (n—D)t"  —nt+n—1,
D=t"(n—Dt"+1—nt"1], E=(Mm-Dt*""+1—nt>2

Applying the AM-GM inequality to n positive numbers yields D > 0 and E > 0.
Since (n—1)(p +q) < 1 involves pD +gE > (n—1)(p + q)(pD + qE), it suffices to
show that

p°A+q’B +pqC < (n—1)(p + Q)(pD +qE).

Write this inequality as
p*A; +¢°B; +pqC; = 0,

where
Ai=(n—1)D—-A=nt"[(n—2)t"1+1—(n—1)t"?],

B,=(n—1)E—B=nt*[(n—2)t"2+1—(n—1)t>"],
C,=(n—1)D+E)—C=nt[(n=2)(t*" ' +t*" ) —2(n—1D)t* 3 +t"+1].
Applying the AM-GM inequality to n — 1 nonnegative numbers yields A; > 0 and

B; = 0. So, it suffices to show that C; > 0. Indeed, we have
(n=2)(*"" '+ ") =2(n—Dt*" P +t"+1=A,+B, +C,,

where
A, ==t +t—(n—1t* 23>0,
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B,=(n—2)t>"24+t"1—(n—1)t*"3>0,
Co=t"—t"'—t+1=(t—-1)(t"'—1)>0.

The inequalities A, > 0 and B, > 0 follow by applying the AM-GM inequality to

n — 1 nonnegative numbers.
The equality holds for a; =a, =+ =a, = 1.

1 . .
Remark 1. For p +q = 7 we get the inequality
n —

1 1 1
5+ s+t —————<n—-1,
1+pa; +qa; 1+pa,+qa; 1+pa, +qa?
which is a generalization of the following inequalities:
1 1 1
+ +ob—— <1,
n—1+a;, n—1+a, n—1+a,
1 1 1 1
S+ S+t <=
2n—2+a;+a; 2n—2+a,+a; 2n—2+a,+az 2

Remark 2. For

_ 4n—3 _ 1
P=otm—Dien—1 17 2—D@n-1)
we get the inequality
1 1 1

+oet < ,
(a; +2n—2)(a; +2n—1) (a,+2n—2)(a,+2n—1) = 4n—2
which is equivalent to

1 1 1 1 1
a; +2n—2 a,+2n—2 4n—2 a;+2n—1 a,+2n—1

Remark 3. For p = 2k and q = k?, we get the following statement:

e Let ay,a,,...,a, be positive real numbers so that a,a,---a, = 1. If

0<k< —1,
n—1
then
1 N 1 . 1 <N
(1+kay)?  (1+ka,)? (1+ka,)? ~ (1+k)?’
with equality fora; =a, =---=a, =1.
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P 1.68. Let a,,a,,...,a, (n > 3) be positive real numbers so that a;a,---a, = 1. If

2n—1
O0<k<—m—,
(n—1)2

then
1 1 1 n
<

+ ot < :
V1+ka;, +/1+ka, V1+ka, V1+k

Solution. Using the substitutions a; = e* fori =1,2,...,n, we need to show that

_X1+X2+"‘+Xn —

fOe)+ ) +-+f(x,)=nf(s), s= 0 0,
where 4
f(u):—1+keuj uel=R.

For u < 0, we have

_ ke"(2—ke") > ke*(2—k)

S = ke = A0 + ke o2

Therefore, f is convex on I,. By the LHCF-Theorem, it suffices to prove the original
inequality for

a,=1/t""'", a=---=q,=t. 0<t<1.
Write this inequality as h(t) < 0, where
h(t) = tn—1 N n—1 _n
t"l+k  JI+kt 14k
The derivative
Rt = (n—1)kt(=3)/2 _ (n=1k

20t + k)32 2(kt+1)3/2
has the same sign as

h(t) =t (kt+1)—t" T —k.
Denoting m =n/3, m > 1, we see that
h(t)=kt™+ ™1 — 31—k = —k(1—t™) + t™ (1 —t>™) = (1 — t™)h,(t),

where
hy(t)=t" 4+ 2™ —k

is strictly increasing for t € [0,1]. There are two possible cases: h,(0) > 0 and
h,(0) < 0.
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Case 1: h,(0) = 0. This case is possible only for m = 1 and k < 1, when h,(t) =
t+1—k>O0forte(0,1]. Also, we have h;(t) > 0 and h’(t) > O for t € (0, 1).
Therefore, h is strictly increasing on [0, 1], hence h(t) < h(1) =0.

Case 2: h,(0) < 0. This case is possible for either m=1 (n=3) and 1 < k < 5/4,
orm>1(n>4). Since h,(1) = 2—k > 0, there exists t; € (0,1) so that h,(t;) =0,
h,(t) <0 for t € (0, t;), and h,(t) > O for t € (t;,1). Since h’ has the same sign as
h, on (0,1), it follows that h is strictly decreasing on [0, t, ] and strictly increasing
on [tq, 1]. Therefore, h(t) < max{h(0),h(1)}. Since h(0) =n—1— <0and

Vi+k
h(1) =0, we have h(t) <0 forall t € (0,1].
The equality holds for a; =a, =---=a, = 1.

Remark. The following generalization holds (Vasile C., 2005):

e Let a,,a,,...,a, (n > 3) be positive real numbers so that a,a,---a, = 1. If k
and m are positive numbers so that

1 n \um
m > ks( ) -1,
n—1

then

L Lo 1 __n
(1+kay)™  (1+kay)m (1+ka)™ ~ (1+k)m’

with equality fora; =a, =---=a, = 1.

n
Forn>=3, m>

1/m
and k = ( ) — 1, we get the beautiful inequality

n—1 n—1

1 1 1
+ ot ————<n—1
(1+kay)™  (1+kay)™ (Itkaym "

P 1.69. If a;,a,,...,a, are positive real numbers so that a;a,---a, =1, then

4y 2n—1 + 4y 2n—1 et - 2n—1 S 1 (@4, ++a )
a a a = a a e Ta .
1 (n—1)2 27 (n—1)2 " (n—1)2 n—1" "' 2 "

(Vasile C., 2006)

Solution. According to the preceding P 1.68, the following inequality holds

IR
1+ 21 _4_n ’

1N
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On the other hand, by the Cauchy-Schwarz inequality

1 2n—1 _
() (e e e (2

From these inequalities, we get

(n—1) (Z a%\J 1+ (121’1—_1;2 a;“) > (Z a1)2,

which is the desired inequality.
The equality holds for a, =a, =---=a, = 1.

P 1.70. If a;,a,,...,a, are positive real numbers so that a;a,---a, =1, then

1 1 1
a"‘1+a”‘1+---+ag‘1+n(n—2)2(n—l)(—+—+---+—).
a

' ’ 1 @ ay
Solution. Using the notation a; = e fori =1,2,...,n, we need to show that
FOD+FO)+ o+ fO0) > nf(s), 5=k +"2:"‘+Xn 0,
where

f(u) — e(n—l)u_(n_l)e—u’ uel=R.
For u > 0, we have
W) =m—-1)2%"""—(n—1)e*=(n—1)e“[(n—1)e™—1]> 0;

therefore, f is convex on I, . By the RHCF-Theorem and Note 2, it suffices to show
that H(x,y) > 0 for x,y € R so that x + (n— 1)y = 0, where

H(x,y)= f—(x)tf/ ),

From
f'w)=n—-1e" " +e™],

we get

— X _ oY
H(x,y) = (n—1)(e” —e”) [en=2x 4 o(n=2xty 4o px+(n=3)y 4 (n-2y _ p=x=¥]

X—y
— (Tl - 1)(ex — ey) [e(n—z)x + e(n—3)x+y 4ot ex+(n—3)y):| .
X—y
Since (e*—e”)/(x —y) > 0, we have H(x, y) > 0.
The equality holds for a; =a, =---=a, = 1.
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P 1.71. Let a;,a,,...,a, be positive real numbers so that a;a,---a, = 1. If k > n,
then

11 1
a’;+a§+---+a’<+kn2(k+1)(—+—+---+—).
" a; a an

(Vasile C., 2006)
Solution. Using the notations a; = e fori =1,2,...,n, we need to show that

_X1+XZ+"‘+XH _

fO)+fx)+--+f(x) = nf(s), s 0,

n

where
fw=e*—(k+1)e™, uel=R.

For u > 0, we have
W) =k* —(k+1)et=e |:kze(k“)u —k— 1] > e “(k*—k—1)> 0;

therefore, f is convex on I.,. By the RHCF-Theorem, it suffices to to prove the

original inequality for a; <1 < a, =--- = a,; that is, to show that
k+1 k+1)(n—1
@+ (n—1)bF — _( )b(n ) 4 kn>0
for

ab"'=1, 0<a<1<b.
By the weighted AM-GM inequality, we have

a4+ (kn—k—1)>[1+ (kn—k— 1)]a1+(knkfkfl> = k(nb— 1).

Thus, we still have to show that
1 1
(n—l)(bk——)—(k+1)(——1) >0,
b a
which is equivalent to h(b) > 0 for b > 1, where

h(b) = (n—1)(b**' —1) — (k + 1)(b" — b).

Since

hl(b) k n—1 n n—1
— — +1>(n— — +
1 (n—1)b"—nb 1>(n—1)b"—nb 1

=nb"Y(b—1)—(b"—1)
=(b-D[@" ="+ (B =b")+---+ (" =1)] >0,
h is increasing on [1, 00), hence h(b) > h(1) = 0. The proof is completed. The

equality holds for a; =a, =---=aqa, = 1.
OJ
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P 1.72. If a;,a,,...,a, are positive real numbers so that a;a,---a, =1, then

1\*® 1\*% 1\%
(1__) +(1_-) +---+(1_-) <n-1.
n n n
(Vasile C., 2006)

Solution. Let

and
m=Ink, 0<m<In2<1.

Using the substitutions a; = e* fori =1,2,...,n, we need to show that

_X1+X2+"'+Xn —

fO)+fO)+-+ fle)) 2 nf(s), s= 0,

n

where
fw=—k=*, uel=R.

From
f(w) = me“k™ (1 —me"),

it follows that f”(u) > 0 for u < 0, since
1-me*>1—m=>1—1n2>0.

Therefore, f is convex on I,. By the LHCF-Theorem and Note 5, it suffices to prove
the original inequality for

=t, aq=t""  0<t<1.

Write this inequality as

h(t)<n-—1,
where .
)=kt +(n—1k~, te(0,1].
We have
K(t)=(n—Dmt"k" ""hy(t), h(t)=1—¢"k""",
R () =k hy(),  hy(t) =m(n—1+t")—nt".
Since

2 -2 -2
R, (t) =nt"*(mt—n+1) <nt"*(m—n+1) <nt"*(m—1) <0,
h, is strictly decreasing on [0, 1]. From

h,(0)=(n—1)m>0, hy,(1)=n(m—1)<0,
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it follows that there is t; € (0,1) so that h,(t;) = 0, h,(t) > 0 for t € [0, t;) and
h,(t) < 0 for t € (t;,1]. Therefore, h; is strictly increasing on (0, t;] and strictly
decreasing on [t;,1]. Since h;(0,) = —oo and h,(1) = 0, there is t, € (0, t;) so
that h,(t,) =0, hy(t) <0 for t €(0,t,), hy(t) > 0 for t € (t,,1). Thus, h is strictly
decreasing on (O, t,] and strictly increasing on [t,,1]. Since h(0,) = n—1 and
h(1) =n—1, we have h(t) <n—1 for all t € (0,1]. This completes the proof. The
equality holds for a; =a, =---=aqa, = 1.

O

P 1.73. If a, b, c are positive real numbers so that abc = 1, then

1 1 1
+ + <1
1+4/1+3a 1++v1+3b 1++v1+3c

(Vasile C., 2008)

Solution. Write the inequality as

v1+3a—1+v1+3b—1+v1+3 —1 <

1,
3a 3b 3c
1+1+1+3>Ql+§wi+§+\Jl+§
a b ¢ “ a2 a b2 b c2 ¢

Replacing a, b,c by 1/a,1/b,1/c, respectively, we need to prove that abc = 1 in-
volves

a+b+c+3>+vVa2+3a+Vb2+3b+Vc2+3c. *)

Using the notation

we need to show that

FEO+F )+ FE 236, s=2 =0,
where
fu)=e"—+Vexu+3er, uel=R.
We have ,
4t 4+ 18t +9
i =t|1l— =e">1.
P dEs] e

For u > 0, which involves t > 1, from

16t(t +3)°> — (4t + 18t +9)* = 9(4t* + 12t —9) > 0,
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it follows that f” > 0, hence f is convex on L. By the RHCF-Theorem, it suffices
to prove the inequality (*) for b = c. Thus, we need to show that

a—+va2+3a+2(b—+vb2+3b)+3=>0

for ab? = 1. Write this inequality as

2b3+3b%2+1> V3b2+1+2b%V b2+ 3b.

Squaring and dividing by b?, the inequality becomes

9b% 4+ 4b + 3 > 44/(b% + 3b)(3b2 + 1).

Since

24/(b2+3b)(3b2+1) < (b*>+3b)+ (3b>+1) = 4b*>+3b+1,
it suffices to show that
9b%*+4b+3>2(4b*+3b+1),

which is equivalent to (b —1)? > 0. The equality holds fora=b =c = 1.
Remark. In the same manner, we can prove the following generalization:

e Let ay,a,,...,a, be positive real numbers so that a,a,---a, = 1. If

O<k£4—n,
(n—1)?
then
1 + 1 P 1 < n
1++/1+ka, 1++/1+ka, 1++/1+ka, 1+VI+k
Ll
P 1.74. If a;,a,,...,a, are positive real numbers so that a,a,---a, =1, then
1 1 1 1
+ +oeet > -
1+4/1+4n(n—1)a; 1+ +/1+4n(n—1)a, 1+4/1+4n(n—1)a, 2

(Vasile C., 2008)
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Solution. Denote
k=4n(n—1), k=8,

and write the inequality as follows:

\/1+ka1—1+ \/1+ka2—1+m+ vV1+ka,—1 S

ka, ka, ka

n

1 k 1 k 1  k 1 1 1 k
S+ =Sttt ==+
a a, a a; a  a; a a, 2

Replacing a;,a,,...,a, by 1/a;,1/a,,...,1/a,, we need to prove that a;a,---a, =
1 implies

k
\/a§+ka1+\/a§+ka2+---+,/a§+kan2a1+a2+---+an+§. *)

Using the substitutions a; = e*i fori =1,2,...,n, we need to show that

_X1+X2+"'+Xn —

fO)+flxg) +--+ fx) 2 nf(s), s=

0,
n

where

fluy=+vext+ket—e", uel=R.

We will show that f”(u) > 0 for u < 0. Indeed, denoting t = e*, t € (0, 1], we have

2 2
f”(u)=t[ 4t + 6kt + k _1}>0

4(t+k)/t(t +k)

because
(4t% + 6kt + k*)* —16t(t + k)> = k*(k* — 4kt — 4t*) > k*(k* — 4k — 4) > 0.

Thus, f is convex on I,. By the LHCF-Theorem, it suffices to prove the inequality
(*) for a, = a3 = --- = a,; that is, to show that

Vaz+ka—a+n-1)(Vb2+kb—b)>n(V1+k—1),
for all positive a, b satisfying ab™! = 1. Write this inequality as
Vkbr1+1+4+(n—1)Vkb21+b2n > (n—1)b"+2n(n—1)b" ' + 1.

By Minkowski’s inequality, we have

Vkb1+1+(n—1)vV kb?-1 + b2n >

> 4/kb1[1 4 (n—1)b"2]2 + [1+ (n—1)b" ]2
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Thus, it suffices to show that
kb 14+ (n—1Db"?P+[1+(n—1b" P >[(n—1)b"+2n(n—1)b" 1 + 1%,

which is equivalent to

3n

4n(n—1)*b"T [2 +(n—2)b2 — nbnT_z] > 0.

This inequality follows immediately by the AM-GM inequality applied to n positive
numbers.
The equality holds for a; =a, =---=a, = 1.

P 1.75. If a, b, c are positive real numbers so that abc = 1, then

a® b® c®

+ -
1+2a> 1+2b> 142c

(Vasile C., 2008)

Solution. Using the substitution

we need to show that
fG)+f)+f(z)=3f(s), s

where
6u

fa)= 1+ 2e5’

For u < 0, which involves w = e* € (0, 1], we have

uel=R.

2w8(2 —w®)(9 —2w°)

> 0.
(1+2w5)3

fw) =

Therefore, f is convex on I,. By the LHCF-Theorem, it suffices to prove the original
inequality for b = ¢ and ab? = 1; that is,

1 N 2b° -1
b2(b10+2) 1+4+2b5

Since
1+2b°<1+b*+b°,
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it suffices to show that

1 2x3
+ >1, x=+b.
x(x3+2) 14+x24x3

This inequality can be written as follows:
W —x>=x3+2x—1)+(x—1)>>0,

=1 +x3+x2 -1+ (x—1)*>0,
(x =1 [x"+x°+(x*=x*+1)]>0.

The equality holds fora=b =c=1.

P 1.76. If a, b, c are positive real numbers so that abc = 1, then

V2502 + 144 + V/25b2 + 144 + v/ 25¢2 + 144 < 5(a + b + ¢) + 24.

(Vasile C., 2008)

Solution. Using the notation

we need to show that
FO)+fy)+f(z) =3f(s),

where

f(u)=5e"—+v25e2¢ + 144, ueR.

We will show that f (u) is convex for u < 0. From

_ 5w(25w* +288)
(25w2 + 144)3/2

f”(u)=5w[1 ]’ w=e"€(0,1],

we need to show that

(25w? + 144)° > 25w?(25w” + 288)2.

25
Setting 25w? = 144z, we have z € (O, m] and

(25w? + 144) — 25w?(25w? 4 288)% = 1443(z + 1) — 144°2(2 + 2)?
=144*(1—2z—2%) > 0.
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By the LHCF-Theorem, it suffices to prove the original inequality for
a=t% b=c=1/t, t>0;

that is,

563 + 24t 4+ 10 > /256 + 1442 + 24/25 + 144¢2.

Squaring and dividing by 4t give

60t + 25t2 — 36t + 120 > 4/(25¢4 + 144)(144¢2 + 25).
Squaring again and dividing by 120, the inequality becomes
25¢° —36t*+105¢t> —112t>— 72t + 90 > 0,

(t —1)%(25¢t> + 14t + 108t + 90) > 0.
The equality holds fora=b=c=1.

P 1.77. If a, b, c are positive real numbers so that abc = 1, then

V16a2+9+ v/ 16b2+9++/16c2+9>4(a+b+c) + 3.

(Vasile C., 2008)

Solution. Using the substitution

we need to show that
FO)+ )+ f(z)=3f(s),

where
fu)=+v16e22+9—4e", ueR.
We will show that f (u) is convex for u > 0. From

4w(16w*+18)
(16w2 + 9)3/2

f”(u)=4w[ 1], w=e'>1,

we need to show that

16w?(16w? + 18)% > (16w? + 9)3.
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16
Setting 16w?* = 9z, we have z > r and
16w?(16w? + 18)* — (16w? + 9)* = 729z(z + 2)* — 729(z + 1)*
=729(z>+z—1)> 0.
By the RHCF-Theorem, it suffices to prove the original inequality for
a=t* b=c=1/t, t>0;

that is,

V16t6 +9t24+24/16+9t2 > 4¢3+ 3t + 8.

Squaring and dividing by 4t give

V(1614 +9)(9t2 + 16) = 6t° + 1662 — 9t + 12.
Squaring again and dividing by 12¢, the inequality becomes
9> —16t*+9¢> +12t>—32t + 18 > 0,

(t—1)%(9t3 + 2t +4t +18) > 0.
The equality holds fora=b =c=1.

P 1.78. If ABC is a triangle, then
. . A . . B . . C
smA(ZsmE — 1) +sinB (Zsma — 1) +sinC (Zsmg — 1) > 0.
(Lorian Saceanu, 2015)

Solution. Write the inequality as

_A+B+C _

fA)+f(B)+£(C)=3f(s), 3

T
3 b
where
. . u u 3u .
fluw)= smu(Zsm— — 1) =cos——cos— —sinu, uel=[0,nr].
2 2 2
We will show that f is convex on I,. Indeed, for u € [0, ©/3], we have

u u u u u u
f”(u)=cos—(2+2sin——9sin2 —) 2cos—(2+23in——1251n2 —)
2 2 2 2 2 2

u .u . u
:2005—(1+351n—)(1—251n—) > 0.
2 2 2
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By the LHCF-Theorem, it suffices to prove the original inequality for B = C, when
it transforms into

B
sin2B(2cosB—1)+ 2sinB (2 sinE — 1) >0,

. . Bf. B : 2
sinBsin—(sin—+1 || 2sin——1| =0.
2 2 2
The equality occurs for an equilateral triangle, and for a degenerate triangle with
A= m and B = C =0 (or any cyclic permutation).
Remark. Based on this inequality, we can prove the following statement:

e IfABC is a triangle, then
sin2A(2cosA—1) +sin2B(2cosB—1) +sin2C(2cosC—1) > 0,

with equality for an equilateral triangle, for a degenerate triangle with A = 0 and
B = C = 1/2 (or any cyclic permutation), and for a degenerate triangle with A= 1
and B = C = 0 (or any cyclic permutation).

If ABC is an acute or right triangle, then this inequality follows by replacing A,
B and C with m —2A, 1 — 2B and 7t — 2C in the inequality from P 1.78. Consider
now that -
A>§>BZC2Q

The inequality is true for B < 7t/3, because
sin2A(2cosA—1) >0, sin2B(2cosB—1)>0, sin2C(2cosC—1)>0.

Consider further that

2T i T
—>A>—>B>—>C=>0.
3 2 3

From
1—2cosA>1—2cosB,

it follows that
(—sin2A)(1—2cosA) > (—sin2A)(1 — 2 cosB).
Therefore it suffices to
(—sin2A)(1—2cosB) +sin2B(2cosB—1) +sin2C(2cosC —1) > 0,
which is equivalent to

(sin2A+sin2B)(2cosB—1)+sin2C(2cosC—1) > 0,
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2sinC cos(A—B)(2cosB—1)+2sinCcosC(2cosC—1) > 0.
This inequality is true if
cos(A—B)(2cosB—1)+cosC(2cosC—1) >0,
which can be written as
cosC(2cosC —1) > cos(A—B)(1 —2cosB).

Since
2 M T
C<A—-B<———=—,
3 3 3

we have cos C > cos(A— B). Therefore, it suffices to show that

2cosC—1>1—2cosB,

which is equivalent to
cosB +cosC > 1.

From B+ C < /2, we get cosB > cos(nt/2— C) = sinC, hence

cosB+cosC >sinC+cosC =+v1+sin2C > 1.

P 1.79. If ABC is an acute or right triangle, then

A B C
sinZA(l—ZsinE) + sin 2B (I—ZSinE) +sin2C (1 —Zsina) > 0.

(Vasile C., 2015)

Solution. Write the inequality as

(_ATB+C _

fA)+f(B)+£(C)=3f(s), 3

>

T
3

where

3 5
fu)= sin2u(1 —Zsing) = sin2u—cos?u + cos ?u’ uel=[0,m/2].

We will show that f is convex on [s, 7t/2]. From

3 25 5
f"(u) =—4sin2u + gcos—u _ 2ot
4 2 4 2

and
3u 5u Lu .
cos— —cos— = 2sin—sin2u > 0,
2 2 2
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we get

) 9 5u 25 S5u
u) > —4sin2u + — cos — — — cos —
"(u) = —4sin2u +
4 2 4 2
u . T—u 57 —9u
= 8sin cos .
4 4

. . T
=—4 [sm 2u + sin

For n/3 <u < m/2, we have

5m—9u
4

T T
~< <,
8 2

hence f”(u) = 0. By the RHCF-Theorem, it suffices to prove the original inequality
for B=C, 0 < B < 1/2, when it becomes

B
—sin4B(1—2cosB) + 2sin2B (I—ZSinE) >0,

B
2sin 2B [cos 2B(2cosB—1)+ 1 —sin 5] > 0.
We need to show that
. B
cos2B(2cosB—1)+1 —smz >0,

which is equivalent to g(t) > 0, where

1

B
g(t)=(1—-8t*+8t)(1—4t>)+1—2¢, tzﬁn? OStS—E.

Indeed, we have
g(t)=2(1—t)*(1+3t+2t>2—4t>— 4t >0
because
1+3t+2t2 =43 —4t* > 1+ 3t +2t2 -2t —2t* =1+t > 0.

The equality occurs for an equilateral triangle, for a degenerate triangle with
A =0 and and B = C = /2 (or any cyclic permutation), and for a degenerate
triangle with A= m and B = C = 0 (or any cyclic permutation).

Remark 1. Actually, the inequality holds also for an obtuse triangle ABC. To prove
this, consider that

A>§>BZC2Q

The inequality is true for B < /3, because

A B
sinZA(l—ZsinE) >0, sin2B (I—ZSinz) >0, sin2C (1—25ing) >0.
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Consider further that

27 T T
—>A>—>B>—>C>0.
3 2 3

From
. A . B
2sin——1>2sin——1,
2 2

it follows that
. . A . . B
(—sin2A) (Zsmi — 1) > (—sin2A) (251n§ — 1) .
Therefore it suffices to
. . B . . B ) . C
(—sin2A) 251n§ —1]+sin2B( 1 —ZSIHE +sin2C|( 1 —ZSmE >0,
which is equivalent to

. . . B . . C
(sin2A + sin 2B) 1—251n§ +sin2C 1—251n§ >0,

B C
2sin C cos(A— B) (1—Zsin§) +25inCcosC(1—23in§) > 0.

This inequality is true if
. B . C
cos(A—B)[ 1 —Zsmz +cosC| 1 —251n§ >0,
which can be written as
C B
cosC (1 —2sin E) > cos(A—B) (Zsina — 1) .

Since
2 M 0T
C<A—B<———=—,
3 3 3

we have cos C > cos(A— B). Therefore, it suffices to show that
. C . B
1—2sin—>2sin——1,
2 2
which is equivalent to
. B . C
sin—+sin— <1,
2 2

B+C B—-C
<

2sin cos 1.
4 4

This is true since

<1

. . T
2sin < 231n§ <1, cos
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Remark 2. Replacing A, B and C in P 1.79 by n—2A, m1—2B and n—2C, respectively,
we get the following inequality for an acute or right triangle ABC:

sin4A(2cosA—1) +sin4B(2cosB—1) +sin4C(2cosC —1) > 0,

with equality for an equilateral triangle, for a triangle with A= /2 and B =C =
1t/4 (or any cyclic permutation), and for a degenerate triangle with A= 0 and and
B = C = 1/2 (or any cyclic permutation).

O

P 1.80. Ifa, b,c,d are real numbers so that a4+ b+ c +d =4, then

a N b N c + d <
a?—a+4 b2—-b+4 c2—c+4 d>’—d+4"

(Sqing, 2015)

Solution. Write the inequality as

F@+FD)+F O+ (@2 4f(), =TTy
where Ly
f(U) = m, uekR.
We see that (u—2)?
U —
f(u)—f(z):m >
From

o 2B+ 12u—4)
flw= (u?—u+4)>

it follows that f is convex on [1,2]. Define the function

fw), u<2

folu)= f2), u>2"

Since f,(u) < f(u) foru € R and f,(1) = f(1), it suffices to show that
fola@) + fo(b) + fo(e) + fo(d) = 4fo(s).

The function f, is convex on [1, 00) because it is differentiable on [1, c0) and its

derivative
ffw), u<2

fo’(u): 0, u>2
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is continuous and increasing on [1, co). Therefore, by the RHCF-Theorem, we only
need to show that f,(x) + 3f,(y) = 4f,(1) for all x,y € R so that x <1 < y and
X + 3y = 4. There are two cases to consider: y <2 and y > 2.

Case 1: y < 2. The inequality f,(x) + 3f,(¥) = 4f,(1) is equivalent to f(x) +
3f(y)=4f(1). According to Note 1, this is true if h(x, y) > 0 for x + 3y = 4. We

have
_f@-fQ) _  u-—4

g(w) “1 Awr—u+4)

gx)—gly) _ 4 +y)—xy
X—y 4(x2—x+4)(y?—y+4)

_ 3(y—2)2%+4 =0
4(x2—x+4)(y2—y+4)

h(x,y)=

Case 2: y > 2. From y > 2 and x + 3y =4, we get x < —2 and

X

Folx) +3fo(0) —4fo(1) = f (x) +3f (2) —4f (1) = ——— > 0.

x2—x+4

The equality holds fora=b=c=d =1.

P 1.81. Let a, b, c be nonnegative real numbers so that a + b +c = 2. If

In2

kosks3, ko=7=705

~1.71,

then
a“(b+c)+ b (c+a)+cF(a+ D) < 2.

Solution. Write the inequality as

fl@+f)+flc) =<2,

where
flw)=uf(2—u), uelo,00).

From
f//(u) — kuk_2[2k —2— (k + 1)u],

k+1 k+1
to LCRCF-Theorem, the sum f(a)+ f(b) + f (c) is maximum when either a =0 or

O0<a<b=c.

— —2
it follows that f is convex on [0, and concave on [ , 2]. According
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Case 1: a = 0. We need to show that
be(b* ' +cFH <2

for b+ ¢ = 2. Since 0 < (k—1)/2 < 1, Bernoulli’s inequality gives

k—1 k—

1
B4 = (0 (@) <14 —= (B~ D+ 1+ —— ("= 1)

=3—k+%(b2+c2).

Thus, it suffices to show that

L be(b? +¢?) < 2.

(3—k)bc + 2
Since )
bc < (b i C) =1,
2
we only need to show that
k—1

3—k+

be(b?+¢?) <2,

which is equivalent to
be(b? +c?) < 2.

Indeed, we have
8[2—bc(b?+cH)]=(b+c)*—8bc(b®+c>)=(b—c)*>0.
Case 2: 0 < a < b =c. We only need to prove the homogeneous inequality
+b+c\M
a“(b+c)+b(c+a)+ck(a+b)<2 (%)
forb=c=1and 0 <a < 1; that is,

a k+1
(1+§) —ak—a—-1>0.

k+1
Since (1 + —) is increasing and a* is decreasing with respect to k, it suffices

consider the case k = k,; that is, to prove that g(a) > 0, where
a\kot1
g(a)=(1+§) —ako—q—1, 0<a<l.

We have

k0+1( a

K
g'(a)= 5 1+§) " ka1 —1,
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1, ko+1 ( a)ko—1 ko—1
— = 1+-) - :
kog (a) 4 2 a2ko
Since g” is increasing on (0,1], g”(0,) = —oo and
1, ko + 1 (3)ko—1 ko + 1 2(2—ky)
—g'(1)= = —ky+1= —kg+1=—""""->0,
RS W="213 0 3 3

there exists a; € (0, 1) so that g”(a;) =0, g”(a) <0 for a € (0,a,), g”(a) > 0 for
a € (a,,1]. Therefore, g’ is strictly decreasing on [0, a; ] and strictly increasing on
[a,,1]. Since

ko_l

, , ko+1
g'(0)= >0, g()==—[G/2"-2]=0,
there exists a, € (0,a,) so that g’(a,) = 0, g’(a) > 0 for a € [0,a,), g'(a) < O
for a € (a,,1). Thus, g is strictly increasing on [0, a,] and strictly decreasing on
[a,, 1]. Consequently,
g(a) = min{g(0), g(1)},

and from

g(0)=0, g(1)=(3/2)*"-3=0,

we get g(a) > 0.
The equality holds for a = 0 and b = ¢ (or any cyclic permutation). If k = k,
then the equality holds also fora=b =c.
O

P 1.82. If a;,a,,...,a, are positive real numbers so that a; +a, + -+ +a,, = n, then

1 1 1
(n+1)2(—+—+---+—)24(n+2)(a§+a§+---+a§)+n(n2—3n—6).
a,; a, a,

(Vasile C., 2006)

Solution. Write the inequality as

fla)+f(a))+--+f(a,) = n(n*—3n—6),

where
fu)= (n+1)° —4(n+2)u? ue(0,00).
From X
7w =222 gn+2),

it follows that f is strictly convex on (0, c] and strictly concave on [c, o), where

g (n+1)2
€= \J4(n+2)'
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According to LCRCFE-Theorem and Note 5, it suffices to consider the case

a,=a,==a,,=x, a,=n—(Mn—1)x, O0<x<1,
when the inequality becomes as follows:

n—1

(n+1)2( +al) 24(n+2)[(n—1)x2+ai)+n(n2—3n—6),

nn—1)2x -1 [(n+2)(n—1)x*—(n+2)2n—1x +(n+1)*]>0.

The last inequality is true since

(n+1)? ( 2n—1)2 3(n—2)
—1x*—(2n—1)x + =n-1)|x- + 0.
(n=1)x"=(2n—=1)x n+2 (n=1){x 2n—2 4n—1)(n+2) —
The equality holds for
a,=a,=--=a _1 a _ntl
1— Y2 - n—1_2) n— 2

(or any cyclic permutation).

P 1.83. Ifa, b,c,d,e are positive real numbers such that a+b+c+d +e =5, then
1 1 1 1 1
27(=+—+—-+=-+-)=4’+ b+ +d*+¢°) + 115.
a b ¢ d e
(Vasile Cirtoaje)
Proof. Write the inequality as

_a+b+c+d+e_

f@+f)+f)+f(d)+f(e)=5f(s), s c

1,

where
27 3
fluy=—-—4u>, 0<u<s5b.
u
From

A4
(W) = 6(9—3411)’

it follows that f is convex on (0,1]. According to LHCF-Theorem, it suffices to
prove that

fO)+4f(y)=5f(1)
forx > 1>y >0and x +4y = 5. This occurs if h(x, y) = 0, where

g(x)—g(y) _fw—£f(1)
—, glu)=——7-—.
X—Yy u

h(x,y) = 1
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Since 97
guW)=—"——4W*+u+1),
u

)= A y)

h(x,y , Alx,y)=27—4xy(x+y+1),

we need show that A(x, y) > 0. Indeed,
1
5A(x,y) =9—4y(4y —5)(y —2) =9—40y +52y*—16y°

=(1—-2y)*(9—4y)=>0.

The equality holds fora=b=c=d=e=1,andfora=3and b=c=d=e =
1/2 (or any cyclic permutation).

Generalization. If a,, a,, ..., a, are positive real numbers such that

a+a,+---+a,=n,

then
2 1 1 1 20,3 3 3
(n+1)*C2n—1)(—+—+--+——n)=27(n—1)(a; +a, +---+a, —n),
a an
with equality for a; =a, =--- =a,, =1, and for
a_2n—1 G mg = n+1
T R - TO R D)

(or any cyclic permutation).

P 1.84. If a, b, c are nonnegative real numbers so that a + b + ¢ = 12, then

(a® 4+ 10)(b* + 10)(c* + 10) > 13310.

(Vasile C., 2006)

Solution. Write the inequality as
fl@+f(b)+f(c)=2Iln11+1n110,

where
f(w)=In(u*+10), ue€[0,12].

From 2010 2)
V2 _ —u
f = e v oe
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it follows that f is convex on [0,+/10] and concave on [+/10,12]. According to
LCRCE-Theorem, the sum f(a)+ f(b) + f(c) is minimum when a = b < c. There-
fore, it suffices to prove that g(a) > 0, where

gla)=2f(a)+ f(c)—2In11—In110, c=12—2a, a<[0,4].

Since ¢’(a) = —2, we have

g@)=2f(@)=2f(c)= 4(a2 i 10 c? i 10)
_ 4Ha—c)(10—ac) 24(4—a)(5—a)la—1)

~ (a2+10)(c2+10)  (a2+10)(c2+10)

Therefore, g’(a) < 0 for a € [0,1) and g’(a) > 0 for a € (1,4), hence g is strictly
decreasing on [0, 1] and strictly increasing on [1,4]. Thus, we have

g(a)=g(1)=0.

The equality holds for a = b =1 and ¢ = 10 (or any cyclic permutation).
Remark. Similarly, we can prove the following generalization:
e Leta,,a,,...,a, benonnegative real numbers so that a;+a,+: - -+a, = 2n(n—1).

Ifk=(n—1)(2n—1), then

(@@ +k)(a;+k)---(a®+ k) > k(k+1)",

with equality for a; = k and a, = --- = a,, = 1 (or any cyclic permutation).
O
P 1.85. If ay,a,,...,qa, are nonnegative real numbers so that a; +a,+---+a, =n,
then (n? )
5 5 9 n“—2n+2)"
(Cl1 +1)(a2+1)---(an+1) = W
(Vasile C., 2006)
Solution. Write the inequality as
_ (n*—2n+2)"
fla)+fla))+---+f(a,) =nk, k= CE
where
f(w)=Inw?+1), uelo0,n].
From

/7 _ 2(1—1[2)
W=7
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it follows that f is strictly convex on [0, 1] and strictly concave on [1,n]. According
to LCRCF-Theorem, it suffices to consider the case a; = a, =--- = a,_; < qa,; that
is, to show that g(x) > 0, where

g)=(n—-1Df(x)+f(y)—Ink, y=n—(n—1)x, xe€[0,1].

Since y'(x) =—(n—1), we get

g)=m-1f'(x)—(n—1f'(y)=n—-DIf ()= f' ()]
ol x Yy \_20-Dx-y)d—xy)
=2(n 1)(x2+1 y2+1)_ (x2+1)(y*+1)

_2n(n—1)(x—1)*[(n—1)x —1]

- (x2+1)(y2+1)

1 1
Therefore, g’(x) <0 for x € [O, —1] and g'(x) >0 for x € [—1, n], hence g
n— n—

. . 1 . . 1 . 1
is decreasing on [O, ] and increasing on [ , 1}. Since g ( ) =0, the
1 n—1 n—1

conclusion follows.

1
The equality holds fora; =a, =+ =a,_; = 1 and a,, = n—1 (or any cyclic
n —_—
permutation).

]

P 1.86. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then
(a® +2)(b* +2)(c* + 2) < 44.

(Vasile C., 2006)

Solution. Write the inequality as

fla)+f(b)+ f(c) <1n44,
where
f(w)=In(w*+2), uel0,3].
From 22 2)
17 _ —u
W=

it follows that f is strictly convex on [0, +/2] and strictly concave on [v2,3]. Ac-
cording to LCRCF-Theorem, the sum f (a)+f (b)+f (c) is maximum for either a = 0
or0<a<b=c.

Case 1: a = 0. We need to show that b + ¢ = 3 involves

(b2 +2)(c*+2) <22,
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which is equivalent to

bc(bc—4) < 0.
This is true because )
bcs(b+c) _2ca
2 4

Case 2: 0 < a < b =c. We need to show that a+2b =3 (0 < a < 1) involves
(a® +2)(b* +2)* < 44,

which is equivalent to g(a) < 0, where

g(a)=In(a®+2)+2In(b*+2)—1n44, b= STa ae(0,1].

Since b’(a) = —1/2, we have

2a 2b 2(a—b)(2—ab)
a2+2 b2+2  (a2+2)(b2+2)
_ 3(a—1)(a®*—3a+4)
 2(a2+2)(b2+42)

g'(a)=

Because
a*—3a+4=(a—2)*+a>0,

we have g’(a) < 0 for a € (0, 1), g is strictly decreasing on [0, 1], hence it suffices
to show that g(0) < 0. This reduces to 16 - 22 > 172, which is true because

16-22—17>=63 > 0.
The equality holds for a = b = 0 and ¢ = 3 (or any cyclic permutation).
Remark. In the same manner, we can prove the following generalization:

: 9
e Let a, b, c be nonnegative real numbers so that a+b+c=3. Ifk > Y then

(a®+k)(b%2+k)(c2+ k) <K (k+9),

with equality for a = b = 0 and ¢ = 3 (or any cyclic permutation). If k = 9/8, then
the equality holds also for a =0 and b = ¢ = 3/2 (or any cyclic permutation).
O

P 1.87. If a, b, c are nonnegative real numbers so that a+ b + ¢ = 3, then

(@+ D)2+ 1)(c2+1) < 11—6:.

(Vasile C., 2006)
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Solution. Write the inequality as

F@+f(b)+f(c)<In169—In16,

where
fW)=In(u*+1), uel0,3].
From 21 2)
" _ —Uu
W=y

it follows that f is strictly convex on [0, 1] and strictly concave on [1,3]. According
to LCRCF-Theorem, it suffices to consider the casesa=0and 0<a < b =c.

Case 1: a = 0. We need to show that b + ¢ = 3 involves

169
b2+ 1)(c*+1)< —,
(PP + 1S+ < —
which is equivalent to
(4bc+1)(4bc—9)<O.
This is true because
4bc < (b+c)*=0.
Case 2: 0 < a < b =c. We need to show that a+2b =3 (0 < a < 1) involves

1
(a2+1)(b2+1)2 < 1i69

which is equivalent to g(a) < 0, where
3 —_
g(@)=In(a®+1)+2In(b>+1)—1n169+1n16, b= Ta ae(0,1].

Since b’(a) = —1/2, we have

2a 2b 2(a—b)(1—ab)
a2+1 b2+1 (a2+1)(b2+1)
_ 3(a—1)*(a—2) <

2(a2+1)(b2+1) ~

g'(a)=

hence g is strictly decreasing. Consequently, we have

g(a) <g(0)=0.

The equality holds for a =0 and b = ¢ = 3/2 (or any cyclic permutation).
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P 1.88. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

(2a® +1)(2b%2+1)(2c?2+1) < %.

(Vasile C., 2006)

Solution. Write the inequality as

fla)+f(b)+ f(c)<In121—1n4,

where
f(w)=In2u*+1), ue€[0,3].
From 4(1—2 2)
2 _ —al
FW= e

it follows that f is strictly convex on [0,1/+/2] and strictly concave on [1/+/2,3].
By LCRCF-Theorem, it suffices to consider the casesa=0and 0 <a < b=c.

Case 1: a = 0. We need to show that b + ¢ = 3 involves
121
(2b%2+1)(2c2+1) < R

which is equivalent to
(4bc +5)(4bc—9) < 0.

This is true because
4bc < (b+c)*=09.
Case 2: 0 < a < b =c. We need to show that a+2b =3 (0 < a < 1) involves

121
(2a2+1)(2b%2 +1)* < =

which is equivalent to g(a) < 0, where
3 —
¢(a) =1n(2a® + 1)+ 2In(2b> + 1) —In121 +In4, b= Ta ae(0,1].

Since b’(a) = —1/2, we have

4a 4b 4(a—Db)(1—2ab)
2¢2+1 2b2+1 (2a2+1)(2b2+1)
_ 6(a—1)(a®—3a+1)
 (2a241)(2b2+1)
_ 3(1—a)(B+v5—2a)(2a—3+ v5)
B 2(2a2+1)(2b2+1) ’

g'(a)=
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— /5

3
hence g’ (

3—+/5

Therefore, g is strictly decreasing on | O, and strictly increasing on [

Since g(0) = 0, it suffices to show that g(1) < 0, which reduces to 27 -4 < 121.
The equality holds for a = 0 and b = ¢ = 3/2 (or any cyclic permutation).

P 1.89. If a, b, c are nonnegative real numbers so that a + b + ¢ > k,, where
3
ky, = g 66 + 104105 ~ 4.867,

then

S @D D@+ 1) < (%”“) Y

(Vasile C., 2018)
Solution. Consider first the case a + b + ¢ =k, and write the inequality as

F@)+fB) 423, 5=t

where
fw)=—In(W?+1), uel0,k,l.
For u € [s,k,], f (u) is convex because
ue _ 6(3u*—1)
frw= (Bu2+1)2

By the RHCF-Theorem, we only need to show that

fO)+2f(y) = 3f(s)

for 0 < x <s < y so that x + 2y = 3s; that is, to show that g(x) > 0 for x € [0,s],
where
ko_x

5

g)=f(x)+2f(y)—=3f(s), y=
Since y’(x) =—1/3, we have

/ / vy —2Xx 2.y
= +2 = +
g)=f)+2y f'(¥)= 5 Vit

C2x—y)xy—1)  3(s —x)(x*—kox +2)
2+ D(2+1) 202+ 1)(y2+1)

) =0,g'(a)<0forae [0, #), g'(a)>0fora e (3_2‘/3, 1).

]
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2 b
it suffices to show that g(0) > 0 and g(s) > 0. These inequalities are true because
g(0) =0 and g(s) = 0. The equality g(0) = 0 is equivalent to

Since g is increasing on [0, s; ] and decreasing on [s;,s], where s; =

k
where y = EO.
According to RHCF-Theorem, if the inequality

f@)+ 5 )+ 50z 3f (1)

holds for a + b + ¢ = k, then it holds for a + b + ¢ > k,, too.
The equality holds for a = b = c. In addition, for a + b + ¢ = k,, the equality
occurs again for a =0 and b = ¢ = k,/2 (or any cyclic permutation).
O]

P 1.90. If a, b, c,d are nonnegative real numbers so that a+ b + c +d = 4, then
(a2 +3)(b2+3)(c? +3)(d?+3) < 513.

(Vasile C., 2006)

Solution. Write the inequality as

fl@+f(b)+f(c)+f(d) <In513,

where
f(w)=Inw?+3), ue€lo,4].
From 23 2)
/" _ —Uu
=

it follows that f is strictly convex on [0, v/3] and strictly concave on [v3,4]. By
LCRCF-Theorem, it suffices to consider the casesa=0and0<a < b =c.

Case 1: a = 0. We need to show that b + ¢ + d = 4 involves
(b2 +3)(c*+3)(d*+3) < 171.

Substituting b, c,d by 4b/3,4c/3,4d /3, respectively, we need to show that b + ¢ +
d = 3 involves

(B> +k)(c*+k)(d*+k) <K*(k+9),
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where k = 27/16. According to Remark from the proof of P 1.86, this inequality
holds for all kK > 9/8.

Case 2: 0<a < b=c=d. We need to show that a+3b =4 (0 < a < 1) involves
(a®+3)(b?+3)® <513,

which is equivalent to g(a) < 0, where
¢(a) =In(a®+3)+3In(b*+3)—1In513, b= 4%“, ae(0,1].

Since b’(a) = —1/3, we have

2a 2b 2(a—b)(3—ab)
a2+3 b2+3  (a2+3)(b2+3)
_ 8(a—1)(a®*—4a+9)
~ 9(az+3)(b2+3)

g'(a)=

Because
a*—4a+9=(a—2)*+5>0,

we have g’(a) > 0 for a € [0, 1), g is strictly decreasing on [0, 1], hence it suffices
to show that g(0) < 0. This reduces to show that the original inequality holds for
a =0 and b =c =d = 4/3, which follows immediately from the case 1.
The equality holds for a = b = ¢ =0 and d = 4 (or any cyclic permutation).
O

P 1.91. Ifa, b, c,d are nonnegative real numbers so that a+ b + ¢ +d = 4, then
(a?+2)(b* +2)(c* +2)(d* + 2) < 144.

(Vasile C., 2006)

Solution. Write the inequality as

f@+5(B)+f(c)+f(d) <In144,

where
fw)=Inw?+2), uelo,4].
From 22 2)
/7 _ —u
W=y

it follows that f is strictly convex on [0, +/2] and strictly concave on [v/2,4]. By
LCRCF-Theorem, it suffices to consider the casesa=0and 0<a < b =c.
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Case 1: a = 0. We need to show that b + ¢ + d = 4 involves
(b2 +2)(c2+2)(d*>+2) < 72.

Substituting b, c,d by 4b/3,4c/3,4d /3, respectively, we need to show that b + ¢ +
d = 3 involves

(8b%+9)(8c* +9)(8d* +9) < 9*.
This is true according to Remark from the proof of P 1.86.

Case 2: 0 <a < b=c=d. We need to show that a +3b =4 (0 < a < 1) involves
(a® +2)(b? +2)° < 144,

which is equivalent to g(a) < 0, where
g(a)=In(a*+2)+3In(b*+2)—1n144, b= 4%61, ae(0,1].

Since b’(a) = —1/3, we have

2a 2b 2(a—b)(2—ab)
a2+2 b2+2  (a2+2)(b2+2)
_ 8(a—1)(a*—4a+6)
T 9(a2+2)(b2+2)

g'(a)=

Because
a?—4a+6=(a—232+2>0,

we have g’(a) > 0 for a € [0, 1), g is strictly decreasing on [0, 1], hence it suffices
to show that g(0) < 0. This reduces to show that the original inequality holds for
a =0 and b =c =d =4/3, which follows immediately from the case 1.
The equality holds for a = b = ¢ =0 and d =4 (or any cyclic permutation), and
also fora=b =0 and c =d = 2 (or any permutation).
O

P 1.92. Ifa, b, c,d are nonnegative real numbers such that
at+b+c+d=4,

then

a + b N c + d <4
3a3+2 3b3+4+2 3¢34+2 3d3+2° 5

(Vasile Cirtoaje, 2019)



Half Convex Function Method 145

Solution. Consider the function

—u
f(u):3u3+2 :1=10,4].
Since 18U (4 — 3y
f//(u): u( - u)

(Bud +2)3
is positive for u € [0, 1], f is left convex on I,. According to LHCF-Theorem and

Note 1, it is enough to show that h(x, y) > 0 for x, y € [0,4] such that x +3y = 4.

We have
fw)—£(1) _ 3u?+3u—2

g ="——7 342
hx,y)= 8 =80) _ 2F(oy)
g —y (3x*+2)(3y°+2)

where
Flx,y)=20*+xy+y?)+2(x+y)+2—3x%y?—3xy(x + y).

From
4=x+3y = 24/3xYy,

we get 3xy < 4. Thus, we have
FOx,y)=20*+xy+y*)+2(x+y)+2—4xy —4(x+y)=26(y —1)* > 0.

The proof is completed. The equality occurs fora=b=c=d =1.

P 1.93. If ay,a,,...,a, are nonnegative real numbers such that a; +a, +---+a, =1,
then

4, 4 4
+at+al+--+a.

|~

C+ai++a<
(Vasile C., 2018)
Solution. We use the induction method. For n = 2, denoting
aa,=p, p<1/4,

we have
af + ag’ = (a; +a,)* —3a;a,(a; + a,) = 1—3p,
4 4 _ (2 22)2 2.2 _ o 2
aj +a, = (a; +a;)*—2aja; =2p°—4p +1,

and the inequality is equivalent to

(4p—1)*>0.
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Consider further that n > 3, a; < a, < --- < a,, and write the inequality as

Fla)+fla)+ o +fa) < g,
where
fwy=uv*—u*, uelo,1].

From
£"(u) = 6u(1—_2u),

it follows that f is strictly convex on [0,1/2] and strictly concave on [1/2,1]. By
LCRCF-Theorem, it suffices to consider the casesa; =0and 0 < a; < a,=---=a,.

Case 1: a; = 0. The inequality follows by the induction hypothesis.
Case 2: 0 < a; < a, =---=a,. We only need to prove the homogeneous inequality

8(af+aj+--+a)+(ay+ay+--+a) =8(a;+ay+---+a ) +ad+---+ad)

fora;=xand a, =---=a,_; =1, thatis
8(x*+n—1)+(x+n—1)*>8(x+n—1)(x>+n—1),

x*—4(n—1Dx*+6(n—1*x2+4(n—1)(n*>—2n—1Dx+(n—3)(n—1)(n*—5) >0,

xX2(x—2n+22+2(n—1x*+4(n—1)(n*—2n—1)x+(n—3)(n—1)(n?—5) > 0.

The equality holds for a; = --- =a,_, =0 and a,_; = a,, = 1/2 (or any permuta-
tion).

Remark. The inequality can be also proved by using EV-method (see Corollary 5
from section 5, case k =3 and m =4): If

a+ay+---+a,=1, al+a+---+a’=constant,

then the sum
s —q* 4 4
n=al+aj+---+a

is minimum for eithera; =0or0<a, <a,=---=a,.



Chapter 2

Half Convex Function Method for
Ordered Variables

2.1 Theoretical Basis

The following statement is known as the Right Half Convex Function Theorem for
Ordered Variables (RHCF-OV Theorem).

RHCF-OV Theorem (Vasile Cirtoaje, 2008). Let f be a real function defined on an
interval I and convex on I, where s € int(L). The inequality

a1+a2+---+an)
n

F(@) + flag)+ -+ £(a) 2 nf (
holds for all a,,a,,...,a, € I satisfying
a1+a2+"'+an=n8

and

a,<a,<---<a,<s, me{l,2,...,n—1},

if and only if
f)+(n—m)f(y) = (1 +n—m)f(s)

for all x,y €1 so that

x<s<y, x+((n—m)y=(0+n—m)s.

Proof. For
G =X, AQy='""=0p=S, Aup =" =aq, =),

the inequality
fla)+ flay)+---+ f(a,) = nf(s)
becomes

fO)+(n—m)f(y) = (1 +n—m)f(s);

147
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thus, the necessity is proved. To prove the sufficiency, we assume that

a1§a2<'--<a

<< a,.
Froma; <a, <---<a, <s, it follows that there is an integer
ke{m,m+1,...,.n—1}

so that
<< <s<q<--<a

ne

Since f is convex on I, we may apply Jensen’s inequality to get

flag) +---+ fla,) = (n=k)f (2),

where P
a ) a
Z:M’ ZE]I.
n—k

Therefore, to prove the desired inequality
fla)+ flag) +---+ f(a,) = f(s),
it suffices to show that
fla) +--+fla) +(n—=k)f (2) = nf(s). *)
Let by,..., b, be defined by
a;,+(n—m)b;=(1+n—m)s, i=1,...,k.

We claim that

Z>b12 >bk>5, bl,...,bkE]I.
Indeed, we have
bl > * 2 bk,
s—a
bk —S = k 2 O,

n—m

and
2> b

because

(n—m)b;=(1+n—m)s—a,
=—(m—1)s+(ay+---+a )+ (ag +---+a,)
<—(m—1)s+(k—1s+(a, +-+a,)=
=(k—m)s+(n—k)z < (n—m)z.
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Since by,..., b, € I, by hypothesis we have

fla)) +(n=m)f (b)) = (1 +n—m)f(s),

fla) +(n=m)f (b)) = (1 +n—m)f(s),

hence
fla)+-+fla) +(n—m)[f (b)) + -+ f(b)] = k(1 + n—m)f(s),
fla)+-+fla) = k(l+n—m)f(s)—(n—m)[f (b)) +---+ f(D)]

According to this result, the inequality (*) is true if

k(1+n—m)f(s)—(n—m)[f (b)) + -+ f(b )]+ (n—=k)f (2) = nf(s),

which is equivalent to

pf(@)+(k=p)f(s)=f(b)+---+f(b), p=
By Jensen’s inequality, we have

pf()+(A—=p)f(s)=f(w), w=pz+(1—p)s=s.

Thus, we only need to show that

fw)+(k=1)f(s)= f(by)+ -+ f(by).

Since the decreasingly ordered vector A, = (w,s, ...,s) majorizes the decreasingly
ordered vector B, = (by,b,,...,b;), this inequality follows from Karamata’s in-
equality for convex functions.

Similarly, we can prove the Left Half Convex Function Theorem for Ordered Vari-
ables (LHCF-OV Theorem).

LHCF-OV Theorem. Let f be a real function defined on an interval I and convex on
I, where s € int(I). The inequality

a1+a2+"‘+an)
n

fla)+fla)+-+fla) = nf
holds for all a,,a,,...,a, €I satisfying
a,t+a,+---+a,=ns

and
>s, mef{l,2,...,n—1},
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if and only if
f)+(n—m)f(y) = (1 +n—m)f(s)
forall x,y €1 so tht

x=>s2y, x+(n—m)y=(0+n—m)s.
From the RHCF-OV Theorem and the LHCF-OV Theorem, we find the HCF-OV
Theorem (Half Convex Function Theorem for Ordered Variables).

HCF-OV Theorem. Let f be a real function defined on an interval I and convex on
I, (or I,), where s € int(I). The inequality

a1+a2+"'+an)

F(@)+ flag)+ -+ £(a) = nf (

holds for all a,,a,,...,a, €1 so that

n

a1+a2+"'+an:ns
and at least m of a,, as, . . ., a, are smaller (greater) than s, wherem € {1,2,...,n—1},
if and only if
f)+(n—m)f(y) = (1+n—m)f(s)
for all x,y €I satisfying x +(n—m)y = (1 +n—m)s.
The RHCF-OV Theorem, the LHCF-OV Theorem and the HCF-OV Theorem are
respectively generalizations of the RHCF-Theorem, the LHCF Theorem and the HCF-

Theorem, because the last theorems can be obtained from the first theorems for
m=1.

Note 1. Let us denote
f(u)—f(S), _8(x)—g(y)
u—s xX—y
In many applications, it is useful to replace the hypothesis
fO)+(n—m)f(y) = (1 +n—m)f(s)
in the RHCF-OV Theorem and the LHCF-OV Theorem by the equivalent condition
h(x,y)>0 forall x,y €1 sothat x+(n—m)y =(1+n—m)s.

g(u) = h(x,y)

This equivalence is true since

fO)+n—m)f () —A+n—m)f(s)=[f(x)=f()]+(n—m)[f(y)—f(s)]

=(x—s)glx)+(n—m)(y —s)g(y)
n—m

= T o (X Ye()—g()]

__n—m 2
= 1o XYV hGe ).
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Note 2. Assume that f is differentiable on I, and let
f/x)=f'(y)
x—y

The desired inequality of Jensen’s type in the RHCF-OV Theorem and the LHCF-OV
Theorem holds true by replacing the hypothesis

fE)+(n—m)f(y)= (A +n—m)f(s)

with the more restrictive condition

H(x,y)=

H(x,y)=0 forall x,y €1 sothat x +(n—m)y =(1+n—m)s.
To prove this, we will show that the new condition implies

fE)+(n—m)f(y)= (A +n—m)f(s)

for all x,y €I so that x + (n—m)y = (1 + n—m)s. Write this inequality as

[i(x) = (1T +n—m)f(s),

where

(1+n—m)s—x)
n—m ’

£0) =f(x)+(n—m)f(

From

(1+n—m)s—x)
n—m

£(x) =f'(x)—f’(
— P ()
= 9H(x,y),

it follows that f; is decreasing on I, and increasing on I ; therefore,
[i(x) = fi(s) = (1 +n—m)f (s).

Note 3. The RHCF-OV Theorem and the LHCF-OV Theorem are also valid in the
case when f is defined on I\ {u,}, where u, € I, for the RHCF-OV Theorem, and
u, € I, for the LHCF-OV Theorem.

Note 4. The desired inequalities in the RHCF-OV Theorem and the LHCF-OV The-
orem become equalities for

a1:a2:"':a =S.

In addition, if there exist x, y €I so that

x+(n—m)y=0Q+n-—ms, flx)+n-—m)f(y)=0A+n-—m)f(s), x#y,
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then the equality holds also for
=X, AG=-"=0,=S, Au='""=0a,=Y
Notice that these equality conditions are equivalent to
x+(n—m)y=(0+n—m)s, h(x,y)=0
(x < y for the RHCF-OV Theorem, and x > y for the LHCF-OV Theorem).
Note 5. The WRHCF-OV Theorem and the WLHCF-OV Theorem are extensions of

the weighted Jensen’s inequality to right and left half convex functions with ordered
variables (Vasile Cirtoaje, 2008).

WRHCF-OV Theorem. Let pq,p,, ..., P, be positive real numbers so that
prtpyt+--+p,=1,

and let f be a real function defined on an interval I and convex on I, where s € int(IL).
The inequality

p1f (x) +paf (o) + -+ + pof (%) = f(P1x1 + paxy + -+ + ppXy)
holds for all x,x,,...,x, €1so that p;x; + pyX, + -+ p,Xx, =s and

X< x, <o <X X, <s, me{l,2,...,n—1},

n’»

if and only if
fO)+kf(y) =@ +k)f(s)

for all x, y €1 satisfying
x<s<y, x+ky=(1+k)s,

where
_ Dm+1 +pm+2 +-+ Py

P1

k

WLHCF-OV Theorem. Let p;,p,,.-., P, be positive real numbers so that
p1tpyt+-+p, =1,

and let f be a real function defined on an interval I and convex on I, where s € int(I).
The inequality

p1f () +paf (x2) + -+ puf (x,) Z f(p1x1 + poxa + -+ PpXy)
holds for all x,x,,...,x, €Lso that p;x; + pyXx, + -+ p,x, =s and

X{ZXy= 02X, X,=s, me{l,2,...,n—1},
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if and only if
fO+kf ()= @A +k)f(s)

for all x, y €1 satisfying
x=>s>2y, x+ky=(0+k)s,
where

— Pm+1tPmizt "+ Dn
P1

k
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2.2 Applications

2.1. If a, b, ¢, d are real numbers so that
a<b<1<c<d, a+b+c+d=4,
then

(3a>—2)(a—1)>+(3b*>—2)(b—1)*+(3c2—2)(c —1)*+(3d*>—2)(d—1)*>0.

2.2. If a, b, c,d are nonnegative real numbers so that

a>b>1>c>d, a+b+c+d=4,

then
1 1 1 1 4
+ + + <-.
2a®+5 2b3+5 2c¢3+5 2d3+5° 7
2.3. If
—2n—1
] <ag,<--<a,f<1<a, << ay, a; +a,+---+a,, =2n,
n_
then
3 3 3
ay+a,+---+a, =2n.
2.4. Let ay,a,,...,a, (n=>3) be real numbers so that a; +a, +---+a, = n. Prove
that

(@ if 3<aq;<---<a,,<1<a,, <a,, then

3 3 3 2 2 2.
aj+a,+---+a =2aj+a;+---+a

n’

—1
) if —n—33a1§a2S1S---San,then
n_

3 3 3 2 2 2
aj+a,+--+a +n=2a;+a;+ - +a).

2.5. Let a;,a,,...,a, be nonnegative real numbers so that a; + a,+---+a, =n
andletme{1,2,...,n—1}. Prove that

(@) ifa;<a,<---<a, <1, then
(n—m)(@+a+---+a—n)>2n—2m+1)(a]+a’+---+a’—n);
(b) ifa;>a,>--->a, =1, then
3
n

CHa+-+a—n<(n—-m+2)(al+ai+---+a>—n).
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2.6. Let a,,a,,...,a, (n > 3) be real numbers so that a; + a, + -+ +a, = n. Prove
that

(@ if a; <+ <q,_; <1<aq,, then
4, 4 4 2, 2 2 )
aj+a;+---+a —n=6(a;+a;+---+a; —n);

® if ;< <a,,<1<a,,<a,,then
a4+a4+---+a4—n>E(az+az+---+a2—n)'
1 2 n - 3 1 2 n ’

(© if a;<a;<1<a;<---<a,, then

- 2(n>—3n+3)

al+aj+---+al—n>
nZ—>5n+7

2 2 2
(a; +a;+---+a,—n).

2.7. Leta, b, c,d, e be nonnegative real numbers so thata+ b+c+d+e = 5. Prove
that

(@) if a=b>1>c>d>e, then
21(a* + b*+c*+d*+e?) > a* + b* +c* +d* +e* +100;
(b) if a>b>c>1>d>e, then

13(a*+ b*+c?+d*+e?) > a*+ b*+c* +d* +e* + 60.

2.8. Letay,a,,...,a, (n = 3) be nonnegative numbers so that a, +a, +---+a, =n.
Prove that

(@ if a;=2-->a,_; =>212>a,, then
3, .3 3 4., 4 4 )
7(a;+a,+---+a))=3(a] +a,+---+a,)+4n;
(b) if a12"'2an_221261n_12an, then

3 3 3 4 4 4
13(a; +a, +---+a))=4(a; +a; +---+a;)+9n.

2.9. If a;,a,,...,a, are positive real numbers so that a; +a, +---+a, =n and
aq=>-=2a,=21>2a,,,=->qa, me{l,2,...,n—1},

then

1 1 1
(n—m+1)2(—+—+---+——n)24(n—m)(af+a§+---+ai—n).
a @ an
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. 1 1 1
2.10. If a;,a,,...,a, are positive real numbers so that —+ —+---+ — =n and
a; a a,
a,<--<a,<1<a,,<-+-<a, me{l,2,...,n—1},
then
2 .2 2 n—m
aj+a;+---+a;—n=2|1+ ———— |(a;+a,+---+a,—n).
174 n ( —m+1 (a, +ay n—1)
2.11. Letay,ay,...,a, (n = 3) be nonnegative numbers so that a; +a,+- - -+a, = n.
Prove that

(@ if a; <£---<a,_; £1<a,, then

1 1 1 n
3 + 3 + ... ’ _;
a;+2 a;+2 a:+2 3

() if e, < <a, ,<1<a,; <a, then

1 1 1 n
2 + 2 +...+ —
2a7+3  2a;+3 2a§+3 5

\%

2.12. If a;,a,,...,a,, are nonnegative real numbers so that
alz"'ZanZ1261,1_,_12"'202;1, a1+a2+"'+a2n:2n,

then

1 1 1 2n
T +— +o b — < .
naj+n?+n+1 na;+n>+n+1 na; +n>+n+1" (n+1)

2.13. If a, b,c,d,e, f are nonnegative real numbers so that
azbzc=21l=2dze=>f, a+b+c+d+e+f =6,

then

3a+4 , 3b+4  3c+4 , 3d+4  3e+4  3f+4
3a2+4 3b2+4 3c2+4 3d>+4 3e2+4 3f2+4°
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2.14. If a, b,c,d,e, f are nonnegative real numbers so that
azb>21l>2c>2dze>f, at+b+c+d+e+f =06,

then

a’*—1 N b*—1 N c2—1 N d>—1 N e?—1 N f2-1
(2a+7)2 (2b+7)2 (2c+7)2 (2d+7)2 (2e+7)? (2f+7)?

2.15. If a, b,c,d,e, f are nonnegative real numbers so that
a<b<l1<c<d<e<f, a+b+c+d+e+f =6,

then

a’*—1 b>—1 c2—1 d>—1 e?—1 f*—-1
+ + + + + <0
(2a+5)2 (2b+5)2 (2c+5)* (2d+5)2 (2¢e+5)* (2f +5)2

2.16. If a, b, c are nonnegative real numbers so that

a<b<1<c¢, a+b+c=3,
2a 2b 2c
+ + > 3.
b+c c+a a+b

2.17. If a;,a,, ..., ag are nonnegative real numbers so that

then

G 2a;20320,212a5206=20a;20a3, a;+ta;+---+ag=3§,

then
(af+1)(a§+1)~~(a§+1)2 (a; +1)(ay+1)---(ag+1).

2.18. If a, b, ¢, d are real numbers so that

— <a<b<1<c<d, a+b+c+d=4,

N

then
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2.19. Let a, b, c,d be real numbers. Prove that

(@) if -1<a<b<c<1<d,then

S EUEUE VL FOWE T DL O
a2 b2 ¢2 d2)”— a c d’

(b) if -1<a<b<1<c<d,then
1 1 1 1 1 1 1 1
2(—+—+—+—)24+—+—+—+—.

az b2 ¢z (2 a b ¢ d

2.20. If a, b, c,d are positive real numbers so that
a>b>1>c>d, abcd=1,

then

1 1 1 1
a2+b2+c2+d2—4218(a+b+c+d———g————).

2.21. If a, b, c,d are positive real numbers so that
a<b<1<c<d, abcd=1,

then

Vaee—a+1+vVb2—b+1+vVc2—c+1++vV/d>—d+1>a+b+c+d.

2.22. If a, b, c,d are positive real numbers so that

a<b<c<1<d, abcd=1,

then
1 1 1 1 2
+ + - > -
a*+3a+2 b3+3b+2 34+3c+2 d3+3d+2 3
2.23. If aj,a,,...,a, are positive real numbers so that
a; =2 ap—1 =21z a, a,a, a, = 1;
then
1 1
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2.24. Let ay,a,,...,a, be positive real numbers so that

a;<---<a,;<1<a a;a,---a, =1.

n—1 — — Up>

If k > 1, then
1 1 1 n

+ oot > .
1+ka;, 1+ka, 1+ka, 1+k

2.25. If a;,a,,...,a, are positive real numbers so that
als"'sasslsag, alaz"'a9:1,
then

1 1 1

+ Fob———>1,
(a1+2)2 (a2+2)2 (a9+2)2

2.26. Let ay,a,,...,a, be positive real numbers so that

a1S"‘San_1S1<a

—_ n»

a,ay---a, =1.

If p,q = 0 so that
2pq
p+4q

ptq=1+

3

then
1 1 1 n
S+ S+t > :
1+pa; +qa; 1+pa,+qa; 1+pa,+qa?2  1+p+q

2.27. Let ay,a,,...,a, be positive real numbers so that

a1S"'San_1S1<a

<a, aay---a,=1.
If m>1and 0<k <m, then

1 N 1 - 1 . _.n
(a; + k)™ (a,+ k)™ (a,+k)m — (1+k)m

2.28. If a,,a,,...,a, are positive real numbers so that

a;<---<a,1<1<a a,a,---a,=1,

then
1 1 1

n

+ +o 2>

1+ 3q, 1+ 3a 1+3a, 2
2 n
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2.29. Let ay,a,,...,a, be positive real numbers so that

alﬁ"’ﬁan_1§1<a

<a, aay---a,=1.

1
If0<m<land 0 <k < ———— then
21/m —1

1 N 1 . 1 __.n
(a; + k)™ (a,+ k)™ (a,+k)m — (1+k)m

2.30. If aj,a,,...,a, (n > 4) are positive real numbers so that

a12a22a3212a42"'2a alaz"'an:]_,

n»

then
1 1 1 n
+ ot > —.
3a;+1 3a,+1 3a,+1 4
2.31. If a;,a,,...,a, (n>4) are positive real numbers so that
a12a22a3212a42"‘2an, alaz---an=1,
then
1 4 1 P 1 N
(a; +1)%  (a,+1)2 (a,+1)2 4
2.32. If aj,a,,...,a, are positive real numbers so that
G2 2aq212a, aa---a,=1,
then

1 1 1 n

+ foob——— < —.
(a; +3)2  (a,+3)2 (a,+3)2 " 16

2.33. Let a4, a,,...,a, be positive real numbers so that
a=-=2a,,=1>2a,, aay,---a,=1.

If p,g = 0sothat p+q < 1, then

1 1 1 n
S+ S+t < .
1+pa,+qa; 1+pa,+qa; 1+pa,+qa2  1+p+gq
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2.34. Let ay,a,,...,a, be positive real numbers so that

6112“'Zan_1212an, alaz"'an:]..
1
Ifm>1land k> ——
21/m —1

1 + 1 o 1 < n
(a +k)m  (ay+k)m (a,+k)m ~ (1+k)m

, then

2.35. If a,a,,...,a, are positive real numbers so that
aq=-=2a,,=21>2a, aqay--q,=1,

then
1 1 1 n

+ +ot—<—.
V1+2a, +/1+2a, V1+2a, 43

2.36. Let ay,a,,...,a, be positive real numbers so that
a=z-z2a,,=212a, aay,---a,=1.
If0<m<1andk>m, then

1 N 1 - 1 ._n
(a; + k)™ (a,+ k)™ (a,+k)m ~ (1+k)m

2.37. If ay,a,,...,a, (n > 3) are positive real numbers so that

Q=20 ,212a,,20a, aa--aq,=1,

then
1 N 1 . 1 <
(a; +5)2  (a,+5)2 (a,+5)2 "~ 36
2.38. If a;,a,,...,a, are nonnegative real numbers so that
a>->a,,=1>q, ad+a+---+a’=n,
then
1 1 1 n
+ oot <-.
3—a; 3—a, 3—a, 2

2.39. Let ay,a,,...,a, be nonnegative real numbers so that
alﬁ"'ﬁan_lﬁlﬁan, a1+a2+"'+an:n.

Prove that

n—a;\> n—a,\3 n—a,\>
ai’+a§’+---+ai—n2(n—1)2[(—1) +( 2) +---+( ”) —n].

n—1 n—1
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2.3 Solutions

P 2.1. Ifa, b, c,d are real numbers so that
a<b<1<c<d, a+b+c+d=4,
then
(3a*—2)(a—1)*+(3b*>—2)(b—1)*+ (3c*—2)(c —1)*+ (3d*—2)(d —1)* > 0.
(Vasile C., 2007)

Solution. Write the inequality as

F@+F)+ O+ f@2af(), 5=y
where
fw=0GBu*-2)(u—-1)* uel=R.
From

f”(u) =2(18u*—18u + 1),

it follows that f”(u) > 0 for u > 1, hence f is convex on IL,. Therefore, we may
apply the RHCF-OV Theorem for n = 4 and m = 2. Thus, it suffices to show that
f(x)+2f(y) =3f(1) for all real x,y so that x + 2y = 3. Using Note 1, we only
need to show that h(x, y) = 0, where

hry)— S0 F@ )
xX—y u—1
We have
gw)=3*+v*+u+1)—6?*+u+1)+u+1=3u-3u*—2u—2,

h(x,y)=30*+xy+y?)—3(x+y)—2=(3y—4)*>0.

From x + 2y = 3 and h(x,y) = 0, we get x = 1/3, y = 4/3. Therefore, in
accordance with Note 4, the equality holds for a = b =c =d =1, and also for

Remark. Similarly, we can prove the following generalization:

e leta,,aq,,...,a,, be real numbers so that

a;<--<a,<1<q,;<---<a,, a-+a,+---+a,,=2n.
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n
Ifk = ———, then
f n—n+1

(@@= Kk)ay— 1) + (@2 —k)(ay— 1)+ + (a2, —K)(ap, — 1?2 0,

with equality for a; = a, =--+-=a,, = 1, and also for
1 . n®
a:—’ A, =+ =(1d, = ) a ==, = .
' n2—n+1 2 . i " n2—n+1

P 2.2. Ifa, b, c,d are nonnegative real numbers so that

a>b>1>c>d, a+b+c+d=4,

then
1 + 1 + 1 + 1 < ﬂ
2a34+5 2b3+5 2345 2d3457 7
(Vasile C., 2009)
Solution. Write the inequality as
+b+c+d
Fl@+ )+ f()+f(d)=4f(s), s= % —1,
where 1
= >0.
fw) s UZ
From : .
e 12u(5—4u
F = "Gersy

it follows that f”(u) = 0 for u € [0,1], hence f is convex on [0,s]. Therefore, we
may apply the LHCF-OV Theorem for n = 4 and m = 2. Using Note 1, we only need
to show that h(x, y) > 0 for x, y > 0 so that x + 2y = 3. We have

f@—f1)  2w?+u+1)

W= T T aw )
_gx)—g(y) 2E
h(xz.y) - - ’
xX—y 7(2x3 +5)(2y3 +5)
where
E=-2x*y*—2xy(x+y)—2(x*+xy +y*)+5(x+ y)+5.
Since

E=(1-2y)(2+3y—2y*)=(1—-2y)*(2+xy) >0,
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the proof is completed. From x +2y =3 and h(x,y) =0, we getx =2, y = 1/2.
Therefore, in accordance with Note 4, the equality holds fora =b=c=d =1,
and also for

Remark. Similarly, we can prove the following generalization.

e Ifay,a,,...,a,, are nonnegative real numbers so that

a,=--z2a,=21=2a,,=--=2a,, a+ta+---+ay,=2n.

then
1 n 1 4 + 1 S 2n2
3 1 3 1 3 1 — .2 3
a;+n+< a,+n+- a, +n+- n*+n+l
with equality for a; = a, = -+ = a,, = 1, and also for
1
a].:n’ a2:...:an:1’ an+1:...:a2n:H.
O
P23.If
—2n—1
—1_a1_ ..SanS1San+1S---Sa2n, a1+a2+...+a2n:2n,
n_
then

3 3 3
aj+a,+---+a, =2n.
(Vasile C., 2007)

Solution. Write the inequality as

_a1+a2+"'+a2n

flay)+f(ag)+---+f(ay,) = 2nf(s), s= on =1,

where
—2n—1

fw=u®, u> —

From f”(u) = 6u, it follows that f (u) is convex for u > s. Therefore, we may apply
the RHCF-OV Theorem for 2n numbers and m = n. By Note 1, it suffices to show

—2n—1
that h(x,y)>0for all x,y > n—l so that x + ny = 14 n. We have

g(u) = f=r) =u’+u+1,
u—1
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n—1)x+2n+1
x+y+1:( ) 7 =0
n_

h(x,y) = g(X)z = g(y) _

From x + ny =1+n and h(x,y) =0, we get

X_—Zn—l _n+2
a1 YT -1
In accordance with Note 4, the equality holds for a; = a, =---=a,, = 1, and also
for
a_—2n—1 a,=-+=a,=1, a,,,=-"=a _nt2
1— n—1 > 2 —%n T b n+1 — - 2n_n_1'
]
P 2.4. Let aj,a,,...,a, (n=> 3) be real numbers so that a; +a,+---+a, = n. Prove
that

() if 3<a;<---<a,,<1<a,;<a,, then

2.
n’

3, .3 3 2 2
ajta,+---+a =2aj+a,+---+a
.. n—1
(b) U‘—quSaleS---San,then

3, 3 3 2 2 2
aj+a,+--+a +n=2a;+a;+--+a).

(Vasile C., 2007)

Solution. (a) Write the inequality as

fla)+fla))+---+f(a))=nf(s), s= =1,

where
fw)y=uv*—u? u>-3.

For u > 1, we have
f'(u)y=6u—2>0,

hence f(u) is convex for u > s. Thus, we may apply the RHCF-OV Theorem for
m = n— 2. According to this theorem, it suffices to show that

fO)+2f(y)=3f(1)

for —3 < x < y satisfying x + 2y = 3. Using Note 1, we only need to show that
h(x,y) = 0, where

h(x,y)=

g(X)—g(y)’ o(u) =
x—

fw)—f(1)
u—1
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We have
gw)=u?
x+3
h(x,y)=x+y=-——20.
From x + 2y = 3 and h(x,y) = 0, we get x = —3 and y = 3. Therefore, in
accordance with Note 4, the equality holds for a; = a, =---=a, =1, and also for
a,=-3, a=--=a,,=1, a,_;=a,=3.

(b) Write the inequality as

fla)+flag)+---+f(a)=nf(s), s

where
n—1

n—3

fw=u*—20u% u>-—

For u > 1, we have
f"(u)=6u—4>0,

hence f(u) is convex for u > s. Thus, we may apply the RHCF-OV Theorem for
m = 2. According to this theorem, it suffices to show that

fe)+(n=2)f(y)=(n-1)f(1)

—1
for — 1=~ < x < y satisfying x + (n—2)y = n—1. Using Note 1, we only need to
n —
show that h(x, y) = 0, where

glx)—g(y) fw—fQQ)
hx,y)=——""7"—, gW)=—"—"7".
X — u—1
We have
g(u):uz_u_:l:
—3)x+n—-1
h(x,y)=X+y—1=(n rn-1.,,
n—1
n—1 n—1
From x + (n—2)y = n—1 and h(x,y) = 0, we get x = — 3andy: 3
n— n—
Therefore, in accordance with Note 4, the equality holds fora; =a, =---=a, = 1.
If n > 4, then the equality holds also for
a——n_1 a,=1 az = —a—n_1
Yop=3 P B a3
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P 2.5. Let ay,a,,...,a, be nonnegative real numbers so that a; +a,+---+a, =n
and let me {1,2,...,n—1}. Prove that

(a) ifa;<a,<---<a, <1, then
(n—m)(ai’+a§+---+ai—n)2(2n—2m+1)(af+a§+---+a,21—n);
(b) ifa,=2ay,=>--->a, =1, then
cC+a+-+ai—n<(n—-m+2)(al+aj+---+a’—n).
(Vasile C., 2007)

Solution. (a) Write the inequality as

fla))+fla)+---+ f(a,)=nf(s), s
where
fwW)=mn—-—m’—2n—2m+1u? uel=[0,n].
For u > 1, we have
f'w)=6(n—mu—22n—2m+1)
>6(n—m)—22n—2m+1)=2(n—m—1) >0,

hence f is convex on I ;. Thus, by the RHCF-OV Theorem and Note 1, we only need
to show that h(x, y) > 0 for all nonnegative numbers x, y so that x + (n—m)y =
n—m+ 1. We have

g(u)=j%=(n—m)(u2+u+1)—(2n—2m+1)(u+1)
=(n—-mui—(n—-m+u—n+m-—1,
h(x,y)zM=(n—m)(x+y)—n+m—1:(n—m—l)xZO.

From x+(n—m)y = 1+n—mand h(x,y) =0, we get x =0, y = (n—m+1)/(n—m).
Therefore, in accordance with Note 4, the equality holds fora; =a, =---=a, =1,
and also for

(b) Write the inequality as

fla)+flag)+---+f(a,)=nf(s), s

where
fW=m-m+2u*—u®, uel=[0,n].
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For u <1, we have
f"w)=2n—-m+2—-3u)=>2(n—m+2—-3)=2(n—m—1) >0,

hence f is convex on I,. By the LHCF-OV Theorem and Note 1, it suffices to show
that h(x,y)> 0 for all x, y > 0 so that x + (n—m)y =1+ n—m. We have

g(u)=1%=(n—m+2)(u+1)—(u2+u+1)
=—u*+(n—m+Du+n—m+1,
h(x,y):%fl(y):—(x+y)+n—m+1:(n—m—l)yZO.
From x +(n—m)y =1+n—mand h(x,y) =0, wegetx =n—m+1, y = 0.
Therefore, the equality holds for a; =a, =---=a, =1, and also for
a,=n—m+1, a=---=a,=1, au,=--=a,=0.

Remark 1. For m = 1, we get the following results:

e Ifay,a,,...,a, are nonnegative real numbers so that a; +a, +---+a, = n, then
3 3 3 2 2 2
(n—1)(a; +a;+---+a,—n)=(2n—1)(a; +a;+---+a;—n),

with equality for a; = a, =--- =a, = 1, and also for

alzo’ Ay =0d3 =--=0a, =
n—1
(or any cyclic permutation).

e Ifa,,a,,...,a, are nonnegative real numbers so that a, +a,+---+a, = n, then

3 3 3 2 2 2
aj+a,+--+a,—n<(n+1)(aj+a,+---+a,—n),

with equality for a; = a, =--- =a, = 1, and also for

(or any cyclic permutation).

Remark 2. For m = n —1, we get the following statements:

e Ifay,a,,...,a, are nonnegative real numbers so that

IA
IA
2

a;

then
3, .3 3 2, 42 2
a;+a,+---+a +2n=>3(a; ta,+---+a;),
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with equality for a; = a, = -+- =a, = 1, and also for
a=0, a=-=a,,=1, a,=2.

e Ifa,,a,,...,a, are nonnegative real numbers so that

a=z-=2a,,=21>2a, a+ay+---+a,=n,
then
C+a+-+ad+2n<3a+ai+--+ad),
with equality for a; = a, =--- =a, = 1, and also for

Remark 3. Replacing n with 2n and choosing then m = n, we get the following
results:

e Ifa,,a,,...,a,, are nonnegative real numbers so that

a,<--<a,<1<a,;<---<a,, ata+---+ay,,=2n,

then
3, .3 3 2, 2 2
n(a; +a, +---+a, —2n) > (2n+1)(aj +a; +---+a; —2n),
with equality for a; = a, = -+- = a,, = 1, and also for
1
a; =0, ay=---=q,=1, an+1=---:a2n=1+g.
e Ifa,,a,,...,a,, are nonnegative real numbers so that
alz"'ZanZ12(1,1_,_12"'202;1, a1+a2+"'+a2n:2n,
then
3, .3 3 2, 2 2
a;+a,+---+a, —2n < (n+2)(a; +a; +---+a; —2n),
with equality for a; = a, = -+ = a,, = 1, and also for

@ =n+l, a=-=a,=1, a,,=""=0ay,=0.

P 2.6. Let a,,a,,...,a, (n > 3) be real numbers so that a, +a, +---+a, = n. Prove
that

(@) if a; <---<a,_; <1<a, then

4, 4 4 2, 2 2 .
a/+a;+---+a, —n=6(a;+a;+--+a, —n);
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M) if a,<---<a, ,<1<a,, <a, then
4 4 4 14 2 2 2 .
a1+a2+---+an—n2?(a1+a2+---+an—n),

(© if a,<a,<1<a;<---<a,, then
1 2 3 n

- 2(n>—3n+3)

4, 4 4
at+at+--+at—n>
Lo m2 n n2—5n+7

2 2 2
(a;+a;+---+a;—n).

(Vasile C., 2009)
Solution. Consider the inequality
al+al+--+at—n>k(a®+aj+---+a>—n), k<6,

and write it as

Fla)+fla)+ -+ fla) znf(s), s=TT2T T oy

n

where
fw)=u*—ku?, ueR.

From f”(u) = 2(6u? — k), it follows that f is convex for u > 1. Therefore, we may
apply the RHCF-OV Theorem for m =n—1, m = n—2 and m = 2, respectively. By
Note 1, it suffices to show that h(x, y) = 0 for all real x, y so that x + (n—m)y =
1+ n—m. We have

_fw—-fQa) _
===

g(u) G+ +u+1—k(u+1),

=x*+xy+y*+x+y+1—k.

h(x,y) = g(X)z = g)

(a) We need to show that h(x,y)>0fork=6, m=n—1, x+y = 2. Indeed,
we have

1
h(x,y)=1-xy= ;t(x—y)2 > 0.
From x + y =2 and h(x,y) =0, we get x = y = 1. Therefore, in accordance with
Note 4, the equality holds fora; =a, =+ =a, =1.
(b) Fork=14/3, m=n—2 and x +2y = 3, we have

1
h(x,y) =3By —5)*>0.
From x + 2y = 3 and h(x,y) = 0, we get x = —1/3 and y = 5/3. Therefore, the

equality holds for a; =a, =---=a, =1, and also for

_!

5
a1—3, Ay =+"=0a, ,=1, an_lzan:§.
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2(n*—3n+3
(c) We have k = M, m = 2 and x+(n—2)y = n—1, which involve
n2—>5n+7
[(n2—5n+7)y—n?+3n—17?
h(x,y)= > 0.
(x,7) n2—>5n+7
From x + (n—2)y =n—1 and h(x,y) =0, we get
—n?+5n—5 n>—3n+1
X = 5 .y: *
n2—5n+7 n2—5n+7
Therefore, the equality holds for a; = a, =---=a, =1, and also for
—n?+5n—5 ; n?—3n+1
a, = A, = A= =qQ,, = —,
Vonz—spn+y7 273 " n2—5n+7

P 2.7. Let a, b, c,d, e be nonnegative real numbers so that a+b+c+d+e = 5. Prove
that

(@) if a=b>=1>c>d >e, then
21(a®* + b* + 2+ d*+e?) > a* + bt +ct +d* +e* +100;
(b) if a=b>c>1>d >e, then
13(a*+ b*+c?+d*+e?) > a* + b*+ ¢t +d* +e* + 60.
(Vasile C., 2009)
Solution. Consider the inequality
k(a>+ b2 +c?2+d?+e2—5)>a*+b*+c*+d*+e*—5, k>6,

and write it as

_a+b+c+d+e_
= - =

f@+fB)+fl)+f(d)+f(e)=5f(s), s 1,
where
fw)=ku*—u*, u>0.

From f”(u) = 2(k — 6u?), it follows that f is convex on [0, 1]. Therefore, we may
apply the LHCF-OV Theorem for m = 2 and m = 3, respectively. By Note 1, it
suffices to show that h(x, y) > 0 for all x, y > 0 so that x + (5—m)y = 6—m. We

have
_f@— ()
u—

1 =k(u+1)—@P+u®>+u+1),

g(u)
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(x)—g(y)
h(x,y) =8 "8V
X—=y
(a) We need to show that h(x,y)>0fork=21,n=5,m=2and x+3y =4;
indeed, we have

=k—(x*+xy+y*+x+y+1).

h(x,y)=21—(x*+xy+y*+x+y+1)=y(22—7y) = y(10+3x +2y) > 0.

From x+3y =4 and h(x, y) =0, we get x = 4 and y = 0. Therefore, in accordance
with Note 4, the equality holds fora =b=c=d =e =1, and also for

a=4, b=1, c=d=e=0.

(b) We have k =13, n=5, m =3 and x + 2y = 3, which involve
h(x,y)=13—(x*+xy+y*+x+y+1)=y(10—-3y)=y(4+2x+y) > 0.

From x +2y = 3 and h(x, y) = 0, we get x = 3 and y = 0. Therefore, the equality
holds fora=b =c=d =e =1, and also for

a=3, b=c=1, d=e=0.

P 2.8. Let ay,a,,...,a, (n > 3) be nonnegative numbers so that a, +a,+---+a, = n.
Prove that

(@) if a,=2--->a,_, =>12>a, then
3, .3 3 4 4 4 )
7(a;+a,+---+a))=3(a] +a,+---+a;)+4n;
M) if a,2---=2a, ,=21>a,, >a,, then
1@ +a+---+a)=4(af+aj+---+ah)+9n.
(Vasile C., 2009)
Solution. Consider the inequality
3, .3 3 4 4 4
k(aj+a,+---+a, —n)=aj+a;+--+a,—n, k=2,
and write it as

fla)+ f(ay)+-+-+ f(a,) = nf(s), S:a1+a2+---+an =1,

n

where
fw)=ku®*—u*, u>0.
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From f”(u) = 6u(k — 2u?), it follows that f is convex on [0, 1]. Therefore, we may
apply the LHCF-OV Theorem for m = n—1 and m = n— 2, respectively. By Note 1,
it suffices to show that h(x, y) > 0 for x > y > 0 so that x + my = 1+ m. We have

g(lt)=%=k(u2+u+1)—(u3+u2+u+1),
h(x’J’):w=—(X2+xy+y2)+(k—1)(x+y+1).

(a) We need to show that h(x,y) >0fork=7/3, m=n—1, x+y = 2.
Indeed,
h(x,y)=xy >0.

From x > y, x+y = 2 and h(x,y) = 0, we get x = 2 and y = 0. Therefore, in
accordance with Note 4, the equality holds for a; =a, =---=a, =1, and also for

(b) We have k =13/4, m=n—2, x + 2y = 3, which involve
h(x,y)=3y(9—4y)=3y(3+2x)>0.

From x +2y = 3 and h(x, y) = 0, we get x = 3 and y = 0. Therefore, the equality

holds for a; =a, =---=a, =1, and also for
aq=3, a=--=a,,=1, a,_,=a,=0
O
P 2.9. Ifa,,a,,...,a, are positive real numbers so that a, +a, +---+a, =n and

aq=>-=2a,=>1>a,,,=>->qa, me{l,2,...,n—1},

then
12 1 1 1 >4 2 2 2
(n—m+1) a—+a—+~--+a——n > 4(n—m)(aj +a;+---+a;,—n).
1 2 n
(Vasile C., 2007)

Solution. Write the inequality as

fla)+fla))+---+f(a) =nf(s), s= =1,

where )
fw)= w—%n—m)uz, u>0.
u
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For u € (0, 1], we have

Frw =20 g m)

>2(n—m+1)*—-8(n—m)=2(n—m—1)>>0.

Since f is convex on (0,s], we may apply the LHCF-OV Theorem. By Note 1, it
suffices to show that h(x,y) >0 for all x,y >0 sothat x +(n—m)y =1+n—m.

We have )
—f(1) —(n—m+1
g(u):f(u) fA) _—(n—m+1) A= m) U+ 1),
u—1 u
—m+1)? —m+1—-2(n— 2
h(x,y)z(n m ) _4(n_m):[n m (Tl m)y] > 0.
Xy
From x + (n—m)y =1+n—m and h(x, y) =0, we get
_n—m+1 _n—m+1
B 2 YT 2(n—m)’
Therefore, in accordance with Note 4, the equality holds fora; =a, =---=a, =1,
and also for
a_n—m+1 C—di— e ma =1 a. .= _a_n—m+1
1= 7 5 0 RTFBE =4 =4 Gy =00 ”_—Z(n—m)'

Remark 1. For m = n—1, we get the following elegant statement:

e Ifay,a,,...,a, are positive real numbers so that

aQq=>--=2a,,=21>a, a+ay+---+a,=n,

then
1 1 1 5 o )
—+—++—2a7t+ta,+-+a,
a; a a,

with equality fora; =a, =---=aqa, =1

Remark 2. Replacing n with 2n and choosing then m = n, we get the following
statement:

e Ifa;,a,,...,a,, are positive real numbers so that

ClIZ"'ZanZ1Zan+12“'202m a1+a2+"'+a2n:2n,

then
of 1 1 1 2, .2 2
(n+1)*| —+—+---+——2n|>4n(a; +a; +---+a,, —2n),
a; dp Qon
with equality for a; = a, = -+- = a,, = 1, and also for
n+1 n+1
a; = QG=a3=-"=a,=1, a,="=0ay, =

2’ 2n
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. 1 1
P 2.10. Ifay,a,,...,a, are positive real numbers so that — + — +---+ — =n and
a; da an
a,<--<a,<1<a,1<--<a, me{l,2,...,n—1},
then
vn—m
c+ai+-+ad-—n=2| 1+ ———— |(a;+a,+---+a,—n).
n—m+1

(Vasile C., 2007)

Solution. Replacing each q; by 1/a;, we need to prove that

012"'2am2120m+12"'2an, a1+a2+“'+an:n
involves
G t+a,+-+a
fla))+f(ay)+---+f(a,) =nf(s), s= ! zn =1,
where
1 2k m—n
f(u)————, k=1+——, u>0.
u n—m+1

For u € (0,1], we have

6—4ku _ 6—4k 2(\/n— 1)2>

frw= ut = ut (n—m+ Du*

Thus, f is convex on (0,1]. By the LHCF-OV Theorem and Note 1, it suffices to
show that h(x, y) = 0 for x, y > 0 so that x + (n —m)y = 1+ n—m, where

g(x)—g(y) fw)—f(1)
x—y u '

h(x,y) = 1

g(u) =

We have
-1 2k—1
glu)= — T

u

u
and

1 (/1 1

We only need to show that
1 1 4 24/n—m
Xy n—m+1
Indeed, using the Cauchy-Schwarz inequality, we get

1 (1+\/n m)? (1+1/n—m)2 +2 n—m

1
— 1 .
x y x+(n m)y n—m+1 n—m+1
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From x + (n—m)y =1+n—m and h(x, y) =0, we get
= n—m+1 _ n—m+1
1+\/n—m’ Y n—m+1/n—m'

By Note 4, we have

fla)+ fag) +---+ f(a,) =nf(1)

fora; =a, =---=a, =1, and also for

n—m+1 1 n—m+1
a :—, a :a :---:a = 5 a :-'-:a = .

' 1++vn—m 2 ° " md " n—m++vn—m

Therefore, the original inequality becomes an equality fora; =a, =---=aqa, =1,
and also for

l1+vn—m n—m++vn—m
Q=" a2:a3:”':am:19 pyr = =0y = .

n—m+1 n—m+1

Remark. Replacing n with 2n and choosing then m = n, we get the statement
below.

e Ifa;,a,,...,a,, are positive real numbers so that
1 1 1
a,<--<a,<1<a, <---<ay, —+—+--+—=2n,
a; An
then
2 2 2 \/ﬁ
a1+a2+~~-+a2n—2n22(1+—)(a1+a2+~-+a2n—2n).
n+1
with equality for a; = a, =--+- = a,, = 1, and also for
1++/n 1 n++n
a, = 5 a,=ay;=+--+=a,=1, a == (Ao, = .
1 n+1 2 3 n n+1 2n n+1
O
P2.11. Leta,,q,,...,a, (n = 3) be nonnegative numbers so that a;+a,+:--+a, = n.
Prove that
() if a; <---<a,_; <1<Za, then
1 1 1 n
ettt 2
a;+2 a;+2 az+2 3

M ifa<---<a,,<1=<a,,<a, then
1 1 1 n
+ 4ot —.
2a7+3  2ai+3 2a2+3 5

(Vasile C., 2007)
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Solution. Consider the inequality

1+1++1>nke[03]-
ai+k  a;+k a2+k ~ 1+k Y

and write it as

fla)+f(a)+---+fla,)Znf(s), s

n
and

_ata+-ta,

1
u)= , u=0.
f@w) Tk
For u > 1, we have

o 2(3u—k) _ 2(3—K)
=" = s =

hence f (u) is convex for u > s. Therefore, we may apply the RHCF-OV Theorem for

m = n—1 and m = n—2, respectively. By Note 1, it suffices to show that h(x,y) >0
for all x,y >0 so that x +(n—m)y =1+ n—m. Since

o @M _ —u=i
& 1 A+ +k)’
_gb)—gly)  xy+x+y—k
oY) = T T v e+ 002k
we only need to show that

xy+x+y—k=>0.

(a) We need to show that xy+x+y—k>0fork=2, m=n—1,x+y =2;
indeed, we have

xy+x+y—k=xy=>0.

Fromx <y,x+y=2and xy+x+y—k =0, we get x =0 and y = 2. Therefore,
by Note 4, the equality holds for a; = a, =---=a, =1, and also for

a1:0, a2:"'

(b) We have k =3/2, m=n—2, x + 2y = 3, hence

- 142
x}’+x+y-k:x(42 x) _ X > ) 5o

From x+2y =3 and xy + x + y —k =0, we get x = 0 and y = 3/2. Therefore,
the equality holds for a; = a, =---=a, =1, and also for
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P 2.12. Ifa;,a,,...,a,, are nonnegative real numbers so that
a=z-z2a,z21>2a,, 224, aq-+a,+--+da,,=2n,

then

1 1 1 2n
- +— +o b — < .
na;+n>+n+1 na;+n®>+n+1 nay; +n2+n+1" (n+1)2

(Vasile C., 2007)

Solution. Write the inequality as

_a1+a2+"'+a2n

flay) +f(ag)+ -+ f(ay,) = 2nf(s), s= on =1,

where .
u)= — , u=0.
fw nu2+n2+n+1

For u € [0, 1], we have

£ = 2nu(n®+n+1—3nu?) - 2nu(n®*+n+1—3n)
(nu2+n2+n+1) = (nu2+n2+n+1)3

=0,

hence f is convex on [0,s]. Therefore, we may apply the LHCF-OV Theorem for 2n
numbers and m = n. By Note 1, it suffices to show that h(x,y) >0 forall x,y >0
so that x + ny = 1+ n. We have

(W) = fW—=rQAQ) n(u+1)
s = -1 (n+12(m2+n2+n+1)
h(x,y) = g)—gy)
x—y

B n(n>+n+1—nx—ny—nxy)

 (n+12(nx2+n2+n+1)(ny2+n2+n+1)

_ n(ny —1)* >0
(n+1)2(nx2+n2+n+1)(ny2+n2+n+1)

From x +ny = 1+ n and h(x,y) =0, we get x = n and y = 1/n. Therefore, the
equality holds for a; =a, =---=a,, =1, and also for

a,=n, a=--+=a,=1, a,,=-=a,=fracln.
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P 2.13. Ifa,b,c,d,e, f are nonnegative real numbers so that
azb=cz2l=2dze>f, a+b+c+d+e+f =06,

then
3a+4 3b+4 3c+4 3d+4 3e+4 3f+4

+ + + + + <
3a2+4  3b2+4 3c2+4 3d2+4 3e2+4  3f2+4
(Vasile C., 2009)

Solution. Write the inequality as

_atb+ctd+etf

f@+f)+f)+f(@+fle)+f(f)=6f(s), s= < 1,
where 3 4
_u_
fW=gergy 420

For u € [0, 1], we have

6(16 —9u®) + 216u(1 —u) -
(3u?+4)3

hence f is convex on [0,s]. Therefore, we may apply the LHCF-OV Theorem for

n =6 and m = 3. By Note 1, it suffices to show that h(x, y) > 0 for all x,y > 0 so
that x + 3y = 4. We have

ffw)=

0,

f@W—-rQA) _ 3u

SW=""T7 Thasa
hx,y) = §0=80) _ 3(4—3xy)
Y xX—Yy (3x2+4)(3y2+4)
3(x —2)?

= > 0.
(3x2+4)(3y2+4)

From x + 3y = 4 and h(x,y) = 0, we get x = 2 and y = 2/3. Therefore, in
accordance with Note 4, the equality holds fora=b=c=d =e=f =1, and

also for
2

a=2, b=c=1, d=e=f=-.

3

P 2.14. Ifa,b,c,d,e, f are nonnegative real numbers so that
azb>21l2c>dze>f, at+b+c+d+e+f =06,

then

a’*—1 b*>—1 -1 d>—1 e?—1 f2—1
+ + + + + >0
(2a+7)2 (2b+7)2 (2c+7)? (2d+7)2 (2e+7)? (2f+7)?

(Vasile C., 2009)




HCF Method for Ordered Variables 181

Solution. Write the inequality as

_a+b+c+d+e+f

f@+f)+f)+f(d)+f(e)+f(f)=6f(s), s 1,

6
where
u?—1

fluw)= Cur ) >

For u € [0, 1], we have
, 2(37 — 28u)
= >
frw (2u + 7)4 ’

hence f is convex on [0,s]. Therefore, we may apply the LHCF-OV Theorem for
n =6 and m = 2. By Note 1, it suffices to show that h(x, y) > 0 for all x,y > 0 so
that x + 4y = 5. We have

_f@—f@) _ u+1

g u—1  (2u+7)?

gx)—g(y) 21—4x—4y—4xy

h(x,y) =

x—y  (2x+7)2(2y +7)?
B (x —4)?
C2x+ 72y +7)2 T

From x +4y = 5 and h(x,y) = 0, we get x = 4 and y = 1/4. Therefore, the
equality holds only fora=b=c=d =e=f =1, and also for

P 2.15. Ifa,b,c,d,e, f are nonnegative real numbers so that
a<b<l<c<d<e<f, a+b+c+d+e+f=6,

then

a’*—1 b*—1 c2—1 d2—1 e?—1 f2—-1
+ + + + + <0
(2a+5)2 (2b+5)2 (2c+5)2 (2d+5)2 (2e+5)? (2f +5)2

(Vasile C., 2009)
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Solution. Write the inequality as

_a+b+ctd+e+f

f@+fO)+f+f(A)+f(e)+f(f)=6f(s), s= 3 1
where

flw)= % u>0.
For u > 1, we have

P =2 >0,

hence f(u) is convex for u > s. Therefore, we may apply the RHCF-OV Theorem
for n = 6 and m = 2. By Note 1, it suffices to show that h(x,y) >0 forall x,y >0
so that x +4y = 5. We have

_f@—f() _ —u-1

g u—1  (2u+5)2
x —
h(x,y) = 8( )_i(y)
_A4xy +4x+4y—5
~ (2x +5)2(2y +5)2
4xy + 3x

= 0
(2x +5)2(2y +5)2 —
From x +4y = 5 and h(x,y) = 0, we get x = 0 and y = 5/4. Therefore, in

accordance with Note 4, the equality holds only fora=b=c=d =e=f =1,
and also for

P 2.16. If a, b, c are nonnegative real numbers so that

a<b<1<c¢, a+b+c=3,

\J 2a \J 2b Q 2c
+ + > 3.
b+c c+a a+b

then

(Vasile C., 2008)
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Solution. Write the inequality as

_a+b+c

f@+fO)+F)23(), s=—F =1,
where
fw)=4/——, uelo,3).
3—u
From
F(u) = 3(4u—3)

4ud/2(3 —u)5/2’

it follows that f(u) is convex for u > s. Therefore, we may apply the RHCF-OV
Theorem for n = 3 and m = 2. So, it suffices to show that

f)+f(y)=2f(1)

forx + y =2,0 < x <1< y. This inequality is true if g(x) > 0, where

g)=f()+f(¥)—2f(1), y=2-x, x€[0,1].

Since y’ = —1, we have

/ _rt g/ _E 1 _ 1
g'(x)=f'(x) f(y)—z[\/x(g_x)s \/y(s—y)B]'

The derivative f’(x) has the same sign as h(x), where

h(x)=y(B—y)P’—-x(B—x)’=2—-x)1+x)’—-x(3—x)°
=2(1—11x + 15x%—5x3) = 2(1 — x)(1 — 10x + 5x2).

Let
2
x;=1——.

V5

Since h(x;) = 0, h(x) > 0 for x € [0,x;) and h(x) < O for x € (x4, 1), it follows
that g is increasing on [0, x; ] and decreasing on [x;,1]. From

g0)=f(0)+f(2)—-2f(1)=0,
gM)=rM)+r1)-2f(1)=0,

it follows that g(x) > 0 for x € [0,1].
The equality holds fora=b =c =1, and also fora=0, b =1 and c = 2.
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P 2.17. If a;, a,,...,ag are nonnegative real numbers so that
a,=2a,=2a3=2a,=21>2a5=>a4=a,=2ag, a,+a,+---+ag=3§,

then
(@+1D)(ai+1)---(ad+1) = (a; +1)(a, + 1)+ (ag + 1).

(Vasile C., 2008)

Solution. Write the inequality as

flay)+ f(ay)+---+ f(ag) = 8f(s), S:a1+a2-g---+a8 =1,

where
fW)=In@?+1)—In(u+1), u>0.

For u € [0, 1], we have

2(1—u?) 1 (@W—-u)+4u(l-uv)+u*+3

@12 @rlE | @ e

£(w) =

Therefore, f is convex on [0,s]. According to the LHCF-OV Theorem applied for
n =8 and m = 4, it suffices to show that f(x)+4f(y) = 5f(1) for x, y > 0 so that
x +4y = 5. Using Note 2, we only need to show that H(x, y) > 0 for x,y > 0 so
that x +4y =5, where

_f)=F'0) _ 2(1—xy) N 1

H(x,y) x—y  (2+1D0G2+1) (x+Dy+1)

The inequality H(x, y) > 0 is equivalent to
21 —xy)x+ Dy + D+ (x*+ 1D (y*+1)>0.
Since 2(x%+1) > (x +1)? and 2(y* + 1) > (y + 1)?, it suffices to prove that
8(1—xy)+(x+1)(y+1)=0.
Indeed,
8(1—xy)+(x+1)(y +1)=28x*—38x + 14 =28(x —19/28)* +31/28 > 0.

The proof is completed. The equality holds for a; = a, =--- = ag.
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P 2.18. Ifa, b, c,d are real numbers so that

?<a<b<1<c<d a+b+c+d=4,

7(1+1+1+1)+3(1+1+1+1)>40
a2z b2 ¢2 (g2 a b ¢ d)

then

(Vasile C., 2011)

Solution. We have
1 1
d=4—a—b—c<4+_-+-—-1=4
2 2

Write the inequality as

a+b+c+d

f@+fb)+f()+f(d)=4f(), s= — L

where

7 3 —1
f(u)=ﬁ+£, UGH:[7,4]\{O}

7 3
Clearly, f (u) is convex foru > 1 (because — and — are convex). According to Note

3, we may apply the RHCF-OV Theorem for n= 4 and m = 2. By Note 1, we only
need to show that h(x, y) > 0 for x, y € I so that x + 2y = 3, where

h(x,y) = g(Xi:g(y)J () = f(ui:{(l)'
We have
7 10
gu) = - T T
u u
7(x +y)+10xy 2x+1D)(— 5x+21)
h(x,y) = x2y? oxy?

From x + 2y = 3 and h(x,y) = 0, we get x = —1/2, y = 7/3. Therefore, in
accordance with Note 4, the equality holds for a = b =c =d =1, and also for
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P 2.19. Let a, b, c,d be real numbers. Prove that
(@) if —1<a<b<c<1<d, then

(Vasile C., 2011)
Solution. (a) We have
d=4—a—-b—c<4+1+1+1=7.

Write the desired inequality as

F@+FB)+ O+ f@2af(), 5=y
where
3 1
flw)= —— -, u€l= [—1,7]\ {0}.
u u
From

f//(u) — 2(9u: u) > 0,

it follows that f is convex on I . According to Note 3, we may apply the RHCF-OV
Theorem for n = 4 and m = 3. By Note 1, it suffices to show that h(x,y) = 0 for
all x, y €I so that x + y = 2. We have

fW—fQ) _ 2 3
) _

—1 u  u?

g(u) =

gx)—g(y) 3(x+y)+2xy
h(x,y) = =y XZy?
2 +1DB—=x) 2(x+1)(y+1) >0
- x2y?2 - x2y?2 =

From x < y, x + y = 2 and h(x,y) =0, we get x = —1 and y = 3. Therefore, in
accordance with Note 4, the equality holds for a = b =c =d =1, and also for

(b) We have
d=4—a—b—c<4+1+1—1=5.
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Write the desired inequality as

F@+FD)+F O+ (@2 4f(), =TTy
where
2 1
f@==S—=, uel=[-1,5]\{0}.
u u
From

f//(u) — 2(6u: u) > 0,

it follows that f is convex on I ;. According to Note 3, we may apply the RHCF-OV
Theorem for n = 4 and m = 2. By Note 1, it suffices to show that h(x,y) = 0 for
all x, y €I so that x +2y = 3. We have

f@W-f1) _ 1 2

u—1 u  u?

g(u) =

h(x,y) = g(xj:g(J’) _ 20x+y)+xy

_ G D6=x)
2x2y2

From x+2y = 3 and h(x,y) =0, we get x = —1 and y = 2. Therefore, the equality
holds fora=b =c=d =1, and also for

a=-1, b=1, c=d=2.

P 2.20. If a, b, c,d are positive real numbers so that
a>b>1>c>d, abcd=1,

then ,
a2+b2+c2+d2—4218(a+b+c+d ———————— )

Solution. Using the substitution

we need to show that

fO)+f )+ f(=2)+f(w) = 4f (s),
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where
_Xxty+zt+tw

4
fluw)=e*—1—18(e"—e™), ueR.

x=z2y=20=2z=2w, s 0,

For u < 0, we have
F"(u) = 4e* +18(e ™ —e") > 0,

hence f is convex on (—00,s]. By the LHCF-OV Theorem applied for n = 4 and
m = 2, it suffices to show that f(x)+ 2f(y) = 3f(0) for all real x,y so that
x + 2y = 0; that is, to show that

1 2
a2+2b2—3—18(a+2b———3)20
a

for all a, b > 0 so that ab? = 1. This inequality is equivalent to

2 132 2 133
(b*—1)*(2b°+1) N 18(b—1)°(b+1) >0,
b4 b2
(b—1)*(2b—1)*(b+1)(5b +1) -0
b4 -
The proof is completed. The equality holds for a = b =c =d =1, and also for

a=4, b=1 c=d=1/2.

P 2.21. Ifa, b, c,d are positive real numbers so that
a<b<1<c<d, abcd=1,

then

Vae—a+1+vVb2—b+1+vVc2—c+1++v/d>—d+1>a+b+c+d.

(Vasile C., 2008)

Solution. Using the substitution

we need to show that

fG)+ )+ f(2)+ f(w) =4f(s),
where
s Xtytziw

x<y<0<z<w, )
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flu)=+vet—et+1—e“, uekR.
We claim that f is convex for u > 0. Since

4¢3 — 6 4 9et — 2

e )= 4lem—eu1)32

we need to show that
4¢3 —6t24+9t—2>0

and
(43 —6t2+9t—2)>>16(t2—t +1)3,

where t = e" > 1. Indeed, we have

483 — 61>+ 9t —2> 43— 6t + 7t > 43 —6t> + 2t =2t(t —1)(2t —1) >0

and

(43 —6t2+9t—2)?—16(t2—t+1)1° =12t3(t —1) + 92+ 12(t — 1) > 0.

By the RHCF-OV Theorem applied for n = 4 and m = 2, it suffices to show that

f(x)+2f(y) =3f(0) for all real x, y so that x + 2y = 0; that is, to show that

Va2—a+1+2Vb2—b+1>a+2b

for all a, b > 0 so that ab? = 1. This inequality is equivalent to

Vvb*—b2+1 1
T++2‘/b2_b+1zﬁ+2b’

vbt—b24+1—-1
b2+ +2(vb2—b+1—1)>0,

b2—1 L 20-b) 0
VbA—b2+1+1 +b2—b+1+b

Since
b%2—1 b%—1

>
Vb —b2+1+1 b2+1°

it suffices to show that

172—1+ 20-b)
b2+1 JBP—bri+b

which is equivalent to

(b—1)[b+1 2 ]20

b2+1 JBZ—b+1+b
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(b-D[(b+DVb2—b+1-b>+b—2]>0,
(b—1)%(3b%—2b +3)

>0
(b+1)vVb2—b+1+b2—b+2
The last inequality is clearly true. The equality holds fora=b=c=d =1.

P 2.22. If a, b, c,d are positive real numbers so that
a<b<c<1<d, abcd=1,

then
1 1 1 1

+ - -
a3+3a+2 b3+3b+2 3+3c+2 d3+3d+2

2
> —.
3
(Vasile C., 2007)

Solution. Using the substitution

we need to show that

FO)+f )+ f(2)+f(w) =41 (s),

where
x+y+z+w
x<y<z<0Zw, s=f20,
1
f(uy=——, uek.

edu + 3et + 2’
We claim that f is convex for u > 0. Indeed, denoting t =e", t > 1, we have
3t(3t° + 23— 6t +3t—2
f//(u) — ( )
(3 +3t+2)3
_3t(t—1)(3t* +3t> + 5> —t + 2) -
B (t3 43t +2)3 -
By the RHCF-OV Theorem applied for n = 4 and m = 3, it suffices to show that
f(x)+ f(y)=2f(0) for all real x, y so that x + y = 0; that is, to show that
1 + 1 1
ad+3a+2 b3+3b+2 " 3

for all a, b > 0 so that ab = 1. This inequality is equivalent to

0.

=

(a—D*a*+a+1)>0.

The equality holds fora=b=c=d =1.
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P 2.23. Ifa,,a,,...,a, are positive real numbers so that
a=-=z2a,,=21>2a, aqa---a,=1,

then
1 1 1
— 4+ — 4+t —2a +ay++a,
a a a

(Vasile C., 2007)

Solution. Using the substitution

we need to show that

fOe)+ flxa) + -+ f(x,) 2 nf (s),

where
_X1+xZ+"'+Xn

S =0,

= *n—-1=Y ="

n
fu)=e*—e", uekR.

For u < 0, we have
f(uW)=e"—e" >0,

therefore f (u) is convex for u <s. By the LHCF-OV Theorem applied for m =n—1,
it suffices to show that f(x)+ f(y) = 2f(0) for all real x, y so that x + y = 0; that
is, to show that

1 1
—-—a+—-—b=0
a b
for all a, b > 0 so that ab = 1. This is true since
1 1 1
—-—a+—-—b=——a+a—-=0.
a b a a
The equality holds for
a=>1, a=-=a.,=1, a,=1/qa;.
O
P 2.24. Let a,,a,, ..., a, be positive real numbers so that

a,<---<a,,<1<a,, aqay--a,=1.

If k> 1, then
1 1 1 n
>

+ 4ot > :
1+ka;, 1+ka, 1+ka, 1+k

(Vasile C., 2007)
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Solution. Using the substitution

we need to show that

fOe) + flxg) + -+ f(x) 2 nf (s),

where
_X1+X2+"'+Xn

S =0,

n

1

, uUeR.
1+ keu

fw)=

For u > 0, we have
p ke (ke" —1)
= >
f =" ey =0

therefore f (u) is convex for u > s. By the RHCF-OV Theorem applied for m =n—1,
it suffices to show that f(x)+ f(y) = 2f(0) for all real x, y so that x + y = 0; that
is, to show that
1 1 2
+ >
l1+ka 1+kb  1+k

for all a, b > 0 so that ab = 1. This is true since

1 N 12 _k(k—1)(a—1)2>O
l+ka 14+kb 14k (1+ka)a+k) ~
The equality holds for a; =a, =--- =a, = 1. If k =1, then the equality holds for
a, <1, a=---=a,,=1, a,=1/a;.

P 2.25. If a;,a,,...,ay are positive real numbers so that
a;<-+<ag<1<ay, aq1ay---a9=1,
then

1 1 1
+ + PP + -
(a; +2)?>  (ay,+2)? (ag +2)?

(Vasile C., 2007)
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Solution. Using the substitution

we can write the inequality as

FOe)+ )+ -+ fxg) = 9f(s),

where
X1+X2+"'+X9
X1 << xg<0<x9, s= 9 =0,
flw)= L ueR
(v +2)% '

For u € [0, 00), we have

neon det(e"—1)
W =" 20

hence f is convex on [s,00). According to the RHCF-OV Theorem (case n = 9
and m = 8), it suffices to show that f(x)+ f(y) = 2f(0) for all real x, y so that
x + y = 0; that is, to show that

1 1 2

+ > —

(a+2)2 (b+2)2" 9
for all a, b > 0 so that ab = 1. Write this inequality as
b* 1 2
+ > -,

(2b+1)2 (b+2)2 9

which is equivalent to the obvious inequality

(b—1)*>0.
The equality holds for a; =a, = =a, = 1.
O
P 2.26. Let a,,a,,...,a, be positive real numbers so that

a,<---<a,,<1<a,, aay,---a,=1.

If p,q = 0 so that
2pq
p+4q

ptq=1+

then
1 1 1 n
>+ S+t > :
1+pa, +qa; 1+pa,+qa; 1+pa,+qa2  1+p+gq

(Vasile C., 2007)
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Solution. Using the substitution

we can write the inequality as

fOe)+ flxg) -+ f(x) 2 nf (),

where
X1+x2+"'+xn
X< <x,,<0Zx,, s= =0,
n
fQ ! cR
uyy=——————, u .
1+ pev + qe?u
We have “f (@)
e'f(u
Fruy= W
(1+ pet + qe2v)3
where

f1(w) = 4¢%e> + 3pge™ + (p*> —4q)e" —p.

2
The hypothesis p+q > 1+ Pd
p+4q

p>+3pq+4g*>>p+4q.

is equivalent to

For u € [0, 00), we have
f1(W) = 4q”e" + 3pge” + (p* —4q)e" —p = p(e" —1) > 0,

hence f is convex on [s, 00). According to the RHCF-OV Theorem (case m = n—1),
it suffices to show that f (x)+ f(y) = 2f(0) for all real x, y so that x + y = 0; that
is, to show that

1 1 2
+ >
l1+pa+qa? 1+pb+qb? 1+p+gq
for all a, b > 0 so that ab = 1. Write this inequality as
1 a? 2
+ >
l1+pa+qa? a?+pa+q 1+p+q

which is equivalent to
(a—1)%h(a) >0,

where
h(a)=q(p+q—1)(a*+ 1)+ (p*+pq+2¢°—p—2q)a
>2q(p+q—1Da+(p*+pq+29°—p—2q)a
= (p*+3pq+49*—p—4q)a > 0.
The equality holds fora;, =a, =+ =aqa, = 1.

Remark. For p=1,q=1/4 and n =9, we get the preceding P 2.25.
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P 2.27. Let a;,a,,...,a, be positive real numbers so that
a,<---<a,,<1<a,, aa,---a,=1.
Ifm>1and 0 < k <m, then

LN S S
(a +k)m  (ay+k)m (a,+k)m — (1+k)m

(Vasile C., 2007)

Solution. Using the substitution

we can write the inequality as

fOe)+f(xx) + -+ f(x;) = nf(s),

where

For u € [0, 00), we have

ne ~_ me‘(me"—k)
f (u) - (eu + k)m+2 - 0’

hence f is convex on [s, 00). According to the RHCF-OV Theorem (case m = n—1),
it suffices to show that f(x) + f(y) = 2f(0) for all real x,y so that x < y and
x + y = 0; that is, to show that

1 N 1 S 2
(a+k)m (b+k)m — (1+k)m

for all a,b > 0 so that a € (0,1] and ab = 1. Write this inequality as g(a) = 0,

where
1 am™ 2

@+l (katDr Atk

gla) =

with
g/(a) _ am—l(a + k)m+1 _ (ka + 1)m+1
m  (a+k)mi(ka+ 1)m+l

If g’(a) < 0 for a € (0,1], then g is decreasing, hence g(a) > g(1) = 0. Thus, it

suffices to show that
- (ka +1 )m“
a < .
a+k
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Since
ka+1 ma+1 (m—k)(1—a?) -0

a+k a+m (a+k)a+m) ~
we only need to show that

m+1
gl < (ma+1)
“\a+m ’

which is equivalent to h(a) < 0 for a € (0, 1], where
h(a)=(m—1)Ina+(m+1)In(a+ m)—(m+ 1)In(ma + 1),

with

-1 N m+1 m(m+1) m(m—1)(a—1)?

a a+m ma+1 ala+m)(ma+1)

Since h’(a) = 0, h(a) is increasing for a € (0, 1], therefore h(a) < h(1) = 0. The
equality holds for a; =a, =---=aqa, = 1.

W(a)="

Remark. For k = m =2 and n = 9, we get the inequality in P 2.25.

P 2.28. If a;,a,,...,a, are positive real numbers so that

als"'san_1§1<a

<a,, aay-+-a, =1,

then
1 1 1

+ +
V1+3a; +/1+3a,

[u—
+
w
Q
=
NS

(Vasile C., 2007)

Solution. Using the substitution

we can write the inequality as

fOe)+ f(xg) + -+ f(x) 2 nf (),

where
X1+X2+"'+Xn
X< <x,,505x,, s= =0,
n
flu)= ! ueR
V1+3er
For u > 0, we have
3e“(3e"—2
f//(u)_ ( )

=— >0,
4(1 + 3ev)s/2
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hence f is convex on [s, 00). According to the RHCF-OV Theorem (case m = n—1),
it suffices to show that f(x)+ f(y) = 2f(0) for all real x, y so that x + y = 0; that
is, to show that

1 1
+ >1
V1+3a +V1+3b

for all a, b > 0 so that ab = 1. Write this inequality as

1
—+ - >1.
v1+3a a+3
Substituting ! t, 0 <t <1, the inequality becomes
ituting ——— =t, , ine ity become
v1+3a
1—1t2
>1-—t.
8t2+1

By squaring, we get
t(1—t)2t—1)*>>0,

which is true. The equality holds for a; =a, =---=a, = 1.

P 2.29. Let a,,a,,...,a, be positive real numbers so that

a,<---<a,,<1<a,, aay,---a,=1.
1
If0<m<1land 0 <k < ————, then
21/m —1
1 4 1 - 1 S n
(a +k)m  (ay+k)m (a,+k)m — (1+k)m

(Vasile C., 2007)

Solution. By Bernoulli’s inequality, we have

1
2Vm > 14—,
m
hence
k< <m<1.
21/m —1

Using the substitution

we can write the inequality as

fle)+f(xx) + -+ f(x;) = nf(s),
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where

1
f(U):m, ueR.

For u € [0, 00), we have

me(me* —k)

f//(u): (eu+k)m+2 -

hence f is convex on [s, 00). According to the RHCF-OV Theorem (case m = n—1),
it suffices to show that f(x)+ f(y) = 2f(0) for all real x, y so that x + y = 0; that

is, to show that
1 1 2

+ >
(a+k)m (b+k)m — (1+k)m
for all a, b > 0 so that ab = 1. Write this inequality as g(a) > 0 for a > 1, where

1 + a™ _ 2
(a+k)m  (ka+1)m (1+k)m

gla) =

The derivative

g'(a) a"Ma+k)"" —(ka+1)""
m (a+ k)mti(ka + 1)m+1

has the same sign as the function
h(a)=(m—1)lna+(m+1)In(a+ k)—(m+ 1) In(ka + 1).

We have

h’(a):mT_1+(m+1)( L k ) khy (@)

a+k ka+1 :a(a+k)(ka+1)’

where

hy(a) = (m—1)(a®+1)—2 (k _ %) a.

The discriminant D of the quadratic function h,(a) is

Since D > 0, the roots a; and a, of h,(a) are real and unequal. If a; < a,, then
h,(a) =0 for a € [a;,a,] and h,(a) < 0 for a € (—o0,a,]U[a,, o). Since

2(k + D(m—k) _

h1(1) = X

0,



HCF Method for Ordered Variables 199

it follows that a; < 1 < a,, therefore h,(a) and h’(a) are positive for a € [1,a,)
and negative for a € (a,, ©0), h is increasing on [1, a,] and decreasing on [a,, 00).
From h(1) =0 and

lim h(a) = —o0,

a—oo

it follows that there is a; > a, so that h(a) and g’(a) are positive for a € (1, a;) and
negative for a € (a;, 00). As a result, g is increasing on [1, a;] and decreasing on
[a;, 00). Since g(1) =0 and

. 1 2
alggog(a)=k—m—mzo,

it follows that g(a) = 0 for a > 1. This completes the proof. The equality holds for
ag=a,=---=a,=1.

1 1
Remark. For k = 3 and m = > we get the preceding P 2.28.

P 2.30. If a;,a,,...,a, (n > 4) are positive real numbers so that

then

(Vasile C., 2007)

we can write the inequality as

flx)+ f(xg)+---+ f(x,) = nf(s),

where

_X1+X2+"‘+xn

X1 2Xg2=2x3202x,2-2Xx,, S =0,
n
fW)=——, ucR
u) = , u
et +1
For u € [0, 00), we have
F) = 3e"(3e" —1)

(3ev+1)3 ’
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hence f is convex on [s, 00). According to the RHCF-OV Theorem (case m = n—3),
it suffices to show that f(x)+ 3f(y) = 4f(0) for all real x, y so that x + 3y = 0;

that is, to show that
1 3

+ >1
3a+1 3b+1
for all a, b > 0 so that ab® = 1. The inequality is equivalent to
b’ L3 oy
b3+3 3b+1
(b—1)*(b+2)>0.
The equality holds fora, =a, =---=a, = 1.

P 2.31. If a;,a,,...,a, (n > 4) are positive real numbers so that
a=za,z2a3=21=>2a,2--2aqa,, aay--a,=1,

then
1 1 1

+ +...+—
(al +1)2 (az +1)? (an +1)?

n
> —.
4
(Vasile C., 2007)

Solution. Using the substitution

we can write the inequality as

fOe) + f(xg) + -+ f(x) 2 nf (),

where

_X1+X2+"'+Xn

X1>X2>X320>X4Z an, n :0,
f)=——, ueRr
_(u+1)2’
For u € [0, 00), we have
2e"(2e"—1)
)= 2>,
S (ev+1)4

hence f is convex on [s, 00). According to the RHCF-OV Theorem (case m = 3), it
suffices to show that f(x)+3f(y) = 4f(0) for all real x, y so that x +3y = 0; that

is, to show that
1 3

(a+1)2+(b+1)221
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for all a, b > 0 so that ab® = 1. The inequality is equivalent to

b N 3 -1
(b34+1)2 (b+1)2 " 7

Using the Cauchy-Schwarz inequality, it suffices to show that

(b° +3)? -1
(b*+1)24+3(b+1)2

which is equivalent to the obvious inequality

(b—1)*(4b+5) > 0.

The equality holds for a, =a, =---=a, = 1.

P 2.32. Ifa,,a,,...,a, are positive real numbers so that
aq=-=2a,,=21>2a,, aay--q,=1,

then
1 1 1 n

+ o< —,
(a; +3)2  (a,+3)?2 (a,+3)2 16

(Vasile C., 2007)

Solution. Using the substitution

we can write the inequality as

flx)+ f(xg)+---+ f(x,) = nf(s),

where
x1+X2+"'+Xn
X2 2X,1202x,, s= =0,
n
f)=———, ueR
uy=———, u .
(ev+3)?
For u € (—o0, 0], we have
2e"(3 —2e")
)= 22 s,
fw (ev +3)*

hence f is convex on (—oo,s]. According to the LHCF-OV Theorem (case m =
n—1), it suffices to show that f (x)+f(y) = 2f(0) for all real x, y so that x+y = 0;

that is, to show that
1 1

(a+3)2 * (b+3)2

1
<=
8
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for all a, b > 0 so that ab = 1. Write this inequality as

b2 N 1
(3b+1)2 (b+3)2

1
=
8
which is equivalent to the obvious inequality

(b>—1)*+12b(b—1)*>0.
The equality holds fora, =a, =---=a, =1.

Remark. Similarly, we can prove the following generalization:

e Let ay,aq,,...,a, be positive real numbers so that
aq=z-=z2a,=1>2a, aqay--a,=1,

Ifk> 1+ /2, then
1 1 1 n

+ 4+ 4 <
(a; +k)?  (a,+k)? (a, +k)2 = (1+k)?

with equality fora; =a, =---=a, =1.

P 2.33. Let a;,a,, ..., a, be positive real numbers so that
aq=-=2a,,=21>2a,, aay--q,=1.

If p,q = 0so that p+q <1, then
1 1 1

n

+ + .4 S .
1+pa, +qa®> 1+pa,+qa; 14+pa,+qa® ™ 1+p+q

Solution. Using the substitution

we can write the inequality as

flx)+ f(x)+--+ f(x,) = nf(s),

where
_X1+XZ+"'+XH

R
v
Vv
=

n

(Vasile C., 2007)
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-1
u)=—————, ue€k.
Q) 1+ pet + qe?u

For u < 0, we have

e"[—4g”e™ —3pge™ + (49 — p*)e" + p]
(1+ pet + qev)3
e*[—49”*—3pq + (49 —p*) +p]
(1+ pe* +qe?v)3
_e*l(p+49(—p—q)+2pq] _
(1+ pet + qe2v)3 B

ffw)=

0,

therefore f(u) is convex for u <s. According to the LHCF-OV Theorem (case m =
n—1), it suffices to show that f (x)+f(y) = 2f(0) for all real x, y so that x+y = 0;
that is, to show that

1 1 2
+ <
l+pa+qa? 1+pb+qb?2 1+p+gq

for all a, b > 0 so that ab = 1. Write this inequality as
(a—1)[q(1—p—q)a*+(p+2¢—p*—pg—2¢*)a+q(1—p—q)] >0,
which is true because
p+2q—p*—pq—2q9* = (p+29)(p +¢)—p*—pq—2¢> =2pq > 0.

The equality holds fora; =a, =---=a, = 1.

P 2.34. Let a,,a,, ..., a, be positive real numbers so that

a12“'2an_121>a

> a,, aa,---a, =1.

Ifm>1andk> , then

1
21/m —1

1 + 1 P 1 < n
(e +k)m  (ay+k)m (a,+k)m ~ (1+k)m

(Vasile C., 2007)

Solution. By Bernoulli’s inequality, we have

1
2Um <14 —,
m
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hence

Using the substitution

we can write the inequality as

fe)+f(xx) + -+ f(x) = nf(s),

where
X1+X2+"'+Xn
X2 2x,1,=20=2x =

- - - n»

S =0,

n
-1
flu)= m, ueR.
For u < 0, we have k N
. me“(k —me
ffw)= W =4,
hence f is convex u < s. By the LHCF-OV Theorem (case m = n— 1), it suffices to

show that f(x)+ f(y) = 2f(0) for all real x, y so that x + y = 0; that is, to show

that
1 1 2

+ <
(a+k)m  (b+k)m— (1+k)m
for all a, b > 0 so that ab = 1. Write this inequality as g(a) < 0 for a > 1, where

_ 1 + a™ _ 2
C(a+k)m (ka+1)m (1+k)m

g(a)
The derivative
g/(a) _ am—l(a + k)m+1 —(ka + 1)m+1
m (a + k)m+t1(ka + 1)m+1

has the same sign as the function

h(a)=(m—1)Ina+(m+1)In(a+ k)—(m+ 1)In(ka + 1).

We have

(a) = —m;1 +(m+ 1)( K ) ki, (a)

a+k ka+1 :a(a+k)(ka+1)’

where m
_ 2
hy(a) = (m—1)(a®+ 1)—z(k— E)a.

The discriminant D of the quadratic function h,(a) is
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Since D > 0, the roots a; and a, of h;(a) are real and unequal. If a; < a,, then
h,(a) <0 fora €[a;,a,] and h,(a) > 0 for a € (—o0,a,]U[a,, o0). Since

2(k + D(m—k) _

h1(1) = 2

0,

it follows that a; < 1 < a,, therefore h,(a) and h’(a) are negative for a € [1,a,)
and positive for a € (a,, ©0), h(a) is decreasing for a € [1, a,] and increasing for
a € [a,, o0). From h(1) =0 and

lim h(a) = oo,

it follows that there is a; > a, so that h(a) and g’(a) are negative for a € (1, a;)
and positive for a € (a;, ©0). As a result, g is decreasing on [1, a;] and increasing
on [a;, 00). Since g(1) =0 and

li (a) ! 2 <0
im gla)=————-—
a8 Y T T Ak T
it follows that g(a) < 0 for a > 1. This completes the proof. The equality holds for
a,=a,=---=a,=1.
O

P 2.35. If a;,a,,...,a, are positive real numbers so that

a12"’2an_121>a

> a,, a,ay---a, =1,

then
1 1 1 n

+ 4ot —=<—.
V1+2a, +/1+2a, V1+2a, 43
(Vasile C., 2007)

Solution. Using the substitution

we can write the inequality as

fle)+f(x) + -+ f(x,) = nf(s),

where
_X1+X2+"'+Xn

n

u e R.

—1
= e
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For u <0, we have
e'(1—e"

_ =)
(14 2ew)3/2

hence f is convex on (—oo,s]. According to the LHCF-OV Theorem (case m =
n—1), it suffices to show that f (x)+f(y) = 2f(0) for all real x, y so that x+y = 0;

that is, to show that
3 3
|
1+ 2a 1+2b

for all a, b > 0 so that ab = 1. By the Cauchy-Schwarz inequality, we get

e\ <\ (e ) )
+ < +1)(1+ =2
\J1+2a \J1+2b \J 1+2a 1+2b

The equality holds fora; =a, =+ =aq, = 1.

£ (W)

P 2.36. Let a,,a,, ..., a, be positive real numbers so that
aq=z=z2a,,=21>2a, aay,---q,=1

If0<m<1andk > m, then

1 + 1 R 1 < n
(a; + k) (ay+k)m (a,+k)m — (1+k)m

(Vasile C., 2007)

Solution. Using the substitution

we can write the inequality as

fOa)+ f(xg) + -+ f(x) 2 nf (s),

where
X1+XZ+"'+XH
X, =2 2x,,=>20=2x,, s= =0,
n
flw= ! ueR
~ (ex+ k)™’
For u < 0, we have
me"(k — me"
f//(u): ( )
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hence f is convex on (—oo,s]. According to the LHCF-OV Theorem (case m =
n—1), it suffices to show that f (x)+f(y) = 2f(0) for all real x, y so that x+y = 0;

that is, to show that
1 1 2

@+l T rm S Atk
for all a, b > 0 so that ab = 1. Write this inequality as g(a) < 0 for a > 1, where
1 a™ 2
@ rm | (katDm A+ O™

g(a)=
with
g/(a) _ am—l(a + k)m+1 _ (ka + 1)m+1
m (a+ k)mtl(ka + 1)m+1
If g’(a) < 0fora > 1, then g is decreasing, hence g(a) < g(1) = 0. Thus, it suffices

to show that
- (ka+1)m+1
a < .
a+k

Since
ka+1 ma+1 _ (k—m)(a®—1) -

a+k a+m (a+k)a+m) =
we only need to show that

+1
R (ma+1)m
“\la+m ’

which is equivalent to h(a) < 0 for a > 1, where

h(a)=(m—1)lna+(m+1)In(a+ m)—(m+ 1) In(ma + 1),

H(@) = m—1 N m+1 m(m+1) m(m—1)(a—1)?
a a+m ma+1 ala+m)(ma+1)
Since h’(a) < 0, h(a) is decreasing for a > 1, hence

h(a) <h(1)=0.
This completes the proof. The equality holds for a; =a, =---=a, = 1.

1 1
Remark. For k = > and m = > we get the preceding P 2.35.

P 2.37. If a;,a,,...,a, (n > 3)are positive real numbers so that
G2 2aq 2120240, aa--a,=1,

then
1 1 1 n

+ ot ———— < —.
(a; +5)2 (a,+5)2 (a,+5)* ~ 36

(Vasile C., 2007)
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Solution. Using the substitution

we can write the inequality as

flx)+ f(xy)+ -+ f(x,) = nf(s),

where
X1+X2+"'+Xn
xlz...ZXH_ZZOZXn_lzan s=
n
fw=———, ueR
u)= ———, u :
(e +5)2
For u € (—o00, 0], we have
2e"(5—2e")
My =270 g
frw) (eu+5)4

hence f is convex on (—o0,s]. According to the LHCF-OV Theorem (case m =n —
2), it suffices to show that f (x)+2f (y) = 3f(0) for all real x, y so that x+2y = 0;

that is, to show that
1 2 1

+ <
(a+5)2 (b+5)2 12
for all a, b > 0 so that ab? = 1. Since
1 b* b*

= < =
(a+5)2 (5b2+1)2 " (4b2+2b)2 4(2b+1)?’

it suffices to show that
b? 2 1
+ <—,
4(2b+1)2 (b+5)2 " 12

which is equivalent to the obvious inequality

(b—1)*(b%2+16b+1)>0.

The equality holds for a; =a, =---=a, =1.

n

Remark. Similarly, we can prove the following refinement:

e leta,,aq,,...,a, be positive real numbers so that

@G22, 92120, 20, @ay---a,=1.

If k > 2+ /6, then
1 1 1

+ ot < ,
(a; + k)2 (a,+k)? (a, +k)2 — (1 +k)>

with equality fora; =a, =---=a, =1.
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P 2.38. If a;,a,,...,a, are nonnegative real numbers so that
a>->a,,>21>q, ad+a+---+a’=n,
then
1 1 1 n
ot < -
3—a; 3—a, 3—a, 2

(Vasile C., 2007)

Solution. From
n=al+(a+---+a )+a’>a’+(n—2)+0,

we get

a, < V2.
Replacing a,,a,,...,a, by y/a;, /as,-.., +/a, , we have to prove that

fla)+f(ay)+---+f(a,) = nf(s),

where

Foru €[0, 1], we have
3(1—Vu) >0
duy/u(3 — vu)®

Therefore, f is convex on [0,s]. According to the LHCF-OV Theorem and Note 1
(case m = n—1), it suffices to show that h(x,y) > 0 for x,y > 0 so that x + y = 2.

ffw)=

Since
ey = FW=F) -1
—1 2(3— vu)(1 + vu)
and
h(x’y):g(X)—g(y)_ 2—Vx—Jy

x—y  2Wx+ YA+ VX1 +/FE—VX)E— vy

we need to show that
Vx+Jy <2
Indeed, we have
Vx+/y<y2lx+y)=2.

This completes the proof. The equality holds for a; =a, =---=a, = 1.
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P 2.39. Let a;,a,,...,a, be nonnegative real numbers so that

IA
IA
Q

a,; 1 <1<a, a+ay,+---+a,=n.

Prove that

n—a;\3 n—a,\3 n—a,\>
af+a§+~--+a3—n2(n—1)2[(—1) +( 2) +---+( ”) —n].
n n—1 n—1 n—1

(Vasile C., 2010)

Solution. Write the inequality as

a1+a2+"‘+an

fla)) +fla))+--+f(a,)=nf(s), s= - =1,
where 5
Fu) =u3—(n—1)2(Z_L1l) . u>0.

For u > 1, we have

F() = 6n(u 11)

Therefore, f(u) is convex for u > s. Thus, by the RHCF-OV Theorem (case m =
n— 1), it suffices to show that f(x)+ f(y) = 2f (1) for x,y > 0 so that x + y = 2.
We have

FO+F=2f W =20+ 2= (-1 [ (BE5) + (222) 2]

n—1 n—1

(n—x)(n—y) ]
=6(1—xy)—6 —12[1— =0.
(1-xy)=6(n—1) Ty
This completes the proof. The equality holds for
<1l a=--=a,,=1, a,=2—q



Chapter 3

Partially Convex Function Method

3.1 Theoretical Basis

The following statement is known as the Right Partially Convex Function Theorem
(RPCF-Theorem).

Right Partially Convex Function Theorem (Vasile Cirtoaje, 2012). Let f be a real
function defined on an interval T and convex on [s,s,], where s,s, € I, s < s,. In
addition, f is decreasing on I, and f(u) = f(so) for u € I. The inequality

a,+a,+---+a,
F(@) +fla)+ -+ f(a,) = nf (2225
holds for all a,,a,,...,a, € I satisfying
a,t+a,+---+a,=ns

if and only if

fE)+(n=1)f(y)=nf(s)
forall x,y €lsothat x <s<yandx+(n—1)y =ns.
Proof. For

GG =X, G=a3=-=0aq,=),

the inequality
fla)+fla)+--+ fla,) = f(s)
becomes
fF)+(n—1)f(y) = nf(s);

therefore, the necessity is obvious.
The proof of sufficiency is based on Lemma below. According to this lemma, it
suffices to consider that a;, a,,...,a, € J, where

J=L,.

211
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Because f (u) is convex on J,, the desired inequality follows from the RHCF The-
orem (see Chapter 1) applied to the interval J.

Lemma. Let f be a real function defined on an interval 1. In addition, f is decreasing
onl , and f(u) = f(so) for u €I, where s,sq €1, s <s,. If the inequality

fla))+ f(ap)+---+ f(a,) = nf(s)
holds for all a;,a,,...,a, € I, so that a; + a, +--- + a, = ns, then it holds for all
a,a,,...,a, €lsothat a; +a, +---+a, = ns.

Proof. Fori =1,2,...,n, define the numbers

Clearly, b; € I, and b; < a;. Since f(u) = f(so) for u € I, it follows that
f(b;) < f(a;)fori=1,2,...,n. Therefore,

by+b,+---+b,<a,+a,+---+a,=ns
and

f(b) + f(by) + -+ f(by) < flar) + faz) +--- + f(a,).

Thus, it suffices to show that

f(b)+f(by)+---+f(b) = nf(s)

for all by, by,...,b, € I so that by + b, +---+ b, < ns. By hypothesis, this
inequality is true for by, by,...,b, € I, and by + b, +---+ b, = ns. Since f(u)
is decreasing on I, , the more we have f(b;) + f(by) + -+ f(b,) = nf(s) for

bl’b27"'3bn€]ISso and b1+b2+"'+bn S ns.
Similarly, we can prove the Left Partially Convex Function Theorem (LPCF-Theorem).

Left Partially Convex Function Theorem (Vasile Cirtoaje, 2012). Let f be a real
function defined on an interval T and convex on [s,,s], where sy,s € I, s, < s. In
addition, f is increasing on I, and f (u) = f(so) for u € I. The inequality

a1+a2+"‘+an)
n

fla)+ )+ +fla) = nf
holds for all a,,a,,...,a, €I satisfying
a,+a,+---+a,=ns

if and only if
fE)+(—=1)f(y)=nf(s)

forall x,y €lsothatx >s>yand x +(n—1)y = ns.
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From the RPCFE-Theorem and the LPCF-Theorem, we find the PCF-Theorem (Par-
tially Convex Function Theorem).

Partially Convex Function Theorem (Vasile Cirtoaje, 2012). Let f be a real function
defined on an interval T and convex on [sg,s] or [s,s,], where sq,s € I. In addition, f
is decreasing on I, and increasing on I, . The inequality

f(a1)+f(a2)+...+f(an)2nf(a1+a2—|-...+an)

holds for all a,,a,,...,a, € I satisfying
a,+a,+---+a,=ns

if and only if
fE)+(—=1)f(y)=nf(s)

forall x,y €1so that x +(n—1)y =ns.

Note 1. Let us denote

g(u)

— M’ h(x,y)
u—s

_glx)—gy)
Sir——

As shown in Note 1 from Chapter 1, we may replace the hypothesis condition in
the RPCF-Theorem and the LPCF-Theorem), namely

f)+(=1Df(y)=nf(s),
by the condition

h(x,y)>0 forall x,y €I sothat x+(n—1)y = ns.

Note 2. Assume that f is differentiable on I, and let

H(x,y) = f—(x)tf/ S2)

As shown in Note 2 from Chapter 1, the inequalities in the RPCF-Theorem and the
LPCE-Theorem hold true by replacing the hypothesis

f)+(n=1f(y) = nf(s)

with the more restrictive condition

H(x,y)=0 forall x,y €I sothat x+(n—1)y =ns.

Note 3. The desired inequalities in the RPCF-Theorem and the LPCF-Theorem be-
come equalities for

a1:a2:"':a =S.
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In addition, if there exist x, y €I so that
x+(n—1Dy=ns, f)+m—-1f(y)=nf(s), x#y,
then the equality holds also for
B =X, G=""=aq,=)
(or any cyclic permutation). Notice that these equality conditions are equivalent to
x+(n—1)y =ns, h(x,y)=0

(x < y for the RPCF-Theorem, and x > y for the LPCF-Theorem).

Note 4. From the proof of the RPCF-Theorem, it follows that this theorem is also
valid in the case when f is defined on I'\ {u,}, where u, € I, . Similarly, the LPCF-
Theorem is also valid in the case when f is defined on I'\ {u,}, where u, € I, .

Note 5. The RPCFE-Theorem holds true by replacing the condition

f is decreasing on I,
with

ns —(n—1)s, < infl.

More precisely, the following theorem holds:
Theorem 1. Let f be a function defined on a real interval I, convex on [s,s,] and
satisfying

l{g]}gf (w) = f (s0),
where

s,50 €1, s<sy ns—(n—1)s, <infL

If
fO)+(m=1)f(y) =nf(s)

forall x,y €lsothat x <s <y and x +(n—1)y = ns, then

f(xl)+f(x2)+...+f(xn)2nf(xl-l-xz—:l..._i_xn)

for all xq,x,,...,x, € Lsatisfying x; +x,+---+x,=ns.

In order to prove Theorem 1, we define the function

flu), u<sy uel

folu) = {

f(SO): UZSO, u E]L

which is convex on I,. Taking into account that f,(s) = f(s) and f,(u) < f(u) for
all u €1, it suffices to prove that

folx1) + folx) + -+ - + fox,) = nfo(s)
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for all x;,x,,...,x, € I satisfying x; + x, + -+ + x, = ns. According to the HCF-
Theorem and Note 5 from Chapter 1, we only need to show that

fo(x) +(n—1)fo(y) = nfy(s)
forall x,y €I sothat x <s<yand x+(n—1)y = ns. Since

ns—ic sy = ns—(n—1)s,—x < ns —(n—1)s, —infI <o,

n—1 n—1
the inequality f,(x)+(n—1)f,(y) = nfy(s) turns into f(x)+(n—1)f (y) = nf(s),
which holds (by hypothesis) for all x,y € Isothat x <s <y and x+(n—1)y = ns.

Y =% =

Similarly, the LPCF-Theorem holds true by replacing the condition
f is increasing on I
with

ns—(n—1)s, > supl.

More precisely, the following theorem holds:
Theorem 2. Let f be a function defined on a real interval I, convex on [s,,s] and
satisfying

min f (u) = f (so),

u€ll

where
5,50 €1, s>s,5, ns—(n—1)s,=>supl.

If
f)+(n=1f(y) = nf(s)

forall x,y €lLsothat x >s >y and x + (n—1)y = ns, then

x1+x2+"'+xn)
n

f(x1)+f(x2)+---+f(xn)2nf(

for all xq,x,,...,x, €l satisfying x; + x, + -+ x, = ns.

The proof of Theorem 2 is similar to the proof of Theorem 1.

Note 6. From the proof of Theorem 1, it follows that Theorem 1 is also valid in
the case in which f is defined on I'\ {u,}, where u, is an interior point of I so that
Uy ¢ [s,5,]. Similarly, Theorem 2 is also valid in the case in which f is defined on
I\ {uy}, where u, is an interior point of I so that u, ¢ [s,,s].

Note 7. In the same manner, we can extend weighted Jensen’s inequality to right
and left partially convex functions establishing the WRPCF-Theorem, the WLPCF-
Theorem and the WPCF-Theorem (Vasile Cirtoaje, 2014).



216 Vasile Cirtoaje

WRPCF-Theorem. Let p,, p,,..., P, be positive real numbers so that

pitpy+--+p,=1, p=min{p;,p,,...,p,},

and let f be a real function defined on an interval 1 and convex on [s,s,], where
$,50 € I, s <s,. In addition, f is decreasing on I, and f(u) = f(sy) for u € . The
inequality

pif(a1) + pof(ay) +---+pof(a,) = f(pray + pras + -+ + p,a,)
holds for all a,,a,,...,a, €I satisfying
P1a; +poay + -+ ppa, =s,

if and only if
pfl)+(1=p)f (¥)=f(s)

forall x,y €lsothat x <s < yand px+(1—p)y =s.
WLPCF-Theorem. Let p,,p,, ..., P, be positive real numbers so that

pi1+py+--+p, =1, p=min{py,py,...,pu}

and let f be a real function defined on an interval 1 and convex on [s,,s], where
80,8 €1, 5o <. In addition, f is increasing on I, and f(u) = f(s,) foru € L. The
inequality

pif(a)) +poflag) +---+pafla,) = f(pra; + pras +- -+ pray)
holds for all a,,a,,...,a, €I satisfying
P1a; + Py + -+ ppa, =5,

if and only if
pfl)+(1=p)f(¥)=f(s)

forall x,y €lsothat x>s>yand px+(1—p)y =s.
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3.2 Applications

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

If a, b, c are real numbers so that a + b + ¢ = 3, then

16a—5 16b—5 16¢c—5
+ + <
32a24+1 32b2+1 32c2+1

If a, b, c,d are real numbers so that a + b + ¢ +d = 4, then

18a—5 18b—5 18c—5 18d-—5
+ + + <
12a2+1  12b2+1 12¢2+1  12d2+1

If a,b,c,d,e, f are real numbers so thata+b+c+d+e+ f =6, then

5a—1+5b—1+5c—1+5d—1+56—1+5f—1 <4
5a2+1 5b2+1 5¢2+1 5d2+1 5e2+1 5f2+1°

If a;,a,,...,a, (n > 3) are real numbers so that a; + a, +---+a, = n, then

n(n+1)—2a; n(n+1)—2a, n(n+1)—2a,
n2+(n—2)a? n2+(n—2)a; n?+(n—2)az ~

If a, b, c,d are real numbers so that a + b + ¢ + d = 4, then

ala—1) b(b—1) «c(c—1) d(d—1)
>
3+4 30244 3244 3az+4 20

If a, b, c are real numbers so that a + b 4+ ¢ = 3, then

1 1 1 3
+ - <=
9a2—10a+9 9b2—10b+9 9c2—10c+9 ~ 8

If a,b,c,d are real numbers so that a + b + c +d = 4, then

1 1 1 1 4
+ + + <-.
4a>—5a+4 4b2—5b+4  4c2—5c+4 4d2—5d+4 " 3
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3.8. Let a,,a,,...,a, #—k be real numbers so that a; + a, + - - - + a, = n, where
k> ———.
24/n—1
Then,
—1 —1 —1
a;(a; )+ ay(a;—1) a,(a, )2 0.
(a; +k)?2  (a,+k)? (a, +k)?

3.9. Let ay,a,,...,a, # —k be real numbers so that a; +a, +---+a, =n. If

k>14 ——0
n—1

then
az—1 a§—1 a?—1
n

- +odk —1—— >0,
(a1+k)2 (a2+k)2 (an+k)2 N

3.10. Let a,,a,,a;,a,,as be real numbers so that a; +a, +a; +a,+as > 5. If
1 25
ke [—, —} ,
6 14

then

1 5
< .
Z:kaf-l—a2+a3+a4+a5 T k+4

3.11. Let a;,a,,...,as be nonnegative numbers so that a; +a,+a;+a,+as > 5.
If k € [k, k,], where

29 — /761 25
k, = % ~0.1414, k,= 1a ~ 1.7857,

then

1 5
Zka%+a2+a3+a4+a5 T k+4

3.12. Let a3, a,,...,a, be nonnegative real numbers so that a; +a, +---+a, = n.
If k> 1, then

1 1 1
- + - oot - <1
a1+a2+"'+an a1+a2+"‘+an a1+a2+“’+an
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3.13. Let ay,a,,...,as be nonnegative numbers so that a; +a,+a;+a,+as > 5.

If 6
ke [i‘, —1},
9 5

S
ka?+a,+a;+a,+as ~ k+4

then

> n.

n =

3.14. Let ay,a,,...,a, be nonnegative real numbers so that a; +a, +---+a
If k> 1, then
a a a,

z + T +- P =
a;t+a,+---+a, a+a,+--+aq, a; ta,+---+ag

3.15. Let a;,a,,...,a, be nonnegative real numbers so that a; +a, +---+a, < n.
1
If k>1——, then

n
l1—a l1—a l1—a
. 1 + . 2 e n 22
kai+a,+---+a, a;+kas+---+a, a, +a,+---+ka?
3.16. Let a;,a,,...,a, be nonnegative real numbers so that a; +a,+---+a, < n.

1
If k>1——, then
n

1—a + l—a, N 1—a,
1—a;+ka*> 1—a,+kal 1—a,+ka? "~

3.17. Let a4, 4a,,...,qa, be positive real numbers so that a, +a, +---+a, = n. If
0<k< , then

n—
a11</a1 +a]2</a2 +_“+aﬁ/an <n.

3.18. If a, b, c,d, e are nonzero real numbers so thata+ b +c+d + e =5, then

IR B B R B
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3.19. If If a;,a,,...,a, are real numbers so that a; +a, +---+a, =7, then
(a2 +2)(as+2)- (a5 +2)>3".

nZ

3.20. Letay,ay,...,a, be real numbers so that a; +a,+---+a, =n. Ifk > m,
n_

then

2 2 2
(ay +k)(a; +k)---(a; +k)=(1+k)".
3.21. Let ay,ay, ..., a, be real numbers such that a; +a,+---+a, =n. If n <10,
then
(@@—a;+1)(a—ay,+1)---(a>—a,+1) > 1.
3.22. Let ay,a,,...,a, be real numbers such that a; +a, +---+a, =n. If n < 26,
then
(@@ —a;+2)(a;—a,+2)---(a>—a,+2) > 2"
3.23. If a, b, ¢ are nonnegative real numbers so that a + b + ¢ = 3, then
(1—a+aD(1-b+bHY(1—c+cH>1.
3.24. If a, b, c,d are nonnegative real numbers so that a + b +c +d =4, then
(1—a+a®)1-b+b)A—c+c3)A—-d+d?)>1.
3.25. If a, b, c,d, e are nonzero real numbers so thata+ b +c+d + e =5, then
5(1 + 1 + 1 + 1 + 1)+45>14(1+1+1+1+1)
a? b2 2 d? e? “"\a b ¢ d e)
3.26. If a, b, ¢ are positive real numbers so that abc = 1, then

7—6a+7—6b+7—6c >
2+a2 2+b2 2+4c¢2
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3.27. If a, b, ¢ are positive real numbers so that abc = 1, then

1 1 1 1
<

+ + < -—.
a+5bc b+5ca c+5ab ™ 2

3.28. If a, b, ¢ are positive real numbers so that abc = 1, then

1 1 1 3
+ + <=
4—3a+4a2 4—3b+4b2 4—3c+4c2 5

3.29. If a, b, ¢ are positive real numbers so that abc = 1, then

1 1 1 3
+ - <-.
(8a+1)(3a2—5a+3) (Bb+1)(3b2—5b+3) (3c+1)(3c2—5¢c+3) 4
3.30. Let a;,a,,...,a, (n > 3) be positive real numbers so that a;a,---a, = 1. If
p,q=0sothat p+4q>n—1,then
1—a 1—a 1—a
1 5 2 5+t —t —>0.
1+pa,+qa; 1+pa,+qa; 1+pa,+qa?
3.31. If a, b, ¢ are positive real numbers so that abc = 1, then
1—a + 1-b N 1—c
17+4a+6a2 17+4b+6b%2 17+4c+6c2
3.32. If a,a,,...,ag are positive real numbers so that a;a,---ag =1, then
1—a 1— 1—
1 e S S
(1+a)?2 (1+a,)? (1+ag)?
.. —13 13
3.33. Let a, b, c be positive real numbers so that abc = 1. If k € | —, —|,
3v3 343

then

a+k b+k c+k _3(1+k)
+ + < .
az+1 b2+1 c2+1 2
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3.34. If a, b, ¢ are positive real numbers and 0 < k < 2+ 2+/2, then

a® b3 c3 a+b+c
+ + >
ka2+4+bc kb%2+4+ca kc2+ab k+1

3.35. If a, b, c,d, e are positive real numbers so that abcde = 1, then

1 1 1 1 1 1
2 +—— -t >3 +—— et :
a+1 b+1 e+1 a+2 b+2 e+2

3.36. If a;,a,,...,a,, are positive real numbers so that a,a,---a;4, = 1, then

1 1 1 1 1 1
3 + +ot— | =2 + 4o+ :
2a;,+1 2a,+1 2a;4+1 a;+1 a,+1 a;4+1

3.37. Let a;,a,,...,ag be positive real numbers so that a,a,---ag = 1. If k > 1,
then

1 1 1 1 1 1
(k+1) + oot >2 + oot :
ka,+1 ka,+1 kag+1 a;+1 a,+1 ag+1

3.38. If a;,a,,...,a are positive real numbers so that a;a,---a, = 1, then

1 1 1 1 1 1
+ et > + 4+t :
2a;,+1 2a,+1 2a9+1 a;+2 a,+2 ag+2

3.39. If a,a,,...,qa, are real numbers so that
a;,ds,...,a,<m, a;,+a,+---+a,=m,

then

s
cosa; +cosa, +---+cosa, < ncos—.
n

3.40. If a;,a,,...,a, (n = 3) are real numbers so that
—1
a;,dy,...,d, = , a+ay,+---+a,=n,
n—2
then ) ) )
4 a, a4,

...+—S
ad-—a;+1 ai—a,+1 a2—a,+1
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3.41. If ay,a,,...,a, (n > 3) are nonzero real numbers so that
—n
ay,Adg, ...,y = , atay,+---+a,=n,
n—2
then
1 1 1 1 1 1
—2+—2+"'+—22—+—+"‘+—.
a; a; az - a; a a,

3.42. Ifa;,a,,...,a, > —1so that a; + a, +--- +a, = n, then

1 1 1 1 1 1
(n+1)(—2+—2+---+—)22n+(n—1)(—+—+---+—).
a; a; a2

3.43. If a;,a,,...,a, (n = 3) are real numbers so that
—(3n—2)
a,as,...,aq, =2 ———, a;+a,+---+a,=n,
n—2
then 1 1 1
—a —a —a
1 2 e —— 1 >
(14+a;)? (1+4+ay)? (1+a,)>
3.44. Let ay,a,,...,a, be nonnegative real numbers so that a; +a, +---+a, =n.

If n>3and k >2— —, then
n

1—a, l—a, 1l—a,
fod—— >
(1—ka;)? (1—ka,)>? (1 —ka,)?
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3.3 Solutions

P 3.1. If a, b, c are real numbers so that a + b + ¢ = 3, then

16a—5 16b—5 16c—5
+ + <
32a2+1  32b2+1  32c2+1

Solution. Write the inequality as

a+b+c
fl@+f(B)+f(c)=3f(s), s= 3 =
where ”
5—16u
=——Q, €R.
fW=serr ¢
From ,
, 16(32u*—20u—1
Fw= )
(32uz +1)2

it follows that f is increasing on

5—+/33

—OO, U [50, OO)
16

and decreasing on

5—+/33 S

16
where
5 33
So = + V33 ~ 0.6715.
16

Also, from

ligloof(u) =0
and

f(s0) <0,

(Vasile C., 2012)

it follows that f(u) > f(s,) for u € R. In addition, for u € [sy, 1], we have

—512u® + 480u® + 48u —5
(32uz +1)3

1 7 _
6_4f (w) =

~ 512u*(1—u) 4+ 32u(1l —u) + (16u—>5) -0

(32u2+1)3

b
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hence f is convex on [s,,s]. According to the LPCF-Theorem, we only need to show
that f(x)+2f(y) = 3f(1) for all real x, y so that x + 2y = 3. Using Note 1, it
suffices to prove that h(x, y) = 0, where

— —f(1
h(x,y) = g(X)z_;g/(y), o(u) = f(uz_{( )
Indeed, we have
() = 32(2u—1)
S =362+ 1)
_ 64(1+16x+16y —32xy) 64(4x —5)?

h(x:J’) -

= = 0.
3(32x2 + 1)(32y2 + 1) 3(32x2+1)(32y2 + 1)
Thus, the proof is completed. From x + 2y = 3 and h(x, y) =0, we get

ST
v YTy

Therefore, in accordance with Note 3, the equality holds fora = b =c¢ =1, and

also for ;
, b=c=-
8

5
a=-
4
(or any cyclic permutation).

P 3.2. If a, b, c,d are real numbers so that a+ b + c +d =4, then

18a—5 18b—5 18c—5 18d -5
+ + - <
12a2+1  12b2+1  12c2+1  12d2+1

(Vasile C., 2012)

Solution. Write the inequality as

Fl@) + F(B)+ f(&)+ F(d) = 4f(s), s= W _1
where s 1a
- u
fw)= —12u2+ 7’ u€R.
From

6(36u? —20u—3)
(12w +12

f'w=
it follows that f is increasing on

(—oo ﬂ] U sy, 00)
> 18 0>
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and decreasing on

Also, from
liinoo fw)=0

and
f(s0) <0,

it follows that f(u) > f(s,) for u € R. In addition, for u € [s,, 1], we have

1, —216u® + 180u® + 54u—5
—f"(w)=
24 (12u2 +1)3

_ 216u*(1—u)+36u(l—u)+(18u—>5) >0

(32u2 + 1)3 ’

hence f is convex on [sy,s]. According to the LPCF-Theorem and Note 1, we only
need to show that h(x, y) = 0 for x, y € R so that x + 3y = 4. We have

_f@—f1) _6(u—-1)

8 u—1  122+1°
— 12(1+6x +6y —12 12(2x —3)?
h(x,y):g(X) g(y) _ 12(0+6x +6y—12xy) _ (2x —3) > 0.
xX—y (12x24+1)(12y2+1) (12x24+1)(12y2+1)

Thus, the proof is completed. From x + 3y = 4 and h(x,y) = 0, we get x = 3/2
and y = 5/6. Therefore, in accordance with Note 3, the equality holds fora = b =

¢ =d =1, and also for
3
a=—, b:c:d:5
2 6

(or any cyclic permutation).

P 3.3. Ifa,b,c,d,e, f are real numbers so thata+b+c+d+e+ f =6, then

Sa—1 5b—1 5c—1 5d -1 Se—1 5f—1
+ + + + + <
5a2+1 5b%24+1 5¢24+1 5d2+1 5e2+1 5f2+1

(Vasile C., 2012)
Solution. Write the inequality as

_a+b+c+d+e+f

f@+fB)+f+f(D+fl+f(f)=4f(s), s= 6 1,
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where -
—5u
= . u€eRr.
fw Su?+1 .
From )
, 5(5u*—2u—1)
u)= ,
fw) (5u2+1)2
it follows that f is increasing on
1-/6
—0Q, 5 U [SO) OO)

and decreasing on

Also, from
lim f(u)=0
and
f(SO) < 07

it follows that f(u) > f(s,) for u € R. In addition, for u € [sy, 1], we have

1., —216u® + 180u® + 54u—5

—f'(w)=

24 (12u2 +1)3

_ 216u*(1—u) +36u(l—u) + (18u—>5) >0
B (32u2 +1)3 ’

hence f is convex on [sy,s]. According to the LPCF-Theorem and Note 1, we only
need to show that h(x,y) = 0 for x, y € R so that x + 5y = 6. We have

_f@=f() _ 5@u—1)

g i—1  30:2+1)
hCx,y) = g(x)—g(y) 5(2+4+5x+5y—10xy) _ 10(x —2)? -0
Y T T T 3G+ )(5y2+1)  3Gx2+1)(5y241)

In accordance with Note 3, the equality holds fora=b=c=d=e=f =1, and
also for

a=2, b:c:d:e:f:

(or any cyclic permutation).



Partially Convex Function Method 229

P 3.4. Ifay,a,,...,a, (n > 3) are real numbers so that a; + a, +---+ a, = n, then
n(n+1)—2a; n(n+1)—2a, n(n+1)—2a,
n2+(n—2)a®? n2+(n—2)a n2+(n—2)a? ~

(Vasile C., 2008)

n(n+1

Solution. The desired inequality is true for a; > % since

nn+1)—2

( )—2q <0

n?+(n—2)a:

and
n(n+1)—2aq n .
< , 1=2,3,...,n.

n2+(n—2)a> n-—1

The last inequalities are equivalent to
n(n— 2)al.2 +2(n—1)a; +n>0,
which are true because
n(n—2)a’+2(n—1a; +n> (n—1)a’ +2(n—1)a; +n> (n—1)(aq; + 1)* > 0.

Consider further that

n(n+1)
< —
al:az, )an — 2 P}
and rewrite the desired inequality as
a;+a,+--+a,
fla))+flay)+---+f(a,) =nf(s), s= 1 zn =1,
where ) (4 1) 1)
u—n(n+ n(n+
fw (n—2)u2 +n?’ “e ( T ]
We have
f'w)  n?+nn+1u—u?
2(n—2) [(n—2)u2+n2]?
and .
) _ fi(w)
2(n—2) [(n—2)u2+n2]3’
where

filw)=2(n—2)®—3n(n+1)(n—2)u*—2n*(2n—3)u+n*(n+1).

From the expression of f”, it follows that f is decreasing on (—00, s, ] and increasing
[ n(n+ 1)]
n | sy, — | where

so:%(nﬂ—M)e(—l,O);
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therefore,

min f (1) = f (o)-
On the other hand, for —1 < u < 1, we have
filw)>—-2(n—2)—3n(n+1)(n—2)—2n*(2n—3)+n3(n+1)
=n*(n—3)*+4(n+1)>0,

hence f”(u) > 0. Since [sy,s] € [—1,1], f is convex on [sy,s]. By the LPCF-
Theorem and Note 1, we only need to show that h(x,y) > 0 for x,y € R and
x + (n—1)y = n, where

X)— u)—f(1
hxyy— S0=80) o @ =FQ)
X — u—1
Indeed, we have
W)= (n—2u+n
sl = (n—2)u?+n2
and
h(x,y)  n*—n(x+y)—(n—2)xy
n—2 [(n—2)x2+n2][(n— 2)y2 + n?]
(n—1)(n—2)y?
 [(n—2)x2+n2][(n— 2)y2+n2]
The proof is completed. By Note 3, the equality holds fora; = a, =---=a, =1,

and also for
a=n, a,=---=a,=0

(or any cyclic permutation).

P 3.5. If a, b, c,d are real numbers so that a+ b + c +d =4, then

a(a—1)+ b(b—1)+c(c—1)+d(d—1) >
3a2+4 3b%2+4 3c2+4 3d%+4

(Vasile C., 2012)
Solution. Write the inequality as

F@+FB)+FO+ f@2af(), 5=y

where
u>—u

3uz+4°

ueckR.

fw)=
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From X
ooy 3u”+8u—4
f (u) - (3u2 + 4)2 b)
—4—2,
it follows that f is increasing on | —oo, %ﬁ] U [sy, ©0) and decreasing on
[—4 —2v7 }
—, 5y |, where
—4 4247
So = —f ~ 0.43.
3
Since 1
li ==
Jim f(u) 3

and f (sy) < 0, it follows that
min f (u) = £ (so)-

Foru €[0, 1], we have

1., —ou® —36u% + 36u + 14

—f"(w) = 5

2 (Buz+4)3
_ 9u*(1—u) +45u(1—u)+ (16 —9u) >0
B (Buz+4) '

Therefore, f is convex on [0, 1], hence on [s,,s]. According to the LPCF-Theorem
and Note 1, we only need to show that h(x,y) > 0 for x, y € R so that x +3y = 4.

We have
(W) = f@W—-fA)_ _u
& u—1  3u2+4
h(x,y) = g(x)—g(y) _ 4—3xy
’ xX—y (3x2+4)(3y2+4)

_ (x —2)° -0
CBx2+4)(By2+4) T

The proof is completed. From x + 3y = 4 and h(x,y) = 0, we get x = 2 and
y = 2/3. By Note 3, the equality holds fora = b =c =d =1, and also for

2

a=2, b=c=d=-

3
(or any cyclic permutation).
Remark. In the same manner, we can prove the following generalization:

e Ifa;,a,,...,a, are real numbers so that a; +a,+---+a, =n, then

a;(a; —1) n ay(a;—1) a(a,—1)
4(n—1)az+n%  4(n—1)ai+n? 4(n—1a2+n? ~

>
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with equality for a; = a, = -+- =a, = 1, and also for
_n
" 2(n—1)

n
al:ﬁ’ a,=az=---=a

(or any cyclic permutation).

P 3.6. If a, b, c are real numbers so that a + b + ¢ = 3, then

1 1 1 3
+ + < -—.
9a2—10a+9 9b2—10b+9 9c2—10c+9 ~ 8

(Vasile C., 2015)

Solution. Write the inequality as

F@+FB)+F@23f6), 5=,
where 4
f= s Toure “SF
From
2(9u—75)

flw= (9uz—10u +9)?’
it follows that f is decreasing on (—090,s,] and increasing on [s,, ©0) and , where

So==—<1=s.

For u € [sy,s] =[5/9,1], we have

_ 2(—243u*+270u—19) - 2(—243u?+270u—27)
(9u2—10u+9)3 (9u2—10u+9)3
_ 54(—9u?+10u—1)  54(1—u)(9u—1) S
(9u2 —10u + 9)3 (9u2—10u+9)3 —

£

Therefore, f is convex on [sy,s]. According to the LPCF-Theorem and Note 1, we
only need to show that h(x, y) = 0 for x, y € R so that x + 2y = 3. We have

_S@=f) __ u—1)

g u—1  8(9u2—10u+9)’
h(x,y) = gx)—gly) _ Ox+y)—8lxy +71
’ xX—y 8(9x2—10x +9)(9y2—10y +9)
2(9y —7)

= > 0.
8(9x2—10x +9)(9y2—10y +9)
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The proof is completed. From x + 2y = 3 and h(x,y) =0, we get

187
“9 YTy
Thus, the equality holds fora = b =c =d =1, and also for

13 7
a=—

(or any cyclic permutation).

P 3.7. Ifa,b,c,d are real numbers so that a4+ b+ c +d =4, then

+ + + <
4a?—5a+4 4b2—5b+4 4c2—5c+4 4d?2—-5d+4

1 1 1 1 4
3"

(Vasile C., 2015)

Solution. Write the inequality as

F@+F)+ O+ f@2af(), 5=y
where 4
fW= e sura <K
From
2(8u—5)

flw)=

(4u2 —5u+4)?’

it follows that f is decreasing on (—09,s,] and increasing on [s,, ©0), where
5
So==-<1=s.
8

For u € [sy,s] =[5/8,1], we have

F(u) = 4(—48u® + 60u—9) - 4(—48u® + 60u —12)
© (4u2—5u+4)3 (4u2 —5u + 4)3
_ 48(—4u*+5u—1)  48(1—u)(4u—1) -

(4u2—5u+4)3 (4u2—5u+4)3

Therefore, f is convex on [s,,s]. According to the LPCF-Theorem and Note 1, we
only need to show that h(x,y) > 0 for x, y € R so that x + 3y = 4. We have

_f—=f1)  4u-—1)
 u—1  3(4uwr—-5u+4)

g(u)
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h(x )_gQﬂ—gU)_ 4(x+y)—16xy +11
= x—y  3(4x2—5x+4)(4y2—5y +4)
(4y —3)*

= > 0.
(4x2—5x +4)(4y>—5y +4)

From x + 3y =4 and h(x,y) =0, we get
7,3
—y YTy

In accord with Note 3, the equality holds for a = b = ¢ =1, and also for

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

e Let a;,q,,...,a, be real numbers so that a; +a,+---+a, =n. If

2(n—1
k=1-20—1
n2
then
1 + 1 o 1 > n
a?—2ka;+1  ai—2ka,+1 a?—2ka,+1~ 2(1—k)’
with equality for a; = a, =--- =a, = 1, and also for
3n’—6n+4 n?—2n+4
QIZT, 2:a3: :an: n2
(or any cyclic permutation).
O
P 3.8. Let aq,q,,...,a, # —k be real numbers so that a, +a, +---+a, = n, where
k> —
24/n—1
Then,
a;(a; —1)  ay(a,—1) a,(a,—1) >0
(@, +k)?  (ay+k)? (a, +k)3? —

(Vasile C., 2008)
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Solution. Write the inequality as

_a1+a2+"'+an

fla))+ flay)+---+f(a,) =nf(s), s " =1,
where )
f(u)=‘(‘£”+_k)2), uel=R\{—k}.
From (2k + Du—k
/ _ u-—
Fl ="

it follows that f is increasing on (—oo,—k) U [s,, ©0) and decreasing on (—k,s,],
where

k
Sq = <1=s.
O ok +1

Since
lim f (u)=1
and f (s,) < 0, we have

min f (u) = f (s)-

From
k(k+2)—(2k+ 1)u

(u+k)* ’

~Fw) =

k(k + 2
( ) ], hence on [s,, 1]. According to the LPCF-
2k+1

Theorem, Note 4 and Note 1, it suffices to show that h(x,y) > O for all x,y € 1
which satisfy x + (n — 1)y = n, where

it follows that f is convex on [0,

,3) = 0280y L SO

Indeed, we have

u
s = e
and
K2 — T — XY
h(x,y) = Ml
(x+k)2(y+k)? — (x+k)*(y+k)?
. 12
__ DRe-ny-—nP
4(n—1)(x + k)2(y + k)2
The equality holds fora; = a, =---=a, =1. If k = , then the equali
holds also for
a, = E Ay =" =Qaq, = n
1 2, 2 n 2("._ 1)

(or any cyclic permutation).
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P 3.9. Let a;,ay, ..., a, # —k be real numbers so that a; +a, +---+a, =n. If

k14—
n—1

then ) ) )
a1—1 a2—1 an—l

- +ooo+ ——— > 0.
(@ +k)*>  (ag+k)? (a, +k)?

(Vasile C., 2008)

Solution. Write the inequality as

f(a1)+f(a2)+---+f(an)2nf(s), S n =1,
where
=L yer=R\{-k}
JW=tgor 1= '
From 2(ku+1)
/ _ u
Fa =2

it follows that f is increasing on (—oo,—k) U [s,, ©0) and decreasing on (—k,s,],
where
So=—<0=s, s,>-—1.
0 k 0

Since
Jim fu) =1
and f (s,) < 0, we have
min f (1) = f (o)-
For u € [—1,1], we have

_ 2(k*—3—2ku) - 2(k*—=3—2k) _ 2(k+1)(k—3) -0
N (u+k)* ~ (u+k)H (u+k* -

£

hence f is convex on [s,,1]. According to the LPCF-Theorem, Note 4 and Note 1,
it suffices to show that h(x, y) = 0 for x, y € I which satisfy x + (n—1)y = n. We

have
(u):f(u)—f(l): u+1
& —1 W+ k)2’
_gx)—gly) (k—1P—-1—x—y—xy
e ey L
since
(k=1 —-1-x—y—xy=> i —l—x—y—xy=[(n_1)y_1]2zo.

n—1 n—1
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n

The equality holds fora; =ay, =---=a,=1. lf k=1+
quality 1=0a Ji=1

, then the equality

holds also for

a=n—1, ay=---=a,=

(or any cyclic permutation).

P 3.10. Let a;,a,,as,a,,as be real numbers so that a; +a,+as+a,+as > 5. If
1 25
ke [—, —} ,
6" 14

1 5
< :
Zkaf+a2+a3+a4+a5 T k+4

then

(Vasile C., 2006)
Solution. We see that

1 3 (a,—3)
kaiz—ai+(a1+a2+a3+a4+a5)>—a.z—ai+——u>

= 0
6! 2 6

for all i € {1,2,...,n}. Since each term of the left hand side of the inequality
decreases by increasing any number a;, it suffices to consider the case

a, +a,+as+a,+as=>35,

when the desired inequality can be written as

g taytazta,tas

fla) +f(ax) + flaz) + fa)) + f(as) = 5f(s), s= c =1,
where 4
fu)= T —uis ueR.
From
P = s

it follows that f is decreasing on (—o0,s,] and increasing on [s,, ©0), where

We have

F(u) = 2g(u)

— 2.2
T (ku?—u+5) g(u) = —3k*u® + 3ku + 5k — 1.
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For

1 25

—<k<—,

2 14
we have 1

=—<1=

Tk =TS
and for u € [s,,s], that is
1

—<u<l,

2k
we have

(1—w)(2ku—1)=>0,
—2ku? > (2k + Du +1,
—2k*u? > k(2k + 1u + k,

therefore

—3k(2k — 1)u+ 13k —2
2

=—3k*+8k—1=3k(2—k)+(2k—1)> 0.

gu) > 2[k(2k+ Du+k]+3ku+5k—1=

_ —3k(2k—1)+ 13k —2
= 2

Consequently, f is convex on [s,,s].

For 1 1
-<k<—,
6 2
we have .
So=—2=1=s,
07 2k
and for u € [s,s,], that is
1
1<u< —,
2k

we have

g(u) = —3k*u® + 3ku+ 5k — 1 > 3ku(1—k) + 5k —1
>3k(1—k)+5k—1=—-3k*+8k—1
> —6k*+7k—1=(1—k)(6k—1) > 0.
Consequently, f is convex on [s,s,].
In both cases, by the PCF-Theorem, it suffices to show that
1 4 4 < 5
kx?2—x+5 ky?—y+5" k+4

for
x+4y =5, x,y€R
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Write this inequality as follows:

0,

1 1 [ 1 1 ]
— +4 — >
k+4 kx?2—x+5 k+4 ky2—y+5

(x—1)(kx+k—1)+4(y—1)(ky+k—1) >0
kx2—x+5 ky?—y+5 -

Since
4(y—1)=1—x,

the inequality is equivalent to

kx+k—1 ky+k-—1
(x—l)( XrR-L )zo,
kx?2—x+5 ky?—y+5

5(x —1)*h(x, y)
4(kx2—x +5)ky2—y+5)

where

h(x,y)=—k*xy —k(k—1)(x+ y)+6k—1
= 4k*y* —k(2k +3)y —5k* + 11k —1

2 —_— —_—
:(zky_2k+3) L (25-14K)(6k—1)

0.
16

1
The equality holds for a; = a, =a; =a,=a;=1. If k = o then the equality
holds also for c

25
(or any cyclic permutation). If k = IR then the equality holds also for

79 23

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

e Let ay,a,,...,a, bereal numbers so that a; +a,+---+a, <n. If k € [ky,k,],
where

_ (n—1)(v53n2—54n+101—5n+11)
B 2(7n2 +14n—75)

ky

2

L = 2n2—2n+1++/(n—1)(3n®—4n2+3n—1)
2T 2(n2—n+1) ’
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then
Z 1 n
< )
ka?+ay+---+a,  k+n—-1
with equality for a; = a, = -+- = a, = 1. If k = k;, then the equality holds also for
2n
alz_n, a2:"':an:n_1
(or any cyclic permutation). If k = k,, then the equality holds also for
. _2k—=1Dn-1)+1 — =g _ 2k+n-—2
e 2k R T 2k(n—1)
(or any cyclic permutation).
O
P 3.11. Let ay,a,,...,as be nonnegative numbers so that a; +a,+a;+a,+as > 5.
If k € [kq, k5], where
29— 4761 25
k, =——~0.1414, k,=— ~1.7857,
1 10 414 2= 14 7857
then

1 5
< .
Zka%+a2+a3+a4+a5 T k+4
(Vasile C., 2006)

Solution. Since all terms of the left hand side of the inequality decrease by increas-
ing any number q;, it suffices to consider the case

a, +a,+as;+a,+as=>.

The proof is similar to the one of the preceding P 3.10. Having in view P 3.10, it
suffices to consider the case

1
kE[klj_],
6
when
1 >1=s
Sy = — =
07 ok
For u € [s,s,], that is
1
1<u<—,
4=k

f is convex because

g(u) = —3k*u® + 3ku+ 5k — 1 > 3ku(1—k) + 5k —1
>3k(1—k)+5k—1=—-3k*+8k—1
(2—k)(i5k—2)>0'

15
>—Zk2+87k—1 =
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Thus, by the RPCF-Theorem, it suffices to show that
1 4 4 < 5
kx?2—x+5 ky?—y+5" k+4

for
x+4y=5 0<x<1<Ly

IA

>
2
As shown at P 3.10, this inequality is true if h(x, y) = 0, where

h(x,y)=—k*xy —k(k—1)(x+ y) +6k—1.
We have

h(x,y) =4k*y* —k(2k +3)y —5k* + 11k —1
=(5—4y)(A—k’y)+B=x(A—k’*y)+B,
where
_ 3k(1—k) B —5k? + 29k — 4
4 7’ 4 '
Since B > 0, it suffices to show that A—k?y > 0. Indeed, we have

A

_ 2 —
A_k2y>3k(1 k) 5K’ _k(3-8K) _
4 4 4

The equality holds for a; = a, = a; = a, = a5 = 1. If k = k;, then the equality
holds also for

5
(or any cyclic permutation). If k = k,, then the equality holds also for
79 23

(or any cyclic permutatio

Remark. Similarly, we can prove the following generalization:

e Let ay,a,,...,a, be nonnegative real numbers so that a; +a, +---+a, < n.
If k € [kq, k,], where

_n’+n—1—vn*+2n3—5n2+2n+1

k ,
! 2n

_2n2-2n+1++/(n—1)(Bn3—4n2+3n—1)

k
2 2(n2—n+1)

b

then

IR
ka?+a,+---+a,  k+n—1
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with equality for a; = a, = -+- = a, = 1. If k = k;, then the equality holds also for

(or any cyclic permutation). If k = k,, then the equality holds also for

L @k=D-D+1  _ 2k+n-2
e 2k R T T 2k(n—1)

(or any cyclic permutation).

P 3.12. Let aq,a,,...,a, be nonnegative real numbers so that a, +a,+---+a, > n.
If k> 1, then

1 1 1
- + - +ooet -<1.
a+ay+-+a, at+ak+--+a, a;+a,+---+ak

(Vasile C., 2006)

Solution. It suffices to consider the case a; + a, + --- + a,, = n, when the desired
inequality can be written as

Fla)+fla)+-+fla)>nf(s), s=2r@t T _y

n

where 1
- €|0,n].
f(u) i ue(0,n]

From
kuk'—1
(uk—u+n)?’

it follows that f is decreasing on [0, s,] and increasing on [s,, n], where

fiw)=

1
So=kTF <1=s.

We will show that f is convex on [sy, 1]. For u € [s,, 1], we have

_ —k(k+ D)u* 2 + k(k + 3)u** + nk(k—1)u*2 -2 S g(u)

1
fw (uk—u+n)? (uk—u+n)3’
where
g(u) = —k(k + Du®2 + k(k + 3)u** —2.
Denoting

t=ku!, 1<t<k,
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we get

kg(u) =—(k +1)t* + k(k + 3)t — 2k
=(k+1D)(t—1)(k—t)+(k—1)(t+k)>0.

By the LPCF-Theorem, it suffices to show that

1 n—1
+ <1
xk—x+n yk—y+n

forx > 1>y > 0and x+(n—1)y = n. Since this inequality is trivial forx = y =1,
assume next that x > 1 > y > 0, and write the desired inequality as follows:

k_
xk—x+n2y—y+n,
yEk—y+1
—1)(v — vk
s ) —y)
yk—y+1
xk—x y—y*

x=1~ (1-y)yk—y+1)
xk—
Let h(x) =

f, x > 1. By the weighted AM-GM inequality, we have

(k—1D)x* 4+ 1 —kx*k?

M=y

> 0.

Therefore, h is increasing. Since

x—1=n-1)1—-y)=1—-y, x=22—y>1,

we get
2—y)l+y—2
hx) > h(2—y)= B2 Ty =2
1-y
Thus, it suffices to show that
k )’—}’k
2—yY4y—2>—2 L
2=y)+y E—
which is equivalent to
2—yY+y—-1>—F—.
2-=y)+y a—

Using the substitution
t=1—-y, 0<t<],
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the inequality becomes

1+t —t> ——)
( ) (I—t)+t

A=t +t(1+)>1+2+t(1-0)k
By Bernoulli’s inequality,
Q—t+t(1+t)>1—kt’+t(1+kt)=1+t.
So, we only need to show that
1+t>14+2+t(1—1),
which is equivalent to the obvious inequality
t1—t)[1-(1—t)]>o0.

The equality holds fora, =a, =---=a, =1.

Remark. Using this result, we can formulate the following statement:

o Let X1,X,,...,X, be nonnegative real numbers so that x; + xy+---+x, > n. If
k> 1, then

k k k

X, —Xq X, — Xy X-—X,

—1 2 ot " - >0.
X;tXy+ot X, Xp+Xy+-otX, Xyt Xy + et X)

This inequality is equivalent to

1 1 1 n
- + - +eot - < :
XKtxy+oobx, x;+HxE++x, X1+ X4 Xk T X x4+ x,

Using the substitutions

and
X .
a=—, 1=12,...,n,

which yields a; + a, + - - - + a, = n, the desired inequality becomes

1
> - <1
sk=laf +a, +---+a

n

Since s*~1 > 1, it suffices to show that

1
>
a;t+a,+---+a,
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which follows immediately from the inequality in P 3.12.

Since x;x,--+x, = 1 involves x; + x, + - - - + x, = n, the inequality is also true
under the more restrictive condition x;x,---x, = 1. Forn =3 and k = 5/2, we get
the inequality from IMO-2005:

e If x,y,z are nonnegative real numbers so that xyz > 1, then
%5 — x2 N y5—y2 25— 52
xXS+y2+z2 x24+yS+22 x2+4+y2+25

O
P 3.13. Let a;,a,,...,as be nonnegative numbers so that a; +a,+as;+a,+as > 5.
If
4 61
ke [—, —}
9 5
then

IR S
ka?+a,+as+as+as  k+4
(Vasile C., 2006)

Solution. Using the substitution

xlz_:xzz_:x32_9x4:_3XSZ_;
S S s S
where
a, +a,+as+a,+as
s= >1,
5

we need to show that x; + x, + x5 + x, + x5 = 5 involves

X1 X5 S
> oot 5 < .
ksx3 + xo + X3+ X4 + X5 X1+ Xy + X3+ x,+ksxi  k+4

Since s > 1, it suffices to prove the inequality for s = 1; that is, to show that

a, + a, o as < 5
kai—a, +5 ka;—a;+5 ka—a,+5 " k+4

for
a, +a,+as+a,+as=>.

Write the desired inequality as

flay) + fay) + f(as) + f(as) + f(as) = 5f(s),
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where
S:a1+a2+a3+a4+a5:1
5
and 4
uy=— u€l0,5].
f(u) P —uis [0,5]
From 5
ku“—>5
/
u)=——"—"—77,
fw (ku2—u+5)2

it follows that f is decreasing on [0,s,] and increasing on [s,, 5], where

NE
0 — k'
We have
p 2g(u) ,
f(u)= (uz—gTS)?” g(u) = —k*u® +15ku—5, g’'(u) =3k(5—ku?).

Case 1: g < k < 5. We have

5
30:\1221=s.

For u € [1,s,], the derivative g’ is nonnegative, g is increasing, hence

86k — 25
_ >

g(u)Zg(1)=—k2+15k—5=(k—g)(5—k)+ 0.

Consequently, f”(u) > 0 for u € [1,s,], hence f is convex on [s,s,].

5
50=\l;<1:5.

For u € [s,, 1], we have g’(u) < 0, g(u) is decreasing, hence

61
Case2: 5<k< = We have

g(w)>g(1)=—k*+15k—5=(k—1)(13—k)+ k+8> 0.
Consequently, f”(u) > 0 for u € [sy, 1], hence f is convex on [sg,s].

In both cases, by the PCF-Theorem, it suffices to show that

X + 4y < S5
kx2—x+5 ky?—y+5 k+4
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for
x+4y =5, x,y=0.

Write this inequality as follows:

1 X +4[ 1 Yy ]>O
k+4 kx2—x+5 k+4 ky2—y+5]" 7

(= D(kx—5) 4y =Dy =5) _
kx?—x+5 ky>?—y+5

Since
4(y—1)=1—x,

the inequality is equivalent to

kx — ky—5
kx2—x+5 ky?—y+5

(x —1)*h(x, y)
(kx2—x+5)(ky2—y+5) "~

where

h(x,y)=—k*xy +5k(x +y)+5k—5
= 4k*y* —5k(k + 3)y +5(6k —1).

1
We need to show that h(x,y) >0 for k € [g, %] For k € [g, 1], we have

h(x,y)=(5—4y) (—kzy + 12’() + 5(9k4_ 4)

_ kx(15—4ky) N 5(9k —4)

4 4
kx(kx +15—5k) 5(9k —
_ kx(kx + )+ 9 4)20

4 4 ’

while for k € [1, %], we have

2 — —
5k+15) 4 (61 Sf;(k 1) >

h(x,y) = (2ky - 0.

4
The equality holds for a; = a, = a3 =a, =a; =1. If k = 9’ then the equality

holds also for s

4
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61
(or any cyclic permutation). If k = 5 then the equality holds also for

115 95

a4 =—1, (0aAy=0a3=0a,=0a5= ——
17 61 2 3 4 57 1992

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

e Let ay,a,,...,a, bereal numbers so that a; +a,+---+a, <n. Ifk € [ky,k,],
where

klzn—_1,
2n—1
K, = n2+2n—2+2\/(n—1)(2n2—1)’
n
then @ n
Zka%+a2+---+an = ktn-1
with equality for a; = a, =---=a, = 1. If k = k;, then the equality holds also for
n
a; =0, ay=a3=a4,=0a5= —

(or any cyclic permutation). If k = k,, then the equality holds also for

ntk—n+2) nk+n—2)
W=7 0 T TMT k-1

(or any cyclic permutation).

P 3.14. Let a,,a,,...,a, be nonnegative real numbers so that a; +a,+---+a, > n.
If k> 1, then

a; a, a
- + - oot - <
dt+ay+-+a, at+a+--+a, a;+a,+---+ak

Solution. Using the substitution

where
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we need to show that x; + x, +--- + x, = n involves

X1 Xn
Kk Tt ik =
sk=Ixf + x4+ + X, X1+ Xy + - sklxk

Since s*! > 1, it suffices to prove the inequality for s = 1; that is, to show that

a; a, a,
- +— +---+k—S1
a;,—a+tn a,—as+n a,—a,+n

for
a,+a,+---+a,=n.

Case 1: 1 < k < n+ 1. By Bernoulli’s inequality, we have
a’f >1+k(a; —1), a’l‘—a1 +n>(k—1)a; +n—k+1.
Thus, it suffices to show that

1.

2. i <
(k—1)a; +n—k+1 "~

This is an equality for k =n—1. If 1 < k < n+ 1, then the inequality is equivalent
to

>, ! >1,
(k—1)a; +n—k+1
which follows from the the AM-HM inequality

1 n®
> .
Z(k—l)a1+n—k+1 " Y [(k—1a; +n—k+1]
Case 2: k > n + 1. Write the desired inequality as

_a1+a2+"'+an

fla)+f(a))+---+f(a,) = nf(s), s =1,

n
where 4
f(U):m, ue[O,n].
We have (k= 1)t
ey (k=1u"—n
flw= (uk—u+n)?
and £
Vi _ 1 u
W)= e s
where

fiw) = k(k — Du " (wk —u +n) —2(ku* — 1)[(k — 1)u* —n].
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From the expression of f’, it follows that f is decreasing on [0,s,] and increasing

on [sy,n], where
Sg = <1=s.
0 (k—l)

For u € [s,, 1], we have
(k—Duk—n> (k—l)sg—nzo,
hence
fw) > k(k — D Wk —u+n) — 2ku* [ (k — 1uk —n]
=k [—(k— D)W +u)+n(k+1)]
> kuf [—2(k — 1)+ 2(k + 1)] = 4ku*! > 0.

Since f”(u) > 0, it follows that f is convex on [s,,s]. By the LPCF-Theorem, we
need to show that

fE)+(—1)f(y)=znf(1)
for
x=>1>2y=>0, x+((n—1)y=n.

Consider the nontrivial case where x > 1 > y > 0 and write the required inequality
as follows:

—1
x nmly o
xk—x+n yk—y+n

k _
xk—x+n2—x(y y+n)’
yk—ny +n
-1 —yk
s Ty =y
yk—ny+n

Since y <1 and y*—ny +n> y*— y + 1, it suffices to show that

_ _ vk
s D=y
yk—y+1

which has been proved at P 3.12.

The equality holds for a; =a, =---=a, =1.

n

P 3.15. Let a;,a,,...,a, be nonnegative real numbers so that a; +a,+---+a, < n.

1
Ifk>1——, then
n

1—a, 1—a, l1—a,
5 + 3 et 52
kai+a,+---+a, a;+kas+---+a, a, +a,+---+ ka2

(Vasile C., 2006)
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Solution. Let
Cl1+(12+"'+an
s= , s<1.
n

We have three cases to consider.

1 . .
Case 1: s < —. The inequality is trivial because
n
a;<a,ta,+---+a,=ns<1
fori=1,2,...,n.

1 . .
Case 2: — <s < 1. Without loss of generality, assume that
n

a1S“'Saj<1saj+1"'San, j€{1,2,...,fl}.

Clearly, there are by, b, ..., b, so that b; + b, +---+ b, =n and
a, < b1 < ]., ooy aj < b] < 1, bj+1:aj+1, ey bn:an.
Write the desired inequality as

fla))+f(a)+---+f(a,) =0,

where 1
fa) =4 4 1w e[0,ns].

u2—u+ns’
For u € [0, 1], we have
k[(1—u)*—1]+(1—ns)

fly= (ku? —u + ns)? <0,

hence f is strictly decreasing on [0, 1] and

f(b1) < flay), -, f(bj) Sf(aj)a f(bj+1) :f(aj+1); s f(by) = f(ay).
Since
f(b)+f(ba)+---+ f(by) < flay) + flag) + -+ + f(ay,),

it suffices to show that f(b;) + f(b,) +---+ f(b,) = O for by + b, +---+ b, = n.
This inequality is proved at Case 3.

Case 3: s = 1. Write the inequality as

fla)+ @)+t fla)znf(s), s=DERT Gy
where .
—Uu
f(u):m, LLE[O,TL].
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From
kK[(u—=1)*-1]—-(n—1)

fla= (ku2 —u+ n)? ’

it follows that f is decreasing on [0, s,] and increasing on [s,, n], where

n—1
So=1+ 1+T>1=s, So < n.

We will show that f is convex on [1,s,]. We have

F(u) = 2g(u)

"~ (kuz—u+n)3’

where
g(u) = —k*u®+3k*u*>+3k(n—1u—kn—n+1, g'(u) = 3k(—ku*+2ku+n—1).
For u € [1,s,], we have g’'(u) > 0, g is increasing, therefore

gw)>g(1)=2k*+(2n—3)k—n+1

> 2(n—1)2 N (2n—=3)(n—1)
n2 n
(n*—1)(n—2)
2 =0

n+1

b

f"(u) =0, f(u) is convex for u € [s,s,]. By the RPCF-Theorem, it suffices to show

that ) A
—x (-DA-y)_
kx?2—x+n ky?—y+n

for0<x<1<yandx+(n—1)y =n. Since (n—1)(1—y)=x—1, we have

1—x (n—1)(1-y) 1 1
kxz—x+n+ ky?—y+n :(X_l)(_kxz—x+n+ky2—y+n)
_ =Dl —y)kx +ky —1)
~ (kx2—x+n)(ky2—y +n)
_ n(x—1)*(kx +ky—1) -0
(n—1)(kx2—x+n)(ky2—y+n)

because

—1 —2
k(x+y)—12n (x+y)—1:u20.
n
1
The proof is completed. The equality holds fora; =a, =---=q,=1. lfk=1——,
n
then the equality holds also for
n
a, =0, a=a3=---=a,=
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(or any cyclic permutation).
Remark. For k = 1, we get the following statement:

e Ifa,,a,,...,a, are nonnegative real numbers so that a, +a,+---+a, < n, then

1—a, 1—a, 1—a,
> > oot 5 >0.
a1+a2+"'+an a1+a2+"'+an a1+a2+"'+an
with equality fora; =a, =---=aqa, =1.
O
P 3.16. Let aq,a,,...,a, be nonnegative real numbers so that a; +a,+---+a, < n.

1
Ifk>1——, then
n

1—aqa, 1—a, 1—a
=+ s+t T————>
1—a;+ka] 1—a,+ka; 1—a, +ka?

(Vasile C., 2006)

Solution. The proof is similar to the one of the preceding P 3.15. For the case 3,
we need to show that

:a1+a2+"'+an

fla)+f(a)+---+fla,) = nf(s), s =1,

n
where ;
—u
fu)= T—urie “ €[0,n].
From K 2)
vy ku(u—
flw= (1 —u+ku2)?’

it follows that f is decreasing on [0, s,] and increasing on [s,, n], where
Sg=2>s.
We will show that f is convex on [1,s,]. For u € [1,s,], we have

2kg(u)

— 3 2
Aurkeyp SW=—kw+3ku—1.

fw)=
Since
g'(u)=3ku(2—u) >0,
g is increasing, g(u) = g(1) = 2k—1 > 0, hence f”(u) > 0 for u € [1,s,]. By the
RPCF-Theorem, it suffices to show that

1— —-1)(1—
x =DA=-y_,
1—x+ kx? 1—y+ky?




254 Vasile Cirtoaje

for0<x<1<yandx+(n—1)y =n. Since (n—1)(1—y)=x—1, we have

1—x (n—1)(1-y) 1
1—x+kx2+ 1—y+ky? :(1_x)(1—x+kx2_1—y+ky2)
_ (1=x)(y —x)(kx +ky —1)
(A —x+kx2)(1—y+ky2)
n(x—1)>*(kx +ky—1)
(n—1)(1—x+kx2)(1—y+ky?)

Since . )
k(x+y)—1> n- (x+y)—1=u >0,
n
1
the conclusion follows. The equality holds fora; =a, =---=a,=1. lf k=1——,
n
then the equality holds also for
n
a; =0, a,=a3= =a,=
n—1
(or any cyclic permutation).
U

P 3.17. Let a;,a,,...,qa, be positive real numbers so that a; +a, +---+a, =n. If
0<k< T then

n—
a’f/al +a§/a2+---+a§/a“ <n.

(Vasile C., 2006)
Solution. According to the power mean inequality, we have

p/a p/a n 1/p q/a q/a . 1/q
(a1 '+a, 2+---+a§/a) >(a1 '+a, 2+---+ag/“)

n n

for all p > q > 0. Thus, it suffices to prove the desired inequality for

n

k= , 1<k<2.
n—1
Rewrite the desired inequality as
a+a,+---+a,
fla)+f(@)+-+f(a)2nf(s), s=——" =1,

where
fw)=—u""", uel=(0,n).
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We have .
f'(u) = ku«?(Inu—1),

F(w) = ku*[u+ (1 —Inw)(2u—k + kInw)].
For n =2, when k =2 and I = (0,2), f is convex on [1,2) because

1—-Inu>0, 2u—k+klnu=2u—2+2Inu>2u—22>0.

Therefore, we may apply the RHCF-Theorem. Consider now that n > 3. From the
expression of f’, it follows that f is decreasing on (0, s,] and increasing on [s,, n),
where

Ssp=e>1=s.

In addition, we claim that f is convex on [1,s,]. Indeed, since
1-lnu>0, 2u—k+klnu>2—k>0,

we have f” > 0 for u € [1,s,]. Therefore, by the RHCF-Theorem (for n = 2) and
the RPCF-Theorem (for n > 3), we only need to show that

XM+ (n—1)y*¥ <n

for
0<x<1<y, x+(n—-1y=n
We have
k
—>k>1.
X
Also, from
k__n n —y, k__n _2_,
y m-=1)y x+(m—-1)y y =1y ¥y
we get
k
0<——1<1.
y

Therefore, by Bernoulli’s inequality, we have

K+ (n—1)y*Y —n= +(n—1)y -y 1—n

1
(l)k/x
k
+(n—1)y[1+(——1)(y—1)]—n
1 y
=—— —(k—1Dx*—(2—k
x2—kx+k ( = ( x
_ —=x(x—1)?[(k—1)x +k(2—K)] <0
B x2—kx +k -
The proof is completed. The equality holds for a; =a, =---=aqa, =1.
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P 3.18. Ifa, b,c,d, e are nonzgero real numbers so that a+b+c+d +e =75, then

5)? 5)? 5)° 5)? 5)?
(7—-) +(7—-) +(7—-) +(7——) +(7—-) > 20.
a b c d e
(Vasile C., 2012)

Solution. Write the inequality as

_a+b+c+d+e_
= - =

f@+f@)+f)+f(d)+f(e)=5f(s), s 1,

where )
f(u):(7—g) , uel=R\{0}.

From 10(7 5)
fia =270

it follows that f is increasing on (—o0, 0)U[s,, ©0) and decreasing on (0, s, ], where
So = 7 <1l=s.

Since
liinoo f(u)=49

and f (s,) = 0, we have

min f (u) = £ (so)-
Also, f is convex on [s,,s] =[5/7,1] because

) = 10(15u: 1) o

According to the LPCF-Theorem and Note 4, we only need to show that

fO)+4f(y)=5f(1)

for all nonzero real x, y so that x +4y = 5. Using Note 1, it suffices to prove that
h(x,y) = 0, where

hx,y)= $9 =80 -y f@=F)
X = u—1
We have o s
s =5(3 1)
hx,y) = 20X F5Y Z0xy) SOy =5),

x2y?2 x2y2
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In accordance with Note 3, the equality holds fora =b =c=d =e =1, and also
for
b =C= d =e =

5 5
a=-—, -
3 6
(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

e Let aj,a,,...,qa, be nongzero real numbers so that a; +a, +---+a, = n. If
n
k=———— then
n++vn—1
k\? kO k\°
(1——) +(1——) +~--+(1——) >n(1—k)?
a; as a,
with equality for a; = a, =---=a, =1, and also for
a, = n a,=a;=--=a,= n
TR " n—1++vn—-1
(or any cyclic permutation).
OJ
P 3.19. If a;,a,,...,a, are real numbers so that a; + a, +---+a, =7, then

(@@ +2)(a5+2)--- (a2 +2)>3".

(Vasile C., 2007)

Solution. Write the inequality as

fla))+flay))+---+f(a;)=7f(s), s 5 =1,
where
fw)=In(u*+2), ueR.
From 9
u
/ —

fw=—=,

it follows that f is decreasing on (—©09,s,] and increasing on [s,, ©0 ], where
SO - O.

From ,

, 22—u

frw = 2220

(u2+2)2’
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it follows that f”(u) > 0 for u € [0,1], therefore f is convex on [s,,s]. By the
LPCF-Theorem, it suffices to prove that

f)+6f(y)=77(1)
for x, y € R so that x + 6y = 7. The inequality can be written as g(y) > 0, where
g(y)=In[(7—6y)*+2]+6In(y*+2)—7In3, yeR.

From

4(6y —7) L 12y
12y2—28y +17  y2+2
_ 28(6y°—13y*+9y —2)
T (12y2—28y +17)(y2+2)
_ 28Ry —1)By—2)y—1)

(12y2—28y +17)(y2 +2)’

gy)=

: . . 1 2 . . 12
it follows that g is decreasing on (—oo, 5] U [5, 1] and increasing on [5, 5] U
[1, 0o); therefore,

g = min{g(1/2),¢g(1)}.

Since g(1) = 0, we only need to show that g(1/2) > 0; that is, to show that x =4
and y = 1/2 involve
(x2+2)(y*+2)°>3.

Indeed, we have

3’ 139 - 37
(x2+2)(y2+2)6—37=37(—— ): °

911 911
The equality holds fora; =a, =---=a, = 1.
OJ
n2
P 3.20. Leta,,a,,...,a, bereal numbers so that a; +a,+---+a, =n. Ifk > =1y
n_

then
(@ +k)(aZ+k)---(a2+k)=(1+k)"

(Vasile C., 2007)

Solution. Write the inequality as

fla)+flag)+---+f(a,)=nf(s), s
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where
fw)=In(u*+k), ueR.
From 9
N 2u

f (u) - uz + k:

it follows that f is decreasing on (—00,s,] and increasing on [s,, ©0 ], where
so = 0.
From ( 2
2(k—u
/7 _
W= e

it follows that f”(u) > 0 for u € [0,1], therefore f is convex on [s,,s]. By the
LPCF-Theorem and Note 2, it suffices to prove that H(x,y) = 0 for x, y € R so that
x +(n—1)y = n, where

We have
1 k—xy
HHE) = 502+ 10
- n?—4(n—1)xy
T 4(n—1)(x2+k)(y2+k)
_[x+(n—1)yP—4(n—-1Dxy
4(n—1)(x2+Kk)(y2+k)
__ ==y
4n—1)(x2+k)(y2+k) —

The equality holds fora; =a, =---=a, =1.

P 3.21. Let ay,a,,...,a, be real numbers such that a; +a,+---+a, =n. If n <10,
then
(@@—a;+1)(a—ay,+1)---(a>—a,+1) > 1.

(Vasile C., 2007)

Solution. Write the inequality as

fla)+flag)+---+f(a)=nf(s), s

where
fW=In(u*—u+1), u€eR.
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From 9 1
u_
/
u)=——-,
fw uw2—u+1

it follows that f is decreasing on (—09,s,] and increasing on [s,, 00 ), where
1 <1
So= = =s.
° 2

In addition, from
we v 1+2u(l—u)
f (u)_(uz_u+1)21

it follows that f”(u) > O for u € [s,, 1], hence f is convex on [s,,s]. According to
LPCF-Theorem, we only need to show that

f)+(m=1f(y) = nf(1)

for all real x, y so that x + (n— 1)y = n. Write this inequality as g(x) > 0, where

g(x)=In(x*—-x+1)+(n—1)In(y*—y +1), J’=n_)1c.
n_
o, -1
Since y’(x) = ——, we have
n—1
g/(X):x—+(n—1)y’ Y — =X _ 4y
x2—x+1 y2—y+1 x2—x+1 y2—y+1

(=) 4+x+y—2xy) (x—D[2x*—(n+2)x+2n—1]

(2= x+102—y+1) (—12(2—x+1)(y2—y+1)
Because 2x2—(n+2)x +2n—1> 0 for n < 10, we have g’(x) < 0 for x € (—00,1]
and g’(x) = 0 for x € [1, o). Therefore, since g(x) is decreasing on (—oo, 1] and
increasing on [1, 00 ), we have

g(x)=g(1)=0.
The equality occurs for a; =a, =---=a,=1.

Remark 1. The inequality holds also for n = 11, n = 12 and n = 13, when the
equation
2x2—(n+2)x+2n—1=0

has two positive roots, namely

n+2—+/n2—12(n—1) n+2+4/n2—12(n—1)
xl = ) xz = )
4 4
satisfying 1 < x; < x,. Thus, g(x) is decreasing on (—o0, 1]U[x;, x,] and increas-
ing on [1, x;] U [x,, 00). Therefore, it suffices to show that

min{g(1), g(x,)} = 0.
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We have g(1) = 0. For n = 13, we have

13—x, 2
X2=5  E o =y

hence

13
g(xy) =In(x; —x,+ 1)+ (n—1In(y. —y,+1)=In21+ 12-lng = ln% > 0.
For n = 14, the inequality does not hold.

Remark 2. By replacing a,, a,,...,a, respectively with 1—a,,1—a,,...,1—a,, we
get the following statement:
e Leta,,aq,,...,a, bereal numbers such that a; +a,+---+a, =0. If n <13, then

1-a,+a®)(1—ay+ad)---(1—a,+a>)>1,

with equality for a, =a, =---=a, =0.

P 3.22. Let a,,a,,...,a, be real numbers such that a; +a,+---+a, =n. If n < 26,
then
(@@—a;+2)(aZ—a,+2)---(a>—a,+2) = 2"

(Vasile C., 2007)

Solution. Write the inequality as

flap)+f(ag)+---+f(a,)=nf(s), s= n =1,
where
fW)=In(u*—u+2), ueR.
From oy —1
fw= ey

it follows that f is decreasing on (—00,s,] and increasing on [s,, ©0), where
1
So = 2 <l=s.

In addition, from
v~ 3+ 2u(l—u)
f (u)_(uz_u+2)21

it follows that f”(u) > 0 for u € [s,, 1], hence f is convex on [s,,s]. According to
LPCF-Theorem, we only need to show that

f)+(n=1)f(y)=nf(1)
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for all real x, y so that x + (n — 1)y = n. Write this inequality as g(x) > 0, where

g(x)=In(x*—x+2)+(n—1)In(y*—y +2), y=n_’1c.
n_
. , -1
Since y’(x) = ——, we have
n—1
g/(x)zx—-l-(n—l)y’ 4 ==X __y
x2—x+2 Yi—y+2 x2—x+2 yr—y+2

_(x=y)B+x+y—2xy) (x—1)[2x*—(n+2)x+4n—3]
(2= x+2)(y2—y+2) (—12(x2—x+1)(y2—y+1)

Because 2x2—(n+2)x +4n—3 > 0 for n < 26, we have g’(x) < 0 for x € (—00,1]
and g’(x) = 0 for x € [1, o). Therefore, since g(x) is decreasing on (—oo, 1] and
increasing on [1, 00 ), we have

gx)=g(1)=0.

The equality occurs fora; =a, =---=aqa, =

1.
Remark 1. The inequality holds also for 27 < n < 38, when the equation
2x2—(n+2)x+4n—3=0

has two positive roots, namely

n+2—+4/n2—28(n—1) n+2++/n2—28(n—1)
Xlz 1) X2: ;)
4 4

satisfying 1 < x; < x,. Thus, g(x) is decreasing on (—oo,1]U[x;, x,] and increas-
ing on [1,x;] U [x,, 00). Therefore, it suffices to show that

min{g(1), g(x,)} = 0.

We have g(1) =0 and g(x,) > 0 for 27 < n < 38. For n = 39, the inequality does
not hold.

Remark 2. By replacing a,, a,,...,a, respectively with 1—a,,1—a,,...,1—a,, we
get the following statement:

e Letay,a,,...,a, bereal numbers such that a; +a,+---+a, =0. If n < 38, then
2-a,+a®)(2—ay+ad)---(2—a,+a’)=2",

with equality fora; =a, =---=a, =0.
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P 3.23. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then
(1—a+a)(1-b+bH(A—c+c*H)>1.

Solution. Write the inequality as

a+b+c
fl@+f(b)+f(c)=3f(s), s= —5 =1L
where
fw=In(1—u+u*), uel0,3].
From s
4u” —1
1001 —
f (u) - 1_u+u4:
it follows that f is decreasing on [0,s,] and increasing on [s,, 3], where
! <1
So === =s.
T
Also, f is convex on [s,, 1] because
" —4ub— 4 + 1202 —1 _ —4u® —4u*+12u° -1 4u*—1
ffw)= > = > 0.
(1—u+u*)? (1—u+u*)? (1—u+u*)?
According to the LPCE-Theorem, we only need to show that
fG)+2f(y)=3f(1)
forall x, y > 0sothat x+2y = 3. Using Note 2, it suffices to prove that H(x, y) > 0,
here £ =)
X)—J W
H(x,y)=—"—"—"".
X—=y
We have
Hx,y) = (x+y)x—y)P—1+4(x*>+y*+xy)—2xy(x+ y)—4x3y?
Y= A—x+x)(1—y+y9
s A(x*+y*+xy)—2xy(x+y)—4x3y?
- 1—x+xH)A—-y+y*)
_ h(x,y)
Q—x+x)A—y+y4)’
where

h(x,y)=—14+2(x+y)[2(x +y)—xy]—4xy —4x3y>.
From 3=x+2y >24/2xy and (1 —x)(1—y) <0, we get

xy < x+y=1+xy.

g;
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Therefore,

h(x,y)>—-14+2(1+xy)[2(1+xy)—xy]—4xy —4x3y>
=3+2xy +2x%y*—4x>y* > 3+ 2xy + 2x*y* — 5x*y>
=3+2xy—3x*y*>3+2xy—4xy =3—2xy > 0.

The proof is completed. The equality holds fora=b=c =1.

P 3.24. If a, b, c,d are nonnegative real numbers so that a+ b + ¢ +d = 4, then
(1—a+ad®)A-b+b)1—c+c)(1—-d+d?>)>1.

(Vasile C., 2012)

Solution. Write the inequality as

a+b+c+d
f@+f®)+f()+f(d)=4f(s), s= — % -L
where
fW=In(l—u+u®), uelo0,4].
From 5
oy Bu—1
f (u) - 1_u+u3)
it follows that f is decreasing on [0,s,] and increasing on [s,, 4], where
Sg = i <l=s
0 ‘/§ *

In addition, f is convex on [s,, 1] because

_ Suf+6u—1_ —But+bu—1_ 3u—1 S
S (l—u+uwd)? T (I—u+ud)?  (Ql-u+ud)?2

'@
According to the LPCF-Theorem, we only need to show that

fO)+3f(y)=4f(1)

forall x, y > 0sothat x+3y = 4. Using Note 2, it suffices to prove that H(x, y) > 0,

here £~ fy)
x —_—
H(x,y)=1-2"1200
X—=)y
We have
—v)2 1 2,,2 1 2.2
H(x,y)=(x y)>X+3(x+y)—1—3x°y S 3(x+y)—1—3x°y

Q1—x+x3)1—y+y3) T (l=x+x3)(1—-y+y3)
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From 4 =x+3y >24/3xy and (1 —x)(1—y) <0, we get

xy < x+y=1+xy.

g;
Therefore,

3(x+y)—1—3x*y?*>3(1+xy)—1—3x*y?
>3(1+xy)—1—4xy=2—xy >0,

hence H(x, y) > 0. The equality holds fora=b=c=d =1.

P 3.25. Ifa, b,c,d, e are nongero real numbers so that a+ b +c+d +e =5, then

1 1 1 1 1 1 1 1 1 1
5(—+—+—+—+—)+45214(—+—+—+—+—).
c e? a b ¢ d e

(Vasile C., 2013)

Solution. Write the desired inequality as

_a+b+c+d+e_

f@+fD)+fl)+f(d)+f(e)=5f(s), s c 1,
where s 14
f(u)=—2——+9, uel=R)\{0}.
u u
From 27— 5)
/ u—
Fly =242
it follows that f is increasing on (—oo, 0)U[s,, ©0) and decreasing on (0, s, ], where
5
So = = <l=s.

Since
liznOo fw)y=9

and f(sy) < f(1) =0, we have
min f (u) = £ (so)-

From ( )
p 2(15—14u

frlu) =22

u
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it follows that f is convex on [s,, 1]. By the LPCF-Theorem, Note 4 and Note 1, it
suffices to show that h(x, y) = 0 for all x, y € I which satisfy x + 4y = 5, where

i) = L0,y LW

Indeed, we have
5

9
g(u):___zs
u u

5x+5y—9xy (6y—5) -

h(x,y) = 0.

x2y2 x2y2
In accordance with Note 3, the equality holds fora =b =c=d =e =1, and also

for c c
a==, b=c=d=e=-
3 6

(or any cyclic permutation).

P 3.26. If a, b, c are positive real numbers so that abc = 1, then

7—6a+7—6b+7—6c >
2+a2 2+b2 2+4c2

(Vasile C., 2008)

Solution. Using the substitution

we need to show that

fG)+f(y)+f(z)=3f(s),
where
xX+y+z
s=—"——=0
3
and —
—be
f(u)=2+62u, ueR.
From

2(3e* +2)(e*—3)
2+em)2 7

it follows that f is decreasing on (—00,s,] and increasing on [s,, 00 ), where

fw)=

So=1In3>s.
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We have

_2t-h(t)

=i h(t)=—-3t*+14t3+36t2—28t—12, t=c¢"

£"(w)

We will show that h(t) > 0 for t € [1, 3], hence f is convex on [0,s,]. We have

h(t) =3(t2—1)(9—t3) + 14t + 6t> — 28t + 15
> 14t + 6t>—28t + 15
=14t3(t—1)+14(t —1)*+6t2+1>0.

By the RPCF-Theorem, we only need to prove that

f)+2f(y)=3£(0)

for all real x, y so that x + 2y = 0. That is, to show that the original inequality
holds for b = c and a = 1/c?. Write this inequality as

2072 .
c?(7c*—6) N 2(7—6c¢) >1
2ct+1 2+ c?

2

(c—1)*(c —2)*(5¢*+6¢ +3) > 0.
By Note 3, the equality holds for a = b = ¢ =1, and also for

a= b=c=2

1
47

(or any cyclic permutation).

P 3.27. If a, b, c are positive real numbers so that abc = 1, then

1 1 1 1
<

+ + < -.
a+5bc b+5ca c+5ab 2

(Vasile C., 2008)
Solution. Write the inequality as

a b c 1
< -—-.

+ + <
az+5 b2+5 245 2

Using the substitution

we need to show that

fO)+f(y)+f (=) = 3f(s),
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where
xX+y+z
s=——=0
3
and .
—e
u)= , Uu€ER.
f(u) e
From (2 )
, e‘(e* =5
u)=—-=-,
W=y

it follows that f is decreasing on (—09,s,] and increasing on [s,, ©0), where

50:7>0:S.

Also, from
e¥(—e™ + 30e%" —25)
(e2« +5)3 ’
it follows that f is convex on [s,s,], because u € [0,s,] involves e* € [1,+/5 ] and
e €[1,5], hence

ffw)=

—e™ 4+ 30e*" — 25 = e*(5 —e?) + 25(e* — 1) > 0.

By the RPCF-Theorem, we only need to prove the original inequality for b = ¢ and
a = 1/c?. Write this inequality as
c? 2c 1
+ <-,
S5c¢t+1 c2+5 2

(c —1)*(5¢*—10c®—2c%2+6¢+5)>0,
(c—1?[5(c —1)* +2c(5¢*—16¢ +13)] > 0.
The equality holds fora=b =c = 1.

P 3.28. If a, b, c are positive real numbers so that abc = 1, then

1 1 1 3
+ + <:=.
4—3a+4a2 4—3b+4b%2 4—3c+4c2 " 5

(Vasile Cirtoaje, 2008)

Solution. Let

We need to show that

fO)+f(y)+f (=) = 3f(s),
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where
xX+y+z
s=——=0
3
and 1
uy=——  ucekRk.
S 4 —3et + 4e2u
From
Flu) = e'(8e* —3)

(4 —3et + 4e2u)2’

it follows that f is decreasing on (—09,s,] and increasing on [s,, ©0), where
3
So=In=<0=s.
8

We claim that f is convex on [s,, 0]. Since

y e'(—64e>" + 36e% + 55¢* —12)
fiuw) = ,
(4 —3et + 4e2u)3

we need to show that
—64t> +36t%+ 55t —12> 0,

t=e“€[§,1].
8

—64t% +36t%+ 55t — 12> —72t3 + 3612 + 48t — 12
=12(1—t)(6t*+3t—1)>0.

where

Indeed, we have

By the LPCF-Theorem, we only need to prove the original inequality for b = ¢ and
a = 1/c?. Write this inequality as follows:

ct 2 3
+ <=,
4c¢4—3c24+4 4—3c+4c2 5
28¢% —21c® —48¢* +27¢% + 42¢2 —36¢c+8> 0,
(c —1)%(28¢* +35¢® —6¢2 —20c +8) > 0.

It suffices to show that
7(4c*+5¢2—c2—3c+1)>0.

Indeed,
4c*+5c3—c?2—3c+1=c%(2c—1)?>+9c®—2c2—3c+1

and
9c*—2c¢*—3c+1=c(3c—1)*+(2c—1)*>0.
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The equality holds fora=b =c =1.
Remark. Since

1 1 1
> =
4—3a+4a2  4—3a+4a2+(1—a)> 5(1—a+a?)

we get the following known inequality

1 + 1 + 1 <3
l—a+a? 1—b+b2 1—c+c2
O
P 3.29. If a, b, c are positive real numbers so that abc = 1, then
1 + 1 + 1 < §
(3a+1)(3a2—5a+3) (3b+1)(3b2—5b+3) (3c+1)(3c2—5c+3) ™ 4

Solution. Let

We need to show that

fOA+f(y)+f(z)=3f(s),
where
_x+y+z
s= —3 =
and .
W= Ga i DEe —set3y “<F
From

, (3e* —2)(9e" —2)
ROE =2 2,
(3ev + 1)2(3e2u — 5eu + 3)
it follows that f is increasing on (—o00,s;] U [sy, ©0) and decreasing on [s;,s,],
where

s;=In2—In9, s;=In2—In3, s, <s5,<0=s.
Since 1
Jimf@) = fs0) = 2

we get

min f (1) = £ (so)-

We claim that f is convex on [s,y,0]. We have

" _ t h(t)
P = G Ge 513
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where
2
t=e'e [g, 1], h(t) =—729t> 4+ 1188t* — 648t> + 387t — 160t + 12.

Since the polynomial h(t) has the real roots
t, ~0.0933, t,~0.5072, t;~ 1.11008,

it follows that h(t) > O for t € [2/3,1] C [t,, t;], hence f is convex on [s,,0]. By
the LPCF-Theorem, we only need to prove the original inequality for b =c < 1 and
a = 1/c?. Write this inequality as follows:

c® N 2 .3
(c2+3)(3c*—5c2+3) (3c+1)(3c2—5c+3) ™ 4
Since
c2+3>2(c+1)
and
3c*—5c24+3>¢(3c*—5c+3),
it suffices to prove that
c® 2 3
+ <=
2(c+1)(3¢c2—5¢c+3) (3¢+1)(3c2—5c+3) 4

This is equivalent to the obvious inequality
(1—c)*(1+15¢ + 5¢* —14c> —6¢*) > 0.

The equality holds fora=b =c=1.

P 3.30. Let a,,a,,...,a, (n > 3) be positive real numbers so that a;a,---a, = 1. If
pP,q = 0so that p+4q > n—1, then

1—aqa, 1—a, l1—a

n

...+—_
1+pa; +qa; 1+pa,+qa; 1+ pa, + qa?

(Vasile C., 2008)

Solution. For g = 0, we get a known inequality (see Remark 2 from the proof
of P 1.63). Consider further that ¢ > 0. Using the substitutions a; = e* for i =
1,2,...,n, we need to show that

fle)+f(xx) + -+ f(x;) = nf(s),
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where

_X1+X2+"'+Xn —O

= - =
and 1o

—e
fluy=———, ueR.
1+ pet + ge?

From

e'(ge* —2qet —p—1)
(1+ pe* + qe?+)?

it follows that f is decreasing on (—©09,s,] and increasing on [s,, ©0), where

fl(t)=

p+1
So=Inry>0=s, ro=1+ 1+T.
Also, we have
7 t'h(t)
fw) =
(1+pt+qt2)

where
h(t)=—¢*t*+q(p+4q9)> +3q(p+2)t>*+(p—4q+p*)t—p—1, t=¢".
We will show that h(t) > 0 for t €[1,r,], hence f is convex on [0,s,]. We have
h'(t) = —4q*t® +3q(p + 4q)t* + 6q(p + 2)t + p — 4q + p?,

h"(t) = 6q[—2qt*+ (p +4q)t +p +2].
Since
h”(t) =6q[2(—qt*+2qt +p+ 1)+ p(t —1)] > 12q(—qt*+2qt +p+1) >0,
h'(t) is increasing,
h'(t)>h'(1)=p*+9pq+8q*>+p+8q >0,
h is increasing, hence
h(t)>h(1) = p*+4pq+3¢* +2¢—1=(p +2q9)° — (¢ —1)?
=(+q+1)(p+3q—1).
Since
pt+4q p+2q
n—1 2

f”(u) > 0 foru € [0,s,], therefore f is convex on [s,s,]. By the RPCF-Theorem, we
only need to prove the original inequality for

p+3q—1=p+3q— >0,

a2:...:an::t’ alzl/tn_l, tZl
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Write this inequality as

t (e —1) N (n—1)(1—1t) -
t2n=2+ptr-l+q 1+pt+qt2 —

>

or
pPA+qB=C,

where

A=t"Yt"—nt+n—1),
B=t"—t""'—(n—1)(t —1),
=" 1[(n Dt"+1—nt"1].

Since p +4q > n—1 and C > 0 (by the AM-GM inequality applied to n positive
numbers), it suffices to show that

(p+4q)C

pPA+qB = R
n—1

which is equivalent to
pl(n—1)A—C]+q[(n—1)B—4C] > 0.

This is true if
(n—1)A—C>0

and
(n—1)B—4C >0

for t > 1. By the AM-GM inequality, we have
(m—DA-C=nt"'[t"'+n—2—(n—1)t]>0.
For n = 3, we have
B=(t—1)*(t*+2t3+2t* + 2t + 2),
C=t}(t—1)%2t+1),
B—2C=(t—1)*(t*—2t3+2t+2)
=(t—1*[(t—1*(t*—1)+3]>0.

Consider further that
n=4.

Since
t—1<t"(t—1),
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we have

B>t —t"' —(n—Dt"(t—1)
=t " — 2 —(n—Dt+n—1].

Thus, the inequality (n —1)B —4C > 0 is true if
(n—D[t"'—t*—(n—Dt+n—1]—4n—1Dt"—4—4nt" ' >0,
which is equivalent to g(t) > 0, where
g)=n—-Dt"""—4n—Dt"+4nt" ' —(n—Dt*—(n—1)*t +n*—2n—3.
We have
) =(n—-1Dg(t), g(B)=m+Dt"—4nt" ' +4nt" 2 —2t—n+1,

g()=n(n+ 1" —4n(n—1)t"? +4n(n—2)c" > —2.

n(n+1Dt" ' +4n(n—2)t" > > 4ny/(n+1)(n—2)t" 2,

Since

we get

(=4[ Din-2)—n+1]? -2
2 [T D) +1]2

_ 4n(n—3) 5
vVn+1)(n—2)+n—1
4n(n—3) o
(n+1)+n—1_2_2(n 4) > 0.

Therefore, g,(t) is increasing for t > 1, g,(t) = g;(1) = 0, g(t) is increasing for
t > 1, hence
g(t)=g(1)=0.

The equality holds for a; =a, =---=a, =1.
Remark. For p =0 and q = 1, we get the inequality (Vasile C., 2006)

1—a+1—b+1—c+1—d+1—e
1+a2 14+b2 14c2 14d2 1+e2

—_ 2

where a, b, c,d, e are positive real numbers so that abcde = 1. Replacing a, b, c,d, e
by 1/a,1/b,1/c,1/d,1/e, we get

1+a+1+b+1+c_|_1+d_|_1+e<
1+a2 1+b2 14c2 1+4d?2 1+4+e%2

J
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where a, b, c,d, e are positive real numbers so that abcde = 1.
Notice that the inequality

l-a;, 1—a, 1—a3; 1—a; 1—as; 1—ag

+ + >0
2 2 2 2 2
1+a; 1+4a; 1+4+a; 1+a; 1+a; 1+ag

is not true for all positive numbers a;, a,, as, a4, as, ag satisfying a,a,a;asasas = 1.
Indeed, for a, = a; = a, = a5 = a4 = 2, the inequality becomes

1—(11 .
1+a?

1>0,

which is false for a; > 0.

P 3.31. If a, b, c are positive real numbers so that abc = 1, then

1—a + 1—-b N 1—c
17+4a+6a2 17+4b+6b2 17+ 4c+6¢c2

(Vasile C., 2008)

Solution. Using the substitution

we need to show that
f(x)+g(y)+g(z)=3f(s),

where
xX+y+z
s=——=0
3
and
1—e"
=—— — — ueR,
S 1+ pet + ge? !
with
_ 4 _5
P=17 1717

As we have shown in the proof of the preceding P 3.30, f is decreasing on (—00, s, ]
and increasing on [s,, ©0), where

+1 9
Sso=Inry>0=s, ro=1+ 1+p—=1+ —.
q 2
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5
In addition, since p+3q—1 = 17 > 0 (see the proof of P 3.30), f is convex on
[0,s,]. By the RPCF-Theorem, we only need to prove the original inequality for
b=c=>1and a = 1/c? Write this inequality as follows:
c?(c*—1) N 2(1—c¢)
c*+pc2+q 1+pc+qc?

=0,

pA+qB > C,

where
A=c*(c—1)*(c+2),

B=(c—1)*(c*+2c3+2c*+2c +2),
C=c*(c—1)>*Q2c+1).

Indeed, we have

3(c—1)*(c—2)*(2c*+2c +1) -0

A+qB—C =
PA+q 17

In accordance with Note 3, the equality holds for a = b = ¢ =1, and also for

1
a=-, b=c=2
4
(or any cyclic permutation).
O
P 3.32. If a;,a,,...,ag are positive real numbers so that a;a,---ag =1, then

o ———>
(1+a;)?2 (1+a,)? (1+ag)?
(Vasile C., 2006)

Solution. Using the substitutions a; =e* fori =1,2,...,8, we need to show that

fOe)+fxg) + -+ f(xg) 2 8f (s),

where
Xp+ Xy 4+ Xg
s = =0
8
and 1o
—e
uy=———, ueR.
f =G
From
_e(e"—3)

fl(t)= m,
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it follows that f is decreasing on (—090,s,] and increasing on [s,, ©0), where
S§o=In3>1=s.
We have )
e“(8e" —e*—3
f//(u) — ( )
(1+euw)*

For u € [0,In3], that is e* € [1, 3], we have

8e!—e? —3>8e"—3e —7=(e"!—1)(7—e") > 0;

therefore, f is convex on [s,s,]. By the RPCF-Theorem, we only need to prove the
original inequality for a, = --- = ag := t and a; = 1/t’, where t > 1. For the
nontrivial case t > 1, write this inequality as follows:

t’(t7—1) - 7(t—1)

(t7+1)2 ~ (t+1)2

t7(t7 —1)(t +1)? -

(t—1D(t7+1)2
t7(t6+t5+t4+t3+t2+t+1)>7
(t6—tS+t4—3+t2—t+1)2

Since
=ttt =2 —t 1=t =t + D) (= D)(2+ 1) < t* (2=t + 1),
it suffices to show that

O+ttt +1

t(t2—t+1)2 27,
which is equivalent to the obvious inequality
(t—1)°>0.
Thus, the proof is completed. The equality holds for a; =a, =--- =ag = 1.
Remark. The inequality
1—a, 1—a, 1—a,

(+a)2 12 TOtrar

is not true for all positive numbers a;, a,, ..., a, satisfying a,a,---a, = 1. Indeed,

for a, = a3 =--- = ay = 3, the inequality becomes
1 - Cll
—Q——12>0,
(1+a,)?

which is false for a; > 0.
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—13 13
P 3.33. Let a, b,c be positive real numbers so that abc = 1. If k € [ ]

3v3°3v3 /[

then

a+k b+k c+k 3(1+k)
+ + < .
az+1 b2+1 241 2
(Vasile C., 2012)

Solution. The inequality is equivalent to

k(zazil _2) SZ(%_a;-ll-l)’
SN

13
Thus, it suffices to prove it for |k| = ﬁ On the other hand, replacing a, b, c by

1/a,1/b,1/c, the inequality becomes

(a—1)* 2
Z az+1 (B_Za2+1)' 9

Based on (*) and (**), we only need to prove the desired inequality for

13
3v3

Using the substitution

we need to show that

f)+g(y)+g(z) = 3f(s),
where
xX+y+z
:—:0
3
and ‘g
_e_
f(u)=62u+1, uekR.
From ) L
, e’ + 2ke* —1
)=————
FO= =

it follows that f is decreasing on (—©090,s,] and increasing on [s,, ©0), where

1
So=Inry<0=s, ro=—k+vk>+ :F.

3
Also, we have
t-h(t)

W= 5
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where
h(t) = —t*—4kt> +6t>+ 4kt —1, t=¢e"

We will show that h(t) > 0 for t € [ry, 1], hence f is convex on [s,,s]. Indeed,

since s 5o
4kt =——2> —>1,
3v/3 27

we have
h(t)=—t*+6t2—1+4kt(1—t*)>—t*+6t2°—1+(1—t*)=t*(5—1t>) > 0.

By the LPCF-Theorem, we only need to prove the original inequality for b =c :=t
and a = 1/t2, where t > 0. Write this inequality as

t2(kt>+1) N 2(t + k) < 3(1+k)
t4+1 t2+1 — 2 7

3t —4t5 +t*+ 2 —4t +3—k(1—t2)* >0,
(t—D*[B+k)t*+2(1+ k)2 +2t2+2(1 —k)t +3—k] >0,
(t—12(t—2+v3) [(27+13v3)t + 24(2 + V3)t + 33+ 17v/3] > 0.

1
The equality holds fora=b=c=1. If k = %, then the equality holds also for
a=7+4v3, b=c=2—-+3
. . —13 :
(or any cyclic permutation). If k = m, then the equality holds also for

a=7—4v3, b=c=2++3

(or any cyclic permutation).

P 3.34. If a, b, c are positive real numbers and 0 < k < 2+ 2+/2, then

a® b® c3 a+b+c
+ + >
ka2+4+bc kb2+4+ca kc2+ab k+1

(Vasile C., 2011)

Solution. Due to homogeneity, we may assume that abc = 1. On this hypothesis,
we write the inequality as follows:
a4+b4+b4>a+b+c
ka3+1 kb3+1 kb3+1 k+1 k+1 k+1’
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a*t—a N b*—b N ct—c -0
ka3+1 kb3+1 ke3+1~

Using the substitution

we need to show that

fx)+g(y)+g(z)=3f(s),
where
xX+y+z
s=——"—— =0
3
and A
e —et
= R.
flw) ked3u 41’ ue
From Lot k ) 5
, e +2(k+2)et—1
fl(t)=

(ke3u +1)2 ’
it follows that f is decreasing on (—09,s,] and increasing on [s,, 00 ), where

. _il_k_2+ (k+1)(k+4)
0 =
k

so=Inry <0, € (0,1).
Also, we have
7 _ t- h(t)
=Gy
where
h(t) = k*t? —k(4k + 1)t + (13k +16)t> —1, t=¢"
If h(t) > O for t € [ry, 1], then f is convex on [sy,0]. We will prove this only for
k =2+24/2, when r, ~ 0.415 and h(t) > O for t € [t;,t,], where t, ~ 0.2345 and
t, ~ 1.02. Since [ry,1] C [ty,t,], the conclusion follows. By the LPCF-Theorem,
we only need to prove the original inequality for b = c. Due to homogeneity, we
may consider that b = ¢ = 1. Thus, we need to show that

a’ 2 a+2
+ > )
ka?+1 a+k  k+1
which is equivalent to the obvious inequality

(a—1)*[a?—(k—2)a+2]>0.

For k = 2 + 24/2, this inequality has the form
(a—1)*(a—v2)*>0.

The equality holds for a = b = c. If k = 2 + 2+/2, then the equality holds also for
a
— =b=c¢

V2

(or any cyclic permutation).
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P 3.35. Ifa, b, c,d, e are positive real numbers so that abcde = 1, then

1
2( et )23( et )
a+1 b+1 e+1 a+2 b+2 e+2
(Vasile C., 2012)

Solution. Write the inequality as

1—a 4 1—b + 1—c¢ N 1—d + 1—e >0
(a+1D)(a+2) (b+1)(b+2) (c+1)(c+2) (d+1)d+2) (e+1)e+2)

Using the substitution

we need to show that

fO)+f)+f@)+f(O)+f(w)=5f(s),

where
_xty+ztt+w
s= = =
and -
JW= e+ “F
From

e'(e? —2e* —5)
(ev + 1)2(e +2)2°

it follows that f is decreasing on (—09,s,] and increasing on [s,, 00 ), where

f'w=

so=In(1+v6)<2, s<s,.

Also, we have
t-h(t)

- (t+1)3(t +2)3°

— U

£

where
h(t)=—t*+ 73 +21t2 + 7t — 10.

We will show that h(t) > 0 for t € [1,2], hence f is convex on [0,s,]. We have
h(t) > =23+ 73+ 212+ 7t —10=5t>+21t*+ 7t —10 > 0.
By the RPCF-Theorem, we only need to prove the original inequality for

b=c=d=e:=t, a=1/t*, t>1.
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Write this inequality as

t*(t*—1) S 4(t—1)
(t4+1D)2t4+1) ~ (t+1D(t+2)

which is true if
tf e+ Dt +2)(3+ 2+t +1) > 4+ 1)(2t* +1).

Since
(t*+ D2t +1) =23+ 3t +1 < 2t*(t* + 2),

it suffices to show that
(t+D)(t+2)(2+ 2+t +1)>8(t* +2).
This inequality is equivalent to
t>—4t*+6t3+6t>+5t—14 >0,

t(t—1)*+10(t2—1)+4(t—1)>0.
The equality holds fora=b=c=d =e=1.

P 3.36. If a;,a,,...,a,, are positive real numbers so that a;a, - --a,4 = 1, then

1 1 1 1 1
3( + +---+—)22( + 4+t )
2a,+1 2a,+1 2a14+1 a+1 a,+1 a,+1
(Vasile C., 2012)

Solution. Write the inequality as

1-(11 1_a2 1-(114
+ et > 0.
(a; +1)(2a;+1) (a,+1)(2a,+1) (a14+1)(2a;,+1)

Using the substitutions a; = e*i fori =1,2,...,14, we need to show that

flx)+ f(xp)+ -+ fx14) = 141 (5),

where
_X1+X2+"'+X14 _

14

0

S

and -
—e
W= haery “SR
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From
2e'(e? —2¢e" —2)

fW= e

it follows that f is decreasing on (—00,s,] and increasing on [s,, ©0), where

so=In(1++v3)<2, s<s,.

Also, we have

u

/7 2t h(t)
ffw) = ,
(t+1)3(2t+1)3
where
h(t) = —2t*+ 1163 + 1562 + 2t — 2.

We will show that h(t) > 0 for t € [1,2], hence f is convex on [0,s,]. We have
h(t)>—4t3+ 113 + 15t + 2t —2=7t> + 15t* + 2t —2> 0.
By the RPCF-Theorem, we only need to prove the original inequality for
a,=a;=-=ay:=t, a=1/t13, t>1.
Write this inequality as

tB3(t*—-1) - 13(t—1)
(eB+1)(t13+2)  (t+1D)(2t+1)

Since
B+ DB +2) =t +3tB +2 < tB3(t12 +5),

it suffices to show that
t3—1 - 13(t—1)

t3+5 " (t+1)(2t+1)

which is equivalent to
tB3(t>—5t+7)—t>*—34t+32>0.

Substituting
t=1+x, x>0,

the inequality becomes
(1+x)3(x*—=3x +3)—x*—36x—3>0.

Since
(1+x)2>1+13x +78x?,

it suffices to show that

(78x%+13x +1)(x*—3x+3)—x%2—36x —3 > 0.
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This inequality, equivalent to
x*(78x* —221x +196) > 0,
is true since
78x% —221x + 196 > 64x* —224x + 196 = 4(4x — 7)* > 0.

The equality holds for a; =a, =---=a;, = 1.

P 3.37. Let a;,a,,...,ag be positive real numbers so that a,a,---ag=1. If k > 1,
then

1 1 1 1 1 1
(k+1) + +-e > 2 + +- 4+ .
ka,+1 ka,+1 kag+1 a;+1 a,+1 ag+1

(Vasile C., 2012)

Solution. Write the inequality as

(a; + D(ka; +1)  (a,+1)(ka,+1) (ag+1)(kag+1) —

Using the substitutions a; = e*i fori =1,2,...,8, we need to show that

flx)+ f(xg)+---+ fxg) = 8f(s),

where
X1+XZ+"'+X8
s = =0
8
and -
—e
u)= , UER
fw) (et +1)(kev+1)
From

e¥(ke? —2ke* —k —2)
(ev +1)2(ker +1)2 °

it follows that f is decreasing on (—©09,s,] and increasing on [s,, ©0), where

2
so=ln(1+ \ 2+E)<2’ s < Sg.

/7 _ t h(t)
P = ke + 1

f'w)=

Also, we have
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where
h(t) = —k*t* + k(5k + 1)t + 3k(k + 3)t* + (k* —k + 2)t —k — 2.
We will show that h(t) > 0 for t € [1,2], hence f is convex on [0,s,]. We have

h(t) > —2k%t® + k(5k + 1)t3 +3k(k +3)t* + (k> —k+2)t —k—2
=kBk+1)t> +3k(k+3)t*+ (K> —k+2)t —k—2
>3k(k+3)+(k*—k+2)—k—2>0.

By the RPCF-Theorem, we only need to prove the original inequality for
a,=a;=---=ag:=t, a=1/t", t>1.

Write this inequality as

t’(t7—1) - 7(t—1)
(t7+1)(t7+k) ~ (t+1)(kt+1)

Since
7+ D)7+ =t +(k+ Dt +k < t7(t" +2k + 1),

it suffices to show that

t’—1 - 7(t—1)
t7+2k+1 " (t+1)(kt+1)

which is equivalent to
k(t—1)P(t)+Q(t) =0,

where
P =t(t+ D)t +t>+t*+ 3+ t2+t+1)—14,
Q)= (t+1)(t" —1)—7(t —1)(t” +1).

Since (t —1)P(t) > 0 for t > 1, it suffices to consider the case k = 1. So, we need

to show that
t’—1 - 7(t—1)

t7+3 ~ (t+1)%’

which is equivalent to
t’(t*—5t+8)—t*—23t +20>0.

Substituting
t=1+x, x>0,

the inequality becomes

(1+x)(x*—3x+4)—x>—25x—4>0.
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Since
(1+x) >1+7x+21x?,

it suffices to show that
(21x2+ 7x +1)(x*>*—3x +4)—x*—25x —4 > 0.
This inequality, equivalent to
x?(21x*—56x +63) > 0.
is true since

21x2—56x 4+ 63 > 16x2—56x +49 = (4x —7)>* > 0.

The equality holds for a; =a, =--- =ag = 1.
O
P 3.38. If a;,a,,...,ay are positive real numbers so that a;a,---aq =1, then
1 1 1 1 1 1

+ ot > + 4+t :
2a;,+1 2a,+1 2a9+1 a1 +2 a,+2 ag+2
(Vasile C., 2012)

Solution. Write the inequality as

+ oot > 0.
(2a;+1)(a; +2) (2a,+1)(a, +2) (2a9+1)(ay +2)

Using the substitutions a; = e* fori =1,2,...,9, we need to show that

FOe)+ )+ -+ fxg) = 9f(s),

where
x1+x2+"'+x9
s = =0
9
and -
—e
u)= , uUeR
fw) (2ev+1)(ev+2)
From

oy €'(2e* —4e" —7)
f U= Ger s e + 202

it follows that f is decreasing on (—09,s,] and increasing on [s,, ©0), where

3v2
sozln(1+£)<2, s < Sg-
2
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Also, we have
" _ t- h(t)
FW= e

where
h(t) = —4t* + 26t + 54t* + 19t — 14.

We will show that h(t) > 0 for t € [1,2], hence f is convex on [0,s,]. We have
h(t) > —8t% + 26t + 54t + 19t — 14 = 18t° + 54t> + 19t — 14 > 0.
By the RPCF-Theorem, we only need to prove the original inequality for
a,=a;=-=ag:=t, a=1/t%, t>1.
Write this inequality as

t3(t8—1) - 8(t—1)
(8 +2)(2t8+1)  (2t+1)(t+2)

Since
(t8+2)(2t8+1) =2t +5t8 +2 < t8(2t8 + 7),

it suffices to show that
t8—1 - 8(t—1)

2t8+7 — (2t +1)(t +2)

which is equivalent to
t3(2t2 — 11t +18) —2t*— 61t + 54 > 0.

Substituting
t=14+x, x=0,

the inequality becomes
(1+x)¥(2x*—7x+9)—2x*—65x —9 > 0.

Since
(14 x)8>1+8x +28x?,

it suffices to show that
(28x%+8x + 1)(2x*—7x +9) —2x* —65x —9 > 0.
This inequality, equivalent to
x%(56x*—180x + 196) > 0.
is true since
56x> — 180x + 196 > 49x* — 196x + 196 = 49(x —2)*> > 0.

The equality holds for a; =a, = =a,=1.
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P 3.39. If a;,a,,...,a, are real numbers so that
a;,ds,...,a, <m, a;+a,+---+a,=m,

then

T
cosa; +cosda, +---+cosa, < ncos—.
n

(Vasile C., 2000

Solution. Write the inequality as

fla)+flag) +---+f(a,) = nf(s), s

_a1+a2+"'+an

>

n n

where
fu)y=—cosu, uel=[—(n—2)m,r].
Let
So=0<s.
We see that f is increasing on [sy, 7] = I, and f(u) = f(s,) =—1foru €. In

addition, f is convex on [s,,s]. Thus, by the LPCF-Theorem, we only need to prove
that g(x) < 0, where

g(x)=cosx+(n—1)cosy —ncoss, x+(n—1)y=m, n=>x=>s=>y=0.

Since y’' = _—1, we get

x— X+
g'(x) =—sinx +siny = —2sin 2y cos zy.

We have g’(x) < 0 because
x+y < x+(n—1)y T

0< <
2 2 2
and e .
o< =Y I
2 2
From g’ <0, it follows that g is decreasing, hence g(x) < g(s) =0.
The equality holds for a; = a, =---=a, = —. If n = 2, then the inequality is an
n
identity.

Remark. In the same manner, we can prove the following generalization:

e Ifa;,a,,...,a, are real numbers so that

a+a,+---+a, T
a,dy,...,ad, < T, =s, 0<s<—,
n 4
then
cosa; +cosda, +---+cosa, < ncoss,
with equality fora; = a, =---=a, =s.
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P 3.40. Ifa;,a,,...,a, (n > 3) are real numbers so that
-1
a;,dy,...,0, = , a+ay,+---+a,=n,
n—2
then , , ,
a a a
3 ! 3 2 ---+2—nSn.
a;—a;+1 a;—a,+1 az—a,+1

(Vasile Cirtoaje, 2012)

Solution. Write the inequality as

_ata+ta,

fla)+f(a)+---+fla,) = nf(s), s

where

1—u -1 n*—n-—1
W=— " yel= .
fw) uz—u+1 [ ]

Let s, = 2. We have s < s, and

min f (u) = f (o)

because ( .
1—u 1 u—2
T = e i "3 T s e
From ( 2)
ooy ulu—
f(u)_(uz_u+1)25
F) = 2B —u’—-1) 2w*@2—-u)+2w®—1)
W= (w2—u+1)3 (u2—u+1)3 ’

it follows that f is convex on [1,s,]. However, we can’t apply the RPCF-Theorem
in its original form because f is not decreasing on I, . According to Theorem 1,
we may replace this condition with ns — (n — 1)s, < infI. Indeed, we have

—1
ns—(n—1)sy=n—2(n—1)=—n+2< — = infT.
n_

So, it suffices to show that f(x)+(n—1)f(y) = nf (1) for all x,y €1 so that
x+((n—1)y =n.
According to Note 1, we only need to show that h(x, y) > 0, where

fw)—f(1)
u—1 ~

g(u) =

h(x,y) = g(X)z —8(¥)

-y
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We have )
u)=——,
W) u?—u+1
x+y—1 n—2)x+1
h(x,y)= 4 = ( ) > 0.
(x2=x+1D(?*—y+1) m—-1Dx2—x+1)(y2—y+1)
The equality holds for a; =a, =--- =a, =1, and also for
a—_1 a, =a; = —a—n_1
1_n_2a 2— Y3 = - n_n_2
(or any cyclic permutation).
O
P 3.41. Ifay,a,,...,a, (n = 3) are nongero real numbers so that
—n
ay,dg,...,d, = , ata,+---+a,=n,
n—2
then
1 1 1 1 1 1
Sttt S 2 e
aj a; az a; a a,

(Vasile Cirtoaje, 2012)

Solution. According to P 2.25-(a) in Volume 1, the inequality is true for n = 3.
Assume further that n > 4 and write the inequality as

_a1+a2+"‘+an

fla)+flag)+---+f(a,) =nf(s), s " =1,
where L (2n—3)
—n n(2n—
f(u)zﬁ_ﬂ’ uEI[:[n_z, n—2 ]\{O}’
Let
So=2, §<s,.
From

f(u)—f(2)=%_%+él}: (u‘;?)

=0,

it follows that

min f (u) = £ (so),

while from
u—2

fw="=% W=
u

2(3—u)
=,
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it follows that f is convex on [s,s,]. However, we can’t apply the RPCF-Theorem
because f is not decreasing on I . According to Theorem 1 and Note 6, we may
replace this condition with ns —(n —1)s, < infI. For n > 4, we have

ns—(n—1)s,=n—2(n—1)=—n+2< —_r12 = infT.
n_

So, according to Note 1, it suffices to show that h(x, y) > 0 for all x, y € I so that
x +(n—1)y =n. We have

=L W=) _ 1

-1 Tou2’

h(x,y) = g(X)z—g(y) _xty _(—2x+n_

—y - x2y? - (n—1)x2y2 ~
The proof is completed. By Note 3, the equality holds fora; = a, =---=a, =1,
and also for
a, = —" G,=a; = =a,=—
a2 P T p—2

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

n
o Letay,ay,...,a, > 2sothata1+a2+---+an:n. Ifn>3andk > 0, then
n

l—a; 1—a, —a, 0
2 2 =
k+a7 k+a; k + a2
with equality for a; = a, = -+- =a, = 1, and also for
—n n
a, = , Ao =A== 4d,. =
T n-2 S " n-—2

(or any cyclic permutation).

P 3.42. If a;,a,,...,a, > —1 so that a; + a, + -+ +a, = n, then

1 1 1 1 1 1
(n+1)(—2+—2+---+—)22n+(n—1)(—+—+---+—),
a; 4 a? a; a a,

(Vasile C., 2013)
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Solution. Write the inequality as

fla)+f(a)+---+fla,) = nf(s), s

n
where
f(u):n;l—n_l, wel=[-1,2n—1]\{0}.
Let
30=M€H, $ < Sp.
n—1
sinee [( ) ( )]
n—Du—2(n+1)]?
Fa)=fls0) = Sy e 20
we have
min f (u) = f (o)-
From

f/(u): (n_l)u_?,z(n"' 1)) f//(u):
u

it follows that f is convex on [1,s,]. Since f is not decreasing on I, , according
to Theorem 1 and Note 6, we may replace this condition in RPCF-Theorem with
ns —(n—1)s, < infl. We have

6(n+1)—2(n—1u
u4 ’

ns—(n—1)s,=n—2(n+1)=—-n—2 < —1 =infl.

According to Note 1, we only need to show that h(x,y) >0for—-1<x <1<y
and x + (n—1)y = n. We have

fW-fQ1A) 2 n+1
gu)=——"7"-—"=—--— -
u—1 u u
and
gx)—g(y) 2xy+m+D(x+y) (x+1)(n*+n—2x)
h(x,y)= = = > 0.
-y x2y? (n—1)x2y?
According to Note 4, the equality holds for a; = a, =---=a, =1, and also for

n+1

aq=-1, a=--=a,=
n—1

(or any cyclic permutation).
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P 3.43. Ifay,a,,...,a, (n > 3) are real numbers so that
—(3n—2)
a,as,...,a, =2 ————, a;+a,+---+a,=n,
n—2
then
1—a, 1—a, 1—aq,

foop——L >
(1+a;)?2 (1+a,)? (1+a,)?
(Vasile C., 2014)

Solution. According to P 2.25-(b) in Volume 1, the inequality is true for n = 3.
Assume further that n > 4 and write the inequality as

_a1+a2+"'+an

flay)+flap)+---+f(a,) =nf(s), s - =1,
where
_1-u _[-(Bn—2) 4n®*—7n+2 B
fW =G ueﬂ_[ n—2 ° n-2 ]\{ 1
Let
So=3, §<Sg.
From ) ) ( 3)?
—u u—
f(u)_f(3)2(1+u)2+§:m_0,
it follows that
min f (u) = £ (so)-
From 3 o5 )
/ _ u— V2 _ —u
FW=o W=

it follows that f is convexon[1,s,]. We can’t apply the RPCF-Theorem in its original
form because f is not decreasing on I, . However, according to Theorem 1 and
Note 6, we may replace this condition with ns —(n—1)s, < infI. Indeed, for n > 4,
we have

~(3n—2) _,

ns—(n—1)s,=n—3(n—1)=—2n+3< infT.

According to Note 1, it suffices to show that h(x,y) = 0 for all x,y € I so that
x<1<yandx+(n—1)y =n. We have

O (O
-1 (u+1)2°
gx)—gly)  x+y+2 = (n—2)x+3n—2

) = T TR O D)y 1)
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In accordance with Note 3, the equality holds for a; = a, =--- =a, =1, and also
for

a_—(3n—2) 0 — _a_n+2

1T Ty )

(or any cyclic permutation).

P 3.44. Let a,,a,,...,a, be nonnegative real numbers so that a; +a,+---+a, =n.

2
Ifn>3and k > 2——, then
n

1—a, + 1—a, - 1—a, >
(1—ka;)? (1—ka,)? (1—ka,)? —

(Vasile C., 2012)

Solution. According to P 3.99 in Volume 1, the inequality is true for n = 3. Assume
further that n > 4 and write the inequality as

_a1+a2+"'+an

fla)+f(@)+-+f(a)=nf(s), s LTy,
where 1
f(u)=ﬁ, uel=[0,n]\ {1/k}.
Let
so=2—1/k, 1=s<s,.
Since
_1-u 1 _ (ku—2k+1)
S =f60) = T T 2= )~ k(=11 — ki = >
we have
min f (1) = f (so)-
from ku—2k +1 2k(—ku + 3k —2)
, _ ku— + " . —Ku + —
FW= "y W=

it follows that f is convex on [1,s,]. We can’t apply the RPCF-Theorem because f
is not decreasing on I, . According to Theorem 1 and Note 6, we may replace this
condition with ns —(n— 1)s, < infI. Indeed, we have

3n—4  4-—

n .
= < 0 =infI.
20n—1) 2

ns—(n—1)s,<n—(n—1)-
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So, it suffices to show that f(x)+ (n—1)f(y) = nf(1) for all x,y € I so that
x <1< yandx+(n—1)y =n. According to Note 1, we only need to show that
h(x,y) = 0, where

PP (€O VY (€I o 169
u—1 xX—Yy

Since
k[k(x +y)—2]

(1—ku)?’ (1—kx)2(1—ky)?’
we need to show that k(x + y)—2 > 0. Indeed, we have

gu) = h(x,y) =

k(x+y)—2 S (n—1)(x+y)_1 (n—Dx+y) x+(m—-1)y _ (n—2)x S

> = > 0.
2 n n n n
. 2 .

The equality holds for a; = a, =--- =aq, = 1. If k = 2— —, then the equality also

n
holds for n
a; =0, ay=a3=---=a,=

n—1

(or any cyclic permutation).
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Chapter 4

Partially Convex Function Method
for Ordered Variables

4.1 Theoretical Basis

The following statement is known as Right Partially Convex Function Theorem for
Ordered Variables (RPCF-OV Theorem).

RPCF-OV Theorem (Vasile Cirtoaje, 2014). Let f be a real function defined on an
interval I and convex on [s,s,], where s,s, €L, s <s,. In addition, f is decreasing on
I, and f(u) = f(s,) for u € I The inequality

a1+a2+"'+an)
n

fla)+ @)+ +fla) = nf

holds for all a,,a,,...,a, €I satisfying
a,t+a,+---+a,=ns

and
a,<a,<---<a,<s, me{l,2,...,n—1},

if and only if
fO)+(n—m)f(y) = (1+n—m)f(s)

forall x,y €lsothat x <s<yand x+(n—m)y =(1+n—m)s.
Proof. For
G =X, QG="=0p=S, dup1 =" "=aqy=),

the inequality
flay)+f(ap)+---+ f(a,) = nf(s)
becomes

fO)+(n—m)f(y)= (1 +n—m)f(s);

297
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therefore, the necessity is obvious. By Lemma from Chapter 3, to prove the suffi-
ciency, it suffices to consider that a;, a,,...,a, € J, where

J= ]ISSO'

Because f is convex on J,, the desired inequality follows from HCF-OV Theorem
applied to the interval J.

Similarly, we can prove Left Partially Convex Function Theorem for Ordered Vari-
ables (LPCF-OV Theorem).

LPCF-OV Theorem. Let f be a real function defined on an interval I and convex on
[s0,s], where so,s €1, 5y <s. In addition, f is increasing on I, and f(u) = f(s,)
for u € I. The inequality

a1+a2+"'+an)
n

F(a)+ flag)+ -+ £(a) = nf (

holds for all a,,a,,...,a, €I satisfying

and
a,=>a,=>--->a,=>s, me{l,2,...,n—1},

if and only if
f)+(n—m)f(y) = (1 +n—m)f(s)
forall x,y €lsothat x >s>yand x +(n—m)y = (1 +n—m)s.

The RPCF-OV Theorem and the LPCF-OV Theorems are respectively generaliza-
tions of the RPCF Theorem and LPCF Theorem, because the last theorems can be
obtained from the first theorems for m = 1.

Note 1. Let us denote

_8(x)—g(y)

g(u) =
-y

F@=FE)
u—s

We may replace the hypothesis condition in the RPCF-OV Theorem and the LPCF-OV
Theorem, namely

fO)+mf(y) =@ +m)f(s),
by the condition

h(x,y)=0 forall x,y €1 so that x + my = (1+ m)s.

Note 2. Assume that f is differentiable on I, and let

) =f'(y)
Ri——

H(x,y)
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The desired inequality of Jensen’s type in the RPCF-OV Theorem and the LPCF-OV
Theorem holds true by replacing the hypothesis

fO)+mf(y) =1 +m)f(s)

with the more restrictive condition

H(x,y)=0 forall x,y €1 sothat x + my = (1+ m)s.

Note 3. The desired inequalities in the RPCF-OV Theorem and the LPCF-OV Theo-
rem become equalities for

a,=a,=:"-=a,=Ss.
In addition, if there exist x, y €I so that
x+(n—m)y=0+n—m)s, f(x)+(n—m)f(y)=1A+n—m)f(s), x#y,
then the equality holds also for
=X, AG=-"=0,=S, Aui='""=0a,=Y
(or any cyclic permutation). Notice that these equality conditions are equivalent to
x+(n—m)y=(10+n—m)s, h(x,y)=0

(x < y for RHCF-OV Theorem, and x > y for LHCF-OV Theorem).

Note 4. The RPCF-OV Theorem is also valid in the case where f is defined on
I\ {uy}, where u, is an interior point of I so that u, > s0. Similarly, LPCF Theorem
is also valid in the case in which f is defined on I\ {u,}, where u, is an interior
point of I so that u, < s0.

Note 5. The RPCF-Theorem holds true by replacing the condition
f is decreasing on I,
with
ns —(n—1)s, < infl.
More precisely, the following theorem holds:
Theorem 1. Let f be a function defined on a real interval 1, convex on [s,s,] and
satisfying

l{g]}gf (w) = f(s0);

where
$,50€1, s<sy (1+n—m)s—(n—m)s, <infl.

The inequality

a1+a2+"'+an)
n

fla)+ @)+ +fla) = nf
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holds for all a,,a,,...,a, €I satisfying
a,t+a,+---+a,=ns

and
a,<a,<---<a,<s, me{l,2,...,n—1},
if and only if
fO)+n—m)f(y) = (1 +n—m)f(s)

forall x,y €lsothat x <s<yandx+(n—m)y =(1+n—m)s.

The proof of this theorem is similar to the one of Theorem 1 from chapter 3.

Similarly, the LPCF-Theorem holds true by replacing the condition
f isincreasing on I
with

ns—(n—1)s,=>supl.

More precisely, the following theorem holds:

Theorem 2. Let f be a function defined on a real interval I, convex on [s,,s] and
satisfying

l{g&f (1) = £ (so),

where
s,50 €1, s>s, (1+n—m)s—(n—m)sy,=>supl.

The inequality

a1+a2+'°'+an)
n

fla)+ @)+ +fla)=nf

holds for all a,,a,,...,a, €I satisfying

and
a,=>a,=>---=>2a,=>s, me{l,2,...,n—1},
if and only if
fO)+n—m)f(y)= (1 +n—m)f(s)

forall x,y €lsothat x>s>yand x+(n—m)y =(1+n—m)s.

Note 6. Theorem 1 is also valid in the case in which f is defined on I'\ {u,}, where
u, is an interior point of I so that u, ¢ [s,s,]. Similarly, Theorem 2 is also valid in
the case in which f is defined on I'\ {u,}, where u, is an interior point of I so that

g & [$o,5].



PCF Method for Ordered Variables 301

Note 7. We can extend weighted Jensen’s inequality to right and left partially con-
vex functions with ordered variables establishing the WRPCF-OV Theorem and the
WLPCF-OV Theorem (Vasile Cirtoaje, 2014).

WRPCF-OV Theorem. Let p,,p,, ..., P, be positive real numbers so that
p1+p2+”'+pn:17

and let f be a real function defined on an interval 1 and convex on [s,s,], where
s,80 € int(l), s <s,. In addition, f is decreasing on I, and f(u) = f(so) for u € IL
The inequality

P1f(x1) +pof (x2) + -+ pof (x,) = f(pyxy + paxy + -+ + PrXy)
holds for all x4, x,,...,x, €Lso that p;x; + pyXx, + -+ p,x, =s and
X <x,<--<x,, Xx,<s, me{l2,...,n—1},

if and only if
fO)+kf(y)= A +k)f(s)

for all x,y € 1 satisfying
x<s<y, x+ky=(1+Kk)s,

where
— Pm+1 +pm+2 +oe +pn

P1

k

WLPCF-OV Theorem. Let p,,p,,.-., P, be positive real numbers so that
py+pyt+--t+p, =1,

and let f be a real function defined on an interval 1 and convex on [s,,s], where
50,8 €1, sy <. In addition, f is increasing on I, and f(u) = f(s) for u €. The
inequality

Pif (1) +pof () + - -+ puf (%) 2 f (P12 + Poxy + -+ ppxy)
holds for all x4, x,,...,x, €1so that p;x; + pyXx, +---+p,x, =s and
X1 2Xy2 02X, X,=s, me{l,2,...,n—1},

if and only if
fO+kf ()= @A +k)f(s)

for all x,y € 1 satisfying

x>s=>y, x+ky=(1+k)s,
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where
— pm+1 +pm+2+'“ +pn

P1

k

For the most commonly used case

1
P1=Py=""=Py=_,
n

the WRPCF-OV Theorem and the WLPCF-OV Theorem yield the RPCF-OV Theorem
and the LPCF-OV Theorem, respectively.
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4.2 Applications

4.1. If a, b, c,d are real numbers so that
a<1<b<c<d, a+b+c+d=4,

then
a b C d

+ + + <1
3a2+1 3b%2+1 3c2+1 3d%2+1

4.2. If a, b, c,d are real numbers so that
a>b>1>c>d, a+b+c+d=4,
then

16a—5 16b—5 16¢c—5 16d —5 4
+ + + <-.
32a2+1 32b%2+1 32¢2+1 32d2+1 " 3

4.3. If a, b, c,d, e are real numbers so that
a>b>1>c>d>e, a+b+c+d+e=35,
then

18a—5 18b—5 18—5 18d—5 18e—5
+ - + + <
12a2+1  12b2+1  12c2+1 12d2+1 122 +1

4.4. If a, b, c,d, e are real numbers so that
a>b>1>c>d>e, a+b+c+d+e=35,
then

a(a—1)+b(b—1)+c(c—1)+d(d—1)+e(e—1)20
3a2+4  3b%2+4 3c2+4 3d2+4 3e2+4

4.5. Let a,,a,,...,a,, # —k be real numbers so that

a=zrza,=z21=za,,=2-=ay, aqt+ta+-+ay,,=2n.

1
Ifk> 1t
2

, then
n

a;(a;—1)  ay(a,—1) . ay,(a, — 1)
(a; +k)?  (a;+k)? (ag, +k)>
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4.6. Let a,a,,...,a,, # —k be real numbers so that
alz"'zanz1Zan+12"'2a2n) a1+a2+"'+a2n:2n.

n+1

Ifk>1+ , then
Vvn
2 2 2
ar—1 a;—1 a; —1
ot >0,
(@, +k)*  (ay+k) (az, +k)
4.7. If ay,a,,...,a, are positive real numbers so that
a,=21>2ay,2---2qa, aq+tay,+---+a,=n,
then
3/a 3/a 3/a,
ay t+ay) 4+ a) < n.
4.8. If a;,a,,...,a;; are real numbers so that
a12a2212a32"'2011; a1+a2+"'+a11:11,
then
2 2 2
(1—a;+a))(1—ay+ay)--(1—ay;+aj)=>1.
4.9. If a,,a,,...,ag are nonzero real numbers so that
a12a22a32a4212a52a62a72a8, a1+a2+"'+a8:8,
then

11 1 1 1 1
5| 5+5 4+ |+722 14—+ =+ +— |
ag a, a, ag

4.10. If a, b, c,d are positive real numbers so that
a<b<1<c<d, abcd=1,
then

7—6a+7—6b+7—6c+7—6d
2+a2 2+b2 2+4c¢2 2+4+d2

4
> .
3
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4.11. If a, b, c are positive real numbers so that
a<b<1<c¢, abc=1,

then

7—4a+7—4b +7—4c >3
24a2 24b2 24c2

4.12. If a, b, c are positive real numbers so that
a>1>b>c, abc=1,

then
23—8a 23—8b 23—S8c¢

+ + > 9.
3+2a%2 3+2b%2 3+22

4.13. Let ay,a,,...,a, be positive real numbers so that
a<---<a,,<1<a,, aay,---a,=1.
If p,q > 0 so that p +3q > 1, then

1—aqa, 1—a, l1—a

n

...+—_
1+pa; +qa?  1+pa,+qa’ 1+ pa, +qa?

4.14. If a, b, c,d, e are real numbers so that
—2<a<b<1<c<d<e, a+b+c+d+e=5,

then
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4.3 Solutions

P 4.1. If a, b, c,d are real numbers so that
a<1<b<c<d, a+b+c+d=4,
then

a + b N C 4 d <1
3a2+1 3b2+1 3c2+1 3d2+1 "

Solution. Write the inequality as

F@+FB)+FO+ f@2af(), s=THT ey
where
Flu) = 3ujfr -, ueR.
From )
F)= s

it follows that f is increasing on (—oo,—s,] U [s,, ©0) and decreasing on [—s, s, ],
where s, = 1/+/3. Since
lim f(u)=0
uU——00

and f (sy) < 0, it follows that
min f (1) = f (so)-

From

18u(1—u?)

(Bu2+1)3°
it follows that f is convex on [0, 1], hence on [s,, 1]. Therefore, we may apply the
LPCF-OV Theorem for n = 4 and m = 1. We only need to show that f (x)+ f(y) =
2f(1) for all real x,y so that x + y = 2. Using Note 1, it suffices to prove that
h(x,y) = 0, where

fw) =

- ~fa
)= SISO SO
Indeed, we have
() = 3u—1
ST 1B+ 1)
h(x,y) = 31+x+y—3xy) 9(1—xy)

4(3x2+1)(3y2+1) 4(3x2+1)(3y2+1) "
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since
4(1—xy)=(x+y)—4xy=(x—y)*>0.

Thus, the proof is completed. The equality holds fora=b=c=d = 1.

Remark. Similarly, we can prove the following generalization:

e Ifa;,a,,...,a, are real numbers so that

a,<1<a,<---<a

— —_— n»

a1+a2+"'+an:n,

then a a a
1 2 n S

n
—— 5+t -,
3a2+1  3a2+1 3a2+1° 4

with equality fora; = a, =---=a, = 1.

P 4.2. Ifa, b, c,d are real numbers so that
a>b>1>c>d, a+b+c+d=4,
then

16a—5 16b—5 16¢c—5 16d —5
+ + +
32a2+1 32b2+1 32c2+1 32d2+1

4
< -—.

3
(Vasile C., 2012)

Solution. Write the inequality as

F@+FB)+ O+ (@2 4), 5=y

where s 16
—16u

uy=——, u€R.
fw 32u?z+1

As shown in the proof of P 3.1, f is convex on [s,, 1], increasing for u > s, and
min f (u) = f (o),

where

_ 5+4/33
16

Therefore, we may apply the LPCF-OV Theorem for n = 4 and m = 2. We only need
to show that f(x)+2f(y) = 3f (1) for all real x, y so that x +2y = 3. Using Note
1, it suffices to prove that h(x, y) > 0, where

g(x)—g(y) _ f@—£(1)
—, gu)=——"7"—.
xX—y u—1

So ~ 0.6715.

h(x,y)=
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Indeed, we have

(W = 32(2u—1)
S =362+ 1)
_ 64(1+16x +16y —32xy) 64(4x —5)?

. _ _ > 0.
(x,¥) 3(32x2+ 1)(32y2 + 1) 3(32x2+1)(32y2+1) —

From x + 2y = 3 and h(x,y) = 0, we get x = 5/4 and y = 7/8. Therefore, in
accordance with Note 3, the equality holds fora =b =c=d =1, and also for

Remark. Similarly, we can prove the following generalization:

e Ifa,,a,,...,a, (n=> 3) are real numbers so that
a=-=2a,9=>1>2a,,2a, aq+a,+---+a,=n,
then
: — ot <,
32a7+1 32a5;+1 32a2+1 3

with equality for a; = a, =--- =a, = 1, and also for
5 7
a; = Za a = =dap o= 1, ap1=0a, = g

P 4.3. Ifa, b,c,d, e are real numbers so that
a>b>1>c>d>e, a+b+c+d+e=35,

then
18a—5 18b—5 18c—5 18d —5 18e—5
+ - + + <
12a2+1 12b2+4+1 12¢2+4+1 12d2+41 12e2+1

(Vasile C., 2012)

Solution. Write the inequality as

_atb+ct+d+e

fl@+f(B)+flc)+f(d)+f(e)=5f(s), s : 1,
where 5184
f(U):m, uek.

As shown in the proof of P 3.2, f is convex on [s,, 1], increasing for u > s, and

min f (u) = f (o),
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where

54452
Sg=———
18
Therefore, applying the LPCF-OV Theorem for n = 5 and m = 3, we only need to
show that f(x)+3f(y) = 4f (1) for all real x, y so that x +3y = 4. Using Note 1,
it suffices to prove that h(x,y) > 0, where

~ 0.678.

hx,y)= 83780 )y FW=FA)
xX—y u—1
Indeed, we have
() = 6(2u—1)
O DI
12(1+6x+6y—12xy) 12(2x —3)?

) = s Daniel) - (2t D2y 1) =

From x + 3y = 4 and h(x,y) = 0, we get x = 3/2 and y = 5/6. Therefore, in
accordance with Note 3, the equality holds fora=b=c=d =e =1, and also for

5
a=—-, b=1 c¢c=d=e=-.
2 6

Remark. Similarly, we can prove the following generalization:

e Ifa,,a,,...,a, (n=>4) are real numbers so that

aQz-r2d,3212a, 520, ,20a, a+ta+---+a,=n,

then
18a,—5 18a,—5 18a,—5
4.+ —2—<n,
12a2+1  12a2+1 12a2 +1
with equality for a; = a, =--- =a, = 1, and also for

3 5
alziﬁ Qy=-=a,3=1, an—2:an—1:an:g'
P4.4. Ifa,b,c,d,e are real numbers so that

a>b>1>c>d>e, a+b+c+d+e=35,

then

ala—1) N b(b—1) N c(c—1) N d(d—1) N e(e—1) S
3a2+4 3b%2+4 3c2+4 3d%2+4 3e2+4
(Vasile C., 2012)
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Solution. Write the inequality as

_a+b+c+d+e_

fla)+f(b)+flc)+f(d)+f(e)=5f(s), s c 1,
where )
uc—u
f(u)=3u2+4, u€R.

As shown in the proof of P 3.5, f is convex on [s,, 1], increasing for u > s, and
min f (u) = f (o),

where
4427

So ~ 0.43.
3
Therefore, we may apply the LPCF-OV Theorem for n = 5 and m = 2. We only need
to show that f(x)+3f(y) = 4f (1) for all real x, y so that x + 3y = 4. Using Note
1, it suffices to prove that h(x, y) > 0. Indeed, we have

o fW=FO _
& u—1 3u2+ 4’

_g(x)—g(y) _ 4—3xy _ (x—2)
) = e T T BT aG3yE A A+ DAy =

From x +3y = 4 and h(x,y) = 0, we get x = 2 and y = 2/3. Therefore, in
accordance with Note 3, the equality holds for

and also for

Remark. Similarly, we can prove the following generalizations:

e Ifa;,a,,...,a, (n>4) are real numbers so that
aQz-2d,3212a, ,2a,,20a, a+da+---+a,=n,

then

a;(a;—1) | ay(a,—1) a,(a,—1) >
3a? +4 3aZ+4 3a2+4 7
with equality for a; = a, =--- =a, = 1, and also for
2
a1:2) a2:”':an—3:1’ Apop =0Ap1 =0y = 3

3"
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e Ifa,a,,...,a, (n>3) are real numbers so that

aq=a,=>21>2ay>2--->2a,, a,+a,+---+a,=n,

then
—1 —1 —1
al(a21 ) + aZ(a22 ) 4ot an(an ) > O,
4(n—2)a; +(n—1)> 4(n—2)a;+(n—1)>? 4(n—2)a2+(n—1)?
with equality for a; = a, =---=a, =1, and also for
n—1 1 n—1
a, = a, = a,=---=a,= .
o2 " 2(n—2)

P 4.5. Let a,,a,, . ..,a,, # —k be real numbers so that

alz”'Zanz1Zan+12"'Zazm a1+a2+"'+a2n:2n.
n+1
If k > ——, then
24/n

a;(a; —1) | ay(a,—1) o ay,(ay, — 1)
(a; +k)?>  (ay+k)? (ay, +k)*>

(Vasile C., 2012)

Solution. Write the inequality as

:a1+a2+"'+a2n

fla)) +flay)+--+ f(ay,) =2nf(s), s on =1,
where ( 1)
u(u—
f(u)zm, uel=R\{—k}.

As shown in the proof of P 3.8, f is convex on [s,, 1], increasing for u > s, and
min f (u) = f (o),
where
. k
°7 2k+1
Having in view Note 4, we may apply the LPCF-OV Theorem for 2n real numbers

and m = n. We only need to show that f(x)+nf(y)>(n+1)f(1) for x,y €1 so
that x + ny = n+ 1. Using Note 1, it suffices to prove that h(x, y) > 0. We have

f@W—=fQA) _  wu
-1 (u+k?

<1.

g(u) =
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— K2 —
h(x,y) = g)—g(y) _ XY S,
xX—y (x+Kk)2(y + k)2
because
2 2 _ 2
4n 4n
. n+1 .
The equality holds fora; =a, =---=aq,=1. If k = 7, then the equality holds
n
also for
n+1 n+1
a, = 2 C12:“':an:1’ Ay = "= Ay = n .
H
P 4.6. Let a,,a,,...,a,, # —k be real numbers so that

a12"'2an21Zan+12"'202n, a1+a2+"'+a2n:2n.

+1
IFk>1+2"" then
Jn

a?—1 az—1 az —1
+ +ood 2 >0,
(a; +k)>  (ay,+k)? (ay, + k)?

(Vasile C., 2012)
Solution. Write the inequality as

:a1+a2+"'+a2n

f(a1)+f(a2)+---+f(a2n)22nf(s), S on =1,
where
W=2"L ye1=Rr\ (k)
W= 1= '

As shown in the proof of P 3.9, f is convex on [s,, 1], increasing for u > s, and
min f (u) = f(so),
u€l

where

So = _71 (S (_1, 0).

According to Note 4, we may apply the LPCF-OV Theorem for 2n real numbers and
m = n. Thus, we only need to show that f(x)+nf(y)=>(n+1)f(1) forx,y €1
so that x + ny = n+ 1. Using Note 1, it suffices to prove that h(x, y) = 0. We have

f@—=fA) _ u+1
-1 (u+k?

g(u) =
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gx)—g(y) _ (k-1 —-1—x—y—xy

h(x,y) = >0,
Con =52y (e + kR0 + kP
because
1)? —1)2
(k—l)z—l—x—y—xyz(n+ ) —l—x—y—xy=Mzo.
n n
) n+1 )
The equality holds fora; =a, =---=a,=1. lf k=1+ , then the equality
n

holds also for

P 4.7. If a;,a,,...,qa, are positive real numbers so that
a,=z21>2ay,2+-2qa,, aq+tay+---+a,=n,

then
af/al +a§’/a2 +-+am<n.
(Vasile C., 2012)
Solution. Rewrite the desired inequality as

fla)+f(a)+---+ f(a,) = nf(s), gzttt =1,

n

where
fw)=—u**, uel=(0,n).

We have ,
f'(u) =3u«?(Inu—1),

()= 3ug_4g(t), g(t)=u+(1—Inu)(2u—3+31nu).

From the expression of f’, it follows that f is decreasing on (0,s,] and increasing
on [sy, n), where
SO =e.

In addition, we claim that f”(u) > foru €[1,e]. If u € [3/2,e], then
g(t)> (1 —Inu)(2u—3)=0.

Also,for u€[1,3/2], we have

g(t)=3w—-1)+(6—2u—3Inu)lnu > (6—2u—3Inu)lnu > 3(1—ln2)lnu > 0.
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Since f is convex on [1,s,], we may apply the RPCF-OV Theorem for m = n — 1.
We only need to show that f(x)+ f(y) = 2f(1) for all x,y > 0 so that x + y = 2.
The inequality f(x)+ f(y) = 2f (1) is equivalent to

x4 y3y <2,
which is just the inequality in P 3.32 from Volume 2. The equality holds for

a,=a,=---=a,=1.

P 4.8. Ifay,a,,...,a,, are real numbers so that
a12a2212a32"'2a11; a1+a2+"'+a11:11,

then
(1—a,+a®)(1—a,+a2)---(1—ay +a3) =1

(Vasile C., 2012)

Solution. Rewrite the desired inequality as

_a1+a2+"’+a11

flap)+flag)+---+f(ay;) =2 11f(s), s= 11 =1,

where
fwW)=In(1—u+u?), ueR.

From / oy—1
fllw)= m,
it follows that f is decreasing on (—09,s,] and increasing on [s,, ©0), where
so=1/2.
Also, from L+ 2u(l—10)
u(l—u
frw= (1—u+u?)?’

it follows that f”(u) > 0 for u € [s,,1], hence f is convex on [sy, 1]. Therefore,
applying the LPCF-OV Theorem for n = 11 and m = 2, we only need to show that
f(x)+9f(y)=9f(1) for all real x, y so that x +9y = 10. Using Note 2, it suffices
to prove that H(x,y) > 0, where

_ =) T+x+y—2xy
xX—y (I—x+x2)(1-y+y2)

H(x,y)
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Since
l+x+y—2xy=18y*—8y+1=2y*+(4y—1)*>0,
the conclusion follows. The equality holds for a; =a, =---=a;; = 1.
Remark. By replacing a,, a,, ..., a;; respectively with 1—a;,1—a,,...,1—a;;, we

get the following statement.
e Ifay,a,,...,a,; are real numbers so that

a1Sa2SOSa3S"'Sa11, a1+a2+“'+a11:0,

then
(1—a,+a®)(1—a,+ad)---(1—a; +a})>1,
with equality for a; =a, =---=a, =0.
OJ
P 4.9. If a;,a,,...,ag are nonzero real numbers so that

a12a22a32a4212a52a62a72a8, a1+a2+"'+a8:8,

then

1 1 1 1 1 1
5| 5+ ++5 |+72214 —+ =+ +— |
a; a; ag a, a, ag

(Vasile C., 2012)
Solution. Write the desired inequality as

_a1+a2+"'+a8

fla))+fla))+---+f(ag) = 8f(s), s= 3 =1,

where s 14
f(u)z—z——+9, uel=R\{0}.
u u

As shown in the proof of P 3.25, f is convex on [s,, 1], increasing for u > s, and
min f (u) = f(so),
u€l

where

So = 7
Taking into account Note 4, we may apply the LPCF-OV Theorem for n = 8 and
m = 4. We only need to show that f(x)+4f(y) = 5f(1) for x,y € I so that

x +4y = 5. Using Note 1, it suffices to prove that h(x, y) > 0. Indeed, we have

f@—f1) _9 s

u—1 u  u?

g(u) =
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_8(x)—gly) _5(x+y)—9xy
h(X,Y)— —_— PO
X—Yy x4y
(e +4y)e+y)—=9xy  (x—2y)? 0
B x2y2 T oxzy2 T
In accordance with Note 3, the equality holds for a; = a, =--- = ag =1, and also
for
> 5
a=3 @=a=e=1 a=a=o=o=]

P 4.10. If a, b, c,d are positive real numbers so that

a<b<1<c<d, abcd=1,

then

7—6a N 7—6b + 7 —6¢ N 7 —6d S 4

2+a2 2+b%2 2+4c¢2 2+d2 3

(Vasile C., 2012)
Solution. Using the substitution
a=e*,b=e¢e’,c=¢*, d=¢",
we need to show that
FO)+ )+ £ )+ f(w) = 4f(s),
where X+y+z+w
x<y<0<z=<w, s=+=0,
7 — 6e"
= eR.
)= 5

As shown in the proof of P 3.26, f is convex on [0,s,], is decreasing on (—00,s,]
and increasing on [s,, ©0), where

So =1n3.

Therefore, we may apply the RPCF-OV Theorem for n = 4 and m = 2. We only
need to show that f(x)+2f(y) = 3f(0) for all real x, y so that x + 2y = 0; that
is, to prove that
7—6a 2(7—6d)
+ >
2+ a? 24 d?
for a,d > 0 so that ad? = 1. This is equivalent to

(d —1)*(d —2)*(5d*+6d +3) >0,
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which is clearly true. In accordance with Note 3, the equality holds for a = b =
¢ =d =1, and also for

P 4.11. If a, b, c are positive real numbers so that
a<b<1<c¢, abc=1,
then

7—4a 7—4b 7—4c
+ + >
2+a2 2+b2 2+4c2

(Vasile C., 2012)

Solution. Using the substitution

we need to show that

fG)+f(y)+f(z)=3f(s),
where vtz
x<y<0<g, = ;/ =0,
7 — 4e
= R
f=—-—7r us
From

2e"(2e* +1)(e* —4)

="
it follows that f is decreasing on (—©09,s,] and increasing on [s,, ©0), where
so = 1n4.
Also, we have 4t -H(E)
t-n(t
()= m, t=e",

where
h(t) = —t*+ 7t + 12t% — 14t — 4.

We will show that h(t) > 0 for t €[1,4], hence f is convex on [0,s,]. Indeed,

h(t) = (t—1D[t*(—t +6)+ 18t +4]>0.
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Therefore, we may apply the RPCF-OV Theorem for n = 3 and m = 2. We only
need to show that f(x)+ f(y) = 2f(0) for all real x, y so that x + y = 0. That is,
to prove that
7—4a 7—4b
+ >
24+a? 2+4Db2
for all a, b > 0 so that ab = 1. This is equivalent to

(a—1)*>0.

The equality holds fora=b=c=1.

P 4.12. If a, b, c are positive real numbers so that
a>1>b>c, abc=1,

then
23—8a 23—8b 23—8c>

+ + > 9.
3+2a%2 3+2b%2 3+ 2c2
(Vasile C., 2012)
Solution. Using the substitution
a=e*, b=¢e’, c=¢"
we need to show that
fFO+F)+f(2)=3f(s),
where N
x=>1=2y=>z, 52%20,
23 —8e*
u)=——, uck.
fw) 3+ 2e2u
From

oy 4et(4et +1)(e" —6)
f)= ey

it follows that f is decreasing on (—090,s,] and increasing on [s,, ©0), where s, =
In6. Also, we have

2

" 8t - h(t)
= t =
frw) (34 2t2)¥’ >
where
h(t) = —4t* + 46> + 36t* — 69t — 9.

We will show that h(t) > 0 for t €[1, 6], hence f is convex on [0,s,]. Indeed,

h(t) = (t—1)(2t + 3)[2t(—t +12)+ 3] = 0.
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Therefore, we may apply the RPCF-OV Theorem for n = 3 and m = 2. We only
need to show that f(x)+ f(y) = 2f(0) for all real x, y so that x + y = 0. That is,

to prove that
23—8a 23-—8b
> 6.

+ =
3+2a%2 3+42b2
for all a, b > 0 so that ab = 1. This is equivalent to

(a—1)*>0.

The equality holds fora=b=c=1.

P 4.13. Let a,,a,,...,a, be positive real numbers so that
@< Saqs1<a, aa--aq=1

If p,q = 0 so that p +3q > 1, then

1—a, l1—a, 1—a,

ep——— >,
1+pa, +qa® 1+pa,+qa; 1+ pa, +qa?

(Vasile C., 2012)
Solution. For ¢ = 0, we need to show that p > 1 involves
1—a1 1-(12 ...+ 1_an

+ >0
1+pa; 1+pa, 1+ pa,

This is just the inequality from P 2.24. Consider next that ¢ > 0. Using the substi-
tutions aq; = e* fori =1,2,...,n, we need to show that

fOe)+ f(xg) + -+ f(x) 2 nf (),

where
X1+XZ+"'+XH
X< <x,,<0<x,, s= =0,
n
1—et
f(uy=—, uekR.

1+ pet +qe2’
As shown in the proof of P 3.30, if p+3q—1 > 0, then f is convex on [0, s, ], where

p+1

In addition, f is decreasing on (—o0,s,] and increasing on [s,, ©0). Therefore,
we may apply the RPCF-OV Theorem for m = n — 1. We only need to show that
f(x)+ f(y)=2f(0) for all real x, y so that x + y = 0; that is, to prove that
1—a N 1-b
1+pa+qa? 1+4+pb+qb?
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for a, b > 0 so that ab = 1. This is equivalent to
(a—1)*[(p—1a+q(a®*+a+1)]=0,
which is true because
(p—1Da+q(a*+a+1)>(p—1)a+qBa)=(p+3q—1)a>0.

The equality holds fora, =a, =---=a, =1.

P 4.14. Ifa, b, c,d, e are real numbers so that
—2<a<b<l1<c<d<e, a+b+c+d+e=5,

then

Solution. Write the inequality as

_a+b+c+d+e_

f@+f@)+f()+f(d)+f(e)=5f(s), s 1,

5
where 11
fw=—=—--, uel=[-27]\{0}.
u u
Let
So=2, §<s,.
From

W@ ou 4 4u?

oy
f-f@=~_1y1 =2l

it follows that

min f (u) = £ (so),

while from ) )
F=""2 prw=2279,
u u
it follows that f is convex on [s,s,]. We can’t apply the the RPCF-OV Theorem
because f is not decreasing on I . According to Theorem 1 (applied for n =5 and
m = 2) and Note 6, we may replace this condition with (14+n—m)s—(n—m)s, < infL.
Indeed, we have

(I1+n—m)s—(n—m)s, =4—6=—2=infl.
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So, according to Note 1, it suffices to show that h(x, y) = 0 for all x, y €I so that
x + 3y = 4. We have

_fw-—f(1) -1
g(u) - u_1 - u2 )
gx)—gly) x+y 2(x+2)
h(x:J’): x—y = x2y2 == 3X2y2 20

The proof is completed. By Note 3, the equality holds fora=b=c=d=e=1,
and also for



Chapter 5

EV Method for Nonnegative Variables

5.1 Theoretical Basis

The Equal Variables Method is an effective tool for solving some difficult symmetric
inequalities.

EV-Theorem (Vasile Cirtoaje, 2005). Let a,,a,,...,a, (n = 3) be fixed nonnegative
real numbers, and let
0<x;<x,<---<Zx,

so that

k

n,

X1 +Xp+ X, =aptap+ta,  xE+xf et xi=dl+al 4+ +a

where k is a nonnegative real number (k # 1); k = 0 means XX, X, = a,0y - a,.
Let f be a real-valued function, continuous on [0, 00) and differentiable on (0, c0),
so that the joined function

g(x)=f"(x=)

is strictly convex on (0, 00). Then, the sum

Sp=fl)+ flx)+-+ f(x,)

is maximal only for

X1:X2="‘:X 1<X

n—1 — no»
and minimal only for x; =0 or 0<x; <Xy, =X3=+*=X,.
To prove the EV-Theorem, we need the EV-Lemma and the EV-Proposition be-

low.

EV-Lemma. Let a, b, c be fixed nonnegative real numbers, not all equal and, for k > 0,
at most one of them equal to zero, and let x < y < z be nonnegative real numbers so
that

x+y+z=a+b+c, xN+yF+zk=a"+b5+ck,

323
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where k is a real number (k # 1); for k = 0, the second equation is xyz = abc. Then,
the range of y is an interval [m, M ] with m < M; in addition,

(1) y=m ifandonlyif x =y <z;

(2) y=M ifandonlyif 0=x<y<zor0<x<y=z.

Proof. We show first, by the contradiction method, that x < z. Indeed, if x = 2,
then

x+y+z
X=z2 = X=y=g = xk +y +z —3( )
+b+
= ak+bk+ck:3(¥) =b=

which is false. Notice that the last implication follows from Jensen’s inequalities

b k
ak+bk+ck23(¥) , ke(—00,0)uU(l,00),

+b+c\
ak+bk+ck33(%) , ke(0,1),

3
abcs(%bﬂ)  k=o0,

where the equality holds if and only if a = b =c.
According to the relations

x+z=a+b+c—y, x"+zK=a"+bF+ck—yk

we may consider x and g as functions of y. From

X'+ =—1, x4 =y
we get
kel gk kel ke |
xX=————<0, 2=——<0. (*)
PR k1 _ g1

Let us define the nonnegative functions

A =y—x(y), LO)=20)-y. £f£)=x).

Since

ff)=1-x'(y)>0, f,(y)=2(y)—-1<0, f,(¥)=x'(y)<0,

these functions are strictly increasing, decreasing and decreasing, respectively. Thus,
the inequality f;(y) = 0 (with f; increasing) involves y > m, where m is a root of
the equation x(y) = y, and the inequality f,(y) = 0 (with f, decreasing) involves
involves y < y,, where y, is a root of the equation z(y) = y. If x(y,) = 0, then
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¥, is the maximal value of y. Otherwise, the maximal value of y is given by the
inequality f3(y) = 0 (with f; decreasing), which involves y < y,;, where y; is a
root of the equation x(y) = 0. Therefore, y € [m, M ], with y = m for x = y, and
y = M for either y =z or x =0.

EV-Proposition. Let a, b, ¢ be fixed nonnegative real numbers, andlet 0 < x <y <z
so that
x+y+z=a+b+c, xF+ y* + 28 =ak + b+ ck,

where k is a real number (k # 1); k = 0 means xyz = abc. Let f be a real-valued
function, continuous on [0, 00) and differentiable on (0, ©00), so that the joined func-
tion

g00)=f'(x7)

is strictly convex on (0, 00). Then, the sum

S3=f(X)+f(y)+f(2)

is maximal only when 0 < x = y < 2z, and minimal only when x =0or 0 < x <
y=2.

Proof. If a = b =c, then

k
ak+bk+ck=3(Lb+c) ,
3
hence .
+y+
xk+yk+zk:3(—x ;/ Z),

which involves x = y = 2. If k > 0 and two of a, b, ¢ are equal to zero, then
a“+ b*+ck = (a+ b+,

hence
xk +yk + 2k = (x +y +2)k,

which involves x = y = 0. In both cases, the extremum conditions in the statement
(x = y and either x = 0 or y = ) are satisfied. Consider further that a, b, c are
not all equal and at most one of them is equal to zero. As shown in the proof of the
EV-Lemma, we have x < z. According to the relations

x+z=a+b+c—y, x*+zk=a"+b"+ck—yk
we may consider x and gz as functions of y. Thus, we have

Sy =flx(yN+f(y)+f(2(y))=F(y).
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According to the EV-Lemma, it suffices to show that F is maximal for y = m and is
minimal for y = M. Using (*), we have

F(y)=x"f'0)+ f'(y)+2'f'(2)
yho1 gkt k=1 _ k-1

_ _ Y X _
= S 8T+ T+ e,

which, for x < y < g, is equivalent to

F'(y) B g(x* ™)
(yk—l _xk—l)(yk—l _Zk—l) - (xk—l _yk—l)(xk—l _Zk—l)
gy N gz

(yk—l _Zk—l)(yk—l _ xk—l) (Zk—l _ xk—l)(zk—l _ yk—l)'

Since g is strictly convex, the right hand side is positive. Moreover, since
(yk—l _ xk—l)(yk—l _Zk—l) < 0,

we have F'(y) < 0 for y € (m, M) (see the EV-Lemma), hence F is strictly decreas-
ing on [m, M]. Therefore, F is maximal for y = m (when 0 < x = y < z) and is
minimal for y =M (when x =0or 0<x <y =z.

Proof of the EV-Theorem. Since X = {x;,X,,...,X,} is defined as a compact set
in R}, S, attains its minimum and maximum. For n = 3, the EV-Theorem follows
immediately from the EV-Proposition. To prove the theorem for n > 4, we use the
contradiction method.

(a) For the sake of contradiction, assume that S, is maximal at (b4, b,,..., b,),
where b; < b, <--- < b, and b; < b,_;. Let x;, x,_; and x, be real numbers so
that x; < x,_; < x, and

_ k k k_ 1k k k
x,+x,,+x,=b;+b,_,+b,, x;+x,  +x; = b1 +bn_1+bn.

According to the EV-Proposition, the sum f(x;) + f(x,_;) + f(x,) is maximal for
X, = X,_1, when

fCer) + f (epmn) + £ (x,) > f (D) + f (b)) + f (D).

This result contradicts the assumption that S, attains its maximum at (b,, b, ..., b,)
with b; < b,_;.
(b) Similarly, we can prove that S, is minimal for n > 4 when either x; = 0 or

0<x;<xy=:-=X,.
Corollary 1. Let a;,a,,...,a, (n = 3) be fixed nonnegative real numbers, and let

0<x;<x,<---<x

n
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so that
X1 +x,+-+x,=a;+a,+---+a,,

2 2 2 __ 2 24 ... 2
x]t+x;+--+x =ajt+a;,+---+a.

Let f be a real-valued function, continuous on [0, c0) and differentiable on (0, c0),
so that the joined function

g(x) = f'(x)

is strictly convex on (0, 00). The sum

Sp=f(x)+f(x)++ fx,)
is maximal only when
Xp =Xy =" =X 1 <Xy,
and is minimal only when either x; =00r 0 <x; <Xy =X3=+'' =X,

Corollary 2. Let a;,a,,...,a, (n > 3) be fixed positive real numbers, and let

O<X1SX2S"'SX

n

so that
X, +xy+--+x,=a;, +a,+---+a,,
1 1 1 1 1 1
_t "+ e+t —=—4 — 4 4+ —,
X1 Xy X, a4 4y a

Let f be a real-valued function, continuous and differentiable on (0, ©0), so that the

joined function
1
=1 5)

is strictly convex on (0, 00). The sum

Sp=fx)+ flxg)+---+ f(x,)

is maximal only when

X1 =X ==Xy 1= Xy,
and is minimal only when
X]SXg=Xg3="+:"=X,.
Corollary 3. Let a;,a,,...,a, (n = 3) be fixed nonnegative real numbers, and let

0<x;<x, << x,

so that

X1 +xg+--+x,=a;+a,+---+a,, XXy X,=a,dy"0a,.
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Let f be a real-valued function, continuous on [0, ©0) and differentiable on (0, c0),
so that the joined function

g(x)=f'(1/x)
is strictly convex on (0, 00). The sum

Sy =f)+flx)+-+ f(x,)

is maximal only when

X1 =Xy = """ =Xy an:
and is minimal only when either x; =00r 0 <x; <Xy =Xg3="++' =X,
Corollary 4. Let a;,a,,...,a, (n = 3) be fixed nonnegative real numbers, and let

0<x;<x,<---<x

n

so that

k

n’

k— k4 ok
a,ta,+---+a

n_

X1+ Xyt X, =atagte+a,  xXF+xk++x

where k is a real number (k # 0, k # 1).
(1) For k <0, the product P, = x1Xx, -+ X, is maximal when

0<x;SXxy3=X3=""=X,,
and is minimal only when
O<x;=xy=-""=Xx,_1 <X,
(2) For k > 0, the product P, = x1x, - - X, is maximal when
Xy =Xp = = Xp1 S X,

and is minimal only when either x; =0o0r 0 <x; <X, =Xg3="'"= X,

Note 1. The EV-Theorem, Corollary 1 and Corollary 3 are also valid for the cases
when x;,x,,...,x, >0, f is continuous and differentiable on (0, 00), f(0+) =
+00 and the sum S, has a global maximum (minimum).

From the EV-Theorem and Note 1, we can obtain some interesting particular
results, which are useful in many applications.

Corollary 5. Let a;,a,,...,a, (n > 3) be fixed nonnegative real numbers, and let
OsxlstS"'an

so that

k k k k ok k
X tXg+rt X, =a;+ay+ta, X;tX,teo+X =a; +a,++a.
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Let us denote
Spy=x] +xy + X

Case1: k<O.
(a) If m e (k,0)U(1, 00), then S, is maximal only for
0<x;=Xy=" =X, 1 S Xy,
and is minimal only for
0<x;<xy,=XxX3="+"=X,.
(b) If m € (—o0,k)U(0,1), then S, is minimal only for
O<x;=x,=---=x,1 <X,
and is maximal only for

0<x;<xy3=X3=-"-=X,,.

Case2: 0<k <1 (k=0means x;xy" X, = a0y " a, ).

(@) If me (0,k)U (1, 00), then S, is maximal only for

0<x;=x,=-=x,1 <X,
and is minimal only for either x; =0o0r 0 <Xx; <Xy, =Xg3="+=X,,.
(b) If m € (—00,0), then S, is minimal only for
O<x;=x,=---=Xx,1 <X,
and is maximal (if it has a global maximum) only for

O<X1SX2:X3:"':XH.

(c) If m € (k,1), then S, is minimal only for

0<x;=x,=--=x,1 <X,

and is maximal only for either x; =00r 0 <x; < Xy =X3 ="'+ =X,,.

Case 3: k> 1.
(a) If me (0,1) U (k, 00), then S, is maximal only for

0<x;=x3=-"=X,1 <X
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and is minimal only for either x; =0o0r 0 <Xx; <Xy =Xg3="+=X,,.

(b) If m € (—00,0), then S, is minimal only for
O<x;=x,=---=x,1 <X,
and is maximal (if it has a global maximum) only for

O<x1§x2:x3:...:x

ne

(c) If m € (1,k), then S, is minimal only for

0<x;=x,=--=x,1 <X,

and is maximal only for either x; =00r 0 <Xx; <Xy =X3="'+*=X,.
Proof. We apply the EV-Theorem and Note 1 to the function
fw)=m(m—1)(m—k)u™.
We have
f'(w) = m*(m—2)(m—k)u™"
and

g(x) = m*(m—1)(m —k)x =, gff(x):mz(m(—kl_)zl(;—k)z s

—2k
1,

Since g”(x) > 0 for x > 0, g is strictly convex on (0, 00).

Corollary 6. Let a;,a,,...,a, (n > 3) be fixed nonnegative real numbers, and let
0<x;<x,<---<Zx,

so that

p Py... P — 4P Py... p q 94 ... —— 94 ... q
X+ Xy + +Xx,=a, +a,+--+a, X, +Xx,+-+ X, =a; +a, + +a,,

where
p,q€{1,2,3}, p#q.

Sn == E Xilxile'3

1<i) <ip<iz<n

The symmetric sum

is maximal only for
O0<x;=Xy=""" =X X,

and is minimal only for either x; =00r 0 < x; < Xy = X3 ="+ = X,.
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Proof. Taking into account that
63w = (D) -a(D) (D) 2
1<iy<ip<iz<n

Corollary 6 is a consequence of Corollary 5. For p = 2 and q = 3, according to
this identity, the sum Y, <i, <iy<iy<n Xi, Xi, X;, Is maximal/minimal when > x; is max-
imal/minimal. Therefore, we need to show that if

x?+x;+---+x>=constant, x> +x,+---+x> = constant,

then the sum ) x; is maximal for

0<x;=Xy="""=X1 X,
and is minimal for either x; =0 or 0 < x; < x, = x5 = -+ = x,,. This follows by
replacing x;, x,,...,x, withx?,x2,..., x> in Corollary 5, case k = 3/2and m = 1/2.

Note 2. The EV-Theorem and Corollaries 1-3 can be extended to the cases where:

(@) x1,X5,...,X, = m =0, f iscontinuous on [m, o0) and differentiable on
. . 1
(m, 00), and g(x) is strictly convex for x=1 > m; so, the sum

Sy =f(x)+ flxg) + -+ f(x,)

is maximal for x; = x, = -+ = x,_; < X,,, and is minimal for either x; = m or
m<x; < Xg=X3="+""=X,;

(b) 0 < xq,x5,...,x, < M, f is continuous on [0, M] and differentiable on
(0, M), and g(x) is strictly convex for XFT < M; so, the sum

Sp=fx)+ flxg)+---+ f(x,)

is maximal for either x, = M or x; = x, = -+ = x,,_; < X, and is minimal
X]SXy=X3=-"+=X

Note 3. The EV-Theorem and Corollaries 1-3 can be extended to the cases where:

(@) xy,X9,...,x, > m > 0, f is continuous and differentiable on (m, co),
1
f(m+) = £o00, g(x) is strictly convex for x=1 > m and the sum S, has a global
maximum (minimum);

(b) 0 < x3,x5,...,x, < M, f is continuous and differentiable on [0, M),
f(M—) = £00, g(x) is strictly convex for X1 < M and the sum S, has a global
maximum (minimum).
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5.2 Applications

5.1. If a, b, c,d are nonnegative real numbers so that

a+b+c+d=ac+b>+3+d>=2,

then 7

—<a*+b*+c*+d*<2.

4
5.2. If a;,a,,...,ay are nonnegative real numbers so that

a+a,+-tag=a+ai+-+a;=3,

then 14

3<a+al+-+al < —.

3

5.3. If a, b, c,d are nonnegative real numbers so that

2
a+b+c+d=a2+b2+c2+d2=77,
then 5427 1377
—<a+bP+3F+dP < ——.
1372 343

5.4. If a, b, c are positive real numbers so that abc = 1, then

a®+b% +c® > 4/3(a7 + b7 + 7).

5.5. If a, b, c,d are positive real numbers so that abcd = 1, then

@@+ b3+ +d? > y/4(at + b+ et + dY).

5.6. If a, b, c,d are nonnegative real numbers so that a + b+ c +d =4, then

bed cda dab abc < 4

+ + + < —.
1la+16 11b+16 1lc+16 11d+16 ~ 27
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5.7. If a, b, ¢ are real numbers, then

bc N ca N ab
3a2+b2+c2 3b2+c2+a?  3c2+a?+b?

3
<-.
5

5.8. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

@ bc N ca 4 ab <2.
az+2 b2+2 c2+2° 8

) 2bc 4 ca N ab < 11«/@—45;
a2+3 b2+3 243 24

© bc N ca 4 ab <§'
az+4 b2+4 c2+4 5

5.9. If a, b, c,d are nonnegative real numbers so that

(Ba+1)(3b+1)(8c+1)(3d +1) =64,

then
abc+ bcd +cda+dab < 1.
5.10. If a,a,,...,a, and p,q are nonnegative real numbers so that
a+ay+--+a,=p+q, ac+a+---+a=p*+q°,
then

2 2 2 2 2
ajta;+---+a, <p°+q°.

5.11. If a, b, ¢ are nonnegative real numbers, then

ava®+4b2+4c2+ bV b2+ 4c2 +4a2 +cv/c2 + 4a2 + 4b2 > (a + b + )%

5.12. If a, b, ¢ are nonnegative real numbers so that ab + bc + ca = 3, then

1 N 1 N 1 < 3 +a+b+c
a+b b+c c+a” 2(a+b+c) 3
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5.13. If a, b, ¢ are nonnegative real numbers so that ab + bc + ca = 3, then

1 N 1 N 1 S 3 +a+b+c
a+b b+c c+a a+b+c 6

5.14. Let a, b, c be nonnegative real numbers, no two of which are zero. If
a’?+b%+c? =3,

then
1 1 1 a+b+c> 11

+ + + > :
a+b b+c c+a 9 2(a+b+c)

5.15. Let a, b, c be nonnegative real numbers, no two of which are zero. If
a+b+c=4,
then

1 1 1 15
+ + > .
a+b b+c c+a 8+ab+bc+ca

5.16. If a, b, ¢ are nonnegative real numbers, no two of which are zero, then

1 1 1 1 2
+ + > + .
a+b b+c c+a a+b+c +ab+bc+ca

5.17. If a, b, ¢ are nonnegative real numbers, no two of which are zero, then

1 1 1 3—4/3 2+4/3
+ + > + :
a+b b+c c+a a+b+c 2vab+bc+ca

5.18. Let a, b, c be nonnegative real numbers, no two of which are zero, so that
ab+bc+ca=3.

If

94543

0<k< ~ 2.943,

then

2 2 2 9(1 +k)
+ + > .
a+b b+c c+a a+b+c+3k
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5.19. If a, b, ¢ are nonnegative real numbers, no two of which are zero, then

1 1 1 20
+ + > -
a+b b+c c+a a+b+c+6+vab+bc+ca

5.20. If a, b, ¢ are positive real numbers so that

7(a® + b2+ c?)=11(ab + bc + ca),

then
51 a b c
— < + + <2.
28 b+c c+a a+b
5.21. If a, a,, ..., a, are nonnegative real numbers so that
af+a§+---+a§_(a1+a2+---+an)2
n+3 n+1 ’
then
+1)(2n—1 1 1 1 3n(n+1
(n+1)(2n )S(a1+a2+-~-+an)(—+—+---+—)SM.
2 a, a a, 2(n+2)

5.22. If a, b, c,d are nonnegative real numbers so that a + b+ ¢ +d = 3, then

abc+ bcd +cda+dab <1+ 18L16 abcd.

5.23. If a, b, c,d are nonnegative real numbers so that a + b+ ¢ +d = 3, then

3
a’b?c? + bc?d? + c2d%a® + d?a*b* + Zabcd <1.

5.24. If a, b, c,d are nonnegative real numbers so that a + b + c +d = 3, then

4
a’b?c? + b%c?d? + c2d?a® + d*a*b* + g(abcd):‘)/2 <1.

5.25. If a, b, c,d are nonnegative real numbers so that a + b + ¢ +d =4, then

a’b?c? + b%c?d? + c2d?a® + d?a®b? + 2(abcd)*? < 6.
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5.26. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

11(ab + bc + ca) + 4(a?b? + b2c? + c?a?) < 45.

5.27. If a, b, ¢ are nonnegative real numbers so that a + b + ¢ = 3, then

a’b? + b%c® +c*a® + a®b> + b3c® + c2a® > 6abc.

5.28. If a, b, ¢ are nonnegative real numbers so that a + b + ¢ = 3, then

2(a2+b2+c2)+5(ﬁ+ \/3+«/E)221.

5.29. If a, b, ¢ are nonnegative real numbers so that ab + bc + ca = 3, then
1+ 2a 1+2b 1+ 2c
+ + > 3.
3 3 3

5.30. Let a, b, c be nonnegative real numbers, no two of which are zero. If

0<k<15,

then

1 1 1 k 9+k
+ + + = .
(@a+b)2 (b+c)2 (c+a)* (a+b+c)?~ 4(ab+ bc+ca)

5.31. If a, b, ¢ are nonnegative real numbers, no two of which are zero, then

1 1 1 24 8
+ + + = .
(@a+b)2 (b+c)2> (c+a)? (a+b+c)>  ab+bc+ca

5.32. If a, b, ¢ are nonnegative real numbers, no two of which are zero, so that
k(a®+ b2 +c)+(2k+3)ab+bc+ca)=9k+1), 0<k<6,

then

L + L + 1 + ok >§+k
(a+b)2 (b+c)®2 (c+a)? (a+b+c)2 4
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5.33. If a, b, ¢ are nonnegative real numbers, no two of which are zero, then

2 2 2 8 1

a + + = + ;
(@) a?+b? b%2+c2 c24+a?> a’?+b?+c2 ab+bc+ca
2 2 2 7 6
b + + > + ;
(b) a?+b%2 b2+4+c¢% c24+a? a?+b%2+c?2 (a+b+c)?
2 2 2 45
(c)

+ + = .
a?+b%2 b2+4+c2 c2+a?  4Ha?2+b2+c?)+ab+bc+ca

5.34. If a, b, c are nonnegative real numbers, no two of which are zero, then

1 1 1 3 4
- + + > :
a?+b%2 b%2+c2 c?2+a? a?+b2+c? ab+bc+ca

5.35. If a, b, ¢ are nonnegative real numbers, no two of which are zero, then

@ 3 L3 .3 5 LA
a?+ab+Db2 b24+bc+c2 c24+ca+a?2 ab+bc+ca a2+b2+c2’
3 3 3 1 24
(b) + + > + ;
a2+ ab+b%2 b2+4+bc+c2 c2+ca+a? ab+bc+ca (a+b+c)?
1 1 1 21
()

+ + > :
az+ab+b%2 b2+bc+c?2 c2+ca+a? 2(a%+ b2+ c2)+5(ab+ bc+ca)

5.36. Let f be a real-valued function, continuous on [0, o0) and differentiable on
(0, 00), so that f”’(u) = 0 for u € (0,00). If a, b,c > 0, then

f(a*+2bc)+ f(b*+2ca) + f(c* +2ab) < f(a®+ b*+c*) +2f (ab + bc + ca).

5.37. If a, b, ¢ are the lengths of the side of a triangle, then

1 + 1 + 1 < 85
(a+b)2 (b+c)?> (c+a)?~ 36(ab+bc+ca)

5.38. If a, b, ¢ are the lengths of the side of a triangle so that a + b + ¢ = 3, then

1 N 1 N 1 3(a®+b%+c?)
(a+b)2? (b+c)®> (c+a)?*~ 4(ab+bc+ca)
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2
5.39. Leta,b,c > < so that a + b + ¢ = 3. Then,

1 1 1
+ +
3+2(a2+b2) 3+4+2b2+4+c¢2) 3+4+2(c2+a?)

3
<-.
7

5.40. If a, b, ¢ are nonnegative real numbers so that a + b + ¢ = 3, then

2 + 2 N 2 < 99
24a2+b2 2+b2+c2 2+c2+a2” 63+a2+b2+c?

5.41. If a, b, ¢ are nonnegative real numbers so that a + b + ¢ = 3, then

1 1 1 18
+ + < .
3+a?2+b%2 3+b%2+c2 3+c2+a?  27+a?+b2+c?

5.42. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

S5 + 5 + 5 > 27
3+a2+b% 3+4+b2+c¢2 3+c2+a  6+a+b2+c?

5.43. If a, b, c,d are nonnegative real numbers so that a + b + ¢ +d =4, then

Z 3 < 296
3+2(a2+b2+c2) ~ 2184 a2+ b2+ c2+d?’

5.44. If a, b, c are nonnegative real numbers so that ab + bc + ca = 3, then

4 4 4 + 4 S 21
2+a2+b2 2+b2+c2 2+c2+a? 4+a2+b2+c?

5.45. If a, b, c are nonnegative real numbers so that a® + b? + ¢ = 3, then

1 1 1

+ - <
10—(a+b)?2 10—(b+c¢)?2 10—(c+a)? —

1
%"

5.46. If a, b,c are nonnegative real numbers, no two of which are zero, so that
a*+ b* +¢* =3, then

1 + 1 + 1
a>+b> b +c> cS+ad

3
> .
2
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5.47. If a;,a,,...,a, are nonnegative real numbers so that a; +a, +---+a, =n,
then

1
\/a§+1+\/a§+1+---+‘/a§+12 \J2(1——)(a§+a§+---+ag)+2(n2—n+1).
n

5.48. If a;,a,,...,a, are nonnegative real numbers so that a; + a, +--- +a, = n,
then

> V@n—4E +n> /(Bn—4)(a} +ai+ - +a2) +n(4n2—Tn+4).

5.49. If a, b, ¢ are nonnegative real numbers so that a + b + ¢ = 3, then

8
Vaz+4+ Vb2 +4+ \/c2+4S\]§(a2+b2+c2)+37.

5.50. If a, b, ¢ are nonnegative real numbers so that a + b + ¢ = 3, then

V3242 + 3+ v/32b2 + 3+ V/32c2 + 3 < 1/32(a2 + b2 + ¢2) + 219.

5.51. If a;,a,,...,a, are positive real numbers so that a; + a, +---+ a,, = n, then
1 1 1 2nvn—1
— =+t —t+ 5 >n+2vVn—1.
a, a, a, ajta;+---+a

5.52. If a,b,c €[0,1], then

(1+3a*)(1+3b%)(1+3c*) > (1+ab+bc+ca).

5.53. If a, b, c are nonnegative real numbers so that a+ b +c = ab + bc + ca, then

1 N 1 N 1
4+4+5a?> 4+5b%2 4+ 5c?

1
> .
3

5.54. If a, b, c,d are positive real numbers so that a + b+ c +d = 4abcd, then

1 1 1 1
- + + >
1+43a 1+3b 1+3c 1+4+3d

1.
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5.55. If a,a,, ..., a, are positive real numbers so that
1 1 1
Gt+a,+ta,=—4 =4+ —,
a; a,
then
1 1 1

+ ot ————— > 1.
1+(n—1)a; 1+(n—1)a, 1+(n—1)a,

5.56. If a, b, c,d, e are nonnegative real numbers so that a*+ b*+c*+d* +e* =5,
then
7(a®>+b*>+c*+d*+e*)>(a+b+c+d+e)*+10.

5.57. If a;,a,,...,a, are nonnegative real numbers so that a; +a, +---+a, =n,
then
n(n—1)

2 2 232 2
a?+ai+-+aP-ntz —
(@ +a ) n2—n+1

(af+ad+--+at—n).

5.58. If a;,a,, ..., a, are nonnegative real numbers so that a> + a3 +---+a> =n,

then

1
af+a§+---+af;2\jn2—n+1+(1——)(a§’+a§+---+ag).
n

5.59. If a, b, ¢ are positive real numbers so that abc = 1, then

1 1 1 50
4(—+—+—)+—227
a b ¢ a+b+c

5.60. If a, b, ¢ are positive real numbers so that abc = 1, then

1 1 1
a3+b3+63+1526(—+—+—).
a b c

5.61. Let a,,a,,...,a, be positive numbers so that a;a,---a, = 1. f k > n—1,
then

11 1
a’;+a§+---+aﬁ+(2k—n)n2(2k—n+1)(—+—+---+—).
a; a an
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5.62. Leta,,a,,...,a, (n=> 3)benonnegative numbers so that a,+a,+---+a, =n,
and let k be an integer satisfying 2 < k <n+2. If

n \k-1
r=( ) —1,
n—1

k

n

then

a’l‘+a’2‘+---+a n>nr(l—aa,---a,).

1 1
5.63. If a, b, ¢ are positive real numbers so that — + i + — =3, then
a c

4(a*+ b*+c*)+9 > 2labc.

.. 1 1
5.64. If a,,a,,...,a, are positive real numbers so that — 4+ — + .-+ — =n,
a; a a,
then,
a,+ay,+--+a,—n<e,(aq,a,--a,—1),
where
1 n—1
e, =1+ .
n—1 ( n— 1)
5.65. If a,,a,,...,a, are positive real numbers, then
aj+a;+---+a’ 1 1 1
L ”+n(n—1)2(al+a2+---+an)(—+—+---+—).
aQ,ay---a, a; a a,

5.66. If a,,a,,...,a, are nonnegative real numbers, then

(n—1)(a}+af+---+a)+naja,---a, = (ay+a,+--+a,) @ +a) "+ +al ).

5.67. If a,,a,,...,a, are nonnegative real numbers, then

(n—D)(af" +a "+ +a) = (g +ay+- - +a )@l +ai 4 +al —agay - ay).

5.68. If a,,a,,...,a, are positive real numbers, then

1 1 1
(a1+a2+---+an—n)(—+—+--~+——n)+a1a2---an+—>2.
a; a a, a4z A,
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5.69. If a;,a,,...,a, are positive real numbers so that a;a,---a, =1, then
1 1
—— - <1.
a+a,+---+a,—n 1141
Vai+a n t+l++1lon
5.70. If a,,a,,...,a, are positive real numbers so that a;a,---a, =1, then
2
n“(n—2 1 1 1
At tal e +ad T + (n=2) 2(n—1)(——+——+-~+——).

a1+a2+"‘+an al az an

5.71. If a, b, ¢ are nonnegative real numbers, then
ab

—1
c—l(a2 +b%24c2-3).

+b+c—3)*=>
(a C ) " abc+

5.72. If a;,a,,...,a, are positive real numbers so that a; +a,+---+a, =n, then

1
(alaz---an)ﬁ(af+a§+---+ai) <n.

5.73. If a;,a,,...,a, are positive real numbers such that a; +a,+---+a,=n—1,
then
n—1 a+ai+---+a?
a,a,---a, n(n—1)

5.74. If a;,a,,...,a, are positive real numbers so that a’ + a3 +---+a’ = n, then

a,+a,+---+a,=n"/a,a, --a,.

5.75. Let a, b, c be nonnegative real numbers so that ab + bc +ca = 3. If

1
k>2— 24 0738,
In3
then

a® + b+ ck > 3.
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5.76. Let a, b, c be nonnegative real numbers so that a+ b +c = 3. If

In9—1n8
> ——~0.29,
In3—1n2
then
ak+b*+c*>ab+ bc +ca.
5.77. If a;,a,,...,a, (n>4) are nonnegative numbers so that a, +a,+---+a, = n,
then

5.78.

then

5.79.

5.80.

5.81.

5.82.

then

1

1

n+1l—aya;---a

n+1l—asa,---a;

n

1

<1

n+l—aa,---a,,

If a, b, ¢ are nonnegative real numbers so that

If a, b, c,d are positive real numbers so that abcd = 1, then

a+b+c>2, ab+bc+ca>1,
Ja+vVb+Jc>2.

(a+b+c+d)*>36V3(a®+Db>+c2+d?).

If a, b, ¢ are nonnegative real numbers so that ab + bc + ca = 1, then

V'33a2+ 16+ v/33b2+ 16+ v/33c2+ 16 < 9(a+ b +¢).

If a, b, ¢ are positive real numbers so that a + b + ¢ = 3, then

If a,a,,..

a’b® + b%c? +c2a’ <

Jvabc

.,a, (n < 81) are nonnegative real numbers so that

2 2 2 _ 5 5
ajt+a;,+---+a =a+a,+---+a

6 6
a®+al+---+al

6

<n.

5
n’
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5.83. If a, b, ¢ are nonnegative real numbers so that a + b + ¢ = 3, then

1T+ v 1+a3+b3+c3 > 4/3(a+ b2 +c2).

5.84. If a, b, ¢ are nonnegative real numbers so that a + b + ¢ = 3, then

\/a+b+\/b+c+w/c+as\J16+§(ab+bc+ca).

5.85. If a,b,c €[0,4] and ab + bc + ca = 4, then

Vatb+vVbtc+veta<3++5.

5.86. If a, b, ¢ are positive real numbers so that abc = 1, then

a+b+c 24+a’?+b%+c?
(a) > ;
3 5
(b) a® + b3 +c® > 4/3(a* + b +c4).

5.87. If a, b, c,d are nonnegative real numbers so that a + b + ¢ +d =4, then

(@+b2+c2+d?>—4)(a®+b%>+c2+d*+18)<10(a®>+ b2 + 2 +d>—4).

5.88. If a, b, c,d are nonnegative real numbers such that
a+b+c+d=4,

then
(a*+b*+c*+d*)?* > (a®> + b*+ > +d?*)(a® + b> +c> + d°).

5.89. If a, b, c,d are nonnegative real numbers such that
atb+c+d=4,

then
13(a® + b2+ c2 +d?)? > 12(a* + b* + c* + d*) + 160.
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5.90. If a,,a,,...,ag are nonnegative real numbers, then

19(a+as+---+a))* > 12(a, +ay + - +ag)(@’ +a +---+a)).

5.91. If a, b, ¢ are nonnegative real numbers so that
5(a®+ b2 +c?)=17(ab + bc + ca),

then

3@31a+’ b+/cS1+\/7.
5 b+c c+a a+b V2

5.92. If a, b, ¢ are nonnegative real numbers so that
8(a*+ b*+c¢*)=9(ab + bc +ca),

then ; 1
Y_o_a Lo 14
12 b+4+c c¢c+a a+b 88

5.93. If a, b,c €(0,2] such that a + b + ¢ = 3, then

\J2(b+c)_1+\Jz(c+a)_1+\J2(a+b)_12 9 _
a b c vab+bc+ca

5.94. Let a, b, c and x, y, z be nonnegative real numbers such that

C+y*+22=a+b*+c3.

Then,
(a+b+c)(x+y+2) S i3
ab+bc+ca+xy+yz+zx

5.95. If a, b, c,d are positive numbers such that

1 1 1 1
a+b+c+td=—+—-+-+-,
a b ¢ d
then

ab+ac+ad+ bc+ bd +cd+3abcd > 9.
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5.96. If a, a,, a;,a,, as are nonnegative real numbers, then

3. .34 234 234 4332
(aj +a;+a;+a, +a;) 1

4, 4, 4, 4, 4 2—§:a~aj
a;+a,+a;+a,+a; 2

i<j
5.97. If a;,a,,...,a, = 0 such that
a,t+a,+---+a,=n,

then

1
VO + G+ a4, < 2n—1+2(1—5)zaiaj.

i<j

5.98. If a;,a,,...,a, = 0 such that

a1+a2+"-+an=Zaiaj>0,

i<j

then
(n—=1)(n—2)

5 (a1+a2+---+an)+z1/aiaj2n(n—l).

i<j
5.99. Let
(2 4 2 2 2
F(aj,ay,...,a,)=n(a;+a;+---+a)—(a;+ay+---+a,)”,
where a,,a,,...,a, are positive real numbers such that a; < a, <--- < q, and
20,2 4 2 2
aj(a;+az+---+a;))=n—1

Then,

1 1 1
F(ay,ay,...,a,)=F|—,—,...,—|].
a; a ay

5.100. Let
F(ay,ay,...,a,) =a; +ay,+---+a,—ni/a;a,---ay,,
where a,,a,,...,a, are positive real numbers such that a; < a, <--- < q, and
a;(ay+as+---+a,)>n—1.

Then,
1 1 1
F(ay,ay,...,a,)=F|—,—,...,—|].

b
a a, a,
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5.101. Let

a§+a§+---+ag_al+a2+---+a

F(al,az,...,an):\J =

n n

where a,,a,,...,a, are positive real numbers such that a; < a, <--- < q, and

ai Nay+as+---+a,)=n—1

Then,
1 1 1
F(ay,ay,...,a,)=F|—,—,...,—|].
a; a a,
5.102. If a;,a,,...,a, (n = 4) are positive real numbers such that
a,+a,+:---+a,=n, a,=max{a,qa,,...,qa,},
then

1 1 1
n(—+—+---+—)24(af+a§+---+a2)+n(n—5).
a; a A1 "

5.103. If a, b, ¢ are nonnegative real numbers so that ab + bc + ca = 3, then

1 1 1
+ + <1
a+b+1 b+c+1 c+a+1
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5.3 Solutions

P 5.1. If a, b, c,d are nonnegative real numbers so that
a+b+c+d=a®+b3+c3+d>=2,

then
<a’+b*+c2+d*<2.

AN

(Vasile C., 2010)
Solution. The right inequality follows from the Cauchy-Schwarz inequality
(A2+b2+c2+d>)? <(a+b+c+d)a®+b3+c2+d%).

The equality holds fora = b =0 and c =d =1 (or any permutation).

To prove the left inequality, assume that a < b < ¢ < d, then apply Corollary 5
fork=3and m=2:

e Ifa,b,c,d are nonnegative real numbers so that

a+b+c+d=2, a+b3+c+d*=2, a<b<c<d,

then
S,=a*+b*+c*+d?

is minimal for a = b =c.
So, we only need to prove that the equations

3a+d=3a*+d*=2, a,d>0,

imply
< 3a%+d>.

Indeed, from 3a +d = 3a® +d® =2, we get a = 1/4 and d = 5/4, when
7
3a’+d%*=-.
4

The left inequality is an equality for

(or any cyclic permutation).
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P 5.2. If a;,a,,...,ay are nonnegative real numbers so that

atay+tag=a+aj+-+al=3,

then

(Vasile C., 2010)

Solution. The left inequality follows from the Cauchy-Schwarz inequality
(a+ay+-+ag)(a} +al+---+a))>(ad+a+--+a)).

The equality holds for a; = a, = --- = a4 = 0 and a;, = ag = ay = 1 (or any
permutation).
To prove the right inequality, assume that

a1§a23"‘ﬁa9,

then apply Corollary 5 for k =2 and m = 3:
e Ifa,,a,,...,ay are nonnegative real numbers so that

G t+a+ota=3, ad+a+--+a;=3, a<a,<--<a,,

then
3

— 31,3
Sg=aj+a,+--+a,

is maximal for a;, = a, = -+- = ag < dq.
Thus, we only need to prove that the equations

8a+b=3, 8a’+b*=3, a,b>0,

involve 14
8(13 + b3 < ?

Indeed, from the equations above, we get a = 1/6 and b = 5/3, when

1 125 1
8a° +b° = — + 2> = 14,
27 27 3
The equality holds for
1 5
a;=0ay=:+"+=d0ag = —, Ao = —
1 2 8 6 9 3

(or any cyclic permutation).
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P 5.3. Ifa, b, c,d are nonnegative real numbers so that

2
a+b+c+d=a2+b2+cz+d2=77,
then 5427 1377
— <+ +3F+dP < —.
1372 343

(Vasile C., 2014)

Solution. Assume thata < b <c¢ <d.

(a) To prove the right inequality, we apply Corollary 5 for k =2 and m = 3:
e Ifa,b,c,d are nonnegative real numbers so that

2 2
a+b+c+d=77, a2+b2+c2+d2=77, a<b<c<d,

then
S,=a*+b>+c+d°
is maximal fora=b=c <d

Thus, we only need to prove that the equations

2 2
3a+d=77, 3a2+d2:77, a,d >0,

involve 1377
3a+d3 < ——.
343

Indeed, from the equations above, we get a =6/7 and d = 9/7, when
6)° 13
3a®+d*=3 (—) + (2) _B77
7 7 343

a:b:c:é’ d:g
7 7

The equality holds for

(or any cyclic permutation).

(b) To prove the left inequality, we apply Corollary 5 for k = 2 and m = 3:
e Ifa,b,c,d are nonnegative real numbers so that

27 27
a+b+c+d=7, a2+b2+c2+d2=7, a<b<c<d,
then

S,=a*+b*++d?
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is minimal for eithera=0ora < b =c=d.
The case a = 0 is not possible because from

2 2
b+c+d:77, b2+c2+d2:77,

we get

2 2
3(b2+c2+d2)—(b+c+d)2:77(3—77)<0,

which contradicts the known inequality
3(b>+c*+d*)=>b+c+d)
For a < b = ¢ = d, we need to prove that the equations

27 27
a+3d==, a*+3d*==, a,d>0,
7 7
involve
a®+3d® > —5427
~1372°

Indeed, from the equations above, we get a =9/14 and d = 15/14, when

3 3
15 542
a®+3d® = (2) +3(—) _ 2427,
14 14 1372
The equality holds for
15
a= 2, b=c=d=—
14 14
(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

e Let k be a positive real number (k > 2), and let a,,a,, ..., a, be nonnegative real
numbers so that

n—1)>
a1+a2+---+an=af+a§+---+a§:nz(Tn)_l_B.

The sum

_ ko ok k
Sp=a;+a,+--+a,

is maximal for

_ (n—1)(n—2) ~ (n—1y

a :.-.:a 5 _—’
! n2—3n+3 " n2—3n+3

n—1
and is minimal for

(n—1)*(n—2) (n—1)(n*—2n+2)
a, = S ay=---=a,=
n(n2—3n+3) n(n2—3n+3)
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P 5.4. If a, b, c are positive real numbers so that abc = 1, then

a+b>+c°> \/3(a7+ b7 +¢c7).
(Vasile C., 2014)
Solution. Substituting
a=x"5, b=y"5 c=g'l5

we need to show that xyz = 1 involves

Xx+y+2>4/3(x7/5+ y7/5 +27/5),

Assume that x < y < z, then apply Corollary 5 for k =0 and m = 7/5:

e If x,y,z are positive real numbers so that
x+y-+z=constant, xyz=1, x<y<g,
then
Sy =x7/5+y7/5 45715

is maximal for x = y.
So, it suffices to prove the original inequality for a = b. Write this inequality in
the homogeneous form

(a® + b°> +¢°)* > 3abc(a’ + b7 + 7).

We only need to prove this inequality for a = b = 1; that is, to show that f(c) > 0,
where
flc)=(c+2)*—3c(c’+2), c>0.

We have
f'(c) =10c*(c® +2) —24c” — 6,

f(c)=2c3g(t), g(t)=45c>—84c®+40.
By the AM-GM inequality, we get

g(t) = 15¢° + 15¢° 4 15¢° + 20 4+ 20 — 84¢® > 54/(15¢5)3 - 202 — 84¢>
= v/27-16(25—14v18)c* > 0,

hence f”(c) > 0, f’(c) is increasing. Since f’(0) = 1, it follows that f’(c¢) < 0 for
c <1, f'(c) = 0 for ¢ > 1, therefore f is decreasing on (0, 1] and increasing on
[1, 00); consequently, f(c) = f(1) = 0. The equality occurs fora =b =c = 1.

O
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P 5.5. Ifa, b, c,d are positive real numbers so that abcd = 1, then

@@+ b2+ +d3 > y/4(at + b+ et + dY).
(Vasile C., 2014)
Solution. Substituting
a=x3 b=y3 c=33 d=1¢13

we need to show that xyzt = 1 involves

X+ Y +z 4t > A A3+ yAI3 4 g4 4 £4/3),

Apply Corollary 5, case k =0 and m =4/3:

e If x,y,z,t are positive real numbers so that
X+y+z+t=constant, xyzt=1, x<y<z<t,

then
S, = Y43 4 y4/3 4 #3443

is maximal for x =y = 2.
Therefore, it suffices to prove the original inequality for a = b = c. Write the
original inequality in the homogeneous form

(@@ +b®+ 3 +d®)? > 4vabed (a* + b* +c* +d*).
We only need to prove this inequality for a = b = ¢ = 1; that is, to show that
(d®+3)* > 4vd (d* +3).
Putting u = v/d, we have

(d%+3)*—4v/d (d* +3) = (u® + 3)> — 4u(u® + 3)
=W —-1D*+4u+2)(u—1)*>0.

The equality holds fora=b=c=d = 1.

P 5.6. If a, b, c,d are nonnegative real numbers so that a4+ b +c +d = 4, then

bcd cda dab abc 4
+ + + <.
1la+16 11b+16 1lc+16 11d+16 27

(Vasile C., 2008)
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Solution. For a = 0, the inequality becomes

bed < @,
27

where b,c,d > 0, b+ ¢ +d = 4. By the AM-GM inequality, we have

3 3
3 3 27

For abcd # 0, we write the inequality in the form

f(a)+f(b)+f(6)+f(d)+W20,
where ) 16
f(u)=u(u+k), k=ﬁ, u> 0.
We have f(0+) = —o0 and

o~ 2utk
f(u)_(u2+ku)2’

, _ kx*+2x3

g(x)=f(1/x)—m,

. 2x(k3x® + 4k*x* + 6kx + 6)
g'(x)= :
(kx +1)*
Since g”(x) > 0 for x > 0, g is strictly convex on (0, 00). By Corollary 3 and Note
Lif
a+b+c+d=4, abcd=constant, 0<a<b<c<d,
then the sum
Sy=f(a)+f(b)+f(c)+f(d)
is minimal for b = ¢ = d. Thus, we only need to prove that
b3 3ab? 4
+ <=
lla+16 11b+16 27
for a + 3b = 4. The inequality is equivalent to
b3 3b%(4—3b) 4
+ <,
3(20—11b) = 11b+16 ~ 21
(b—1)*(4—3b)(231b+80) >0,
(b—1)%a(231b +80) > 0.
The equality holds fora = b =c=d =1, and also for
4

a=0, b=c=d=-
3

(or any cyclic permutation).
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P 5.7. If a, b, c are real numbers, then

bc ca ab 3

+ + <-.
3a2+b2+c?2 3b2+c2+a? 3c2+a?+b%2 5

(Vasile Cirtoaje and Pham Kim Hung, 2005)

Solution. For a = 0, the inequality is true because

bc 1 3
< =< -
b2+c¢c2 2 5

Consider further that a, b, c are different from zero. The inequality remains un-
changed by replacing a, b, c with —a,—b,—c, respectively. Thus, we only need to
consider the case a < 0, b,c¢ > 0, and the case a, b, c > 0. In the first case, it suffices

to show that

bc 3
<

3a2+b2+c2 " 5

Indeed, we have
bc bc 1 3

< < =<-.
3a2+b2+c2 b2+c2 2 5
Consider now the case a, b,c > 0. Replacing a, b, ¢ with +/a, v'b, +/c, the inequality
becomes

1 1 1 3
+ + < .
vaBa+b+c) +bBb+c+a) Vc(Bct+a+b) 54abc

Due to homogeneity, we may consider that a + b+c = 2. So, we need to show that

6
f(a)+f(b+f(6)+5@20,
where _
f(u)= m, u>0.
We have f(0+) = —o0 and
iron 3u+1l
fw= 2uy/u(u+1)%’°
. _ x%y/x(x+3)
g0 =f(1/0) =0,
") = Vx(3x3 + 11x2% + 5x + 45)
&= 8(x +1)*

Since g”(x) > 0 for x > 0, g is strictly convex on (0, 00). By Corollary 3 and Note
1, if

a+b+c=2, abc=constant, O0<a<b<c,
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then the sum
Sy=f(a)+f(b)+f(c)
is minimal for b = c. Thus, we only need to prove the original homogeneous in-

equality for b = ¢ = 1; that is,

1 2a
+ <
3a2+2 a%’+4

3
5’

9a*—30a® +37a*—20a + 4> 0,
(a—1)*(3a—2)*>0.
The equality holds for a = b = ¢, and also for

3a=2b=2c

(or any cyclic permutation).

P 5.8. If a, b, ¢ are nonnegative real numbers so that a + b + ¢ = 3, then

@ bc N ca N ab < 2
az+2 b2+2 242”8

) bc N ca N ab < 11\/33—45;
az+3 b2+3 c2+3 24

© bc ca ab <3

+ + <
az+4 b2+4 c2+4 5
(Vasile C., 2008)

Solution. For the nontrivial case abc # 0, we can write the desired inequalities in

the form -
fla)+f(b)+f(c)+——=0,
abc

where 1
=—— ke{2,3 > 0.
We have f(0+) = —o0 and
, 3u+k
f (u) - uz(uz + k)2’
kx® +3x*

gl)=f'(1/x)= (xZ+ 1)

2x2(k3x® + 4k%x* — 3kx? + 18)
(k2 + 1) '

g'(x)=
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Since
kK3x® + 4k*x* — 3kx? + 18 > 4k*x* — 3kx* + 18 > 0,

we have g”(x) > 0, hence g is strictly convex on (0, c0). According to Corollary 3
and Note 1, if

a+b+c=3, abc=constant, 0O0<a<b<c,

then the sum
Sy=f(a)+f(b)+f(c)

is minimal for b = c. Thus, we only need to prove the original inequalities for b = c.
(a) We only need to prove the homogeneous inequality

bc N ca + ab <1
9a2+2(a+b+c)? 9b2+2(a+b+c)> 9c2+2(a+b+c)? " 8

for b =c =1, thatis

1 N 2a <1
11a2+8a+8 2a2+8a+17~ 8

2a < a(1la +8)
2a2+8a+17 ~ 8(11a?+8a+38)’

a(22a®—72a*+123a +8) > 0.

Since
22a® —72a* 4+ 123a + 8 > 20a® — 80a* + 80a = 20a(a — 2)* > 0,

the conclusion follows. The equality holds for a = 0 and b = ¢ = 3/2 (or any cyclic
permutation).

(b) Let
114/33—45 v33-=5
m= 1v33—45 ~0.253, r=——~0.186.
72 4
We only need to prove the homogeneous inequality
bc ca ab

+ + <m
3a2+(a+b+c)? 3b2+(a+b+c)? 3c2+(a+b+c)?
for b = ¢ = 1; that is, to show that f(a) < m, where

1 + 2a
4(a2+a+1) a?+4a+7

fla)=
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We have

Fla) = —8a®—18a® + 15a* + 28a® + 18a> —42a + 7
4(a2+a+1)*(a®+4a+7)?
_ (1—a)*(7+7a+4a*)(1—5a—2a?)
B 4(a2+a+1)*(a2+4a+7)?

Since f’(a) = 0 for a € [0,r], and f'(a) < 0 for a € [r,00), f is increasing on
[0, r] and decreasing on [r, 00); therefore,

fl@zf(r)=m.

The equality holds for
a/r=b=c

(or any cyclic permutation).

(c) We only need to prove the homogeneous inequality

bc ca ab 1

+ + <
9a2+4(a+b+c)*> 9b2+4(a+b+c)? 9c2+4(a+b+c)? " 15

for b =c =1, thatis

1 + 2a < 1
13a2+16a+16 4a2+16a+25 "~ 15°

52a*—118a®+ 105a® — 64a + 25 > 0,
(a—1)*(52a* —14a + 25) > 0.

Since
52a*—14a+25> 7a*—14a+7=7(a—1)*=0,

the conclusion follows. The equality holds fora=b =c=1.

P 5.9. Ifa, b, c,d are nonnegative real numbers so that
(3a+1)(Bb+1)(3c+1)(3d+1) =64,

then
abc+ bed +cda+dab < 1.

(Vasile C., 2014)
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Solution. For d = 0, we need to show that
(Ba+1)Bb+1)(3c+1)=64

involves abc < 1. Indeed, by the AM-GM inequality, we have
64 = (3a+1)(3b+1)(3c +1) > (4v/a®) (4Vb?) (4V/c3) = 647/ (abc,

hence abc < 1. Consider further that a,b,c,d > 0 and use the contradiction

method. Assume that
abc+ bcd +cda+dab > 1,

and prove that
(Ba+1)(3b+1)(3c+1) > 64.

It suffices to show that
abc+ bcd +cda+dab>1

involves
(Ba+1)(8b+1)(3c+1)=64.

Replacing a, b,c,d by 1/a,1/b,1/c,1/d, we need to show that

a+b+c+d=abcd

Ee)G) ()G

which is equivalent to

involves

fl@+f(b)+f(c)+f(d) <—6In2,

where

f(u)z—ln(3+1), u>0.
We have f(0+) = —o0 and

2
) =F N =570 )= g0,

hence g is strictly convex on (0, c0). By Corollary 3 and Note 1, if a, b, c,d are
positive real numbers so that

a+b+c+d=constant, abcd =constant, a<b<c<d,

then

Sq=f(a)+f(B)+f(c)+f(d)

is maximal for a =b =c.
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Thus, we only need to prove that

3
o) (2e)2 e
a d

for 3a +d = a3d, that is

Write this inequality as
(3+a)*(3+d) > 64d’d,

(3+a)*(3+d) > 64a®d(3+a),
a—1\*
4(1 + T) 3+d) > a3d(3 +a).

By Bernoulli’s inequality, we have

-1\* -1
(1+a4 )21+4-a —a.

4

Thus, it suffices to show that
4(3+d)=a*d(3+a),

which is equivalent to

12
= >a*+3a*>—4,
3
—1
Mo~ 1) >a®+3a*—4,
a

a*—a®—4a+4<0,
(a—1)(a®*—4) <0.

This is true if a® < 4. Indeed, we have

3 3 3 a®—-1 4-—-a°
0<———=—-—— = .
a d a a a

The proof is completed. The original inequality is an equality for
a=b=c=1, d=0

(or any cyclic permutation).
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P 5.10. If a;,a,,...,a, and p,q are nonnegative real numbers so that
— 3, .3 3_ 3, .3
a+a,+---+a,=p+q, ata,+---+a =p°+q’,

then
a+al+---+a’<p*+¢-
(Vasile C., 2013)

Solution. For n = 2, the inequality is an equality. Consider now that n > 3 and
a, <a, <---<a, Wewill apply Corollary 5 for k =3 and m = 2:

e Ifa,,a,,...,a, are nonnegative real numbers so that a; <a, <---<a, and
a+ay+--+a,=p+q, C+a+---+a=p*+q°,

then

— 42 2 2
Spy=aj+a;+---+a;

is maximal for either a; =0ora, =a;=---=a,.

In the first case a; = 0, the conclusion follows by induction method. In the
second case, for

we need to show that

for
a+(n—1)b=p+q, a+n-1b>=p>+g°.
Since o 2
2 +
3(p2+q2) = (p+q)* + 212,
ptq

the inequality can be written as

2[a®+ (n—1)b*]
a+(n—1)b

32 +3(n—1)b*<[a+(n—1)b]*+

3

which is equivalent to
(n—1)(n—2)b?*[3a+ (n—3)b] > 0.

The equality holds when n—2 of a,, a,,...,a, are equal to zero.

P 5.11. If a, b, c are nonnegative real numbers, then

ava®+4b>+4c2+ bV b2+ 4c2 + 4a2 + cv/c2 + 4a2 + 4b2 > (a + b+ ¢)*.

(Vasile C., 2010)
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Solution. Due to homogeneity and symmetry, we may assume that
a?+b*+c?=3, 0<a<b=<c<+3.

Under this assumption, we write the desired inequality as

f(a)+f(b)+f(c)+i3(a+b+c)2so,

V3
where
fw=—uva—uz, 0<u<+3.
We have 2 —2)
/ _ X" =
g(x):f(x)—ﬁ,
P 48
8 (X)Zm-

Since g”(x) > 0 for x € (0,2), g is strictly convex on [0, +/3]. According to Corol-
lary 1, if

a+b+c=constant, a’+b*+c>=3, 0<a<b<cg,
then the sum
Sy=f(a)+f(b)+f(c)

is maximal for a = b < c. Thus, we only need to prove the original inequality for
a = b. Since the inequality is an identity for a = b = 0, we may considera =b =1
and ¢ > 1. We need to prove that

2V 4c2+5+cv 2+ 8> (c +2)%

By squaring, the inequality becomes

cy/(4c2 +5)(c2+8) > 2c% + 8¢ — 1.

This is true if
c?(4c*+5)(c*+8) > (2c* +8c—1)?,

which is equivalent to
5c*+4c® —24c>+16c—1 >0,

(c—1)*(5¢*+14c—1)>0.

The equality holds for a = b = ¢, and also for a = b = 0 (or any cyclic permutation).
O
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P 5.12. If a, b, c are nonnegative real numbers so that ab + bc + ca = 3, then

1 N 1 N 1 < 3 +a+b+c
a+b b+c c+a” 2(a+b+c) 3

(Vasile C., 2010)
Solution. Write the inequality in the homogeneous form

1 1 1 3 a+b+c
+ + < + .
a+b b+c c+a 2a+b+c) ab+bc+ca

Due to homogeneity and symmetry, we may assume that
a+b+c=1, 0<a<b<c¢, ab+bc+ca>0.

Under this assumption, we write the desired inequality as

1
ab+bc+ca’

F@+F(0)+fO) <3+

where 1
fluy=——, 0<u<l.
1—u

We will apply Corollary 1 to the function f, which satisfies f(1—) = oo and

1
(1—x)%
6
(1—x)*
Since g”(x) > 0, g is strictly convex on [0, 1). According to Corollary 1 and Note

3, if

g(x)=f'(x)=

g'(x)=

a+b+c=1, ab+bc+ca=constant, 0<a<b<c,

then the sum
Sy=f(a)+f(b)+f(c)

is maximal for a = b < c. Thus, we only need to prove the homogeneous inequality
fora=b =1 and c > 1; that is,

4 _ 3 2Ac+2)

1+ < s
c+1 c+2 2c+1

which reduces to
(c—=1)*>0.

The original inequality is an equality fora=b=c=1.
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P 5.13. If a, b, c are nonnegative real numbers so that ab + bc + ca = 3, then

1 1 1 3 a+b+c
- + > + :
a+b b+c c+a a+b+c 6

(Vasile C., 2010)

Solution. Proceeding in the same manner as in the proof of the preceding P 5.12,
we only need to prove the homogeneous inequality

1 1 1 3 a+b+c
+ - > +
a+b b+c c+a a+b+c 2(ab+ bc+ca)

fora=0andfora<b=c=1.
Case 1: a = 0. The homogeneous inequality reduces to

b ¢ b4+c 2bc’

1 1 2 b+c
> +

which is equivalent to

(b—c)*>0.
Case 2: a < b =c¢ = 1. The homogeneous inequality becomes
1 2 3 a+2
- > + ,
2 a+1 a+2 22a+1)
1_ a+2 > 3 . 2
2 2(2a+1) a+2 a+1
a—1 a—1
2(2a+1)  (a+1)(a+2)
a(a—1)*>0.

The equality holds for a = b = ¢ =1, and also for
a=0, b=c=+v3

(or any cyclic permutation).

P 5.14. Let a, b, c be nonnegative real numbers, no two of which are zero. If
a’+ b%+c? =3,

then
1 1 1 a+b+c> 11

+ + + > :
a+b b+c c+a 9 2(a+b+c)
(Vasile C., 2010)
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Solution. Using the same method as in the proof of P 5.12, we only need to prove
the homogeneous inequality

1+1+1+a+b+c 11
a+b b+4+c c+a 3(a2+b2+c2) 2(a+b+c)

fora=0andfora<b=c=1.
Case 1: a = 0. The homogeneous inequality reduces to
1 1 1 b+c 11

— 4 + >
b ¢ b+c 3(b2+c2)  2(b+c)

b+c b+c 9
+ > ,
bc 3(b2+c¢2) ~ 2(b+¢)

1 1 9
b +c)? [— + —] > .
(b+c) bc  3(b2+c2) 2
Using the substitution
_b*+c?
~ be

b x =2,

the inequality becomes
1 9
(x+2)(1+—) =,

3x 2

which is equivalent to
6x2—13x+4>0,
x+2(x—2)B8x—1)=>0.

Case 2: a <1 =Db = c. The homogeneous inequality becomes

1 2 a+2 11
>

+ + > ,
2 a+1 3(a2+2) 2(a+2)

a+2 + a?—4a—1 0
3(@a2+2) 2a+1)(a+2)

3a*—10a® +13a>—8a+2 >0,
(a—1)*(3a*—4a +2) >0,
(a—1)?*[a®+2(a—1)*]=0.

The equality holds fora=b =c = 1.
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P 5.15. Let a, b, c be nonnegative real numbers, no two of which are zero. If
a+b+c=4,

then
1 1 1 15

+ + > .
a+b b+c c+a  8+ab+bc+ca

(Vasile C., 2010)

Solution. Using the same method as in P 5.12, we only need to prove the homo-
geneous inequality

2 N 2 N 2 S 15(a+b+c¢)
a+b b+c c+a” (a+b+c)2+2(ab+ bc+ca)

fora=0andfora<b=c=1.
Case 1: a = 0. The homogeneous inequality reduces to

2(b+c)+ 2 S 15(b +c¢)
bc b+c  (b+c)2+2bc’

2 2
2(b+c¢) 49> 15(b +c¢)

bc ~ (b+c)2+2bc’
Using the substitution
b+c)?
= (btc) ,  x=4,
bc

the inequality becomes

15x

2x+22> ,
x+2

which is equivalent to
2x>—9x+4>0,

(x —4)(2x—1) > 0.
Case 2: a <1, b =c = 1. The homogeneous inequality becomes

4 > 15(a +2)

1+ > >
a+1 (a+2)2+2(2a+1)

a+5 S 15(a +2)
a+1 a2+8a+6’
a(a—1)*>0.

The equality holds for a = b = ¢ = 4/3, and also for

a=0, b=c=2

(or any cyclic permutation).
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P 5.16. If a, b, c are nonnegative real numbers, no two of which are zero, then

1 1 1 1 2
+ + > + .
a+b b+c c+a a+b+c Jab+bc+ca

(Vasile C., 2010)

Solution. Using the same method as in P 5.12, we only need to prove the desired
homogeneous inequality fora =0 and forO<a < b=c=1.

Case 1: a = 0. The inequality reduces to the obvious form

1 1_ 2
—to>——.
b ¢ vbe

Case 2: 0 < a < 1= b =c. The inequality becomes
1 2 1 2
>

§+a+1_a+2+\/T+1’
1_ 1 > 2 _ 2
2 a+2 J2a+1 a+1’
a >2(a+1—m)
2a+2) " (a+1)vV2a+1 °

a 2a>

2(a+2)2 (a+1)vV2a+1(a+1++v2a+1)

Since

V2a+1(a+14++vV2a+1)>V2a+1(vV2a+1++v2a+1)=2(2a+1),

it suffices to show that
a a’

2(@+2) ~ (a+1)(2a+1)

which is equivalent to
a(l—a)=0.

The equality holds for

(or any cyclic permutation).

P 5.17. If a, b, c are nonnegative real numbers, no two of which are zero, then

1 1 1 3—43 2+4/3
+ + > + .
a+b b+c c+a a+b+c 24ab+bc+ca

(Vasile C., 2010)
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Solution. As shown in the proof of P 5.12, it suffices to consider the cases a = 0
anda<b=c=1.
Case 1: a = 0. The inequality reduces to

1 2f2+f

+
b c_ b+c 2v/bc
1 S 2= f 2443

—_ + - = 5
b ¢ 2\/ 24/ bc
which is equivalent to the obvious inequality
1 1 2

Case 2: a <1 = b =c. The inequality reduces to

1 2 3f 2++/3

+ .
2 a+1 a+2 21/2a+1

It suffices to show that

Using the substitution
V3

2a+1=3x2, xz?,

the inequality becomes

1 4 6—2v3 2+43

—+ > + ,

2 3x2+1 3(x2+1) 243x

1 4 2 1 1 2
- + - - - Z - I
2 3x24+1 x24+1 2x  +/3x 3 (x2+1)
3x°—3x*—4x?+5x—1 - i(l_ 2 )
2x(x2+1)(3x2+1) ~— /3

x x2+4+1
(x—1)?*Bx®+3x2+3x—1) - (x —1)?
2x(x24+1)(3x2+1) T V/3x(x2+1)

This is true if
3x3+3x2+3x—1 - @
2(3x2+1) - 3’

which is equivalent to
9x° +3(3—2v3)x2+9x—3—2+/3>0,
(Bx —V3)[3x2+(3—V3)x+2++3]>0.
The equality holds for a = b = ¢, and also for
a=0, b=c

(or any cyclic permutation).
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P 5.18. Let a, b, c be nonnegative real numbers, no two of which are zero, so that

ab+ bc+ca=3.

If
5
0§k§—9+6ﬁw2.943,
then "
2 2 2 __90+k)

a+b b+c c+a a+b+c+3k’
(Vasile Cirtoaje and Lorian Saceanu, 2014)

Solution. From
(a+b+c)*>3(ab + bc +ca),

we get
a+b+c>3.
Let /3
+5+v/3
ngT, m > k.

We claim that

1+m S 1+k
a+b+c+3m  a+b+c+3k
Indeed, this inequality is equivalent to the obvious inequality

(m—k)a+b+c—3)=0.
Thus, we only need to show that

2 2 2 9(1+m)
+ + > ,
a+b b+c c+a a+b+c+3m

which can be rewritten in the homogeneous form
2 2 2 9(1 +m)
+ + > .
a+b b+c c+a q+b+c+my/3(ab+bc+ca)

As shown in the proof of P 5.12, it suffices to prove this homogeneous inequality
fora=0andfora<b=c=1.

Case 1: a = 0. The inequality reduces to

2,2, 2 _ 9(+m)

b ¢ b+c  b+c+my3bc

Substituting
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the inequality becomes

2 1+
2x+—>9( m)
X

Z Y3
2x% + 243 mx? — (7 +9m)x +2v/3 m > 0,
(x —2)[2x2+2(V3 m+2)x —v3 m]>0.
Case 2: a <1 = b = c. The inequality has the form

4 S 9(1+m)

a+1 " qg+2+my/3Qa+1)

1+

Using the substitution
V3
3 b

2a+1=3x2%, x>

the inequality becomes
3x24+9 - 6(1+m)
3x2+1  x2+2mx+1’

x*+2mx®—2Bm+1)x%2+6mx+1—2m >0,
(x —1)2[x*+2(m+1)x +1—2m] >0,
which is true since

1, 2(m+1)v/3

x2+2(m+1)x+1—2m23 3 +1—2m
_ 2[2+V3—-(3—+3)m] —0
= 3 =0.
5
The equality holds fora=b=c=1. If k = #, then the equality holds also

for

(or any cyclic permutation).

P 5.19. If a, b, c are nonnegative real numbers, no two of which are zero, then

1 1 1 20
+ + > :
a+b b+c c+a a+b+c+6vVab+bc+ca

(Vasile C., 2010)
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Solution. The proof is similar to the one of P 5.12. Finally, we only need to prove
the inequality fora=0and fora<b=c=1.

Case 1: a = 0. The inequality reduces to

1 1 1 20
—+ =+ > .
b ¢ b+c b+c+6vbe
Substituting
. b+c > 2
m > - 4
the inequality becomes
1 20
x+—2= R
X x+6

x2+6x2—19x+6>0,
(x —2)(x?+8x—3)>0.
Case 2: a < 1= b =c. We need to show that

1 2 20

> .
2 a+1 a+2+64/2a+1

Using the substitution
2a+1=x? x =1,

the inequality becomes
x>+9 S 40
2(x2+1)  x2+12x+3’

x*+12x%—68x%+108x —53 >0,
(x —1)(x®+13x?>—=55x +53) > 0.

It is true since

x% +13x%—55x 4+ 53 =(x —1)>+ 16x>—58x + 54

29\? 23
=(x—13+1 -= =>o.
(x—1)y+ 6(x 16) +16

The equality holds for

(or any cyclic permutation).
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P 5.20. If a, b, c are positive real numbers so that
7(a®+ b? +c?)=11(ab + bc + ca),
then
51 a b c
— < + + <2
28 b+c c+a a+bd

(Vasile C., 2008)
Solution. Due to homogeneity and symmetry, we may consider that
a+b+c=1, 0<a<b<c<l.

Thus, we need to show that

11
a+b+c=1, a2+b2+c2=£, 0<a<b<cx<l1

involves
51 a b c
— < +
28 1—a 1—-b 1-—c
We apply Corollary 1 to the function

f(u)=L, 0<u<l.
1—u

We have f(1—) = oo and

gx)=f'(x)= g"'(x)=

_ _5
(1—x)?’ (1—x)*

Since g”(x) > 0, g is strictly convex on [0, 1). According to Corollary 1 and Note
3, 1if
11
a+b+c=1, a2+b2+c2=£, 0<a<b<c<l,
then the sum

S3=f(a)+f(b)+f(c)

is maximal for a = b < ¢, and is minimal for either a =0 or 0 < a < b = c. Note
that the case a = 0 is not possible because it involves 7(b? + ¢?) = 11bc, which is
false.

(1) To prove the right original inequality for a = b < c, let us denote

The hypothesis 7(a® + b% + ¢?) = 11(ab + bc + ca) involves t = 3, hence

a b c 2a C 2

t
+ + = + +=
b+c c¢+a a+b a+c 2a 1+t 2
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The right inequality is an equality fora = b = ¢ (or any cyclic permutation).

(2) To prove the left original inequality for 0 < a < b = ¢, let us denote

=2 o0<t<1
=2, <1

1
The hypothesis 7(a? + b? + ¢?) = 11(ab + bc + ca) involves t = - hence

a b c a 2b t 2 51

b+c c¢c+a a+b 2b a+b 2 t+1 28

The left inequality is an equality for 7a = b = ¢ (or any cyclic permutation).

P 5.21. If a;,a,,...,a, are nonnegative real numbers so that

a@+a+--+a (a1+a2+---+an)2

n+3 n+1
then
+1)(2n—1 1 1 1 3n*(n+1
(n+1)(2n )S(a1+a2+-~-+an)(—+—+--~+—)<M.
2 a, a a, 2(n+2)

(Vasile C., 2008)
Solution. For n = 2, both inequalities are identities. For n > 3, assume that
Cl1 Sazﬁ"'ﬁan.

The case a; = 0 is not possible because the hypothesis involves

a;+---+a; n+3 1
s < 5
(ay+:--+a,)> (n+1)2 n-—1

which contradicts the Cauchy-Schwarz inequality

2 2
az+---+a 1

= .
(ap+---+a,)* n-—1

Due to homogeneity and symmetry, we may consider that
a;ta,+---+a,=n+1,

which implies
a@+a+---+adi=n+3.
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Thus, we need to show that
a+ay+---+a,=n+1, a+a+---+ad=n+3, 0<aq<aq<---<aq,

involves

2 a,  a, LT 2(n+2)
We apply Corollary 5 for k =2 and m = —1:

e Ifa,,a,,...,a, are positive real numbers so that 0 < a; <a, <---<a, and

a+ay+---+a,=n+1, ad+a+---+ad=n+3,

then
1 1 1
Sp=—+— 4 +—
a; a an
is minimal for
O<a;=ay,=---=a,; <a,,
and is maximal for
a,<ay,=a;=---=4d,.

(1) To prove the left original inequality, we only need to consider the case

=0y ="++=0, 1 < ap.
The hypothesis
ajta;+-+al  rajtapteta,?
n+3 _( n+1 )
implies
(n—Daf+a: [(n—1a; +a,]
n+3 _|: n+1 } ’
(2a; —ay)[2a;, —(n+2)a,] =0,
— an
a; = 5
hence
m1+a2+~-+ag(l¥+l¥+-~+—l)=[0v—Day+aJ(n_14~l)
a; a a, a; a
=(n—1)2+1+(n—1)(ﬂ+ﬁ)
a, a
_ (n+1)(2n—1)
= 5 )
The equality holds for

Q

n

T2
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(or any cyclic permutation).
(2) To prove the right original inequality, we only need to consider the case
a,<a,=a;=---=a,.
The hypothesis involves

(al - 2an)[(n + 2)a1 - zan] =0,

2a,
a1: 5
n+2
hence
1 1 1 -1 1
(a1+a2+---+an)(—+—+---+—)=[(n—1)a1+an](n +—)
a; a a, a; an
:(n—1)2+1+(n—1)(ﬂ+ﬁ)
a, a
_ 3n*(n+1)
- 2(n+2)
The equality holds for
2a,
a, =ad, =-"-=Qa,_ =
1 2 n—1 n+2

(or any cyclic permutation).

P 5.22. Ifa, b, c,d are nonnegative real numbers so that a+ b +c+d = 3, then

1
abc+ bcd +cda+dab <1+ 8L16 abcd.

(Vasile C., 2005)

Solution. Assume that
a<b<c<d.

For a = 0, we need to show that b + ¢ + d = 3 implies
bed <1,

which follows immediately from the AM-GM inequality:

3
bed < (#) —1.
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For a > 0, rewrite the inequality in the form

abcd(1+1+l+l)31+1—76abcd
a b ¢ d 81

and apply Corollary 5 for k =0 and m = —1:

o If
a+b+c+d=3, abcd=constant, 0<a<b<c<d,
then
S—1+1+1+1
*Ta b ¢ d

is maximal for
a<b=c=d.

Thus, we only need to prove the homogeneous inequality
27(a+b+c+d)(abc+ bcd +cda+dab) <(a+b+c+d)*+176abcd
for a < b =c=d = 1. The inequality becomes
27(a+3)(3a+1) < (a+3)*+176a,

a*+12a®—27a*+14a > 0,
a(a—1)*(a+14)>0.
The equality holds for a = b = ¢ = d = 3/4, and also for

(or any cyclic permutation).

P 5.23. Ifa, b, c,d are nonnegative real numbers so that a+ b+ c+d = 3, then
3
a’?b?c? + b%c2d? + c2d%a® + d%a®b? + Zabcd <1

(Gabriel Dospinescu and Vasile Cirtoaje, 2005)

Solution. Assume that
a<b<c<d.

For a = 0, we need to show that
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which follows immediately from the AM-GM inequality:
b d)?
bed < (%) =1.

For a > 0, rewrite the inequality in the form

1 1 3
21,2 .2 32
abcd(g+§+c—2+ﬁ)+zrabcdﬁl,

and apply Corollary 5 for k =0 and m = —2:
o If

a+b+c+d=3, abcd=constant, 0<a<b<c<d,

then

is maximal fora < b=c =d.

Thus, we only need to prove the homogeneous inequality

(a+b+c+d
3

6
1
) > a®b?c? + b%c?d? + c*d*a* + d*a®b* + Eabcd(a +b+c+d)>
fora < b=c=d =1, that is, to show that 0 < a < 1 implies
a\® 2, 1 2
(1+—) >1+3a*+ —a(a+3).
3 12

Since
2 a3 2

ay3 a a
(1+—) =l+a+—+—=>1+a+—,
3 3 27 3

it suffices to show that
a?\’ 1
(1+a+—) >1+3a*+ —a(a+3)?,
3 12
which is equivalent to the obvious inequality

4a* +3a(1—a)(15—"7a) > 0.

The equality holds for

(or any cyclic permutation).
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P 5.24. If a, b, c,d are nonnegative real numbers so that a+ b +c +d = 3, then
4
a®b?c? + b%c2d? + c2d*a® + d?a®b? + g(abcd)S/Z <1.

(Vasile C., 2005)

Solution. The proof is similar to the one of the preceding P 5.23. We need to prove
that

6 4
(1 + 9) >1+3a%+ ~a*/2
3 3

for 0 <a < 1. Since
2a°? < a®+aq,

it suffices to show that
a\® 2 11,
(1+—) >1+—-a+—a".
3 3 3

Since
2 a3 2

a\3 a a
(1+—) =l+a+—+—=-=21+a+—
3 3 27 3
and
2~ 2
5 2 1
(1+a+a—) =142a+=a*+=a’>+=a*
3 3 3 9
S 9,2 3
>1+2a+ —-a“+ —-a’,
3 3
it suffices to show that
5, 2, 2 11 ,
1+2a+-a"+-a°=21+-a+—a’,
3 3 3 3
which is equivalent to the obvious inequality
a(l—a)(2—a)=>0.

The equality holds for

(or any cyclic permutation).

P 5.25. If a, b, c,d are nonnegative real numbers so that a+ b + c +d = 4, then
a’b?c? + b%c?d? + c*d?a® + d?a®b? + 2(abcd)*? < 6.

(Vasile C., 2005)
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Solution. The proof is similar to the one of P 5.23. We need to prove that

+3)°
6(“4 ) >1+3a2+24%2

for 0 <a < 1. Since
2a*? < a®+a,

+3)\°
6(a4 ) > 1+ a+4d>.

it suffices to show that

Using the substitution

0<x<

2

e

the inequality becomes
3(1—x)®>3—18x +32x2,

x%(13 —60x + 45x%2 —18x% + 3x*) > 0.

It is true since

2(13 —60x + 45x2 —18x3 + 3x*) > 25 — 120x + 90x2 — 40x°
=5(1—4x)(5—4x +2x>)> 0.

The equality holds fora=b=c=d = 1.

P 5.26. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then
11(ab + bc + ca) + 4(a®*b* + b*c? + c*a?) < 45.

(Vasile C., 2005)

Solution. Assume that a < b < c. For a = 0, we need to show that b+ ¢ = 3

involves
11bc + 4b%c? < 45.

2
bcs(b+c) _9
2 4

We have

hence 99 81
11bc+4b%c* < =+ — =
4 4

For a > 0, rewrite the desired inequality in the form

45.

1 1 1 1 1 1
11abc(— ot —) +4a*b?c? (— + =+ —) < 45.
a c

az b2 2
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According to Corollary 5 (case k =2 and m < 0), if

a+b+c=3, abc=constant, 0<a<b<c,

1 1 1 1 1 1
then the sums — + —+ — and — + — + — are maximal for 0 <a < b =c.
a b ¢ a? b? 2
Therefore, we only need to prove that a + 2b = 3 involves
11(2ab + b*) + 4(2a*b* + b*) < 45,
which is equivalent to

15—22b—13b%+32b%—12b* > 0,

(3—2b)(1—Db)*(5+6b) >0,
a(1-b)*(5+6b)>0.
The equality holds for a = b = ¢ =1, and also for

3
a=0, b=c=-
2

(or any cyclic permutation).
Remark. In the same manner, we can prove the following statement:

e Ifa,b,c,d are nonnegative real numbers so that a + b + c+d = 4, then
abc+ bed + cda + dab + a®b*c? + b%c?d?* + c*d*a* + d*a®*b* < 8,

with equality fora=b=c=d =1.

P 5.27. If a, b, c are nonnegative real numbers so that a+ b + ¢ = 3, then
a’b?+ b%c? + c2a® + a®b> + b3c® + c3a® > 6abc.
(Vasile C., 2005)

Solution. Assume that a < b < c. For a = 0, the inequality is trivial. For a > 0,
rewrite the desired inequality in the form

1 1 1 1 1 1
abc(—+—+—)+a2b2c2(—+—+ )26.
b2 2

a? a b3
According to Corollary 5 (case k =0 and m < 0), if

a+b+c=3, abc=constant, O0<a<b<c,
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1 1 1 1 1 1 .
thenthesums¥+ﬁ+c—2and5+ﬁ+c—3aremax1malfor0<a§b—c.

Thus, we only need to prove that
2a*b? + b* +2a°b> + b° > 6ab?

for
a+2b=3, 1<b<3/2.

The inequality is equivalent to
b3(14—33b +24b>—5b%) >0,
b*(1—b)*(14—5b) > 0.
The equality holds for a = b = ¢ =1, and also for
a=b=0, c¢c=3

(or any cyclic permutation).

P 5.28. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then
2(a2+b2+c2)+5(ﬁ+ Vb + ﬁ)zzl.

(Vasile C., 2008)

Solution. Apply Corollary 5 for k =2 and m =1/2:
o If

a+b+c=3, a’+b*+c?=constant, 0<a<b<c,

then

is minimal for eithera=0o0or0<a < b =c.

Case 1: a = 0. We need to show that b + ¢ = 3 involves
2(b*+ ) +5(Vb+vc ) > 21,

which is equivalent to

5V 3+24 bc>3+4bc.

Substituting
b+c

2

3
x=vbc, 0<x< 5

>
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the inequality becomes
5¢/342x >3 +4x?,

25(3 +2x) > (3 + 4x%)2.

This inequality is equivalent to f(x) > 0, where
f(x)= % +50—24x—16x3, 0<x<3/2.
Since f is decreasing, we have
f(x)=f(@3/2)=4>0.
Case 2: 0 < a < b =c. We need to show that
2(a?+2b%) +5(va+2vb ) > 21

for 3
a+2b=3, 1Sb<§.

Write the inequality as

543 —2b+10vb > 3 + 24b — 12b2.

xzx/g, 1Sx<\l§,

5v/3—2x2>3—10x + 24x2 —12x%,

12(x2—1)2 > 5(3—2x — V3 —-2x2),

Substituting

the inequality becomes

30(x —1)?
1203 =12 > (=17
3—2x++v/3—2x2
which is true if s
2(x+1)*> .
3—2x++v/3—2x2
It suffices to show that
2(x+1)?*> ,
( ) 3—2x

which is equivalent to
1+8x—2x*—4x*>>0,

—3
x(5—4x)(z+x)+4 XZO.
4 4
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Since

3 5 4
x<\l=-<=-<-,
2 4 3
the conclusion follows.

The equality holds fora =b =c=1.

P 5.29. If a, b, c are nonnegative real numbers so that ab + bc + ca = 3, then
1+ 2a 1+2b 1+ 2c
+ + > 3.
3 3 3

Solution. Write the hypothesis ab + bc +ca =3 as

(Vasile C., 2008)

(a+b+c)=6+a*+b*+c?
and apply Corollary 1 to

1+ 2u
3 5

u=0.

flw=

We have 1

V3 +2x)
_ V3
(14 2x)5/2°

Since g”(x) > 0 for x > 0, g is strictly convex on [0, 00). According to Corollary

1, if

gl)=f'(x)=

g"(x)=

a+b+c=constant, a*+b%*+c?>=constant, 0<a<b<c,

then the sum
Sy=f(a)+f(b)+f(c)
is minimal for eithera=0o0or0<a < b =c.

Case 1: a = 0. We need to show that bc = 3 involves
1+2b++/1+2c>3v3-1.

By squaring, the inequality becomes

b+c+4/13+2(b+c)>13—-3V3.
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We have b + ¢ > 2+/bc = 2+/3, hence

b+c+4/13+2(b+c)>2vV3+V13+4vV3=4v/3+1>13-3V3.

Case 2: 0<a < b=c. From ab + bc + ca = 3, it follows that

3—b?

0<b< 3.
2b

a=

Thus, the inequality can be written as

3—b2
1+— +2v/1+2b>3v3.
| 1+2b 1 ,|1+2\/§ 5
t= , —<t<\|——< =,
3 V3 3 4
the inequality turns into
2 _ 34
SHAC 3 o o
2(3t2—1)

By squaring, we need to show that

Substituting

7—8t—14t>+24t>—9t* >0,

which is equivalent to
(1—t)*(7+6t—9t?)>0.

This is true since
15 27
7+6t—9t2=8—(3t—1)2>8—(?—1) = —>0.

The equality holds fora =b =c=1.

P 5.30. Let a, b, c be nonnegative real numbers, no two of which are zero. If
0<k<15,

then
1 1 1 k 9+k

+ + + = .
(a+b)? (b+c) (c+a)2 (a+b+c)*  4(ab+ bc+ca)
(Vasile C., 2007)
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Solution. Due to homogeneity and symmetry, we may consider that
a+b+c=1, 0<a<b<ec.

On this assumption, the inequality becomes

SN S SR 9+k
(1—a)? (1-b)2 (1A-c)* ~—2(1—a®2—b>—c?)

To prove it, we apply Corollary 1 to the function

1
f(u)zm, 0<u<l.

We have f(1—) = oo and

2 p )_ 24
a—xp ¢ =g

gx)=f'(x)=

Since g”(x) > 0, g is strictly convex on [0, 1). According to Corollary 1 and Note
3, 1if

a+b+c=1, a*+b*+c*=constant, 0<a<b<cg,

then the sum
S =f(a)+f(b)+ f(c)
is minimal for eithera=00or0<a < b =c.

Case 1: a =0. For

the original inequality becomes

1 1 1+k >9+k

+ =+
b2 ¢2 (b+c)?2  4bc’

1+k 9+k
>

x+2 4
(x—2)4x+7—k)=0.

5

This is true since
4x+7—k>15—k>=0.

Case 2: 0 < a < b = c. The original inequality becomes

2 1.k 9tk
(a+b)?  4b2 " (a+2b)> ~ 4b(2a +b)’

a(a—b)? ka(4b—a)
2b2(a+ b)2(2a+b)  4b(a+2b)2(2a+b) —
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The equality holds for
a=0, b=c

(or any cyclic permutation). If k = 0 (Iran 1996 inequality), then the equality holds
also fora =b =c.
O

P 5.31. If a, b, c are nonnegative real numbers, no two of which are zero, then

1 1 1 24 8
+ + + = .
(@a+b)2 (b+c)2 (c+a)* (a+b+c)?> ab+bc+ca

(Vasile C., 2007)

Solution. As shown in the proof of the preceding P 5.30, it suffices to prove the
inequality fora =0, and for 0 <a < b =c.

Case 1: a =0. For

(x —3)>>0.

Case 2: 0 < a < b = c. Due to homogeneity, we only need to prove the homoge-
neous inequality for 0 < a < b = ¢ = 1; that is,

2 +1+ 24 > 8
(a+1)2 4 (a+2)® 2a+1

It suffices to show that

2 > 8 24
(a+1)2 " 2a+1 (a+2)¥

which is equivalent to
1 4(1—a)?
(1+a)  (a+1)(a+2)*

a(2a® +9a + 12) > 4a%(a® —2).

This is true since
a(2a*+9a+12) > 0 > 4a*(a*—2).
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The equality holds for

(or any cyclic permutation).
Remark. Actually, the following generalization holds:
e Let a, b, c be nonnegative real numbers, no two of which are zero. If k > 15, then

1,1 1k 2/kFI-D
(a+b)2 (b+c)®> (c+a)?* (a+b+c)?> ab+bc+ca’

with equality for

a=0, 2+%=\/m—2

c
(or any cyclic permutation).

P 5.32. If a, b, c are nonnegative real numbers, no two of which are zero, so that
k(a®> +b*>+c>)+ 2k +3)(ab+bc+ca)=9k+1), 0<k<6,
then

L + L + L + ok >§+k
(@a+b)2 (b+c)? (c+a) (a+b+c) 4

(Vasile C., 2007)
Solution. Write the inequality in the homogeneous form

4 4 4 36k 9(k +1)(4k + 3)
(a+b)2 (b+c)2 (c+a)® (a+b+c)?  k(a?+b2+c2)+(2k+3)(ab+ bc+ca)’

As shown in the proof of P 5.30, it suffices to prove this inequality for a = 0, and
forO<a<b=c.

Case 1: a=0. Let

The homogeneous inequality becomes

4(l l)+36k+4> 9(k +1)(4k +3)
b2 ¢2 (b+c¢)2 ~ k(b2+c2)+(2k+3)bc’

+36k+4 S 9(k + 1)(4k + 3)
x+2 = kx+2k+3

4kx> + 4(4k + 3)x* — (43k + 3)x — 2(5k + 21) > 0,

4x

>
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(x — 2)[4kx*+ 4(6k + 3)x + 5k +21]> 0.

Case 2: 0 < a < b =c. We only need to prove the homogeneous inequality for
b =c = 1. The inequality becomes

8 14 36k S 9(k+1)(4k +3)
(a+1)2 (a+2)2 " ka?+(4k +6)a+4k+3’

ka® + (10k + 6)a® — (14k — 12)a* — (10k + 18)a’® + (17k — 24)a? + (24 — 4k)a > 0,
a(a—1)*[ka®+ 6(2k + 1)a* + 3(3k +8)a +4(6 — k)] > 0.
Clearly, the last inequality is true for 0 < k < 6.

The equality holds for a = b = ¢, and also for
a=0, b=c

(or any cyclic permutation).

P 5.33. If a, b, c are nonnegative real numbers, no two of which are zero, then

@ 2 + 2 + 2 > 8 + 1
a = )
a?+b? b%2+c? c?2+a? a?+b%2+c2 ab+bc+ca

2 2 2 7 6
+ + > + ;
® a?+b% b2+4+c? c2+a?  a?+b%2+c2 (a+b+c)?

2 2 2 45
(c)

+ + > :
a?+b? b2+c? c2+a? 4(a?+Db%2+c2)+ab+bc+ca
(Vasile C., 2007)

Solution. (a) Due to homogeneity and symmetry, we may consider that
a’+b*+c*=1, 0<a<b<ec.

On this assumption, the inequality can be written as

2 4 2 + 2 S84 2
1—a2 1—-b2 1—c2 (a+b+c)2—1

To prove it, we apply Corollary 1 to the function
flu)= _1 0<u<l1
C1—u?’ - ’

We have f(1—) = oo and

2x _ 24x(1+x?)

s =f W= Gp &WO="T
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Since g”’(x) > 0 for x € (0,1), g is strictly convex on [0, 1). According to Corollary
1 and Note 3, if

a+b+c=constant, a*+b*+c?=1, 0<a<b<cg,

then the sum
Ss=f(a)+f(b)+f(c)
is minimal for eithera=0o0or0<a < b =c.

Case 1: a = 0. For

b ¢
X=—4+-, x=2,
c b
the original inequality becomes
2,2 6 1
b2 2 b2+c2  bc’
6
2x > —+1,
x

(x—2)(2x+3)=0.
Case 2: 0 < a < b = c. Due to homogeneity, it suffices to prove the original
inequality for b = ¢ = 1. Thus, we need to show that
4 8 1
>

1+ = + ,
at+1 a24+2 2a+1

which is equivalent to
2a 4q?

>
2a+1 " (a2+1)(a2+2)
a(a*—a®?—2a+2)>0,
a(a—1)*(a®*+2a+2)>0.

The equality holds for a = b = ¢, and also for a = 0, b = ¢ (or any cyclic permu-
tation).

(b) The proof is similar to the one of the inequality in (a). For a =0 and

b
x:—+£, xX=>2,
c b

the original inequality becomes

2,25 6
b2 ¢z b2+c2  (b+c)?’
5 6
2x = —
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(x —2)(2x*+8x +5) > 0.
For b = ¢ = 1, the original inequality is
4 7 6
>

1+ = + 5
a2+1 " a2+2 (a+2)>

a(a® +4a*—2a®—15a+12) >0,
a(a—1)*(a® +6a*+9a+12) > 0.

The equality holds for a = b = ¢, and also for a = 0, b = ¢ (or any cyclic permu-
tation).

(c) The proof is also similar to the one of the inequality in (a). For a = 0 and

the original inequality becomes

2(1 +1)+ 2 > 45
b2  c2 b2+c¢2 ~ 4(b2+c2)+bc’

2 45
2x+—2= s
x 4x+1

(x —2)(8x*+18x—1)>0.

For b = ¢ =1, the original inequality can be written as

4 45

1+ > s
az+1 4a2+2a+9

a(2a®+a*—8a+5)>0,
a(a—1)*(2a+5)>0.

The equality holds for a = b = ¢, and also for a = 0, b = ¢ (or any cyclic permu-
tation).
O

P 5.34. If a, b, c are nonnegative real numbers, no two of which are zero, then

1 1 1 3 4
+ + + = .
a?+b%2 b2+c2 c2+a? a?+b%2+c2  ab+bc+ca

(Vasile C., 2007)
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Solution. As shown in the proof of the preceding P 5.33, it suffices to prove the
inequality fora =0, and for0<a < b =c.

Case 1: a = 0. For

b ¢
X=—+-, x=2,
c b

the original inequality becomes

1,1, 4 _4
b2 ¢2  b2+c¢2 " bc’
x+i2%

X
(x—2)*>0.

Case 2: 0 < a < b = c. Due to homogeneity, it suffices to prove the original
inequality for 0 < a < b = ¢ = 1. Thus, we need to show that
1 2 3 4
—+ + > :
2 a’+1 a*+2 2a+1

It suffices to show that
2 + 3 > 4 1

a+1 a+2"2a+1 2’

which is equivalent to
Sa+7 > 7—2a

az+3a+2 4a+2’
a(2a®*+19a +21) >0,

The equality holds for

(or any cyclic permutation).
Remark. Actually, the following generalization holds:

e Let a, b, c be nonnegative real numbers, no two of which are zero.
(@) If -4 < k < 3, then

2 2 2 2k k+5
+ + + > ,
az+b? b%2+c? c2+a?> a’+b2+c2 ab+bc+ca
with equality for
a=0, b=c
(or any cyclic permutation).
(b) If k = 3, then
1 1 1 k S 2vk+1

+ + + > ,
a?+b%2 b%2+c2 c?2+a? a?+b2+c? ab+bc+ca
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with equality for

(or any cyclic permutation).

L]
P 5.35. If a, b, c are nonnegative real numbers, no two of which are zero, then
- 3 L3 3 5 L4
a?+ab+b2 b2+bc+c2 c2+ca+a® ab+bc+ca a?+b2+c?’
3 3 3 1 24
(b) + + > + ;
az+ab+b%2 b2+bc+c2 c24+ca+a? ab+bc+ca (a+b+c)?
1 1 1 21
©]

a?+ab+ b2+b2+ bc+c2+c2+ca+a2 = 2(a2+ b2 +c2)+5(ab+ bc+ca)

(Vasile C., 2007)
Solution. (a) Due to homogeneity and symmetry, we may consider that
a+b+c=1, 0<a<b<ec.

Let
_14+a®+b*+¢?
= 5 ,

Since

1 1 1
2(b2+bc+c2) (a+b+c)2+a2+b2+c2—2a(a+b+c) 2(p—a)

the inequality can be written as
3 3 3 5 4
+ + = .
p—a p—b p—c 1—-p 2p—1
To prove it, we apply Corollary 1 to the function

3
fluy=—— 0<u<np.
p—u

We have f(p—) = oo and
3 18
(p—x)¥ (p—x)*
Since g”(x) > 0, g is strictly convex on [0, p). According to Corollary 1 and Note

3, if

gl)=f'(x)= g'(x)=

a+b+c=1, a*+b*+c*=2p—1=constant, 0<a<b<c,
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then the sum
Sy =f(a)+f(b)+f(c)
is minimal for eithera=0o0or0<a < b =c.

Case 1: a =0. For

b
x=—+£, X =2,
c b

the original inequality becomes

3(l+l)+#>i+L
b2 2 b2+ bc+c2 bc b2+’

which is equivalent to

4
>54—,
X + X

(x —2)(3x%+4x+2)>0.

3x +

Case 2: 0 < a < b = c. Due to homogeneity, it suffices to prove the original
inequality for b = ¢ = 1. Thus, we need to show that

6 5 4
—+12> + )
a’?+a+1 2a+1 a?>+2
which is equivalent to
a(a*—a®+3a*>—7a+4)>0,
a(a—1)*(a®*+a+4)>0.

The equality holds for a = b = ¢, and also for a = 0, b = ¢ (or any cyclic permuta-
tion).

(b) The proof is similar to the one of the inequality in (a). For a = 0, the
original inequality becomes

s(Lel)e 2 o1, 2
b2 ¢2) b2+bc+c2 bc (b+c)?’
which is equivalent to

c
>1+ , X=—+-,
+1 x+2 c b

3 24 b
Ix+——2=
x

(x —2)(3x*+14x +10) > 0.

For b = ¢ =1, the original inequality becomes

6 1 24
—+1> + ,
ai+a+1 2a+1 a2+4+2
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which is equivalent to
a(a*+5a®—9a*—a+4) >0,
a(a—1)*(a®*+7a+4)>0.

The equality holds for a = b = ¢, and also for a = 0, b = ¢ (or any cyclic permuta-
tion).

(c) The proof is similar to the one of the inequality in (a). For a = 0, the
original inequality becomes

1 1 1 21
—+ =+ > ,
b2  ¢2 b2+ bc+c2 2(b2+c2)+5bc

which is equivalent to

1 21 b ¢
x + > , X=—+-,
x+1 2x+5 c b

(x—2)(2x*+11x+8)>0.
For b = ¢ =1, the original inequality becomes

2 1 21
—_—t -z
a2+a+1 3 2a24+10a+9

which is equivalent to
a(a®+6a*—15a +8) > 0,

ala—1)*(a+8)>0.
The equality holds for a = b = ¢, and also for a = 0, b = ¢ (or any cyclic permuta-

tion).
O

P 5.36. Let f be a real-valued function, continuous on [0, 00) and differentiable on
(0, 00), so that f"'(u) = 0 for u € (0,00). If a, b,c > 0, then

f(a®+2bc)+ f(b*+2ca) + f(c*+2ab) < f(a®?+ b*>+c?)+2f (ab + bc + ca).
Solution. Denoting
x=a*+2bc, y=>b*+2ca, z=c*+2ab,
the inequality becomes

FO)+ () +f(2) < f(a®>+b*+c?)+2f(ab+ bc +ca).
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Assume that
a+b+c=constant, a*+ b%+c?=constant,
which involve
2(ab+ bc+ca)=(a+b+c)*—(a*+ b*+c*) = constant.
We have
x+y+z=(a+b+c)*=constant,
x*+ y*+2%=(a*+ b*+c?*)? +2(ab + bc + ca)? = constant.
According to the EV-Theorem (Corollary 1), since f”’(u) > 0 for u € (0, c0), the
sum f(x)+ f(y) + f(z) is maximal for x = y < z, that is

a®+2bc = b*+2ca < c? + 2ab.

From a? + 2bc = b?+2ca, we geta = bora+b = 2c. If a+ b = 2c, the
inequality b% + 2ca < c? + 2ab is equivalent to (b —c)? < 0, which involves b = c.
Thus it suffices to prove the required inequality for two equal variables, when the
inequality is an identity.

The equality holds fora=borb=corc=a.

Remark 1. The inequality is also true for a real-valued function f, continuous
on (0, 00) and differentiable on (0, 00), so that f"”/(u) > 0 for u € (0,00) and
lim,_,, f (u) = £o0.

Remark 2. The following inequalities hold:

1 1 1 1 2
+ + > + ,
az+2bc b2+4+2ca c2+2ab a?+b2+c¢c2 ab+bc+ca

Va2 +2bc+ Vb2 +2ca+ Vc2+2ab < \/a2+b2+c2+2\/ab+bc+ca,
1 1 1 N 1 2

+ + > + ,
vaz+2bc vVb2+2ca Vc2+2ab Vaz+b2+c2 +ab+bc+ca

(a®+2bc)(b? + 2ca)(c? + 2ab) < (a® + b% + c*)(ab + bc + ca)?.

P 5.37. If a, b, c are the lengths of the side of a triangle, then

1 + 1 + 1 < 85
(a+b)2 (b+c)?> (c+a)?>~ 36(ab+bc+ca)

(Vasile C., 2007)
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Solution. Use the substitution
a=y+z, b=z+x, c=x+Yy,

where x, y,z are nonnegative real numbers. Due to homogeneity and symmetry,
we may consider that

x+y+z=2, 0<x<y<z

We need to show that

1 + 1 + 1 < 85
(x+2)2 (y+2)2 (z+2)2" 18(12—x2—y2—3z2)’

which can be written as

85

I+ D+ O+ gy 2%
where 1
)=y w20,
We have
— / ): //(X): 24
SCI=S= G 9T Gy

Since g”(x) > 0 for x > 0, g is strictly convex on [0, 00). According to Corollary
1, if

x+y+z=2, x*+y*+z>=constant, 0<x<y<gz,
then the sum
Ss=f(x)+f(y)+f(=)
is minimal for either x =0or 0 <x <y =2z.
Case 1: x = 0. This implies a = b + c. Since
1 N 1 5(b%+c?)+8bc
(a+b)> (c+a) (2b%2+2c2+5bc)?

and
ab+bc+ca=a(b+c)+bc=(b+c)*+bc=>b%>+c%+3bc,

we need to show that

5(b% +c?) + 8bc N 1 < 85
(2b2+2c2+5bc)?2  (b+c)? ~ 36(b2+c2+3bc)’

For bc = 0, the inequality is true. For bc # 0, substituting
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the inequality becomes

5t+8 + 1 < 85
(2t+5)2 t+2 7 36(t+3)

5t+8 < 49t + 62
(2t +5)2 ~ 36(t+2)(t +3)

It suffices to show that

5t+8 < 48t + 64
(2t +5)2 = 36(t +2)(t +3)

which is equivalent to
5t+8 < 12t + 16

(2t +5)2 7 9(t+2)(t+3)
3t3+7t2—10t —32>0,

(t—2)(3t*+13t+16)>0.

Case 2: 0 < x < y = z. This involves b = c. Since the original inequality is
homogeneous, we may consider b =c =1 and 0 < a < b + ¢ = 2. Thus, we only

need to show that
1 2 85

S < ,
4 (a+1)2" 36(2a+1)

which is equivalent to
(a—2)(9a*—2a+1) <0.

The equality holds for a degenerated isosceles triangle with a = b +c¢, b =c (or
any cyclic permutation).
O

P 5.38. If a, b, c are the lengths of the side of a triangle so that a + b + ¢ = 3, then

1 N 1 N 1 3(a®>+b*+c?)
(a+b)2 (b+c)> (c+a)?*~ 4(ab+bc+ca)

(Vasile C., 2007)
Solution. Write the inequality in the homogeneous form

1 N 1 N 1 27(a? + b% +¢?)
(a+b)2 (b+c)®2 (c+a)® ™ 4(a+b+c)2(ab+bc+ca)

As shown in the proof of the preceding P 5.37, it suffices to prove this inequality
fora=b+candforb=c=1.
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Case 1: a = b +c. Since
1 N 1 5(b*+c*)+8bc
(a+b)2 (c+a)® (2b2+ 2c2+ 5bc)?

and
27(a? + b% +¢?) 27(b? + ¢ + bc)

4(a+ b +c)?(ab + bc +ca) - 8(b +c)2(b2+c2+3bc)’
we need to show that
5(b%+c?) + 8bc N 1 27(b? + ¢ + bc)
(2b2+2c2+5bc)2  (b+c)? ~ 8(b+c)2(b2+c2+3bc)
For bc = 0, the inequality is true. For bc # 0, substituting

the inequality becomes
5t+8 N 1 < 27(t +1)
(2t+5)2 t+2 7 8(t+2)(t+3)

9t? + 38t + 41 - 27(t+1)
(2t+5)2 ~ 8(t+3)°

It suffices to show that

9t? + 45t + 27 < 27(t+1)
(2t+5)2 7 8(t+3)°

which is equivalent to
t2+5t+3 < 3(t+1)

(2t +5)2 ~ 8(t+3)’
4¢3+ t(8t—9)+3>0.

Case 2: b=c=1, a < b+c=2. The homogeneous inequality becomes

2, 1__ 27(@+2)
(a+1)2 47 42a+1(a+2)?

Since
4(2a+1)(a+2)<9(a+1)?
it suffices to show that
2 1__3(a®+2)

@+12 2@+ 12+

which is equivalent to
(a—6)(a—1)*<0.

The equality holds for a an equilateral triangle.
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2
P 5.39. Leta,b,c > < so that a+ b + ¢ = 3. Then,

1 1 1 3
+ + <-.
3+2(az2+b2) 3+2(b2+c2) 3+4+2(c24+a2)” 7

(Vasile C., 2006)

Solution. For a < b < ¢, we have

2 11
—<a<b<c<—.
5 5
Indeed,
2 2 11
c=3—a—-b<3—=——=-=—.
5 5 5

Using the substitution
3 3 1 9
m==+a*+b*+c*, m==+=(a+b+c)==,
2 2 3 2

we have to show that

6
fF@+f)+f(e) =7
for 3 2 11
a+b+c=3, a*+b’+c’=m—>=, =<a<b<c<—,
2 5 5
1 2 11
= —<u< —.
f m—w2 5 "5
From ( 2)
e 2x ne o~ 24x(m+x
glx) = f'(x) = e 8 (x) = 2
it follows that g”(x) > 0, hence g is strictly convex. By Corollary 1 and Note 2, if
11

a+b+c=3, a*+b*+c*=constant, <a<b<c<

5 5
then the sum
Sy=f(a)+f(b)+f(c)
is maximal for either c = 11/50ra =b < c. Thecasec =11/5leadstoa = b = 2/5,
when the inequality is an equality. In the second case, we need to prove that
1 2 3

+ <=
3+4a2 3+2az+c2)" 7

2
for 2a + ¢ =3, A < a < c. Write the inequality as follows

1 2

+ <
3+4a? 21—24a+ 10a?

3
<,
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1 _ _49-72a+30d>
3+4a2 = 7(21—24a + 10a2)’

ala—1)*(5a—2) > 0.

The equality holds for a = b = ¢ = 1, and also for

(or any cyclic permutation).

Remark In the same manner, we can prove the following statement:

e Let ay,a,,...,a, be nonnegative real numbers so that a, +a, +---+a, =n. If
2

k > , then
>y .
< )
k+aj+---+a®> " k+n—1
. . n®—1 ,
with equality fora, = a, =---=a,=1. Ifk = T then the equality holds
n?—n-—
also for
1 n—1
a1:---:an_1:—’ an:n_

n2—n—1
(or any cyclic permutation).

P 5.40. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

2 + 2 + 2 < 99
2+4a24+b2 2+b2+c2 2+c2+a?” 63+a+b2+c?

(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.39. Thus, we only need to prove
the inequality for 0 < a = b < c; that is, to show that 2a + ¢ = 3 involves

1 N 4 < 99
1+a2 24+a2+c2~ 63+2a2+c2

Write this inequality as follows

1 + 4 < 33
a?+1 5a2—12a+11 "~ 2(a2—2a+12)’

49a* —112a® +78a%> —16a+1 >0,
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(a—1)*(7a—1)*>0.
The equality holds for a = b = ¢ =1, and also for

_b
7

a=b=-, ¢

1
7
(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

8
e Let a, b, c be nonnegative real numbers so that a+b+c =3. If < < k < 3, then

k+2 N k+2 N k+2 < 9(3k?+ 11k + 10)
k+a2+b2 k+b2+c2 k+c2+a?” 9(k2+2k+6)+ (5k—8)(a%+ b2+c2)’

with equality for a = b = c =1, and also for

3—k 2k +15
a=b=—, c =
7 7

(or any cyclic permutation).

P 5.41. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

1 1 1 18
+ + < .
3+a?2+b2 3+b2+c2 3+c2+a?  27+a?+b2+c?

(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.39. Thus, we only need to prove
the inequality for 0 < a = b < c. Therefore, we only need to show that 2a +¢ =3

involves
1 2 18

+ < .
34+2a%2 3+a%+c? 2742a%+c?
Write this inequality as follows

1 + 2 < 3
2a2+3 5a2—12a+12 "~ a2—2a+6’

a*(a—1)*>0.

The equality holds for a = b = ¢ =1, and also for

(or any cyclic permutation).



EV Method for Nonnegative Variables 403

Remark. In the same manner, we can prove the following generalization:

e Let aj,a,,...,a, be nonnegative real numbers so that a; +a, +---+a, =n. If
k > , then
n—2
Z 1 < n?(n+k)
k+az+---+a2~ n(n2+kn+k2)+kn—n—k)ai+ai+---+a2)
with equality for a; = a, =---=a, =1, and also for
a=--=a,,=0, a,=n

(or any cyclic permutation).

P 5.42. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

S + 5 + 5 > 27
34+a2+b2 3+b2+c2 3+c24+a?  6+a2+b2+c?

(Vasile C., 2014)

Solution. Using the substitution
m=3+a*+b*+c?,

we have to show that

27
+f(B)+f(c) =
f@+ F)+ ()= 57—
for
a+b+c=3, a+b*+c*=m—-3, 0<a<b<cg,
f@w=——, 0<u<Vm=3.
m—u
From )
oy = 20 ey 120x(m + x7)
=)=, &=,

it follows that g”(x) > 0 for 0 < x < ¥m—3, hence g is strictly convex. By
Corollary 1, if

a+b+c=3, a?+b*+c*=constant, 0<a<b<cg,

then the sum

S3=f(a)+f(b)+f(c)
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is minimal for either a = 0 or 0 < a < b = c. Write the inequality in the homoge-
neous form

S 27
> .
Z (a+b+c)?+3(a2+b2) " 2(a+b+c)?+3(a?+b2+c?)
Case 1: a = 0. The homogeneous inequality becomes

5 5 5 27
+ + Z ’
(b+c)?>+3b%2 (b+c)*+3c2 (b+c)?>+3(b%2+c2)  2(b+c)*+3(b%+c?)

5[5(b% + c?) + 4bc] N 5 - 27
4(b2 +c2)2+10bc(b2 +c2) + 13b2c¢2  4(b2+c2)+2bc  5(b2+c2) +4bc’

For the nontrivial case bc # 0, substituting

we may write the inequality as

5(5t +4) N 5 o 27
4t24+ 10t +13  4t+2  5t+4°

5(5t +4) - 83t + 34
4t24+10t+13 ~ 22t +1)(5t +4)°

Since
83t + 34 < 90t + 20,

it suffices to show that

5t+4 > ot+2
4t2+10t+13 — (2t +1)(5t +4)’

which is equivalent to
14t% +7t*— 65t —10 > 0,

(t —2)(14t2>+ 35t +5)>0.

Case 2: 0 < a < b =c. We only need to prove the homogeneous inequality for
b=c¢=1; thatis,

10 + 5 > 27
(a+2)2+3@@+1) (a+2)2+6 2(a+2)2+3(a2+2)

10 N 5 S 27
4a2+4a+7 a®+4a+10  5a2+8a+14’
a(a®—3a+2)>0,

ala—1)*(a+2)>0.
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The equality holds for a = b = ¢ =1, and also for
a=0, b=c= E
2
(or any cyclic permutation).

Remark 1. Similarly, we can prove the following generalization:

e Let a, b, c be nonnegative real numbers so that a+ b+ c = 3. If k > 0, then

1 N 1 N 1 - 9(4k +15)
k+a2+b2 k+b24+c2 k+c24+a? 3(4k2+15k+9)+ (8k +21)(a? + b2 +c2)

with equality for a = b = c =1, and also for
3
a=0, b=c=-
2

(or any cyclic permutation).
For k = 0, we get the inequality in P 1.171 from Volume 2:

1 + 1 + 1 > 45
a2+b2  b2+c2 c24a2  (a+b+c)2+7(a+b2+c2)

Remark 2. More general, the following statement holds:

e Leta,,a,,...,a, be nonnegative real numbers so that a; +a, +---+a, =n. If
k > 0, then

e ;
k+ai+--+a2  q+ad+ai+---+a?

where
_ n*(n—1Pk+n*(n*—n—1) _ n(n—1*k* +n*(n® —n—1Dk+n®
 (n—1»k+n(m3—2n2—n+1)’ 1= (n—1»Bk+n(n®—2n2—n+1) ’
with equality for a; = a, =--- =a, = 1, and also for
n
a, =0, a,=---=qa,=
1 2 1

(or any cyclic permutation).

For k = 0 and k = n, we get the inequalities

Z 1 - n*(n?—n—1)
as+---+a2 n2+(nd-2n2—n+1)ad+da;+---+a?)

— 2 —
Z 2n—1 S n“(2n—3)

n+a;+---+az nn—1)+m—-2)(a+ai+--+a?)
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P 5.43. If a, b, c,d are nonnegative real numbers so that a+ b + c +d = 4, then

Z 3 < 296
3+2(a2+b2+c¢2) ~ 218+ a2+ b2+ c2+d2?’
(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.39. Thus, we only need to prove
the inequality for 0 < a = b = ¢ < d, that is to show that 3a + d = 4 involves

1 + 9 < 296
1+2a2 3+4a2+2d2~ 218+ 3a2+d2’

Write this inequality as follows

1 9 148
+ < ,
14+2a2 35—48a+22a?2 ~ 3(39—4a+ 2a?)

(a—1)*(14a—1)*>0.
The equality holds fora = b =c=d =1, and also for

1 53
a=b=c=—, d=—
14 14

(or any cyclic permutation).

P 5.44. If a, b, c are nonnegative real numbers so that ab + bc + ca = 3, then

4 + 4 + 4 S 21
2+a2+b% 24+b2+c2 2+c2+a? 4+a2+b2+c?

(Vasile C., 2014)

Solution. The proof is similar to the one of P 5.42. Thus, we only need to prove
the inequality fora=0and forO<a < b=c.
Case 1: a = 0. We need to show that bc = 3 involves

1 1 1 21
+ + > :
2+b2 2+c?2 2+Db2+c?2 7 4(4+b2+c?)

Denote
x=b%>+c%  x>2bc=6.

Since
1 1 4+ b%+c? x+4

+ = = ,
2+b%2 2+4c¢2  b22+2(b2+c2)+4 2x+13
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we only need to show that

x+4 1 21
+ > .
2x+13 x+2  4(x+4)

Since
x+4 1 x?+8x+21 - 7(2x +3)

- = > :
2x+13 x+2 (2x+13)(x+2)  (2x+13)(x+2)
it suffices to show that

2x+3 S 3
(2x+13)(x+2) ~ 4(x+4)

This inequality reduces to
(x—6)(2x+5)>0.

Case 2: 0<a<b=c. Let
q =ab + bc +ca.

We only need to prove the homogeneous inequality

4 4 4 21
+ + >
2q +3(az+b%2) 2q+3(b%2+c2) 2q+3(c2+a2)  4q+3(a%+b%2+c?2)

for b = ¢ = 1. Thus, we need to show that

8 4 21
+ = s
2(2a+1)+3(a2+1) 2(2a+1)+6  4(2a+1)+3(a2+2)

which is equivalent to
8 1 21
+ > ,
3a2+4a+5 a+2 3a?>+8a+10

a’+4a+7 o 7
(3a2+4a+5)(a+2)  3a%2+8a+10’
a(3a®—a*—7a+5)>0,
a(a—1)*(3a+5)>0.

The equality holds for a = b = ¢ =1, and also for
a=0, b=c=+v3
(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

e Let a, b, c be nonnegative real numbers so that ab + bc +ca = 3. If k > 0O, then

1 N 1 N 1 - 9(k +5)
k+a2+b2 k+b2+c2 k+c2+a? 3(k2+5k+2)+2(k+4)(a?+b2+c2)
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with equality for a = b = ¢ =1, and also for
a=0, b=c=+3
(or any cyclic permutation).
For k = 0, we get the inequality in P 1.171 from Volume 2:

1 1 1 45
+ + > .
az+b2 b2+c2 c2+4+a?  2(ab+ bc+ca)+8(a2+ b2+ c2)

P 5.45. If a, b, c are nonnegative real numbers so that a* + b* + c* = 3, then

1 1 1 1
+ + <-.
10—(a+b)2 10—(b+c)?> 10—(c+a)~ 2

(Vasile C., 2006)

Solution. Let
s=a+b+c, s<3.

We need to show that

1 1 1

+ + <
10—(s—a)? 10—(s—b)> 10— (s—c)?

1
T2

fora+ b +c=s and a®+ b% + c¢? = 3. Apply Corollary 1 to the function

-1
f(u)=m, 0<u<s<3.
We have )
g(0) = f/(x) = 28 1)

[10 —(s —x)2]*’
_ 24(s —x)[10 + (s —x)?]
o [10—=(s—x2}F

Since g”’(x) > 0 for x € [0,s), g is strictly convex on [0,s]. According to the
Corollary 1, if

g"(x)

a+b+c=s, a+b*+c>=3, 0<a<b<c,

then

S3=f(a)+f(b)+f(c)
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is minimal for either a =0 or 0 < a < b = c. Therefore, we only need to prove the
homogeneous inequality

1 1
<
Z 10(a? + b2 +c2)—3(b+c)*> = 2(a®?+ b%+c?)
fora=0and for b=c=1.
Case 1: a = 0. The homogeneous inequality becomes

1 1 1 1
+ + < .
7(b2+c2)—6bc  10b2+7c2  7b2+10c2 ~ 2(b2+c2)

This is true since

1 1
7(b2 + c2)—6bc = 4(b2 +c2)
and

1 N 1 _ 17(b2 +¢?)
10b2+7c¢2  7b2+10c2  70(b2+ c2) + 149b2c2

17(b% + ¢?)
~ 70(b2%+ c2) + 140b2¢2

17 1

= < .
70(b%2+c2)  4(b2+c?)
Case 2: b =c = 1. The homogeneous inequality turns into
1 2 1
+ < ,
2(5a2+4) 7a2—6a+17 — 2(a%+2)
2 < 2a%2+1
7a2—6a+17 ~ (5a2+4)(a?+2)’
4a*—12a® +13a*—6a+1>0,
(a—1)*(2a—1)*>0.

The equality holds for a = b = ¢ =1, and also for

2
2a=b=c=—

V3

(or any cyclic permutation).

P 5.46. If a, b,c are nonnegative real numbers, no two of which are zero, so that
a*+ b*+c* =3, then
1 + 1 + 1
a>+b> b>+c> cS+ad

3
> .
2

(Vasile C., 2010)
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Solution. Using the substitution

4 4 — 55/4

x=a*, y=»b% z=c* p S/4 4 g5/,

+y
we need to show that x + y +z = 3 and x> + y>/4 4+ 25/ = p involve
3
fFO)+f)+f(=z)= >

where 1
f(u) e 0<u<p*.

We will apply the EV-Theorem for k = 5/4. We have

, 5ul/4
fllw)= W,
S 1 , 5x
g)=f'(x7) = f/(x*) = o
_ 75x*(2p + 3x°)

g'(x)= 20 —x°)

Since g”(x) > 0, g is strictly convex. According to the EV-Theorem and Note 3, if
x+y+z=3, x4y 425% =p=constant, 0<x<y<z,

then
Ss=fx)+f(y)+f(2)

is minimal for either x = 0 or 0 < x < y = z. Thus, we only need to prove the
homogeneous inequality

1 1 1 3 3 5/
+ + > —
a>+b> b>5+c> c>+a> 2\at+b*+ct

fora=0and0<a<b=c=1.
Case 1: a = 0. The homogeneous inequality becomes

1+1+ 1 >3( 3 )5/4
b5 5 b5+c5 2\ b4+ct)
5/4

(%)5/2 - (%)5/2 * (2)5/2 j_ ( )5/2 = (;)9/4 m )

<
b b

9/4 5/4
ALET L puu—— 2
t5/2 4 ¢t=5/2 7\ 2 t2+¢2)
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1 3\* 1
5/2 > = e
a2y 1> (2) 5

where

£5/2 4 ¢5/2 2/5 t2 4 12 1/2 b
A:(—) B
2 2 c

By power mean inequality, we have A> B > 1. Since

1 1 1
5/2 _ 5/2 3~ | —(A5/2_p5/2 - -
287+ (23 + 235/2) =(4*-B )(2 2A5/2B5/2) >0,

it suffices to show that

9/4
2B5/2 4 1 > E / . L
2B5/2 7\ 2 BS/2°

B> +1> 3\
4 +_E 5

39 1/4
)"
25

32.5%> 3%,

which is true if

This inequality follows by multiplying the inequalities
5%>23.3°

and
32-23 > 3°,

Case 2: 0 < a <1=>b =c. The homogeneous inequality becomes

a’+5 3\
()"
a>+1 a*+2

which is true if g(a) > 0, where

1
g(@)=In(a®+5)—In(a®+ 1) + §1n<a4 +2)-2 23,
with
g’(a)_ a a 1 a10+2a5—8a+5

— + =
5a3 as+5 a5+1 a*+2 (a*+5)(a>+1)(a*+2)
(a—1)(a’+a®+a’ +a®+a®+3a*+3a®+3a%+3a—5)
(a*+5)(a® +1)(a*+2) )
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There exists d € (0,1) so that g’'(d) =0, g’(a) > 0 for a € [0,d) and g’'(a) < O for
a € (d,1). Therefore, g is increasing on [0,d] and is decreasing on [d,1]. Since
g(1) =0, we only need to show that g(0) > 0. Indeed,

1 4 .95
0)=-1In > 0.
g(0)=ZIn—z
The equality holds fora=b =c = 1.
O
P 5.47. If a;,a,,...,qa, are nonnegative real numbers so that a; +a,+---+a, =n,

then

1
\/a§+1+\/a§+1+---+,/a§+12 \J2(1——)(af+a§+---+ag)+2(n2—n+1).
n

(Vasile C., 2014)

Solution. For n = 2, we need to show that a; + a, = 2 involves

Ve +1+4/2+12> /a2 +ad+6.

By squaring, the inequality becomes

V@ +1D@+1)=2,
which follows immediately from the Cauchy-Schwarz inequality:
(a% + 1)((1% + 1) = (a% + 1)(1 + a;) > (al + a2)2 =4,

Assume further that n > 3 and a; < a, <--- < a,. We will apply Corollary 1 to the

function
fw)=—vu2+4, u>0.
We have s
X)=f'(x)= —,
8 d vx2Z+4
e 12x
g (x) = T ay

Since g”(x) > 0 for x > 0, g(x) is strictly convex for x > 0. By Corollary 1, if
a;<a,<---<a, and

— 2, 2 2
a +a,+---+a,=n, ajy+ta;+---+a =constant,

then the sum

Sp=f(a))+f(a)+---+f(a,)
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is maximal for a; = a, = -+- = a,_;. Thus, we only need to show that

Va2 +1+n—-1)vVb2+1> \J2(1—%)[a2+(n—1)b2]+2(n2—n+1).

for
a+(n—1)b=n.

By squaring, the inequality becomes

2n(n—1)/(a%+ 1)(b2 +1) > (n —2)a® — (n — 2)(n — 1)*b* + n®,

which is equivalent to

V(b2 +D[(n—1)2b2—2n(n—1)b+n2+1]> n—(n—2)b.
This is true if
(B2 + D[(n—1)*b*>—2n(n—1)b+n?>+1]1>[n—(n—2)b]?
which is equivalent o
(n—1)*b*—2n(n—1)b>+ (n®*+2n—2)b2—2nb+1>0,
(b—1P[(n—1)b—1]*>0.

The equality holds for a; =a, =--- =a, =1, and also for

=n—1

a,=a,=---=a = s a

(or any cyclic permutation).

P 5.48. If a,,a,,...,a, are nonnegative real numbers so that a; + a,+---+a, =n,
then

> V@n—aE +n> /(Bn—4)(a3 +ai+ - +a2)+n(4n2—Tn+4).

(Vasile C., 2009)

Solution. The proof is similar to the one of the preceding P 5.47. Thus, it suf-
fices to prove the inequality for a; = a, = --- = a,_;. Write the inequality in the
homogeneous form

Z VnBn—4)a2 +52 > /n(Bn—4) (a2 + a2+ +a2) + (4n> — 7n + 4)S2,
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where S = a; + a, + -+ a,. We only need to prove this inequality for a; = a, =
-oe=a,_; =1, thatis

(n—l)\/n(Sn—4)+(n—1+an)2+ \/n(3n—4)a,21+(n—1+an)22

> \/n(Sn —4)(n—1+a?)+“4n2—=7n+4)(n—1+a,)?,

which is equivalent to

\/(n—l)[ag+2(n—1)an+4n2—6n+1]+\/(Bn—l)a%+2an+n—12

> /(7n—4)a2 + 2(4n2 — 7n + 4)a, + 4n® — 8n2 + Tn — 4.

By squaring, the inequality turns into

2\/(n— DI(Bn—1)a?+2a, +n—1][a?+2(n—1)a, +4n?—6n+1] >
(3n—2)a’+2(n—1)(3n—2)a, +2n* —n—2.
Squaring again, we get
(a,—1)*(a,—2n+3)*>0.

The equality holds for a; =a, =--- =a, = 1, and also for

a, n
A=Ay =+""=0a,_1 = =
" 2n—3 3n—4

(or any cyclic permutation).

Remark. For n = 3, we get the inequality

V502 + 3+ V5b2 + 3+ v/5¢2 +3 > ¢/5(a2 + b? + 2) + 57,

where a, b, c are nonnegative real numbers so that a + b + ¢ = 3. By squaring, the
inequality turns into

V(502 +3)(5b2+ 3) + 1/(5b2 + 3)(5¢2 + 3) + 1/ (5¢2 + 3)(5a2 + 3) > 24,
with equality for a = b =c =1, and also for
c

3
a:b: = —
3 5

(or any cyclic permutation).
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P 5.49. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

8
Va2 +4+ Vb2 +4+ \/02+4S\l§(a2+b2+c2)+37.

(Vasile C., 2009)

Solution. Assume that a < b <c, and apply Corollary 1 to the function a

fu)=—vu2+4, u=0.

We have Ly
x)=f'(x)= ,
g(x) = f'(x) Neorwi
e 12x
g'(x)= I

Since g”(x) > 0 for x > 0, g(x) is strictly convex for x > 0. By Corollary 1, if
a+b+c=3, a*+b*+c?=constant, a<b<c,

then the sum
Sy=f(a)+f(b)+f(c)

is minimal for either a = 0 or 0 < a < b = c. Thus, we only need to prove the
desired inequality for these cases.

Case 1: a = 0. We need to prove that b + ¢ = 3 involves

\/b2+4+\/c2+4§\j§(b2+c2)+37 —2.

Substituting

3 3
b=—x, c=—y,
2 2

we need to prove that x + y = 2 involves

V9x2 +16+ 4/9y2 +16 < 24/6(x2 + y2) +37 —4.

By squaring, the inequality becomes

24/(9x2 4+ 16)(9y2 + 16) < 15(x* + y2) + 132 — 164/6(x2 + y2) + 37.

Denoting
p=xy, 0O=p=],

we have

x*+y*=4—2p, (9x*+16)(9y*+16)=81p*—288p + 832,
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and the inequality becomes

v/81p2—288p +832 < —15p +96—8+/61—12p,

81 15
\J P2 =72p+208 < ——"p+(48—4v/61—12p),

By squaring again (the right hand side is positive), the inequality becomes

81 225
sz —72p + 208 < sz —15p(48 —4+/61 —12p) + (48 —4+4/61 —12p)?,

3p?—70p + 256 > (32 —5p)4/61 —12p.

Since

61—12p 2(55—6
2/61-12p <7+ p_ A - p)

it suffices to show that
7(3p*—70p +256) > (32— 5p)(55 — 6p),

which is equivalent to
(1—-p)(32+9p)=0.

Case 2: b = c. We need to prove that
a+2b=3

implies

Va2+4+ZVb2+4§\Jg(a2+2b2)+37.

By squaring, the inequality becomes

124/(a2 + 4)(b2 + 4) < 5a* + 4b* + 51,

which is equivalent to

v (4b2—12b + 13)(b2 + 4) < 2b*>—5b +8.
By squaring again, the inequality becomes
2b°>—7b*+8b—3 <0,
(b—1)*(2b—3) <0,
(b—1)*a>0.
The equality holds for a = b = ¢ =1, and also for
a=0, b=c= %

(or any cyclic permutation).



EV Method for Nonnegative Variables 417

P 5.50. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

V3202 + 3+ v/32b2 + 3+ v/32¢2 + 3 < 1/32(a2 + b2 + ¢2) + 219.

(Vasile C., 2009)

Solution. The proof is similar to the one of P 5.49. Thus, it suffices to prove the
homogeneous inequality

Z\/96a2+(a+b+c)23 V/96(a2 + b2 +c2)+73(a + b +¢)?

fora=0andforb=c=1.

Case 1: a = 0. We have to show that

b+c+v97b2+2bc +c2+ v/ b2+ 2bc +97¢2 < \/169(b2 +¢2)+ 146bc.

Since 2bc < b? + ¢?, it suffices to prove that

b+c+v/98b2 +2¢2 + /2b2 +98c2 < /169(b2 + c2) + 146bc.

By squaring, we get

(b+c) (\/98b2 +2c2+4/2b2 + 98c2) +24/(49b2 + c2)(b2 + 49¢2) <

< 34(b%+c?) + 72bc.

Since

V/98b2 + 2¢2 + v/2b2 + 98¢2 < 1/2(98b2 + 2¢2 + 2b2 + 98¢2) = 104/2(b2 + ¢2)

and
10(b + ¢)4/2(b2 +¢2) < 20(b +¢)?,

it suffices to show that

V/ (49b2 + c2)(b2 + 49¢2) < 7(b? + ) + 36bc.
Squaring again, the inequality becomes

be(b—c)? > 0.

Case 2: b = ¢ = 1. The homogeneous inequality turns into

VO97a% + 4a + 4+ 2V a +4a + 100 < V16942 + 292a + 484.

By squaring, we get

v (97a2 + 4a + 4)(a2 + 4a + 100) < 174> + 68a + 20.
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Squaring again, the inequality reduces to

ala—1)*(a+12)>0.

The equality holds fora = b = ¢ =1, and also for a =0 and b = ¢ = 3/2 (or any
cyclic permutation).

Remark. By squaring, we deduce the inequality

V(3242 +3)(32b2 + 3) + 4/(32b2 + 3)(32¢2 + 3) + 1/(32¢2 + 3)(32a2 + 3) < 105,
with equality for a = b =c¢ =1, and also for
a=0, b=c= §
2

(or any cyclic permutation).

P 5.51. Ifa,,a,,...,a, are positive real numbers so that a; +a, + -+ +a, = n, then

1 1 1 2nvn—1
—+—+ =t >n+2vn—1.
a, a, a, aj+ta;+---+az

(Vasile C., 2009)

Solution. For n = 2, the inequality reduces to
(a,a,—1)*>0.

Consider further that n> 3 and a; < a, <--- < a,. By Corollary 5 (case k = 2 and
m=-1),if a;<a,<---<a, and

a+ay+---+a,=n, a+a+---+a=constant,

then the sum

1 1 1
Sp=—+—4-+—
a; an
is minimal for a; = -+ = a,_; < a,. Therefore, we only need to prove that
n—1 1 2nvn—1
=+ ——— " —>n+2Vn—1,

a a, (n—1)a+a?

for (n—1)a; + a, = n. The inequality is equivalent to

2
n
a—12(a— )20.
(@ =1 & n—1++vn—1
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The equality holds for a; =a, =--- =a, = 1, and also for
an
a, =a :---:an_ =
1 2 1 n—1

(or any cyclic permutation).

P 5.52. Ifa,b,c €[0,1], then
(1+3a*)(1+3b%)(1+3c*)>(1+ab+ bc+ca).
Solution. Since
2(ab+bc+ca)=(a+b+c)—(a®+b%+c?),
we may apply Corollary 1 to the function
fW)=—-In(1+3uv?), uel0,1],
to prove the inequality

fl@)+f(b)+f(c)+3In(1+ab+ bc+ca)<0.

We have 6
oo —bx
) =)= o,
) = 108x(1—x?2)
T

Since g”’(x) > 0 for x € (0,1), g is strictly convex on [0, 1]. According to Corollary
1 and Note 2, if

a+b+c=constant, a*+b*+c®>=constant, 0<a<b<c<]1,

then
Sy=f(a)+f(b)+f(c)

is maximal for a = b < c. or for ¢ = 1. Thus, we only need to prove the original
inequality for these cases.

Case 1: a = b < c. We need to show that
(14+3a®)?(1+3c?) > (1+a?+2ac)’.

For ¢ = 0, the inequality is an equality. For fixed ¢, 0 < ¢ < 1, we need to show that
h(a) = 0, where

h(a) = 2In(1 + 3a®) + In(1 + 3¢?) —3In(1 + a® + 2ac), a€[0,c].
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From

12a 6(a+c) = 6(1—a®)a—c) <0

h'(a) = — = <0,
(a) 1+3a%2 1+a%2+2ac (1+3a2)(1+ a2+ 2ac)

it follows that h is decreasing on [0, c], hence h(a) > h(c) = 0.

Case 2: ¢ = 1. We need to show that
4(1+3a*)(1+3b%)>(1+a)®*(1+b).
This is true because
2(1+3a*)>(1+a)®>, 2(1+3b*)>(1+b).
The first inequality is equivalent to
(1—a)*>0.

The proof is completed. The equality holds fora = b =c.

P 5.53. If a, b, c are nonnegative real numbers so that a+ b+ c = ab+ bc +ca, then

1 1 1
+ +
4+5a?> 4+5a? 4+5a?

1
> -
3

(Vasile C., 2007)
Solution. By expanding, the inequality becomes
4(a® + b%*+c?) + 15 > 25a%b%c? + 5(a®b? + bc? + c%a?).
Let p=a+ b +c. Since
a’+b*+c*=p*—2p, a’b*+b%c*+c%*a®=p*—2pabc,

the inequality becomes
(2p —4)*> > (p —5abc)?,
(8p—4—>5abc)(p + 5abc —4) > 0.
We will show that 3p > 4+ 5abc and p + 5abc > 4. According to Corollary 4 (case
n=3, k=2)orP 3.57 in Volume 1, if
a+b+c=constant, ab+bc+ca=constant, 0<a<b<c<d,

then the product abc is maximal for a = b, and is minimal for a = 0 or b = c. Thus,
we only need to prove that 3p > 4 + 5abc for a = b, and p + 5abc > 4 fora =0
and for b =c.
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For a =b, from a+ b+ c =ab + bc + ca we get

a(2—a) 1
= , —<a<?2,
2a—1 2

hence

(a—1)*(5a*+4) -0

3p—4—5abc =(3—5a*)c+6a—4=

2a—1
For a =0, from a+ b+ c=ab+ bc + ca we get
b
= — b>1
c b—]_’ >
hence . )
—2
p+5abc—4:b+c—4=(b 1) > 0.
For b =c, from a+ b +c =ab + bc + ca we get
b(2 —
a:M’ 1<b§2,
2b—1 2

hence

(2—b)(5b% —3b + 2)
2b—1
_@-b)4b’+ (=17 +2)] _
2b—1

p+5abc—4=a(5b*+1)+2b—4=

The equality holds for a = b = ¢ =1, and also for a = 0 and b = ¢ = 2 (or any
cyclic permutation).
O]

P 5.54. If a, b, c,d are positive real numbers so that a + b + c +d = 4abcd, then

1 1 1 1
+ + + > 1.
1+3a 1+3b 1+43c 1+4+3d

(Vasile C., 2007)
Solution. By expanding, the inequality becomes
1+3(ab+ac+ad+ bc+ bd+cd)>19abcd,

2+3(a+b+c+d)?*>3(a*+b*+c*+d*)+38abcd.

According to Corollary 5 (case n =4, k=0, m = 2), if

a+b+c+d=constant, abcd =constant, 0<a<b<c<d,
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then the sum
S,=a*+b*+c*+d?

is maximal for a = b = ¢ < d. Thus, we only need to prove that

3a+d=4a%d, d= 3a

=——, a>
4a3—1

1
V4’
involves

3 1

3a+1+3d—+-12
3 N 4a®—1
3a+1 4a®*+9a-—1
4a®—9a®* +6a—1>0,

(a—1)*(4a—1)>0.

>

—_— 5

The equality holds fora=b=c=d =1.
Open problem. If a,,a,,...,a, (n > 3) are positive real numbers so that

a1+a2+"‘+an:na1a2"'an,

then
! + ! ot ! >1
1+(n—1)a; 1+(Mm—1)a, 1+(n—1)a,
O
P 5.55. If a;,a,,...,a, are positive real numbers so that
1 1 1
G tay+ta,=—+—++—,
a; a a,
then
1 1 1
> 1.

+ tot————— >
1+(n—1)a; 1+(n—1)a, 1+(n—1)a,
(Vasile C., 1996)

Solution. For n = 2, the inequality is an identity. For n > 3, we consider

a1§a2<'--<a

and apply Corollary 2 to the function

1
f(U):m, u>0.
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We have ( H
/ _ —\n—
W= e
o L _ —(n—1)x
g&)_f(¢?)_[¢z+n—uf
7 3(n_1)2
g'(x)=

2/x(V/x +n—1)*
Since g”(x) > 0 for x > 0, g is strictly convex on [0,00). By Corollary 2, if
0<a;<a,<---<a, and

1 1 1
a; +a,+---+a,=constant, —+—+---+— =constant,
a a a,

then the sum
Sp=f(a)+ fla)+---+f(a,)

is minimal for a, = --- = a,. Therefore, we only need to show that
1 + n—1 > 1

1+4(n—1)a 1+(n—-1)b

for ; 1
a+(n—1Db=-+2"2 0<a<b.
a b

%—a=(n—1)(b—%),

Write the hypothesis as

which involves a < 1 < b and

1 1
——a>b——, ab<1.
a b

Write the desired inequality as

n—1 1
— >l —
1+(n—1)b 1+(n—1)a
which is equivalent to
n—1 S (n—1a
1+(n—1b  1+(n—1a’
l—a>((n—1)a(b—1).

For the nontrivial case b # 1, we have

b(1—a?) (1—a)(1—ab)
l—-a—(n—1)a(b—1)=1—a———=a(b—1)= =0
a—(n=1)q ) . a(b2—1)a( ) b+1 -
If n > 3, then the equality holds fora; =a, =+ =a, =1.
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P 5.56. Ifa, b, c,d,e are nonnegative real numbers so that a*+ b*+c*+d*+e* =5,
then
7(@®+b*>+c?+d*+e*)>(a+b+c+d+e)+10.

(Vasile C., 2008)
Solution. According to Corollary 5 (case n =5, k=4, m=2), if
a+b+c+d+e=constant, a*+b*+c*+d*+e*=5 0<a<b<c<d<e,

then the sum

S,=a*+b*+c*+d*+é?
is minimal for a = b = ¢ = d < e. Thus, we only need to prove the homogeneous
inequality

[7(a?+ b2 +c2+d?>+e2)—(a+b+c+d+e)?*?>20(a*+ b*+c*+d* +eh)

fora=b=c=d=0anda=b=c=d =1. The first case is trivial. In the second
case, the inequality becomes

[7(4+e*)—(4+€)*]* = 20(4 +e*),
(3e* —4e +6)* > 5e* + 20,
e*—6e’ +13e*—12e +4 >0,
(e—1)*(e—2)*>0.
The equality holds fora =b =c=d =e =1, and also for

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

e Ifa;,a,,...,a, are nonnegative real numbers so that
4., 4 4 _
al+al+---+a’=n,

then
(n+vn-D(@+ai+--+a>—n)=(q+ay+---+a,) —n?
with equality for a; = a, =--- =a, = 1, and also for
a1
U /n=1 Jn—-1

alz...:a

(or any cyclic permutation).
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P 5.57. If a;,a,,...,a, are nonnegative real numbers so that a; +a, +---+a, =n,

then

S nn—1)

2 2 242 2 4 4 4
(a; +ay+---+a;) —n" = nz_n+1(a1+a2+---+an—n).

(Vasile C., 2008)

Solution. For n = 2, the inequality reduces to (a;a,—1)* > 0. For n > 3, we apply
Corollary 5 fork=2andm=4: if 0<a;<a,<---<a, and

a+ay+---+a,=n, a+a+---+a=constant,

then
_ 4 4 4
Sp=a;+a,+---+a;
is maximal for a; =--- = a,_; < a,. Thus, we only need to prove the homogeneous
inequality

n*(n*—n+1)(a}+a+---+a>)* = (n*—2n+2)(a; +ay +--- +a,)* +n’(n—1)S,,

fora; =+ =a,;, =0and fora; = -+ =a
a, =---=a,_; = 1, the inequality becomes

; = 1. For the nontrivial case

n—

n*(n*—n+1)(n—1+a’)*>m*—2n+2)(n—1+a,)* +n’(n—1)(n—1+a}),

(an - 1)2[an - (n - 1)2]2 > 0.

The equality holds for a; =a, =--- =a, =1, and also for

a1:...:a — a

(or any cyclic permutation).

P 5.58. If a;,a,,...,a, are nonnegative real numbers so that a> +aj +---+a’>=n,

then

1
3 3 3 6 6
a1+a2+--~+an2\jnz—n+1+(1—;)(al +aS+---+ad).
(Vasile C., 2008)
Solution. For n = 2, the inequality is equivalent to
6, 6 3.3
a; +a, +4aja, =6,

2 233 2 2¢ 2 2 3.3
(a; +a3)’ —3ajay(a; + a;) +4aja; > 6,

Zafa;’ — 3afa§ +1>0,
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For n > 3, we apply Corollary 5 fork =3/2and m=3: if 0<x; <x, <+ < X,
and

Xp+xp+etx, =0, xP+x)?++x3% = constant,
then
Sp=x]+ x4+ x>
is maximal for x; = -+ = x,_; < x,,. Thus, we only need to prove the homogeneous
inequality

2_
m3+&+~~+aﬂ2>E——Eilaﬂ+a%w-wwﬂf+ -1 (@®+al+---+ad)
1 2 n - ns3 1 2 n n 1 2 n

fora, = -+ = a,; = 0 and for a; = -+ = a,_; = 1. For the nontrivial case
a, =---=a,_; = 1, the inequality becomes

n*(n—1+ ai)2 >(n*—n+1D(n—-1+ ai)3 +n*(n—1)(n—1+ ag),

(a,—1)*(a,—n+1)*(a’+2na,+n—1) > 0.

The equality holds for a; =a, =--- =a, = 1, and also for
a=--=a 4“ _ 1
1= —1 T T T ]

(or any cyclic permutation).

P 5.59. If a, b, c are positive real numbers so that abc = 1, then

1 1 1 50
4(—+—+—)+—227.
a b ¢ a+b+c

(Vasile C., 2012)
Solution. According to Corollary 5 (case k=0 and m = —1, if
a+b+c=constant, abc=1, 0<a<b<c,

then
1 1 1
S;=—+—+-
a b ¢

is minimal for 0 < a = b < c¢. Thus, we only need to prove that

2 1 50
4(—+—)+ > 27
a c¢ 2a+c
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for

The inequality is equivalent to
8a® —54a* —26a* —27a +8 > 0,

(2a —1)*(2a* +2a® —12a* + 5a +8) > 0.

It is true for a € (0, 1] because

2a*+2a®—12a%2+5a+8>—12a*+4a+8=4(1—a)(2+3a) > 0.

The equality holds for

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:

e Ifa,,a,,...,a, are positive real numbers so that a,a,---a, =1, then
1 1 1 2"+n—1)>
2”(—+—+---+—)+ ( ) >2n(2"+1),
al az an a1+a2+"'+an
with equality for
1 -1
@ ==y =7, a,=2"
(or any cyclic permutation).
For
a1:...:an_1:aslj an_lanzl’

the inequality is equivalent to f (a) > 0, where

(2"+n—1)%a"!

n n—1 n—1 n
fla)=2 (T+a )+ (=D + 1 —2n(2"+1).
We have
flla) _2"a"—=1) (2"+n— 1)2a™2(a"—1)
n—1 a2 [((n—1)a"+1]2
_(a"—1D@"a"—D[(n—1)*a" —2"]
B a?[(n—1)a"+1]2
Since

(n—1)’a"—-2"<(n—1)*—-2"<0,
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1 1
it follows that f’(a) < 0 for a € (O, 5), and f'(a) >0 fora € (5, 1). Therefore,

1 1
f is decreasing on (O, 5] and increasing on [E’ 1}, hence

f(a)Zf(%)=O.

P 5.60. If a, b, c are positive real numbers so that abc = 1, then

1 1 1
a3+b3+c3+1526(—+—+—).
a C

(Michael Rozenberg, 2006)

Solution. Replacing a, b, c by their reverses 1/a,1/b,1/c, we need to show that

abc =1 involves 1 1 1
E+ﬁ+c_3+1526(a+b+c)'

According to Corollary 5 (case k=0 and m = -3, if
a+b+c=constant, abc=1, 0<a<b<c,

then
g 1,1 .1
Tt Te
is minimal for 0 < a = b < c¢. Thus, we only need to prove that
2 1
—+—=+4+15>6(2a+¢)
a® ¢3

for

The inequality is equivalent to

2 1
—+a6+1526(2a+—),
a3 a2

a’—12a*+15a>—6a+2>0,
(1—a)*(2—2a—6a*+5a®+4a* +3a® +2a® +a’) > 0.
It suffices to show that
2—2a—6a*+5a®+3a* > 0.
Indeed, we have

3 3
2(2—2a—6a*+5a®+3a*) = (2—3a)2(1 +2a + Zaz) +a® (1—Za) > 0.

The equality holds fora=b =c=1.
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P 5.61. Let a,,a,,...,a, be positive numbers so that a;a,---a, = 1. Ifk > n—1,
then

1 1 1
all‘+a]2<+---+ak+(2k—n)n2(2k—n+1)(—+—+---+—).
" a, a an

(Vasile C., 2008)

Solution. For n = 2 and k = 1, the inequality is an identity. Forn =2 and k > 1,
we need to show that f(a) > 0 for a > 0, where

fla)=d"+a*+4k—-1)—2k—1)(a+a™?).

We have
fl@=k(@"'—a* N —(2k-1)(1—a™?),

(@) =k[(k—1)a* %+ (k+ 1)a*2]—2(2k —1)a">.
By the weighted AM-GM inequality, we get

(D=2 1)k=2) _
% = 2ka 3,

(k—1)a* 2+ (k+1)a 2> 2ka
hence
f"(a) > 2k*a2—-22k—1)a 2 =2(k—1)*a >0,

f' is strictly increasing. Since f’(1) = 0, it follows that f’(a) < 0 for a < 1 and
f’(a) > 0 for a > 1, f is decreasing on (0,1] and increasing on [1, 00), hence
fla)=f(1)=0.

Consider further that n > 3. Replacing a,,a,,...,a, by 1/a;,1/a,,...,1/a,, we
need to show that a,a,---a, =1 involves

1 1 1
—t+ 5+ ++Q@k—n)n=2k—n+1)(a; +a,+--- +a,).
4 a4 ay

According to Corollary 5, iff 0<a; <a, <---<a, and

a, +a,+---+a, =constant, a,a,---a,=1,

then
S,= 24ty
nT kT kT ok
4 4 a,
is minimal for 0 < a; =--- =a,_; < a,. Thus, we only need to prove the original
inequality for a; = -+ = a,_; = 1; that is, to show that t > 1 involves f(t) > O,
where

f(t)=(n—-1)tk+ +(2k—n)n—(2k—n+1)(n—;1+t”_1).

tk(n—1)



430 Vasile Cirtoaje

We have
(n—1)g(t)

tkn—k+1 ’ g(t)= k(tkn —1)—(R2k—n+ l)tkn_k_l(tn —1),

fl(t)=

g'(t) = t""*2n(t),  h(t) =k*nt""t —(2k—n+D[(k+1)(n—Dt"—kn+k +1],
h'(t) = (k + Dnt" k2t —(2k—n+ 1)(n—1)].
Ifk=n—1,then h(t)=n(n—1)(n—2)> 0. If k > n—1, then
K2tk _(2k—n+1)(n—1)=k*—2k—n+1)(n—1)=(k—n+1)>>0,
h'(t) > 0 for t > 1, h is strictly increasing on [1, ©0), hence
h(t)>h(1)=n[(k—1)*+n—2]>0.

From h > 0, we get g’ > 0, g is strictly increasing, g(t) = g(1) = 0 for t > 1,
f’(t)>0fort>1, f is strictly increasing, f(t) > f(1) =0 for t > 1.
The equality holds for a; = a, =:-- =a, = 1. If n = 2 and k = 1, then the
equality holds for a;a, = 1.
[

P5.62. Leta,,a,,...,a, (n=> 3) be nonnegative numbers so that a,+a,+---+a, =n,
and let k be an integer satisfying 2 <k <n+2. If

r=( ) -1,
n—1

k

n

then

ko ok
a;+a,+---+a, —n=nr(l—aa, - a,).

(Vasile C., 2005)

Solution. According to Corollary 4,if 0<a; <a,<---<a, and
— ko ok k _
a+a,+---+a,=n, a;+ta,+---+a, =constant,
then the product
P=aa,---q,

is minimal for either a; =0or 0 <a; < a, =---=a,.
Case 1: a; = 0. We need to show that

k
k k
a,+---+a, = (= 1)1
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for a, + - - - + a,, = n. This follows by Jensen’s inequality

a, + -+ a,\*
a§+---+aﬁ2(n—1)(¥).
n—1
Case2: 0<a; <a,=---=a,. Denoting a; = x and a, =y (x < y), we only need

to show that
f(x)=0,
where

f(x)=xk+(n—1)yk+nrxy”_1—n(r+1), y = n-
n

It is easy to check that

fO)=f@1)=0.
Since
; —1
y = 1
we have
F10) =k(x* =y )+ nry™*(y —x)

=(y—x)[nry™ 2 —k(y* 2+ y*3x + -+ x52)]

= (y —x)y"?[nr —kg(x)],
where

k—2
g(x) - yn—k + yn—k+1 ot yn—2 )

We see that f’(x) has the same sign as
h(x) =nr —kg(x).
Since the function
n—x
y(x)=
n—1

is strictly decreasing, g is strictly increasing for 2 < k < n. Also, g is strictly
increasing for k = n+ 1, when

X2 xn—l
g)=y+x+—++—
y Yy

(n—2)x+n x? x"t

n—1 Yy yn2

and for k = n+ 2, when

3 n

g(X) = Y2+ yx+x2+ — -+ iz
Y Yy
_ (n*=3n+3)x*+n(n—3)x+n*  x° x"

(n—1)2 y yn2
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Therefore, the function h(x) is strictly decreasing for x € [0,1]. Since f(0) =
f (1) =0, there exists x; € (0, 1) so that f (x) is increasing on [0, x; ] and decreasing
on [x;,1]. As a consequence, f(x) = 0 for x €[0,1].

The equality holds for a; = a, =--- =a, =1, and also for

(or any cyclic permutation).

Remark. For the particular case k = n, the inequality has been posted in 2004 on
Art of Problem Solving website by Gabriel Dospinescu and Calin Popa.
OJ

1 1 1
P 5.63. If a, b, c are positive real numbers so that — + 3 + — =3, then
a c

4(a*+ b*+c*)+9 > 2labc.

(Vasile C., 2006)
Solution. Replacing a, b, c by their reverses 1/a,1/b,1/c, we need to show that
a+ b+ ¢ = 3 involves
4(l+i+1)+9>33
a? b> 2 "~ abc
According to Corollary 5 (case k=0 and m = —2), if

a+b+c=3, abc=constant, 0<a<b<c,

then
1 1 1
S; =

"2 pte
is minimal for 0 < a = b < c¢. Thus, we only need to prove that
. ( 2,1 )+ o> 21
a? c? - a’c

for 2a + b = 3. The inequality is equivalent to
(9a® +8)c*—21c + 4a* > 0,
4a*—12a® +13a*—6a+1>0,
(a—1)*(2a—1)*=0.
The equality holds for a = b = ¢ =1, and also for

1
a=b=2, c=-

(or any cyclic permutation).
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1 1 1
P 5.64. If a,,a,,...,a, are positive real numbers so that — + — +---4+ — =n,

a; d a,
then
a+a,+--+a,—n<e,(q;a,---a,—1),
where
1 n—1
€n_1 - (1 + ) .
n—1

(Gabriel Dospinescu and Calin Popa, 2004)
Solution. For n = 2, the inequality is an identity. For n > 3, replacing a,,a,, ..., a,
by 1/a;,1/a,,...,1/a,, we need to show that a; + a, + - - - + a,, = n involves

1 1 1
alaz---an(a—+a—+---+a——n+en_1)Sen_l.
1 2 n

According to Corollary 5 (case k =0and m=—1),if 0<a; <a,<---<a, and

a,+a,+---+a,=n, aa,--a,=constant,

then
1 1 1
Sp=—+— -+ t+—
a an
is maximal for 0 < a; < a, = --- = a,. Using the notation a; = x and a, = y, we

only need to show that f(x) < 0 for

x+(n—1)y=n, O0<x<1,

where

1 —1

fe=xy (£ + T ne ) e
X Yy
= yn_l +(n— 1)x3’n—2 —(n— en—1)xyn_1 —€p1-
Since
, . —1
Y= n—1’

we get

f'(x)

s = =R,
where

n—x

h(x)=n—2—(n—e, )y =n—2-(n—e,)—

is a linear increasing function. Since

h(0) = — (en_1—3+g)<0
n—1 n
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and
h(1)=e,_;—2>0,

there exists x; € (0, 1) so that h(x;) =0, h(x) < 0 for x € [0, x;), and h(x) > O for
x € (x;,1]. Consequently, f is strictly decreasing on [0, x; ] and strictly increasing
on [x;,1]. From

fO)=f(1)=0
it follows that f(x) <0 for x € [0,1].
The equality holds for a; = a, = --- = a,, = 1. If n = 2, then the equality holds
for a; + a, = 2a,a,.
OJ
P 5.65. If a,,a,,...,a, are positive real numbers, then

aij+a,+---+a’ 1 1 1
L2 ”+n(n—1)2(al+a2+---+an)(—+—+---+—).
a; @ an

Clla2 ) an
(Vasile C., 2004)

Solution. For n = 2, the inequality is an identity. For n > 3, according to Corollary
5(case k=0and me{—-1,n}),if 0<a;<a,<---<a, and

a,+a,+---+a, =constant, a,a,---a, = constant,

1 1
then the sum — + — +-- -+ — is maximal and the sum aj+a;+---+ayis minimal

a; da, a
for

O0<a;<ay=---=a,.

Consequently, we only need to prove the desired homogeneous inequality for a, =
-+ =a, = 1, when it becomes

al +(n—2)a; > (n—1)a’.
Indeed, by the AM-GM inequality, we have

al+(n—2)a, > (n—1)"ya}-aj 2 =(n—1)dl.

For n > 3, the equality holds when a; =a, =---=a

ne

P 5.66. If a,,a,,...,a, arenonnegative real numbers, then
(n—1)(a}+af+---+a)+naja,---a, = (a;+a,+---+a,) (@ +a) "+ +al ).

(Janos Suranyi, MSC-Hungary)
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Solution. For n = 2, the inequality is an identity. For n > 3, according to Corollary
S5(casek=nandm=n-—1),if 0<a;<a,<---<a, and

a, +a,+---+a, =constant, aj+a,+---+a =constant,

then the sum a} ' +aj ' +---+a"" is maximal and the product a,a, - - - a, is minimal
for either a; =0o0r 0 < a; < a, =---=a,. Consequently, we only need to consider
these cases.

Case 1: a; = 0. The inequality reduces to
(Tl—l)(a;+..-+ag) > (a2+...+an)(a;—1 +___+ar,:_1),

which follows immediately from Chebyshev’s inequality.

Case 2: 0 < a; < a, =--- = a,. Due to homogeneity, we may seta, =---=a, =1,
when the inequality becomes

(n—2)al +a; > (n—1)a .

Indeed, by the AM-GM inequality, we have

(n—2)al+a; > (n—1) "\ a;l("_z) -a; =(n—1)a} .

For n > 3, the equality holds when a; = a, =--- = q,, and also when

(or any cyclic permutation).

P 5.67. If a,a,,...,a, are nonnegative real numbers, then
1 1 1
(n—D(a +a™ +---+al") = (a, +ay+---+a,)(@] +ay +--+al —aa,-- - a,).

(Vasile C., 2006)

Solution. For n = 2, the inequality is an identity. For n > 3, according to Corollary
5(casek=n+landm=n),if 0<a;<a,<---<a, and

a;+ay+---+a,=constant, al*'+aj' +---+a'"" = constant,

then the sum aj +a; + - -+ + a, is maximal and the product a,a, - - - a, is minimal for
either a, =0 or 0 < a; < a, = --- = a,. Consequently, we only need to consider
these cases.

Case 1: a; = 0. The inequality reduces to

(n—1)(a™ +---+a™) = (ay+---+a)(a) +---+al),
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which follows immediately from Chebyshev’s inequality.

Case 2: 0 < a; < a, =---=a,. Due to homogeneity, we may seta, =--- =a, =1,
when the inequality becomes

(n—2)ai™ +a® > (n—1)al.
Indeed, by the AM-GM inequality, we have
(n—2)al*' +a2>(n—1) "\ agnﬂ)("_z) a2 =(n—1)a].

For n > 3, the equality holds when a; = a, =--- = q,, and also when

(or any cyclic permutation).

P 5.68. If a,,a,,...,a, are positive real numbers, then
1 1 1 1
(e, +ay+--+a,—n){ —+—++——n|+aqay-ra, + ————=>2.
a, a a aQ,ay---a,

(Vasile C., 2006)

Solution. For n = 2, the inequality reduces to
(1—a)*(1—ay)?*>0.

Consider further that n > 3. Since the inequality remains unchanged by replacing
each a; with 1/a;, we may consider a;a,--a, = 1. By the AM-GM inequality, we

get
a,+a,+---+a,=2ny/a,a,---a, =n.
According to Corollary 5 (case k =0and m=-1),if 0<a; <a,<---<a, and
a, +a,+---+a,=constant, a,a,---a,=constant,

then the sum

1 1 1
Sp=—+— 4 +—
a; a an
is minimal for 0 < a; = a, = -+ = a,_; < a,. Consequently, we only need to
consider
Q=A='+ =0a =X, A=Y, X=Y

The inequality becomes

-1 1
[(n—l)x+y—n](n +——n)+x”_1y+
x
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(x“_1+ n;l —n)y+[xnl_1 +(n—1)x—n]12 n(n—l)(x—l)z.

y x
Since
-1 —1
e I = T [ - )+ (R D) 4+ (= 1)]
—1)?
:u[xn_2+2x”_3+"'+(”_1)]’
b
and 2
—1 1 2
+(n—1)x—n:(x )[ * +...+(n—1)],
xn—1 X xnm2 X

it is enough to prove the inequality

+

[x“_2+2x”_3+---+(n—1)]y+[ 5 .
xn2 - xn-

1
+---+(n—1)]— >n(n—1),
Y
which is equivalent to

—2) +2(x”_3y+

n—2 1
X"y + —2)+--+(n-1)|y+—-——2|2=20,
y

xn—Zy xn—gy

("Py -1 26y =17 (= Dy =1

0.
XTl—Zy Xn—3y y

The equality holds if n — 1 of the numbers q; are equal to 1.

P 5.69. If a,,a,,...,a, are positive real numbers so that a;a,---a, =1, then
1 1
— <1.
va,+a,+---+a,—n 11441 4
a ay a,

(Vasile C., 2006)

Solution. Let

1 1 1
A=a;+ay+---+a,—n, B=—+—+--+——n.
a; a a
By the AM-GM inequality, it follows that A > 0 and B > 0. According to the pre-
ceding P 5.68, the following inequality holds

1
(a1+---+an+1—n—1)(—+---+

—n—1)+a1---an+1+—>2,
a, an+1

17" 0pp
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which is equivalent to

1
(A—1+an+1)(B—1+ )+an+1+—22,

an+1 an+1

+Ba,,, +AB—A—B > 0.

Ani1
Choosing
A
Any1 = E:
we get
2vAB+AB—A—B =0,
AB>(VA—+vEB ),
1 1
12 |———]|.
VA VB
O
P 5.70. If a;,a,,...,a, are positive real numbers so that a;a,---a, =1, then

2
n“(n—2 1 1 1

at+a Tt e +ad T+ ( ) 2(n—1)(—+—+---+—).
a,+a,+---+a, a, da, a

Solution. For n = 2, the inequality is an identity. Consider further that n > 3.
According to Corollary 5 (case k =0),if 0<a, <a,<---<a, and

a, +a,+---+a, =constant, a,a,---a,=1,

then the sum a”' +a} ' +---+a"" is minimal and the sum — 4+ — + -+ 4+ — is
a, d a,

maximal for 0 < a; < a, = --- = a,. Thus, we only need to prove the homogeneous
inequality

n’(n—2)a,a,---a

altal T tal T+

1 1 1
1 n2(n—l)alaz---an(_+_+...+_)

a1+a2+"'+an al a2 Cln
for a, =--- =a, = 1; that is, to show that f(x) > 0 for x € [0, 1], where
2
w2, °(n—2) 2

=" —— = (n—1),
) =a" 4 S ()

D€ B

n—2 (x+n—1)2

Since f’ is increasing, we have f'(x) < f’(1) =0 for x € [0,1], f is decreasing on
[0,1], hence f(x) > f(1)=0.
The equality holds for a; = a, = --- = a,, = 1. If n = 2, then the equality holds
for a;a, = 1.
O
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P 5.71. If a, b, c are nonnegative real numbers, then

bc—1
aoe (a4 b%+c*-3).

+b+c—3)P°>
(a c ) “abc+1

(Vasile C., 2006)
Solution. For a = 0, the inequality reduces to
b+ c*+bc+3>3(b+c),
which is equivalent to
(b—c)*+3(b+c—2)*>0.

For abc > 0, according to Corollary 5 (case k =0 and m = 2), if
a+b+c=constant, abc=constant,

then
Sy =a*+ b*+¢?

is minimal and maximal when two of a, b, c are equal. Thus, we only need to prove
the desired inequality for a = b; that is,

2

—1
ac (2a® +c*—3),

2a+c—3)?>
( ) azc+1

which is equivalent to
(a—1)*[ca®+2c(c—2)a+c?—3c+3]>0.
For ¢ > 2, the inequality is clearly true. It is also true for ¢ < 2, because
ca?+2c(c—2)a+c?>—=3c+3=cla+c—2)*+(1—-c)*(3—=c)=>0.

The equality holds if two of a, b, ¢ are equal to 1.

P5.72. If a,,a,,...,a, are positive real numbers so that a, +a,+---+a, = n, then
=2 2 2
(ayay---a,)(a; +a;+---+a;) < n.

(Vasile C., 2006)
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Solution. For n = 2, the inequality is equivalent to
(a1a2 - 1)2 2 O.

For n > 3, according to Corollary 5 (case k=0, m=2),if 0<a,;<a,<---<a
and

n

a,+a,+---+a,=n, aa,---a,=constant,
then the sum
2 2 2
Spy=aj+a;+--+a,
is maximal for a; = a, = --- = a,_;. Therefore, we only need to prove the homoge-
neous inequality

L Gt Gt td g taytta,\ e
(qya;---a,) vt - <

n n
fora; = a, =--- = a,_; = 1. The inequality is equivalent to f(x) > 0 for x > 1,
where | )
n x+n—1 nx x“+n—1
(x)= (24— )ln — —In
f vn—1 n vn—1 n
Let
_ 1
P n—1
Since
2+np p 2x
flo=—"" P

x+n—1 x x2+n-—1

:(n—l)(x—l)(g_ 2 )
x+n—1 x x2+n—1

_p(n—l)(x—l)(x—Vn—1)2>O
x(x+n—1Dx2+n-1)

f (x) is increasing for x > 1, hence
f)=f(1)=0.
The equality holds for a, =a, =---=a, = 1.

Remark. For n =5, from the homogeneous inequality above, we get the following
nice results:

e Ifa,b,c,d,e are positive real numbers so that

a’+b*+c?+d*+e* =5,

then
(a) abcde(a* + b*+c*+d*+e*) < 5;
(b) a+b+c+d+e>5vabcde.
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P 5.73. If ay,a,,...,a, are positive real numbers such that a; +a,+---+a, =n—1,
then

n—1 ad+ai+--+a?
>
- nn—1)
(Vasile Cirtoaje and KaiRain, 2020)

alaz---an

Solution. For n = 2, we need to show that a; + a, = 1 involves

> 8(a? + ay)?,
a;a,

which is equivalent to
(4a,a,—1)* > 0.

For n > 3, write the inequality in the homogeneous form

n—1 n(n—1)

(a1+a2-+—---+an)2 n-1__ a@+ai+--+a
alazcc.an -

According to Corollary 4, for a; +a, +---+a, = constant and a®>+ a2 +---+a> =

constant, the product a,a, - - - a, is maximal for a;, =a, =---=a,_; < q,. Due to
homogeneity, we may set a; = a, =--- = a,_; = 1, when the inequality becomes
Alx +n—1)> ————
vx
where
vn

= >
A=y ewien » X2 b

The inequality is true if f(x) > 0, where

1 1
f(x)=lnA+21n(x+n—1)——lnx—iln(x2+n—1).
n

From
2 1 X

fe= x+n—1 nx x2+n—1
(n—1)[x®—(n+1x*+@2n—1x—n+1]

B nx(x+n—1)(x2+n—1)
_(n—=1D)(x—1P(x—n+1)
Conx(x+n—1)(x2+n—-1)"

it follows that f is decreasing on [1,n—1] and increasing on [n—1, 00), therefore

flx)=f(n—1)=0.

1
The equality occurs for a; = a, =+ =aq,; = > and a, = (or any cyclic

permutation).
O



442 Vasile Cirtoaje

P5.74. If a;,a,,...,a, are positive real numbers so that a>+a3+---+a> = n, then

a,+ay+--+a,=n"Yaa,a,.
(Vasile C., 2007)

Solution. For n = 2, we need to show that a3 + a3 = 2 involves (a; + a,)* > 8a,a,.
Let

X =a;+a,.
From
— 3 3 _.,.3
2=aj+a;, =x"—3a;a,x,
we get
x3—2
a;a, = .
3x
Thus,

8(x° 2 —2)2(3x% + 4x +
(a; +a,)° —8a,a, = x° — (x*—2) _ (x—2)*(3x* +4x 4)20
3x 3x

For n > 3, according to Corollary 4, if 0 <a; <a, <---<a, and
a +a,+---+a, =constant, a‘;’+a§+---+ar31=n,

then the product
P=aja,---q,

is maximal for a; = a, = -+ = a,_;. Therefore, we only need to prove the homoge-
neous inequality

(a1+a2+---+an)”+1> ‘Jai’+a§’+---+a§
> a,a,---d,

n n
for a; = a, =--- = a,_; = 1. The inequality is equivalent to f(x) > 0 for x > 1,
where 3
+n—1 1 +n—1
f(x)=(n+1)lnL—lnx——lnl.
n 3 n
Since
n+1 1 x?
o= m = -

x+n—1 x x3+n-—1

(=D -1 —x*—x+n—1)

B x(x+n—1)(x3+n—1)

>(n—1)(x—1)(x3—x2—x+1)
x(x+n—1)(x34+n—-1)

. (n—1D(x—1)(x+1)

 x(x+n—1(3+n—1)
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f (x) is increasing for x > 1, hence

flx)=f(1)=0.

The equality holds for a; =a, =---=a, =1.

n

P 5.75. Let a, b, c be nonnegative real numbers so that ab + bc +ca = 3. If

In4
k>2——=~0.738,
In3

then
ak + bk + ck > 3.

(Vasile C., 2004)

Solution. Let

By the power mean inequality, we have

ak + bk + ck - (ar+br+cr)k/r
3 > .

Thus, it suffices to show that
a" +b" +c" >3.

Since
2(ab+bc+ca)=(a+b+c)*—(a*+ b*+c?),

according to Corollary 5 (case k =2, m=r),ifa < b < c and
a+b+c=constant, a*+ b*+c?=constant,

then
S;=a"+b"+c"

is minimal for eithera=0o0or0<a < b =c.

Case 1: a = 0. We need to show that bc = 3 implies b" + ¢ > 3. Indeed, by the
AM-GM inequality, we have

b" +c" > 24/(bc)r =2-372 =3,

Case 2: 0 < a < b =c. We only need to show that the homogeneous inequality

ab+bc+ca)r/2

ar+br+cr23(
3
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holds for b = ¢ = 1; that is, to show that a € (0, 1] involves

r/2
ar+223(2a+1) ,

which is equivalent to f(a) > 0, where

a+2 r. 2a+1

=1 -1
f(a)=1In 5 n 3
The derivative
, ra! r rg(a)
fllay="t - L - ,
a+2 2a+1 al7(a"+2)(2a+1)
where
g(a)=a—2a"" +1.
From 201 )
, —r
glay=1-—"—,

it follows that g’(a) < 0 for a € (0,a;), and g’(a) > 0 for a € (a;, 1], where
a, =(2—2r)"" ~ 0.416.

Then, g is strictly decreasing on [0, a;] and strictly increasing on [a;,1]. Since
g(0) =1 and g(1) = 0, there exists a, € (0,1) so that g(a,) = 0, g(a) > 0 for
a €[0,a,), and g(a) < 0 for a € (a,,1]. Consequently, f is increasing on [0, a, ]
and decreasing on [a,, 1]. Since f(0) = f(1) =0, we have f(a) >0 for0 <a < 1.

1
The equality holds fora=b=c=1. Ifk=2— %, then the equality holds also

for

(or any cyclic permutation).

Remark. For k = 3/4, we get the following nice results (see P 3.33 in Volume 1):
e Let a, b, c be positive real numbers.
@) If a*b*+ b*c* +c*a* =3, then

a+b>+c2>3.
() If a®+ b3+ =3, then

a*b* + b*c* + c*a* < 3.
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P 5.76. Let a, b, c be nonnegative real numbers so that a+ b +c = 3. If

> —— ~0.29,
In3—In2

then
a® + b*+c* > ab + bc + ca.

(Vasile C., 2005)

Solution. For k > 1, by Jensen’s inequality, we get

k
ak+bk+ck23(%b+c) =3:%(a+b+c)22ab+bc+ca.
Let
_ In9—In8
" T n3—In2’
Assume further that
r<k<i,

and write the inequality as
2@+ b + )+ a4+ b2+ c2>09.
By Corollary 5, if a < b < c and
a+b+c=3, a*+b%+c?=constant,

then the sum
Sy =a*+bF+c*

is minimal for either a = 0 or 0 < a < b = c. Thus, we only need to prove the
desired inequality for these cases.

Case 1: a = 0. We need to show that b + ¢ = 3 involves b* + c* > bc. Indeed, by
the AM-GM inequality, we have

bk + ¢k —be > 2(be)? — be = (be)?[2— (be)' 2]

> (bo)? [z _ ( b ;L ¢ )H — (o) [2 — G)H]
> (bc)*? [2 — G)z_] =0.

Case 2: 0 < a < b =c. We only need to show that the homogeneous inequality

b 2—k
(ak+bk+ck)(¥) >ab+ bc+ca
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holds for b = ¢ = 1; that is, to show that a € (0, 1] involves

+2\*7*
(ak+2)(—a3) >2a+1,

which is equivalent to f(a) > 0, where

(@) = In(a* +2) + 2 — k) In 252 _in(2a + 1).
We have
=g 2 2
flo=ta 2ok 2 s@
ak+2 a+2 2a+1 al*(ak+2)(2a+1)
where
g(@)=a’+ (2k—1)a +k+2(1 —k)a®>* — (k + 2)a'™*,
with

g(a)=2a+2k—1+2(1—k)(2—k)a* ™ —(k+2)(1 —k)a*,
g’ (@) =2+2(1—-k)?*@2—k)a*+k(k+2)(1—k)a™* .

Since g’ > 0, g’ is strictly increasing. From g’(0,) = —oo and g’(1) = 3(1 —
k) + 3k? > 0, it follows that there exists a, € (0,1) so that g’(a;) =0, g’(a) < 0
for a € (0,a,) and g’(a) > O for a € (a;,1]. Therefore, g is strictly decreasing
on [0,a,] and strictly increasing on [a;,1]. Since g(0) = k > 0 and g(1) = 0,
there exists a, € (0,a,) so that g(a,) =0, g(a) > 0 for a € [0,a,) and g(a) < O
for a € (a,,1]. Consequently, f is increasing on [0, a,]| and decreasing on [a,, 1].
Since

f(0)=1n2+(3—k)ln§21n2+(3—r)1n§=0

and f(1)=0,we get f(a)>0for0<a<1.

In9—1In8
The equality holds fora=b=c=1. If k = 1nz—1nz’ then the equality holds
n3—In
also for 3
a=0, b=c=-
2
(or any cyclic permutation).
O
P5.77.If ay,q,,...,a, (n > 4) are nonnegative numbers so that a;+a,+---+a, =n,
then
1 1 1

<1

+ +ot
n+l—aya;---a, n+l—aza,---a n+l—aay---a,,

(Vasile C., 2004)
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Solution. Leta, <a, <---<a, and

By the AM-GM inequality, we have

a2+a3+---+an)”—1<(a1+a2+---+an)”_1
n—1 N

apds---a, < ( =€n_1,

n—1

hence
n+1l—aya;---a,2n+1—e,_;=(n—2)+(3—e,_;)>0.

Consider the cases a; =0 and a; > 0.

Case 1: a; = 0. We need to show that a, + a; + - - - + a, = n involves

1 n—1
+ <1,
n+l—aya;---a, n+1
which is equivalent to
n+1

a2a3"'an§ 2 .

Since

a2a3"'ans

ay+as+---+a,\"!
( n—1 ) — G-t
it suffices to show that

<n+1
e, 1 < .
n—1 2
For n = 4, we have
n+1 7>O
e =
2 s
For n = 5, we get
n+1
=>3>e, ;.

Case 2: 0 <a, <a, <---<a,. Denote
a,ay---a,=(n+1)r, r>0.

From a,a;---a, <e,_;, we get

(n+Dr
a, =a, = >r.
€n—1
Write the inequality as follows
a a a
L+ —2 4.+ ——<n+1,

a,—r a,—r a,—r
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1 1 1 1
+ +oe <-,
a,—r a,—r a,—r 1

Fla)+F @)+ +f(a)+~ 20,

where 1
flu)= , u=>=a.
u—r

We will apply Corollary 3 to the function f. We have

1
(u—r)?’

ffw=

A1) x? ve N Arx+2
0= (1)t fw=a

According to Corollary 3,if a<a; <a, <---<a, and
a,+a,+---+a,=n, aa, --a,=(n+1)r=constant,

then the sum S3 = f(a;) + f(a,)+ -+ f(a,) is minimal fora < a; < a, =-+- = a,,.
Thus, we only need to prove the homogeneous inequality

1 1 1

+ ot <1
aa --ua aa ---a aa ---a_ _—
n+1—-22>—" p41-24 1 n+1—-—12—"1
Sn—l Sn—l Sn—l
for0<a, <a,=a;=---=a, =1, where
a1+a2+"'+an
s= ;
n
that is,
st (n—1)s™! <1 a,;+n—1
— 5 S=——",
(n+1)sm1—1 (n+1)sm1—q n

which is equivalent to
f(s)=0, s;<s<1,

where
n—1
S]. ==
n
and
f&)=m+1)s*2=n*"+(n+1)(n—2)"" +ns—n+1.
We have
F/(8)=2(n*— 1) =" + (n* = 1)(n—2)s" 2+ 1,
f//(s) — (Tl _ 1)Sn_3g(s),
where

g(s)=22n—-3)(n+1)s" ' —n’s+(n—2)*(n+1),
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g'(s)=202n—3)(n*—1)s"2?—n>.
Since

2(5)> g'(s,) = 2n(2n;3)(n +1) 03
n—1

— 2_ —
- 2n(2n ;)(n+ 1) = n(n 32n 6) >0,

g is increasing. There are two cases to consider: g(s;) >0 and g(s;) <O.

Subcase A: g(s;) = 0. Then, g(s) =0, f"”(s) = 0, f’is increasing. Since f’(1) =0,
it follows that f’(s) < 0 for s € [s;,1], f is decreasing, hence f(s) > f(1) = 0.

Subcase B: g(s;) < 0. Then, since g(1) = n*—2n+4 > 0, there exists s, € (s;,1) so
that g(s,) =0, g(s) < 0 for s € [s,s,) and g(s) > O for s € (s,, 1], f’ is decreasing
on [s;,s,] and increasing on [s,,1]. We see that f'(1) = 0. If f’(s;) < O, then
f’(s) < 0forse[sy,1], f is decreasing, hence f(s) > f(1) = 0. If f’(s;) > 0, then
there exists s; € (s1,5,) so that f'(s3) = 0, f’(s) > 0 for s € [s1,s3) and g(s) < O
for s € (s3,1], hence f is increasing on [s;,s;] and decreasing on [s;,1]. Since
f(1) = 0, it suffices to show that f(s;) = 0. This is true since s = s; involves
a, = 0, and we have shown that the desired inequality holds for a; = 0.

The equality occurs for a; =a, =---=a,=1.

P 5.78. If a, b, c are nonnegative real numbers so that
a+b+c>2, ab+bc+ca=>1,

then

Ja+Vb+Jc=2.
(Vasile C., 2005)
Solution. According to Corollary 5 (case k =2and m=1/3),if0<a < b <c and
a+b+c=constant, ab+ bc+ca=constant,

then the sum S; = va + VD + /¢ is minimal for eithera=0or0<a < b =c.

Case 1: a = 0. The hypothesis ab + bc + ca > 1 implies bc > 1; consequently,
Va+Vb+Jc=vVb+Jc=2Vbe>2.
Case2: 0<a<b=c.Ifc>1,then

Va+Vb+c>29c>2.
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If c <1, then
Ja+Vb+Jc>a+b+c>2.

The equality holds for

(or any cyclic permutation).

P 5.79. If a, b, c,d are positive real numbers so that abcd = 1, then
(a+b+c+d)*>36vV3(a®+b%+c2+d>?).
(Vasile C., 2008)
Solution. According to Corollary 5 (case k =0and m=2),ifa < b <c¢ <d and
a+b+c+d=constant, abcd =1,

then the sum
S,=a*+b*+c*+d?

is maximal for a = b = ¢ < d. Thus, we only need to show that

(3a+d)* > 363 (3a®>+d?)

for a®d = 1. Write this inequality as f (a) > 0, where
1 , 1
f(a)=4In 3a+— —In( 3a +— —In36v3, 0O<a<l.
a a

Since
_12(a*-1) 6(a®*—1)  6(a*—1)*(3a*—1)

a(Ba*+1) a(3ad+1) a(3at+1)Bat+1)
f is decreasing on [0, 1/+/3] and increasing on [1/+/3, 1]; therefore,

f(a)

fla)=f (%) ~0.

The equality holds for

(or any cyclic permutation).

Remark. In the same manner, we can prove the following generalization:
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e Ifa,,a,,...,a, are positive real numbers so that a,a,---a, =1, then

16 ,
(a1+a2+---+an)427\/(n—1)3n—2 (@+a+---+a),

with equality for

1 n
aQy=0ay=""=0a, 1= , @, =+4(n—1)+1!

(or any cyclic permutation).

P 5.80. If a, b, c are nonnegative real numbers so that ab + bc + ca = 1, then

V3302 + 16+ V332 + 16+ v/33c2+ 16 < 9(a + b +¢).

(Vasile C., 2006)

Solution. Write the inequality as

fla)+f(b)+ f(c)+297(a+b+c)=0,

where 1
f(u)=—£v33u2+16, u=>0.
We have s
(x)=f'(x) = ——,
& / v33x2+16
ey = 33 48x
& W= 33x2 1 16)52°

Since g”’(x) > 0 for x > 0, g is strictly convex on [0, 00). According to Corollary
1,if0<a<b<cand

a+b+c=constant, a*+ b*+c?=constant,

then the sum
Sp=f@+f(b)+f(c)

is minimal for eithera=0o0or0<a<b=c.

Case 1: a = 0. We need to show that bc = 1 involves

V/33b2+ 16+ v/33¢2 + 16 < 9(b +¢) — 4.

We see that
9(b+c)—4>18vbc—4=14>0.
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By squaring, the inequality becomes

v/ 528t2 + 289 < 24t2 — 36t + 25,

where
t=b+c>2.

Since
24t% — 36t + 25 > 6% + 25,

it suffices to show that
528t% + 289 < (6t% + 25)?,

which is equivalent to
(t*—4)(3t>*=7)=0.

Case 2: 0 < a < b = c. Write the inequality in the homogeneous form

Z \/33a2+ 16(ab + bc+ca) <9(a+ b +c¢).

Without loss of generality, assume that b = ¢ = 1, when the inequality becomes

V/33a2 +32a + 16 + 24/32a + 49 < 9a + 18.

By squaring twice, the inequality turns as follows:

V(332 +32a + 16)(32a + 49) < 124> + 41a + 28,

72a(2a® —a*—4a+3) >0,
72a(a—1)*(2a+3) > 0.

1
The equality holds for a = b = ¢ = —, and also for
quality /3

(or any cyclic permutation).

P 5.81. If a, b, c are positive real numbers so that a + b + ¢ = 3, then

a’b? + b*c? +c2a? <

- .
abc

(Vasile C., 2006)
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Solution. Write the inequality in the homogeneous form

a+b+c\P a?b? + b%c? + c2a?\’
T > abc : .

Since
a’b? + b%c? 4+ c%a® = (ab + bc + ca)? —2abc(a+ b +¢)
1
= Z(g — aZ — b2 — C2) — 6abC,

we will apply Corollary 5 (case k = 0 and m = 2):
e f0<a<b<cand

a+b+c=3, abc = constant,

them the sum
S;=a*+b*+c?

is minimal for0 <a < b =c.

Therefore, we only need to prove the homogeneous inequality for 0 < a < 1 and
b = ¢ = 1. Taking logarithms, we have to show that f(a) > 0, where

a+2 2a%+1

f(a)=15In —Ina—3In

Since the derivative

15 1 12  2(a—1)(2a—1)(4a—1)

f/(a):a+2 a 2a*+1  a(a+2)(2a2+1)

. . 1 1 .. 11 . .
is negative for a € (O, Z) U (E’ 1) and positive for a € (4_1’ 5)’ f is decreasing
1 1 11
on (0, 4_}] U [5, 1] and increasing on [4_}’ 5] Therefore, it suffices to show that
1
f (4_1) >0and f(1) = 0. Indeed, we have f(1) =0 and
1 312

The equality holds fora=b =c =1.
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P 5.82. If a;,a,,...,a, (n<81) are nonnegative real numbers so that

24 2 2 _ 5 5 5
ajt+a;,+---+a =a+a,+---+a

n’

then
6, 6 6
a;+a,+---+a <n.

(Vasile C., 2006)

Solution. Setting a, = 1, we obtain the statement for n — 1 numbers a;. Conse-
quently, it suffices to prove the inequality for n = 81. We need to show that the
following homogeneous inequality holds:

5. .5 512 6 6 6 V(2 1 2 2 \2
81(a; +a,+---+ag ) =(a;+a, +---+ag )aj +a;+---+ag)".
According to Corollary 5 (case k =3 and m=5/2),if0<a, <a, <--- < ag and

2, .2 2 _ 6 .6 6 _
a; +a;+---+ag, = constant, a, +a,+---+ag, = constant,
then the sum a® + a3 + - + a3, is minimal for a, = a, = --- = agy < ag,. Therefore,
we only need to prove the homogeneous inequality for a;, =a, =--- = ag, = 0 and
for a; = a, = -+ = agy = 1. The first case is trivial. In the second case, denoting
ag, by x, the homogeneous inequality becomes as follows:

81(80 + x°)? > (80 + x°)(80 + x?2)?,

x10—2x8 —80x°® +162x> — x*—160x%+80 >0,
(x —1)2(x — 2)*(x® 4+ 6x° + 21x* + 60x> + 75x% 4+ 60x + 20) > 0.

Thus, the proof is completed. The equality holds for a; = a, =--- =a, = 1. If
n = 81, then the equality holds also for

=0y ="""=dgy == \| -

(or any cyclic permutation).

P 5.83. If a, b, c are nonnegative real numbers so that a + b + ¢ = 3, then

1+ V1+a+b3+c3 > 4/3(a% + b2 +¢2).

(Vasile C., 2006)
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Solution. Write the inequality as

V1+a3+b3+c3 2> 4/3(a®+ b2 +c2)—1.

By squaring, we may rewrite the inequality in the homogeneous form

2
a3+b3+c3+2(%b+c) V3@ +b2+¢2) > (a+b+c)a®+b>+c?).

According to Corollary 5 (case k =2and m=3),if0<a < b <cand
a+ b+ c=constant, a® + b% + ¢? = constant,

then the sum
S;=a*+b3+¢*

is minimal for either a = 0 or 0 < a < b = c. Thus, we only need to prove the
homogeneous inequality for a =0 and for b =c = 1.

Case 1: a = 0. We need to show that

2
b3+c3+2(bgc) v/ 3(b2+c2) > (b +c)(b*+c?).

Simplifying by b + ¢, it remains to show that

(b+c)Vb2+c2> ?bc.

Indeed,

(b+c)Vb2+c2> (2Vbc) V2be 2 ?bc.

Case 2: b =c =1. We need to prove that
(a+2)%y/3(a>+2) > 9(a® +a+1).
By squaring, the inequality becomes
a®+8a®>—a*—6a®—17a® +10a+5 >0,
(a—1)*(a*+10a> + 18a* +20a + 5) = 0.

The equality holds fora=b=c=1.
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P 5.84. If a, b, c are nonnegative real numbers so that a + b + c = 3, then

\/a+b+\/b+c+VC+aS\J16+§(ab+bc+ca).

(Lorian Saceanu, 2017)

Solution. Write the inequality in the form

f(a)+f(b)+f(c)+\J16+§(ab+bc+ca)20,

where
fwy=—+v3—u, 0<u<3.
We have 1
glx)=f'(x)= ﬁ,

g/ =2(3—x) .

Since g”’(x) > 0 for x € [0, 3), g is strictly convex on [0, 3]. According to Corollary
1,if0<a<b<cand

a+b+c=3, ab+ bc+ ca = constant,

then the sum Sy = f(a)+ f(b) + f (c) is minimal for eithera=0o0r0<a < b =c.
Therefore, we only need to prove the homogeneous inequality

2(ab + bc +ca)
a+b+c

\/a+b+\/b+c+\/c+as\jlg—6(a+b+c)+
fora=0and b=c=1.

Case 1: a = 0. We need to show that

\/3+\/E+\/b+cs\J13—6(b+c)+bzicc.

Consider the nontrivial case b, c > 0, use the substitution

x—\Jfé+\/E xX=2
\¢ b’ -7

and write the inequality as

2bc
b+¢’

b+c+2vbc+ b+cS\J13—6(b+c)+
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16 2
Vx+24/x <\ ?x+—.
X

By squaring twice, the inequality becomes as follows:

5 1
Vx(x+2)<-x—1+4+—,
3 X

16x* —48x% +39x%2—18x+9> 0,
(x—2)[16x*(x —1)+7x—4]+1>0.

Case 2: b =c = 1. We need to prove that

2«/a+1+«/§s\jlg—6(a+2)+M

a+2
By squaring twice, the inequality becomes as follows:
6(a+2)y/2(a+1)<2a*+17a+17,
4a*—4a®>—3a®+2a+1>0,
(a—1)*(2a+1)*=0.

The equality holds fora=b=c=1.

P 5.85. Ifa,b,c €[0,4] and ab + bc + ca =4, then

Va+b++vVb+c++v/c+ra<3++5.

(Vasile Cirtoaje, 2019)

First Solution. Denote s =a + b + ¢, consider s fixed and write the inequality as

fl@)+f(d)+f(c)=—3—+5,

where

fx)=—vs—x. 0<x<s.

From

g =F ) =56—07", () =26—x >0,

it follows that g is strictly convex. Thus, by Corollary 1 and Note 2, the sum f(a)+

f(b)+ f(c) is minimal for either a < b =c or a =0.

Case 1: a < b = c. We need to show that 2ac + ¢ = 4 yields

2Va+c+ vV2c <3+ 45,
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\@+«/2_cs3+«/§.

From 2ac + ¢ = 4,it follows that

that is

2
—<c
V3

Since v/2¢ < 2, it is enough to show that

2(62+1)<1+J§
\—c < ,

2—(B3++/5)c+4<0.

<2

that is

Indeed,
2—(B+V5)c+4<c?—5c+4=(c—1)(c—4)<0.

Case 2: a = 0. We need to show that bc = 4 yields

Vb+/c+vb+c<3+05.

From (4—b)(4—c) >0, we get b+ ¢ < 5. Thus,

Vhb+ve+vVbrc<Vb+c+2vVbe+Vb+c
< V5+4+2vV4+V5=3++/5.

The equality occurs for a =0, b =1 and ¢ =4 (or any permutation).

Second Solution(by Kiyoras-2001) Assume that a > b > ¢, denote
S=ab+ bc+ca

and show that

f(a,b,c)Sf(a,g,O) <3+ 45,

where

f(a,b,c):\/a+b+\/b+c+VC+a.

The left homogeneous inequality is true because

f(a,g,O)—f(a,b,c)z

=\ at+i_ a+b+\l§—Vb+c+ﬁ—m
a a
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c(a+b) be c

+ < —
‘/w_kda_kb \/§+1/b+c ﬁ+vc+a

>£( vala+b) _ a )>O
“a\vatc+a Ja+Ve+a)

Also, the right inequality is true for S =4 and a, b,c € [0,4] since a > 1 and

f(a,g,o)—B—«/E:

4 2
=\la+-—vV5+-—=++a-3
a Jva va

_(@a=1(-3)

Vat+i+s

+(«/E—1)(1—%)§0.

P 5.86. If a, b, c are positive real numbers so that abc = 1, then

a+b+c 2+a*+b%+c?

> .

(a) 3 —\ 5 ’
(b) a® + b +c® > 4/3(a* + b4+ c4).

(Vasile C., 2006)
Solution. (a) According to Corollary 5 (case k =0and m=2),ifa < b < c and
a+ b+ c=constant, abc =1,

the sum S; = a®+ b*+c? is maximal for 0 < a = b < c. Thus, we only need to show
that a®c = 1 involves
2a+c S 2+ 2a? +c?

3 ;\J 5 ’

which is equivalent to
1Y) , 1
S(2a+—) =227(2+2a"+— |,
a? a*

40a’ — 54a® + 6a® + 30a® —27a*>+5 >0,

(a—1)*(40a’ + 26a® + 12a° + 4a* — 4a® — 12a® + 10a + 5) > 0.
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The inequality is true since

12a® 4+ 4a* — 4a® — 12a® + 10a + 5 > 2a° + 4a* — 4a® — 12a® + 10a
=2a(a—1)*(a®*+4a +5) > 0.

The equality holds fora=b =c = 1.
(b) According to Corollary 5 (case k =0 and m =4/3),ifa < b < c and
a® + b3 + ¢ = constant, a’b3ct =1,
the sum S; = a*+ b*+c* is maximal for 0 < a = b < c. Thus, we only need to show

that
2a® + ¢® = 4/3(2a* +c*)

for a’c =1, a < 1. The inequality is equivalent to

s, 1Y a1
2a” + >3(2a"+ .
ab as

Substituting a = 1/t, t > 1, the inequality becomes

2 .\ 2
(E'Ft) Z3(F+t),
which is equivalent to f(t) > 0, where

f(t)=t® -3t +4¢° —6t* + 4.

We have
fl(t)y=6tg(t), g(t)=3t*¥—7t2+6t"—2,
g'(t)=6t°h(t), h(t)=8t"—14t>+7,
h'(t) = 2t*(36t> —35).

Since h’(t) > 0 for t > 1, h is increasing, h(t) > h(1) =1 for t > 1, g is increasing,
g(t)=g(1)=0for t > 1, f is increasing, hence f(t) > f(1) =0 for t > 1.

The equality holds fora =b =c=1.

P 5.87. If a, b, c,d are nonnegative real numbers so that a + b + ¢ +d = 4, then
(a>+b*+c?+d*—4)(a®*+b*+c*>+d*+18) <10(a® + b + > +d® —4).

(Vasile Cirtoaje, 2010)
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Solution. Apply Corollary 2 forn=4, k=2, m=3:

e Ifa,b,c,d are real numbers so that 0 <a<b<c<d and
a+b+c+d=4, a*+Db*+c*+d?*=constant,

then
S,=a*+b>++d?

is minimal for either 0 <a<b=c=d ora=0.
Case 1: 0 < a < b =c =d. We need to show that a + 3d = 4 involves
(a* +3d*—4)(a® +3d* + 18) < 10(a® + 3d> — 4).
This inequality is equivalent to
(1—-d)*(1+d)(4—3d)>0,
(1—-d)*(1+d)a=>0.

Case 2: a =0. Let
s=Db*+c*+d%
We need to show that b + ¢ +d = 4 involves
(s—4)(s+18) < 10(b> +c* +d>—4).
By the Cauchy-Schwarz inequality, we have

szl(b+c+d)2=E
3 3

and
(b+c+d)(B2+c2+d®) > (b%2+c2+d?)?, bP+c3+d>>

ENJ W

Thus, it suffices to show that
32
(s—4)(s+18) < 10(2—4),
which is equivalent to the obvious inequality
(s—4)(3s—16) > 0.
The equality holds fora = b =c=d =1, and also for
a=0, b=c=d=-

(or any cyclic permutation).
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P 5.88. If a, b, c,d are nonnegative real numbers such that
atb+c+d=4,

then
(a*+b*+c*+d"? > (a®>+ b2+ 2 +d?)(a® + b° + > +d°).

(Vasile C., 2020)
Proof. Consider the inequality
(ai+ai+-+ay=(@+a+-+a)(C+a+-+ad),

where a,,a,,...,a, are nonnegative real numbers such that a; +a, +---+a, =n.
Write this inequality in the homogeneous form

n(af+ai+--+aY>(a,+a,+--+a )@ +a2+--+a2)(a+ad+---+a).

1/4
1 b

1/4

n >

Replacing a,,a,,...,a, with x x;/ % ...,x!* the inequality becomes

n(x, +x,+--+x,)* >
> (ot e x ) ()P x) P+ x V) (x5,
By Corollary 5 (case k =5/4), if

5/4 5/4

X, + x5+ -+ Xx, =constant, X+ X, +--~+x151/4 = constant,

then the sums x,'* + x;/* + -+ x/* and x}"* + x,* + - - + x /> are maximal for

0<x,=x,=-"=Xx,_1 < X,,.
Since the case a; = a, = -+ = a,_; = 0 is trivial, it suffices to consider the case
a, =a, =---=a,_; = 1, when the required inequality becomes f (a) > 0, where

fla)=(a*+n—12—(a+n—1)(a*+n—1)(a>+n—1), a>1.

We have
f(ai =a®—a’—a®—(n—1)a°+2na*—a®*—(n—1)a>—(n—1)a+n—1
n_
=a’A—(n—1)B,
where
A=a’—a*—a®+2a—-1, B=a’—2a*+a*+a—1.
Since

A=(a—1)*(a®*+a*—1), B=(a—1)*(a®—a—-1),
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we have
fla)=(n—1)(a—1)*g(a),
where
gl@)=a®+a®—na®*+(n—1)a+n—1.

The inequality is true if g(a) > 0. For n = 4, we have
g(a)=a’+a°—4a®+3a+3>2a°—4a®+2a =2a(a®*—1)*> 0.
The equality occurs fora=b=c=d = 1.

Remark 1. Since g(a) > 0 for n < 16, the homogeneous inequality is true for all
n<16.

Remark 2. Since
(+a+-+a)+a++a)<|(q+a,+--+a)a+a+---+ad)

< (lay| +layl + -+ +la,Da;, | + lay® + - - - + a, ),

the homogeneous inequality is true for n < 16 and real a,, a,, ..., a,.

P 5.89. Ifa, b, c,d are nonnegative real numbers such that
a+b+c+d=4,

then
13(a? + b? +c? +d?)? > 12(a* + b* + ¢* + d*) + 160.

(Vasile Cirtoaje, 2020)
Solution. Write the inequality in the homogeneous form
104(a®+ b*+ 2 +d*)?*>96(a* + b* +c* +d*)+5(a+ b +c +d)*.

According to Corollary 5, for a + b + ¢ +d = constant and a® + b*> + c*> + d* =
constant, the sum

S=a*+b*+ct+d*
is maximal when a > b = ¢ = d. Therefore, it suffices to consider this case. Due
to homogeneity, for the nontrivial case b = ¢ = d # 0, we may consider that
b =c=d =1. Thus we only need to prove that

104(a® +3)* = 96(a”* + 3) + 5(a + 3)*,
which is equivalent to
(a—1)*(a—9)*=0.
The equality occurs fora=b=c=d =1,and alsofora=3and b=c=d =
(or any cyclic permutation).

O wi=



464 Vasile Cirtoaje

P 5.90. If a,,a,,...,ag are nonnegative real numbers, then
19(a+a5+---+a))* > 12(a, +ay + - +ag)(@ +a +---+a)).
(Vasile C., 2007)
Solution. By Corollary 5 (casen=8,k=2,m=3),if0<a, <a, <---<agand
a;+a,+---+ag=constant,  a’+a;+---+a; = constant,

then the sum
Ss=ad’+al+---+aj

is maximal for a; = a, = -+ = a, < ag. Due to homogeneity, we only need to
consider the cases a; = a, =---=a, =0and a; =a, = --- = a, = 1. For the
second case (nontrivial), we need to show that

19(7 +a2)* > 12(7 + ag)(7 + a3),
which is equivalent to
4 3 2
ag —12ag +38a; —12a3+49 = 0,
(ag —6ag+1)*+48>0.

The equality holds for a; =a, =--- =ag =0.

P 5.91. If a, b, c are nonnegative real numbers so that

5(a®+ b*+c*)=17(ab + bc +ca),

B\Jgsla_i_1 b+/csl+1/7.
5 b+c c+a a+b V2

(Vasile C., 2006)

then

Solution. Due to homogeneity, we may assume that a + b + ¢ = 9. From the
hypothesis 5(a® + b% + ¢*) = 17(ab + bc + ca), which is equivalent to

27(a? +b*>+c?)=17(a+ b +c)?,

we get
a’+ b%+c?=51.

Also, from 2(b%+c?) > (b +¢)? and

b+c=9—a, b%+c?>=51—ad?
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we get a < 7. Write the desired inequality in the form

3 1+ /7
B\IESf(a)+f(b)+f(c)s 75
where
fW=4/—— 0<u<7.
9—u
We have
() =)= —

2x1/2(9 — x)3/2’

, 27(8x% — 36x + 81)
g (x)= 53
8x5/2(9 — x)7/2

Since g”(x) > 0 for x € (0, 7], g is strictly convex on (0, 7]. According to Corollary
1,if0<a<b<cand

a+b+c=9, a?+0b*+c2=51,
then the sum S; = f(a) + f(b) + f(c) is maximal for a = b < ¢, and is minimal for
eithera=00r0<a<b=c.

(a) To prove the right inequality, it suffices to consider the case a = b < c.
From
a+b+c=9, a®+b%>+c2=51,

we get a = b =1 and ¢ = 7, therefore

[ a N b 4 [ ¢ _1+\/7
b+c Jc+a a+b /2

The original right inequality is an equality for a = b = ¢/7 (or any cyclic permuta-
tion).

(b) To prove the left inequality, it suffices to consider the cases a = 0 and
O0<a<b=c.Fora=0, from

a+b+c=9, a®+b%*+c?=51,

we get

therefore

v/ 2\ b +4/ ‘ —\lﬁé+\/z—\é+5+2—3\Jf§
b+c c+a a+b \c b \c b B 5

The case 0 < a < b = ¢ is not possible, because from

a+b+c=9, a*+b*+c?=51,
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we get a = 7 and b = ¢ = 1, which don’t satisfy the condition a < b. The original
left inequality is an equality for

(or any cyclic permutation).

P 5.92. If a, b, ¢ are nonnegative real numbers so that
8(a®+ b*+c¢*)=9(ab + bc +ca),
then

19 a b c 141
2 < + + < )
12 b+c c¢c+a a+b 88

(Vasile C., 2006)

Solution. The proof is similar to the one of the preceding P 5.91. Assume that
a+ b+ ¢ = 15, which involves a? + b? + ¢2 = 81 and a € [3, 7], then write the
inequality in the form

< f@+ D)+ O,
where u
fW=r—, 3<us<7.
We have 1 9
20 =F()= 15—, §'0)= ey

Since g is strictly convex on [3, 7], according to Corollary 1,if 0 <a < b < c and
a+b+c=15 a?+b*+c?2=381,

then the sum S; = f(a) + f(b) + f(c) is maximal for a = b < ¢, and is minimal for
eithera=0o0or0<a<b=c.
(a) To prove the right inequality, it suffices to consider the case a = b < c,

which involves
a=b=4, c=7,

and
a b c 141
+ + =—.
b+c c¢c+a a+b 88
The original right inequality is an equality for a = b = 4¢/7 (or any cyclic permu-
tation).
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(b) To prove the left inequality, it suffices to consider the cases a = 0 and
0 < a < b =c. The first case is not possible, while the second case involves

a=3, b=c=6,
and
a b c 19

+ =,
b+c c¢c+a a+b 12

The original left inequality is an equality for 2a = b = ¢ (or any cyclic permutation).
O

P 5.93. Ifa,b,c € (0,2] such that a+ b + ¢ = 3, then

Q2w+cx_1+%2@+a)_1+%2m+b)_12 9 '
a b c vab+ bc+ca

(Vasile C., 2020)

Solution. Write the inequality in the form

—34/3
vab+bc+ca

_ﬂm:—\%—L O<u<2.
u

We have f(0+) = —o0 and

fl@+fB)+f(c) <

where

gL =) =x722-x)2,  g'(x)=(2x =322 x)2,

g"(x) = (7x2—20x +15)x 722 —x)2 > 0.

Since g is strictly convex on (0, 2), according to Corollary 1, Note 1 and Note 2, if
a=>b>c>0and

a+b+c=3, ab+ bc+ ca =constant,

then the sum S; = f(a) + f(b) + f(c) is maximal for a = 2 or a > b = c. Thus, it
suffices to prove the desired inequality for these cases.

Case 1: a = 2. We need to prove the homogeneous inequality

Q2w+q_l+Q2@+@_1+wzm+m_l>3m+b+@
a b c " Vab+bc+ca

for
a=2(b+c).
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The inequality is equivalent to

\J%+1+\J§+1z 3V3(b+c)
c b 2(b+c)2+ bc
Let

_(b+c) ;

"~ 4bc -
Since

2bc 1+ —+1>2\J(%+1)(2—;+1)=2«/“8x+1,

c
the inequality becomes

T 3v/3x
sx+1 >VSx+1

(8x + 1) > 729x2.

Since
8x +1=3(2x +1),

it suffices to show that
(2x +1)% > 27x%

This is true because
3
2x+1=x+x+1> 3V x2.

Case 2: a > b = c. We need to show that a + 2¢ = 3 implies

\Jﬂ_l 2\12(a+c)_12L’
a c v2ac + c2

\J1+a 6
(1+a)(3—a)

A 2(2—a)
VA+a)(B—a) a)
1
7a

that is

It is true if

> 2vV2—a
T JA+9B—-a)

which, by squaring, reduces to
(a—1)*>0.

1
The equality occurs fora =b =c =1, and also fora =b = 3 and ¢ = 2 (or any

cyclic permutation).
O
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P 5.94. Let a, b,c and x,y,z be nonnegative real numbers such that
P+y +2=a+ b+

Then,
(a+b+c)x+y+2) S 3
ab+bc+ca+xy+yz+zx

(Vasile Cirtoaje, 2019)

Solution. Assume that
xX+y+z=>a+b+c

and denote
X+y+z a+b+c
= t> —.
3 3
Since
a+b+c<x+y+z<KJX3+y3+z3_\Ja3+b3+c3
3 - 3 ~ 3 N 3 ’
we have
t, <t<t,,
where

a+b+c a®+ b3 +¢3
hb="g o L=\T3

It is enough to prove the inequality

1 1
%(a+b+c)(x+y+z)2ab+bc+ca+§(x+y+z)2.

For fixed a, b, c, we may write the required inequality as f (t) < 0, where
F()=3t2— 9 (a+b+c)t+ab+bc+ca

is a quadratic convex function. Thus, it is enough to show that f(t;) < 0 and
f(ty,) £0. We have

3f(t1):3(ab+bc+ca)—(\3/§—1)(a+b+c)2
S3(2—\3/5)(ab+bc+ca)30.
To prove the inequality f(t,) < 0, we write it as
3t2—+/9 (a+b+c)t,+ab+bc+ca<0.

According to Corollary 5, for a + b + ¢ = constant and a" + b" + ¢" = constant,
the sum a? + b? + ¢? is minimal (hence the sum ab + bc + ca is maximal) for a >
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b = c. Thus, due to homogeneity, it is enough to prove the inequality for a = 1 and

b =c < 1. So, we need to prove that g(u) < 0, where

c2+2c

% 3

gw)=u*—(2c+1u+
with
u=+v2:3+1, ce[0,1].
Consider two cases: ¢ €[0,4/5] and c € [4/5,1].
Case 1: ¢ €[0,4/5]. Since v3 > 4/3, we have

3(c? +2c) _ (Qu— 3c)(2u—c—2)

gw) <u*—(2c+1u+ 2

Thus, we need to show that

This is true since

The right inequality is equivalent to

c(2c+6—5c%?)>0.

Case 2: ¢ € [4/5,1]. Since v/3 > 7/5, we have g(u) < h(u), where

h(w)=u?>—2c+1Du+ M

It suffices to prove that h(u) < 0. From
h(u)=2u—2c—1

and

it follows that h’(u) < 0, hence h(u) is a decreasing function. Since

3
c
u>1+4+—,
3

<0,
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it follows that

Since

- ______O’
21 9 7 3
that is
22c_4_5¢
21 7 9 7
Indeed, we have
4 5¢ 2 2 5¢3 20¢3  22c
—+—=Z4Z+—>3 > =,
7 9 7 7 9 49.9 21

Thus, the proof is completed. If a > b > ¢ and x > y > z, then the equality occurs

and b=c=0.
V3 V3

fora=b=c= and y=z=0,andforx=y =z =

]

P 5.95. Ifa, b,c,d are positive numbers such that

1 1 1 1
at+b+ctd==-+=+=-+-=,
a b ¢ d

then
ab+ac+ad+ bc+ bd +cd + 3abed > 9.

(Vasile Cirtoaje, 2019)

Solution. Write the inequality as
(a+b+c+d)*+6abcd > 18+ a*+ b* +c* +d?

and apply Corollary 4 for k = —1, and Corollary 5 for k =—1 and m = 2:
e Ifa,b,c,d are positive numbers such that

1 1 1 1
a+b+c+d=constant, —+E+—+E:constant, a<b<c<d,
a c

then the product abcd is minimal and the sum a® + b? + ¢* + d? is maximal for
a=b=c<d.
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Thus, it suffices to consider this case. We need to show that
3 1
3a+d=—-+-
a d
involve
a*+ad +a’*d > 3.
From the hypothesis, we get
_ 3(1—a®)++v9a*—14a% +9
B 2a )
So, the required inequality becomes as follows:

a*+(a*+1)ad > 3,

d

(a®*+1)v9a*—14a2+9 > 3a* —2a> + 3,
(a®>+1)*(9a* —14a* + 9) > (3a* — 2a* + 3)?,
16a*(a*—1)*> 0.

The equality occurs fora=b=c=d =1.

P 5.96. If a;, a,, as,a,, as are nonnegative real numbers, then

(a3 +ad+ad+a +al) - 12
>— > aa
at+aj+aj+al+al 24 '
(Vasile Cirtoaje, 2019)
Solution. Write the inequality in the form
3 34 234 3 32
4(aj+a;+a;+a,+a;)

4 4 4 4 4
a1+a2+a3+a4-|—a5

+al+ai+ai+al+al>(a,+ay+as+a,+as)

According to Corollary 5, for a; + a, + as + a, + as = constant and a’ + a} +
a3 + a} + a = constant, the sum a? + a} + a5 + a; + aZ is minimal and the sum
al +a; + a3 + a} + a is maximal for a; = a, = a3 = a, < a5.Thus, it is enough to
show that
4(4x® + y*)?
4x4 4+ y4
which can be written as

+4x%+y2> (4x + y)?,

4x°—8x°y +8x3y® —3x%y*—2xy* + y* >0,
(x—y)*(2x*—y?)*>0.
The proof is completed. The equality occurs for a; = a, = a3 = a, = as, and also

ds

V2

fora, =a,=a;=a,= (or any cyclic permutation).

O
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P 5.97. If a;,a,,...,a, = 0 such that
a,+a,+-+a,=n,

then

1
O+ VGt + anS\J2n—1+2(1—H)Zaiaj.

i<j
(Vasile C., 2018)

Proof. Since

_ 2_ .2 2 2_ .2 2 2 2
2 E aa;=(a;+ay+---+a,) —a;—a,—-—a,=n"—a;—a,—-—a,

i<j

we can write the inequality as

1
(Va +vap+--+ an)zsn2+n—1—(1—;)(af+a§+---+a§).

Now, we can apply Corollary 5 for k =2 and m=1/2:

e Ifa;,a,,...,a, are nonnegative real numbers so that
ata,+---+a,=n, af+a§+-~+a§=constant, a;<a, < <a,,

then the sum
Va+Ja,+--+4/a,

is maximal for0 < a, =---=a,_, < a,.
Thus, it suffices to show that

1

[(n—Dx+ylP<n’ +n—1—(1——)[(n—1)x4+y4].

n

for
(n—1x*+y*=n, 0<x<y

Write this inequality in the homogeneous form

(n2+n—1) 0D F _ (n 1)[(n—1)x* + y*]

[(n—Dx+y]* < CEEy

5

which is equivalent to
(n—1)*x*—2n(n—1Dx3y + (> +2n—2)x*y? —2nxy> + y* >0,

(x—y)P[(n—Dx—yP=0.
The inequality is an equality fora; =a, =---=a, =1, and also fora; =--- =

a,_ ;= and a, = n—1 (or any cyclic permutation).

n—1
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P 5.98. If a;,a,,...,a, = 0 such that

a1+a2+---+an:Zaiaj >0,
i<j
then
(n—1)(n—2)

> (a1+a2+---+an)+z,/aiajZn(n—l).

i<j
(Vasile C., 2020)

Proof. For n =2, we need to show that a; + a, = a,a, involves a,a, > 4. Indeed,
this follows from

a,a, = a, +ay = 24/a;a,,
Since
2 E aa;=(a;+a,+ - +a,)—a—a—-—a

n
i<j
and

2> /@G = (/TG + G+ G~ —a— e —a,,

i<j
we can apply Corollary 5 for k =2 and m=1/2:
e Ifa,,a,,...,a, are nonnegative real numbers so that

a+a,+---+a, =constant, af+a§+---+a3 =constant, a;<a,<---<a

— —_ n»

then the sum

VE G+,

is minimal for either 0 < a, < a,=---=a, ora; =0.
Thus, it suffices to consider the case a; = x%,a, =+ =a, = y?,0 < x < y, and
the case a; = 0. In addition, we will use the induction method.
Case 1: a; = x?, a, =--- =a, = y*. We need to show that
n—1)(n—2
x2+(n—1)y2=(n—1)x2y2+—( )2( )y4
implies
(n—2) (n—=2) ,

5 [x2+(n—1)y2]+xy+Ty >n,

which can be written in the homogeneous form

2(n—1Dx%y?+(n—1)(n—2)y*

—2)x%+2xy +n(n—2)y*>
(n=2)x"+2xy +n(n—2)y"=n 21 (1—T1)y?

For y =1, the inequality becomes

(+n—1D[(n—2)x*+2x +n(n—2)] > 2n(n—1)x*+n(n—1)(n—2),
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(n—2)x*+2x>*—(3n—2)x*+2(n—1)x >0,
x(x—1)*[(n—2)x+2(n—1)] > 0.

Case 2: a; = 0. We need to show that

a2+a3+---+an:Zaiaj>0 (1)
2<i<j
involves
(n—1)(n—2)
f(a2+a3+...+an)+ Z /a;a; > n(n—1). (2)
2<i<j
From
(ay+as+-+a,) <(n—1)(a;+a+---+a’)
= (-1 +a;++a,)—2n-1) > aaj,
2<i<j
we get

(n—2)(a,+as+---+a,)*>2(n—1) Z a;a; =2(n—1)(ay +az +---+a,),

2<i<j
hence
2(n—1)
n—2
On the other hand, by the induction hypothesis, (1) involves

()

a2+a3+"'+an2

(n—2)(n—3)

e (@tas e ta)+ D /ag = (n=1)(n-2).

2<i<j

According to this inequality, (2) is true if

—1)(n—2 —2)(n—3
W(a2+a3 +-- -+an)+(n—1)(n—2)—%(az+a3 +---+a,)
>n(n—1),

which is equivalent to (3).
2
The inequality is an equality fora; =a, =---=aqa, = % and also fora; =0
n —
2
anda, =a;=--=aq, = 2 (or any cyclic permutation).
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P 5.99. Let
— (A2 1 2 2 2
F(ay,a,,...,a,)=n(a; +a; +---+a;)—(a; +a,+---+a,),
where ay,a,,...,a, are positive real numbers such that a; < a, < --- < a, and
20,2 4 2 2
aj(a; +az+---+a;))=n—1.

Then,
1 1 1
F(a,,ay,...,a,)=2F|—,—,...,—|].

a,’a,”  a,
(Vasile C., 2020)
Proof. For n =2, we need to show that a;a, > 1 involves

(a?a2—1)(a; —ay)* =0,

which is clearly true. For n > 3, write the inequality as

s ) ) 11 1 1 1 1
n(aj+ay+ - -+a;)—~(a;tay+-+a,) zn| s+ ++ = |- —+—+--+—
aj a a2 a, a, a,
According to Corollary 5 (case k = —1), we have:
e Ifa,,as,...,a, are positive real numbers so that
1 1 1
a,+as+---+a, =constant, —+—+---+— =constant, a,<a3<---<a,,
a as a,

. 1 1. :
then the sum aj + a3 +---+aZ is minimal and the sum — + — +---+ — is maximal
a;, a a
2 3 n
fora, <ay;=---=a,.
Thus, it suffices to consider the case a, < a; = -+ = a,,. We need to show that if

X, Y, % are positive real numbers such that x < y <z and
[y?+(n—2)z2]>n—1,

then

1 1 -2\ (1 1 n—2Y
n[x*+y*+(n—2)z*]-[x+y+(n—2)z]* > n (— + =+ )—(— =42 ) ,
x2  y2 22 x y Z

which is equivalent to

(x=y)*, (i=2)y —2)* (n=2)(z—x)"

(x=y)*+(n—2)(y—2)’+(n—2)(z—x)* = X2y 252 e

(x—y)? (1 — leyz)Jr(n—z)(y—z)2 (1 — yzlzz)+(n—2)(z—x)2 (1 — 221962) > 0.



EV Method for Nonnegative Variables 477

From
n—1<x*[y*+(n—2)2%]1 < (n—1)x%2?,

it follows that

Thus, suffices to show that

(x—y)? (l—leyz)+(n—2)(z—x)2(1—221xz) >0,

that is )
2 1 1
m-2)(1-2) (22—=)>(1-2) [=—»?
x2 y x2
Since
x x
1-—>1—-—2>0,
z y

it suffices to show that
1 1
(n—2)(22——2) >——y?
X

that is equivalent to the hypothesis

—1
y2+(n—2)222n .
XZ

1
The equality occurs for a; =a,=---=a,>1and for —=a,=---=a, > 1.
a;

Remark. Since a,(a, + a3 +---+a,) > n—1yields a’(a} +a2+---+a’) > n—1,
the inequality is also true for

a;(ay+as+---+a,)=>n—1.
In addition, it is true in the particular case

a,dy,...,a, = 1.

P 5.100. Let
F(a;,ay,...,a,) =a; +ay+--+a,—ni{aya, - a,,
where aq,a,,...,a, are positive real numbers such that a; < a, < --- < a,, and
a,(a, +as;+---+a,)>n—1.
Then,
1 1 1
F(a15a21"'3an)2F Ty T seeesy ]

a; a ay
(Vasile C., 2020)



478 Vasile Cirtoaje

Solution. For n = 2, we need to show that a;a, > 1 involves

(@1a,—1) (\/a_1_ 1/0_2)2 =0,
which is true. For n > 3, the inequality has the form
a;+a,+--+a, —nW>—+l+ s "
a; aQ, Jaay-a,
According to Corollary 5 (case k = 0 and m = —1), we have:

e Ifa,,as,...,a, are positive real numbers so that

a,+as+---+a,=constant, a,as---a,=constant, a,<a3<---<a,,
1 1. .

then the sum — + — +---4+ — is maximal for a, < a; =--- = a,,.
a as n

Thus, we only need to show that

1 1 —2
x+y+(n—2)z—n\”/xyz"—22—+—+n — L
x y Z v Xyzn—2
for 0 < x <y <zand x[y +(n—2)z] > n—1. Since both sides of the inequality
are nonnegative, it suffices to prove the homogeneous inequality

x[y +(n—2)z] n—2 n
[x+y+(n 2)z —n4y/xyzn— 2] J 1 [x+;+ o 2],
- v xyzn—

that is

(n—1)[x+y+(n—2)z—n\”/xyz"—2] >

-2 -2 n—1
2y+(n—2)z+[y+(n )z]l(n )y+z]x—n[y+(n—2)z] X 5 -
yz yz
For fixed y and z, write this inequality as f(x) > 0, x € (0, y ]. We will show that
fx)=fly)=o.

To prove that f(x) > f(y), we show that f’(x) < 0, which is equivalent to

yzn? [y+(n—2)Z][(n—2)y+ZJ y+(—2)

n—1-—(n—1) e (—1)Wﬁo,
(n— 2)( + 20— 3 +(n—1) T Z)Z.
X_)/an

By the AM-GM 1nequal1ty, we have

(n—2)-(§+§+n—3)+(n—1)
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; xn—l

2(n—1)"ij (y +§+n—3)n_2-(n—1)\ yarz

Thus, it suffices to show that

n— n—2 n—2 + _2
il(z+i+n—3) (n—1) Y2 ) (n=2)z

— - n >
z Yy xn—t N xyzn2

which is equivalent to
Y 2 " n—2 n—1
(n—1)|=+—+4+n-3 yz" > [y+(n—2)z]"".
z Y

Due to homogeneity, we may set z = 1, when the inequality becomes
(n—1DAy>y+n—2,

where

A (y+1/y+n—3
B y+n—2
By Bernoulli’s inequality, we have

1/y—1 )“‘2>1+(n—2)(1/y—1)_ y*+n—2
y+n—2 - y+n—2  y(y+n—=2)’

n—2
) , O<y<1.

a=(1+

hence
(n—1)(y*+n—2)

y+n—2
_ _ 2
_ (=2 =12
y+n—2
The inequality f(y) > 0 has the form

—2 2 -2
2y +(n—2)z—ny/ y2z"2 > yly +(n—2)z] S G S .
n—1 Yy Z W y2zn—2

Due to homogeneity, we may set z = 1 (hence 0 < y < 1), when the inequality
becomes

(n—1DAy—(y+n—-2)= —(y+n-2)

0.

+n—2)( 2
2y+n—2—n\”/y22y(y—n)(—+n—2— L )

Denoting
t=4y, 0<t<],
we need to show that g(t) > 0, where

g(t)=(n—1(2t" —nt? +n—2)— (t" +n—2)[(n—2)t" —nt"? + 2]
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=—(n—2)t*""+nt* 2 —(n—2)(n—M)t"+n(n—2)t" *—n(n—1)t*+(n—2)(n—3) .
For n = 3, we have
g(t)=t(1—t)}(3+3t+t3)>0,

and for n = 4, we have
g()=2(1—-t*)*1+t*)>0.

For n > 5, we have
g'(t) =ntg,(t),
g () =—=2n—2)t*"2+2(n—Dt>*"*—(n—2)(n—4)t" 2+ (n—2)*t"*—2(n—1),
g(t)=n—-2)"(1—-*)[4(n—1)t"+n—2]>0,

hence g,(t) is increasing, g,(t) < g,(1) =0, g'(t) <0, g(t) is decreasing, g(t) >
g(1) = 0. Thus, the proof is completed. The equality holds for a; = a, = --- =
a,=>1.

Remark 1. Since a} 'ayas---a, > 1 yields a,(a, + a5+ --- +a,) = n—1, the
inequality

1 1 1
F(aj,ay,...,a,)=F|—,—,...,—

)
a a, a,

is also valid if a;, a,, ..., a, are positive real numbers such that
a,as---a, = 1.

an

alsa2S"'Sa 1

n»
Also, it is valid in the particular case
ap,dy,...,a, = 1.

Remark 2. Since a;a,---a, > 1, from P 5.100 it follows that

1 1 1
G tayt o ta,>—+— 4t —
a a a
for
a;(ay+as+---+a,)=>n—1.
]
P 5.101. Let
ad+ai+--+ad aq ta,+---+a,
F(al,az,...,an):\ " — " ,

where a,,a,,...,a, are positive real numbers such that a, < a, <--- < a, and

aiMay+as+---+a,)=n—1
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Then,

(Vasile C., 2020)

Solution. For n = 2, we need to show that a;a, > 1 involves

(a1a, — 1)(\/ 2(61% + a%) —a;—a,) =0,

which is true. For n > 3, write the inequality in the form

V(@ + G+ +ad) —(a+ap+-oo+a,)

1 1 1 1 1 1
= n —2+—2+"'+—2 -+t ——+---+—2>0.
aj a a

According to Corollary 5 (case k = —1), we have:
e Ifa,,as,...,a, are positive real numbers so that
1

1 1
a,+as+---+a, =constant, —+—+---+— =constant, a,<a3;<---<a,,
a das a

. 1 1 . )
then the sum a§ + a§ +. 4 arzl is minimal and the sum — + — +- -+ — is maximal

a, 4a; a;

fora, <a;=---=a,.

Thus, it suffices to consider the case a, < a; = -+ = a,,. We need to show that if
X, y,% are positive real numbers such that x < y <z and

x"y+(n—2)z]=>n—1,

then E(x, y,z) = 0, where

x+y+((n—2)z

vn

_ l+l+”_2+i(l+l+”_2)
x2 oy g2 Ja\x y z )

We will show that

E(x,y,2)= \/x2+y2+(n—2)22—

E(x,y,z) 2 E(x,w,w) 2 0,

where )
po YT (—2)
n—1
Write the inequality E(x, y,2z) = E(x,w,w) as follows:

, XSysw<az.

VX2+y2+(n—2)22+/x2+(n—1w? V1

y2+(n—2)z2—(n—1)w? 1 (1 n—2 n—1)
y Z w
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1 n—2 n—1
}ﬁ + 22 + w2

)
1 1 n—2 1 n—1
F+W+z_2+\/ﬁ+v

(=2 =27 1 (=2 -2y
n—1 VX2t y2+(n—2)22+ /x2+(n—1)w?  Vnyzly +(n—2)z]
- (n—2)(y —2)[y*+2(n—1)yz + (n—2)z?] . 1
B y222y +(n—2)z]? i+i+n_—2+\/i+n_—1’
2 T2 22 2 w2

which is true if
1 1 + 1
n—1 /x2+y2+(—2)22++/x2+(n—1w? vnyzly +(n—2)z]

o y2+2(n—1)yz+ (n—2)z> 1
222[y +(n—2)z]? 1.1 2 11
yEly JeEte+ S H/a+5

Since x < y, it is enough to show that

1 1 1
n—1 V2y2+(n—2)22+ 4/ y2+(n—1)w? " vnyz[y +(n—2)z]

>y2+2(n—1)yz+(n—2)z2 1
252 — 2 — —
y222 [y + (n—2)z] \/722+Z_22+\/%+_;
In addition, since w < gz, it suffices to show that

1 1 1
n—1 V2y2+(n—2)22++/y2+(n—1)22 - Vyz[y + (n—2)z]

>y2+2(n—1)yz+(n—2)z2 1
252 — 2 — —_
y222 [y + (n—2)z] \/%+Z_22+\/%+Z_;

Since
y2+2(n—1Dyz+(n—2)22=[y*+(n—2)22]+2(n—1)yz,

we rewrite the inequality as

A+B>C+D,
where
a1 1
n—1 /2y2 ¥ (n—2)22+ /y2+ (n—1)z*
1
B= s
Vnyzly +(n—2)z]

Y+ (n—2)7? 1
~ 22 _ 2 — — ’
y222y +(n—2)z] %Jrnz_zzh/%wz_;
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_ 2(n—1)yz 1
© y222[y + (n—2)z]2 2 n2 1, n1
R GRS Y = iy =

We will show that

A=C, B=z=D.

Since the inequality B > D is homogeneous, we may consider y =1 and z > 1,
when it becomes

[(n—2)z+1][\/222+n—2+ \/22+n—1J22\/ﬁ(n—1)Z.

Since

22—+-n—2+z+n—1 _32+2n—3
J/n J/n J/n ’

V2z2+n—2+vVz2+n—1>

it is sufficient to show that
[((n—2)z+1](3z2+2n—3)>2n(n—1),
which is equivalent to
(z—1)[3(n—2)z+2n*>—4n+3]>0.
To show that A> C, we see that x" [y + (n—2)z] > n—1 yields
Yy y+(n—2)z]>n—1.

Thus, it suffices to prove the homogeneous inequality

n—1 4 ) 2/n
AZ COC’ CO = |:y [y (n )Z]] )

n—1
that is
1 >
V2y2+ (n—2)224+/y2+(n—1)22
L (=D + (=22 G

¥222[y + (n—2)z] \/;%+’1z;22+\/}%+"z—_21’

Due to homogeneity, we may set y = 1, hence z > 1. The inequality becomes

V22 4n—24+Vz2+n—1>

(n—1D[1+(n—2)7%]C |
= 21t (n—2)P 1[\/2+(n_2)22+\/1+(n—1)2;2J’

where
[1+(n—2)2]2/n
Ci=|——— .
n—1
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By Bernoulli’s inequality, we have

(n—2)(z—1)]2/n <1+ 2(n—2)(z—1)  2(n—2)z+n*—3n+4)

Cl:[1+ n(n—1) B n(n—1)

n—1

Thus, it suffices to show that

\/222+n—2+\/2:2+n—12

1+ (n—2)z2][2(n—2)z + n®>—3n + 4]
nz[1+ (n—2)z]?
We will show that

o 2> [1+(n—2)22][2(n—2)z + n®>—3n+4] CEE

nz[1+ (n—2)z]?

S |

[\/2+(n—2)z2+\/1+(n—1)zzj .

and

mz [1+(n—2)z2][2(n—2)z+n2—3n+4]\/m'

nz[1+(n—2)z]?

Since

2 +n—-2  #+n—-1 _ (n—3)(z*—1) 0
(n—1)z2+1 (n—2)22+2 [n—1Dz2+1][(n—2)22+2]"

it suffices to prove the second inequality. After squaring and making many cal-
culations, this inequality can be written as (z — 1)P(z) = 0, where P(z) > O for
z2>1.

To complete the proof, we need to show that E(x,w,w) > 0 for x" 'w > 1.
Write the required inequality as follows:

A+ (A= Dw2] =[x+ (n—Dw] > \Jn[éﬁ_l]—(h”_l) ,

w2 X w
(-Dax—wP 1 (a-Da—wy
— x+(n—Dw — — (n—Dx+w °
Va2 (= Dw2 + 2O 7w /(= T)x? +w? 4 =212

This is true if

(n—Dx+w S 1
J/n T xw

Since x"'w > 1, it suffices to prove the homogeneous inequality

\/(n—l)x2+W2+

.[\/X2+(n_1)wz+w] )

Jn

(n—Dx+w_ (x"tw)?/m

Jn - xw

\/(n —1)x2+ w2+

.[\/Xz+(n_1)wz+w] .

vn
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Due to homogeneity, we may set w = 1, which yields x < 1. The inequality becomes

—1)x+1 n— +n—1
\/(n—l)x2+1+w2x72[ x2+n—1+i].
vn vn

We can get this by summing the inequalities
V(n—1x2+1 >x% -v/x2+n—1

and
(n—1Dx+1 2 X+n—1
A 2 xXn +«o—
vn vn
Replacing x with x? in the second inequality gives the first inequality. Thus,it suf-
fices to prove the second inequality, which can be rewritten as f(x) > 0, where

—2
f(x)=ln[(n—1)x+1]—ln(x+n—1)—n Inx .
From
£l = n—-1 1 _n—2_ —(n—1)(n—2)(x —1)? <0,
(n—x+1 x+n-—1 nx nx[(n—1)x+1],+n—1)
it follows that f is decreasing, hence f(x) > f(1) =0.
The proof is completed. The equality holds for a; =a, =---=aqa, > 1.
Remark. The inequality
1 1 1
F(a,,ay,...,a,)=>F|—,—,...,—
a; d a,
is also valid in the particular case
a,dy,...,a, = 1.
O
P 5.102. If a;,q,,...,a, (n > 4) are positive real numbers such that
a,+a,+---+a,=n, a,=max{a,qa,,...,qa,},

then

1 1 1
n(—+—+---+—)24(af+a§+---+a§)+n(n—5).
a; a a1

(Vasile C., 2021)
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Solution. Assume that a,, is fixed and a; < a, <--- < a,. According to Corollary 5
(case k =2 and m = —1), we have:

e Ifa,,a,,...,a, ; are positive real numbers so that

a;+a,+ - +a, , =constant, a’+ai+---+a>_, =constant, a;<d,<---<a, .,

1 |
then the sum — + —+:--4+ —— is minimal fora; = a, =+ =qa,_, < a,_;.
a; n—
Therefore, it suffices to consider the case a; = a, = --- = a,_,, that is to show that

F(a,b) > 0, where

-2 1
n +E)—4(n—2)a2—4b2—4c2—n(n—5), c=n—(n—2)a—>,

F(a,b)=n (
with a, b positive real numbers such that a < b < c. From ¢ > b, we get
(n—2)a+2b<n.

We will show that
F(a,b) > F(t,t) >0,

where
- (n—2)a+b

n—1

t<1.

B} —

Since

n—2 1 n-—1

b t

F(a,b)—F(t,t):n( )—4[(n—2)az+b2—(n—1)t2]

_n(n—2)a— b)? 4(n—2)(a—b)?

(n—1)abt n—1

- n(n—2)(a—b)? _4n—2)(a— b)?
(n—1)ab n—1
_ (n—2)(a—b)*(n—4ab)
(n—1)ab ’

it suffices to show that 4ab < n. From

n>(n-—2)a+2b=>24/2(n—2)ab,

2

we get

4ab—n < —_n:n(4——n) <0.
2(n—2) n—2
In addition,

n(n—1)
— X

F(t,t)= n—1Dt2—4[n—(n—1t]*—n(n—>5)
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_ _ _ 2
_ n(n—1)(1—1t)(1—2t) >0
t
The equality occurs for a; =a, =---=a, =1, and also for
1 n+1

a1:a2:"':an_1:5, an: 2 .

P 5.103. If a, b, c are nonnegative real numbers so that ab + bc 4+ ca = 3, then

1 1 1
+ + <1
a+b+1 b+c+1 cH+a+1

(Vasile C., 2021)

Solution. Using the substitution
m=a+b+c+1,

we have to show that

fl@+f(B)+f(c)=<1
for
a+b+c=m—1, a+b*+c2=(m—-1)>*—6,
f(u)=—1 , O0<u<m-—1.
m—u
From
g(x)=f’(x)=m, g”(x)Zm,

it follows that g”(x) > 0, hence g is strictly convex. For fixed m, by Corollary 1, if
a+b+c=fixed, a*+b*+c*=fixed,
then the sum
Sy=f(a)+f(b)+f(c)

is maximal for a = b < c. Thus, we only need to prove the inequality fora = b < c;
that is, to show that a® 4+ 2ac = 3 involves

2 1
+ <
at+c+1 2a+1
Write this inequality as follows

4a 1
+ <1,
az+2a+3 2a+1
a(a—1)*>0.

The equality holds fora=b=c=1.
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Chapter 6

EV Method for Real Variables

6.1 Theoretical Basis

The Equal Variables Method may be extended to solve some difficult symmetric
inequalities in real variables.

EV-Theorem (Vasile Cirtoaje, 2010). Let a;,a,, ...,a, (n = 3) be fixed real numbers,
and let
Xl S x2 < e < X

= = 4n

so that
— k k k _ k k k
.X'l+X2+"'+Xn—a1+a2+"'+an, Xl +X2+"'+Xn—a1+a2+"'+an,

where k is an even positive integer. If f is a differentiable function on R so that the
joined function g : R — R defined by

() =F'("Vx)
is strictly convex on R, then the sum
Sp=fx)+flx)+- -+ f(x,)
is minimum for x, = X3 = +++ = X,,, and is maximum for x; = Xy ="+ = X,_;.
To prove this theorem, we will use EV-Lemma and EV-Proposition below.

EV-Lemma. Let a,b,c be fixed real numbers, not all equal, and let x,y,z be real
numbers satisfying

x<y<z x+y+z=a+b+c, x+y*+zF=d"+b"+ck,

where k is an even positive integer. Then, there exist two real numbers m and M so
that m < M and
(1) yelmM];

489
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(2) y=mifandonlyif x =y;
(8) y=Mifandonly if y =z.

Proof. We show first, by contradiction method, that x < z. Indeed, if x = z, then

x+y+2z\k
X=z = xX=y=3z = xk+yk+zk=3(%)
+b+c)f
> ak+bk+ck:3(aT) a=b=c,

which is false. Notice that the last implication follows from Jensen’s inequality
+b+c\f
ak+bk+ck23(u) )
3
with equality if and only if a = b =c.
According to the relations
x+z=a+b+c—y, xF+zf=da"+b"+cF-yk

we may consider x and g as functions of y. From

x/ + Z/ — _1’ xk—lx/ +Zk—1zl — _yk—l’
we get
k-1 k—1 k—1 k—1
gh=1 — yk=1’ k=1 — gk—1

The two-sided inequality
x(y)<y <z(y)
is equivalent to the inequalities f;(y) < 0 and f,(y) = 0, where

D) =x()—y, fL()=2(y)—).

Using (*), we get

k=1 _ k=1

Y
/ —
fl(.y)_ k=1 — yk—1 —1

and
k=1 _ k1

oy Y
Since f/(y) < —1 and f,(y) < —1, f; and f, are strictly decreasing. Thus, the
inequality f;(y) < 0 involves y > m, where m is the root of the equation x(y) =y,
while the inequality f,(y) > 0 involves y < M, where M is the root of the equation
%2(y) = y. Moreover, y = m if and only if x = y, and y = M if and only if y = z.

EV-Proposition. Let a, b, c be fixed real numbers, and let x,y,z be real numbers
satisfying

x<y<z x+y+z=a+b+c, x+y*+zF=da"+b"+ck,
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where k is an even positive integer. If f is a differentiable function on R so that the
joined function g : R — R defined by

g)=f'("Vx)
is strictly convex on R, then the sum
S=f)+f(y)+f(2)
is minimum if and only if y = 2, and is maximum if and only if x = y.
Proof. If a = b = c, then

a+b+c)k
3

a=b=c = ak+bk+ck=3(
= xk+yk+zk:3(#)k = x=y=2.
Consider further that a, b, c are not all equal. As it is shown in the proof of EV-
Lemma, we have x < z. According to the relations
x+z=a+b+c—y, x*+zf=da"+b"+cF—yk
we may consider x and g as functions of y. Thus, we have

S=fx(Y)+f )+ f(=z(y)):=F(y).

According to EV-Lemma, it suffices to show that F is maximum for y = m and is
minimum for y = M. Using (*), we have

F(y)=x'f'(x)+f'(y)+2'f(2)

k=1 _ k-1 k=1 _ k-1
y "= k-1 -1y, Y —X k-1
Zk_l_xk_lg(x )+l )+mg(z ),

which, for x < y < z, is equivalent to

F'(y) _ g(x* ™)
(yk=1 — xk=1)(yk=1 —gk=1) " (xk=1 — yk=1)(xck-1 — zk-1)
g™ N g

(yk—1 —gk=1)(ykL — xk-1) * (gk=1 — xk-1)(gk-1 — yk-1)’
Since g is strictly convex, the right hand side is positive. Moreover, since
(yk—l _ xk—l)(yk—l _Zk—l) <0,

we have F'(y) < 0 for y € (m, M), hence F is strictly decreasing on [m, M ]. There-
fore, F is maximum for y = m and is minimum for y = M.
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Proof of EV-Theorem. For n = 3, EV-Theorem follows immediately from EV-
Proposition. Consider next that n > 4. Since X = (xq,X,,...,X,) is defined in
EV-Theorem as a compact set in R", S, attains its minimum and maximum values.
Using this property and EV-Proposition, we can prove EV-Theorem via contradic-
tion. Thus, for the sake of contradiction, assume that S, attains its maximum at
(by, by, ..., b,), where b; < b, <:.-- < b, and b; < b,_;. Let x;, x,_; and x,, be
real numbers so that

_ ko Lk k _ 1k 1k k
X1 <Xy <Xy Xy+Xp+Xx,=by+b,1+b,, x;+x _ +x =bj+b  +b.

According to EV-Proposition, the sum f (x;)+ f (x,_;)+ f (x,) is maximum for x; =

X,_1, When

fOe)+ ) + £ (x) > f(b1) + £ (b)) + £ (D).

This result contradicts the assumption that S, attains its maximum value at (b, b,, ..
with b; < b,_;. Similarly, we can prove that S, is minimum for x, = x5 =--- = X,,.
Taking k = 2 in EV-Theorem, we obtain the following corollary.

Corollary 1. Let a,,a,,...,a, (n > 3) be fixed real numbers, and let x1, X,,...,X,
be real variables so that
x1 SXZ S an,
Xl +X2+"'+Xn:a1+a2+"'+an,
2, .2 2_ 2., 2, 2
X]+x;,+-tXx, =aj+a,+---+a,.
If f is a differentiable function on R so that the derivative f’ is strictly convex on R,
then the sum

Sp=f(x)+f(x)++ fx,)
is minimum for x, = X3 = -++ = X,,, and is maximum for x; = Xy ="+ = X,_;.
Corollary 2. Let a,,a,,...,a, (n > 3) be fixed real numbers, and let x, X, ..., X,
be real variables so that
X]. sz S ttt an,
xl +X2+"'+xn=a1+a2+"'+an,
ko Lk k_ ko k k
x;+tx,++x, =a;ta,+---+a,
where k is an even positive integer. For any positive odd number m, m > k, the power

sum
— m m e m
Sp=x] +x; +-+x,

is minimum for X, = X5 = +++ = X,,, and is maximum for x; =X, =+++ = X,_;.
Proof. We apply the EV-Theorem the function f (u) = u™. The joined function

k-1

g(0) = f'(“Vx) = m Vo

- by)
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is strictly convex on R because its derivative
mm—1) «xa,/——
g/(x) = ¥ Xm—k
k—1
is strictly increasing on R.

Theorem 1. Let a,,a,,...,a, (n > 3) be fixed real numbers, and let x1, X5, ..., X, be
real variables so that

X1+X2+"'+Xn=a1+a2+"'+an,

2 2 2_ 2 2, . 2
xIxi4-+xi=a+ai+---+al

The power sum
Sp=xi+xi+-+x}

is minimum and maximum when the set (x1, x5, ..., X,,) has at most two distinct val-
ues.

To prove this theorem, we will use Proposition 1 below.

Proposition 1. Let a, b, c be fixed real numbers, and let x,y,z be real numbers so
that
x+y+z=a+b+c, x*+y*+z2=a*+b*+c

The power sum
S=x*+y*+z*

is minimum and maximum when two of x, y,z are equal

Proof. The proof is based on EV-Lemma. Without loss of generality, assume that
x < y < z. For the nontrivial case when a, b, ¢ are not all equal (which involves
Xx < 2), consider the function of y

F(y)=x*(y)+y*+2*(y).
According to (*), we have

F'(y)=4x®x'+4y* + 42z = 432 4 4y3 + 437 %
Z—Xx X—32

=4(x+y +2)(y —x)(y —z) =4(a+ b+ )(y —x)(y —2).

There are three cases to consider.

Case 1: a+b+c¢ <0. Since F'(y) > 0 for x <y <z, F is strictly increasing on
[m,M].

Case 2: a+ b+ c > 0. Since F'(y) <0 for x < y < 3, F is strictly decreasing on
[m,M].

Case 3: a+ b+c=0. Since F'(y) =0, F is constant on [m, M].
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In all cases, F is monotonic on m, M ]. Therefore, F is minimum and maximum for
y =mor y = M; that is, when x = y or y = z (see EV-Lemma). Notice that for
a+b+c # 0, F is strictly monotonic on [m, M ], hence F is minimum and maximum
if and only if y = m or y = M that is, if and only if x =y or y = 2.

Proof of Theorem 1. For n = 3, Theorem 1 follows from Proposition 1. In order
to prove Theorem 1 for any n > 4, we will use the contradiction method. For the
sake of contradiction, assume that (b,, b,,...,b,) is an extreme point having at
least three distinct components; let us say b; < b, < bs;. Let x;, x, and x5 be real
numbers so that

— 2 2 2 _ 1,2 2 2
X1 X3S X3, X;+Xy+Xx3=Dby+by+b;y xi+x,+x;=>bj+b;+b;.

We need to consider two cases.

Case 1: by + by + by # 0. According to Proposition 1, the sum x} + x3 + xj is
extreme only when two of x,, x5, x5 are equal, which contradicts the assumption
that the sum x} + xJ 4+ --- + x? attains its extreme value at (by, b,,...,b,) with
b, < b, < bs.

Case 2: by +b,+ by = 0. There exist three real numbers x;, x,, x5 so that x; = x,
and
X1 +Xy+x3=by+by+b3=0, x>+x;+x3=b}+b.+Db2

Letting x; = x, := x and x5 := y, we have 2x + y = 0, x # y. According to
Proposition 1, the sum x} + xJ + x§ is constant (equal to b} + b + b3). Thus,
(x,x,y,by,...,b,) is also an extreme point. According to our hypothesis, this ex-
treme point has at least three distinct components. Therefore, among the numbers
b,,..., b, there is one, let us say b,, so that x, y and b, are distinct. Since

we have a case similar to Case 1, which leads to a contradiction.

Theorem 2. Let a,,a,,...,a, (n = 3) be fixed real numbers, and let x;, x5, ..., X, be
real variables so that

Xy +Xo+r+Xx, =a;+a,+--+q,,

2, .2 2 24 2 2
xX24+xi4-+xi=ad+a 4+ al

For m € {6, 8}, the power sum
—_ m m m
Sp=x] +x;+-+x;
is maximum when the set (x1,x,,...,X,) has at most two distinct values.

Theorem 2 can be proved using Proposition 2 below, in a similar way as the
EV-Theorem.
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Proposition 2. Let a, b, ¢ be fixed real numbers, let x, y,z be real numbers so that
x+y+z=a+b+c, x*+y*+z2=a*+b*+c
For m € {6, 8}, the power sum
Sp=x"4+ym"+2z"
is maximum if and only if two of x,y,z are equal.
Proof. Consider the nontrivial case where a, b, c are not all equal. Let
p=a+b+c, q=ab+bc+ca, r=xyz.
Since x +y +z=p and xy + yz +2x = q, from
(x = y)Y(y —2)*(z—x)* 20,
which is equivalent to
27r* +2(2p> —9pq)r —p*¢* +4¢> < 0,
we get r € [ry,1,], where

o 9pq —2p° —2(p* —3q)+/p>—3q o 9pq —2p° +2(p® —3q)+v/p>—3q
1 ) 2 .
27 27

From
—27(r —r)(r—r) = (x = y)*(y —=2)*(z—x)* 2 0,

it follows that the product r = xyz attains its minimum value r; and its maximum
value r, only when two of x, y,z are equal. For fixed p and g, we have

Se = 3r* + fo(p,Q)r + he(p,q) := g(1),

Ss = 4(3p* — 2q)r* + f3(p, Q)r + hs(p, Q) := gg(r).
Since

7. 2
3p*—2q = gpz + §(p2—3q) >0,

the functions g4 and gg are strictly convex, hence are maximum only for r = r; or
r = r,; that is, only when two of x, y,z are equal.

Open problem. Theorem 2 is valid for any integer number m > 3.

Note. The EV-Theorem for real variables and Corollary 1 are also valid under the
conditions in Note 2 and Note 3 from the preceding chapter 5, where m, M € R.
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6.2 Applications

6.1. If a, b, c,d are real numbers so that a + b+ c +d = 4, then

2 2 2 282 3 3 3 364
a+b+c+d+§ 24a+b+c+d+?.

6.2. If a, b, c,d are real numbers so that a + b + ¢ +d = 4, then

(a2+b2+c2+d2—4)(a2+b2+c2+d2+%6)28(a3+b3+c3+d3—4).

6.3. If a, b, ¢ are real numbers so that a + b + ¢ = 3, then

(a®+ b2+ c?2=3)(a®+b*+c?+93) > 24(a® + b + > —3).

6.4. If a, b, c,d are real numbers so that a + b + c +d = 4, then

(A2+ b2+ +d?>—4)(a®>+ b2+ c2+d*+116) > 24(a® + b2+ 2+ d> —4).

6.5. Let a, b, c,d be real numbers so that a+ b +c+d =4, and let

E=a?+b*+c*+d*—4, F=a+b*+3+d°>—4.

o({E+s)er

6.6. Let a;,a,,...,a, be real numbers so that

Prove that

a+ay+--+a,=0, a+a+---+a=n(n—1).
If m is an odd number (m > 3), then

n—1—-(n—-1)"<al'+ay+--+a <(n—1)"—n+1
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6.7. Let a;,a,,...,a, be real numbers so that
a;t+a,+---+a,=1, af+a§+-~-+a5:n2+n—1.

If m is an odd number (m > 3), then

2\" 2\"
(n—1)(1+—) —(n——) <al'+ay+--+a'<n"—n+1.
n n
6.8. Let a;,a,,...,qa, be real numbers so that

atay+-+a,=1, d+da+---+a=n"-3n+3.

If m is an odd number (m > 3), then

2\" 2\™
n—1—(n—2)mSaT+ag1+---+a;"S(n—2+—) —(n—l)(l——) .
n n

6.9. Let a,,a,,...,a, be real numbers so that
a+ay+-ta,=d+a+--+ai=n—1
1 2 n— *1 2 n .

If m is an odd number (m > 3), then

2\™ 2\"
n—1Sa;”+a;”+---+afs(n—l)(1——) +(2——) .
n

6.10. Let a;,a,,...,a, be real numbers so that
a+ay+---+a,=n+1, a’+ai+---+a’=n+3.

If m is an odd number (m > 3), then

2\" 2\"
(—) +(n—1)(1+—) <al'tay+--+a <2"+n—1.
n n

6.11. If a;,a,,...,a, are real numbers so that
a+ay+--+a,=al+al+---+al=n—1,

then
@+ay+-+a=n—1.
n
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6.12. If a, b, ¢ are real numbers so that a® + b? + ¢2 = 3, then

aA+b>+c+3>2(a+b+c).

6.13. If a;,a,,...,a, are real numbers so that
a+ay+--+a,=0, a+a+---+a’=n(n-1),

then
at+aj+---+a <n(n—1)(n*—3n+3).

6.14. If a;,a,,...,a, are real numbers so that
g+a+--+a,=n+1, d+a+---+ad=4n*+n—1,

then
ai+al+---+at<16n*+n—-1.

6.15. If n is an odd number and a4, a,,...,a, are real numbers so that
a+ay+--+a,=0, a+a+---+a=nn*-1),

then
al+aj+---+at>nn*—1)(n*+3).

6.16. If a,,a,,...,a, are real numbers so that
a+ay+--+a,=n*—n—1, a+a+---+a=n+2n—n—1,

then
al+al+---+at=nt+(n—-Dn+ DN

6.17. If a;,a,,...,a, are real numbers so that
a;+a,+--+a,=n*—2n—1, af+a§+---+ai=n3+2n+1,

then
al+al+-+at >+ +(n—1n
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6.18. If a;,a,,...,a, are real numbers so that
a, +a,+--+a,=n*—3n—2, af+a§+~-+a5=n3+2n2—3n—2,

then
al+aj+---+at>2n*+(n-2)(n+ 1

6.19. If a, b, c,d are real numbers so that a + b + c +d = 4, then

(a®+ b2+ c2+d?>—4)(a®> +b*>+c2+d?+36) < 12(a*+ b* +c* +d*—4).

6.20. If a;,a,,...,a, are real numbers so that
a+ay+---+a,=0, a+a+---+a=n(n—1),

then
a+aS+--+a®<(n—1°+n—1.

6.21. If a,a,,...,a, are real numbers so that
a+tagt+-+a,=1, ad+a+---+ad=n"+n—1,

then
ai’+a§+---+a2§n6+n—1.

6.22. If a,a,,...,a, are real numbers so that
a+ay+---+a,=0, ad+a+---+a’=n(n—-1),

then
ad+a+--+a<(n—10°+n—-1.

6.23. If a;,a,,...,a, are real numbers so that
at+a,+---+a,=1, af+a§+-~-+ai=n2+n—1,

then
a+as+--+a®<n®+n—-1.
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6.24. Let a;,a,,...,a, (n = 2) be real numbers (not all equal), and let

A Gtatta, _ai+ajt+al G+t +al

b B b C
n n n
Then,
1 2n2 B>—AC 1 2n2
-1 1—-\[1+ < <—-11+\1+ .
4 n—1 B2—A% T 4 n—1

6.25. If a, b, c,d are real numbers so that
a+b+c+d=2,

then 3
a*+b*+ct+d* S4O+Z(a2+b2+c2+d2)2.

6.26. If a, b, c,d, e are real numbers, then

31+18v3 3

at+ bt +ctHdi+et < T[(a+b+c+d+e)4+Z(a2+b2+cz+d2+ez)2.
—5

6.27. Leta, b,c,d,e # ”y be real numbers so thata+ b+ c+d +e =5. Then,

ala—1) b(b—1) c(c—1) d(d—1) e(e—1)
(4a+5)2  (4b+57 @ (4c+57  (4d+5)2  (det5P

6.28. If a, b, c are real numbers so that
a+b+c=09, ab+ bc+ca=15,

then

< + + < —.
175 b2+ bc+c2 c24ca+a? a?2+ab+b2" 19

19 1 1 1 <7

6.29. If a, b, c are real numbers so that
8(a?+ b*+¢*)=9(ab + bc +ca),

then
419 a? b? c? 311

< + + < .
175 b2+ bc+c2 c2+4+ca+a? a?2+ab+ b2 19

6.30. Let a;,a,,...,a, be real numbers such that a; +a,+---+a, =n. If n < 10,
then
20 +az+--+a2)P—nl@+a+--+a)=n’
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6.3 Solutions

P 6.1. Ifa, b,c,d are real numbers so that a+ b + c +d = 4, then
8)? 6
(a2+b2+c2+d2+§) 24(a3+b3+63+d3+?4).

(Vasile Cirtoaje, 2010)
Solution. Apply Corollary 2 forn=4,k =2, m=3:

e Ifa,b,c,d are real numbers so that a <b <c<d and
a+b+c+d=4, a*+Db*>+c*+d?=constant,

then
S,=a*+b>++d?
is maximum fora=>b =c < d.

Thus, we only need to show that 3a + d = 4 involves

2
(3a2+d2+§) 24(3a3+d3+69—4).

This inequality is equivalent to
(a—1)*(3a—2)*>0.

The equality holds fora = b =c¢=d =1, and also for

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

e Ifa;,a,,...,a, are real numbers so that

a1+a2+"'+an:n,

then
3 \2 402
+16n—16
(af+a§+--~+a2+ & )2n(a§+a§+---+a3)+n(n L ),
" 8n—8 " 64(n—1)2
with equality for a; = a, =---=a, =1, and also for
G =ay==a, = — a, ==
1— Y2 = - n—l_zn_zﬁ n_2

(or any cyclic permutation).
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P 6.2. Ifa, b, c,d are real numbers so that a+ b+ c+d =4, then
76
(a2+b2+c2+d2—4)(a2+b2+62+d2+?)28(a3+b3+c3+d3—4).

(Vasile Cirtoaje, 2010)
Solution. As shown in the preceding P 6.1, we only need to show that
3a+d=4

involves 76
(3a>+d*—4) (Ba2 +d?+ ?) > 8(3a® +d>—4).

This inequality is equivalent to
(a—1)*(3a—1)*>0.

The equality holds fora = b =c=d =1, and also for

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

e Ifa;,a,,...,a, are real numbers so that
a,+a,+---+a,=n,
then

, n(n*+n—-1)

(af+---+a§—n)[af+---+a + ]22n(ai’+---+a§—n),

" n—1
with equality for a; = a, =---=a, =1, and also for
1
A =ay=-"=0a,_; = , a,=n—1
n—1

(or any cyclic permutation).

P 6.3. If a, b, c are real numbers so that a + b + ¢ = 3, then
(a®>+b*+c*—3)(a?+ b*+c*+93) > 24(a® + b + > —3).

(Vasile Cirtoaje, 2010)
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Solution. As shown in the proof of P 6.1, we only need to show that
2a+c=3

involves
(2a% + c* —3)(2a* + ¢* + 93) > 24(2a>® + > — 3).

This inequality is equivalent to
(a*>—1)*>0.

The equality holds for a = b = ¢ =1, and also for

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

e Let a,b,c be real numbers so that a + b+ c = 3. For any real k, the following
inequality holds

(a2 +b%2+c2—3)(a®+ b2+ c?+6k?+36k—3)> 12k(a® + b3+ 3 —3),
with equality for a = b = c¢ =1, and also for
a=b=1—k, c¢c=1+2k

(or any cyclic permutation).

P 6.4. Ifa,b,c,d are real numbers so that a+ b+ c +d =4, then
(A2+ b2+ +d?>—4)(a®>+ b2+ c2+d*>+116) > 24(a®> + b2+ 2+ d° —4).
(Vasile Cirtoaje, 2010)
Solution. As shown in the proof of P 6.1, we only need to show that
3a+d=4

involves
(3a* +d*—4)(3a*> +d?* +116) > 24(3a® + d°> —4).

This inequality is equivalent to

(a>—1)*>0.
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The equality holds fora = b =c=d =1, and also for
a=b=c=-1, d=7
(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

e Let ay,a,,...,a, be real numbers so that
a,t+a,+---+a,=n.
If k is a real number, then

k(a3 +---+a’—n) - a?+---+a’+n(n—1)(n—2)*k*+6n(n—1)k —n

a+--+at-n 2n(n—1) ’
with equality for
alz---:an_lzl—(n—z)k, an=1+(n—1)(n—2)k

(or any cyclic permutation).

—6
For k = P we get the following nice inequality
12 —1
(af+a§+---+a,21—n)2+Lz)(af+a§+---+af’l—n)20,
n —
with equality for a; =a, =--- =a,, =1, and also for
a=--=a,,=7, a,=7—6n

(or any cyclic permutation).

P 6.5. Let a, b, c,d be real numbers so that a+ b +c+d =4, and let

E=a?+b*+c?+d*—4, F=a+b*+3+da°>—4.

([ +s)er

Prove that

(Vasile Cirtoaje, 2016)
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Solution. As shown in the proof of P 6.1, we only need to prove the desired in-
equality for 3a +d =4 and

E=3a*>+d*—4, F=3a*>+d°—4.

Since
E=12(1—a)?), F=12(5—2a)(1—a)?
we get
E 2 2
E §+3 —F=12(1—a)*(2|]1—a| +3)—12(5—2a)(1—a)
=24(1—a)*[|1—a|—(1—a)] >0.
The equality holds for
a=b=c=—4_d <1
3

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:

e Leta,,a,,...,a, be real numbers so that a; +a, +---+a, =n, and let

E=dl+a+---+a’—n, F=d+da+--+da—n

Then,
E
E[{(n—2)\| ——=+3([>=F,

n(n—1)

with equality for
n—d, _,
a, = - =qa, = <
1 n—1 n—1
(or any cyclic permutation).
O

P 6.6. Let aq,a,,...,a, be real numbers so that

a+ay+---+a,=0, a+a+---+a=n(n—1).
If m is an odd number (m = 3), then
n—1-(n—1)"<al'+ay}+--+a' <(n—1)"—n+1.

(Vasile Cirtoaje, 2010)
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Solution. Without loss of generality, assume that

a1Sa2<"'Sa

(a) Consider the right inequality. For n = 2, we need to show that
a,+a,=0, a*+a’=2
implies

We have
Cll == _1, az == 1,

therefore af" + a;' = 0. Assume now that n > 3. According to Corollary 2, the sum

S,=aj'+a; +---+a;
is maximum for a; = a, =--- = a,_;. Thus, we only need to show that
(n—1)a+b=0, (n—1a*+b* =n(n—1), a<b

involve
(n—1)a"+b"<(n—1)"—n+1.

From the equations above, we get

therefore,
(n—1Dd"+b"=n—-1)(-1)"+(n—1)"=(n—1)"—n+1.
The equality holds for
a=-=a,,=-1, a,=n-1

(or any cyclic permutation).

(b) The left inequality follows from the right inequality by replacing a,, a,, . .

with —a;,—a,, ...,—a,, respectively. The equality holds for
a,=—n+1, a=a3=---=q,=1

(or any cyclic permutation).

.5 ay
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P 6.7. Let a;,qa,,...,a, be real numbers so that
a;t+a,+---+a,=1, af+a§+-~-+a§:n2+n—1.

If m is an odd number (m > 3), then

2\" 2\"
(n—1)(1+—) —(n——) <aj'tay+---+a'<n"—n+1.
n n

(Vasile Cirtoaje, 2010)
Solution. Without loss of generality, assume that
a1 S az S ce S a

ne

For n = 2, we need to show that

a; +a,=1, af+a§=5,
implies

2"—1<af'+a; <2"—1.
We have

Cl1 == _1, a2 == 2,
for which alm + aZm = 2™ —1. Assume now that n > 3.

(a) Consider the right inequality. According to Corollary 2, the sum
S,=al'+ay +---+a;
is maximum for a; = a, =--- = a,_;. Thus, we only need to show that
(n—1a+b=1, (n—1)a*>+b*>=n*+n—-1, a<b

involve
(n—1Da"+b"<n™"—n+1.

From the equations above, we get

therefore,
(n—1Dad"+b"=n—-1)(-1)"+n"=n"—n+1.

The equality holds for
a=a,=---=a,;,=—1, a

(or any cyclic permutation).
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(b) Consider the left inequality. According to Corollary 2, the sum
S,=al'+ay +---+a;
is minimum for a, = a; = --- = a,,. Thus, we only need to show that

a+(n—1)b=1, a*+n—-1)b*=n*+n—1, a<b

involve
2\" 2\™
am+(n—1)bm2(n—1)(1+—) —(n——) .
n n
From the equations above, we get
2 2
a=-n+-—, b=1+—;
n n
therefore,
2\" 2\"
am+(n—1)bm=(—n+—) +(n—1)(1+—)
n n
2\" 2\"
=(n—1)(1+—) —(n——) .
n n
The equality holds for
a=—-n+-, aq=a=--=q,=1+-—
n n

(or any cyclic permutation).

P 6.8. Let a;,a,,...,a, be real numbers so that
a+ay+-+a,=1, d+a+---+a=n"-3n+3.

If m is an odd number (m > 3), then
2\" 2\"
n—1—(n—2)mSaT+a§+---+a,’f§(n—2+—) —(n—1)(1——) .
n n

(Vasile Cirtoaje, 2010)
Solution. Without loss of generality, assume that
Cl1 SQZS“‘San.

For n = 2, we need to show that

a,; +a,=1, a?+a:=1,
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implies
We have

when al' +ay’ = 1. Assume now that n > 3.

(a) Consider the left inequality. According to Corollary 2, the sum
S,=aj'+ay +---+a;
is minimum for a, = a; = --- = a,,. Thus, we only need to show that
a+(n—1b=1, a+n—-1)b* =n* —3n+3, a<b

involve
a"+(n—1)b"<n—1—(n—2)".

From the equations above, we get
a=2—n, b=1;
therefore,
at+n—-1)b"=2—-n)"+n—1=n—1—(n—2)".

The equality holds for

(or any cyclic permutation).

(b) Consider the right inequality. According to Corollary 2, the sum

S,=al'+a; +---+a}
is maximum for a; = a, =--- = a,_;. Thus, we only need to show that
(n—1)a+b=1, (n—1)a?+b*>=n*—3n+3, a<b

involve

(n—1a™+b" < (n—2+%)m—(n—1)(1—%)m.

n

From the equations above, we get

2 2
a=—-1+-, b=n—-2+-—;
n n
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therefore,
2\" 2\"
(n—1)am+bm=(n—1)(—1+—) +(n—2+—)
n n
2\™ 2\™
(2 2) aon(1-2)
n n
The equality holds for
2 2
a=-=a,=—1+—-, aq,=n—2+-—
n n

(or any cyclic permutation).

P 6.9. Let a;,a,,...,a, be real numbers so that
a+ay+--+a,=al+ai+---+a>=n—1.

If m is an odd number (m > 3), then

2 m 2 m
n—1 Sa;’l+a;"+---+a;”£(n—1)(1——) +(2——) .
n n
(Vasile Cirtoaje, 2010)
Solution. Without loss of generality, assume that
a]_ Sazs"'san.
For n = 2, we need to show that

a; +a,=1, a?+a:=1,

implies
1<a'+ay <1

The above equations involve

hence aj' +a;' = 1. Assume now that n > 3.

(a) Consider the left inequality. According to Corollary 2, the sum
S,=al'+a; +---+a}
is minimum for a, = a; = --- = a,,. Thus, we only need to show that

a+(n—1)b=n—1, a?+(n—1)b*=n-1, a<b
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involve
a"+(n—1)b">n—1.

From the equations above, we get

therefore,
The equality holds for

(or any cyclic permutation).

(b) Consider the right inequality. According to Corollary 2, the sum
S,=al'+ay +---+a
is maximum for a; = a, =--- = a,_;. Thus, we only need to show that
(n—1)a+b=n-—1, (n—1)a*+b*=n—1, a<b

(n—1)am+bmS(n—l)(l—%)m+(2—%)m.

n

involve

From the equations above, we get

2 2
a=1—-—, b=2—-,
n n
when
2\™ 2\™
(n—1)am+bm=(n—1)(1——) +(2——) .
n n
The equality holds for
2
a,=ay,=-""=d,_;=1——, a,=2——
n n

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:
e Letay,a,,...,a, bereal numbers so that
a+ay+-+a, =k, ai+d+--+ad=n*+2k—Dn+k(k—2),
where k is a real number; k > —n. If m is an odd number (m > 3), then

2k m 2k m
(—+1—n—k) +(n—1)(—+1) <al'+taj+--+a'<(n+k—1)"—n+1.
n n
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The left inequality is an equality for

2k 2k
a1=7+1—n—k, a2=--~=an=7+1

(or any cyclic permutation). The right inequality is an equality for
a=-=a,,=—1, a,=n+k—-1
(or any cyclic permutation).

For k =0 and k = 1, we get the inequalities in P 6.6 and P 6.7, respectively. For k =
—1 and k = —n+1, by replacing k with —k and a,, a,, ..., a, with —a;,—a,, ..., —a,,
we get the inequalities in P 6.8 and P 6.9, respectively.

O

P 6.10. Let a;,a,,...,a, be real numbers so that
a+ay+---+a,=n+1, a+a+---+a’=n+3.

If m is an odd number (m = 3), then
2\™ 2\™
(—) +(n—1)(1+—) <al'tay+---+ta'<2"+n—1.
n n

(Vasile Cirtoaje, 2010)
Solution. Without loss of generality, assume that
Cl1 S a2 S e S a

ne

For n = 2, we need to show that

a; +a, =3, af+a§=5,
implies

2"+1<al'+a; <2"+1.
We get

al == 1, az = 2,
when a' +a;’ = 2™+ 1. Assume now that n > 3.

(a) Consider the left inequality. According to Corollary 2, the sum
S,=al'+a; +---+a
is minimum for a, = a; = --- = a,,. Thus, we only need to show that

a+(n—1)b=n+1, a*+(n—1)b*=n+3, a<b
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involve
2\™ 2\"
a’”+(n—1)bm2(—) +(n—1)(1+—) .
n n
From the equations

a+(n—1)b=n+1, a*+(n—-1)b*=n+3,

we get
2 2
a=-—, b=1+—;
n n
therefore,
2 m 2 m
am+(n—1)bm=(—) +(n—1)(1+—) .
n n
The equality holds for
alz—, a2:...:an:1+_

(or any cyclic permutation).

(b) Consider the right inequality. According to Corollary 2, the sum
S,=al'+ay +---+a
is maximum for a; = a, =--- = a,_;. Thus, we only need to show that
(n—1a+b=n+1, (n—1a*+b*=n+3, a<b

involve
(n—1a™"+b"<2"+n—1.

From the equations

(n—1Da+b=n+1, (n—1)a*+b*=n+3,

we get
a=1, b=2;
therefore,
(n—1)a™"+b"=n—1+2".
The equality holds for

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization:
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e Letay,a,,...,a, bereal numbers so that
a+ay+--+a, =k, ai+da+---+ad=n*—2k+Dn+k(k+2),

where k is a positive number, k > n. If m is an odd number (m = 3), then

2k " 2k "
(——1+n—k) +(n—1)(——1) <a'+tay+---+a’<(k—n+1)"+n—1.
n n
The left inequality is an equality for

2k 2k
a1=7—1+n—k, a2=---:an=7—1

(or any cyclic permutation). The right inequality is an equality for
a=-=a,,=1, a,=k—n+1
(or any cyclic permutation).

For k = n+ 1, we get the inequalities in P 6.10.

P 6.11. If a;,a,,...,a, are real numbers so that
a+ay+--+a,=al+al+---+a=n-1,

then
5, 5 5
a+ay+---+a =n—1.

(Vasile Cirtoaje, 2010)

Solution. For n = 2, we need to show that

a+tay,=1, dai+ai=1,
implies
5 5
aj+a; =1

We have

a, =0, a, =1,
or

a; =1, a, =0.

For each of these cases, the inequality is an equality. Assume now that n > 3 and

alﬁazﬁ"'ﬁan.
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According to Corollary 2, the sum
S,=ad+a+-+a
is minimum for a, = a; = --- = a,,. Thus, we only need to show that
a+(n—1b=a*+(n—1b*=n—-1, a<b

involve
a+((Mn—-1)b>>n—1.

The equations
a+(n—1b=n—-1, a*+n—-1b*=n-1,
are equivalent to
(1-b0)[(n—1)2*1—-=b)>-1—-b—0b*>-0b%]1=0, a=(n—-1)(1-D);

that is,

and
a®=1+b+b%2+0b% a=(n-1)(1-0b).

For the second case, the condition a < b involves
b>>1+b+b*+b°

which is not possible. Therefore, it suffices to show that
a+(n-1)b°>n-1

fora =0 and b =1, that is clearly true. Thus, the proof is completed. The equality
holds for

(or any cyclic permutation).

P 6.12. If a, b, c are real numbers so that
a’?+b2+c?=3,

then
a+b>+c+3>2(a+b+o).

(Vasile Cirtoaje, 2010)
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Solution. Assume that
a<b<ec.

According to Corollary 2, fora < b < c and
a+b+c=constant, a*+b*+c%=3,

the sum
S;=a’+b>+¢?
is minimum for a < b = c¢. Thus, we only need to show that

a’+2b%2=3, a<b,

involves
a®+2b*+3 > 2(a+2b).

We will show this by two methods. From a? + 2b* = 3 and a < b, it follows that

.3 NE
—v/3<a<1, —=\|=<b<\=
2 2

Method 1. Write the desired inequality as
a®+b(3—a®)+3>2(a+2b),

a®*—2a+3>b(a*+1).

For a > 0, we have
a*—2a+3>—-2a+3>0,

and for a < 0, we have
a®—2a+3=a(a®>—3)+a+3=—2ab?’+a+3>a+3>0.
Thus, it suffices to show that
(a® —2a+3)* > b*(a®* +1)?,
which is equivalent to
2(a®—2a+3)*> (3—a?*)(a®*+1)?%

(a—1)*f(a) =0,

where
f(a)=a*+2a*+2a+5.

We need to prove that f(a) > 0. For a > —1, we have

fla)=(a+2)(a®*+2)+1>0.
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For a < —1, we have
fl@=(a+1)*(a+2)*+g(a), gla)=—4a*—-13a*>—10a+1.
It suffices to show that g(a) > 0. Since

_ 7\ _, 13 53
gla) = (a+1)(2a+2) +5h(a), h(a)=a*+ 4a+20

and
h(a)=(a+E)2+i>O,
the conclusion follows. The equality holds fora=b=c=1.
Method 2. Write the desired inequality as follows:
2(a®—2a+1)+4(b>*—2b+1) >0,
2(a®*—2a+1)+4(b>—2b+1) > a*+2b*—3,
(2a®—a*—4a+3)+2(b>*—b*—4b+3)>0,
(a—1)*(2a+3)+2(b—1)*(2b+3)>0.
Since 2b + 3 > 0, the inequality is true for a > —3/2. Consider further that

-3
—v/3<a< —,
2
and rewrite the desired inequality as follows:
2(a®—2a+1)+4(b*>—2b+1) +4(a*+2b*—3) > 0,
(2a® +4a®> —4a —2) + 2(2b> + 4b*>—4b—2) > 0,
33
(2a3+4a2—4a—7)+(4b3+8b2—8b+ z) >0,

(2a+3)(a2 + %a—%) + f(b) =0,

where

f(b)=4b*+8b*>—8b + %.

Since 2a + 3 < 0 and

1 11 1 11 1
a*+-a——<3+-a——=-(2a+1) <0,
247 2974 T3

it suffices to show that f(b) = 0. For b > 0, we have
f(b)>8b>—8b+2=2(2b—1)*>0,
and for b < 0, we have

f(b) > 4b®+8b*=4b*(b+2)>0.
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P 6.13. Ifa,,a,,...,a, are real numbers so that
a+ay+--+a,=0, a+a+---+a=n(n—1),

then
al+aj+---+a <n(n—1)(n*—3n+3).

(Vasile Cirtoaje, 2010)

Solution. For n = 2, we need to show that

a,+a,=0, a’*+a’=2,

1 2
implies
at+at<2
1 2

We have

Cl1 == _1, a2 == ].,
or

a; = 1, a, = —1.

For each of these cases, the desired inequality is an equality. Assume now that
n > 3. According to Theorem 1, the sum

_ 4 4 4
Sp=a;+a,+---+a;
is maximum for
alz...:aj’ aj+1:...:an’
where j € {1,2,...,n—1}. Thus, we only need to show that
ja1+(n_j)an:OJ Ja?_i_(n_])a,%:n(n_l)

involve
jat +(n —j)ai <n(n—1)(n*—-3n+3).

From the equations above, we get

o (=D=1) =1

1 n

J n—j
therefore,
_ . 3+ .3 2
jaj +(n—ja} = w(n—l)2 = [ , ! , —3] n(n—1)>2.
j(n—1J) j(n—1j)
Since

jn=)—m-1)=0(-Dn-j-1)=0,
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we get

2
. _ n
jat+(n—ja’ < [n—

T 3] n(n—1)*=n(n—1)(n*—3n+3).

The equality holds for
a,=-n+1, a,=--=a,=1

and for
a,=n—1, a,=---=a,=-—1

(or any cyclic permutation).

P 6.14. If a,,a,,...,a, are real numbers so that
— 2 2 2 __ 2
a;ta,+---+a,=n+1, aj+a;+---+a,=4n"+n—1,

then
al+aj+---+a<16n*+n—1.

(Vasile Cirtoaje, 2010)

Solution. Replacing n by 2n + 1 in the preceding P 6.13, we get the following
statement:

e Ifa,,a,,...,a,,., are real numbers so that
a+a, 4+ +ay,, =0, da+a+---+ai,, =2n2n+1),
then
4, 4 4 2
aj+a;+---+a,, ., <2n(2n+1)(4n"—2n+1),
with equality for
a, =—2n, Ay ="+ =gy =1
and for
a, = 2n, Ay =+ =dgpyy =—1

(or any cyclic permutation).

Putting
Apyp =" = Ay =—1,

it follows that

a,+ay,+---+a,—n—1=0, af+a§+---+a§+n+1=2n(2n+1)
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involve
al+al+--+at+n+1<2n@2n+1)(4n*-2n+1).

This is equivalent to the desired statement. The equality holds for
a,=2n, a,=---=a,=-—1

(or any cyclic permutation).

P 6.15. If n is an odd number and a,, a,,...,a, are real numbers so that
a+ay+--+a,=0, a+a+---+a=nn*-1),

then
at+al+---+at=nn*—-1)(n*+3).

(Vasile Cirtoaje, 2010)
Solution. According to Theorem 1, the sum
Snzai+ag+---+a3

is minimum for
alz...:aj’ aj+1:...:an’
where j € {1,2,...,n—1}. Thus, we only need to show that
ja+(n—j)a,=0, jai+(m—ja;=n(n*-1)
involve
jat+(n—j)a’ <n(n*—-1)(n*+3).

From the equations above, we get

o ==l L, jm—1),

J n—j
therefore,
_ . 3+ -3 2
jaj +(n—j)a; = w(nz—l)2 = [ , L : —3] n(n*—1)>2.
j(n—1j) j(n—1j)
Since
n>—1 (n—2j)?—1
—jln—j)=——"—20,
4 4
we get

2
jat+(n—jat > ( jn T 3) n(n®>—1)? =n(n®>—-1)(n®>+3).
n —
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The equality holds when n—1

n+1 n—
are equal to n — 1, and also when

of a;,a,,...,a, are equal to —n — 1 and the other

of a;,a,,...,a, are equal ton+1

+1
and the other n

are equal to —n + 1.

P 6.16. If a;,a,,...,a, are real numbers so that
a+ay+--+a,=n*—n—1, a+a+--+a=n+2n—n—1,
then
al+ai+-+at=nt+(n—Dn+ 1N
(Vasile Cirtoaje, 2010)

Solution. Replacing a,,a,,...,a, by 2a;,2a,,...,2a, and then n by 2n + 1, the
preceding P 6.15 becomes as follows:

e Ifa;,a,,...,a,,,; are real numbers so that

a+ay+-+ay, =0, a+a+--+a,, =nn+1)(2n+1),

then

4, 4 4 2
aj+ay,+---+a, ., =nn+1)2n+1)(n"+n+1),

with equality when n of a;,a,, ..., ay,,, are equal to —n — 1 and the other n+ 1 are
equal to n, and also when n of a;,a,, ..., ay,,; are equal to n+ 1 and the other n+1
are equal to —n.

Putting
A =" =0y =N, a2n+1=n+1,

it follows that
a,+a,+--+a,+n(-n)+(n+1)=0

and
a+a+---+ai+n(-n)+n+1)P*=n(n+1)(2n+1)

involve
al+ai+--+a+n(n)+n+1)* <nn+1)2n+1)(n*+n+1).
This is equivalent to the desired statement. The equality holds for
a,=--=a,,=n+1, a,=-n

(or any cyclic permutation).
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P 6.17. If a;,a,,...,a, are real numbers so that
G +ay+--+a,=n*—-2n—1, da+a+---+a>=n’+2n+1,

then
al+ai+--+at>m+ 1)+ (n—1)nt.
(Vasile Cirtoaje, 2010)

Solution. As shown in the proof of the preceding P 6.16, the following statement
holds:

e Ifa;,a,,...,ay,,, are real numbers so that

a+ay+-+ay, =0, a+a+--+a;,, =nn+1)(2n+1),

then

4 4 4 2
aj+ay+---+a, ,=2n(n+1)2n+1)(n"+n+1),

with equality when n of a;,a,, ..., ay,,, are equal to —n — 1 and the other n+ 1 are
equal to n, and also when n of a;,a,, ..., ay,,1 are equal to n+ 1 and the other n+1
are equal to —n.

Putting
Apy1 =" =dy g =—N—1,  ay, = a1 =1,

it follows that
a,+a,+--+a,+(n—1)(—n—-1)+2n=0

and
2, 2 2 2 2 _
ajta;+--+a +(n—1)(-n—-1)"+2n"=n(n+1)(2n+1)

involve
al+ai+-+al+(n—-1)(n—-1D"+2n* <n(n+12n+1)(*+n+1),

which is equivalent to the desired statement. The equality holds for
a,=-n—1, a,=---=a

(or any cyclic permutation).

P 6.18. Ifa,,a,,...,a, are real numbers so that
a+ay+---+a,=n*-3n—-2, dai+da+---+a’=n’+2n"-3n-2,

then
al+ai+---+at=2nt+(n-2)(n+ 1%

(Vasile Cirtoaje, 2010)
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Solution. As shown in the proof of P 6.16, the following statement holds:

e Ifa;,a,,...,ay,,, are real numbers so that

a+ay+-+ay, =0, d+a+--+a,, =nn+1)(2n+1),

then

al+a}+---+a)  >nn+1)2n+1)(n*+n+1),

with equality when n of a;,ay, ..., dy,,, are equal to —n — 1 and the other n+ 1 are
equal to n, and also when n of a;,a,, ..., ay,,1 are equal to n+1 and the other n+1
are equal to —n.

Putting
Auyp =" =dyp g =N, Ay =0Agpy =n+1,

it follows that
a+ay+---+a,+(n—1)(-n)+2(n+1)=0

and
af+a§+~~~—I—a§—|—(n—1)(—n)2+2(n+ 1)?*=n(n+1)2n+1)

involve
ad+a+--+a+(n—-D(n)t+2(n+ 1) <n(n+1)2n+1)(n* +n+1),
which is equivalent to the desired statement. The equality holds for
a,=a,=-n, aq3=---=a,=n+1

(or any permutation).

P 6.19. If a, b, c,d are real numbers so that a4+ b+ c +d =4, then
(@2+b>+c2+d?>—4)(a®+b%>+c2+d*+36) <12(a*+ b* +c*+d*—4).

(Vasile Cirtoaje, 2010)

Solution. By Theorem 1, fora+b+c+d =4 and a®+ b*+c>+d? = constant, the
sum a*+ b* + c* + d* is maximum when the set (a, b, c, d) has at most two distinct
values. Therefore, it suffices to consider the following two cases.

Case 1: a = b and ¢ = d. We need to show that a + ¢ = 2 involves

(a®+c*—2)(a*+c*+18) < 6(a*+c*—2).



526 Vasile Cirtoaje

Since
a*+c?—2=(a+c)*—2ac—2=2(1—ac), a*+c*+18=2(11—ac),
at+ct—2=(a*+c*)?—-2a*c2—2=2(1—ac)(7—ac),
the inequality becomes
(1—ac)(11—ac) <3(1 —ac)(7 —ac),

(1—ac)(5—ac)=0.

It is true because
1 2
ac < Z(a-l—c) =1.

Case 2: b =c = d. We need to show that a + 3b = 4 involves
(a®?+3b%—4)(a® +3b%+36) < 12(a* +3b* —4).
Since
a’*+3b*—4=12(b—1)*>, a*+3b*+36=4(3b*>—6b+13),

a*+3b*—4=(4—3b)"+3b*—4=12(b—1)*(7b*—22b +21),

the inequality becomes
(b—1)*[(3b*—6b +13) < 3(b—1)*(7b*—22b + 21),

(b—1)*(3b—5)?>0.
The equality holds fora = b =c =d =1, and also for

(or any cyclic permutation).

P 6.20. If a,a,,...,a, are real numbers so that
— 2 2 2
a;+a+---+a,=0, aj+a,+---+a,=n(n-1),

then
a+ai+---+a<(n—1°+n—1.

(Vasile Cirtoaje, 2010)
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Solution. For n = 2, we need to show that

a,+a,=0, a*+a’=2,

1 2
implies
6 6
a;+a, <2.

We have

Cl1 —_ _1, a2 = 1J
or

a]_ = ]., az —_ _1

For each of these cases, the desired inequality is an equality. According to Theorem

2, the sum

— 64 6 ... 6
Sp=a;+a,+---+a;

is maximum for
alz...:aj, aj+1:-..:an’

where j € {1,2,...,n—1}. Thus, we only need to show that
ja, +(n—ja,=0, ja;+(n—ja2=n(n—1)

involve
jal+(n—ja’ <(n—1°+n—1.

From the equations above, we get

o (n—=j)(n—1) ,_ Jjn—1)
ag=—"--—"7"7 a,=—.
J n—j

Thus, the desired inequality becomes

(R=i°+j° _ (n=1F+1

jAn—j2 = (n—1)* °
(n—)*=n—j)j+m—j)j>—(—jj*+;* <
j2(n—j)? B
<(n—1)4—(n—1)3+(n—1)2—(n—1)+1
B (n—1)> ’
(n—j)* n—j J j? 1 1

- <(n—-1Y*-(n—1)— + ,
7T g Ty s ey
which can be written as

f(a) = f(b),

where 1 1
f)=x"—x—=+—,
x x2
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Since a > b and

ab—1=(n—1)(?—1)—1:n(n_,1—1)20,

J
we have
1 a+b
f(a)—f(b)=(a—b)(a+b—1+5— azbz)

:(a—b)(l—%)[(a+b)(1+$)—1]20.

a; =—n+1, a,=--=a,=1,

The equality holds for

and for
a,=n—1, a,=---=a,=-—1

(or any cyclic permutation).

P 6.21. Ifa,,a,,...,a, are real numbers so that
ag+ag+-+a, =1, ad+a+---+ad=n"+n—1,

then
a+ai+---+a®<n®+n—-1.

(Vasile Cirtoaje, 2010)

Solution. The inequality follows from the preceding P 6.20 by replacing n with
n+ 1, and then making a,.; = —1. The equality holds for

a, =n, ay=---=a,=-—1

(or any cyclic permutation).

P 6.22. If a;,a,,...,a, are real numbers so that
a+ay+--+a,=0, d+a+---+a’=n(n-1),

then
ad+a+--+a<(n—10°+n—1.

(Vasile Cirtoaje, 2010)
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Solution. For n = 2, we need to show that

a+a,=0, a+a=2,
implies
8 8
a;t+a, < 2

We have

Cl1 == _1, a2 == 1,
or

Cll = 1, a2 —_ _1

For each of these cases, the desired inequality is an equality. According to Theorem
2, the sum
_ 8, 8 8
Sp=a;+a,+---+a,

is maximum for
a1:...:aj’ aj+1:...:an’

where j € {1,2,...,n—1}. Thus, we only need to show that
ja1+(n_j)an:0’ Ja%_i_(n_])a,%:n(n_l)

involve
jai+(n—j)a’ <(n—1°+n-1.

From the equations above, we get

a_(=pn-1 L, _j-1)
1 ] ? n Tl—j :

Thus, the desired inequality becomes

(n—j)Y +j’ - (n—1)Y+1

B—jyr = (=14
_.3 _.2 oz . -2 -3
(nigj)_(n.ZJ)JrniJJr j__ J'2+ J.3S
j j jo n—j (—j)y ((—j)
1 1 1

<= == =D T e Y e

fla) = £(b),
where

a=n—1, b=2—1,
J

1 1 1
fO)=x>—x*+x+=-——=+—, x>0.
x xz x3
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Since
fFO)=(t—-1)(t*—2), t :x+% > 2,

it suffices to show that

1 1
a+—-=>b+—.
a b
We have a > b,
n n—1
ab—1=(n—1)(—.—1)—1=n( - —1)20,
J J
therefore
1 1 1
a+—-—b——=(a—-b)|1——]=0.
a b ( )( ab)
The equality holds for
a,=—n+1, a,=---=a,=1
and for
a,=n—1, a,=---=a,=-—1
(or any cyclic permutation).
OJ
P 6.23. If a;,a,,...,a, are real numbers so that
a+agt+-+a, =1, a+a+---+ad=n"+n—1,
then

a1+a2+...+a <n +n_|.

Solution. The inequality follows from the preceding P 6.22 by replacing n with
n+ 1, and making a,,; = —1. The equality holds for

a, =n, ay=---=a,=-—1

(or any cyclic permutation).
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P 6.24. Let a,q,,...,a, (n > 2) be real numbers (not all equal), and let

A Gtatta, B:af+a§+-~-+a§ C:af+a§+---+a§

n n n

Then,

1 2n2 B2—AC 1 2n2
Sl1=\1+ < <-|1+\1+ :
4 n—1 B2—A% T 4 n—1
(Vasile Cirtoaje, 2010)

Solution. It is well-known that B > A%, hence B? > A*.

(a) For n = 2, the right inequality reduces to (af — a§)2 > 0. Consider further

that n > 3. Since the right inequality remains unchanged by replacing a,, a,,...,a,
with —a,,—a,,...,—a,, we may suppose that A > 0. Assuming that
A= constant, B = constant,

we only need to consider the case when C is minimum. Thus, according to Corollary
2, it suffices to prove the required inequality for a; < a, = a; =--- = a,,. Setting

a,:’=a, a,=as=--+-=a,:=b, a<b,

the inequality becomes

n

[a2+(n—1)b2}2_n[a+(n—1)b]z SZ(1+ 1+n—zl)’

n n

[a2+(n—1)b2]2_a+(n—1)b ' a+(n—1)b°

After dividing the numerator and denominator of the left fraction by (a — b)?, the
inequality reduces to

—4n%ab 1414 2n2
(n+1a2+2(n—1)ab+(2n2—3n+1)b ~ n—1

—2ab 1
<
(n+1a?+2(n—1ab+(2n2—3n+1)b ~ /(m2—1)@2n—1)—n+1

2
2n2—3n+1
(a+ ib) ~o.
n+1

n+1 @ =q = —q
(n—1)@2n-1) * *

The equality holds for
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(or any cyclic permutation).

(b) For n = 2, the left inequality reduces to (a; —a,)* > 0. For n > 3, the proof
is similar to the one of the right inequality. The equality holds for

Il
a

\J n+1 o
n—Dn—1) "~ %27~ n

(or any cyclic permutation).

P 6.25. If a, b, c,d are real numbers so that
a+b+c+d=2,
then
a*+ bt +ct+di < 4O+%(a2+ b2+ c2+d?)%.
(Vasile Cirtoaje, 2010)
Solution. Write the inequality in the homogeneous form
10(a+ b+ c+d)* +3(a®+ b>+ 2+ d?)? > 4(a* + b* + c* + dY).

By Theorem 1, for a + b +c +d = constant and a® + b% + ¢? + d?> = constant, the
sum a*+ b* +c* + d* is maximum when the set (a, b, ¢, d) has at most two distinct
values. Therefore, it suffices to consider the following two cases.

Case 1: a = b and ¢ = d. The inequality reduces to
41(a*+ c*)* + 160ac(a® + c?) + 164a%c* > 0,
which can be written in the obvious form
(a4 c?)? +40(a® + c? +2ac)* + 4a%c* > 0.
Case 2: b = c = d. The inequality reduces to the obvious form
(a +5b)*(3a®+ 10ab + 11b%) > 0.
Since the homogeneous inequality becomes an equality for
—a

—:b:C:d
5

(or any cyclic permutation), the original inequality is an equality for
a=5b=c=d=-1

(or any cyclic permutation).
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P 6.26. Ifa, b, c,d, e are real numbers, then

<31+18f

3 3
a4+b4+c4+d4+e4_T(a+b+c+d+e)4+Z(a2+b2+c2+d2+e2)2.

(Vasile Cirtoaje, 2010)

Solution. We proceed as in the proof of the preceding P 6.25. Taking into account
Theorem 1, it suffices to consider the casesb =c=d =e,anda=bandc=d =e.

Case 1: b = ¢ = d = e. Due to homogeneity, we may consider b=c=d =e =0
and b =c¢ =d = e = 1. The first case is trivial. In the second case, the inequality

becomes
_ 31+ 18+4/3

8
(a+2+2v3)’ [f(a)+2V3 g(a)] = 0,

3
at+4 (a+4)*+ ‘—}(a2 +4)%,

where
f(a)=29a*+164a +272,  g(a) =9a®+ 50a + 76.

It suffices to show that f(a) > 0 and g(a) > 0. Indeed, we have
5 82)?
f(a) > 25a“ + 164a + 269 = 5a+? +—>0,

25\* 5
g(a)>9a2+50a+7O=(3a+?) +§>O.

Case 2: a = b and ¢ = d = e. It suffices to show that
3
at+ bt +ct+di+et < Z(a2+b2+c2+d2+ez)2,
which reduces to 3
2a* +3c* < Z(za2 +3¢2)?,
3(2a® + 3c?)* > 4(2a* + 3¢*),
4a* +36a%c% 4+ 15¢* > 0.

The equality holds for

—a

m=b=c:d=e

(or any cyclic permutation).
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—5
P 6.27. Leta,b,c,d,e # % be real numbers so that a+ b +c+d +e =5. Then,

ala—1) b(b—1) c(c—1) d(d—1) e(e—1) S
(4a+5)> (4b+5)> (4c+5)2 (4d+5)* (4e+5)2

(Vasile Cirtoaje, 2010)

Solution. Write the inequality as
180a(a—1
S [M + 1] >,
(4a +5)2

Z (14a —5)? -
(4a+5)% —

By the Cauchy-Schwarz inequality, we have

Z(l4a—5)2 [ (4a +5)(14a—5)]"
(4a+5)2 — >(4a+5)4 '

Therefore, it suffices to show that

(56> a?+ 125)2 > 5> (4a+5)".

Using the substitution

4a +5 4b+5 4e +5
a, = 5 ,Ay = 5 yer, g = 5

we need to prove that a; + a, + a; + a, + as = 5 involves

5 2 5
(7Za§—2s) >20 > a
i=1 i=1

Rewrite this inequality in the homogeneous form

2
2
7Za —(Zai) ZZOZSIaf.
i=1

i=1

By Theorem 1, for a, + a, + a; + a4 +as = 5 and a} + a; + a2 + a; + a? = constant,
the sum a} + aj + aj + a} + af is maximum when the set (a,,ay, as, a,, as) has at
most two distinct values. Therefore, we need to consider the following two cases.
Case 1: a; = x and a, = a; = a, = a; = y. The homogeneous inequality reduces
to

(3x%+6y* —4xy)* > 5(x* +4y"),
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which is equivalent to the obvious inequality
(x—y)*(x—2y)*=>0.
Case 2: a, =a, = x and a; = a, = a; = y. The homogeneous inequality becomes
(5x% +6y% —6xy)* > 5(2x*+3y%),
which is equivalent to the obvious inequality
(x —y)[5(x —y)*+2y*] = 0.
The equality holds fora =b=c=d =e =1, and also for
azg, b=c=d=e=§

(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization.

o Let xq,Xy,...,X, 7 —k be real numbers so that x; + x, + -+ x,, = n, where

n
k> ——.
2v/n—1
Then,
x1(x;—1)  xp(xy;—1) o X, (x, —1) >0
(e +k)2  (xp + k)2 (x, +k)2 —
n
with equality for x; = x, = -+ = x,, = 1. If k = ————, then the equality holds
q ty f 1 2 If =1 q ty
also for
X, = E Xo =+ =X, = n
1 21 2 n 2(Tl— 1)
(or any cyclic permutation).
]
P 6.28. If a, b, c are real numbers so that
a+b+c=09, ab+ bc+ca=15,
then
19 1 1 1 7
< <

< + + < —.
175 = b2+ bc+c%2 c24+ca+a?2 a?2+ab+b2" 19
(Vasile C., 2011)
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Solution. From
(b+c)*> 4bc

and
b+c=9—a, bc=15—a(b+c)=15—a(9—a)=a*—9a+15,
we get a < 7. Since
b +bc+c*=(a+b+c)(b+c)—(ab+bc+ca)=9(9—a)—15=3(22—3a),

we may write the inequality in the form

L <@+ D)+,
where ;
f(u)=22_3u, u<s?v.
We have 3
g(x):f/(x):(zz_—gx)z’
o162
&)= a0

Since g”(x) > 0 for x < 7, g is strictly convex on (—oo, 7]. According to Corollary
1, ifa<b<cand

a+b+c=9, a?+b*+c2=51,
then the sum S; = f(a) + f(b) + f(¢) is maximum for a = b < ¢, and is minimum
fora<b=c.

(a) To prove the right inequality, it suffices to consider the case a = b < c.
From
a+b+c=9, ab+bc+ca=15,

we get a = b =1 and ¢ = 7, therefore

1 1 1 7

+ + =—.
b2+bc+c2 c24+ca+a®? a2+ab+b2 19

The original right inequality is an equality for a = b = 1 and ¢ = 7 (or any cyclic

permutation).

(b) To prove the left inequality; it suffices to consider the case a < b = ¢, which
involves a = —1 and b = c =5, hence

1 PR S 1 19
b2+ bc+c2 c24+ca+a® a?4ab+b2 175
The original left inequality is an equality for a = —1 and b = ¢ = 5 (or any cyclic

permutation).
O



EV Method for Real Variables 537

P 6.29. If a, b, c are real numbers so that
8(a?+ b*+c*)=9(ab + bc +ca),

then
419 a? b? c? 311
< + + < .
175 = b2+ bc+c2 c24+ca+a?2 a?+ab+ b2 19

(Vasile C., 2011)

Solution. Due to homogeneity, we may assume that
a+b+c=9, a®+b*+c2=51.

Next, the proof is similar to the one of the preceding P 6.28. Write the inequality
in the form

1257 933
/< < ==
175 <fla)+f(b)+f(c)< 19
where
uZ
= <7.
f) =g 5w 457
We have 5
, _ —3x"+44x we o~ 8712
$0=f= oo 8=

Since g is strictly convex on (—oo,7], according to Corollary 1, the sum S; =
f(a)+ f(b)+ f(c) is maximum for a = b < ¢, and is minimum for a < b =c.

(a) To prove the right inequality, it suffices to consider the case a = b < c,
which involves

and
a’ N b? N c? _ 311
b2+bc+c2 c24+ca+a® a?+ab+b2 19
The original right inequality is an equality for a = b = ¢/7 (or any cyclic permuta-
tion).

(b) To prove the left inequality, it suffices to consider the case a < b = ¢, which
involves a = —1 and b = c =5, hence

a? b? c? 419

- + =—.
b2+ bc+c2 c24+ca+a?2 a?+ab+b2 175

The original left inequality is an equality for —5a = b = ¢ (or any cyclic permuta-
tion).
O
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P 6.30. Let a,,a,,...,a, be real numbers such that a; +a,+---+a, =n. If n <10,
then
2, 2 242 3, .3 3 2
2(ai+a;+---+a) —n(a;+a,+---+a))=n".

(Vasile Cirtoaje, 2020)
Solution. Write the inequality in the homogeneous form
2n*(al+ai+---+a’)*—n*(a;+a,+-+a )@ +a+-+a) = (a;+a,+- - +ay)t

According to Corollary 2, for a; +a,+---+a, = constant > 0 and a?+a>+---+a> =
constant, the sum
S=ad+a+-+d

is maximal when n—1 of a;,a,, ..., a, are equal. Therefore, it suffices to consider
the case a, = a; = --- = a,,. Due to homogeneity, for the nontrivial case a, = a; =
.-+ =a, # 0, we may consider that a, = a; = --- = a, = 1. Thus we only need to
prove that

2n*(al+n—1)—n*(q; +n—1)(a} +n—1) > (a; +n—1)%,
which is equivalent to
(a; —1)*(Aa? —Ba,; +C) > 0,
where
A=n(n+1), B=n(n>—2n+2), C=n(n—1)2n—-1).
The inequality is true because
4AC —B? = n*(—n*+12n—12)>0.

The equality occurs for a; =a, =---=aqa, =1.



Appendix A

Glosar

1. AM-GM (ARITHMETIC MEAN-GEOMETRIC MEAN) INEQUALITY

If a;,a,,...,a, are nonnegative real numbers, then
a;+a,+---+a, =ny/a,a,---a,,
with equality if and only if a; = a, =--- = a,,.

2. WEIGHTED AM-GM INEQUALITY
Let p1,ps,--., P, be positive real numbers satisfying
pi+pyt--tp, =1
If a;,a,,...,a, are nonnegative real numbers, then
p

1402, 4P
p1ay +pya,+---+p,a,=a;a, ar,

with equality if and only if a; = a, =--- = a,,.

3. AM-HM (ARITHMETIC MEAN-HARMONIC MEAN) INEQUALITY

If a;,a,,...,a, are positive real numbers, then

1 1 1
SRPIRVRY £ W B  FF)
a; a, a

with equality if and only if a; = a, =--- =a,,.

539
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4. POWER MEAN INEQUALITY
The power mean of order k of positive real numbers a;,a,,...,a,,

1
ky -k k
(a1+a2+~~+a

: )E, k#0

Mk = >
Jaja, - a,, k=0

is an increasing function with respect to k € R. For instant, M, > M; > M, > M_,
is equivalent to

> 4/a.ay,0-a

\Ja§+a§+---+a§>a1+a2+---+an n
" - = =T 1

5. BERNOULLI’'S INEQUALITY

For any real number x > —1, we have
a) (1+x) >1+4+rxforr>1andr <0;
b) (1+x) <1l+rxfor0<r<1.

If a;,a,,...,a, are real numbers such that either a,,a,,...,a, >0 or
—-1<a;,a,,...,a,<0,

then
(1+a)(1+ay)-(1+a,)>1+a,+a,+-+a,.

6. SCHUR’S INEQUALITY

For any nonnegative real numbers a, b, ¢ and any positive number k, the inequality
holds
a“(a—b)a—c)+ b (b—c)b—a)+c(c—a)(c—Db) =0,

with equality for a = b = ¢, and for a = 0 and b = ¢ (or any cyclic permutation).
For k = 1, we get the third degree Schur’s inequality, which can be rewritten as
follows
a®+b*>+c®+3abc > ab(a+ b)+ be(b +c¢)+calc+a),
(a+b+c)*+9abc>4(a+b+c)ab+ bc+ca),
9abc

a’?+b%>+c2+ ——"">2(ab+ bc+ca),
a+b+c
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(b—c)Y*(b+c—a)+(c—a)*(c+a—Db)+(a—Db)*(a+b—c)>0.

For k = 2, we get the fourth degree Schur’s inequality, which holds for any real
numbers a, b, ¢, and can be rewritten as follows

a*+b*+c*+abc(a+ b +c)>ab(a®+ b*) + be(b® + c?) + ca(c? + a?),
a*+ b*+c*—a?b?>—b%c?—c%a®> > (ab + bc +ca)(a® + b? + 2 —ab—bc —ca),
(b—c)*(b+c—a)P+(c—a) (c+a—b)+(a—b)Y(a+b—c)*>0,
6abcp > (p*—q)(4q—p?), p=a+b+c, g=ab+ bc+ca.

A generalization of the fourth degree Schur’s inequality, which holds for any
real numbers a, b, ¢ and any real number m, is the following (Vasile Cirtoaje, 2004)

Z(a —mb)(a—mc)(a—b)(a—c)=>0,

with equality for a = b = ¢, and also for a/m = b = ¢ (or any cyclic permutation).
This inequality is equivalent to

Za4+ m(m+2)Z:a2b2 +(1 —mz)acha >(m+ 1)Z:ab(a2 + b?),

Z(b—c)z(b +c—a—ma)*>0.

7. CAUCHY-SCHWARZ INEQUALITY

If a;,a,,...,a, and by, b,,..., b, are real numbers, then
(@+a+---+a)(bi+b2+---+b2) > (a;by +ayby + -+ +a,b, ),

with equality for

Q

al_az_ n
by by b,

Notice that the equality conditions are also valid for a; = b; =0, where 1 <i < n.

8. HOLDER’S INEQUALITY

If Xij (i=1,2,---,m;j=1,2,---n) are nonnegative real numbers, then

(1(En)=(£40-)

i=1 \j=1 j=1 i=1
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9. CHEBYSHEV’S INEQUALITY

Leta; > a, > --- > a, be real numbers.

a)If b, >b,>---b,, then

Soe(2)(5)
i=1 i= i=1

b) Ifb] S bz S cte S bn, then
Zab <( al)( bl-).
i=1 i=1 i=1

10. REARRANGEMENT INEQUALITY

[y

(1) 1f (ay,ay,...,a,)and (bq, by, ..., b,) are two increasing (or decreasing) real
sequences, and (i,, i, ,1,) is an arbitrary permutation of (1,2,---,n), then

a;b, +ayby +---+a,b, = a;b; +a,b;, +---+a,b;
and
n(a,b, +ayby +---+a,b,) > (a; +ay+---+a,)(by + by +---+b,).
(2) If (a3, a,,...,a,) is decreasing and (b, b,, ..., b,) is increasing, then
a;b; +ayby +---+a,b, <a;b; +ayb;, +---+a,b;
and
n(a,b; +a,by +---+a,b,) <(a;+ay,+---+a,)(b; +by+---+Db,).
(3) Let by, b,,...,b,) and (c4,c¢,,...,c,) be two real sequences such that
by+--+bj=c;++-+¢c, 1=1,2,---,n
Ifa,>a,>--->a, >0, then
a;by+a,by+---+a,b, > a;c; +a,c, +--- +a,c,.

Notice that all these inequalities follow immediately from the identity

Zn:ai(bi_ci)zzn:(ai_aiﬂ)(zl: bj_zlzcj)’ apyy = 0.
i=1 i=1 j=1 j=1
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11. SQUARE PRODUCT INEQUALITY
Let a, b, ¢ be real numbers, and let
p=a+b+c, g=ab+bc+ca, r=abc,

s=+p2—3q= vaz+b2+c2—ab—bc—ca.

From the identity

(a—Db)*(b—c)*(c —a)? =—27r> + 2(9pq — 2p°)r + p>q> — 4¢°,
it follows that

—2p® +9pq —2(p* —3q)+/p2—3q —2p> +9pq + 2(p* —3q)+/p2— 3¢

<r<
27 27

which is equivalent to

3_ 912 __ 93 3_ 9.2 3
p°—3ps®—2s SrSp 3ps”+2s .
27 27

Therefore, for constant p and ¢, the product r is minimum and maximum when
two of a, b, ¢ are equal.

12. KARAMATA'S MAJORIZATION INEQUALITY
Let f be a convex function on a real interval I. If a decreasingly ordered sequence
A= (aj,a,,...,qa,), a €I,
majorizes a decreasingly ordered sequence

B:(bl’bZ""’bn)’ be]I,

1

then
fla))+f(a)+---+ f(a,) = f(by))+ f(by)+---+ f(by,).

We say that a sequence A = (a,,a,,...,a,) with a; > a, > - -+ > a, majorizes a

sequence B = (by, by, ..., b,) with b; > b, > --- > b,, and write it as
A B,

if
a, = by,

a, +a, > b; +b,,
a1+a2+"'+an_12b1+b2+"'+bn_1,
Cl1+a2+"'+an:b1+b2+"'+bn.
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13. CONVEX FUNCTIONS

A function f defined on a real interval I is said to be convex if

flax+By)<af(x)+pf(¥)

forall x, y €l and any a, 8 > 0 with a + 8 = 1. If the inequality is reversed, then
f is said to be concave.

If f is differentiable on I, then f is (strictly) convex if and only if the derivative f’
is (strictly) increasing. If f” > 0 on I, then f is convex on I. Also, if f” > 0 on (a,
b) and f is continuous on [a, b], then f is convex on [a, b].

Jensen’s inequality. Let p,,p,,...,p, be positive real numbers. If f is a convex
function on a real interval 1, then for any a,, a,, ..., a, € L, the inequality holds

pif(ay) +pof(ay)+---+p.f(a,) > (plal +P2a2+"‘+Pnan)
pitpy+--+p, B p1tpy+--+p,

For p, =p, =--- = p,,, Jensen’s inequality becomes

fla)+f(a)+---+f(a,) = nf

(a1+a2+"'+an)

Right Half Convex Function Theorem (Vasile Cirtoaje, 2004). Let f be a real
function defined on an interval I and convex on I, where s € int(I). The inequality

a+a,+---+a,
fl@)+f(@)+ -+ fla) = nf (A2 0
holds for all a,,a,,...,a, €I satisfying
a,t+a,+---+a,=ns

if and only if
fE)+(—1)f(y)=nf(s)

forall x,y € lLsuch that x <s <y and x +(n—1)y =ns.

Left Half Convex Function Theorem (Vasile Cirtoaje, 2004). Let f be a real function
defined on an interval I and convex on I, where s € int(I). The inequality

a1+a2+"'+an)
n

fla)+ )+ +fla) = nf
holds for all a,,a,,...,a, €I satisfying
a1+a2+"'+an:ns

if and only if
f)+(=1f(y)=nf(s)
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forall x,y € Lsuch that x >s >y and x +(n— 1)y =ns.

Left Convex-Right Concave Function Theorem (Vasile Cirtoaje, 2004). Let a < c
be real numbers, let f be a continuous function defined on I = [a, 00), strictly convex
on [a,c] and strictly concave on [c, o), and let

E(alaaZJ'--’an):f(al)+f(a2)+”'+f(an)'
Ifay,a,,...,a, € Lsuch that

a; +a,+---+a, =S =constant,

then
(a) E is minimum fora; = a, =+ =a,_, < a,;
(b) E is maximum for either a; =aora <a, <a,=:--=a,.

Right Half Convex Function Theorem for Ordered Variables (Vasile Cirtogje,
2008). Let f be a real function defined on an interval I and convex on I, where
s € int(I). The inequality

a;+a,+--+a,
F(@)+fla)+ -+ () = nf (2225
holds for all a,,a,,...,a, € I satisfying

a1+a2+"'+an:ns

and

a,<ay,<--<a,<s, me{l,2,...,n—1},

if and only if
f)+(n—m)f(y) = (1 +n—m)f(s)

for all x,y €1 such that
x<s<y, x+((n—m)y=(0+n—m)s.

Left Half Convex Function Theorem for Ordered Variables (Vasile Cirtoaje, 2008).
Let f be a real function defined on an interval I and convex on I, where s € int(I).
The inequality

a1+a2+"'+an)

F(@)+ fla)+ -+ £(a) = nf (

n

holds for all a,,a,,...,a, €I satisfying

and
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if and only if
fO)+(n—m)f(y) = (1+n—m)f(s)

forall x,y € 1such tht
x>s>2y, x+(n—m)y=(0+n—m)s.

Right Partially Convex Function Theorem (Vasile Cirtoaje, 2012). Let f be a real
function defined on an interval T and convex on [s,s,], where s,s, € I, s < s,. In
addition, f is decreasing on I, and f(u) = f(s,) for u € I. The inequality

a1+a2+"'+an)
n

fla)+fla)+-+fla) = nf
holds for all a,,a,,...,a, € I satisfying
a1+a2+"'+an:ns

if and only if
fE)+(—=1)f(y)=nf(s)

forall x,y € Isuch that x <s <y and x +(n—1)y =ns.
Left Partially Convex Function Theorem (Vasile Cirtoaje, 2012). Let f be a real

function defined on an interval T and convex on [s,,s], where sy,s € I, s, < s. In
addition, f is increasing on I, and f(u) = f(so) for u € I. The inequality

a1+a2+"'+an)

F(@) + flag)+ -+ £(a) = nf (

n
holds for all a,,a,,...,a, €I satisfying
a,+a,+---+a,=ns
if and only if
fE)+(—1)f(y)=nf(s)

forall x,y € Lsuch that x >s >y and x +(n—1)y =ns.

Right Partially Convex Function Theorem for Ordered Variables (Vasile Cirtogje,
2014). Let f be a real function defined on an interval T and convex on [s,s,], where
$,80 €L, s <s,. In addition, f is decreasing on I, and f(u) = f(sy) foru €. The
inequality

a1+a2+"'+an)

F(@)+ flag)+ -+ f(a) = nf (

holds for all a,,a,,...,a, € I satisfying

n

a,t+a,+---+a,=ns
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and
a,<a,<---<a,<s, me{l,2,...,n—1},

if and only if
f)+(n—m)f(y) = (1 +n—m)f(s)

forall x,y €lsuch that x <s <y and x +(n—m)y =(1+n—m)s.

Left Partially Convex Function Theorem for Ordered Variables (Vasile Cirtogje,
2014). Let f be a real function defined on an interval I and convex on [s,,s], where
80,8 €1, 5o <. In addition, f is increasing on I, and f(u) = f(s,) foru € L. The
inequality

a1+a2+"'+an)

fla) + fla)+-+ fla) = nf

holds for all a,,a,,...,a, € I satisfying

n

a,+a,+---+a,=ns

and
a,=>a,=>--=>a,=>s, me{l,2,...,n—1},

if and only if
fO)+(n—m)f(y) = (A +n—m)f(s)

forall x,y € lsuch that x >s>y and x + (n—m)y = (1+n—m)s.

Equal Variables Theorem for Nonnegative Variables (Vasile Cirtoaje, 2005). Let
a,a,,...,a, (n > 3) be fixed nonnegative real numbers, and let
0<x;<x,<---<x

n

such that

k

n’

X1+ Xg X, =a+ayteta,  xN+xs+o+xi=di+al++a
where k is a real number (k # 1); for k = 0, assume that
x1x2"'xn:a1a2"'an.

Let f be a real-valued function, continuous on [0, 00) and differentiable on (0, c0),
such that the associated function

g(x) = f'(x7)
is strictly convex on (0, 00). Then, the sum

Sp=f(x)+ flxg)+---+ f(x,)

is maximum for
xl :x2:---:x
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and is minimum for
0<x;<xy,=x3=+-=Xx,

or

0=X1=---=XjSXj+1ij+2=---=x ]G{].,Z,,rl_].}

n»

Equal Variables Theorem for Real Variables (Vasile Cirtoaje, 2010). Let a;, a,,...,a,
(n = 3) be fixed real numbers, and let

OSX1SXZ<SX

n

such that

k

n?

X1+X+ X, =agtay+ta,  xE+xf o+ xi=d+adl 4+ +a

where k is an even positive integer. If f is a differentiable function on R such that the
associated function g : R — R defined by

() =F'("Vx)
is strictly convex on R, then the sum
Sp=f)+flx)+-+ f(x,)
is minimum for x, = X3 = +++ = X,,, and is maximum for x; = Xy ="+ = X,_;.

Best Upper Bound of Jensen’s Difference Theorem (Vasile Cirtoaje, 1990). Let
P1>D2,- -+, Py (n = 3) be fixed positive real numbers, and let f be a convex function
onl=/[a,b] Ifa},a,,...,a, €1, then Jensen’s difference

pif(a)) +paflaz)+---+pafla,) (plal +P2a2+"'+Pnan)
p1+pyt-+py p1+pyt-+py

is maximum when all a; € {a, b}.
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